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ABSTRACT 
 
 

 The important structural and functional roles played by proteins in the proper 

functioning of cellular processes cannot be overstated. To comprehensively understand 

their functional behaviors, structural models derived from experimental data have been 

developed and these models have played a significant role in explaining the functional 

mechanisms of proteins. The paradigm “structure drives function” had been active for 

many years until recent evidence suggested that the complex functions of proteins could 

not be fully explained by a single structure and dynamics played a very important role in 

deciphering their functions. To incorporate dynamics into structural representations, 

ensembles of conformations, instead of a single structure, are used frequently in recent 

literature and are found to be successful in explaining the functions of many proteins. The 

work described in this thesis focuses on methods used to construct such ensemble 

representations of proteins. A careful investigation of the issues and challenges in 

obtaining such ensembles is undertaken.  

 In the first part of the thesis, we focus on representing the native state of a given 

protein using a weighted ensemble representation, where relative populations (or 

Boltzmann weights) are assigned for individual members of the ensemble. This 

representation has the advantage of representing the dynamics using only a few 

conformational states, thereby minimizing the potential of over-fitting, while capturing 

the dynamics of the protein that a single average structure misses. Using Ubiquitin as an 

example, we show that determination of such a weighted ensemble representation is 

feasible when using RDCs as constraints. Moreover, the conformational states of the 

weighted ensemble are biologically relevant to the functional behaviors of the protein. 
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We then compare the quality of the weighted ensemble representation with other 

representations available for Ubiquitin and show that the weighted ensemble 

representation can successfully reproduce a series of experimental data (RDCs, Residual 

Chemical Shift Anisotropies, Amide Exchange reactivities and solution scattering 

profiles) equally well or even better than other representations and without over-fitting. 

We then extend this work and determine a weighted ensemble representation for Hen Egg 

White Lysozyme (HEWL). To establish the quality of this ensemble, we perform a series 

of rigorous cross-validation of this ensemble against extensive amount of experimental 

data available for HEWL. Lastly, we perform a series of NMR structure refinements 

under synthetic and controlled conditions to evaluate the structural quality of obtained 

solutions by various refinement protocols. Our results indicate that ensemble refinement 

protocols without using weights and good initial conformations may not result in better 

descriptions of protein native states even though they appear to fit experimental data 

better and even pass cross-validation test
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1.1 Background and Literature Review 
 
 

1.1.1 Protein Energy Landscape 
 
 The complex functions undertaken by proteins are best understood by their 

structure and dynamics. The energy landscape of protein folding is hypothesized to be 

rugged with many energy minima (1-4). This model of protein energy landscape can be 

used to understand the native states of a protein and the folding process. For more and 

more proteins, increasing evidence suggests that their functional behavior should be best 

understood not through one single structure but through the distribution and dynamic 

transition among a number of conformation states that form the native-state ensemble(5-

9).  

1.1.2 NMR Experimental Data 
 
 Per the latest statistics from the Protein Data Bank (PDB) (10), X-ray and Nuclear 

Magnetic Resonance (NMR) contribute to more than 99% of the deposited structures. 

This vast amount of structural data has significantly enhanced our understanding of the 

roles of structure and dynamics in the functions of many proteins. Structures resolved 

using X-ray crystallography have traditionally been represented by one single structure 

with regions exhibiting strong evidence of dynamics represented by multiple sub-states. 

The uncertainties in the positions of atoms are commonly represented by the thermal B-

factors. But studies have shown that the obtained electron densities contain information 
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about the underlying dynamics of the protein and can be used to resolve ensembles (11-

16), a view that moves away from the traditional “snap-shot” point of view of X-ray 

crystallography. With the rapid growth of PDB, protein structures are also becoming 

increasingly more available and for some well-studied proteins, tens and even hundreds 

of structures (of one same protein) have been determined. These structures have been 

shown to capture a representative subset of the native-state ensemble (17). 

 

 Nuclear Magnetic Resonance (NMR) studies the protein in the solution state and 

data collected from NMR naturally originates from the native state of the protein. A 

couple of relevant NMR data and the information content in them are: 

 i). Nuclear Over-hauser Effect (NOE): NOEs are observed for spatially proximal 

atoms and are used to characterize inter-atomic distances. Typically NOEs are used as 

distance constraints in determining the three dimensional structure of the protein (18, 19). 

 ii). Residual Dipolar Coupling (RDC): Residual dipolar coupling originates from 

the interaction of two nuclear spins (dipole-dipole) in the presence of the external 

magnetic field (20-22). Normally, the residual dipolar coupling reduces to zero because 

of isotropic tumbling. The anisotropic measurement can be obtained by the aid of various 

types of liquid crystalline media. RDCs encode the information about the relative 

orientation of the bond vectors and are used extensively in structure refinement (23-25).  

 

Given the nature of protein native states, NMR data represents a time and ensemble 

average over all the possible conformations in the native state ensemble.  
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1.1.3 Structural Modeling and Refinement Using Experimental Data as 
Constraints 

 
 The advancement of the experimental techniques and the increasing availability of 

experimental data have brought forth a number of exciting works that aim to model the 

underlying native energy landscape of the protein. Broadly speaking, these works could 

be classified into two schemes: 

 

1.1.3.1 Refinements:   
 
 The experimental data observed and collected in NMR experiments often 

correspond to geometrical properties of proteins and can be used as constraints in 

modeling the structures. For example: NOEs encode distance information between 

protons and can be used as distance constraints. Scalar couplings reveal information 

about the torsional angles. Given these NMR data, structure refinement can be performed 

by running molecular dynamics simulations that minimize a preset pseudo-energy 

function that includes the experimental constraints along with some empirical potential 

terms (such as those that maintain covalent geometry) (26-28).  The end result of such a 

minimization is a structural model that satisfies both the empirical potential and the 

experimental data. Several flavors of refinements have been attempted but the most 

prevalent are: 

 a). Single structure or average structure refinement: In this scheme, a single 

structure is used to satisfy both the experimental data constraints and the empirical 

potential. Since only one conformation is used, this model uses the least number of 

parameters to satisfy the constraints. For Ubiquitin, one of the most studied proteins, a 
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single structure has been shown to be sufficient in reproducing most experimental 

data(29, 30). But it was also pointed out that average structure representations, due to the 

lack of structural variance, cannot fully capture some of the underlying dynamics (31, 

32). Average structure representation becomes less complete when the studied protein 

occupies multiple distinct sub-states, since the refinement protocol would be over-

restrained (under-fitting) (33). 

 

 b). Ensemble refinement: In this scenario, instead of using a single structure, an 

ensemble of conformations is used to explain the experimental data. Consequently the 

number of parameters used in the model increases linearly with the number of 

conformations in the ensemble. In the case of Ubiquitin, there has been a number of 

recent work that aim at determining an ensemble of conformations for the protein, such 

as MUMO (33), EROS (23), and ERNST (34). The extent to which some of these 

ensembles represent the native states is however debatable since the ensembles, which 

contain over a hundred conformations, may be under-constrained by the experimental 

data (9, 35). As a matter of fact, since the experimental observations and data are 

macroscopic in nature and represent the ensemble and time averages of microscopic 

conformations, it may not be possible to verify the validity of each conformation 

individually in such ensembles. Indeed, the concern of most of these ensembles was 

mostly about representing the dynamics correctly, less about the validity of each 

individual conformation.   
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1.1.3.2 Sample and Select: 
 
 Unlike the refinement scheme that tries to obtain a solution satisfying both 

empirical constraints and experimental data simultaneously, Sample and Select (SAS) 

strategy solves it in two steps (36, 37). An initial broad pool of conformations is assumed 

to sufficiently sample the native energy landscape (sampling step) and a few 

conformations from this broad sample are selected to satisfy the experimental data 

(selection step).  

 The quality of the final solution in SAS strategy is heavily dependent upon the 

initial pool of conformations. Sampling that is insufficient or of poor quality would not 

be able to satisfy the experimental data better by the subsequent selection step and also 

could potentially result in wrong solution. Molecular dynamics simulations have been 

frequently been used to generate the starting pool (37, 38). The subsequent selection step 

could either be  

 a). Weighted selection, where along with the conformations, the weights are also 

adjusted to optimally satisfy the experimental data (36, 38, 39). Assigning weights to 

conformational states was considered using NOE (40) but elegant seminal work by 

Brunger's group had shown that regular NOE data alone was insufficient to determine the 

relative populations of a two-conformer ensemble (41). Most of the recent works using 

weighted ensembles are on intrinsically disordered proteins (IDPs). 

 b). Equal weighted selection, where all the conformations in the selection are 

given equal weight (37). An equal weighted selection can capture the relative population 

information to some extent, by including in the ensemble multiple copies of one similar 

conformation. The number of copies thus indirectly encodes the weight. Apart from work 
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by Dokholyan and co-workers (37), there has been minimal work done using equal 

weighted ensemble to satisfy experimental data.  

 

 
 

1.2 Motivation and Aims of this Study 

 
Figure 1.1: Pictorial representation of Boltzmann weights versus sampling weights. The ‘x’ marks 

represent conformations on a hypothetical energy landscape while the white bars represents 
sampling weights and shaded bars represent the Boltzmann weights. 

 
 For many a protein, the conformation space near its native states can be best 

represented by a number of inter-connected conformation states, each of which may have 

a different population, as illustrated in Figure 1.1. When an ensemble of conformations 

are used to represent the conformation space (shown as the cross marks in Figure 1.1), its 

quality in representing the conformation space is determined by three factors:  
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1) COMPLETENESS: Are all conformation states reached by at least one conformation?  

2) COVERAGE: For each of the conformation states that are reached by some 

conformation(s), what is quality of the coverage? In other words, how well do the finite 

number of conformations that are in a given conformational state together represent that 

conformation state?    

3) CONTRIBUTION: Is the number of conformations at each conformation state 

proportional to the ideal Boltzmann weight? 

 

 Ideally, we would like to have an ensemble that has an infinite number of 

conformations that cover all the conformation states according to the Boltzmann 

distribution. Such an ensemble would have perfect completeness, coverage and 

contribution. In reality, our ensembles are of finite sizes, having tens or possibly 

hundreds of conformations, which are relatively small comparing to the vast 

conformation space. Therefore, we do not have perfect completeness, coverage, or 

contribution.   

  

 Another key point to realize is that the matter of completeness and coverage are 

sampling issues. The conformations in an ensemble could have come from experiments, 

by structure determination methods such as X-ray crystallography, NMR, etc., or they 

could have been determined computationally. Whatever the source is, completeness and 

coverage are sampling issues. They reflect the sampling quality of a given ensemble.  
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However, how well an ensemble represents the conformation space near the native state 

and how well it can reproduce experimental data/observations are determined not solely 

by the ensemble's completeness or coverage. It depends also on the third factor - 

contribution. Without doubt an ensemble whose conformations are assigned a population 

(contribution) proportional to their actual Boltzmann weights would represent the 

conformation space the best, reaching the limit of that ensemble's ability in representing 

the conformation space. Therefore, an ensemble with a proper assignment of relative 

contributions given to its conformation states should do better than an ensemble without. 

As illustrated in Figure 1.1, the conformation space of a protein is represented by three 

conformations, which by default are given an equal weight of 1/3. However, the 

ensemble can be enhanced if the actual Boltzmann weights (represented by dark shaded 

blocks) can be determined somehow and assigned to the three conformations. 

  

 There are a couple of reasons why few work has been carried out to exploit the 

potential benefit of including these weights (or relative populations). First, an elegant 

seminal work by Brunger's group had shown earlier that regular NOE data alone was 

insufficient to determine the relative populations of a two-conformer ensemble (41). Thus 

it was not clear if there were enough experimental data to determine the populations 

meaningfully, even though the authors (41) were hopeful that relative populations could 

possibly be determined when other sources of experimental data were provided. 

Secondly, equal-weight conformations themselves can capture the relative population 

information to some extent, by including in the ensemble multiple copies of one similar 

conformation. The number of copies thus indirectly encodes the weight. However, it is an 
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insufficient way to represent the populations, as it requires more conformations to be in 

the ensemble and thus may worsen the potential problem of over-fitting. 

 

Based on this intuition, we have narrowed our aims to be: 

1. Develop methods that can assign relative populations to structure ensembles by 

using experimental RDC data as constraints, taking extensive care that the 

assigned weights are robust and not over-fitted.  

2. Assess and validate the quality of so-determined weighted ensembles using a 

series of experimental data.   

3. To make the method broadly applicable to many other proteins, determine also 

what the minimal requirement for experimental data is in assigning relative 

populations to ensembles. 

4. Apply and analyze the potential role and benefit of relative populations in 

ensemble refinements.  

 

 

1.3 Thesis Organization 
 
 
 Chapter 2 is a published paper detailing the method employed to assign relative 

populations to structural ensembles using RDC data. We carefully delineate the 

properties required by the structural ensemble to generate a reliable weighted ensemble. 

In chapter 3, we perform extensive cross validation of the 2 weighted ensembles of 

Ubiquitin, constructed in Chapter 2, using varied experimental data consisting of unused 

RDCs, Residual Chemical shift anisotropies, amide hydrogen reactivities and solution 
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scattering profiles. We also compare the 2 weighted ensembles against alternate 

representations of Ubiquitin available in literature. This chapter is a manuscript submitted 

for review. In Chapter 4, we extend the method employed in Chapter 2 to other proteins 

by identifying the minimal experimental data required to derive weighted ensembles. 

Further, we also construct a weighted ensemble of Hen Egg White Lysozyme (HEWL) 

using only NH RDC data and perform extensive cross-validations using Residual 

Chemical shift anisotropies and solution scatter profiles. Chapter 5 is a preliminary report 

of an ongoing work aimed to assess the structural quality of solutions generated by 

ensemble refinements using synthetic data. 
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A Paper published in Journal of Biomolecular NMR 

Vijay Vammi, Tu-Liang Lin and Guang Song 

2.1 Abstract 
 

 The function and dynamics of many proteins are best understood not from a 

single structure but from an ensemble. A high quality ensemble is necessary for 

accurately delineating protein dynamics. However, conformations in an ensemble are 

generally given equal weights. Few attempts were made to assign relative populations to 

the conformations, mainly due to the lack of right experimental data. Here we propose a 

method for assigning relative populations to ensembles using experimental residue 

dipolar couplings (RDC) as constraints, and show that relative populations can 

significantly enhance an ensemble's ability in representing the native states and 

dynamics. The method works by identifying conformation states within an ensemble and 

assigning appropriate relative populations to them. Each of these conformation states is 

represented by a sub-ensemble consisting of a subset of the conformations. Application to 

the ubiquitin X-ray ensemble clearly identifies two key conformation states, with relative 

populations in excellent agreement with previous work. We then apply the method to a 

reprotonated ERNST ensemble that is enhanced with a switched conformation, and show 

that as a result of population reweighting, not only the reproduction of RDCs is 

CHAPTER 2. ENHANCING THE QUALITY OF PROTEIN 
CONFORMATION ENSEMBLES WITH RELATIVE 

POPULATIONS 
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significantly improved, but common conformational features (particularly the dihedral 

angle distributions of !!" and !!") also emerge for both the X-ray ensemble and the 

reprotonated ERNST ensemble. 

