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ABSTRACT

Individual spatial visualization has been proved to be an important factor that impacts

software usage performance, especially on location-based software, which has become a ma-

jor trend in this ubiquitous computing era. Developing a solution that could enhance a

location-based software to handle different users with various levels of spatial visualization

abilities could yield improvement in both software usability and user performance. In this

dissertation, we started by setting up an hypothesis with a goal to discover the factors that

are helpful in minimizing/flattening those differences. Users with various spatial visual-

ization abilities could generate a similar performance on the same software. To test this,

we have run experiments to verify this claim. An application used in this study is address

verification using location-based software on a portable computing device, which is a profes-

sional task used by US census bureau office. We have developed an adaptive location-based

software that is able to adapt its user interface in real time according to the user’s spatial

visualization level.
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CHAPTER 1. INTRODUCTION

A location-based software is an application software that has a map or similar spatial

locating tools as a component. Location-based software has become an important concept

of software development because of its property to consolidate the comfortable use of ap-

plication software with the advantage of a map representing the current environment.

Along with location-based software, most developers pay attention to software develop-

ment on portable devices such as iOS devices, Android devices, Windows Phone devices, etc.

Because of the portable property and high performance requirement, portable devices have

become a major player in the information technology market. Most companies also have a

specific version of their software for these portable devices such as Facebook R©, Skype R©,

Yelp R©, or Weather Channel R© apps. The use of portable devices provides a perfect solu-

tion for location-based application software. Nowadays, we can find many location-based

software applications on portable devices. Most of them have become an important part of

our daily life. In addition to personal devices, many businesses and government agencies

have taken advantage of location-based software in their field operations.

The usability of software on portable devices is an important issue. The fact that peo-

ple are different makes it more difficult to achieve a high level of usability for all users.

Some people can struggle using software because of this reason. The user’s level of spatial

visualization (VZ) has been shown to be an important factor for how successful a software

user is [93][110][76]. This dissertation has set up and implemented three experiments to
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investigate of how individual differences, in terms of individual spatial visualization, can

affect people’s performance on location-based software using portable devices. Finally, we

developed an adaptive user interface software application that helped users with different

skill sets, particularly high and low spatial visualization, to have competitive performance

when doing a location-based task. We briefly mentioned the scope of problem, deliverables

and our contributions in the remainder of this chapter.

1.1 Problem

It is well-known that people have different skills [11][18]. An interesting question is

whether one universal interface design for location-based software on a portable device is

effective for all types of users, high and low spatial visualization ability. Most people with

low spatial ability tend to have lower performance in software usage than high spatial ability

people [10]. In this dissertation, we look at factors/treatments that could help reduce this

difference and how the factors/treatments might be used together to bridge the difference

between users for location-based software. Our focus will be on the use of the address ver-

ification task used by the Census Bureau.

Our strategy has been to develop the location-based software, which is an Android

application, to be used as a tool for this address verification task. Given our strategy, we

divided our experiments into three studies:

• Study I

The first study consisted of two sessions. For the first session, each participant took

a Paper Folding Test [20] to evaluate their level of spatial visualization (low/high).

Next, the second session asked them to verify ten addresses in the neighborhood using

our location-based software application. For each participant, one treatment (out of

three treatments) was randomly assigned. Each treatment deactivated one feature
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on the user interface. Since there were three features, each participant had only two

active features to use while verifying addresses. Study I was described in detail in

Chapter 4. The objective of Study I was to observe how different treatments impacted

participant’s performance. Understanding which UI features were benefit for which

type of participants (low/high spatial visualization) guided us for the development

of adaptive user interface software application, which was the ultimate goal of this

dissertation.

• Study II

The Study II also consisted of two sessions. The first session was the same as the first

session of Study I. The second session was also similar, but there was a difference. In

the second session, all three UI features were always active for every participant. In

addition, a larger map size was used to make map operations easier to handle. Study

II was described in detail in Chapter 5. The objective of study II was to observe

how effective it was when a participant, regardless of that participant was a low or

high spatial visualization person, used software that activated every UI feature all

the time. Providing a software application with the same UI for every participant is

referred to as universal UI software. The question was whether a larger map size and

the universal UI would result in equivalent performance for both high and low VZ

participants.

• Study III

The Study III also consisted of two sessions. The first session was the same as both

previous studies. The difference took place in the second session where the software

that participants used for address verification was adaptive UI software. The adaptive

UI software can adapt its user interface by predicting participant’s level of spatial

visualization. After the software got prediction result, it adapted its user interface

based on that prediction result. Study III was described in detail in Chapter 6. The
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objective of Study III was to observe an improved performance of participants with

different levels of spatial visualization when they verified addresses using the adaptive

UI software application.

1.2 Deliverables

This dissertation provided five deliverables, which were:

1. Adaptive UI Application Software

We introduced new adaptive UI software application for address verification that had

an ability to predict user’s spatial visualization and adapt its user interface according

to that prediction result to fit each user with different spatial visualization. The

adaptive UI software was described in Chapter 6.

2. New Data Structure for Map Components

We introduced a new data structure, “Object-Indexing”, that can be implemented

to represent a map component. This methodology allowed any map component to

have an object-oriented accessibility on a traditional raster map. Object-Indexing

was described in Chapter 3.

3. Study Results

Results of Study I, Study II, and Study III were exhibited in Chapter 4, 5, and 6,

respectively. For each study, we explained study design and study procedure along

with its result.

4. Analysis of Performance Improvement & Prediction of VZ Level

We analyzed our results to ensure a significant improvement of participants’ perfor-

mance when we assigned the adaptive UI software (Study III). This analysis was

described in Chapter 6. Furthermore, we discussed the accuracy of our prediction
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unit, which was developed to provide ‘real-time’ prediction of a user’s VZ level, in

Chapter 6 as well. The prediction model was built on the work of Batinov [2].

5. Analysis of Users’ Behavior

We analyzed and extracted important features from the logs of the participants to

generate the set of association rules using Market Basket technique (Chapter 6).

1.3 Contributions

The contributions of the dissertation consisted of three key areas:

1. The development of our new data structure for maps that provides fast performance

combined with indexable map components.

2. A suite of user interface features that provide different levels of support for users

based on the predictive value of their spatial visualization level. A robust set of such

features is critical for the successful development of an adaptive user interface based

on the prediction of a user’s level of spatial visualization.

3. The development of the adaptive user interface software that demonstrates how pre-

diction of spatial visualization and the suite of user interface features can be combined

to improve the performance of a user independent of their level of spatial visualization.

The remainder of this dissertation is organized as follows: Chapter 2 provided a review

of the literature relevant to the dissertation. The Object-indexing fundamentals were given

in Chapter 3. Chapter 4, 5, and 6 look at an explanation of Study I, Study II, and Study

III, respectively. Chapter 7 summarized the results of this dissertation.
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CHAPTER 2. LITERATURE REVIEW

This is the review of literature that is related to the proposed work in this dissertation

proposal. This chapter is organized by topic.

2.1 The effect of individual differences on software utilization and

performance

Individual differences play an important role in the interaction between humans and

computers. Carroll [11] gave eight categories of human intelligence: crystallized intel-

ligence, fluid intelligence, general memory and learning, broad visual perception, broad

auditory perception, broad retrieval ability, broad cognitive speed, and processing speed.

Carroll [11] also classified spatial ability as a factor that affects broad visual perception.

Thus, among varying types of abilities, spatial ability was recognized as the most important

representative for human difference. Lohman [58] defined spatial ability as “the ability to

generate, retain, retrieve, and transform well-structured visual images” [Lohman, Human

abilities: Their nature and measurement, p.98, 1996].

Egan [18] selected spatial ability as the most important ability for predicting human per-

formance on a computer. We see similar statements in [16][18][19][110]. Egan [18] suggested

that an individual’s spatial ability, memory, reasoning ability, verbal aptitude, and possibly

personality played an important role in a user’s performance when accessing information

on a computer.
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Benyon et al. [6] noted that, among all types of intelligence, spatial ability was often

selected for study when looking at the connection between human performance and indi-

vidual differences.

Büring, Gerken, and Reiterer [10] created a study to understand the relationship be-

tween spatial ability and the user’s performance on a zoomable user interface. In this study,

there were two software screens. The first one was the screen which represented the whole

information and it came with an overview window. The second screen came with only one

detailed screen. The result of this study showed that the higher spatial ability participants

could complete the task faster without the overview window (Search task). However, the

lower spatial ability users could complete the task faster given the overview window. This

study is a good example for showing a way that spatial ability can affect users. Ziefle and

Bay [117] constructed an experiment by providing two types of navigation aids on a mobile

device screen. The first aid was a category aid and the second one was tree aid. The cate-

gory aid had a header which contained a link to subcategories. The tree aid was almost the

same, except that it was able to show the links with a deeper level based on the properties

of the trees. They discovered that the second option was more useful for the users with low

spatial ability and older adults.

Kozlowski and Bryant [44] noted that there existed a difference between people with

a good sense of direction and people with a poor sense of direction. The first group did

better at pointing to unseen goals. The accuracy of the first group was also improved if

the additional exposure in which orientation was emphasized was given whereas no change

occurred for the poor group.

One factor to be considered when designing software for users with varying spatial abil-

ity is the informative instructions on the interface. Craik and Lockhart [14] noted that the
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depth processing was directly variable to the depth of the encoding. Nielson [72] suggested

that minimizing user memory requirements is the appropriate way to study usability be-

cause users could focus on the task on the software screen more than thinking about how

to work on the task. A guided software could help by reducing the usage of a user’s memory.

The software user interface that comes with informative guidance significantly relates

to the use of internal memory and the cognitive process [115]. Zhang [115] did conduct an

experiment on external information and revealed that external representations had the abil-

ity to impact cognitive behavior. The information that has passed from internal memory

to the external display enhanced effectiveness. Zhang’s conclusion was that the external

information was able to be an advantage if the use of it could compensate for the cost of

that external information. van Nimwegen and van Oostendorp [108] discovered that an

unguided software interface yielded better results for performance aspects than a guided

software interface because the unguided software interface allowed the users to be more

involved with the software. The users would have more chance to think and consider with

unguided software interface. Although an issue of a guidance interface could be questioned,

in our perspective, we believed that it was a matter of users and also the nature of the guid-

ance used. If a user had high spatial ability, he could work well with an unguided interface

which allowed him to learn the software while using it. Whereas if a user had low spatial

ability but had some background knowledge about the task, a guided interface software

could be a better option. Zhang and Norman [116] proposed that the representation of a

cognitive task is always both internal and external. Berger, Lu, Belzer, and Voss [7] have

found that if a computer system was developed for the purpose of learning by discovering,

students who had higher spatial ability would get move benefit as opposed to students who

had lower spatial ability. Vicente and Williges [111] published work to show that the differ-

ence in software usage performance between the higher spatial ability users and the lower

spatial ability users can be reduced by adding some extra guidance on the software interface.
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Consequently, spatial ability is a vital individual difference that could be used to deter-

mine the potential of software utilization and to design effective user interfaces that yield

optimal results for users with different levels of spatial ability. Rusch [89] found a corre-

lation between spatial visualization, and map software usage ability. The purpose of her

first study was to examine the direction of the relationship between spatial ability and user

performance based on alternative button layouts. The purpose of her second study was

to examine whether the relationship was affected by offering task guidance. Rusch [89]

made a conclusion that the good button labels could help alleviate the performance differ-

ence among users with different levels of spatial ability. The difference between guided and

unguided systems could be seen via the way that the information processing was formed.

Guided systems always came with external information for guidance as to where the user

was in the task. The goal of this kind of information processing was to cause the reduction

of working memory usage because the users did not need to recall information to keep track

of as long as they had the guidance along all steps when using the software. The strategy to

design the appearance of those external information was challenging because it came with

two negative effects. The first negative effect was that the software interface could come

up with overkill of information, which required the users to use more working memory to

digest the extra information. The second negative effect was that it reduced the chance of

the user to explore and learn the software by themselves. For the unguided systems, there

was no guiding information on the software screen. Any information that users gathered

had to be stored in the memory, which became internal information. The advantage of

internal information, or internalization, was that the user needed to do explorative learning

process. Hence, recalling of information in the unguided systems was better than recalling

of information in guided systems because it solely depended on the knowledge stored in

the working memory. Nevertheless, the problem of internal information came when dealing

with low spatial ability users. Rusch [89] concluded that unguided systems would benefit
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the users with higher spatial ability which involved the effective memory usage for software

interface as long as the amount of information was reasonably suitable. However, the guided

systems would be the most appropriate option for the users with lower spatial ability. Both

individual difference and designing the systems, regardless of unguided systems or guided

systems, played a significant role in affecting the performance of users.

2.2 Interesting studies that relate to spatial ability

Spatial ability, which can be branched into multiple sub-categories such as spatial vi-

sualization or spatial cognition, has been shown to be a significant factor in the success of

computer users. In this section, we selected some interesting studies about spatial ability

and related areas to be discussed.

Landau [51] gave a definition of spatial cognition as “Capacity to discover, mentally

transform, and use spatial information about the world to achieve a variety of goals, includ-

ing navigating through the world, identifying and acting on objects, talking about objects

and events, and using explicit symbolic representations such as maps and diagrams to com-

municate about space” [Landau. “Spatial cognition.” Encyclopedia of the human brain 4,

p.395-418, 2002].

Some work had been done to answer the question whether spatial ability reflected hu-

man performance. Cutmore, Hine, Maberly, Langford, and Hawgood [15] discovered that

a gender matters. Based on their result, males gathered survey knowledge from the task

faster than females. Moreover, the study also confirmed that more proficiency in spatial

cognition resulted in better performance. Geary, Saults, Liu, and Hoard [27] found that

males got higher scores than females in arithmetical computations, arithmetical reasoning,

and spatial cognition measures. The reason was that males have an advantage in computa-
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tion and spatial cognition. Although this study did not relate directly to our dissertation

proposal, we can imply that a spatial ability mattered because men, which had higher score

in spatial ability test, can do better in several tasks such as those authors mentioned.

Golledge and Gärling [28] explicitly examined the relationship between cognitive maps

and travel behavior. The authors noted that there was a relationship in transportation

between travel behavior, path selection criteria, navigation and way finding, route learn-

ing, etc. Those issues were prioritized by individual differences. Halligan, Fink, Marshall,

and Vallar [30] studied the structure of spatial process and mental representation using

neuropsychological syndrome of unilateral spatial neglect. Unilateral spatial neglect is neu-

ropsychological condition such that a person who has brain damage to one hemisphere loses

an ability to cognize one side of the body or environment. From the study, they found that

the spatial cognition subserving process consisted of multiple domains and it was extensive.

Hegarty, Montello, Richardson, Ishikawa, and Lovelace [31] tested 221 participants for

their psychometric measures of spatial abilities, spatial updating, verbal abilities, and work-

ing memory. Their experiment consisted of learning from real world environment, learning

from desktop virtual environment, and learning from environment provided by a videotape.

This idea led our research group to design multiple platforms of maps in our study. Before

this proposed study, our research group did similar experiments on Windows desktop, Win-

dows Mobile device, virtual reality, and an actual survey on a paper map. Ishikawa and

Montello [37] also conducted a study about spatial acquisition from direct experience in

the environment by studying twenty four college students. Those participants were driven

using two routes for ten weekly sessions and were asked to illustrate the routes’ spatial

properties based on what they had learned. Most of them could not generate the correct

result. Ishikawa, Fujiwara, Imai, and Okabe [36] worked on a study that related spatial

abilities and wayfinding using a Global Positioning System (GPS) feature on mobile nav-
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igation compared to a paper map approach and direct experience. The outcome showed

that the GPS participants consumed more resources, such as time and distance, than the

other two approaches and also provided more errors. From this study, we questioned that

a participant might rely on GPS when it was active since GPS was the best landmark on

any map software. This issue led us to include GPS feature as a treatment in our Study I

(Chapter 4) to verify its usefulness.

Klippel, Tappe, and Habel [41] investigated a process called spatial chunking. Spatial

chunking is a process where users are able to combine the route segment in route direc-

tion. The authors divided route directions into two types: advanced route direction and

accompanying route direction. The first one was used to give the directions before travel-

ing. In contrast, the second type gave the directions during traveling. Spatial chunking was

investigated for the second type. The authors noted that spatial chunking was effectively

conceptual and robust and related to directional tasks.

Kuipers [47] introduced the spatial semantic hierarchy, which is a model of large scale

space knowledge by integrating information from the human’s spatial cognitive map. This

model could be implemented to enhance both human cognitive map and robotic applica-

tions. Kuipers, Modayil, Beeson, MacMahon, and Savelli [46] extended their work to a

hybrid version, which supported both small-scale space and large-scale space.

Kulhavy and Stock [49] did a study about how people learned and remembered cogni-

tive maps due to the relationship between human cognitive systems and cartographic maps.

In the cognitive systems, the limitation of working memory affected the performance of

information acquisition and retrieval. It also solely influenced a map image regardless of

the characteristics of a map [69][95]. This showed that a human’s cognitive ability causes a

difference in user performance.
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Another interesting map-based study on spatial ability was done by Lanca [50]. She did

an experiment to verify whether participants created three-dimensional representations of

contour maps in the process of learning and retrieving or not. The study was started by

asking participants to study contour maps and landsurface maps. The author partitioned

participants into four groups. For the first group, participants did both a cross-section test

and a recognition test on the contour maps. For the second group, participants did a cross-

section test on the contour maps and a recognition test on the landsurface maps. For the

third group, participants did a cross-section test on the landsurface maps and a recognition

test on the contour maps. For the last group, participants did both tests on the landsur-

face maps. After studying their maps, participants were asked to recall the map they had

studied. The result she found was that male participants constructed a three-dimensional

representations and recognized maps better than female participants. Furthermore, three-

dimensional spatial ability was also suggested as an effective skill in processing long term

memory on contour maps.

Phillips [80] investigated a way to improve a readability of contour maps based on the

fact that most people could do map reading better on layer tint maps than contour maps

[81]. Surprisingly, the results showed that there existed no method or solution to help

enhance contour map readability unless it gave a obviousness to contour maps. Thus, to

avoid any readability-related effect that can occur by using a contour map, maps that we

provided in our software was a layer tint version.