2.2 Introduction 
 

 The functions of a protein are closely related to not only its structure but also its 

dynamics. For more and more proteins, it is becoming increasingly evident that their 

functional behavior is best understood not through one single structure but through the 

distribution and dynamic transition among a number of conformation states that form the 

native-state ensemble (5-9, 15, 42, 43). Such an ensemble representation is consistent 

with the energy landscape theory and the 'protein folding funnels’ (4, 44, 45). With the 

rapidly growing Protein Data Bank (PDB) (10), protein structures are becoming 

increasingly more available and for some well-studied proteins, tens and even hundreds 

of structures (of one same protein) have been determined. These structures have been 

shown to capture a representative subset of the native-state ensemble (17).  

  

 On the other hand, the advancement of the experimental techniques and the 

increasing availability of experimental data has brought also a number of exciting recent 

works that aim to determine protein conformation ensembles instead of a single structure, 

using the experimental data as constraints (23, 24, 33, 46-48). The extent to which some 

of these ensembles represent the native states is debatable since the ensemble, which in 

some cases contains over a hundred conformations, may be under-constrained by the 

experimental data. As a matter of fact, since the experimental observations and data are 

macroscopic in nature and represent the ensemble and time averages of microscopic 
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conformations, it may not be possible to verify the validity of each conformation 

individually in such ensembles. Indeed, the concern of most of these ensembles was 

mostly about representing the dynamics correctly, less about the validity of each 

individual conformation.   

 

 For all of the above ensemble determination protocols, the conformations within 

the ensemble were given equal weights, i.e., 1/!!, where !! is the size of the ensemble. 

While weights were listed out as part of the parameters in some of these methods, 

weights other than equal weights were not studied. Physically these weights represent 

relative populations of the conformations and thus their relative contributions to the 

ensemble.  

 

 There are a couple of reasons why few work has been carried out to exploit the 

potential benefit of including these weights (or relative populations). First, an elegant 

seminal work by Brunger's group had shown earlier that regular NOE data alone was 

insufficient to determine the relative populations of a two-conformer ensemble (41). Thus 

it was not clear if there were enough experimental data to determine the populations 

meaningfully, even though the authors (41) were hopeful that relative populations could 

possibly be determined when other sources of experimental data were provided. 

Secondly, equal-weight conformations themselves can capture the relative population 

information to some extent, by including in the ensemble multiple copies of one similar 

conformation. The number of copies thus indirectly encodes the weight. However, it is an 

insufficient way to represent the populations, as it requires more conformations to be in 
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the ensemble and thus may worsen the potential problem of over-fitting mentioned 

above.  

  

 Our hypothesis. In this work we propose that it is feasible to assign relative 

populations to ensembles by using experimental RDC data as constraints, and that adding 

relative populations should enhance an ensemble's ability in representing a protein's 

native states and its dynamics. 

 

Assigning Relative Populations to An Ensemble: Background and Problem Definition.  

 

Figure 2.1: Pictorial representation of Boltzmann weights versus sampling weights. The ‘x’ marks 
represent conformations on a hypothetical energy landscape while the white bars represents 
sampling weights and shaded bars represent the Boltzmann weights.  
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 For many a protein, the conformation space near its native states can be best 

represented by a number of inter-connected conformation states, each of which may have 

a different population, as illustrated in Figure 2.1. When an ensemble of conformations 

are used to represent the conformation space (shown as the cross marks in Figure 2.1), its 

quality in representing the conformation space is determined by three factors:  

1) COMPLETENESS: Are all conformation states reached by at least one 

conformation?  

2) COVERAGE: For each of the conformation states that are reached by some 

conformation(s), what is quality of the coverage? In other words, how well do the 

finite number of conformations that are in a given conformational state together 

represent that conformation state?    

3) CONTRIBUTION: Is the number of conformations at each conformation state 

proportional to the ideal Boltzmann weight? 

 

 Ideally, we would like to have an ensemble that has an infinite number of 

conformations that cover all the conformation states according to the Boltzmann 

distribution. Such an ensemble would have perfect completeness, coverage and 

contribution. In reality, our ensembles are of finite sizes, having tens or possibly 

hundreds of conformations, which are relatively small comparing to the large 

conformation space. Therefore, we do not have perfect completeness, coverage or 

contribution.   
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 Another key point to realize is that the matter of completeness and coverage are 

sampling issues. The conformations in an ensemble could have come from experiments, 

by structure determination methods such as X-ray crystallography, NMR, etc., or they 

could have been determined computationally. Whatever the source is, completeness and 

coverage are sampling issues. They reflect the sampling quality of a given ensemble.  

 

 However, how well an ensemble represents the conformation space near the 

native state and how well it can reproduce experimental data/observations are determined 

not solely by the ensemble's completeness or coverage. It depends also on the third factor 

- contribution. Without doubt an ensemble whose conformations are assigned a 

population (contribution) proportional to their actual Boltzmann weights would represent 

the conformation space the best, reaching the limit of that ensemble's ability in 

representing the conformation space. Therefore, an ensemble with a proper assignment of 

relative contributions given to its conformation states should do better than an ensemble 

without. As illustrated in Figure 2.1, the conformation space of a protein is represented 

by three conformations, which by default are given an equal weight of 1/3. However, the 

ensemble can be enhanced if the actual Boltzmann weights (represented by dark shaded 

blocks) can be determined somehow and assigned to the three conformations.  Now, the 

immediate questions are: are relative contributions even determinable? And if so, how? 

And what is required to determine them? 
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 In this work, our focus is on this third aspect -- contribution. Our hypothesis is 

that given an ensemble of reasonable quality in completeness and coverage, the relative 

contributions can be determined by using experimental RDC data as constraints.  

We will apply a least-square fitting algorithm to determine the weights. To prevent over-

fitting, careful cross-validation is applied.  In the following Materials and Methods 

section, we present our approach in details.   

 

2.3 Materials and Methods 
 

 Recall that the problem we want to address here is that, given a conformation 

ensemble and a sufficient amount of experimental RDC data, is it possible to assign 

meaningful populations to the conformations in the ensemble without incurring over-

fitting? To what extent can we assign the populations? There are two extremes. One 

extreme is to assign each conformation with a population, which is physically unrealistic 

and generally cannot be achieved. The other is to assign the whole ensemble as a group 

with a (percentage) population of 1. This is equivalent to equal weights that have been 

used. Our hypothesis is that sufficient experimental data should allow weight assignment 

to clusters of conformations, or sub-ensembles, within the ensemble.  

 

 In this section, we present our method for assigning relative populations to 

clusters of conformations within an ensemble. The potential problem of over-fitting that 

often arises in such a process is carefully addressed. The significance of the assigned 

relative populations is further examined by cross-validation.   
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 There are four major steps in our method, which are described in order in the 

following sections. Briefly, the first step, a pre-processing step, merges conformations in 

the ensemble into small conformation clusters. For ensembles whose sizes are small, this 

step is skipped. The second step takes the pre-processed ensemble and applies a least 

squares fitting algorithm to identify a subset of conformations/clusters that best represent 

the conformation states. Step three takes this subset as a whole and iteratively split it into 

smaller sets until right before over-fitting starts to occur. Lastly, the significance of the 

relative populations thus assigned is evaluated by cross-validation. 

 

Step I: Pre-processing to reduce the dimensionality of the ensemble.  

 

 In cases where the ensemble size is large and it has more conformations than the 

number of experimental RDC data points, clustering (49, 50) is carried out to reduce the 

dimensionality of the ensemble. Here the dimensionality of an ensemble refers to the 

structural variety of the ensemble and is set to be the number of clusters in the ensemble. 

Initially each conformation in the ensemble forms its own cluster. Clustering structurally 

similar conformations into small clusters thus helps reduce the dimensionality and makes 

the ensemble manageable for the least square fitting procedure to be applied in the next 

step.  

 

 The distance between a pair of clusters is defined as the average of all the 

pairwise distances between the conformations in the two clusters. The distance between 

two conformations is defined by !!"#$%.  
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 !!"#$% =
exp − ! !,!

! –   ! !,!
! !

!  !!  !

! ! − 1  (1) 

 

 

where  !!,!   is the distance between atoms i and j in a conformation  and N is the total 

number of atoms. !!"#$% value ranges from 0 to 1, 0 being the very dissimilar and 1 being 

perfectly similar (51). 

 

 Initially each conformation in the ensemble forms its own cluster. The following 

three steps are iterated. As a result, similar conformations will be bundled together into 

larger clusters, while the rest remains as singlet clusters. 

1. Identify the closest pair of conformations in the ensemble. Merge them into a 

cluster if their distance is less than a threshold, !!"#. Otherwise stop the 

procedure.  

2. Grow the cluster formed in step 1 by repeatedly adding to it the next conformation 

whose average distance to the conformations in the cluster is the smallest and is 

less than !!"#, otherwise stop adding.  

3. Remove the cluster and go back to step 1.  
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Step II: Identify Representative Conformations by Least-Square Fitting to RDCs 

 

 Residual dipolar coupling comes from the interaction of two nuclear spins 

(dipole-dipole) in the presence of the external magnetic field and is defined as (20, 21, 

52): 

 

 ! !" = −
!ℎ!!!!     
2!" !   

3 cos! ! − 1
2  (2) 

 

where !! and !! are the nuclear magnetogyric ratios of nuclei i and j respectively,  h is 

Plank's constant,  ! is permittivity of space, !  is the internuclear distance between the two 

nuclei and Θ is the angle between the internuclear vector and the external magnetic field. 

The brackets represent the ensemble and time average. Normally, the residual dipolar 

coupling reduces to zero because of isotropic tumbling. The anisotropic measurement can 

be obtained by the aid of various types of liquid crystalline media. 

 

 For a protein with a number of distinct conformation states, the observed RDC 

data are best reproduced when the conformations close to these conformation states are 

present in the ensemble and given proper weighting. The conformations in a given 

ensemble may not all fall close to a conformation state. Here we use least square fitting to 

identify which conformations are needed and what relative populations should be given 

to them in order to best reproduce the experimental RDC data. By doing this, we can pick 

out key representative conformations from the ensemble. The relative populations 

assigned to them, however, are subject to the problem of over-fitting, due to the intrinsic 



	
   21	
  

nature of least square fitting. However, measures will be taken to identify the onset of 

over-fitting and prevent it from affecting weight assignment, as addressed in the next 

section.  

 

 Appendix 2.7 describes how RDCs can be back calculated from a single 

conformation or an ensemble of conformations. In this process of back calculating, 

singular value decomposition is commonly used to obtain the least square solution for the 

alignment tensor. Here we apply the same technique iteratively to obtain the least square 

solution for the relative populations as well. First, equal weights (!
!
) are given to all 

clusters (which are determined at step I) and Equation 13 (see Appendix 2.7) is used to 

obtain the optimal Saupe matrix, S. After S is obtained, it is used to determine !!  ! !  by 

least squares fitting. The process is iterated until the weights have converged. In the end, 

each cluster has either positive or zero population, since the weights are derived under the 

nonnegative constraints (53). In the case where there are multiple RDC data sets, 

different alignment tensors are needed for different media. The optimal weight 

combination (the relative populations) is obtained by least squares fitting to all the RDC 

data sets. A detailed description of these iterative least squares fitting algorithms is given 

in Appendix 2.7. 

 

 The iterative least squares fitting of the conformations in the ensemble to multiple 

RDC datasets returns a list of clusters/conformations that have non-zero populations. The 

conformations in these clusters are recognized as representative conformations. 
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In cases where there are more conformational clusters than the experimental data points, 

representative clusters are identified through the following procedure. 

1. From the pool of all available conformational clusters, randomly select N clusters, 

where N is the number of experimental data points. 

2. Run the least squares fitting algorithm (Appendix 2.7) to determine cluster 

weights. Some clusters may have zero weights. 

3. Repeat steps 1 and 2 many times and record the cluster weights at each iteration.  

4. The top N clusters with the highest average weights are identified as 

representative clusters.  

 

The representative clusters form the leaf nodes of a hierarchal clustering tree, built 

bottom up by merging the closest pair of clusters at each iteration. 

 

Step III: Splitting and the Identification of Over-fitting 

 

 To avoid the potential problem of over-fitting that may take place in the process 

of assigning relative populations, we take steps to recognize the onset of over-fitting and 

prevent it from affecting the weight assignment. Recall that there are two extremes in 

assigning weights. One is to assign each conformation with a population. The other is to 

assign the whole ensemble as a group with a population of 1, which is equivalent to 

having equal weights. In our studies we have found that one may confidently move 

beyond equal weighting and assign relative (different) populations to sub-ensembles but 

not to the point that each conformation in the ensemble is given a weight. There exists a 
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limit where one cannot further divide the sub-ensembles into smaller pieces. This limit 

represents the extent to which relative populations can be assigned and it depends on the 

quality of the ensemble and the quality and quantity of the experimental data. In reality, 

the limit is determined through monitoring the onset of over-fitting. 

 

 In the following procedure, we iteratively split the ensemble, which is now made 

up of the representative conformations, into smaller and smaller clusters. The splitting 

process is the same as the inverse process of hierarchical clustering. At each iteration, 

only one cluster is spit into two, which corresponds to the merging of the closest pair of 

clusters in hierarchical clustering. Therefore there are ! clusters at the !!!iteration. By 

applying the least squares fitting algorithms as described in Appendix B, we can assign 

relative populations (or weights) to these ! clusters. 

 

 If we have ! sets of experimental RDC data that are consistent with one other and 

contain random measurement noise within them,  ! sets of weights will be assigned to the 

! clusters. Now if the weight assignment is correct, we expect that these ! sets of 

weights should strongly correlate with one another. The onset of overfitting is when such 

correlations start to greatly degrade. That is, it begins to fit to the noise. Since noise is 

random and uncorrelated in the different experimental data, the weights fitting to noise 

should also be uncorrelated. This recognition of the onset of over-fitting is even more 

sensitive when the correlations are computed using only the weights of the two newly 

birthed clusters at the !!! iteration. The idea is that, if the two newly birthed clusters 

belong to one conformation state and should not have been split, we expect the weights 
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assigned to them by different sets of experimental data should be ambiguous and lack 

consistency and thus low correlations. On the other hand, if these two clusters belong to 

difference conformation states and should be split, we expect to see consistent weight 

assignments from different experimental datasets and thus high correlations.  

 

 

Replicate Experimental Data for Over-fitting Identification. 

 

 To identify over-fitting as outlined above, all the experimental data is duplicated 

to create ! identical copies and then different random Gaussian noise are added to each 

of them. These ! datasets are thus identical except for the noise in them.  

A relatively large ! is needed to have a high sensitivity to the onset of over-fitting. N is 

set to be 20 in this work. The standard deviation of the random Gaussian noise added to 

each replica is set to be 80% of the modeled experimental noise, which are bond-

dependent and are set to be 0.26 Hz, 0.1 Hz, 0.5 Hz, 0.1 Hz and 0.1 Hz for NH, CaC, 

CaHa, CN and CHN datasets respectively as was done in (Clore and Schwieters, 2004a). 

 

 We use Q-factor to measure how well the weight assignments are correlated with 

one another. The definition of Q-factor is given in equation 3, where it is employed also 

to measure the similarity between experimental and computed RDC data. The maximum 

of the Q-factors between any two of the ! weight assignments is denoted as MaxQ. A 

large MaxQ (above a certain threshold) indicates inconsistent weight assignments and 
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thus over-fitting for the two newly birthed clusters. A threshold value of 0.06 is used for 

MaxQ throughout all the cases investigated below. In summary, the procedure is: 

1. Initially all the representative conformations belong to one single cluster.  

2. Experimental data is replicated into ! sets. ! = 20. 

3. Iteratively split the clusters (the exact inverse of a hierarchical clustering). 

4. Assign sets of weights to clusters based on fitting to the experimental datasets. 

5. Check if the weights assigned to the newly birthed clusters are significant (i.e., 

weight ≥ 0.01). If any weight is found to be insignificant, repeat the process by 

removing the insignificant cluster. 

6. Compute the weight correlations and MaxQ for the two newly birthed clusters. 

7. If the minimum of the weight correlations is negative and MaxQ is greater than a 

predefined threshold, it signifies that over-fitting has occurred. In this case, the 

two newly birthed clusters are merged back together and the cluster is marked 

``final'', indicating that it can no longer be split. Otherwise, continue and move on 

to the next iteration. Stop the procedure when there is no cluster left that can be 

split.  

 

 

Step IV: Adding back other conformations 

 

 By the end of step III, we have partitioned the ensemble into a number of ``final'' 

clusters, with ! sets of weights assigned to each of them. Now compute the mean weight 

value and the standard deviation for each cluster. The clusters whose mean weight value 
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is less than its standard deviation are then removed, as they do not consistently have a 

positive weight.  

 

 Each of the remaining clusters is considered as representing an independent 

conformation state. Since it remains possible that the conformations that were excluded 

earlier at step I and step III may belong to one of the conformational states that these 

clusters are representing, adding some of them back to the clusters thus may possibly 

improve the quality of the ensemble. The sequence in which conformations are added 

back is arranged, in increasing order, by the minimum distance between a conformation 

and any of the clusters. A conformation is added to the cluster to which it is closest if 

including it decreases the overall Q-factor.  

 

Estimate the Uncertainty in Weight Assignments 

 

 After the conformation states (i.e., the clusters) have been identified and weights 

assigned to them, it is possible to estimate the uncertainty in the weight assignments, 

provided that there exist multiple sets of experimental data. This is because least squares 

fitting can be applied to fit each set of experimental data independently. If there are ! 

sets of experimental data, this will result in ! sets of weight assignments, or ! weight 

assignments to each cluster. It is expected that the weight assignments for each cluster are 

in general not identical, since there is noise in the experimental data and the cluster 

representation for each conformation state is not perfect. The levels of uncertainty in the 
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weight assignments can be estimated by computing the standard deviation within the 

weight assignments for each cluster. 

 

Cross-Validation 

 

 Q-factor is a commonly used measure of the agreement between the experimental 

and calculated RDCs and is defined as: 

 

 !-!"#$%& =
∑ !!"#! − !exp

!

∑ !exp
!

 (3) 

 

 where !!"#! is the calculated RDC and !!"# is the experimental RDC. 

 

 The introduction and assignment of relative populations to an ensemble improves 

the Q-factors. To assess the significance of such improvement, we leave out CaHa RDC 

from the experimental data when determining the weights. The CaHa dataset was then 

used for cross-validation. Lange et al (23) used CN vector for cross-validation. Given that 

the data used in refinement includes CaC, CHN, NH vector orientations, CN RDC might 

not be the best choice. CaHa vector, on the other hand, is not in the peptide plane and is 

thus independent of other bond vector orientations, making it a better cross-validation 

dataset. Cross-validation provides a way to check whether the better fitting gained by 

assigning relative populations is a fitting to the noise in experimental data or is a fitting to 

the true data. If the ensemble with relative population assignment does render a better 
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representation of the conformation space, we expect that the fitting to the leaving-out 

CaHa data should also improve. 

 

 All the conformations are stripped off its hydrogen atoms first and then re-

protonated using Reduce (54) before computing Saupe matrices and back-calculating 

RDC values.  

 

Ubiquitin ensembles and experimental RDC data sets 

 Ubiquitin has long been used as a model protein to probe protein dynamics and 

for which abundant experimental RDC datasets are available. A total of 62 RDC data 

sets, including NH, CN, CHN, CaC, CaHa and side chain methyl, were used to determine 

EROS ensemble (23). Since our procedure requires that the relative populations be 

determined by fitting to experimental RDC data, it is critical that the data has no 

significant errors. For this reason we have pruned the above dataset to remove any dataset 

whose data points are less than 40 and whose Q-factors are significantly higher when 

back-calculated using structure 1UBQ or 1D3Z (NMR ensemble). 

 

Table 2.1: RDC datasets used for weighting Ubiquitin ensembles, coded according to (55) 

Experimental data type RDC data 
NH A1, A2, A4, A6, A7, A8, A9, A10, A11, A12, A13, A16, 

A21, A22, A23, A24, A25, A26, A27, A28, A29, A34, 
A36 

NH, CN, CHN, CaC and 
CaHa 

2 sets (56) 
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 Table 2.1 lists the experimental datasets used in this work, using the code names 

given in Lakomek et al. (55). There exist a few other multi-vector datasets for Ubiquitin 

(57). However, they are not included here since they display relatively large Q-factor 

when applied to the NMR structure 1D3Z. For the same reason, NH datasets labeled A3, 

A5, A30, A31, A32, A33, and A34 (as in (55)) are not included either. 

2.4 Results 
 

 In this section, we apply our method to assign relative populations to 

conformation ensembles of proteins. It is assumed here that the protein that an ensemble 

represents should have a small number of conformation states, and that some of the 

conformations in the ensemble, though sparse relative to the large conformation space, 

fall close to the protein's conformation states. These conformations may come from 

experimentally determined structures of the protein. Because of their scarcity, there is no 

expectation on these conformations that their distribution on the conformation space 

should be Boltzmann distribution. For such an ensemble, and using experimental RDC 

data as constraints, we will show to what extent one can meaningfully assign relative 

populations, or weights, to the ensemble. We aim to answer also, in order to assign 

meaningful relative populations, what is the minimum requirement on the ensemble. In 

the end, we apply the method to an ensemble of crystal structures of Ubiquitin. 

 

Creating an Artificial Conformation Ensemble and Artificial RDC Data 

 

 To test our method, we first create an artificial energy landscape and a native state 

ensemble that will be used as a reference (33). We create also artificial RDC data based 



	
   30	
  

on the ensemble composition. The advantage of using artificial ensembles and RDCs is 

that we have perfect control of their composition and their noise level. 

 

Creating a Native State Ensemble. To create an artificial native state ensemble, five 

distinct conformations of protein ubiquitin are picked from an accelerated MD simulation 

(58). The conformations are chosen such that the minimum RMSD between any two 

conformations is greater than 2.5 Å. We assume that these five conformations represent 

the centers of all the (five) possible conformational states of the protein. We then sample 

more conformations around these centers and use them, together with the centers, to 

represent the conformation states. This is done using CONCOORD (59). CONCOORD, 

by default, can produce quite broad distributions of conformations. To ensure that each 

conformational state is tightly clustered, a damping coefficient of 0.3 is applied when 

generating the distance restraints from these five conformations. As a result, the average 

RMSD within any sub-ensemble is close to 1 Å. Thus, the conformations fall into five 

clearly separated clusters.  

 

 Next, we set the Boltzmann weight of each conformation state to be proportional 

to the number of conformations in its energy well (i.e., the sub-ensemble around each 

conformation state). The number of conformations sampled in each sub-ensemble and the 

associated Boltzmann weights are given in Table 2.2. 

 

Table 2.2: Boltzmann weights of the five conformational states in the artificial ensemble. 

Conformational State One Two Three Four Five Total 
# of Conformations 100 200 350 500 700 1850 
Boltzmann weight 0.054 0.108 0.189 0.27 0.378 1 
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Noise Conformations. Noise conformations are those that do not contribute to 

experimental observations. Strictly speaking though, every conformation in the ensemble 

contributes to the observations to some extent. But those conformations that are away 

from any of the protein's conformation states have so low a weight that they virtually do 

not contribute. We consider such conformations as noise conformations as contrast to 

those that do represent the protein's conformation states.   

 

 To create noise conformations, we use CONCOORD to sample around each 

conformational state without any damping. The average RMSD in this sampling is 

around 2.5 Å. To guarantee these conformations do represent noise, we remove from 

them any conformations that can give nearly the same Q-factor as the conformations 

representing the conformation states. 

 

Generating Artificial RDC Data. Using all the conformations (1850 total, see Table II) of 

the ensemble, artificial RDC datasets matching the composition of the real experimental 

RDC data of Ubiquitin, are generated. The average ! matrix of the ensemble is first 

calculated. Then for each of the experimental datasets listed in Table 2.1 the best-fit 

Saupe matrix is determined using 1D3Z NMR ensemble. An artificial RDC dataset is 

then created by multiplying the average ! matrix with the Saupe matrix. At this point, 

these RDC datasets are noise-free. We will call them noise-free RDCs. 
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 In reality, experimental data contains noise of about 0.5 to 1.0 Hz (24), we add 

Guassian noise to the artificially generated RDC data that are originally noise-free. The 

standard deviations of the noise are 0.26 Hz, 0.1 Hz, 0.5 Hz, 0.1 Hz and 0.1 Hz for NH, 

CaC, CaHa, CN and CHN datasets respectively as was done in (Clore and Schwieters, 

2004a). Note that because of the way in which the artificial RDC data are generated, the 

given conformation ensemble can perfectly reproduce these RDC data prior to the adding 

of the noise, but not so after. In the rest of this article, unless explicitly noted, artificial 

RDCs refer to the ones that contain noise. 

 

What Is Required of the Ensemble? 

 

 In the section we aim to determine what is the requirement of the ensemble in 

order to have a meaningful weight assignment. We design four test cases to examine the 

applicability of the method. The purpose of these four cases is to show that neither under-

sampling at each conformation state nor noise conformations hinder weight assignments. 

 

Case I: 

 In this case we assume there is no noise conformations and the ensemble contains 

only conformations from the five conformation states. However, the number of 

conformations at each state is not proportional to its Boltzmann weight. 21, 60, 6, 7, 290 

conformations are randomly selected from conformation state one, two, three, four, and 

five respectively and mixed together to form an ensemble. Our method is then applied to 

assign relative populations to this ensemble. Table 2.3 lists the clusters obtained in the 
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end, along with the composition of the clusters, weights assigned and expected weights of 

all the clusters. 

 

Table 2.3: Final weights and cluster compositions for Case I. The convention used for the 
composition of a cluster is to enumerate in order the number of conformations belonging to five 
conformational states. 

Cluster Final weights± std Composition Belongs to Expected 
Weight 

Cluster1 0.072 ± 0.001 20,0,0,0,0 First state 0.054 
Cluster2 0.097 ± 0.0004 0,8,0,0,0 Second state 0.108 
Cluster3 0.183 ± 0.002 0,0,5,0,0 Third state 0.189 
Cluster4 0.27 ± 0.002 0,0,0,7,0 Fourth state 0.27 
Cluster5 0.376 ± 0.001 0,0,0,0,284 Fifth state 0.378 
 

 

 It is seen from Table 2.3 that the final weight obtained for each conformation 

cluster is highly similar to the expected Boltzmann weight and each cluster contains 

purely conformations that belong to that conformation state. Similar results are obtained 

when the same experiment is repeated with different replica noise.   

 

Case II: 

  In this case, one of the conformation states (the third) was intentionally not 

included in the process of generating artificial experimental data. This is done to mimic 

the scenario where an ensemble contains a cluster of conformations from a state that does 

not belong to the native ensemble. While the purpose for the first case is to test if the 

method is able to assign right populations to the conformations contributing to the 

experimental observations, the purpose for this one is to test whether or not the method is 

able to assign no weight to conformations that do not contribute. 
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Table 2.4: New relative Boltzmann weights after the third cluster is excluded from artificial RDC 
data generation. 

Conformational State One Two Four Five Total 
# of Conformations 100 200 500 700 1500 
Boltzmann weight 0.066 0.133 0.333 0.467 1 
 

 The new relative Boltzmann weights are given in Table 2.4. The same 

conformation ensemble employed in case I, which includes conformations that do not 

contribute to the artificial RDC calculations, is used here. After applying our method, the 

resulting clusters, along with their compositions, assigned weights and the standard 

deviations, and expected weight are given in Table 2.5. From the results it is seen that, as 

with Case I, the weights obtained are highly similar to the expected values. Moreover, 

each cluster consists purely of conformations belonging to that cluster. 

 

Table 2.5: Final weights and cluster compositions for Case II. The convention used for the 
composition of a cluster is the same as Table 2.3. 