Liben and Downs [54] did an experiment where one adult went to any position of a

classroom and pointed straight forward, then children were asked to point to location of

that adult and the direction the adult was pointing to on a map. There were two versions of

maps in this experiment, which were an aligned map and a 180-degree rotation map. The
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result showed that most children performed well on an aligned map. Moreover, younger

children failed to understand the point of view and boys did better than girls which cor-

responded to the authors’ hypothesis of spatial concept of mapping. Liben, Kastens, and

Stevenson [55] discussed the benefits of instructing children to use maps that were not only

for navigation purposes. It was also to enhance their spatial skills. The author developed

a curriculum called “Where Are We?” for teaching map navigation in school with the goal

to stimulate actual experience of a real world navigation using maps.

There exists some work that is aimed to find a factor that caused spatial abilities to

be different among individuals. Linn and Peterson [56] hypothesized about sex difference

in spatial ability. They proposed results that sex difference affected only some types of

spatial ability, mostly on mental rotation and less on spatial perception. With the evidence

from this article, we can expect minimum effect from sex difference in our work because

no mental rotation activities are involved. Montello, Lovelace, Golledge, and Self [66] fo-

cused more on differences and similarities in geographic and environmental spatial abilities

due to sex. They invited forty three females and thirty six males to perform spatial tasks.

Those tasks consisted of psychometric tests, campus route learning test, map-learning tests,

extent geographic knowledge test, object location memory test, verbal spatial description

tests, and self-report measures. The result of the study said that males outperformed fe-

males for acquiring spatial knowledge from direct experience, whereas females did better

for acquiring knowledge from a map.

Voyer, Voyer, and Bryden [112] also examined sex difference with respect to spatial

abilities. The authors invited participants to do tests related to spatial abilities. The result

showed that there existed sex differences in the multiple tests along with other differences

as well. Their conclusion was that the rate of sex differences were decreased in recent years

and it also depended on types of spatial tests. However, Rapp, Culpepper, Kirkby, and
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Morin’s [84] experiment and a result was counter to the statement that said sex difference

mattered. In their study, they invited earth science students to view a map. There were

three types of maps which were a map that had shading, a map that had stereo visualiza-

tion (a map that supported three dimensional perception), and a map that combined both

features. Students were asked line-of-sight questions and allowed to use their assigned map.

The results revealed that, for this study, sex did not influence the performance of students.

Factors that were involved were background characteristics, such as grade or map usage

experience. This conflict was caused by a sensitivity to the type of test.

Mou and McNamara [67] investigated the role of intrinsic frames of reference in human

spatial memory. Frames of reference can be thought of as a tool to help us to recognize or

describe spatial information. For example, if we would like to point out a location on earth,

we use a pair of latitude and longitude to be the frame of reference. Thus, spatial abil-

ity, especially spatial memory, should always be defined by the concept of frame of reference.

Nadel and Hardt [68] studied the brain in respect to spatial ability. The authors stated

that two types of spatial systems, which are egocentric and allocentric, had dissimilar prop-

erties. An egocentric spatial system is a process that deals with objects and an environment

using one’s self-center as the primary origin. But an allocentric spatial system deals with

using other objects as a reference related to the environment. One example of distinguishing

egocentric and allocentric was navigation using a GPS routing device in an automobile. A

driver who preferred to use north-based map (traditional map) tended to have an allocentric

spatial system. On the other hand, a driver who preferred to use a track-based map (see

the map in the same direction as driver was currently facing) tended to have an egocentric

spatial system. Marshall and Fink [60] described ongoing research work related to spatial

cognition and brain functions. One interesting aspect of spatial cognition is a human’s

ability to perceive a distance which was related to brain function. McNamara [63] proposed
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a new spatial memory theory based on a spatial reference system, which was a system that

involved people learning the spatial structure of their environment. The spatial reference

system is not fixed along the learning process. It could be updated to a new one if people

perceived a new correct view of their environment.

Penn [79] explored work related to space syntax theory and spatial cognition. The au-

thor gave the definition of a cognitive space as a space that encourages our understanding

of a visual environment. The co-presence, which was defined by the local visual field and

the way that the configuration applied movement routes, influences the effect of spatial

configuration in both structural communication and transactions between persons.

Remolina and Kuipers [87] proposed a theory on topological maps. The difference be-

tween causal maps and topological maps was that topological maps were a way to represent

spatial information in a graph where a node represented a state of an agent’s vocabularies

and an edge represented a traversal path from one state to another state. However, the

representation of each topological map was based on the application. The author pointed

out that there were three elements that were common among topological maps. Those were

the use of sensory descriptions to identify each node, the use of relations among nodes, and

local metrical information that was linked to edges.

Tversky [105] analyzed the characteristics of maps and how they answered what hu-

mans needed to represent spatial information. The author noted that maps consisted of

five characteristics. The first characteristic was that maps were two-dimensional. For cog-

nitive achievement, humans created two-dimensional representations for three-dimensional

environments and three-dimensional illustrations were difficult to construct and handle.

Second, maps ignored information. Third, maps were regularized. Fourth, maps provided

inconsistent scale and perspective. The obvious example of this characteristic is the tra-
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ditional world map that we frequently see on classroom boards. Last, the map contained

a message, for example; aesthetic, political, spiritual, and humorous. Thus, in terms of

spatial representation, effective communication had higher priority than correctness as long

as it satisfied human cognition.

So, we turn our focus to the question: why is a map an important tool in the study area

of cognitive, learning memory and spatial ability? A map is one type of graphic, which was

used to represent real entities such as objects, places, or environments. Tversky, Morrison,

and Betrancourt [106] mentioned that the graphic has been used to illustrate both inher-

ently spatiovisual data such as maps or floor plans and metaphorically spatiovisual, such

as organization charts or mind maps. With the visual-oriented property, graphics literally

increase human potential in inference, communication, learning, and memory. Moreover,

computer systems that were difficult for users could be understandable by graphics. Maps,

which simply are a representation of the real world environment, could be an effective mea-

surement when we were dealing with spatial visualization.

In 2000, Uttal [107] studied the relation between map use and spatial cognition de-

velopment. The author invited children to participate in his experiment. He found that

learning from maps helped children to develop their spatial cognition and also helped them

understand the concept of space. A significant difference between this style of learning and

learning from one’s direct environment also exists. Furthermore, large-scale spatial learning

was also observed via map use.

Kim and Penn [40] investigated the relationship between spatial syntax of cognitive

maps and the real environment by asking the residents of Hampstead Garden Suburb to

participate in sketching cognitive maps of their place. The result of this study found that

the relationship between spatial syntax in cognitive maps and the real world environment
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was positive. What can implied from this study was that handling a map was a significant

activity that depended on human spatial ability or spatial visualization in particular.

Zipf and Richter [118] also mentioned the importance of maps as an effective representa-

tion material for spatial knowledge. Geographic Information Systems (GIS), which support

the implementation of maps as feature of a software system, are very popular in multiple

task units.

2.3 Impact of spatial visualization (VZ) in computer-based applications

There were several abilities that were categorized as spatial ability. Spatial visualization

(VZ) was one of them. In this dissertation, we aimed to develop an adaptive user interface

software for users with different level of VZ.

Salthouse, Babcock, Mitchell, Palmon, and Skovronek [90] defined VZ as “mental ma-

nipulation of spatial information to determine how a given spatial configuration would ap-

pear if portions of that configuration were to be rotated, folded, repositioned or otherwise

transformed” in their study report [Salthouse, Timothy A., et al. “Sources of individual

differences in spatial visualization ability.” Intelligence 14.2 (1990): 187-230]. They did two

studies to find sources of differences in VZ. For the first study, there were fifty participants.

Each participant participated in five sessions. In the first session, a participant was asked

to do four paper-and-pencil tests and the WAIS-R Block Design. A participant was asked

to do a working memory task and paper folding task in session 2. In session 3, a participant

did cube folding and block design tasks. A participant did a task of cube comparison in

session 4. The spatial integration task was done in session 5. For each test, a participant

could score based on number of corrected items/answers. A result of the first study did lead

them to a hypothesis that differences in VZ played a major role in differences in internal
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representation quality. This hypothesis drove them to do the second study to find more

deeper detail by comparing multiple characteristics of people with both high and low VZ.

From study 2, they found that diversification in VZ did not correspond to diversification of

encoding spatial information ability nor properties of information.

Norman [74] defined an impact of VZ to computer-based technology usage performance

as “The primary cognitive factor driving differences in performance using computer-based

technology is spatial visualization ability” [Norman, Kent L. “Spatial visualization - A gate-

way to computer-based technology.” Journal of Special Education Technology 12.3 (1994):

195-206]. In his experiment, he wanted to find out which technique was the best to compen-

sate low VZ people. Those four techniques were spatial metaphors, graphical user interface,

interface apparency, and interface manipulatability. The spatial metaphor was a technique

that encouraged users to think of metaphors of system UI. For instance, users could view

a UI of WYSIWYG word processor software as a classic typewriter. This technique could

help users to recall their past experience to help improving their performance. The graph-

ical user interface was a technique that implementing a software interface using spatial

representation object such as buttons, sliders, switches, etc. The interface apparency was

a technique that designing a graphical user interface that made relationship among items

on an interface visible to users, which could be done in many ways. A good example of

the interface apparency technique was to use a graph or a diagram. The interface ma-

nipulatability was a technique that reducing/decreasing components that required spatial

processing off an interface. This could be done by creating an interface that allowed users

to directly handle any spatial item on the interface. He discovered that the latter technique

was the best to compensate users with low VZ. Multiple literatures found that VZ was an

important factor, which could be used as a predictor for success in real-world applications

including software usage performance [59][62][96][26].
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Salthouse, Babcock, Skovronek, Mitchell, and Palmon [91] questioned whether people

with different age and experience would have different VZ. They did studies to confirm a

hypothesis that for adults, age was inverse variation with VZ regardless of their VZ experi-

ence. Their studies consisted of three studies. For the first study, they asked participants to

do four tests of VZ: foam board test, paper folding test, surface development test, and cube

comparison test. All of them were paper-and-pencils tests. In the second study, participants

were asked to do extra four computer-controlled tasks. Those extra tasks were the paper-

folding task, the cube-folding task, the spatial-integration task, and the cube-comparison

task. The third study contains the surface-development task, the paper-folding task, and

the spatial-integration task. The last two tasks were computer-controlled. According to

these studies, they concluded that if an age was increased, then, a level of VZ was dropped.

This assumption was also true regardless of previous experience about VZ.

Age was not the only factor that differentiated VZ, sex difference also did [56][112][34][61].

Kaufman [38] did a study to find that a difference in working memory capacity between

different genders involved in this inequality of VZ or not. He did tests of three-dimensional

mental rotation and VZ together with tests of spatial working memory and verbal working

memory. A result revealed that spatial working memory engagement was a reason that

made different VZ between genders.

2.4 The location-based survey software

Location-based software is an application software that has a location in terms of a pair

of geographic coordinates as preliminary data or input data to the computing process. Most

location-based software helps improve a user’s task or comfortability. The examples of these

applications are Google Map R©, Bing Map R©, GPS-navigation software, Yelp R©, etc. In the

academic field, location-based software is also an interesting research topic. The address
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verification task is a procedure used by the Bureau of Census where participants are asked

to verify whether the street address indicator on a map exists and if so is it in the correct

position. Whitney, Batinov, Miller, Nusser, and Ashenfelter [113] conducted a study to see

whether different levels of cognitive ability affected performance for the address verification

task. They used three tests to identify a participant’s level of cognitive ability, which were

a spatial visualization test, a visual memory test, and a perspective-taking test. They pro-

vided a paper map for participants to verify street addresses in the real neighborhood.

Willis, Hölscher, Wilbertz, and Li [114] did a study to compare the spatial knowledge

acquisition with different sources: paper maps and mobile maps by two groups of partic-

ipants. The first group was assigned a task to learn an environment from a paper map.

Another group was assigned a mobile map. The participants with mobile maps did worse

on the task of distance estimation. What we can imply from this study is that the map

software with different map size affected the usability.

In 2012, Chellappan [12] developed a location-based map application on the Microsoft

Windows Presentation Foundation platform. The software focused on the way to apply

the concept of an object-oriented design to map components. The software read the ESRI

Shapefiles for the map space and then created objects representing all map components

such as streets or rivers. On the software interface, it drew geometrical objects to render

these map components. Each geometrical object rendered each map component object one

by one. However, because the application had to read the Shapefiles every time it did per-

form a map operation, it did tend to be rather slow. Thus, when dealing with large size

of Shapefiles, this overhead caused significant impact on the performance of the software.

Anytime the user would like to pan/zoom the map, the application would re-process and

re-draw the map again. It should be noted that our Object-Indexing described in Chapter

3 has been built on the objects defined by Chellappan.
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Some studies have attempted to find the relationship between the location-based soft-

ware and individual difference. Batinov, Whitney, Miller, Nusser, Stanfill, and Ashenfelter

[3] examined the impact of spatial ability of diverse users by asking them to use their soft-

ware in two environments: the real world environment and the virtual environment. They

created two regression models for time and distance, respectively. For both regression mod-

els, spatial visualization was a significant metric. For the regression model for distance,

an interaction between the environment (real or virtual environment) and spatial visualiza-

tion was suggestive. The result revealed that there was no significant difference between

low spatial ability participants and high spatial ability participants based on the type of

environment. Thus, they found that spatial visualization is a significant factor from the

study.

2.5 The adaptive user interfaces (AUI) and problems that lead to it

An adaptive user interface (AUI) is one kind of user interface that has the ability to

adapt itself to the level of skills of the user. The purpose of an adaptive user interface is to

help minimize the gap between users with different capabilities and software. Varying user

ability is an important part that needs to be considered for developing application software.

Benyon [4] stated that understanding the individual differences between users was impor-

tant in terms of increasing the usability for users with different spatial ability. Stanney and

Salvendy [97] conducted a study to assign the searching task to users with high and low

spatial ability. They found that the lower spatial ability group would be assisted by visual

mediators. The result showed that the use of a visualization technique to assist the low

spatial ability users yielded better software usage performance.

Benyon, Innocent, and Murray [5] defined an adaptive system as “Adaptive systems

are systems which can alter aspects of their structure, functionality or interface in order to
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accommodate the differing needs of individuals or groups of users and the changing needs

of users over time” [5].

Ramalingam [83] pointed out the dissimilarity between adaptive user interfaces and

adaptable user interfaces. Adaptable user interface was a user interface that users were

given the options, whether directly or indirectly, to select among set of multiple possible

outputs of interface. Whereas, an adaptive user interface might or might not be fully con-

trolled by users.

Schmidt, Beigl, and Gellersen [92] mentioned the importance of the surrounding infor-

mation as the parameter used to approximate context, which they used to develop context-

aware applications. They proposed two implementations, which consisted of a light-sensitive

display and an orientation-aware PDA interface. Both were using a sensor technology to

implement. For a light-sensitive display, they attached the light sensor to the PDA de-

vice (Palm Pilot). When the light sensor sent information about the light condition to

the software, the software display adapted its backlight based on retrieved information.

For an orientation-aware PDA interface, they attached the sensor to another PDA device

(Newton MessagePad) to detect the device’s orientation. So the orientation of the software

user interface rotated the same way as the orientation of the PDA. Extending their two

implementations of sensor, they presented a new approach to move to the next level of

context that was more abstract than light condition or orientation. For example, a user

interface should adapt based on whether a software was used indoor or outdoor, etc. With

this approach, they used a concept of multi-sensory context-awareness, which consisted of

four components. Those four components were sensor, cues, context, and scripting layer.

The data from the four components were combined to answer what is the current context

(e.g. indoor) for further user interface adapting. For example, if a context is “indoor”, com-

bined data from the four components might consist of artificial light, room temperature, etc.
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A number of studies and experiments concerning designing the interface based on indi-

vidual differences have been developed. Newell and Gregor [71] proposed a new paradigm

for developing software interfaces by considering universal access, which included users with

disabilities. Keates, Clarkson, and Robinson [39] presented the cutting edge methodological

approach for interface design, which was called “Inclusive Interface Design”. The purposed

of this approach was to design a user interface that could support users with varying capa-

bilities.

Pattison and Stedmon [78] suggested the way to implement an inclusive design is to de-

sign a mobile phone for older users. This kind of user had different requirements compared

to younger users because of these factors: vision, hearing, motor function, and cognitive

aspects of aging.

Ramachandran [82] used two adaptation techniques in order to develop an adaptive

user interface for health care applications, which were “adaptive presentation” and “adap-

tive navigation”. The objective of adaptive presentation was to personalize a content to be

displayed to different types of users. The objective of adaptive navigation was to customize

the way to do the task based on task types and users. The example of how adaptive pre-

sentation worked was that if there was an input “anesthesia level” to the software system

in the process of creating a patient’s profile, this input mattered to doctor users. Thus,

the system showed this input to doctors. Whereas the system did not show it to system

administrator users because system administrator users can do nothing about this type of

input. Another example was the example of adaptive navigation. If there was a section

“blood test” in the system, the system should display a single page to administrator users

in order for administrators to create a patient’s profile. Whereas it should display multiple

tabs to the doctor who were in charge of the blood test task.
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Findlater and McGrenere [22] conducted a study to compare the preference between

three kinds of software user interfaces, which were static menus, adaptable (user-controlled)

menus, and adaptive (system-controlled) menus. The results showed that the static method

was faster than the remaining methods but the adaptable and adaptive user interfaces gained

the advantage in terms of customization and flexibility.

Rogers, Fiechter, and Thompson [88] investigated the effect of adaptive user interfaces

in an automobile system. They provided three adaptive user interface systems, which were

Adaptive Route Advisor, Adaptive News Reader, and Adaptive Place Advisor. The ob-

jectives of these systems were, respectively, to navigate, to read news and stories, and to

select the restaurant. These systems gathered information from the interaction between the

driver and the user interface. They created a user model and adjusted the interface based

on the driver preference. The purpose of this study was to show that replacing original

tasks while driving a car with adaptive user interface could reduce the risk of accidents.

With this study, a driver did not need to use a smartphone (while driving) to find a restau-

rant address nor take a look at a GPS. Those activities were replaced with adaptive user

interface system functions.

Kules [48] suggested multiple methods about modeling user behavior and adaptive soft-

ware systems. One of those methods was to design the adaptive user interface using the

analysis of user behavior modeling.