Cluster Final weights± std Composition Belongs to Expected 
Weight 

Cluster1 0.087 ± 0.0001 9,0,0,0,0 First state 0.066 
Cluster2 0.118 ± 0.004 0,60,0,0 Second state 0.133 
Cluster3 0.322 ± 0.003 0,0,0,7,0 Fourth state 0.333 
Cluster4 0.471 ± 0.001 0,0,0,0,280 Fifth state 0.467 
 

 

Case III: 

 In the first two cases, the conformations in the ensemble are clearly separated into 

five distinct clusters. In reality, such distinction is often smeared by the presence of other 

conformations. These other conformations virtually do not contribute to the experimental 
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observations (the “noise” conformations). However, their presence makes it difficult to 

identify conformation states, or separate conformations representing a conformation state 

from those that do not. To mimic this reality, we introduce noise conformations into the 

ensemble. 

 

 The same conformations as used in Case I are used here (see Table 2.2). In 

addition, an equal number of noise conformations (see above on how they are generated) 

are added to each cluster so that they represent half of the total conformations in each 

cluster. As a result, the number of conformations in the ensemble is doubled and becomes 

768, of which 384 are noise conformations. Clustering, as described in step I in the 

Materials and Methods section, results in 406 clusters, of which some are singlet clusters. 

Since the number of clusters is more than the number of unique experimental data points 

(around 200), ``representatives'' conformations are identified by following step II (see 

Materials and Methods). 

Table 2.6: Final weights and cluster compositions for Case III. The convention used for the 
composition of a cluster is the same as Table 2.3. 

Cluster Final weights± std Composition Belongs to Expected 
Weight 

Cluster1 0.069 ± 0.005 8,0,0,0,0 First state 0.054 
Cluster2 0.099 ± 0.001 0,8,0,0,0 Second state 0.108 
Cluster3 0.181 ± 0.003 0,0,5,0,0 Third state 0.189 
Cluster4 0.273 ± 0.005 0,0,0,7,0 Fourth state 0.27 
Cluster5 0.377 ± 0.002 0,0,0,0,281 Fifth state 0.378 
 

 Table 2.6 lists the results. There are five clusters, which are composed of 8, 8, 5, 

7, and 281 conformations from the five conformational states respectively. All of the 384 

noise conformations are successfully filtered out. From Table 2.6 it is seen that weight 

assignments for the clusters are highly similar to the expected values. 
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Case IV:  

 In all of the above cases, we have simulated full coverage of the conformational 

states by having each of the states represented by at least a few conformations. To assess 

the impact on the reproduction of the experimental data when one of the conformational 

states is missing all together, we apply our weighting algorithm again to the ensemble 

used in case III but this time each of the five clusters used to represent the five 

conformational states, in turn, is purposely left out.  We want to see if the algorithm will 

produce RDC Q-factors with equal quality, while having substantially different 

conformational properties than the initial ensemble, by somehow rearranging the weights 

for the remaining clusters.  Table 2.7 lists the results. 

 

Table 2.7: New weight assignments and Q-factors when each of the five clusters, in turn, is purposely 
left out of the ensemble, as in case IV. CaHa is used for cross-validation. Note that the weights of the 
remaining four clusters do not add up to 1 in some cases. This happens when noise conformations 
form a new cluster(s) and are assigned a non-zero weight to compensate the missing cluster. 

	
   Weights	
  
W1	
   W2	
   W3	
   W4	
   W5	
  

0.07	
   0.10	
   0.18	
   0.27	
   0.38	
  

-­‐-­‐	
   0.11	
   0.20	
   0.31	
   0.37	
  

0.10	
   -­‐-­‐	
   0.26	
   0.26	
   0.36	
  

0.06	
   0.19	
   -­‐-­‐	
   0.31	
   0.35	
  

0.23	
   0.0	
   0.26	
   -­‐-­‐	
   0.27	
  

0.0	
   0.0	
   0.0	
   0.40	
   -­‐-­‐	
  
	
  
	
  

NH	
   CaC	
   CaHa	
   CHN	
   CN	
  

With	
  None	
  
missing	
  

0.036	
   0.051	
   0.034	
   0.067	
   0.04	
  

With	
  State	
  One	
  
missing	
  

0.042	
  
	
   	
   	
   	
  

	
  

0.059	
   0.041	
   0.072	
   0.054	
  

With	
  State	
  Two	
  
missing	
  

0.047	
   0.056	
   0.054	
   0.074	
   0.052	
  

With	
  State	
  
Three	
  missing	
  

0.066	
   0.067	
   0.079	
   0.082	
   0.08	
  

With	
  State	
  Four	
  
missing	
  

0.08	
   0.074	
   0.084	
   0.102	
   0.091	
  

With	
  State	
  Five	
  
missing	
  

0.202	
   0.15	
   0.17	
   0.166	
   0.155	
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 From Table 2.7, it is seen that the algorithm produces RDC Q-factors with nearly 

the same quality especially when the missing cluster has a low population, such as cluster 

one or two.  Even with cluster three or four, its missing causes only a small deterioration 

in Q-factors.  In all these cases, most of the contributions of the missing cluster are 

compensated by the weight adjustment of the remaining clusters or by assigning weight 

to a new cluster(s) that is formed by some noise conformations. However, when the 

missing cluster has an especially large population such as that of cluster five, the 

algorithm cannot recover the RDC Q-factors with nearly the same quality. The results of 

this test case thus clearly demonstrate the importance of having a full coverage of all the 

conformational states and that low Q-factors alone are not sufficient to provide full 

confidence in the completeness or correctness of an ensemble. 

 

X-ray Ensemble and Experimental data 

 

 X-ray structures of the same protein but solved under different conditions are 

hypothesized to form a native state ensemble of that proteins (17). 68 X-ray structures of 

Ubiquitin with 100% sequence identity are taken from PDB. After considering the fact 

that multiple chains exist in some of the structures, a total of 143 different conformations 

are identified and used to form the Ubiquitin conformation ensemble. Table 2.8 lists all 

the PDB-ids along with their chain identifiers.  To partition this ensemble into proper 

sub-ensembles and determine their relative populations, we follow the procedure 

described in the Materials and Methods section and find that 18 out of 143 crystal 

structures have a significant weight and are chosen as representative conformations. This 
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new ensemble of 18 crystal structures was then subjected to the splitting procedure and as 

a result, six clusters are identified. The rest of the 125 structures, one by one, are then 

tried to be merged into one of six existing clusters. 

 

Table 2.8: PDB ids as well as chain identifiers of the 143 Ubiquitin X-ray conformations  used in this 
work to form the Ubiquitin X-ray ensemble. 

1AAR-A, 1AAR-B, 1CMX-B, 1F9J-A, 1F9J-B, 1NBF-C, 1NBF-D, 1OGW- A, 1P3Q-U, 
1P3Q-V, 1S1Q-B, 1S1Q-D, 1TBE-A, 1TBE-B, 1UBI-A, 1UBQ- A, 1UZX-B, 1WR6-E, 
1WR6-F, 1WR6-G, 1WR6-H, 1WRD-B, 1XD3-B, 1XD3-D, 1YD8-U, 1YD8-V, 2AYO-
B, 2C7M-B, 2C7N-B, 2C7N-D, 2C7N- F, 2C7N-H, 2C7N-J, 2C7N-L, 2D3G-A, 2D3G-
B, 2DX5-B, 2FID-A, 2FIF- A, 2FIF-C, 2FIF-E, 2G45-B, 2G45-E, 2GMI-C, 2HD5-B, 
2HTH-A, 2IBI- B, 2J7Q-B, 2J7Q-D, 2JF5-A, 2JF5-B, 2O6V-A, 2O6V-C, 2O6V-E, 
2O6V- G, 2OOB-B, 2QHO-A, 2QHO-C, 2QHO-E, 2QHO-G, 2WDT-B, 2WDT- D, 
2WWZ-A, 2WWZ-B, 2WX0-A, 2WX0-B, 2WX0-E, 2WX0-F, 2WX1- A, 2XEW-A, 
2XEW-B, 2XEW-C, 2XEW-D, 2XEW-E, 2XEW-F, 2XEW- G, 2XEW-H, 2XEW-I, 
2XEW-J, 2XEW-K, 2XEW-L, 2XK5-A, 2ZCC-C, 2ZNV-C, 3A1Q-A, 3A1Q-D, 3A33-
B, 3A9J-B, 3A9K-B, 3ALB-A, 3ALB- B, 3ALB-C, 3ALB-D, 3BY4-B, 3C0R-B, 3C0R-
D, 3EEC-A, 3EEC-B, 3EFU-A, 3EHV-B, 3EHV-C, 3H1U-A, 3H1U-B, 3H7P-B, 3H7S-
A, 3H7S-B, 3HM3-A, 3HM3-B, 3HM3-C, 3HM3-D, 3I3T-B, 3I3T-D, 3I3T-F, 3I3T-H, 
3IFW-B, 3IHP-C, 3IHP-D, 3JSV-B, 3JVZ-X, 3JVZ-Y, 3JW0-X, 3JW0-Y, 3K9P-B, 
3KVF-B, 3KW5-B, 3LDZ-E, 3LDZ-F, 3LDZ-G, 3M3J-A, 3M3J-B, 3M3J-C, 3M3J-D, 
3M3J-E, 3M3J-F, 3MHS-D, 3NHE-B, 3NOB-B, 3NOB- C, 3NOB-D, 3NOB-E, 3NOB-
F, 3NOB-G, 3NOB-H 
 

 The resulting conformation clusters along with their weights are given in Table 

2.9. The cluster that contains the unbounded conformation of ubiquitin, 1UBQ, is found 

to have the largest weight of ~55%, while the second clusters, consisting exclusively of 

ubiquitin structures in complex with deubiquitinating enzymes, has the second largest 

relative population of ~29%.  
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Table 2.9: The six conformational clusters and their weights of the weighted X-ray ensemble. The 
conformations included in each cluster are listed by their PDB ids as well as chain identifiers. 

Cluster Final weight ± std Composition 
Cluster1 0.55 ± 0.03 1AAR-B, 1UBQ-A, 2C7M-B, 2C7N-H, 2QHO-

A, 3EHV-C, 3M3J-A, 3M3J-E 
Cluster2 0.29 ± 0.03 2G45-B, 2G45-E, 2HD5-B 
Cluster3 0.064 ± 0.001 2DX5-B, 3KW5-B 
Cluster4 0.043 ± 0.002 1YD8-V 
Cluster5 0.027 ± 0.004 3HIU-A 
Cluster6 0.026 + 0.001 1TBE-A 
 

 While we were working on this manuscript, one work was published in an early 

edition of PNAS (60). The work studied the native equilibrium dynamics of Ubiquitin 

and reported that the protein conformation was exceptionally stable with  ~70% of 

populated states about 0.5 Å RMSD away from the native state 1UBQ while  ~20% of 

the populated states showed a conformational switch in Asp52/Gly53/Glu24 residues, 

referred to as ``switched'' conformer and the remaining ~10% had partially frayed alpha 

helix at the C-terminus (60).  Our results as shown in Table 2.9 agree with their findings 

extremely well. In addition, another recent study of conformational states of ubiquitin 

found the presence of an alternative conformer in complex with deubiquitinating 

enzymes. In the authors' own words, ”This alternative conformer is likely to have 

functional significance, because the Asp52/Gly53/Glu24 switched conformer is also 

found in structures of ubiquitin, ubiquitin aldehyde, or diubiquitin in complex with 

deubiquitinating enzymes (e.g., PDB entries 2G45, 2HD5, 2IBI, 1NBF, 3I3T, 3IHP, 

3NHE, 3MHS, and proximal ubiquitin of 2ZNV, which are all discussed further below). 

In contrast, the un-switched conformer is seen in essentially all other ubiquitin structures, 

including the previous structures for monomeric ubiquitin, di- and tetra-ubiquitin, and 
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complexes with other kinds of enzymes” (61).  Our method not only identifies this 

special conformation state of ubiquitin (the 2nd cluster in Table 2.9), but also assigns it 

an accurate relative population. Many of the PDB entries for ubiquitin in complex with 

deubiquitinating enzymes are selected and grouped together by our algorithm to form 

cluster 2, a cluster consisting exclusively of ubiquitin structures in complex with 

deubiquitinating enzymes. 

 

 The remaining four clusters contain the following structures. Cluster 3 consists of 

2DX5 and 3KW5. 2DX5 is a structure of ubiquitin in complex with mouse EAP45-

GLUE domain. 3KW5 contains a structure of ubiquitin in complex with ubiquitin 

carboxy terminal hydrolase L1. Cluster 4 contains 1YD8, a structure of ubiquitin in 

complex with human GGA3 GAT domain. Cluster 5 contains 3H1U, a structure of 

ubiquitin in complex with cadmium ion. Lastly, cluster 6 contains 1TBE, a structure of 

ubiquitin in the form of tetraubiquitin. These four clusters all together have a relative 

population of about 15%. Figure 2.2 shows the final structure ensemble (center) as well 

as individually, a representative conformation from each cluster (panels a to e). 
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Figure 2.2: The final weighted X-ray ensemble that consists of six clusters (see Table 2.9) and 
representative conformations for each cluster. Center - All the structures overlaid onto one another, 
1UBQ-A (cluster 1)– green, 2G45-E (cluster 2)– red, 2DX5-B (cluster 3) – ice blue, 3HIU-A (cluster 4) 
– orange, 1YD8-V (cluster 5) – purple and 1TBE-A (cluster 6) – blue.  

Panels a through e compares 1UBQ-A with 2G45-E (red), 2DX5-B (ice blue), 3HIU-A (orange), 
1TBE-A (blue), and 1YD8-V (purple) respectively. 

 

Cross validation.  

 

 The individual Q-factors obtained for the different bond vectors are shown in 

Table 2.10 for the weighted X-ray ensemble along with other recently derived ensembles. 

By partitioning the ensemble into six sub-ensembles (represented by the clusters) and 

assigning them relative populations, the Q-factors of all the individual bond vectors are 

significantly lowered. Remarkably, the cross validation Q-factor, that of CAHA, is also 

lowered from 0.161 to 0.145 for the weighted X-ray ensemble. This significant 
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improvement in Q-factors further confirms the validity of clustering and relative 

population assignments discussed above  

 

Table 2.10: Q-factors of the different bond vectors of the weighted X-ray ensemble as well as some 
other ensembles. CaHa is used for cross-validation 

NH CaC CaHa CN CHN Description 
0.122 0.097 0.145 0.088 0.186 Weighted X-ray 
0.184 0.108 0.161 0.099 0.228 Unweighted X-ray 
0.071 0.118 0.069 0.138 0.188 EROS 
0.213 0.118 0.128 0.138 0.234 EROS reprotonated 
0.066 0.140 0.167 0.096 0.182 ERNST 
0.180 0.141 0.177 0.095 0.207 ERNST reprotonated 
0.244 0.180 0.236 0.171 0.266 1UBQ 
0.114 0.105 0.084 0.120 0.163 1D3Z 
0.231 0.175 0.196 0.233 0.281 MUMO(PDB id: 2RN2) 
 

 In contrast to those of the single structure representation, residue-wise Q-factors 

of unweighted and weighted ensembles are shown in Figure 2.3. It is seen that for most of 

the residues, the unweighted ensemble has lower Q-factors than the single structure, 

1UBQ, while the weighted ensemble further lowers the Q-factors. 