Ramalingam [83] noted that a rigorous solution that could deal with an adaptive user

interface and individual differences was to develop the software that was capable of adjust-

ing and adapting its interface based on user preference as well as individual difference. The

automated adaptive system became essential because of the diversity of factors.
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Langley [52] described the effort to develop adaptive user interface using machine learn-

ing techniques. Horvitz, Breese, Heckerman, Hovel, and Rommelse [33] implemented a

Bayesian user model on the interaction and background of the users to create an intelli-

gent user interface. Bahanovic (1998) constructed a simulation of systems that applied two

strategies to return the related documents based on the content and the learning process

from the user model. Liu, Wong, and Hui [57] designed a dynamic adaptive user interface

that learned user behavior and provided the adaptive assistance based on such behavior.

Viano et al. [109] introduced an Auto-Adaptive Multimedia Interface. This kind of

adaptive user interface approach supported the adaptability of the user interface, which

could enhance usability as well. The purpose of this study was to overcome the problem

of a tradition multimedia interface that was narrow and limited, which could support only

a few types of presentation (visual and auditory) and lack of adaptivity. So it could not

handle an emergency situation such as a very high rate of input data stream. The Auto-

Adaptive Multimedia Interface was developed using collaboration with an intelligent agent.

In this project, the method of Auto-Adaptive Multimedia Interface tried to map between

the process data and MMI (multimedia interface) objects. The consequence of this mapping

was that the system (which was called “AMEBICA”) can dynamically select the type of

presentation used in the user interface corresponding to the situation occurring in real time.

In particular, in chaotic situations the user interface greatly simplified what the user saw

in the interface.

Gajos, Czerwinski, Tan, and Weld [24] set up two experiments with three adaptive

graphical interfaces and concluded that there were multiple factors that impacted the ac-

ceptance of adaptive user interface. They suggested that the adaptive user interface that

duplicated frequently-used functions enhanced the user performance and improved satisfac-
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tion. Shankar, Louis, Dascalu, Hayes, Houmanfer [94] conducted a user study to examine

whether an adaptive user interface could adapt itself based on the users’ environment and

whether it would improve usability and user experience.

Sukaviriya and Foley [100] examined how adaptive help support could be extended in a

knowledge-based user interface environment. They designed a framework called “User In-

terface Design Environment (UIDE)”. This framework can provide a suggestion to adaptive

user interface features, such as adapting menus and a layout of dialog box, by combining

knowledge model and collected information from users. The result of using UIDE was that

it suggested two useful solutions to implement an adaptive user interface. The first solution

for an adaptive interface was recognizing menus, dialog boxes, and macro suggestions. The

second solution was an adaptive help for users.

Innocent [35] mentioned the trend in software development to be more natural and

support interactive systems. The idea of self-adaptive systems and its condition was also

discussed.

Kühme [45] introduced an approach to design an adaptive interface software which al-

lowed users to tell the system how to adapt itself. An approach consisted of an adaptive

adaptation and implicit adaptation. This work could lead to the implementation guidance

of a map-based survey software in which the software itself can interact with users so users

can inform the system when they get lost.

Fischer [23] reviewed the HCI-related research about user modeling for an adaptive soft-

ware to make it be able to perform the task appropriately with different-skill users. Norcio

and Stanley [73] suggested that an adaptive interface has to encompass knowledge of the

interaction, the system, the task domain and the user. Their efforts to delineate information
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for both humans and computers was important for developing effective human-computer

systems. The problem that came with this approach was that the range of adaptive behav-

ior was narrow.

Mezhoudi [64] implemented a Rule Management Engine to enhance the interaction be-

tween a user and the user interface. The concept of the work was to allow users to instruct

the adaptation strategies based on the feedback from users.

Miller and Thomas [65] identified behavioral problems that they linked to the usage

of interactive computer systems by non-professional general users into two topics: System

Characteristics and Interface Characteristics. Langley [52] suggested using machine learn-

ing to help create an adaptive user interface. The outcome of the study was that there were

two characteristics of adaptive user interface that could distinguish it from general user

interface, those were informative interface and general interface. The limitation of domain

has still been the issue with this improvement.

Ramalingam [83] mentioned that most field tasks are location-based software applica-

tions because they provided an advantage to the workers in the field. However, implementing

location-based software applications involve multiple issues, such as the screen size of the

computing device, the difference of the individual user abilities, or the extreme conditions

such as the unexpected incidents of the environment, for instance, the weather condition

and the visibility condition. The software that can support an adaptive user interface might

be the solution for this problem. The advantage of the adaptive user interface is that it

helps promote the effective use of the software in the critical situations.

In the same study, Ramalingam [83] also proposed that one way to develop software

with an adaptive user interface was to build on Taylor et al.’s [102] error model. The re-
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sults from his work consisted of two models. The first error type was reversal error. Any

tapping error would be counted as reversal error when the user tapped on the software

screen followed by, immediately, another tap that reversing the first action. For instance,

in the map application, users tap zoom-in button then immediately tap zoom out button.

The second error type was missing error. Any tapping error would be counted as missing

error when the users attempt to tap on some component (such as a button or a check box)

but that tap does not occur inside the area of that such component. There was a threshold

value representing the distance imposed by the software to distinguish whether the tap is

considered missed or not. These errors would guide the software user interface to adapt

itself based on the errors made. He also proposed that modeling the user behavior might be

the good answer for designing adaptive user interface because the resulting software would

have an interface that naturally adapted based on how well the interaction between the user

and the interface was going.

There are several methods to define how an adaptive interface should adapt itself. User

modeling is one method that can be used to understand an individual user. This method

yields an adaptive user interface that solves the problem, which can be vary based on each

software, because the interface will change according to the current user at the time of use.

Tsandilas and Schraefel [104] presented a user model of interaction for adaptive hypermedia,

which was the technique that combined the functionality of adaptive interface and direct-

manipulation interface. Taylor et al. [102] examined the implementation of an adaptive web

application for elderly users using error detection for modeling the users. They compared

the results between error detection methods and observation methods (labor intensive) and

found them to be comparable.

Knutov, De Bra, and Pechenizkiy [42] did a study focused on using a versioning ap-

proach that enhanced adaptive hypermedia behavior. The versioning approach could be
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extended to our study using multiple versions of the user interface on the same survey

task. However, we did not use versioning approach because we used different treatments

to test how each software feature affected a participant’s performance instead (Chapter

4). Steichen, Ashman, and Wade [98] ran a survey to compare adaptive hypermedia and

personalized information retrieval as both of them were the trend for adaptive system that

adjusted based on the preference of users. The authors performed a study by examining

the retrieval process. The results revealed that there existed some differences between those

fashions. However, they have shared the same principle, which was to make the software

interactive to handle users with different skills. In our proposed work, the idea of adaptive

hypermedia is more related than personalized information retrieval due to the limitation of

software screen and number of operations.

Another information retrieval related work that was interesting is the study of de Cam-

pos, Fernández-Luna, Huete, and Vicente-López [17]. The authors proposed multiple meth-

ods for XML information retrieval such that it helped the system to return the most related

XML document based on user preference. The approach they presented was the combina-

tion of query reformulation, results re-ranking, and model modification.

Kotzyba, Siegert, Gossen, Wendemuth, and Nürnberger [43] designed a system that was

able to support both children and adult users by enabling a voice controlled search module.

This was also a good work about adaptation in a software layer. The result of this work

showed that user interaction was increased.
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2.6 Task-based issues

Task-based surveys were the scenery that were involved in most user-related experi-

ments. The objective of task-based survey are to assign a specific task for participants to

perform. This could be done with/without the engagement of software.

Rath, Devaurs, and Lindstaedt [85] studied components that impacted task detection

performance using their ontology approach (classifiers, features, task types, and methods for

training classifier). Those components worked well for classifying both knowledge intensive

tasks and routine tasks. The authors utilized their methods on a computer desktop. This

approach led us to the platform of portable devices where we focused on a task performed

by participants.

In Chapter 3, we introduce our development of a data structure for indexing survey

components, “Object-Indexing”, which overcomes a drawback of a traditional raster map

software.
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CHAPTER 3. OBJECT-INDEXING

This chapter focuses on the details of our development of a data structure for indexing

survey components, such as streets and intersections, on user maps. We use the name

“Object-Indexing” in this presentation to represent our approach.

3.1 Introduction

To our knowledge, the Object-Indexing that we have designed and implemented is orig-

inal work. While it is used in this dissertation proposal to index streets and intersections

in address verification tasks, the Object-Indexing can be applied to any location-based

application that there are identifiable map components that can be indexed.

3.2 Design of Object-Indexing

Based on the necessity of map usage in survey tasks, Chellappan and Miller [13] pro-

posed a way to directly access and operate on every survey unit on a map such as housing

units, streets, intersections, etc. Chellappan and Miller [13] applied an object-oriented ap-

proach to a vector map by generating a map using plotting tools in C# language instead

of loading an image to represent a map. With this approach, every survey unit has an

accessibility to a user. This implementation lead us to realize the benefit of accessibility,

which is essential in survey tasks. Thus, our Object-Indexing approach needs to be able to

preserve this property. The problem that Chellappan and Miller [13] faced in their work

was that the software was extremely slow as any action on the map required them to redraw.
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Figure 3.1 Example of a Vector Map Generated from a Shapefile.

As we have mentioned in Chapter 1, the goal of the Object-Indexing is to combine ad-

vantages of both raster maps and objects based on vector map coordinates. A benefit of

a raster map is that it is simple and fast to implement. A raster map is simply an image

of a map combined with a world file. The cost to handle a raster map is not much more

complicated than handling one single image. Hence, the loading time is quite fast. On the

other hand, the vector map used by Chellappan and Miller [13] was generated by processing

shapefiles [21] and creating geometrical objects as map components such as streets, railways,

or intersections. The shapefile objects are indexable. However, important map components

such as streets are still an issue because they cannot be directly indexed. Figure 3.1 shows a

vector map with two streets, A and B, illustrated from three polygons (three rectangles for

this example). These three rectangles are accessibly indexed because they have records in

the shapefile. But the important map components, which are street A and street B, cannot

be accessed.

Without an ability to directly access primary map components, we need to create a

new data structure to overcome this issue. There are many map components that can be

counted as primary map components based on the purpose of applications. For the address

verification task, streets and intersections are the primary map components. For a National
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Figure 3.2 The Conceptual Class of Street Object.

Resources Inventory application, wetland areas and water ways are primary map compo-

nents.

Our object model is built on the work of Chellappan and Miller [13]. The difference

between our work compared with Chellappan and Miller [13] is that our Street object, for

instance, mimics a real world street by having all geometrical data, pairs of longitude and

latitude, stored as a property of a Street object. This is required since our components

are actually indexed objects rather than map representation objects. Figure 3.2 shows the

conceptual class of our Street object. Figure 3.3 shows the concept of creating a Street

object from processing a shapefile [21]. The list of pairs of longitude and latitude can be

seen as a line type in more traditional shapefiles.

As previously mentioned, primary map components such as streets, intersections, or

wetlands cannot be indexably represented by records read from shapefiles based on poly-

gons. We need to define a new object model for those primary map components based on

data that we have, which are records from shapefiles. In this section, we would discuss three

major types of object models that can be implemented as an indexed object for primary
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Figure 3.3 The Concept of Creating a Street Object.

map components. Those three types are Line, Point, and Area. We can view these object

models as an abstract class that can be used to instantiate an indexed object for primary

map components.

3.2.1 Line

A line is a conceptual type of our object model that can be implemented as an indexed

object for any pathway or driveway components such as streets or waterways.

For Line type, we start by giving an example of a street, which is a primary map compo-

nent corresponding to the Line object model. We define a Street object as an indexed object

represented a street. A Street object is generated from a Street class, which is extended

from the Line object.
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According to Figure 3.3, we first read a shapefile [21] to gather all geometrical data of

each street. This is the same starting process as Chellappan and Miller [13]. Next, for each

street, a Street object is instantiated to store a street name and all pairs of longitude and

latitude that are read from a shapefile [21]. When a shapefile [21] is completely read, all

Street objects are generated and ready for the Object-Indexing to operate.

After the process of creating Street objects has been completed, we would have the

Street objects and a raster map, which is an image combined with a world file. Those two

items are necessary to implement the Object-Indexing. We recall that our objective is to

index primary map components such as streets and intersections so those map components

are accessible to users. In the perspective of portable device usage, which comes with a

small screen, accessing a map component in a map means that users could be able to tap

on a map component they are focusing at and be able to retrieve properties of the map

component. The most obvious example is that users tap on an unknown street on a map,

then, a name of that street is displayed on the screen.

As we previously stated that the conceptual structure of Object-Indexing consists of a

raster map and Street objects. We would describe this conceptual structure using the fol-

lowing explicit example, which is similar to Figure 3.1. In this example, we have one raster

map (Figure 3.4) and two Street objects: A street and B street. For the raster map (Figure

3.4), there are two streets in this map. The horizontal street is A street. The vertical street

is B street. There is not any street name displayed in this map.

There are two Street objects represented by A street and B street. For each Street

object, based on 3.2, it stores a street name and geometrical data (pairs of longitude and

latitude that street locates on). Note that all geometrical data come from reading a shape-

file [21]. Figure 3.5 illustrates the conceptual Street object of A street. A street contains
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Figure 3.4 A Raster Map Consists of Two Streets without Street Names.

Figure 3.5 Street Object of A Street.

seven pairs of longitude and latitude. A pair of longitude and latitude is represented in the

format of (x, y) where x is a longitude and y is a latitude. Thus, all seven pairs of longitude

and latitude belong to A street are (x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5), (x6, y6), and

(x7, y7). Figure 3.6 illustrates the conceptual Street object of B street. B street contains

five pairs of longitude and latitude, which are (x1′, y1′), (x2′, y2′), (x3′, y3′), (x4′, y4′) and

(x5′, y5′). In Section 3.3, we would talk about how Object-Indexing works using the raster

map (Figure 3.4) and Street objects (Figure 3.5 and 3.6).
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Figure 3.6 Street Object of B Street.

3.2.2 Point

A Point is a conceptual type of our object model that can be implemented as an indexed

object for any point component, such as intersections.

For Point type, we give an example of an intersection, which is a primary map compo-

nent that corresponds to the Point object. We define an Intersection object as an indexed

object represented an intersection. An Intersection object is generated from an Intersection

class, which is extended from the Point object model.

Figure 3.7 shows the conceptual class of our Intersection object. Figure 3.8 shows the

concept of creating an Intersection object from processing a shapefile [21].

Based on Figure 3.8, we first read a shapefile [21] to gather all geometrical data of each

intersection in a record of point. This is the same starting process as Chellappan and Miller

[13]. Next, for each intersection, an Intersection object is instantiated to store a name,

a latitude, and a longitude that are read from a shapefile [21]. When a shapefile [21] is

completely read, all Intersection objects are generated and ready for the Object-Indexing

to operate.
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Figure 3.7 The Conceptual Class of Intersection Object.

Figure 3.8 The Concept of Creating an Intersection Object.
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After the process of creating Intersection objects has been completed, we would have all

Intersection objects and a raster map, which is an image combined with a world file. We

recall that our objective is to index primary map components such as streets and intersec-

tions so those map components are accessible to users. In the perspective of portable device

usage, which comes with a small screen, accessing a map component in a map means that

users could be able to tap on a map component they are focusing at and be able to retrieve

properties of that such map component. The most obvious example for this case is that

users tap on an unknown intersection on a map, then, the names of streets that intersect

are displayed on the screen.

We would describe this conceptual structure using the following explicit example. In this

example, we have one raster map (Figure 3.9) and one Intersection object: I intersection.

For the raster map (Figure 3.9), there is one 5-way intersection, which is I intersection, in

this map. There is not any intersection name displayed in this map.

There is one Intersection object represented I intersection. For the Intersection object,

based on Figure 3.7, it stores a name and geometrical data, which are longitude and lati-

tude, that the intersection locates on. Note that all geometrical data come from reading a

shapefile [21]. Figure 3.10 illustrates the conceptual Intersection object of I intersection. I

intersection contains one pairs of longitude and latitude. A pair of longitude and latitude is

represented in the format of (x, y) where x is a longitude and y is a latitude. Thus, a pair

of longitude and latitude point belong to I intersection is (x, y). In Section 3.3, we would

discuss how Object-Indexing works using the raster map (Figure 3.9) and Intersection ob-

ject (Figure 3.10).
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Figure 3.9 A Raster Map Consists of One 5-way Intersection without Name.

Figure 3.10 Intersection Object of I Intersection.
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Figure 3.11 The Conceptual Class of Wetland Object.

3.2.3 Area

An Area is a conceptual type of our object model that can be implemented as an indexed

object for any area component such as wetlands.

For the Area type, we would provide an example of a wetland, which is a primary map

component that corresponds to the Area object model. We define a Wetland object as an

indexed object representing a wetland. A wetland is an area that contains enough water to

support wildlife such as a swamp, a pond or a lake. A Wetland object is generated from

the Wetland class, which is extended from the Area object.

Figure 3.11 shows the conceptual class of our Wetland object. Since this is based on

the area object, the pairs of longitude and latitude form a polygon (i.e. first point and

last point are the same). Figure 3.12 shows the concept of creating a Wetland object from

processing a shapefile [21].
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Figure 3.12 The Concept of Creating a Wetland Object.

Based on Figure 3.12, we first read a shapefile [21] to gather all geometrical data of each

wetland in a record of polygon. This is the same starting process as Chellappan and Miller

[13]. Next, for each wetland, a Wetland object is instantiated to store a name and all pairs

of longitude and latitude that are read from a shapefile [21]. When a shapefile [21] is com-

pletely read, all Wetland objects are generated and ready for the Object-Indexing to operate.

After the process of creating Wetland objects has been completed, we would have all

Wetland objects and a raster map. We recall that our objective is to index primary map

components such as streets and intersections so those map components are accessible to

users. In the perspective of portable device usage, which comes with a small screen, access-

ing a map component in a map means that users could be able to tap on a map component

they are focusing on and be able to retrieve properties of that such map component. The
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Figure 3.13 A Raster Map Consists of One Wetland without Name.

most obvious example for this case is that users tap on any region of an unknown wetland

in a map, then, a name of that wetland is displayed on the screen.