 

 The Q-factor results of the weighted X-ray ensemble are on the par even with 

1D3Z, NMR ensemble that was determined using RDC as one of the restraints and are 

noticeably better than MUMO, a Ubiquitin ensemble computationally determined using 

NOE and order parameters as constraints. When compared with EROS and ERNST (34), 

the weighted X-ray ensemble falls short especially in the NH and CAHA datasets. 

However, as was pointed out in (62), the conformations in EROS ensemble may have 

incorrect geometry.  Indeed both, reprotonated EROS and reprotonated  ERNST display 

much higher Q-factor values, see Table 2.10. 
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Figure 2.3:	
  Residue-wise Q-factors from 1UBQ, the unweighted and weighted X-ray ensemble. The 
unweighted Q-factors are plotted in blue bars, the weighted Q-factors in red bars, and the Q-factors 
obtained from 1UBQ are plotted in a green line. The common region between the unweighted and 
weighted is colored maroon. 

 

Uncertainty in weight assignments.  

 

 Uncertainty in weight assignments can be computed when they are multiple 

datasets (see Materials and Methods). In the case of ubiquitin, there are 24 NH RDC data 

sets along with two multi-vector RDC datasets. The whole datasets are partitioned into 

two subsets such that each subset contains one multi-vector dataset along with an equal 

proportion of NH RDC datasets. Weights obtained from each subset are compared and 

their standard deviations are used for representing the uncertainty in weight assignments 

(see Table 2.9). 
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Effect of weighting on conformational features of ensemble: 

 In addition to improving the reproduction of experimental data, weighting alters 

conformational properties of the ensemble.  One of the interesting features of Ubiquitin 

structure is the presence of a “switched” conformation, which is hypothesized to have a 

biological function(61). The dihedral angles  !  of residue 53 and ! of residue 52 play an 

important role in facilitating the switch.  While  !!" and !!" of the “switched” 

conformation exists in the range of ~100O and ~130O respectively, the same two dihedrals 

are in the range of ~-90O and ~-50O respectively for the unswitched conformation such as 

in 1UBQ. We look into the changes in the population distributions of these dihedral 

angles before and after reweighting and the results are presented in Figure 2.4.  

 

 

Figure 2.4: Effects of weighting on the conformational features of X-ray ensembles. Panels a and b, 
show the population distributions of !!" and !!" dihedral angles before (blue bars) and after (red 
bars) weighting of the X-ray ensemble. Panels c and d, show the same population distributions but 
for a modified X-ray ensemble whose “switched” conformations except one are all taken out (see the 
text).  The common region between the unweighted and weighted is colored maroon. 
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 In the first row of Figure 2.4 (panels a and b) are shown the differences in the 

population distributions of dihedral angles !!" and !!" between before and after 

reweighting the 143-conformation X-ray ensemble.  The reweighting significantly alters 

the dihedral angle distributions of !!" and !!" shifting much of the populations from 

being around the unswitched conformation to the switched conformation.  The 

reweighting also reduces the overall ranges of the dihedral angle distributions and makes 

the two population peaks narrower and sharper. To further demonstrate how strong an 

effect weighting can have on dihedral angle distributions, all the switched conformations 

except 2G45 (chain E, a “switched” conformation) are removed from the 143 

conformations. The population of the switched conformation in this reduced ensemble 

before weighting is now less than 1%.  The second row of panels (c and d) of Figure 2.4 

show the difference in population distributions upon reweighting this ensemble.  As is 

seen, after reweighting the population of the “switched” conformation increases 

dramatically from less than 1% to as high as 20%. 

 

Application on a computationally-determined ensemble: 

 In the recent years many ubiquitin ensembles have been determined 

computationally. ERNST, standing for ensemble refinement for native proteins using a 

single alignment tensor, was refined using NOEs and RDCs (34). ERNST does a very 

good reproduction of the experimental RDCs as seen from the low Q-factors in Table 

2.11.  But as with EROS, there is a significant increase in Q-factors once the ensemble is 

reprotonated using standard tools. Though the validity of reprotonation is debatable, such 

a significant increase in Q-factors could be due to the covalently incorrect placement of 



	
   46	
  

hydrogen atoms (62). Therefore, we choose to apply our weighting algorithm to the 

reprotonated ERNST ensemble instead to avoid introducing into weights errors due to 

incorrect covalent geometry. The Q-factors obtained after weighting the reprotonated 

ERNST ensemble are shown in Table 2.11. From the table it is seen that though 

weighting lowers the Q-factors, the decreases are mostly quite nominal and the new Q-

factors are not as good as those of the weighted X-ray ensemble. 

 

Table 2.11: Q-factors of the different bond vectors of the ERNST ensembles. CaHa is used for cross-
validation. ERNST reprotonated is the same as ERNST except the hydrogen atoms are replaced 
using standard geometry.  In the last row, the reprotonated ERNST is first enhanced with a switch 
conformation 2G45-E before the population reweighting is applied. 

NH CaC CaHa CN CHN Description 
0.066 0.140 0.167 0.096 0.182 ERNST  
0.180 0.141 0.177 0.095 0.207 ERNST reprotonated 
0.147 0.145 0.178 0.098 0.190 Weighted reprotonated 

ERNST  
0.123 0.112 0.132 0.093 0.172 Weighted (reprotonated 

ERNST + 2G45-E) 
 

 

 A close look at dihedral angle distributions of !!" and !!" of the ENRST 

ensemble as we did to the X-ray ensemble in Figure 2.4 reveals the reason. Figure 2.5 

(panels a and b) shows that ENRST does not sample the “switched” conformational state 

at all and all the conformations have !!" and !!" angles similar to 1UBQ. To assess the 

importance of “switched” conformational state, we add 2G45-E (a representative 

switched conformation) to ERNST ensemble and then reweighted it.  Interestingly, the Q-

factors now improve significantly (see Table 2.11) and reach to a level similar to the 

weighted X-ray ensemble. Moreover, the switched conformation (2G45-E) is assigned to 

a relative population of 0.30, which is highly similar to the weight of the “switched” 
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conformation in the weighted X-ray ensemble (which is 0.29).  This is remarkable since it 

shows that common conformational features emerge after reweighting even though the 

two ensembles to which the reweighting scheme has been applied are rather different. In 

Figure 2.5, panels a and b show the population distributions of the !!" and !!" before 

and after weighting of the reprotonated ERNST ensemble, while panels c and d show the 

distributions of the same dihedral angles of the same reprotonated ERNST ensemble after 

a switched conformation is added to it. By comparing between the dihedral angle 

distributions in Figures 2.4 and 2.5, it is seen that while ERNST (reprotonated) itself does 

not have similar properties as the weighted X-ray ensemble, the weighted ERNST + 

2G45-E (see panels c and d of Figure 2.5) shows highly similar conformational properties 

to the weighted X-ray ensemble (see panels a and b of Figure 2.4) especially with respect 

to the dihedral angle distributions of !!" and !!". 
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Figure 2.5: Dihedral distributions of !!" and !!"in the ERNST ensembles. Panels a and b, show the 
population distributions of !!" and !!" dihedral angles before (blue bars) and after (red bars) 
weighting of the ERNST ensemble. Panels c and d, show the populations of the same dihedral angles 
before (blue bars) and after (red bars) weighting of an enhanced ERNST ensemble (with 2G45-E, a 
“switched” conformation, added). The common region between the unweighted and weighted is 
colored maroon. 

 

2.5 Discussion and Conclusions 
 

 Proteins are dynamic molecules and even the native state of a protein is not a 

single static structure but spread over a broader region of the conformation space. As a 

result, for many proteins, an ensemble of conformations provides a better depiction of the 

native states. 

 

 In this work we present a method to improve ensembles and their ability to depict 

the native states. The method works by identifying conformation states within an 

ensemble and assigning appropriate relative populations, or weights, to them. Each of 
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these conformation states is represented by a sub-ensemble formed by a subset of the 

conformations.  

 

 Our results demonstrate that such weight assignment is feasible and the weights 

are significant. Since the weights are computed by least squares fitting to the 

experimental RDC data, one may naturally question the significance of the weights. Are 

the weights significant and physically meaningful? Or are they merely a result of over-

fitting to the noise in the experimental data?  To address this concern, we design a 

sensitive measure to recognize the onset of over-fitting and finish the weight assignment 

before over-fitting starts to occur. Lastly, the significance of the weights is further 

examined and verified by cross validation. 

 

 The method presented in this work uses experimental RDC data as constraints to 

assign relative populations to conformations within an ensemble. In order for this method 

to succeed, what is the requirement on the ensemble and its conformations? Our results 

indicate the following: 

 

• Undersampling in conformation states, where some conformation states are 

represented by few conformations, does not hinder weight determination. 

Experimental structures of the same protein obtained under different conditions or 

bound states have been suggested to form a native state ensemble of the protein 

(17). Such a native state ensemble may cover all the important conformation 

states of the protein, but not necessarily proportionally, and some of the states 
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may be severely undersampled. As seen from case I and II, undersampling does 

not hinder  weight assignment and our algorithm can be readily applied to 

determine the relative populations. 

• Noise conformations in an ensemble that do not represent any conformation states 

can be mostly filtered out. In case II, we create a situation where the ensemble 

contains a cluster of conformations that do not belong to any conformation state. 

Case III represents another situation where each conformation state is mixed with 

a large amount of noise conformations. The presence of noise conformations may 

make it difficult to identify conformation states, or to separate conformations 

representing a conformation state from those that do not. However, test results 

show that our method is able to effectively filter out most of the noise 

conformations. 

• While cases I to III show that given an ensemble with good coverage and 

completeness, the weighting algorithm is able to identify the clusters and assign 

them with proper weights and thus lower the Q-factors, case IV indicates the 

converse is not necessarily true: low Q-factors do not necessarily mean that an 

ensemble is of good quality. Therefore, cautions must be taken in future ensemble 

determination and assessment. Measures other than Q-factors are needed to check 

the quality of computer-generated ensembles. It is not clear what these measures 

are, but their discovery and identification are going to be critical to the field’s 

progress. 
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 We apply our method to a Ubiquitin ensemble of 143 conformations and identify 

six conformation states. The two most populated conformation states, one of which 

represents the conformation state near the free state of ubiquitin while the other the 

``switched'' conformer, match closely with conformation states identified by other 

studies. The relative populations assigned to these two states by our method, agree 

extremely well with the findings by Shaw's group through long MD simulations(60). The 

validity of such conformation state identification and weight assignments are further 

confirmed by significant improvement in Q-factors and cross-validation. 

 

 We apply our method also on a computationally derived ensemble, ERNST, 

which was refined against RDCs and NOEs. Even though the reproduction of 

experimental data, RDCs in this case, worsens after reprotonation, we are able to 

significantly improve the Q-factors by augmenting the ensemble with a switched 

conformation and reweighting. In doing so we observe the emergence of common 

dihedral angle distributions in both the augmented ERNST ensemble and X-ray 

ensemble. 

 

 The method presented in this work can be applied to other proteins to identify 

conformation states and assign relative populations, provided that sufficient RDC data 

exist. A good question to ask is how much RDC data is required for weight assignment? 

And what type of RDC data is required, NH RDCs, multi-vector RDCs, or both? We plan 

to study this in future work. 

 



	
   52	
  

 The number of conformation states recognized by our method can be used to 

guide the selection of ensemble size in ensemble determination. Most ensemble 

determination methods try out different sizes for replica ensembles, usually from 1, 2, 4, 

8, up to 16. The method presented here provides an informed estimation of the right size 

for the ensemble. Since the method requires an ensemble as a starting point, it could be 

applied alternatively with an existing ensemble determination method until the process 

converges and a right ensemble size is identified. Our results strongly suggest that 

relative weights, instead of the default equal-weights, should be considered as parameters 

in ensemble determination. 
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2.7 Appendix: 
 
Calculation of RDCs from single structure 
 

 Given a 3D structure of a protein, the RDC !ij can be expressed using the 

molecular frame. First, the elements of Saupe matrix is defined as: 

 

 !lm =
3!"#!!!"#!! − !lm

2  (4) 

 

where !! denotes the orientation of the l-th molecular axis with respect to the external 

magnetic field. The RDC !ij can be reformulated in the molecular frame as: 

 

 

!ij =
−!ℎ!i!j
2!" ! !!! − !!!;   !!!

− !!!;   2!!!!;2!!!!;2!!!!   

!yy
!zz
!xy
!xz
!yz

 

(5) 

 

where !x, !y, and !z are the cosines of the angles between the bond vector of the two 

nuclei and the x, y, and z axes of the molecular frame. Let !xk, !yk, and !zk represent the 

k-th !x, !y, and !z. When all the bond vectors are considered, we have the following 

formula: 
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 !exp =
−!ℎ!i!j
2!" !

!y,1! − !x,1! ⋯ 2!y,1!z,1
⋮ ⋱ ⋮

!y,N! − !x,N! ⋯ 2!y,N!z,N

!yy
!zz
!xy
!xz
!yz

 (6) 

 

where !exp is the experimental RDCs and N is the total number of data points. Equation 6 

can be rewritten in the following matrix form: 

 

 !exp = !"# (7) 

 

where c is the constant 
!!!!i!j
!!" !  and A is the Nx5 matrix in equation 6 and S is the 5x1 

vector. Optimal S and thereby !calc (i.e., the calculated RDCs) can be computed by 

singular value decomposition using Moore-Penrose pseudoinverse of matrix A:   

 

 ! =   !!!  !exp (8) 

 

 !calc =   !!!!  !exp (9) 

 

Residual dipolar coupling (RDC) calculation from an ensemble 
 

 The RDC calculation method for a single structure can be extended to take 

ensemble averaging into account so that the ensemble !calc can be obtained. First let us 

consider the assumption that all structures have equal contributions toward the 
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experimental RDC: !exp. When an ensemble with equal weights is considered, we have 

the following formula: 

 
!!
! +

!!
! +⋯+

!!
! +⋯

!!
! ! = !exp (10) 

 

where !k is the A matrix obtained from the k-th structure in the ensemble. S can be 

obtained from the following equation: 

 ! =
!!
! +

!!
! +⋯+

!!
! +⋯

!!
!

!!

!exp (11) 

 

 Strictly speaking, the Saupe matrix might vary for different conformations of the 

protein. In this work we assume the same Saupe matrix for all the conformations. This 

assumption is reasonable especially for proteins that make only small conformation 

changes, as is the case with Ubiquitin.  

  

 Now let us consider the case that structures in an ensemble have different 

populations and thus different amounts of contributions toward the experimental 

observations !exp. Therefore, weights (representing the relative populations) are given to 

different structures and the following formula is used to represent the combination: 

 

!!!! + !!!! +⋯+ !!!! +⋯!!!! ! = !exp 

  (12) 
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where n is the total number of structures  and !! and !k are respectively the relative 

population (or weight) and A matrix of the k-th structure. Thus, S can be obtained from 

the following formula: 

 

 ! = !!!! + !!!! +⋯+ !!!! +⋯!!!! !!!exp (13) 

 

Our problem is thus to find the optimal relative populations for the structures in the 

ensemble so that the experimental RDCs are best reproduced. 

 

Least Squares Fitting Algorithm 
 
The iterative least squares fitting algorithm to a single RDC data set 
 

Iterative Least Squares Fitting ([!1 !2 . . . !n],  !exp) 

for i = 1 to n do 

new_weights(i) = 1/n 

end for 

repeat 

old weights = new_weights 

A = old_weights(1)*A1 + . . . . . + old_weights(n)*An 

S = pseudo_inverse(A) * Dexp 

AS = [A1S A2S . . . . AnS] 

new_weights = non_negative_least_squares(AS, Dexp) 

Until old_weights and new_weights converge. 

return new_weights 
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The iterative least squares fitting algorithm to multiple RDC data sets 
 

Iterative Least Squares Fitting Multiple RDCs ([A1 A2 . . . An], [D1, D2 . . . Dm]) 

for i = 1 to n do 

new_weights(i) = 1/n 

end for 

repeat 

old weights = new_weights 

A = old_weights(1)*A1 + . . . . . + old_weights(n)*An 

 for i = 1 to m do 

S(i) = pseudo_inverse(A) * Di 

AS(i) = [A1S(i) A2S(i) . . . . AnS(i)] 

end for 

AS_all = 

!"(1)
!"(2)
⋮

!"(!)

 

 

D_all = 

!!
!!
⋮
!!

 

 

new_weights = non_negative_least_squares(AS_all, D_all) 

Until old_weights and new_weights converge. 

return new_weights 
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A paper under review by Journal of Biomolecular NMR 

Vijay Vammi and Guang Song 

3.1 Abstract 
 

 In this work, we propose a new way to represent protein native states, using 

Ensembles of a Small number of conformations with relative Populations, or ESP in 

short. Using Ubiquitin as an example, we show that using a small number of 

conformations can greatly reduce the potential of overfitting and assigning relative 

populations to protein ensembles can significantly improve their quality. To demonstrate 

that ESP is an excellent alternative to represent protein native states, we compare the 

quality of two ESP ensembles of Ubiquitin with several well-known regular ensembles or 

average structure representations. Extensive amount of significant experimental data are 

employed to achieve a thorough assessment. Our results demonstrate that ESP ensembles, 

though much smaller in size comparing to regular ensembles, perform equally or even 

better sometimes in all four different types of experimental data used in the assessment, 

namely, the residual dipolar couplings (RDCs), residual chemical shift anisotropy, 

hydrogen exchange rates, and solution scattering profiles. This work underlines the 

significance of having relative populations in describing the native states.    

 

CHAPTER 3. ENSEMBLES OF A SMALL NUMBER OF 
CONFORMATIONS WITH RELATIVE POPULATIONS 
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3.2 Introduction 
 

 Proteins are dynamic molecules and often occupy multiple conformational states 

in their native states. The functional behavior of a protein is thus best understood from 

the distribution and dynamic transition among these conformational states that form the 

native state ensemble (1, 5, 6, 15, 42).  

 

 Nuclear Magnetic Resonance (NMR) experiments have played a pivotal role in 

capturing the dynamics of proteins in their native states. Data obtained from NMR 

experiments have been used as constraints in recovering the underlying structures or 

ensembles. In that process, two different refinement schemes are routinely followed: 

 

i). Average structure representation: In this scheme, a single structure is used to 

explain all the observed experimental data. For Ubiquitin, one of the most studied 

proteins, a single structure has been shown to be sufficient in reproducing most 

experimental data (29, 30). But it was also pointed out that average structure 

representations, due to the lack of structural variance, cannot fully capture the 

underlying dynamics (31, 32). This representation becomes less complete when 

the studied protein occupies multiple distinct sub-states, since the refinement 

protocol would be over-restrained (under-fitting)(33). 

 

ii). Ensemble representation: In this representation, an ensemble of conformations 

is used to explain the experimental data. In the case of Ubiquitin, there has been a 

number of recent work aimed at determining an ensemble of conformations for 
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the protein, such as MUMO(33), EROS (23) and ERNST (34). All of these 

ensembles are shown to represent the dynamics well but there is little confidence 

that any given conformation within the ensemble truly belongs to the native state 

ensemble, since the ensemble might be under-constrained or over-fitted (9, 35). 

 

In this work, we propose a third representation, 

iii). Ensembles of a Small number of conformations with relative Populations  or 

ESP in short: In our recent work (63), we showed that the conformation space 

could be represented by far fewer conformations than the aforementioned 

ensemble representations and the conformations could be clustered into 

conformation states and these conformation states could be assigned  relative 

populations, corresponding to their Boltzmann weights. The advantage of using 

ESP over an average structure is that it overcomes underfitting. The advantage of 

using ESP over using an ensemble with hundreds of conformations is that it 

minimizes overfitting. ESP uses a much smaller number of conformations than 

regular ensembles.  

 

 

 The objective of this work is to establish ESP as a better representation for 

describing the native states of a protein. To demonstrate that ESP ensembles are indeed 

of high quality and minimize overfitting, we resort to a series to significant experimental 

data that are not used in the determination of these ensembles, and show that ESP 

ensembles, though having a much smaller number of conformations, are able to 
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reproduce these experimental data equally well or even better sometimes and with less 

overfitting. Weighted ensembles had been successfully used in modeling unfolded 

protein conformational ensembles (39, 64) and was considered also in loop modeling 

(65), but they are usually not used in determining native state protein ensembles. 

 

 Though cross-validation using a subset of the data points that were left out during 

the ensemble determination stage has been commonly used, unused experimental data of 

different types present an even better resource for assessing the quality of the ensembles 

since they are even more unbiased. Since all of the aforementioned ensembles, namely, 

MUMO, EROS, and ERNST, use NOEs or RDCs as constraints in their construction, 

experimental data on Residual Chemical Shift Anisotropies (RCSA), amide exchange 

reactivities, and solution scattering profiles are employed in this study for cross-

validation.  

 

 Our ensemble representation with relative populations could be thought of as an 

intermediate scheme between the two refinement schemes aforementioned: average 

structure representation or ensemble representation. Both representations have strengths 

and weaknesses. Average structure representation is the simplest in form but lacks 

structure variance, while ensemble representation captures the dynamics of the 

conformation space well but may suffer the problem of over-fitting and there is little 

confidence that any given conformation within the ensemble truly belongs to the native 

stateensemble. The advantage of ESP representation is that it has a very limited number 

of conformation states whose relative populations are rigorously determined (63) without 
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over-fitting. Consequently, there is high confidence on the validity of these conformation 

states.  

 

3.3 Materials and Methods 
 

3.3.1 Ensembles of a Small number of conformations with Relative Populations 
(ESP): 

 Two ESP ensembles were reported in our previous work (63) and will be used in 

this work as example ESPs. 

a). Weighted X-ray ensemble: X-ray conformations resolved in different 

conditions have been shown to form a native state ensemble (17). In our previous 

work (63), 143 such structures of Ubiquitin were collected from PDB (10) to form 

an unweighted X-ray ensemble. After applying the weighting protocol, 16 of 

these structures were selected to form the weighted X-ray ensemble and six 

conformational states were identified (63). The weights assigned to the 

conformational states are in agreement with what was found in the 1 !s 

equilibrium simulation conducted by Shaw’s group (66). The conformational state 

adopted by Ubiquitin when bound to de-ubiquitinating proteins, also called the 

“switched” conformation (67, 68), was given a weight of ~0.30.  

 

b). Enhanced ERNST ensemble: Besides the X-ray ensemble, our conformation 

weighting algorithm was applied to another computationally derived ensemble, 

ERNST (34) to produce an enhanced ERNST ensemble. After introducing a 

“switched” conformation to the ensemble and then assigning relative populations 
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to the conformations in the ensemble, it was found that the enhanced ERNST 

ensemble was able to reproduce experimental data in a comparable accuracy to 

the weighed X-ray ensemble. This enhanced ERNST ensemble contains one X-

ray switched conformation and 35 conformations selected from the original 

ENRST ensemble that has 640 conformations.  

 

In this work, these two ESP ensembles are compared with three regular ensembles 

determined for Ubiquitin: MUMO (33) (pdb-id: 2NR2), EROS (23) (pdb-id: 2K39), and 

ERNST (34) (pdb-id: 2KOX), as well as two NMR structures with pdb-ids 1D3Z (29) 

and 2MJB (30) and one crystal structure 1UBQ (69). 

 

3.3.2 Residual Dipolar Couplings (RDC): 
 

 Residual dipolar coupling comes from the interaction of two nuclear spins 

(dipole-dipole) in the presence of the external magnetic field and is defined (20-22, 29) 

as: 

 

 ! !" = −
!ℎ!!!!     
2!" !   !!!,!,!

cos! ∅!   !!! (1) 

where rA and rB are the nuclear magnetogyric ratios of nuclei A and B respectively, h is 

Plank's constant, ! is permittivity of space, ! is the internuclear distance between the two 

nuclei, Aii the principal moment of the alignment tensor and ∅! is the angle between the 

internuclear vector and ith principal axis of the alignment tensor. The alignment tensor 

could be determined by fitting a single structure or ensemble to the experimental data. 
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Normally, the residual dipolar coupling reduces to zero because of isotropic tumbling. 

The anisotropic measurement can be obtained by the aid of various types of liquid 

crystalline media. Details regarding back-calculation of RDC’s were given in the 

appendix of our previous work (63). 

 

Experimental RDCs used in this work: The RDCs used to determine the weights for the 

X-ray ensemble and enhanced ERNST ensemble are given in (63), along with the codes 

assigned to them according to (55). The Q-factors reported in this work use the newly 

determined RDC dataset in Squalamine and Pf1 media (30), in addition to the Ottiger 

dataset used in the determination of 1D3Z (56). 

 

3.3.3 Q-factor: 
 

 Q-factor is a commonly used measure of the agreement between the experimental 

and calculated RDCs and is defined as: 

 

 !-!"#$%& =
∑ !!"#! − !exp

!

∑ !exp
!

 (2) 

where !!"#! is the calculated RDC and !!"# is the experimental RDC. 

 

 

 



	
   65	
  

3.3.4 Residual Chemical Shift Anisotropy (RCSA): 
 

 Along with RDC’s, chemical shifts also change upon shifting from an isotropic 

medium to an anisotropic medium (29, 70-72). The change is defined by: 

 

 ∆! = !!!  cos! !!" !!!
!!!,!,!!!!,!,!

 (3) 

 

where !!! is the principal moment of the chemical shift tensor, Ajj the principal moment 

of the alignment tensor and !!" is the angle between ith principal axis of the chemical shift 

tensor and jth principal axis of the alignment tensor. The alignment tensor used in RCSA 

back-calculations is generally the same as the one computed from RDCs using either a 

single conformation or an ensemble (63). More information regarding the relation 

between RDC and RCSA back-calculation of a conformation can be found in (70). 

 

 The experimental dataset of RCSA used in this work were reported in (29) along 

with the RDC dataset used for obtaining the alignment tensor. Magnitudes and 

orientations of the chemical shift tensors reported in (72) are used in this work.  

 

3.3.5 Amide Hydrogen Reactivity: 
 

 Hydroxide catalyzed amide hydrogen rates were used as a measure to assess 

conformational distribution of various ensembles (73, 74). The experimental rate 

constants of amide hydrogen exchange depend not only on the solvent accessibility but 
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also on the chemical environment surrounding the amide hydrogen. Even rarely exposed 

amide hydrogen could therefore exhibit a high exchange rate if the chemical environment 

is conducive for such an exchange. This property makes amide hydrogen reactivity a very 

sensitive measure of the conformational distribution of the native states.  

 

Poisson Boltzmann electrostatic calculations: The experimental exchange rate constants 

for all the backbone amide hydrogens of Ubiquitin were reported in the work by 

LeMaster et al (73). In this work, electrostatics calculations needed to predict the 

exchange rates of conformational ensembles are performed in a similar way to what was 

described in a previous work (74). Briefly, surface exposure of amide hydrogens in all the 

conformations belonging to the ensemble is computed using Naccess (75), using default 

values for the atomic radii and 1 Å for the radius of the probe sphere. For all the amide 

hydrogens that are not involved in any hydrogen bonding (computed using HBplus (76)) 

and have a surface exposure greater than 0.5 Å, Poisson-Boltzmann continuum 

electrostatic computations are done using Delphi (77). The CHARMM22 atomic charge 

and radius values (78) are used in the electrostatic computations. To make the 

comparisons feasible between different conformations of the ensemble, N-

methylacetamide is added to the grid in such a way that the molecule is at least 16 Å 

away from any atom of the protein. The charge distribution of N-methylacetamide (or its 

anionic form) is taken from (73). Serines or threonines are mutated to alanine or α-

aminobutyrate respectively before the electrostatic potential is computed. 
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Gauche side chain χ1 conformers have remarkably low solvent exposure than their trans 

counterparts.  To account for this, for every conformation, in addition to computing 

electrostatic potential in the original side chain configuration, a gauche χ1 rotated side 

chain configuration also is used (whenever such a rotation was possible) (73). The side 

chain position with the higher exchange rate is used for further processing. 