We describe this conceptual structure using the following explicit example. In this ex-

ample, we have one raster map (Figure 3.13) and one Wetland object: W lake. There is

not any wetland name displayed in this map.

There is one Wetland object representing W lake. For the Wetland object, based on

Figure 3.11, it stores a name and the geometrical data, which are pairs of longitude and

latitude, that are boundary points of that wetland. Note that all geometrical data come

from reading a shapefile [21] made up of polygon type data. Figure 3.14 illustrates the

conceptual Wetland object of W lake. The W lake object contains six pairs of longitude

and latitude. A pair of longitude and latitude is represented in the format of (x, y) where

x is a longitude and y is a latitude. Thus, the pairs of longitude and latitude that belong

to W lake are (x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5) and (x6, y6). Because a wetland
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Figure 3.14 Wetland Object of W Lake.

is a closed area, the first and last pair of longitude and latitude must be the same point.

Particularly, (x1, y1) and (x6, y6) are the same location. In Section 3.3, we discuss how

Object-Indexing works using the raster map (Figure 3.13) and Wetland object (Figure 3.14).

3.3 Conceptual Object-Indexing Usage

We recall that we would like to provide users with an ability to access primary map

components, which means users should be able to tap on a map component they are fo-

cusing at and be able to retrieve properties of that map component. In this example, the

scenario we would like is that when a user taps on any part of A street in the raster map

(Figure 3.4), the name of A street should be displayed and vice versa for B street. Figure

3.15 illustrates this scenario. In Figure 3.15, a user taps on a part of an unknown street (it

is actually A street), then, the name of A street is displayed on the screen. So, a user can

know that he/she is currently tapping on A street.

To implement this, first, we need to know the location on the map that has been tapped.

After we get that location, which is represented by a point (px, py), we calculate the latitude
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Figure 3.15 Expected Scenario.

and longitude of that location from the point (px, py) using parameters from a world file

comes with the raster map. It contains the latitude and longitude of the top left corner

of the map image, as well as the change in latitude as we go down from that point (∆y)

and the change in longitude as we go across the image (∆x). Each raster map comes with

a uniquely corresponding world file. After we get a latitude (denoted as lat) and a longi-

tude (denoted as lng) of tapped location, here comes the time that we will use our Street

objects. This section discusses algorithms necessary to make the Object-Index work for all

three types of our object models: Line, Point, and Area. Each type needs to be handled

with a different approach.
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3.3.1 Line

For Line object, we start with the example set up in Subsection 3.2.1, which consists

of a raster map and two Street objects representing A street and B street (Figure 3.4, 3.5,

and 3.6).

We define a square region to cover that tapped location, where the tapped location is

the center of this square region, as a region of interest (it is the red square in Figure 3.17).

Then we calculate boundaries of this region of interest in term of latitudes and longitudes

using the same world file method. Next, we iteratively visit each Street object. For each

Street object, we iteratively check each pair of longitude and latitude whether it locates

inside the region of interest or not. If it does, that Street object would be marked as a

street that a user taps on. If there are more than one Street object satisfying this region of

interest condition, it is potentially that a user taps on an intersection of multiple streets. If

an intersection is detected, street names of all streets in the intersection will be displayed.

Figure 3.16 illustrates a flowchart that describes the algorithm.

In our example, we have two Street objects, A street and B street (Figure 3.5 and 3.6).

Therefore, when we apply our conceptual implementation, we have to start from Street

object of A street. A street consists of seven pairs of longitude and latitude. We begin with

the first pair, (x1, y1), by checking whether this pair locates inside the region of interest or

not. If it does, we are done with Street object of A street. A street would be counted as

a street that a user taps on. So, we can move to the next Street object. If it does not, we

move to next pair of longitude and latitude, (x2, y2), and keep checking. When we complete

all Street objects, names of all Street objects that are counted as tapped streets would be

displayed on the screen. Based on our example (Figure 3.4, 3.5, 3.6, and 3.15), A street is

displayed because a pair of (x4, y4) locates inside the region of interest corresponding to the

tapped location. Whereas B street is not displayed because there are no pair of longitude
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Figure 3.16 Flow Chart of Object-Indexing Implementation for Line Object Model.

and latitude of the Street object of B street locates inside the region of interest. Figure

3.17 illustrates how we can obtain this result.

The complexity of our Object-Indexing for the Line object is O(nm) where n is the

maximum number of pairs of longitude and latitude and m is the number of Street objects.

Thus, this is a polynomial algorithm.

We briefly explain the user interface implementation of the algorithm shown in Figure

3.16. When a user taps on a street, A red rectangle is drawn to cover the tapped area

and returns the name of the street or streets that it can detect (Figure 3.17). A name of a

detected street is displayed at the bottom-left of the software screen. Figure 3.18 shows a

screenshot of our software where the user has tapped on Chamberlain Street. Figure 3.19

show the entire screen of steps illustrated in Figure 3.18.
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Figure 3.17 How Object-Indexing Operates for Line Object Model.

The Object-Indexing starts working by getting an X-Y coordinate of a point that user

has tapped. Next, it calculates a value of Xmax, Xmin, Ymax, and Ymin by the following

formula:

Xmax = X +
width

2

Xmin = X − width

2

Ymax = Y +
height

2

Ymin = Y − height

2

(3.1)

From Equation 3.1, X is an X-value from the X-Y coordinate. Y is a Y-value from the

X-Y coordinate. width is a width of the red rectangle and height is a height of the red

rectangle (Figure 3.19). After we have those four parameters, we convert both Xmax and

Xmin to longitudemax (LNGmax) and longitudemin (LNGmin), respectively, and Ymax and
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Figure 3.18 Street Object Detecting in Our Software (1).

Figure 3.19 Street Object Detecting in Our Software (2).
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Ymin to latitudemin (LATmin) and latitudemax (LATmax), respectively, using a world file.

It is noted that the conversion of Y to latitude is a reverse variation due to the difference

in vertical scaling between device screen and geographical system.

Next, it starts searching for streets that belong to this area bound by LNGmax, LNGmin,

LATmin, and LATmax using Algorithm 1. According to Algorithm 1, it scans through every

Street object. For each Street object, it starts checking the first coordinate of longitude

and latitude. If a latitude falls between LATmin and LATmax and a longitude falls between

LNGmin and LNGmax, then it adds that Street object to a collection of found streets

and continues on next Street object. Otherwise, it goes to the next coordinate and per-

forms the comparison again. If there is no coordinate that belongs to that area, it moves

to the next Street object. When it scans through all Street objects, it returns a collection

of found streets. Those found streets are displayed to users on the screen as early mentioned.

Algorithm 1 Algorithm for Detecting Streets.

StreetFound← null

for all StreetObject S ∈ AllStreets do

for all (LAT,LNG) ∈ S.LatLongCollection do

if LATmin ≤ LAT ≤ LATmax then

if LNGmin ≤ LNG ≤ LNGmax then

StreetFound.Add(S)

break

end if

end if

end for

end for

return StreetFound
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3.3.2 Point

For Point object model, we would provide the conceptual implementation using the ex-

ample set up in Subsection 3.2.2, which consists of a raster map and one Intersection object

represented I intersection (Figure 3.9 and 3.10).

The algorithms for the Point object are similar to Line object algorithms (Subsection

3.3.1) but they are less complicated. We similarly define a a square region to cover that

tapped location, where the tapped location is the center of this square region, as a region

of interest (it is the red square in Figure 3.21). Then we calculate boundaries of this region

of interest in term of latitudes and longitudes using the same world file method. Next, we

iteratively visit each Intersection object. For each Intersection object, we check its pair of

longitude and latitude whether it is located inside the region of interest or not. If it does,

that Intersection object would be marked as an intersection that a user taps on. Figure

3.20 illustrates a flowchart that explains the whole process of implementation.

In our example, we have one Intersection objects, I intersection (Figure 3.10). There-

fore, when we apply our conceptual implementation, we start from Intersection object of I

intersection. I intersection has one pair of longitude and latitude, (x, y). We begin checking

whether this pair (x, y) locates inside the region of interest or not. If it does, we are done

with Intersection object of I intersection. I intersection would be counted as an intersection

that a user taps on. When we complete all Intersection objects, names of all Intersection

objects that are counted as tapped intersection would be displayed on the screen. Based on

our example (Figure 3.9 and 3.10), I intersection is displayed because a pair of (x, y) locates

inside the region of interest corresponded to the tapped location. Figure 3.21 illustrates

how we can obtain this result.
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Figure 3.20 Flow Chart of Object-Indexing Implementation for Point Object Model.

Figure 3.21 How Object-Indexing Operates for Point Object Model.
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The complexity of our Object-Indexing for Point object model is O(n) where n is the

number of Intersection objects. Thus, this is a polynomial algorithm.

We explain the algorithm described in Figure 3.20. When a user taps on an intersection,

we draw a red rectangle to cover that tapped area and return an intersection that it can

detect to the user. A name of detected intersection is displayed at the bottom-left of the

software screen.

The Object-Indexing starts working by getting an X-Y coordinate of a point that user

has tapped. This is similar to Line algorithm 3.3.1. Next, it calculates a value of Xmax,

Xmin, Ymax, and Ymin by the following formula:

Xmax = X +
width

2

Xmin = X − width

2

Ymax = Y +
height

2

Ymin = Y − height

2

(3.2)

For Equation 3.2, X is an X-value from the X-Y coordinate. Y is a Y-value from the

X-Y coordinate. width is a width of the red rectangle and height is a height of the red

rectangle (Figure 3.19). After we have those four parameters, we convert both Xmax and

Xmin to longitudemax (LNGmax) and longitudemin (LNGmin), respectively, and Ymax and

Ymin to latitudemin (LATmin) and latitudemax (LATmax), respectively, using a world file.

It is noted that the conversion of Y to latitude is a reverse variation due to the difference

in vertical scaling between device screen and geographical system.
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Next, it starts searching for intersection that belong to this area bound by LNGmax,

LNGmin, LATmin, and LATmax using Algorithm 2. According to Algorithm 2, it scans

through every Intersection object. For each Intersection object, it starts checking its co-

ordinate of longitude and latitude. If a latitude falls between LATmin and LATmax and a

longitude falls between LNGmin and LNGmax, then it adds that Intersection object to a

collection of found intersection and continues on next Intersection object. If its coordinate

does not belongs to that area, it moves to the next Intersection object. When it scans

through all Intersection objects, it returns a collection of found intersections. The names

of the found intersections are displayed to users on the screen as mentioned earlier.

Algorithm 2 Algorithm for Detecting Intersections.

IntersectionFound← null

for all IntersectionObject I ∈ AllIntersections do

if LATmin ≤ I.LAT ≤ LATmax then

if LNGmin ≤ I.LNG ≤ LNGmax then

IntersectionFound.Add(I)

end if

end if

end for

return IntersectionFound

3.3.3 Area

For Area object model, we would provide the conceptual implementation using the ex-

ample set up in Subsection 3.2.3, which consists of a raster map and one Wetland object

represented W lake (Figure 3.13 and 3.14).

Dissimilar to Line and Point implementation (Subsection 3.3.1, 3.3.2), we do not de-

fine a region of interest for Area implementation. For Area implementation, we have an

objective to identify what area (lake, pond, etc.) that the tapped location is inside. We

start by getting the tapped location and calculating longitude and latitude of that tapped
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Figure 3.22 Flow Chart of Object-Indexing Implementation for Area Object Model.

location. Next, we iteratively visit each Wetland object. For each Wetland object, we verify

whether the tapped location is inside that Wetland object or not. Every Area object model

is represented by a polygon. Thus, this is exactly the same problem as “Point-in-polygon”

problem, which is one of famous problems in the computational geometry [32]. To solve

this, we can use an algorithm for determining if a point lies on the interior of a polygon

invented by Paul Bourke [8]. If the verification result confirms that the tapped location

is inside the wetland, that Wetland object is marked as a wetland that a user taps on.

Otherwise, we move to the next Wetland object. Figure 3.22 illustrates a flowchart that

explains the whole process of implementation.

In our example, we have one Wetland object, W lake (Figure 3.14). Therefore, when

we apply our conceptual implementation, we have to start from a Wetland object of W

lake. W lake consists of six pairs of longitude and latitude. These six pairs of longitude
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Figure 3.23 How Object-Indexing Operates for Area Object Model.

and latitude are vertices of a polygon, which is a pentagon for this example (Figure 3.14).

Next, we use the Bourke’s algorithm [8] to verify whether the tapped location (x, y) is in-

side this pentagon or not (we would not discuss this algorithm in detail). If the verification

result shows that the tapped location (x, y) is inside a pentagon, the name of that Wetland

object is displayed on the screen. Based on our example (Figure 3.13 and 3.14), W lake is

displayed because the tapped location (x, y) locates inside the area of W lake. Figure 3.23

illustrates how we can obtain this result.

The complexity of our Object-Indexing for Area object model is O(nm) where n is the

maximum number of pairs of longitude and latitude and m is the number of Wetland ob-

jects. Thus, this is a polynomial algorithm.
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We explain the algorithm described in Figure 3.22. When a user taps on a location that

is inside a wetland, we return a wetland that the Object-Indexing can detect to the user.

The name of the detected wetland is displayed at the bottom-left of the software screen.

The Object-Indexing starts working by getting an X-Y coordinate of a point that user

has tapped. This is similar to Line implementation (Subsection 3.3.1).

X is an X-value from the X-Y coordinate. Y is a Y-value from the X-Y coordinate.

Next, we calculate LAT and LNG from Y and X, respectively, using a world file. It is

noted that the conversion of Y to latitude is a reverse variation due to the difference in

vertical scaling between device screen and geographical system.

Next, it starts searching for a wetland that the tapped location (LAT,LNG) belongs to

using Algorithm 3. According to Algorithm 3, it scans through every Wetland object. For

each Wetland object, it starts checking whether the tapped location (LAT,LNG) is inside

that wetland or not using Bourke’s algorithm [8]. If a result verifies that (LAT,LNG) is

inside that wetland, then it adds that Wetland object to a collection of found wetlands. If

its coordinate (LAT,LNG) does not belongs to that wetland, it moves to the next Wetland

object. A found wetland is displayed to users on the screen as early mentioned.

Algorithm 3 Algorithm for Detecting Wetlands.

WetlandFound← null

for all WetlandObject W ∈ AllWetlands do

verificationResult← Bourke(W,LAT,LNG)

if verificationResult = TRUE then

WetlandFound.Add(W )

break

end if

end for

return WetlandFound
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3.4 Using Object-Indexing in Study Software

We deployed the algorithm discussed in Section 3.3 to Android application using Java

language because we would like the map integrated with Object-Indexing to be the primary

map for location-based software on portable device for address verification purpose.

The Android version consists of multiple modules. In this section, we discuss only the

object-indexing handling module.

Object-Indexing Handling module has a responsibility to handle all Street objects since

the software starts and until users quit. The Object-Indexing Handling module consists of

three submodules, which are Street Records Reading, Street Objects Initiating, and Street

Objects Detecting. A description and function of each submodule is described in the fol-

lowing paragraphs.

The Street Records Reading submodule is in charge for reading street records from a

streets text file and gathering all street properties. A streets text file that contains all street

records was interpreted from an actual shapefile. Each line of streets text file consists of

three values. The first one represents a street name. The second value represents a longi-

tude and the third value represents a latitude. A “###” is a separating symbol. Because

one street can have more than one latitude-longitude coordinate, one street can consume

more than one line in the streets text file. Figure 3.24 shows that only Hyland Avenue itself

consumes 56 lines in the streets text file because there are 56 latitude-longitude coordinates

of Hyland Avenue. If there exists an actual driveway but no name has been assigned to it

yet, the first value would be blank but we would not omit it.

After the reading process is completely done, then the Street Objects Initiating sub-

module is in charge. According to Figure 3.3, it takes all streets records to instantiate
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Figure 3.24 Example of Streets Text File.
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Street objects. A Street object is instantiated using a Street class. This class consists of

two fields, which are street name and a collection of latitude-longitude coordinates of that

street. We used “java.util.ArrayList” to store that collection. Every street that belongs

to the neighborhood would have its own corresponding Street object. Every Street object

would last until users quit the application software.

The last submodule, Street Object Detecting, is significantly important for our study.

This submodule does a deployment of design and implementation concept of Object-Indexing

in Section 3.2 and 3.3. This submodule enhances a usability of our raster map software by

allowing users to tap on any street, at any zoom level and any map type, in the primary

map where they would like to know the name of that such street. Particularly, Figure 3.18

shows how this module works.

In our study software, we provide two types of raster map, which are a Tiger Line map

[9] and a Google map. For a Tiger Line map, Figure 3.25 shows a series of screens when

a user taps on an intersection of Knapp Street and Lynn Avenue in a Tiger Line map.

Similarly, Figure 3.26 shows a series of screens when a user taps on the same intersection

in a Google map. For both maps, names of streets in the intersection, Knapp Street and

Lynn Avenue, are displayed at the bottom-left of the screen.

The advantage of having Object-Indexing can be obviously observed in Figure 3.27,

3.28, and 3.29 in which a user taps on a street without street name. Figure 3.27 shows a

scenario that a user taps on an unknown street. With Object-Indexing, a name of Gray

Avenue is displayed at the bottom-left of the screen to identify that unknown street. The

similar scenarios are in Figure 3.28 and 3.29. For Figure 3.28, an unknown street is S 4th

Street. For Figure 3.29, an unknown street is Agg Avenue. All three scenarios are occurred

on a Tiger Line map.
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We also shows the same scenarios as Figure 3.28 and 3.29 in Figure 3.30 and 3.31, re-

spectively. The difference between both groups is map type. Figure 3.30 and 3.31 show the

scenarios occurred in a Google map.

The last scenarios are in Figure 3.32 and 3.33. In Figure 3.32, a user taps on a 3-way

intersection. The names of all streets in that 3-way intersection are displayed, which are

Friley Road and Gaskill Drive. In Figure 3.33, a user taps on a 4-way intersection. The

names of all streets in that 4-way intersection are displayed, which are Country Club Boule-

vard, Pearson Avenue, and Kildee Street. These two scenarios are occurred on a Tiger Line

map.