 

3.3.6 Solution Scattering Profile: 
 

 Small Angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) 

data encode the information about the shape and size of the bio-molecules in solution (79, 

80).  The observed intensities from X-ray scattering are sensitive to the overall 

conformational distribution of the protein and are being regularly used as complementary 

data to those obtained from NMR or X-ray crystallographic studies (81, 82). Predicting 

the scattering profiles from either single structure or an ensemble are most routinely done 

using the Crysol software package (83).  Along with significantly improving the 

predictions, AXES (Analysis of X-ray scattering data for Ensemble of structures)(84) 

webserver, provides an easy method to predict such intensities from ensembles. The 

predicted intensities of all the ensembles or single structures reported in this paper are 

computed using a local version of AXES webserver, generously provided by Bax’s 

group. The experimental SAXS/WAXS data used in this work are reported in (84). The 

agreement between the predicted and experimental scattering intensities is most 

commonly denoted by the chi value that is defined as:   
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     (4) 

 

where Iexp and Icalc are the experimental and predicted scattering intensities at qi with a 

error of σi and M is the number of observed scattering intensities.  

 

3.4 Results and Discussion 

3.4.1 Agreement with Experimental RDCs: 
 
 
Table 3.1: Q-factors obtained for different bond types by different representations of Ubiquitin. The 
experimental RDCs used for computing these Q-factors consist of the newly obtained Squalamine 
and pf1 dataset (30) and the Ottiger’s dataset(56), the latter of which was used in the  refinement of 
1D3Z and in the fitting of weights for the weighted X-ray and ERNST ensembles. 

NH CaC CaHa CN CHN Description 
0.12 0.10 0.15 0.12 0.23 Weighted X-ray 
0.18 0.11 0.16 0.12 0.26 Unweighted X-ray 
0.10 0.14 0.18 0.11 0.23 ERNST (34) 
0.12 0.12 0.15 0.12 0.22 Enhanced ERNST 
0.07 0.12 0.07 0.14 0.19 EROS (23) 
0.23 0.17 0.20 0.23 0.28 MUMO (33) 
0.20 0.18 0.22 0.18 0.30 1UBQ (69) 
0.11 0.10 0.08 0.12 0.16 1D3Z (29) 
0.069 0.097 0.083 0.096 0.2 2MJB (30) 

 
 

 Table 3.1 lists the Q-factors obtained for different bond types using different 

representations of Ubiquitin. The RDC datasets used for computing these Q-factors 

consist of Ottiger’s multi-vector dataset (56) and the newly obtained RDC dataset in 

Squalamine and Pf1 media (30). Weighted X-ray, ERNST, enhanced ERNST, EROS and 

1D3Z used only the Ottiger’s dataset (56) in their structure/ensemble refinement or 
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weighting, while the 2MJB ensemble used both datasets. Therefore the Q-factors reported 

here in Table 3.1 serve not as a complete cross-validation but as a comparison of these 

Ubiquitin representations regarding their ability to reproduce existing or new RDC data. 

It is worth pointing out that the two ESP ensembles, the weighted X-ray ensemble and the 

enhanced ERNST ensemble, are able to well reproduce the new RDC dataset (in 

Squalamine and Pf1 media) even though the dataset was not used in determining these 

two ensembles (63).  

 

 The RDC Q-factors obtained for bonds with hydrogen atoms (NH, CaHa, CHN) 

are highly sensitive to the positions of the hydrogen atoms. Allowing a certain degree of 

deviation from the ideal covalent geometry can lower the Q-factors significantly. It 

should be noted that no such optimization of hydrogen atom positions was applied to our 

weighted X-ray or enhanced ERNST ensemble, while it was to the other representations, 

whose refinement protocols allowed such deviations from the ideal covalent geometry to 

better fit experimental RDC data. Nevertheless, the two ESP ensembles have a 

comparable performance in RDC Q-factors to the other ensembles or average structures. 

Structure 2MJB gives the best RDC Q-factors, which is not surprising since it utilizes all 

the RDC data in its refinement process. 

 

3.4.2 ESP ensembles give Better Agreements with Residual Chemical Shift 
Anisotropies (RCSA): 

 

 Table 3.2 compares the RMSDs between experimental and computed residual 

chemical shift anisotropies (RCSAs) for carbonyl carbons, nitrogens, and amide 
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hydrogens, using different Ubiquitin ensembles. Since chemical shift anisotropies were 

not used in determining any of the above structures or ensembles, they can serve as an 

unbiased dataset for assessing the accuracy of different structures or ensembles. From the 

table it is seen that weighted X-ray (an ESP ensemble) outperforms its unweighted 

counterpart in predicting RCSAs: the RMS values of all three atom types are significantly 

reduced (see Table 3.2, row 1 and 2). Except for a nominal increase in RMSD for amide 

hydrogens, enhanced ERNST (another ESP ensemble) also performs better than ERNST 

itself.  

 

Table 3.2: RMSDs of residual chemical shift anisotropy (RCSA) as predicted by different 
representations of Ubiquitin. None of the adjustable parameters in the RCSA was modified while 
predicting the chemical shifts. QNH is the RDC Q-factor of the NH dataset that was used in obtaining 
the alignment tensor.  The same alignment tensor was used in the RCSA computations. 

Carbonyl Nitrogen Amide QNH Description 
6.37	
   16.2	
   1.57	
   0.11	
   Weighted	
  X-­‐ray	
  
6.87	
   17.3	
   1.61	
   0.17	
   Unweighted	
  X-­‐ray	
  
10.7	
   16.0	
   1.53	
   0.06	
   ERNST	
  
7.84	
   15.7	
   1.61	
   0.11	
   Enhanced	
  ERNST	
  
8.63	
   16.6	
   1.51	
   0.07	
   EROS	
  
13.2	
   19.63	
   1.67	
   0.22	
   MUMO	
  
13.1	
   18.6	
   1.68	
   0.18	
   1UBQ	
  
8.59	
   14.17	
   1.47	
   0.10	
   1D3Z	
  
7.71	
   15.39	
   1.50	
   0.07	
   2MJB	
  

 

 Similar to the sensitivity to hydrogen atom positions in RDC calculations, 

calculations of the chemical shift tensors of nitrogens and amide hydrogens , and thus 

their RCSA predictions, depend on the orientations of the amide bond vectors. 

Comparisons of RCSAs regarding these two atom types should thus be done cautiously 

and with this in mind.  From Table 3.2, it is seen that both ESP ensembles outperform 

other representations in carbonyl carbon RCSA. While for nitrogens and amide 
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hydrogens, the performance of ESP ensembles is slightly worse than average structure 

representations but comparable to other ensemble representations.  

 

 In ideal situations, a refinement/weighting using RDC data would implicitly 

improve the RSCA predictions of the structure/ensemble as an optimization of the bond 

vector orientation by the RDC data also improves the chemical shift tensor orientation of 

the involved atoms (chemical shift tensor orientations of N and HN atoms depend upon 

NH bond vector orientation encoded in NH RDC data while those of Carbonyl atoms 

depend upon CN bond vector orientation provided by CN RDC data). However, noises in 

experimental RDC data along with errors in structure/ensemble models preclude such 

ideal situations. Consequently, RCSAs are considered mostly independent from RDC 

data and were commonly used in cross-validation for observables determined by RDCs 

(29).  

 

Importance of the “switched” conformation: The “switched” conformation, represented 

by 2G45-E, was given a population weight of ~0.30 by our weighting protocol (63) in the 

enhanced ERNST ensemble. This weight was higher than the expected weight given in 

one previous work (85). Comparing ERNST without the “switched” conformation and 

that with (rows 3 & 4), the latter performs better, confirming the importance of the 

“switched” conformation.  
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3.4.3 ESP ensembles Reproduce Amide Exchange Rates Well: 
 

 Ensembles naturally incorporate backbone flexibility, potentially increasing the 

number of surface exposed amide hydrogens than an average structure representation. 

Therefore, in this section only ensemble representations of Ubiquitin are used for 

comparison. Figure 3.1 plots the orders of differences between experimental and 

predicted pKa values (both in log scale) by various ensemble representations of 

Ubiquitin. A single index, the squared sum of the deviations, is given to every ensemble 

in the figure to give an overall sense of the quality of the predictions. Only residues 

exposed significantly in the X-ray, MUMO, EROS and ERNST ensembles and having an 

experimental pKa value of ~ 5.0 or higher are shown. (Since a different program was 

used to compute surface accessibility, our pKa predictions differ from LeMaster and 

colleagues’ computations for some of the residues (74)). 
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Figure 3.1: Residue-wise differences between experimental amide hydrogen reactivity data (in log 
scale) and those predicted by different representations of Ubiquitin. Only the hydrogens that are 
significantly exposed in all the ensembles (X-ray, EROS, ERNST, and MUMO) are shown here. A 
single index, the squared sum of the deviations, is given to every ensemble to give an overall sense of 
the quality of the predictions. 

 

 

pKa predictions are not possible for residues 24, 31-36, 40-42, 48, 51 and 57-60, even 

though these residues exhibit high experimental exchange rates. This is because none of 

the ensembles has any surface exposed amides for these residues, which is needed to 

reproduce pKa values properly.  

 

 The weighted X-ray ensemble predicts the experimental pKa values quite well, 

having an overall performance better than all the unweighted ensembles. Likewise, the 
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enhanced ERNST ensemble also predicts the experimental pKa’s better than the 

unweighted ensembles. Comparing with ERNST itself (blue bars), enhanced ERNST 

(weighted) performs significantly better on many residues.  

 

 In summary, both ESP ensembles (i.e., weighted X-ray and enhanced ERNST) 

perform well in predicting the experimental pKa values.  This further validates that ESP 

ensembles are of high quality. 

 

3.4.4 Solution Scattering Profile: 
 

 Solution scattering profiles are observed scattered intensities of X-rays that are 

collected as a function of the scattering vector q. Typically a q value of 0 to ~0.3 Å falls 

into the Small Angle X-ray scattering (SAXS) regime while the range for the Wide Angle 

X-ray scattering (WAXS) regime is ~0.1 to 2.5 Å. The information encoded in these two 

regimes along with the results obtained for different structure or ensemble representations 

of Ubiquitin are presented in the following two sections. 

 

3.4.4.1 Small Angle X-ray Scattering (SAXS): 
 

 Scattering intensities observed at SAXS encode information about the overall size 

and shape of the molecule, radius of gyration (Rg) and other low-resolution information 

(86). Table 3.3 lists the chi value obtained by different representations of Ubiquitin.  
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Table 3.3: SAXS or WAXS Chi values obtained for different representations of Ubiquitin. 

SAXS chi WAXS chi Ensemble 
1.24 3.45 Weighted X-ray  
1.28 3.65 Unweighted X-ray 
1.49 3.75 ERNST 
1.37 3.00 Enhanced ERNST 
1.27 4.53 EROS 
1.36 3.99 MUMO 
1.04 4.87 1UBQ 
1.17 3.40 1D3Z 
0.84 4.98 2MJB 

 

 From Table 3.3 it is seen that, both weighted X-ray and ERNST ensembles have 

better chi values than their unweighted counterparts. The decreases in chi value confirm 

that conformations selected to form these two ESP ensembles and the weights assigned to 

them are meaningful. However, since SAXS data are of low resolution and are not the 

best data for validating ensembles, this should be taken only as a weak confirmation. 

Indeed, average structure representations (1D3Z, 1UBQ, or 2MJB) produce an excellent 

agreement with the experimental data, implying that at low resolution the native states of 

Ubiquitin appear to be mostly a single conformation. 

 

 Figure 3.2 plots the relative intensities (Iexp/Icalc) for different representations. 

While all the representations perform highly similarly at smaller values of q, at higher 

values of q (> 0.14 Å) single structure representations perform the best, followed by the 

weighted X-ray ensemble.  
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Figure 3.2: Relative intensities (Iexp/Icalc) as a function of q in the SAXS regime for different 
representations of Ubiquitin. The chi values obtained for different representations also are given. 

 

3.4.4.2 Wide Angle X-ray Scattering (WAXS): 
 

 Scattering intensities observed at wider angles (higher q) encode information of 

higher resolution than SAXS but at the cost of potentially bringing in a higher noise level 

since the intensity of solution scattering also increases. Since data used in this analysis 

are limited to the range of q values that are less than 1.0 Å, the extent of this noise is 

limited. WAXS data are often used to validate structural models and to identify structural 

changes (86). Table 3.3 lists the WAXS chi values obtained for different representations 

of Ubiquitin.  
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 Because of its much higher resolution, WAXS data is able to detect conformation 

state heterogeneity within the native state ensemble. Our first observation based on the 

WAXS results in Table 3.3 is that ensemble representations generally do better than the 

average structure representations (1UBQ and 2MJB). 1D3Z is an exception. Secondly, 

weighted X-ray and enhanced ERNST (the two ESP ensembles) are better than 

unweighted X-ray ensemble and ERNST ensemble respectively. Thirdly, though 

weighted X-ray (16 conformations) and weighted ERNST (36 conformations) have 

significantly fewer conformations than the unweighted X-ray (143 conformations) and 

ERNST (640 conformations), and the other ensembles such as EROS (116 

conformations) and MUMO (144 conformations), these two ESP ensembles clearly 

outperform the other ensembles in WAXS chi values. This implies that ensemble sizes 

ought to be fairly limited to avoid overfitting, and that conformations in an ensemble 

should not be too spread out, and that having too many conformations makes an 

ensemble highly susceptible to overfitting. Put these together, it seems that the optimal 

way to represent the native states of a protein is to use i) an ensemble, of ii) a small 

number of conformations, and iii) with relative populations, as in ESP ensembles. 

 

Figure 3.3 plots the detailed, relative intensities (Iexp/Icalc) computed from different 

Ubiquitin representations in the WAXS regime.  
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Figure 3.3: Relative intensities (Iexp/Icalc) as a function of q in the WAXS regime for different 
representations of Ubiquitin. The chi values obtained for different representations also are given. 