We also shows the same scenarios as Figure 3.32 and 3.33 in Figure 3.34 and 3.35, re-

spectively. The difference between both groups is map type. Figure 3.34 and 3.35 show the

scenarios occurred in a Google map.

In this chapter, we discuss about Object-Indexing, which is a new concept of combining

a traditional raster map with objects generated from shapefiles to represent the primary

map components to grant accessibility to these components to users of a map software.

General concept, Design, algorithms, and implementation of Object-Indexing are also cov-

ered. In the next chapter, we would discuss about our map software, experiment (address

verification), and analysis of experiment result.
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CHAPTER 4. STUDY I: A STUDY TO INVESTIGATE

PARTICIPANTS’ PERFORMANCE WITH DIFFERENT USER

INTERFACES

This chapter described a procedure and results from our experiment of address verifica-

tion on an Android tablet. Spatial visualization test scores, address verification scores, and

statistical outcomes from the study are discussed. Study I was approved by the Institutional

Review Board (IRB-ID: 15-494). The IRB approval document was provided in Appendix A.

As we proposed in Chapter 1, the purpose of this research was to flatten the differ-

ence between low and high spatial visualization people performing the address verification

task on a location-based software. The focus of the study was to test three user interface

features. In particular, we were interested in understanding the relationship between user

performance and the user’s level of spatial visualization. The three features are described

in Subsection 4.2.2. Each study treatment was setup by activating two of the three user

interface features and disabling one of the features. Participants were randomly assigned

one of the three treatments. In Section 4.3, we show raw results from this study. The

metrics that we were interested in are the participant’s address verification score, the total

time that each participant used, the total distance that each participants walked, the total

number of errors, the total number of pans, and the total number of zooms. All of these

interesting metrics and how they reflected performance are discussed in Section 4.3.
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4.1 Study Procedure

The study consisted of two parts. The first part was a test of the participant’s level of

spatial visualization. The second part was the field study. We invited participants to par-

ticipate in our study by announcement via flyers and in-person communication. Thirty-two

participants took part. The study started by asking participants to read and sign a letter

of informed consent. Next, we asked participants to take a spatial visualization test and

questionnaire about their general information, such as the frequency of map usage. After

that, we moved to the neighborhood (Figure 4.1) and started the address verification task

using our software on an Android tablet. When a participant completed the task, they

received a $20 gift card as a compensation. The Android tablet that we selected for this

study was a Google Nexus 7. We selected this model because it has built-in GPS.

4.1.1 Test of Spatial Visualization

For testing spatial visualization, we used a Paper Folding test (the official name is VZ-2

test), which could be found in Ekstrom’s Manual for Kit of Factor-Referenced Cognitive

Tests [20]. The Paper Folding test we used was a multiple choice test that consisted of two

problem sets. One problem set had ten problems and allowed three minutes to do all ten.

Every problem asked the same question, which was: it illustrated a couple of steps to fold a

piece of square paper, then it specified a point to punch a hole on the folded paper. Finally,

it asked the test taker to select what the paper looked like when it was unfolded. Figure

4.2 showed an example of the Paper Folding test, which had two columns. The left column

showed how the paper was folded and punched. The right columns contained five answer

choices. A test taker had to mentally fold and punch a paper, then selected the output from

five choices. One point was given for one correct answer. A negative one point was given

for one incorrect answer. Zero point was given for no answer. Thus, the possible maximum

score was twenty and the possible minimum score was negative twenty.
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Figure 4.1 Map of Selected Neighborhood in Ames, Iowa.
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Figure 4.2 Paper Folding Test [20].

The high spatial visualization group was a group where every member had a test score

greater than or equal to 13. The low spatial visualization group was a group where every

member had a test score less than or equal to 8. These thresholds were from a discussion

with Maria Kozhevnikov, a psychology professional, when she gave a presentation at Iowa

State University. These thresholds were also used in previous work [2][89]. We graded the

test after finishing the field study.

4.1.2 Field Portion of the Study

When participants finished the spatial visualization test, we moved to the selected neigh-

borhood to start the address verification task using our software on the Android tablet. We

selected this neighborhood because its layout was complicated. Before participants started

the verification process, they were given instruction of how to use the software.
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Before we discussed the address verification procedure, we gave a brief explanation of

possible solutions for address verification. For verification of each address, there were four

possible options and solutions described in Table 4.1.

Table 4.1 Address Verification Possibilities.

Options Solutions

There existed an address in the neighborhood Participants needed to do nothing.

and there also existed an address spot in the map.

There existed an address in the neighborhood Participants needed to add that address spot

but there was no address spot in the map. on the map.

There was no address in the neighborhood Participants needed to delete that address spot

but there existed an address spot in the map. on the map.

There existed an address in the neighborhood Participants needed to delete that address spot

and there also existed an address spot in the map. on the map and

but that address spot was located on opposite add a new address spot on the map

site of a street at the correct side of a street.

After participants understood all four potential options for each address, we gave in-

struction on the address verification procedure as a suggestion to participants. Participants

may do or may not do according to our procedure based on their preference. The address

verification procedure that we suggested to participants was given as follows:

1. Participants select one address that they would like to verify from the Address Drop-

down List.

2. Participants should find their current location on the primary map.

3. Participants should search for the street on the map where the address was located.

4. Participants start walking from their current location to that street.
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5. When participants arrived at that street, participants searched for that address spot

on the primary map.

• If the address spot existed on the primary map, participants should walk to that

address based on the primary map.

– If that address really existed on that street, this was the first verification

option. Participants did nothing.

– Else, if that address really existed, but was physically located somewhere

else, this was the fourth verification option. Participants deleted the wrong

address spot on the primary map and added a new address spot at the correct

location.

– Otherwise, that address did not exist, this was the third verification option.

Participants deleted the address spot from the primary map.

• Otherwise, if there was no address spot on the primary map, participants should

walk along that street to verify whether that address actually existed or not.

– If that address existed, this was the second verification option. Participants

added a new address spot for that address on the primary map.

– Else, participants did nothing.

6. Participants chose the next address until they completed all ten addresses.

We observed participants all the time. When participants completed all ten addresses,

they returned the tablet and were given a $20 gift card as compensation.

4.2 Study Software

We take a brief look at our location-based software used in the study. The first part

is about the software interface components. The last part was about the software features
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that we added to the software to see how effective they were with participants of different

level of spatial visualization.

4.2.1 Software Interface Components

Our software for the address verification task was the only tool that our participants

used when they were in the neighborhood. Figure 4.3 shows a screen shot that shows where

all of the components were located.

The Address Drop-down List is a drop-down list that contains all ten addresses that

participants needed to verify. The Operation Radio Buttons were used for participants to

perform any verification operation on the primary map. The Primary Map is a raster map

of the neighborhood area. Participants would use the primary map to perform address ver-

ification. The Pan Buttons were for participants to pan the primary map in four directions:

up, down, left, and right. The Zoom Control was for participants to zoom in or zoom out

the primary map. The Switch Button was for participants to switch a map type (Tiger

Line Map and Google-like Map). If the current primary map was a Google-like map, it

would switch to a Tiger Line map, and vice versa. The Reset Button was for participants

to restore a software to the starting state. Finally, the Quit Button was for participants to

quit the software after they completed the final address verification task. After the Quit

Button was hit, the software would generate an activity log file, an address verification

result, and a location log file.

4.2.2 Software Features

There were three user interface features that were in the software to see whether they

helped participants with different spatial visualization or not. These three features were
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Figure 4.3 Software Screen.
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Global Positioning System (GPS), Object-Indexing, and Mini Map. For each treatment

that participant received, one of theses features would be randomly disabled. Thus, for

each participant, only two features were available for them to use during their address ver-

ification task.

1. Object-Indexing

We deployed the Object-Indexing approach that we discussed in Chapter 3 in this fea-

ture. For the implementation in the study software, we implemented the Street object

because street was a primary map component in the address verification. With this

feature, it allowed participants to tap on any street in the map to see a street name or

any intersection to see street names of all streets intersected. We have already shown

how Object-Indexing actually worked in our software in Section 3.4 in Chapter 3.

2. Mini Map

Based on the study of Büring, Gerken, and Reiterer [10], we knew that an overview

window was an essential interface component for low spatial people. For our location-

based software, the concept of overview window was implemented by the Mini Map.

The Mini Map was also a map that was located below the primary map at the left side

of the screen (Figure 4.3). The size of Mini Map was smaller than the primary map.

The Mini Map showed the map of the full neighborhood. The difference between the

primary map and the Mini Map was that the primary map would be changed to a new

map image when participants panned or zoomed the map. Whereas the Mini Map

stayed the same, which always showed the whole map of the neighborhood. Figure 4.4

showed how the Mini Map functioned as an overview window for our software. Figure

4.5 showed the Mini Map in the software interface. In Figure 4.5, the black rectangle

represented the area that was zoomed (by a participant). This area was shown to a
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participant in the primary map. With this feature, participants could see two maps

at a single time where the primary map showed the area that they are focusing and

the Mini Map showed the overview of the neighborhood.

3. Global Positioning System (GPS)

The Global Positioning System allowed participants to see their current location on

the map. This feature was refreshed every two seconds when possible so participants

could obtain their current location in real-time. The current location on the map was

represented by a red square as shown in Figure 4.6.

4.3 Raw Results from Study

This section explains the raw results that we gathered from the thirty-two participants.

Due to the protocol of IRB, we could not record the names or any identifiable data of par-

ticipants. For each participant, there were six metrics that we focused on. Those six metrics

were an address verification score, a total time each participant used in address verification,

a total distance each participant walked during address verification, a number of error taps

the participant did during address verification, a number of pan taps the participant did

during address verification, and a number of zoom taps the participant did during address

verification. We gathered these data and calculated the metrics from a log file that was

generated by our software when a participant finished the task.

The address verification score was the score that showed how many addresses a partici-

pant correctly verified. The top score of the address verification score was 10 because there

were ten addresses that the participant needed to verify in the field study. There were some

addresses that required participants to move the map spot to the correct location on the

map by deleting the misplaced spot and adding the new spot to the correct location. For
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Figure 4.4 Relationship between Primary Map and Mini Map.
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Figure 4.5 Mini Map in the Software Interface.

Figure 4.6 Current Location Displayed on Map.
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this case, if participants partially completed the task by only deleting the wrong spot but

not adding the correct spot, or another way around, they would get a score of 0.5 instead of

1. For the total time that the participant used in address verification, we started recording

when the tablet was given to the participant and stopped when the participant tapped on

Quit button (Section 4.2.1). The basic unit of the total time was minutes.

For the total distance that the participant walked during the address verification task,

we calculated it by using the time stamp captured in the log file of that participant. When

a participant started the task, our software kept track of the participant’s location using a

set of longitude and latitude coordinates. Thus, the total route of the participant could be

represented by the sequence of longitude-latitude coordinates. The distance was calculated

in kilometers along the path defined by the coordinates.

The number of error taps was a number that the participant tapped outside the sensitive

regions. We defined, based on the work of Taylor [101], that the sensitive region was an area

on the screen such that when a user tapped on, it initiated or triggered another activity

to execute. The example of a sensitive region was a button. The number of pan taps was

the number that each participant tapped on the pan buttons to pan the map. There were

four pan buttons, which were pan up, pan down, pan right, and pan left (Figure 4.3). The

number of zoom taps was the number that each participant tapped on the zoom button to

zoom the map. There were two zoom buttons, which were zoom in and zoom out (Figure

4.3).

Table 4.2 showed a fragment of the raw results from our study that consisted of a partic-

ipant ID, and six metrics that we have mentioned. For the last two columns, the number of

pan taps and the number of zoom taps, they only showed the total number of pan taps that

each participant tapped and the total number of zoom taps that each participant tapped,
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respectively. The pattern of pan taps (the combination of up, down, right, and left) and

the pattern of zoom taps (combination of in and out) were recorded in the log file.

Table 4.2 Example Raw Results from Study.

4.4 Preliminary Analyzed Results

After we finished the field study with every participant, we had the following data for

each participant:

1. Participant’s spatial visualization

2. Participant’s treatment

3. Participant’s metrics

We knew that each participant was either high or low spatial visualization based on

his/her score of a Paper Folding Test (Subsection 4.1.1). For a participant’s treatment, we

knew that each participant received what treatment, which meant that we knew which two

features that were enabled and another one feature that was disabled for that participant

(Subsection 4.2.2). Participant’s metrics were the six metrics that we mentioned in Subsec-

tion 4.3.
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We set up hypotheses and did a data analysis according to the corresponding hypothesis.

For each hypothesis, we addressed the hypothesis, the result of hypothesis tests, and pro-

vided a bar chart. We used the Mann-Whitney test [70]. The objective of a Mann-Whitney

test was to test whether two sets of data were significantly difference or not.

Based on results of hypothesis tests, we divided our write up into two parts. The first

part investigated the significant hypotheses and the second part looked at the suggestive

hypotheses. Significant hypotheses were hypotheses that had a significant test result, that

was, a p-value calculated from a hypothesis test was significant (p-value ≤ 0.05). Suggestive

hypotheses were hypotheses that did not have a significant test result, but their p-values

were very close to significant value.

4.4.1 Hypotheses for Study I

This subsection sets up interesting hypotheses that were tested for their significance.

There are thirty-six hypotheses in total where eighteen hypotheses are for low VZ partici-

pants (Table 4.3) and other eighteen hypotheses are for high VZ participants (Table 4.4).

Four hypotheses are significant. Three hypotheses are suggestive. Twenty-nine hypotheses

are failed to reject. Every significant hypothesis and every suggestive hypothesis are dis-

cussed in detail.
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4.4.1.1 Significant Hypotheses

From Table 4.3 and Table 4.4, there were 4 significant hypotheses, which were:

• Hypothesis#1: For low spatial visualization participants, those who had GPS did

not have higher address verification scores than those who did not have GPS.

– An alternative hypothesis (H(a)) for this case was: “For low spatial visualization

participants, those who had GPS had higher address verification scores than those

who did not have GPS.”

– For this hypothesis, we used two datasets to run a hypothesis test. The first

dataset contained the address verification score of every low spatial visualization

participants whose treatment had GPS enabled. The second dataset contained

the address verification score of every low spatial visualization participants whose

treatment had GPS disabled.

– The hypothesis test returned a p-value of 0.013. This value told us that the

difference between two datasets was significant.

– Figure 4.7 shows the bar chart that compared the average of address verification

score of low spatial visualization participants who had GPS and those who did

not have GPS. The average score of those who had GPS was 9.63 and the average

score of those who did not have GPS was 8.3.

• Hypothesis#2: For low spatial visualization participants, those who had Object-

Indexing did not have lower address verification scores than those who did not have

Object-Indexing.

– An alternative hypothesis (H(a)) for this case was: “For low spatial visualization

participants, those who had Object-Indexing had lower address verification scores

than those who did not have Object-Indexing.”
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Figure 4.7 Average Address Verification Score between 2 Datasets.

– For this hypothesis, we used two datasets to run a hypothesis test. The first

dataset contained the address verification score of every low spatial visualiza-

tion participants whose treatment had Object-Indexing enabled. The second

dataset contained the address verification score of every low spatial visualization

participants whose treatment had Object-Indexing disabled.

– The hypothesis test returned a p-value of 0.02. This value told us that a difference

between two datasets was significant.

– Figure 4.8 shows the bar chart that compared the average of address verification

score of low spatial visualization participants who had Object-Indexing and those

who did not have Object-Indexing. The average score of those who had Object-

Indexing was 9.03 and the average score of those who did not have Object-

Indexing was 9.92.

• Hypothesis#21: For high spatial visualization participants, those who had Mini

Map did not have higher address verification scores than those who did not have Mini

Map.
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Figure 4.8 Average Address Verification Score between 2 Datasets.

– An alternative hypothesis (H(a)) for this case was: “For high spatial visualization

participants, those who had Mini Map had higher address verification scores than

those who did not have Mini Map.”

– For this hypothesis, we used two datasets to run a hypothesis test. The first

dataset contained the address verification score of every high spatial visualiza-

tion participants whose treatment had Mini Map enabled. The second dataset

contained the address verification score of every high spatial visualization par-

ticipants whose treatment had Mini Map disabled.

– The hypothesis test returned a p-value of 0.05. This value told us that the

difference between two datasets was significant.

– Figure 4.9 shows the bar chart that compared the average of address verification

score of high spatial visualization participants who had Mini Map and those who

did not have Mini Map. The average score of those who had Mini Map was 9.7

and the average score of those who did not have Mini Map was 8.75.
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Figure 4.9 Average Address Verification Score between 2 Datasets.

• Hypothesis#31: For high spatial visualization participants, those who had GPS did

not have higher number of pan taps than those who did not have GPS.

– An alternative hypothesis (H(a)) for this case was: “For high spatial visualization

participants, those who had GPS had higher number of pan taps than those who

did not have GPS.”

– For this hypothesis, we used two datasets to run a hypothesis test. The first

dataset contained the number of pan taps of every high spatial visualization

participants whose treatment had GPS enabled. The second dataset contained

the number of pan taps of every high spatial visualization participants whose

treatment had GPS disabled.

– The hypothesis test returned a p-value of 0.02. This value told us that the

difference between two datasets is significant.

– Figure 4.10 shows the bar chart that compared the average of number of pan taps

of high spatial visualization participants who had GPS and those who did not

have GPS. The average number of pan taps of those who had GPS was 118.88

and the average score of those who did not have GPS was 66.2.
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Figure 4.10 Average Address Verification Score between 2 Datasets.

4.4.1.2 Suggestive Hypotheses

From Table 4.3 and Table 4.4, there are 3 suggestive hypotheses, which are:

• Hypothesis#8: For low spatial visualization participants, those who had Object-

Indexing did not have higher distance than those who did not have Object-Indexing.

– An alternative hypothesis (H(a)) for this case was: “For low spatial visualization

participants, those who had Object-Indexing had higher distance than those who

did not have Object-Indexing.”

– For this hypothesis, we used two datasets to run a hypothesis test. The first

dataset contained the distance of every low spatial visualization participants

whose treatment had Object-Indexing enabled. The second dataset contained

the distance of every low spatial visualization participants whose treatment had

Object-Indexing disabled.

– The hypothesis test returned a p-value of 0.07. This value showed that the

difference between the two datasets was very close to significant value (0.05).
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Figure 4.11 Average Distance between 2 Datasets.

– Figure 4.11 shows the bar chart that compared the average of distance of low

spatial visualization participants who had Object-Indexing and those who did not

have Object-Indexing. The average distance of those who had Object-Indexing

was 4.22 kilometers and the average score of those who did not have Object-

Indexing was 2.81 kilometers.

• Hypothesis#13: For low spatial visualization participants, those who had GPS did

not have lower number of pan taps than those who did not have GPS.

– An alternative hypothesis (H(a)) for this case was: “For low spatial visualization

participants, those who had GPS had lower number of pan taps than those who

did not have GPS.”

– For this hypothesis, we used two datasets to run a hypothesis test. The first

dataset contained the number of pan taps of every low spatial visualization par-

ticipants whose treatment had GPS enabled. The second dataset contained the

number of pan taps of every low spatial visualization participants whose treat-

ment had GPS disabled.
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Figure 4.12 Average Distance between 2 Datasets.

– The hypothesis test returned a p-value of 0.06. This value showed that the

difference between the two datasets was very close to significant value (0.05).

– Figure 4.12 shows the bar chart that compared the average of number of pan

taps of low spatial visualization participants who had GPS and those who did

not have GPS. The average total number of pan taps of those who had GPS was

90.47 and the average score of those who did not have GPS was 113.8.

• Hypothesis#14: For low spatial visualization participants, those who had Object-

Indexing did not have higher number of pan taps than those who did not have Object-

Indexing.

– An alternative hypothesis (H(a)) for this case was: “For low spatial visualization

participants, those who had Object-Indexing had higher number of pan taps than

those who did not have Object-Indexing.”

– For this hypothesis, we used two datasets to run a hypothesis test. The first

dataset contained the number of pan taps of every low spatial visualization par-

ticipants whose treatment had Object-Indexing enabled. The second dataset
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Figure 4.13 Average Distance between 2 Datasets.

contained the number of pan taps of every low spatial visualization participants

whose treatment had Object-Indexing disabled.

– The hypothesis test returned a p-value of 0.07. This value showed that the

difference between the two datasets was very close to significant value (0.05).

– Figure 4.13 shows the bar chart that compared the average of number of pan

taps of low spatial visualization participants who had Object-Indexing and those

who did not have Object-Indexing. The average total number of pan taps of

those who had Object-Indexing was 108.57 and the average score of those who

did not have Object-Indexing was 67.67.
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4.5 Post-study Discussion

Our hypotheses and the results from hypothesis tests showed that GPS enhanced the

performance of low spatial visualization participants by significantly increasing the address

verification score and decreasing the number of panning taps. However, GPS reduced the

performance of high spatial visualization participants by significantly increasing the number

of panning taps.

The results also showed that Object-Indexing did not seem to be a feature for low spatial

visualization participants because it reduced the performance by significantly decreasing the

address verification score and increasing the number of panning taps.

Based on this preliminary study, Mini Map was the only feature that benefited high

spatial visualization participants because it significantly increased the address verification

score of high spatial visualization participants.

We gained some clues about which software features might potentially help the two

groups of participants. As we previously mentioned that a purpose of this study was to

see how each feature impacted participants’ performance in address verification task, all

the clues that we had from this study will be used in a development of an adaptive user

interface software. Not only clues that we could get, we would also make a use of the pre-

diction model [2] in order to develop an adaptive version of software interface. In addition

we will continue to examine relevant literature for other features that have been shown to

be helpful to high or low participants.



100

CHAPTER 5. STUDY II: A STUDY TO INVESTIGATE

PARTICIPANTS’ PERFORMANCE WITH A UNIVERSAL USER

INTERFACE USING A LARGE MAP SPACE

In this chapter, we provide a detailed look at Study II. Study II was approved by the

Institutional Review Board (IRB-ID: 14-526). The IRB approval document was provided

in Appendix A.

5.1 Objectives

As mentioned previously, the goal of this research is to find ways to flatten the space

based on the users’ level of spatial ability. The focus of this study was to look at map size

in a universal interface format where all of the features used in Study I were present for

users to take advantage of.

The positive aspect of this approach is that a larger map size gives users a better chance

to efficiently use the map. The negative issue is that for really large scale surveys, like

a decennial census, using tablets for all enumerators in the field drives costs too high for

agency budgets.

The basic research question this study was designed to address is whether by integrating

the larger map size with the Object-Indexing, the Mini Map, and GPS we would see no

difference between high and low spatial visualization users.
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5.2 Methodology

5.2.1 Study Designs

There were also two sessions in Study II. The first session, spatial visualization test, was

the same as was used in Study I.

The field session of Study II incorporates a larger map with the interface features used

in Study I. Figure 5.1 compares the size of the map between Study I (left) and Study II

(right). All three UI features (GPS, Object-Indexing, and Mini Map) were active for each

participant throughout the study. Another small change was the inclusion of a satellite

image map of area.

Figure 5.2 - 5.4 provide snapshots of the interface design.

5.2.2 Study Procedures

5.2.2.1 Test of Spatial Visualization

We started Study II by asking a participant to take the Paper Folding test [20] to find

the level of spatial visualization of the participant. The process of the test was same as

Study I. It consisted of two problem sets where each set had ten questions. Each participant

was allowed three minutes for each problem set. When a participant finished the test, we

moved to the neighborhood to do the address verification task.

5.2.2.2 Field Portion of the Study

When arriving in the neighborhood, the investigator instructed each participant on how

to use the software to verify addresses. The investigator then handed the tablet to the
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Figure 5.1 UI of Study I (left) and Study II (right).
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participant. Since there was no time limit in the field study, the participant could take a

time as long as he/she wanted. When the participant finished, he/she returned the tablet

to the investigator. The investigator observed the participant all the time that they were

in the neighborhood.

For each address to be verified, there were four possible solutions of verification as

described in Table 4.1. Each participant was given instruction on address verification in-

cluding a suggestion on a potential approach. The instruction and suggestion were described

in Subsection 4.1.2.

5.2.3 Study Software

We take a brief look at the location-based software used in Study II. The two most

compelling differences about the software are the size of the primary map relative to what

was used in Study I and the inclusion of all three features discussed in the previous chapter.

5.2.3.1 Software Components

Figure 5.2 illustrates the UI of the software that participants used for address verifica-

tion in Study II.

Most UI components were similar to the UI of software used in Study I. There were

two maps in the UI. The first map was a Primary Map, which is the working map for

participants. The second map was a Mini Map representing the complete neighborhood.

There were four Pan Buttons (up, down, right, and left) for panning and a Zoom Control for

zooming in/out of the Primary Map. A Switch Button was for switching between a Tiger

Line map, a Google map, and a satellite image map (Figure 5.3). An Address Drop-down

List contained all ten addresses that participants have to verify. An Operation Drop-down
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Figure 5.2 Software UI of Study II.
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List and an Operation Execute Button were for participants to select which map operation

(add/delete) they would like to do with an address they were working on. A Reset Button

was for reseting the UI to its beginning state. A Quit Button was for quit the software

when participants finished verification.

5.2.3.2 Software Features

There were also the three user interface features that were used in Study I (Global Posi-

tioning System, Object-Indexing, and Mini Map). Since this was a universal user interface

study, we included all three features for every participant. Therefore, every participant can

use these three features at anytime during verification. Figure 5.4 illustrated these three

features.

5.3 Results

This section explains the raw results that we gathered from thirty-one participants. We

could not record the names or any identifiable data of participants due to the IRB protocol.

For each participant, there were six metrics that we focused on. Those six metrics were

the address verification score, the total time each participant used in address verification,

the total distance each participant walked during address verification, the number of error

taps the participant did during address verification, the number of pan taps the participant

did during address verification, and the number of zoom taps the participant did during

address verification. We gathered these data and calculated the metrics from a log file that

was generated by our software when a participant finished the task.

The address verification score was the score that showed how many addresses a partici-

pant correctly verified. The top score also was 10 because there were ten addresses. For the

total time that the participant used in address verification, we started recording when the
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Figure 5.3 A Satellite Map in Study II.
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Figure 5.4 Three UI Features of Study II.
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tablet was given to the participant and stopped when the participant tapped on the Quit

button (Section 5.2.3.1). The basic unit of the total time was minutes.

For the total distance that the participant walked during address verification, we also

calculated it by using the log file of that participant. When a participant started the task,

our software kept track of the participant’s location using a set of longitude and latitude

coordinates. Thus, the total route of the participant could be represented by a sequence of

longitude-latitude coordinates. The distance was calculated in kilometers along the path

defined by the coordinates.

The number of error taps was a number that the participant tapped outside the sensitive

regions [101]. The number of pan taps was the number that each participant tapped on the

pan buttons to pan the map. There were four pan buttons, which were pan up, pan down,

pan right, and pan left (Figure 5.2). The number of zoom taps was the number that each

participant tapped on the zoom button to zoom the map. There were two zoom buttons,

which were zoom in and zoom out (Figure 5.2).

Table 5.1 shows the raw results from Study II that consists of the participant ID (sim-

ply a number assigned after their identifying information had been stripped off), the scores

of spatial visualization test, and six metrics that we mentioned above. For the last two

columns, the number of pan taps and the number of zoom taps, they showed the total num-

ber of pan taps that each participant tapped and the total number of zoom taps that each

participant tapped, respectively. The pattern of pan taps (the combination of up, down,

right, and left) and the pattern of zoom taps (combination of in and out) were recorded in

the log file. A partial result was published in [77].
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Table 5.1 Example Results from Study II.

5.4 Discussion

We set up research questions, hypotheses, and did a data analysis according to the cor-

responding hypothesis. For each research question, we addressed two hypotheses: a null

hypothesis and an alternative hypothesis, the results of the hypothesis test, and provided

a box plot. We used the Mann-Whitney hypothesis test. An objective of a Mann-Whitney

test was to test whether two sets of data were significantly difference or not.
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An objective of this process was to investigate whether there existed any significant

difference between low and high spatial visualization groups of participants or not. There

were six research questions. All hypotheses and their details of each research question are

reported in this section.

5.4.1 Research Question 1: Was there a significant difference in verification

score?

To answer this question, we set up following hypotheses:

H0 : Verification scores of high and low VZ participants were NOT significantly different.

Ha : Verification scores of high and low VZ participants were significantly different.

We did a hypothesis test to test two sets of data. The first data set was a verification

score of every high VZ participant. The second data set was a verification score of every

low VZ participant.

After we ran a hypothesis test, we got a p-value of 0.4233. Since the p-value was greater

than the significance level (α) of 0.05, we failed to reject H0. Even though we failed to

reject the null hypothesis, the box plot (Figure 5.5) shows overlap of the two groups.

5.4.2 Research Question 2: Was there a significant difference in time?

To answer this question, we set up following hypotheses:

H0 : Times of high and low VZ participants were NOT significantly different.

Ha : Times of high and low VZ participants were significantly different.
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Figure 5.5 A Box Plot Illustrated Address Verification Score of High and Low VZ Partic-

ipants.
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Figure 5.6 A Box Plot Illustrated Times of High and Low VZ Participants.

We did a hypothesis test to test two sets of data. The first data set was a time of every

high VZ participant. The second data set was a time of every low VZ participant.

After we ran a hypothesis test, we got a p-value of 0.03868. Since the p-value was smaller

than the significance level (α) of 0.05, we rejected H0. Therefore, times of high and low VZ

participants were significantly different. A box plot in Figure 5.6 illustrated times of both

high and low VZ participants.

5.4.3 Research Question 3: Was there a significant difference in distance?

To answer this question, we set up following hypotheses:

H0 : Distances of high and low VZ participants were NOT significantly different.

Ha : Distances of high and low VZ participants were significantly different.
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Figure 5.7 A Box Plot Illustrated Distances of High and Low VZ Participants.

We did a hypothesis test to test two sets of data. The first data set was a distance of

every high VZ participant. The second data set was a distance of every low VZ participant.

After we ran a hypothesis test, we got a p-value of 0.05555. Since the p-value was greater

than the significance level (α) of 0.05, we failed to reject H0. The p-value of 0.05555, which

not significant, is suggestive of the two groups being different with respect to time. The

box plot (Figure 5.7) illustrates some overlap between the two groups.
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5.4.4 Research Question 4: Was there a significant difference in a number of

error taps?

To answer this question, we set up following hypotheses:

H0 : Numbers of error taps of high and low VZ participants were NOT significantly different.

Ha : Numbers of error taps of high and low VZ participants were significantly different.

We did a hypothesis test to test two sets of data. The first data set was a number of

error taps of every high VZ participant. The second data set was a number of error taps of

every low VZ participant.

After we ran a hypothesis test, we got a p-value of 0.2027. Since the p-value was greater

than the significance level (α) of 0.05, we failed to reject H0. As with research question 1,

by failing to reject the null hypothesis we can’t get anything out of the Mann-Whitney test.

The box plot (Figure 5.8) shows a fairly high degree of overlap.

5.4.5 Research Question 5: Was there a significant difference in a number of

pan taps?

To answer this question, we set up following hypotheses:

H0 : Numbers of pan taps of high and low VZ participants were NOT significantly different.

Ha : Numbers of pan taps of high and low VZ participants were significantly different.

We did a hypothesis test to test two sets of data. The first data set was a number of

pan taps of every high VZ participant. The second data set was a number of pan taps of

every low VZ participant.

After we ran a hypothesis test, we got a p-value of 0.104. Since the p-value was greater

than the significance level (α) of 0.05, we failed to reject H0. Again here, failing to reject
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Figure 5.8 A Box Plot Illustrated Numbers of Error Taps of High and Low VZ Participants.
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Figure 5.9 A Box Plot Illustrated Numbers of Pan Taps of High and Low VZ Participants.

the null hypothesis doesn’t give us much information. We do see overlap between the two

groups in the box plot (Figure 5.9).

5.4.6 Research Question 6: Was there a significant difference in a number of

zoom taps?

To answer this question, we set up following hypotheses:

H0 : Numbers of zoom taps of high and low VZ participants were NOT significantly different.

Ha : Numbers of zoom taps of high and low VZ participants were significantly different.

We did a hypothesis test to test two sets of data. The first data set was a number of

zoom taps of every high VZ participant. The second data set was a number of zoom taps

of every low VZ participant.
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Figure 5.10 A Box Plot Illustrated Numbers of Zoom Taps of High and Low VZ Partici-

pants.

After we ran a hypothesis test, we got a p-value of 0.09042. Since the p-value was greater

than the significance level (α) of 0.05, we failed to reject H0. The p-value of 0.09042 is just

beyond being suggestive and we see a large area of overlap in the box plot (Figure 5.10).
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5.5 Conclusions

As we previously mentioned, an objective of Study II was to confirm that a universal UI

was not a solution for improving usability [53]. In Study II, we did a study by asking a par-

ticipant to verify addresses in the neighborhood using a universal UI software. Thirty one

participants participated in the study. We ran hypothesis tests, which comparing between

low and high VZ participants, to investigate whether there existed any significant difference

in six metrics, which were verification score, time, distance, number of errors, number of

pan taps, and number of zoom taps.

The result from this study are mixed. We see some degree of flattening looking at the

plots (Figure 5.5 - 5.10), but did reject the null hypothesis for research question 2 (time)

with a significant p-value (0.03868) and research question 3 (distance) with a suggestive

p-value (0.05555). This result corresponded with what we found in the literature [6][7] that

confirmed high VZ users had better performance when using any software.

Therefore, a universal UI software doesn’t appear to be a solution to improve usability of

users with different VZ. This was true in spite of using a larger primary map. In Chapter 6,

we look at a study of address verification using an adaptive UI software, which an adaptation

was based on VZ level of a user, to see whether we could find a significant improvement of

performance of users with different VZ.
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CHAPTER 6. STUDY III: A STUDY TO INVESTIGATE

PARTICIPANTS’ PERFORMANCE WITH AN ADAPTIVE USER

INTERFACE

In this chapter, we provide a detailed look at Study III. The focus of Study III was to

show the advantage of an adaptive UI. Study III was approved by the Institutional Review

Board (IRB-ID: 16-288). The IRB approval document is provided in Appendix A.

6.1 Objectives

The primary objective of Study III was to prove that adaptive UI software to verify street

addresses improved overall performance for both high and low VZ participants. This signif-

icant performance indicated that participants can do the task better with the adaptive UI

software than a non-adaptive UI (which we denote the traditional UI). Statistical hypothe-

sis tests were executed and reported to verify how they did better with the adaptive version.

Additionally, Study III had two additional objectives. The first of these objectives was

that we would like to implement a prediction method in the software such that it was able

to predict a user’s VZ based on their actions on the UI. This was an extension of Batinov’s

study [2].

Since the prediction method was going to be implemented and deployed. Another objec-

tive was to investigate the results of the prediction, which included observing participants’
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performance after the UI had adapted based on a prediction result regardless of the accuracy

of the prediction. We will take a look on both participants who were correctly predicted

and who were incorrectly predicted.

6.2 Methodology

6.2.1 Study Designs

There were two sessions in Study III. The first session, the spatial visualization test,

was the same as Studies I and II.

For the second session, the field study was divided it into three phases. A participant

was asked to verify four addresses, four addresses, and two addresses in phase 1, phase 2,

and phase 3, respectively. All ten addresses were selected by our research group and were

located in the same neighborhood as the previous studies. A difference between each phase

was the UI of the software that the participants worked with. A set of addresses to be ver-

ified in each phase was different so a participant cannot remember the result of verification

from the previous phase. Figure 6.1 shows all ten addresses.

• Traditional UI - The regular UI was the traditional UI. This UI is explained in

detail in Section 6.2.3.

• Adaptive UI for Low VZ - An adaptive UI for low VZ included the traditional UI

features and additional features that potentially enhanced the performance of low VZ

participants. This UI is explained in detail in Section 6.2.3.

• Adaptive UI for High VZ - An adaptive UI for high VZ included the traditional

UI features and additional features that potentially enhanced a performance of high

VZ participants. This UI is explained in detail in Section 6.2.3.
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Figure 6.1 Ten addresses to be verified in three phases.
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Each participant was randomly assigned a treatment for doing the verification task.

There were two treatments, which were Treatment 0 and Treatment 1. For Treatment 0,

the software assigned the traditional UI for a participant to work in phase 1, followed by the

adaptive UI based on participant’s VZ test to work in phase 2. When a participant finished

first two phases, the software predicted participant’s VZ level and assigned the appropriate

adaptive UI for the participant to use in the final phase based on the prediction result.

Treatment 1 was set up in the opposite way as the software assigned the adaptive UI

based on participant’s VZ test for a participant to work in phase 1, followed by the tra-

ditional UI to use in phase 2. When a participant finished first two phases, the software

predicted participant’s VZ and assigned the adaptive UI for the participant to use in the

final phase based on the prediction result.

The objective of having two treatments was that we would like to ensure that any sig-

nificant result we would obtain from the study would not be affected by any learning effect,

i.e., regardless of treatment, we expected that any participant would do better with the

adaptive UI than the traditional UI.

6.2.2 Study Procedure

Study III was divided into two sessions. The first session was a spatial visualization

test. The second session was a field study, which was divided into three phases.

6.2.2.1 Test of Spatial Visualization

Study III was started by asking each participant to take the Paper Folding test [20] to

determine the VZ level of the participant. The process of the test was same as both Studies
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I and II. There were two problem sets where each set had ten questions. Each participant

had three minutes for each problem set. When a participant finished the test, we then

graded the test immediately right after because the test score was going to be an input to

the software. After we knew VZ level of the participant, we moved to the neighborhood to

do address verification task.

6.2.2.2 Field Portion of the Study

When arriving in the neighborhood, the investigator instructed each participant on how

to use the software to verify address. When the participant was ready, the investigator

started the software and gave the software an input of participant’s score of the Paper

folding test. The software classified the participant’s VZ level using the same criteria as

described in Chapter 4. The participant would be classified as high VZ if the Paper Folding

score was greater than or equal to 13. The participant would be classified as low VZ if the

Paper Folding score was lower than or equal to 8. The investigator then handed the tablet

to the participant. There was no time limit in the field study.

The software randomly assigned the treatment to the participant. Since there were two

treatments and the participant could be either high or low VZ, there were four possible

scenarios in Study III (Table 6.1). Figure 6.2 illustrates the work flow of the participant in

Study III. From the work flow, when the participant verified all four addresses in phase 1,

he/she had to submit phase 1 in order to go to phase 2 (and also from phase 2 to phase 3).

Once the participant submitted, he/she could not go back to the previous phase again.

When the participant finished, he/she returned the tablet to the investigator and then

received $20 gift card as the compensation. The investigator observed the participant all

the time that they were in the neighborhood. For each address to be verified, there were
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Figure 6.2 Participant’s Work Flow in Study III.
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Table 6.1 Possible Scenarios in Study III.

four possible solutions of verification as described in Table 4.1. Each participant was given

instruction on address verification including a suggestion on a potential approach. The

instruction and suggestion were described in Subsection 4.1.2.

6.2.3 Study Software

We take a brief look at the location-based software used in Study III. The overall the

UI was similar to the UI in Study I. It served all map functions that a participant needed

to verify an address. However, since the software had to support more than one UI, there

were some additional features that made the UI different in the adaptive states. The UI

for low VZ consisted of the traditional UI and additional features for low VZ users. In a

similar fashion, the UI for high VZ consisted of the traditional UI and additional features

for high VZ users. These additional features will be described later in this subsection.

Furthermore, the software in Study III had a module to predict a user’s VZ level based

on a set of user’s action on the UI. The detail of the prediction module are discussed later

in this subsection as well.
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6.2.3.1 Software Components

Figure 6.3 illustrates the traditional UI of the software that participants used for address

verification in Study III in either phase 1 or phase 2 according to the treatment.

Most UI components were similar to the UI of software used in Studies I and II. There

were two maps in the UI. The first map was a Primary Map, which is the working map for

participants. The second map was a Mini Map representing the complete neighborhood.

There were four Pan Buttons (up, down, right, and left) for panning and a Zoom Control

for zooming in/out of the Primary Map. A Switch Button was for switching between a

Tiger Line map, and a Google map. A Change Button was available for opening up an

address list (Figure 6.4). An address list contained four addresses, four addresses, and two

addresses in phase 1, phase 2, and phase 3, respectively. An Operation Radio Buttons List

was available for participants to select which map operation (add/delete) they would like to

do with an address they were working on. A Submit Phase Button was available in phases

1 and 2 for submitting the current phase and continuing on to the next phase. A Quit

Button was for quitting the software when participants finished verification. Note that a

Quit Button would be appear only at phase 3 (Figure 6.5).

6.2.3.2 Software Features

We take a look at additional software features in the traditional UI and both adaptive

UIs (high VZ & low VZ). We also discussed about the idea of the prediction module that

could predict a user’s VZ.
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Figure 6.3 Traditional UI of Study III.
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Figure 6.4 Address List in UI of Study III.
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Figure 6.5 Quit Button in UI of Phase 3.

6.2.3.2.1 Features on Traditional UI

The traditional UI came with two standard features: GPS and Mini Map. Both GPS

and Mini Map functioned exactly the same as they did in Study I and Study II.

6.2.3.2.2 Features on the Adaptive UI for Low VZ

A low VZ participant was assigned the adaptive UI for low VZ in either phase 1 or phase

2 based on the assigned treatment. The adaptive UI for low VZ contained two additional

features, which were the implementation of landmarks and the Object-Indexing (Type I).

There was no particular preference nor hierarchy between these two features.

Combining the fact that landmarks were suggested as an effective aid for map-involved

tasks such as way-finding or route-learning [75][25][99][86][103] and low VZ users preferred

a UI that provided aids rather than a UI with a limited number of aids, i.e., low VZ users

did not prefer to learn a software by discovering by themselves [7], we decided to add land-
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Figure 6.6 Major Landmarks and Minor Landmarks were located on the Mini Map.

marks on the adaptive UI for low VZ participants. In Study III, there were two types of

a landmark that were implemented; a major landmark and a minor landmark. The major

landmarks were located on the Mini Map (Figure 6.6). An example of major landmarks is

the ISU Memorial Union. The minor landmarks were located on both Primary Map and

Mini Map (Figure 6.6 & 6.7). An example of minor landmarks is the playground. We put

the major landmarks only on the Mini Map because all available major landmarks (ISU

Memorial Union, Stephen Auditorium, and Jack Trice stadium) were located outside the

neighborhood. The Landmark/Photo Button (Figure 6.7) allowed a participant to switch

between two landmark representations; either icon or photo.

The Object-Indexing (Type I) was a deployment of the Object-Indexing approach (Chap-

ter 3). It was re-designed for low VZ users. The Object-Indexing (Type I) allowed partici-

pants to tap on any street in the Primary Map to see a street name or any intersection to

see street names of all streets intersected. A street name then was displayed right at the

tap location (Figure 6.8).
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Figure 6.7 Minor Landmarks were located on the Primary Map.

Figure 6.8 Implementation of Object-Indexing (Type I).
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6.2.3.2.3 Features on the Adaptive UI for High VZ

A high VZ participant was assigned the UI for high VZ in either phase 1 or phase 2

based on the assigned treatment. The UI for high VZ contained the Object-Indexing (Type

II).

The Object-Indexing (Type II) was also a deployment of Object-Indexing approach

(Chapter 3). It allowed participants to see a street name if they tapped on any street on

the map. The difference between Type I and Type II was a location where a street name

was displayed. In Type II, a street name was displayed under the bottom-left corner of the

Primary Map (Figure 6.9). We decided to display a street name outside the Primary Map

because high VZ users preferred simpler UI with a minimum number of objects on a screen

[10][117].

6.2.3.2.4 Prediction Module

The goal of the prediction module was to predict a participant’s VZ level in real time.

The prediction module was an extension of Batinov’s study [2]. However, we made some

modification on Batinov’s work to suitably fit with Study III.

Regarding to Batinov’s work, a Bagging algorithm was selected to be the classifier in

the prediction module. The only difference between our prediction module and Batinov’s

work was a set of parameters to the classifier. In the prediction module, there were thirteen

parameters, which were:

1. Time

2. Distance
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Figure 6.9 Implementation of Object-Indexing (Type II).

3. Total Taps

4. Number of Error Taps

5. Number of Pan Taps

6. Number of Zoom Taps

7. Number of Zoom In & Zoom Out Reversals

8. Number of Zoom Out & Zoom In Reversals

9. Number of Pan Left & Pan Right Reversals

10. Number of Pan Right & Pan Left Reversals

11. Number of Pan Up & Pan Down Reversals
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12. Number of Pan Down & Pan Up Reversals

13. Total Reversals

We provide a brief description of each parameter. Time was the amount of time (minute)

that a participant used. Distance was a distance (km.) that a participant walked. Total

taps was a total number of participant’s taps on the UI. Error taps was the number of

error taps on the UI. The error tap means a tap on a non-sensitive region as described in

Subsection 4.3. Pan taps was the number of pan taps on the UI. Zoom taps was the number

of zoom taps on the UI. Reversals of zoom in & zoom out was the number that a participant

zoomed out the map right after he just zoomed in the map. The idea of reversals was from

the study of Batinov et al. [1]. The next five parameters were reversals of other pairs of

opposite operators, which were zoom out & zoom in, pan left & pan right, pan right & pan

left, pan up & pan down, and pan down & pan up. The last parameter of the prediction

module was the total reversals, which was a number of every reversal a participant executed.

We implemented the prediction module using the library of Weka [29] for an Android

application. We invited three anonymous participants to do a pilot test. Data from the

three participants were used as the training set of the prediction module. To make the

prediction module more accurate, the software re-trained the module every time we added

a new participant with the data of the new participant.

The prediction module started when the software started. During phase 1 and 2, the

prediction module prepared the set of parameters according to participant’s actions on UI

(in both phases). When a participant finished phase 2, the prediction module predicted

the participant’s VZ and returned the result of prediction to the software. The software

then adapted the UI for phase 3 based on the prediction result. Figure 6.10, which is the

extension of Figure 6.2, shows the complete work flow of every unit involved in Study III;

the participant, the prediction module, and the main module of the software.
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6.3 Results

This section explains the raw results that we gathered from thirty participants. We

could not record the names or any identifiable data of participants due to the IRB protocol.

For each participant, there were four metrics that we focused on for the purpose of showing

the improvement of participants when using the adaptive UI. The four metrics were the time

each participant used in phase 1, the time each participant used in phase 2, the distance

each participant walked in phase 1, and the distance each participant walked in phase 2.

Note that we see phase 3 as providing information on a separate question that we discuss

in detail later in this section. We no longer used an address verification score because the

number of addresses to be verified in each phase was small.

We gathered the data and calculated the metrics from a log file that was generated by

our software when a participant finished the task. Table 6.2 shows the partial raw results

from Study III that consists of the participant ID (simply a number assigned after their

identifying information had been stripped off), the assigned treatment, the four metrics we

mentioned. The remaining columns (column 5 and column 8 to 27) are metrics that were

required by the prediction module.

We statistically take a look at some interesting metrics from the raw data. From thirty

participants, fifteen participants were assigned treatment 0. Another half was assigned

treatment 1. For the VZ level, twenty participants tested high VZ whereas ten participants

tested low VZ. The average times that all participants used in phases 1 and 2 are 34.441 and

25.401 minutes, respectively. For the distance, the average distances that all participants

walked during phases 1 and 2 are 1.9092 km. and 1.3731 km., respectively.
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6.4 Discussion

In this section, we present the evidence of participants’ improvement with the adaptive

UI. Furthermore, we take a look on additional interesting topics related to the result of

Study III, particularly, the analysis of the prediction module, the analysis of the partici-

pants’ behavior, and the analysis of the mispredicted participants.

6.4.1 Improvement with Adaptive UI

As we mentioned in Section 6.3, there were four metrics that we focused on. The metrics

were the time each participant used in phase 1, the time each participant used in phase 2,

the distance each participant walked in phase 1, and the distance each participant walked

in phase 2. To answer the question of improvement, we might simply compare the times

between two phases, the phase with the traditional UI and the phase with the adaptive UI.

However, we could not compare them directly because it was biased due to the unequal

distance required to complete the task between phase 1 and phase 2. Note that the lists of

addresses to be verified in phases 1 and 2 were fixed regardless of the assigned treatment

(Figures 6.12 and 6.13). Figure 6.11 shows the distinct walking paths of one participant

in phases 1 and 2. To overcome this issue, we discuss the process of time normalization.

After we did the time normalization, we discuss the related hypotheses that served as the

evidence of the improvement of the adaptive UI over the traditional UI.

6.4.1.1 Normalization of Times

Figure 6.12 and 6.13 shows the addresses that a participant needed to verify in phase 1

and phase 2, respectively. Although the overall walking distances to complete all addresses

of both phases looked equivalent, they were really not. When we tested the software before

Study III started, we visited, by walking, every address of both phases using the optimal
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Figure 6.11 Walking Paths in Phase 1 (left) and 2 (right) of a Participant.

path. We found out that the optimal path of phase 1 was 300 meters longer than the

optimal path of phase 2. Therefore, we could not compare times of both phases directly. In

order to make them comparable, we used a time normalization for every participant’s time

in phase 1. We did two techniques of normalization; normalization by overall average and

normalization by individual average.

6.4.1.1.1 Normalization by Overall Average

To normalize the time that a participant used in phase 1 by the overall average, we

multiplied the time in phase 1 with the ratio of the average distance of phase 2 to the

average distance of phase 1. The following formula was applied:

T
′
1(i) = T1(i)(

D̄2

D̄1
) (6.1)

We take a look at the definition of the formula (Equation 6.1). T
′
1(i) was a normalized

time that a participant i used in phase 1. T1(i) was an actual time that a participant i used
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Figure 6.12 Addresses to be verified in Phase 1.

Figure 6.13 Addresses to be verified in Phase 2.
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in phase 1. D̄2 was an average distance that every participant walked in phase 2. D̄1 was

an average distance that every participant walked in phase 1.

6.4.1.1.2 Normalization by Individual Average

To normalize the time that a participant used in phase 1 by the individual average, we

multiplied the time in phase 1 with the ratio of the distance that the participant walked in

phase 2 to the distance that the participant walked in phase 1. The following formula was

applied:

T
′
1(i) = T1(i)(

D2(i)

D1(i)
) (6.2)

We take a look at the definition of the formula (Equation 6.2). T
′
1(i) was a normalized

time that a participant i used in phase 1. T1(i) was an actual time that a participant i used

in phase 1. D2(i) was the distance that a participant i walked in phase 2. D1(i) was the

distance that a participant i walked in phase 1.

Table 6.3 shows the example results of the actual time that a set of participants used in

phase 1: column 3 shows the time that was normalized by the overall average, and column

4 shows the time that was normalized by the individual average.

6.4.1.2 Tests of Hypotheses

We set up research questions, hypotheses, and did a data analysis according to the cor-

responding hypothesis. For each research question, we addressed two hypotheses: a null

hypothesis and an alternative hypothesis, the results of the hypothesis test, and provided a

box plot. For the test of unpaired continuous data, we used the Mann-Whitney hypothesis
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Table 6.3 Example Results of Actual Time and Normalized Times.

test. For the test of paired data, we used the Paired T-Test hypothesis test. An objective

of both a Mann-Whitney test and a Paired T-Test were to test whether two sets of data

were significantly different or not.

6.4.1.2.1 Research Question 1: For participants who were assigned treat-

ment 0, was there a significant difference between time in phase 1 and phase 2?

To answer this question, we set up following hypotheses:

H0 : For treatment 0, times in both phases are NOT significantly different.

Ha : For treatment 0, times in both phases are significantly different.

We did two hypothesis tests to test two pairs of data sets. The first pair consisted of

a normalized, by overall average, time used in phase 1 and an actual time used in phase

2 of every participant who was assigned the treatment 0. The second pair consisted of a
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Figure 6.14 A Box Plot Illustrated a Time in Phase 1 (Normalized by Overall Average)

and Phase 2 for Treatment 0.

normalized, by individual average, time used in phase 1 and an actual time used in phase 2

of every participant who was assigned the treatment 0. Since the time in phase 1 and phase

2 were paired data, we used a Paired T-Test.

After we ran a hypothesis test on the first pair, we got a p-value of 0.001806. Since the

p-value was smaller than the significance level (α) of 0.05, we rejected H0. We then ran a

hypothesis test on the second pair. We got a p-value of 0.000439. Since the p-value was

smaller than the significance level (α) of 0.05, we also rejected H0.

Figure 6.14 shows a box plot of a time in phase 1 (normalized by the overall average)

and an actual time in phase 2 of every participant who was assigned the treatment 0. We

observed that a participant used shorter time in phase 2 (adaptive UI) than phase 1 (tra-

ditional UI).



144

6.4.1.2.2 Research Question 2: For participants who were assigned treat-

ment 1, was there a significant difference between time in phase 1 and phase 2?

To answer this question, we set up following hypotheses:

H0 : For treatment 1, times in both phases are NOT significantly different.

Ha : For treatment 1, times in both phases are significantly different.

We did two hypothesis tests to test two pairs of data sets. The first pair consisted of

a normalized, by overall average, time used in phase 1 and an actual time used in phase

2 of every participant who was assigned the treatment 1. The second pair consisted of a

normalized, by individual average, time used in phase 1 and an actual time used in phase 2

of every participant who was assigned the treatment 1. Since the time in phase 1 and phase

2 were paired data, we used a Paired T-Test.

After we ran a hypothesis test on the first pair, we got a p-value of 0.00508. Since the

p-value was smaller than the significance level (α) of 0.05, we rejected H0. We then ran a

hypothesis test on the second pair. We got a p-value of 0.0001746. Since the p-value was

smaller than the significance level (α) of 0.05, we also rejected H0.

Figure 6.15 shows a box plot of a time in phase 1 (normalized by the overall average) and

an actual time in phase 2 of every participant who was assigned the treatment 1. Although

there is an overlap in Figure 6.15, we observed that a participant used shorter time in phase

1 (adaptive UI) than phase 2 (traditional UI).
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Figure 6.15 A Box plot Illustrated a Time in Phase 1 (Normalized by Overall Average)

and Phase 2 for Treatment 1.

6.4.1.2.3 Research Question 3: Focusing on phase 1, was there a significant

difference between time used by participants of treatment 0 and treatment 1?

To answer this question, we set up following hypotheses:

H0 : For phase 1, times in both treatments are NOT significantly different.

Ha : For phase 1, times in both treatments are significantly different.

We did a hypothesis test to test a group of two data sets. The group consisted of a

normalized, by overall average, time in phase 1 used by participant from treatment 0 and

1. Since the times from treatment 0 and 1 were not paired data and they are continuous

variables, we used a Mann-Whitney test.

After we ran a hypothesis test, we got a suggestive p-value of 0.0675. We failed to reject

H0. Even though we failed to reject the null hypothesis, the box plot (Figure 6.16) shows

overlap of the two sets. However, we can also observe that a participant who was assigned
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Figure 6.16 A Box Plot Illustrated a Time in Phase 1 (Normalized by Overall Average)

for Treatment 0 and 1.

the treatment 0 (traditional UI) tended to use more time than treatment 1 (adaptive UI)

in phase 1.

6.4.1.2.4 Research Question 4: Focusing on phase 2, was there a significant

difference between time used by participants of treatment 0 and treatment 1?

To answer this question, we set up following hypotheses:

H0 : For phase 2, times in both treatments are NOT significantly different.

Ha : For phase 2, times in both treatments are significantly different.

We did a hypothesis test to test two sets of data. The first set was a time in phase
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Figure 6.17 A Box Plot Illustrated a Time in Phase 2 for Treatment 0 and 1.

2 used by participant from treatment 0. The second set was a time in phase 2 used by

participant from treatment 1. We used a Mann-Whitney test with the same reason as the

third research question.

After we ran a hypothesis test, we got a p-value of 0.006568. Since the p-value was

smaller than the significance level (α) of 0.05, we rejected H0. Figure 6.17 shows a box plot

of a time in phase 2 for both treatment 0 and 1. We found no overlap in Figure 6.17. We

also observed that a participant who was assigned treatment 0 (Adapted UI) used shorter

time than treatment 1 (traditional UI) in phase 2.



148

From six hypothesis tests, five hypothesis tests show a significant difference between

times that were spent when using the traditional UI and the adaptive UI. One hypothesis

test shows that the difference was suggestively significant. The box plots (Figure 6.14 -

6.17) shows that participants, regardless of the assigned treatment or phase, used shorter

time when they used the adaptive UI than the traditional UI.

6.4.2 Analysis of Prediction Methods

We previously mentioned the design and implementation of the prediction module in

Section 6.2.3. In this section, we take a look at the accuracy of the prediction module.

From thirty participants, the prediction module correctly predicted twenty three partic-

ipants. The accuracy rate was 77%. From seven mispredicted participants, there were three

high VZ participants that were predicted as low VZ. The other four mispredicted partici-

pants were low VZ that were predicted as high VZ. Since this was a real-time prediction, a

prediction was made based on the supplied training set at that time. The supplied training

set sometimes was unbalanced, which meant that it contained more data records of high

VZ than low VZ (or more low than high). The unbalanced training set potentially affected

the accuracy of the prediction. Not only unbalanced training set, a small training set (three

training instances from the pilot test) also reduced the prediction accuracy.

Therefore, we decided to re-predict every participant again when we were done with

all thirty participants. We re-predicted using the same method we did in the prediction

module, i.e., we used the same classifier and the same set of parameters. The difference

was that we re-predicted all thirty participants at the same time. After re-prediction, there

were five participants that were mispredicted. The new accuracy rate then became 83%,

which was comparable to Batinov’s study [2]. From five mispredicted participants, all of
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them were low VZ who were predicted as high VZ. What this tells us is that having a large

training set before starting the study would likely provide better results.

However, one might see our prediction method was preferable for a training purpose

rather than an address verification task because we had a time and a distance as the param-

eter of the prediction method. Both a time and a distance were a neighborhood-dependent

parameter. Hence, we re-predicted again by removing both the time and the distance from

the set of parameters. Without both parameters, six participants were mispredicted. All

of them were low VZ who were predicted as high VZ. The new accuracy rate dropped to 80%.

Furthermore, we also would like to apply the method from Batinov’s study [2] to our

data set of thirty participants. So we re-predicted again using the same set of parameters

as what Batinov used. With Batinov’s method, five participants were mispredicted. All of

them were low VZ again. The accuracy rate of this attempt was 83%.

Table 6.4 shows the complete prediction results of thirty participants using different

prediction methods. The first column contains a participant’s ID. The second column is

the participant’s actual VZ according to the result of Paper Folding test [20]. The third

column is the result of the prediction module of Study III software. The fourth column is

the result of the post-study re-prediction using the same method as the prediction module

did. The fifth column is the result of post-study re-prediction using the same method as

the prediction module did but removing a time and a distance from the set of parameters.

Finally, the last column is the result of post-study prediction using Batinov’s method of

prediction [2].
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Table 6.4 Complete Prediction Results of Different Methods.
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The main objectives of Study III, the improvement shown when using the adaptive UI

and the analysis of the prediction of VZ level, have already been discussed. In the next

sections, we take a look at the additional analyses of Study III results.

6.4.3 Additional Analysis: Market Basket Analysis on Participant’s Behavior

After we were done with thirty participants, we took a look at the log of each partici-

pant. We noticed that there were some features that might be interesting if we did a further

analysis on them. These features might be a link to the hidden pattern that could be useful

for the area of location-based systems and individual difference study. We then extracted

those features from each participant’s log. There were seven features that were extracted,

which were a participant’s VZ, an assigned treatment, the first address that was selected

to verify in phase 1, the last address that was selected to verify in phase 1, the first address

that was selected to verify in phase 2, the last address that was selected to verify in phase

2, and a street that a participant used as a backbone. A street that a participant used as

a backbone was a primary route that a participant mostly used to travel from the current

address to the next address when he completed the current one. There were two possible

values for a backbone street, which were “Ash-or-Beach” and “street-inside-neighborhood”.

Ash-or-Beach referred to the Ash avenue and the Beach avenue, which were a straight

north-south street located at the west and east of the neighborhood, respectively. Street-

inside-neighborhood referred to the streets that were located inside the neighborhood. These

streets were mostly not a straight line. A good example of this type of street was Country

Club Blvd. We have already shown a map of the neighborhood with all streets in Figure 4.1.

For each participant, the participant’s VZ could be either low or high. The assigned

treatment was either 0 (traditional UI came first) or 1 (adaptive UI came first). The first

address that was selected to verify in phase 1 could be any address in the address list of
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phase 1. The address list of phase 1 consisted of 400 Ash, 202 Gray, 2103 Country Club,

and 2060 Cessna. Similarly, the last address that was selected in phase 1 could also be any

address the address list of phase 1. Figure 6.12 shows every address needed to be verified

in phase 1. The first and last addresses that were selected to verify in phase 2 could be

any address in the address list of phase 2, which consisted of 2121 Sunset, 398 Pearson, 305

Beach, and 632 Agg. Figure 6.13 shows every address needed to be verified in phase 2.

We did a Market Basket analysis using Weka [29]. The Apriori was selected as an al-

gorithm for the association. For the parameters, we set the minimum support to be 33%

and the minimum confidence to be 80%. The minimum support of 33% was chosen because

we would like to obtain rules that can classify the VZ level of a participant. Since we

had twenty high VZ participants (66%) and ten low VZ participants (33%), 33% was the

maximum number of occurrences of the instance of low VZ (all ten participants) that made

rules persuasive. Figure 6.18 shows how we configured the parameters of the associator.

After we ran the associator, it generated 149 rules. We selected some interesting rules

that had VZ involved to discuss. We also provided the complete set of rules in Appendix

B.

6.4.3.1 Rule 1

The first rule that we selected was:

last address phase2 = 632 Agg⇒ vz = high

Rule 1 was interpreted as if the last address of phase 2 that a participant verified was

632 Agg, then, then participant was high VZ. The support of Rule 1 was 36%. The con-

fidence of Rule 1 was 100%. Rule 1 was reasonable because 632 Agg was the last address

to be verified in phase 2 on the optimal route. Note that the optimal route was designed
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Figure 6.18 The Set of Parameters of the Associator for Market Basket Analysis.
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and confirmed by our research group. The optimal route required the minimum distance

to complete both phase 1 and 2. The minimum distance was 2.389865 kilometers. The

sequence of addresses to be verified in the optimal route was 2060 Cessna, 2103 Country

Club, 202 Gray, 400 Ash, 212 Sunset, 398 Pearson, 305 Beach, and 632 Agg.

6.4.3.2 Rule 2

The second rule that we selected was:

first address phase1 = 2060 Cessna ∧ backbone street = street-inside-neighborhood

⇓

vz = high

Rule 2 was interpreted as if the first address that a participant verified in phase 1 was

2060 Cessna AND a participant used streets inside the neighborhood as a backbone, then,

the participant was high VZ. The support of Rule 2 was 33%. The confidence of Rule 2

was 100%. Using streets inside the neighborhood as a backbone was a behavior of high VZ

participants that corresponded to Batinov’s study [2].

6.4.3.3 Rule 3

The third rule that we selected was:

backbone street = street-inside-neighborhood⇒ vz = high

Rule 3 was interpreted as if a participant used streets inside the neighborhood as a back-

bone, then, the participant was high VZ. The support of Rule 3 was 43%. The confidence

of Rule 3 was 92%.
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With the selected three rules, we found some features that could anticipate if a partici-

pant was high VZ. However, we could not tell much about low VZ due to the small number

of low VZ participants in Study III. In the next section, we discuss the last additional anal-

ysis of Study III.

6.4.4 Additional Analysis: Mispredicted Participants

As we mentioned earlier, we implemented and deployed the prediction module in the

software of Study III. The third column in Table 6.4 shows the result of the prediction

module. From Table 6.4, there were seven participants that were mispredicted. We take a

look on the mispredicted participants in this section.

From seven participants who were mispredicted, three tested high VZ and four tested

low VZ. Therefore, in phase 3, three high VZ participants were assigned the adaptive UI for

low VZ and four low VZ participants were assigned the adaptive UI for high VZ. We drew

box plots to observe times and distances that every participant used in phase 3. Figure 6.19

shows box plots of the times used by the four groups of participants: high VZ who were

correctly predicted, low VZ who were correctly predicted, high VZ who were mispredicted,

and low VZ who were mispredicted, respectively. We observed that the box plot of low VZ

participants who were correctly predicted (yellow) had similar distribution as the box plot

of high VZ participants who were mispredicted (blue). This distribution led us to the idea

that there potentially might be more than just two groups of participants (high/low) when

it came to the location-based task using a location-based software. It raised the possibility

that a low VZ participant who highly focused on the task could perform better than a high

VZ who did not focus. Note that Batinov et al. [3] had speculated that this might occur

based on earlier studies.
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Figure 6.19 Time Used in Phase 3 by Different Groups of Participants.

The box plot of high VZ participants who were correctly predicted (orange) also had

similar distribution as the box plot of low VZ participants who were mispredicted (pink).

However, we did not calculate the p-value to confirm that the distributions were statisti-

cally the same because the small number of mispredicted participants in Study III was not

appropriate for any hypothesis test.

Figure 6.20 shows box plots of the distances used by four groups of participants; high

VZ who were correctly predicted, low VZ who were correctly predicted, high VZ who were

mispredicted, and low VZ who were mispredicted, respectively. The box plots show the

distributions of distances were similar to the distributions of times for the same four groups

of participants.

6.5 Conclusions

We did Study III to verify our claim that the adaptive UI was the answer to improve

the user’s performance of doing the address verification task using our location-based soft-

ware. Thirty participants participated in Study III. The address verification task consisted
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Figure 6.20 Distance Used in Phase 3 by Different Groups of Participants.

of three phases; phase 1, phase 2, and phase 3. A participant was randomly assigned either

treatment 0 or 1. For treatment 0, a participant was assigned the traditional UI to work in

phase 1 and the adaptive UI in phase 2. For treatment 1, a participant was assigned the

adaptive UI to work in phase 1 and the traditional UI in phase 2. A participant, regardless

of the assigned treatment, was assigned the adaptive UI based on the prediction result (high

VZ or low VZ) in phase 3. The prediction was made by the prediction module, which was

an extension of Batinov’s study [2].

The results of five hypothesis tests show that participants, regardless of their VZ level,

significantly did better by spending less time when they verified addresses using the adap-

tive UI than the traditional UI. The box plots in Figure 6.14 and 6.15 show that there was

a small overlap between times of using the adaptive UI and the traditional UI. The box plot

in Figure 6.17 shows no overlap between the two UIs, which confirms the improvement of

the adaptive UI over the traditional UI.

The prediction module had a real-time accuracy rate of 77%. However, the accuracy rate

was affected by the unbalanced number of high VZ participants and low VZ participants in
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the training set, as well as the small size (3) of the training set at the beginning. We did a

post-study re-prediction again and the rate became 83%, which corresponded to Batinov’s

study [2]. For mispredicted participants, we found that most mispredicted participants had

some similar characteristics/metrics to the group that they were predicted correctly (Figure

6.19 and 6.20).

Additionally, we also extracted some interesting rules from a Market Basket analysis of

participants’ behavior. One example rule was that if a participant used the streets inside

the neighborhood as a backbone, that participant might be high VZ. This statement was

also true in Batinov’s model of high VZ users [2].

A limitation that we confronted in Study III was that the number of high VZ partici-

pants and low VZ participants was not balanced enough.

In Chapter 7, we provide a discussion, a conclusion, and a contribution of the disserta-

tion.
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CHAPTER 7. CONCLUSIONS AND CONTRIBUTIONS

The ultimate objective of this dissertation was to develop the adaptive location-based

software for the address verification task that could adapt the UI based on a user’s VZ level

in real time. The software should be able to adjust the UI for low VZ users, which consisted

of the regular UI plus the additional useful features for low VZ users, when it could predict

that the current user was low VZ. Similarly, when the software predicted that the current

user was high VZ, it adjusted the UI for high VZ users.

In order to develop the adaptive UI software, we did three studies; Study I, Study II,

and Study III. The objective of Study I (Chapter 4) was used to test which software fea-

tures increased the low VZ participants’ performance in the address verification task and

which software features decreased the performance. Not only focusing on low VZ partici-

pants, Study I was also determined good features and bad features for high VZ participants.

There were three software features that were tested; GPS, Object-Indexing, and Mini Map.

The GPS allowed participants to see their current location on the map. The Mini Map

showed the map of the full neighborhood. Object-Indexing was the deployment of our

approach (Chapter 3) to empower a participant with an ability to directly access a map

component, particularly, a street. Each participant was randomly assigned two features to

use during the field study.

The result from Study I revealed some interesting relationships between VZ and the

software features. The GPS increased the performance of low VZ participants whereas it



160

decreased the performance of high VZ participants. Object-Indexing reduced the perfor-

mance of low VZ participants. The Mini Map was the only feature that increased the

performance of high VZ participants.

For Study II (Chapter 5), the objective was to test how well participants performed with

the larger map size on the universal UI. The only difference between Study II and Study I

was the software. The software used in Study II came with the large map size. All three

software features (GPS, Object-Indexing, & Mini Map) were available for every participant

during the address verification task. We found from the result of Study II that a universal

UI and a larger size of a map were not a solution to improve a user’s performance in the

address verification task. Although high VZ participants tended to have better performance

than low VZ participants when using the universal UI, this was common in any software.

For Study III (Chapter 6), we developed the adaptive UI software that could adapt the

UI based on the VZ level of a participant. The field study in Study III was divided into

three phases. Each participant was asked to verify four addresses in phase 1, four addresses

in phase 2, and two addresses in phase 3. A participant was randomly assigned either

treatment 0 or treatment 1. If a participant was assigned treatment 0, the software used a

traditional UI for the participant to use in phase 1, the adaptive UI based on the score of a

Paper Folding test in phase 2, and the adaptive UI based on the prediction result in phase

3. If a participant was assigned treatment 1, the software used an adaptive UI based on

the score of a Paper Folding test for the participant to use in phase 1, the traditional UI in

phase 2, and the adaptive UI based on the prediction result in phase 3.

Our analysis of the result of Study III demonstrates that the participants, regardless of

VZ level, treatment, or phase, had better performance when they verified addresses using

the adaptive software rather than the traditional software. A metric that served as an



161

evidence was time. Given that the distances required to complete the task in phase 1 and

phase 2 were equivalent due to the normalization process, participants used shorter amount

of time when they used the adaptive UI software.

We also reported the accuracy of the prediction module that was implemented in the

software of Study III. The accuracy of the prediction module was 77%, which was potentially

enforced by the unbalanced training set and the small number of data records in the training

set at the beginning of Study III. The assumption that those two factors really affected the

prediction accuracy was confirmed when we got 83% as the accuracy of re-predicting all

participants again at the same time after Study III was done. The main result here is that

it is important to start a user with a prediction algorithm that has some pretraining.

It turned out to be that Study III yielded interesting concepts beyond just the improve-

ment of performance with the adaptive UI and the prediction of VZ. The last two additional

contributions of this dissertation were the set of association rules that was generated from

the participants’ behavior and the report of the performance of mispredicted participants

in Study III. We applied a Market Basket analysis to generate association rules related to

participant’s behavior when they did address verification task. Some rules were useful as

they can imply a participant’s VZ level from the participant’s behavior.

For the mispredicted participants, we found that participants who were mispredicted

had distributions of metrics, particularly, the times and the distances, similar to the group

that they were predicted as. This confirmed that when it came to the address verification

task using a location-based software, there can be more than two classes (low VZ & high

VZ) that a user can be classified to.
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APPENDIX A. IRB APPROVAL DOCUMENTS

IRB Approval Document: Study I
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IRB Approval Document: Study II
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IRB Approval Document: Study III
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APPENDIX B. COMPLETE STUDY RESULTS

We have provided the complete results of all three studies: Study I, Study II, and Study

III. Furthermore, we also included the complete set of rules we generated from the logs of

thirty participants in Study III.

Study I Results

Table B.1 shows the complete results of thirty participants in Study I.

Study II Results

Table B.2 shows the complete results of thirty-one participants in Study II.

Study III Results

Table B.3 shows the complete results of thirty participants in Study III.
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Table B.1 Complete Results of Study I.
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Table B.2 Complete Results of Study II.
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Complete Set of Association Rules

We generated 149 rules from the logs of thirty participants from Study III. Tables B.4 -

B.9 show all of those rules.
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