 

3.5 Conclusions 
 

 In this work, by using Ubiquitin as example and extensive experimental data 

validations, we demonstrate that it is significant to assign relative populations to 

conformation ensembles and that ESP ensembles, though having a much smaller number 

of conformations, are of better quality than regular unweighted ensembles. Specifically, 

we carry out a thorough cross-validation of two ESP ensembles of Ubiquitin that were 

determined in an earlier work (63), namely, the weighted X-ray ensemble and the 

enhanced ERNST ensemble, and show that these two ensembles perform extremely well 

in all four different types of experimental data: the residual dipolar couplings (RDCs), 
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residual chemical shift anisotropy, hydrogen exchange rates, and solution scattering 

profile. This is not the case with other ensembles. For example, the MUMO ensemble, 

which performs well in predicting hydrogen exchange rates, does rather poorly in 

predicting RDCs. The ERNST or EROS ensemble does well in predicting RDCs but does 

not perform well in predicting hydrogen exchange rates or the residual chemical shift 

anisotropies. All these three ensembles (namely MUMO, EROS, and ERNST) do rather 

poorly in reproducing WAXS chi values.  As a result, it is reasonable to conclude that the 

two ESP ensembles portray the Ubiquitin native states more accurately. Both ensembles 

reveal that there are six conformation states in Ubiquitin native states, two of which has 

dominating populations over the others. The conformation state with the largest 

population contains the unbounded conformation of ubiquitin, 1UBQ, while the one with 

the second largest population corresponds to the “switched” conformation, consisting 

exclusively of ubiquitin structures in complex with deubiquitinating enzymes (63).  

 

 Qualitatively speaking, the idea of having an ensemble with a small number of 

conformation states is advantageous. It both captures the dynamical nature of the native 

state (for which a single average structure is often insufficient to account for) and 

maintains a strong confidence on the validity of the conformation states. It is the most 

natural extension of the average structure representation. In contrast, confidence on any 

individual conformation that it truly belongs to the ensemble is elusive in regular 

Ubiquitin ensembles since they contain so many conformations and the removal of any 

single conformation hardly affects the ensemble. Consequently, these ensembles are 

highly susceptible to over-fitting.  
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A manuscript in its final stages of preparation. 

 

4.1 Abstract 
 
 The function and dynamics of many proteins are best understood not from a 

single structure but from an ensemble. In our previous work, using Ubiquitin as an 

example we have shown that the native state ensemble could be represented by a few 

appropriately weighted conformations using Residual Dipolar Couplings as constraints. 

Ubiquitin, being a model protein for dynamics studies using NMR experiments, has 

abundant experimental data to construct such ensembles but this is not true for many 

other proteins. To make the method generally applicable to other proteins, it is important 

to identify the minimal experimental data necessary to construct such ensembles. In this 

work, we show that such weighted ensembles can be derived using only a few NH RDCs 

and the ensemble thus obtained is of similar quality to the previous ensembles 

constructed using both NH RDCs and multi-vector RDCs. We extend the method to Hen 

Egg White Lysozyme (HEWL) and show that a weighted HEWL ensemble consisting of 

3 conformational states reproduces the cross-validation experimental data, RCSA, and 

solution scattering profiles as accurately as, or even better than other solutions of HEWL 

reported in the literature.  

 

 

CHAPTER 4. DETERMINE THE MINIMAL REQUIREMENT 
FOR EXPERIMENTAL DATA IN ASSIGNING RELATIVE 

POPULATIONS TO ENSEMBLE 
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4.2 Introduction 
 
 
 The functional behaviors of the proteins are often realized by complex 

conformational changes they undergo (1, 5, 6, 9, 15, 42, 43). Significant advances in 

experimental techniques, especially in Nuclear Magnetic Resonance (NMR) and Solution 

scattering profile, have presented opportunities to observe these conformational changes 

in biologically relevant time scales (21, 87). Exciting computational techniques have also 

been developed to interpret these experimental data for a better understanding of the 

underlying energy landscape (23, 31, 32, 34, 88).  

 

 Experimental data obtained from NMR have been routinely interpreted using 

either a single average conformation, or an ensemble that may contains hundreds of 

conformations. The average conformation, being the least complex, could suffer from 

under-fitting. It may underrepresent structural variance that exists in the native states of a 

protein, especially when the protein occupies multiple sub-states (7). On the other hand, 

ensembles that contain hundreds of conformations are highly susceptible to over-fitting 

and there is little confidence that any given conformation within the ensemble truly 

belongs to the native state ensemble (9, 89).  

 

 In our previous work (63), we showed that the conformation space could be 

represented by far fewer conformations than the aforementioned ensemble 

representations and the conformations could be clustered into conformation states and 

these conformation states could be assigned relative populations, corresponding to their 

Boltzmann weights. We name such ensembles ESP ensembles, or Ensembles of Small 
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number of conformations with relative Populations. The advantage of using an ESP 

ensemble over an average structure is that it can capture the intrinsic dynamics existed in 

the native states of many proteins that a single structure misses due to lack of structural 

variance. The advantage of using ESP over using an ensemble with hundreds of 

conformations is that it minimizes over-fitting as ESP uses a much smaller number of 

conformations than regular ensembles.  

 

 The objective of this work is to determine what is the minimal amount of 

experimental data, especially Residual Dipolar Coupling (RDC) data that is required to 

reliably generate ESP ensembles. ESP ensembles were constructed for Ubiquitin using 22 

sets of NH RDC data and 2 sets of multi-vector RDCs (63). Are all these data sets 

needed? Or only a smaller set of them are necessary? These questions are important since 

for most proteins we don’t have the luxury of having as many sets of RDC data as there 

are for Ubiquitin. A definite answer to these questions can assist experimentalists to 

determine what and how much data need to be collected in order to use the method as 

prescribed in (63) to assign relative populations to a protein ensemble of interest. 

 

 In the rest of this work, we show that ESP ensembles, similar to those determined 

in (63), could be determined using a small amount of experimental data that is as little as 

a few NH RDCs. To ensure the weights assigned are significant and these ensembles are 

still of high quality, we carry out a series of evaluations and careful cross-validations. 

Lastly, as an application, we apply the proposed protocol to Hen Egg White Lysozyme 

(HEWL) that has 8 sets of NH RDC data. The newly determined ESP ensemble for 
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Lysozyme is shown to reproduce the cross-validation experimental data, RCSA, and 

solution scattering profiles as accurately as, or even better than other solutions of HEWL 

reported in the literature.  

 
 

4.3 Materials and Methods 
 
 

4.3.1 Residual Dipolar Couplings (RDC) 
 
 Residual dipolar coupling originates from the interaction of two nuclear spins 

(dipole-dipole) in the presence of the external magnetic field and is defined (20-22, 29) 

as: 

 

	
   ! !" = −
!ℎ!!!!     
2!" !   !!!,!,!

cos! ∅!   !!! 	
   (1)	
  

Where rA and rB are the nuclearmagnetogyric ratios of nuclei A and B respectively, h is 

Plank's constant, ! is permittivity of space, !  is the internuclear distance between the two 

nuclei, Aii the principal moment of the alignment tensor and ∅! is the angle between the 

internuclear vector and ith principal axis of the alignment tensor. The alignment tensor 

could be determined by fitting a single structure or ensemble to the experimental data. 

Normally, the residual dipolar coupling reduces to zero because of isotropic tumbling. 

The anisotropic measurement can be obtained by the aid of various types of liquid 

crystalline media. Detailed steps on back calculations of RDC’s were given in our 

previous work (63). 
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 The NH RDC datasets along with multi-vector RDC datasets for Ubiquitin used in 

this work are given in Appendix Table 4.11. The NH RDC datasets used for HEWL are 

given in Appendix Table 4.12. 

 

4.3.2 Q-factor 
 
 Q-factor is a commonly used measure of the agreement between the experimental 

and calculated RDCs and is defined as: 

 

 !-­‐!"#$%& =
∑ !!"#! − !exp

!

∑ !exp
!

 (2) 

where !!"#! is the calculated RDC and !!"# is the experimental RDC. 

 

4.3.3 Residual Chemical Shift Anisotropy (RCSA) 
 
 Along with RDC’s, chemical shifts also change upon shifting from an isotropic 

medium to an anisotropic medium (29, 70, 71). The change is defined by: 

 

	
   ∆! = !!!  cos! !!" !!!
!!!,!,!!!!,!,!

	
   (3)	
  

 

where !!! is the principal moment of the chemical shift tensor, Ajj the principal moment 

of the alignment tensor and !!" is the angle between ith principal axis of the chemical shift 

tensor and jth principal axis of the alignment tensor. The alignment tensor used in RCSA 

back-calculations is generally the same as the one computed from RDCs using either a 
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single conformation or an ensemble (63). More information regarding the relation 

between RDC and RCSA back-calculation of a conformation can be found in (70). 

 

 The experimental dataset of RCSA for Ubiquitin used in this work were reported 

in (29) along with the RDC dataset used for obtaining the alignment tensor. Magnitudes 

and orientations of the chemical shift tensors are the same as those reported in (72). The 

experimental RCSAs for HEWL used in this work were taken from (90).  

 

4.3.4 Creating an Artificial Conformation Ensemble and Artificial RDC Data 
 
 As in our previous work (63), we first create an artificial native state ensemble  

and use it as the reference, similar to what was done in (33). We then generate artificial 

RDC data based on the ensemble composition. The advantage of using artificial 

ensembles and artificial RDCs is that one has perfect control over their compositions and 

their noise levels. The artificial native state ensemble used in (63) is used again in this 

work, with slight modifications. 

 

 Briefly, five different conformations of Ubiquitin are assumed to be the centers of 

the five conformational states of the protein. These five conformations are chosen such 

that the minimum backbone RMSD between any two conformations is greater than 1.5 Å. 

We then locally sampled (less than 1 Å away from the center) more conformations 

around these centers and used them, together with the centers, to represent the 

conformation states. The Boltzmann weight of each conformational state is set to be 

proportional to the number of conformations in that energy well, except for conformation 
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state 1, which are given a weight of 0.  Conformational states whose relative populations 

are less than 10% are not considered, as there is much less confidence in the weights 

assigned to them. To include noise in the ensemble, noise conformations are sampled at 

1.5 Å distance away from the centers. All the conformations, except for the 

conformations belonging to state one, are then used to generate artificial RDC’s. 22 sets 

of artificial NH RDCs are generated using alignment tensors that are taken from the 22 

sets of real experimental NH RDCS of Ubiquitin. To simulate experimental noise in the 

RDC data, Gaussian noise is added to the artificial RDC’s. The number of conformations 

sampled in each sub-ensemble and the associated Boltzmann weight are given in Table 

4.1.  

 

Table 4.1: Boltzmann weights of the conformational states in the artificial ensemble. Conformational 
state one is not used in the experimental data generation and hence has a Boltzmann weight of 0. 

Conformational State Two Three Four Five Total 
# of Conformations 200 350 500 700 1750 
Boltzmann weight 0.114 0.20 0.285 0.40 1 
 

4.3.5 A Sampling of the Artificial Energy Landscape 
 
 Next we create a sampling of the energy landscape as defined by the above 

artificial ensemble. Since generally it is not realistic to expect conformation samplings to 

be proportional to the Boltzmann distribution, we purposely select a biased sampling of 

the ensemble. Specifically, 21, 60, 6, 7, 290 conformations are randomly selected from 

conformation state one, two, three, four, and five respectively. These conformations, 

along with an equal amount of noise conformations generated around each conformation 

state are mixed together to form a “sample ensemble” (see Table 4.2). It should be noted 
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that, the samplings around the conformational states are noisy as a result and are not 

proportional to the Boltzmann weights of the conformational states. The input to the 

weighting algorithm as described next is this “sample ensemble” and the artificial 

experimental data created out of the native state ensemble.  

Table 4.2: The composition of the sample ensemble. 

Conformational	
  State	
   One	
   Two	
   Three	
   Four	
   Five	
   Total	
  
#	
  of	
  conf.	
   21	
   60	
   6	
   7	
   290	
   384	
  
#	
  of	
  noise	
  conf.	
   21	
   60	
   6	
   7	
   290	
   384	
  
 

4.3.6 Ensemble of Small Number of Conformations with Relative Populations 
(ESP): 

 
 In our previous work (63), ESP ensembles of Ubiquitin were determined by using 

experimental data that consisted of 22 NH RDC datasets and two multi-vector RDC 

datasets. In this work, we aim to demonstrate that NH RDCs alone are sufficient for the 

weight assignment and to determine the minimum number of NH RDCs that is required. 

This objective is significant because it will put much less a burden on experimental data 

collection and will make it easier to extend the method to assign relative populations to 

other protein ensembles. Using only NH RDCs does present some new challenges: since 

multi-vector RDC datasets are not used, the numbers of experimental data points, or RDC 

constraints used to determine the ensemble, become significantly fewer. In the following 

sections we review our previous method and present the modifications needed to still 

apply it when only NH RDC datasets are available.  

 

 Given as input an ensemble of conformations and experimental RDC data as 

constraints, the original method, as detailed in (63), had two key steps in constructing an 
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ESP ensemble: 1) identify and select representative conformations out of the given 

ensemble of conformations; 2) using the RDC data as constraints and a guide, merge the 

representative conformations into conformational states and assign to them relative 

populations while minimizing over-fitting.  

 

Step 1: Identifying representative conformations for the conformation states 

Assuming that the starting ensemble has all the conformational states represented with 

reasonable accuracy, there are two alternative ways to identify representative 

conformations for the conformation states to be determined. 

a) Identify representative conformations by least square fitting: In situations 

where the number of conformations or conformation clusters (i.e., a small number 

of conformations that are tightly close to one another in terms of RMSD distance) 

is equal or less than the number of RDC constraints, least square fitting can be 

applied to the conformations or clusters to find the weight assignments that best 

fit the RDC data.  Conformations or conformation clusters that has non-zero 

weights are then selected as representative conformations. Though being a over-

fitting, least square fitting at this step was found to be effective in eliminating the 

majority of noise conformations from the ensemble (63).  However, it should be 

noted that the weights obtained at this point are over-fitted. This is not a problem 

since these over-fitted weights are used only to separate noise conformations from 

representative conformations.  
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b). Identify representative conformations through many randomized runs: this 

option is used when the number of initial conformations is greater than the 

number of RDC constraints. This is more likely to be the case when only NH 

RDCs are used. In such a case, only a subset of initial conformations or 

conformation clusters, instead of all of them as is in the case of (a), are selected 

randomly and used as input for the weighting procedure.  The weights assigned to 

these conformations or clusters are then recorded. This procedure is repeated 

many times and the weights assigned to each conformation are tallied and 

averaged. Conformations or conformation clusters that consistently receive 

significant weights are then identified as representative conformations.  

Specifically, we consider a conformation to have a significant average population 

if the mean of its populations tallied over the randomization runs plus the standard 

deviation is greater than 0.07, a population around and below which becomes 

hardly detectable experimentally. 

 

Step 2: Form conformation states while avoiding Over-fitting: 

 Once the representative conformations are identified, the algorithm proceeds to 

form conformation states. Careful consideration is taken to identify and avoid over-fitting 

in the process. An example that illustrates the steps involved is given in Figure 4.1. 

Briefly, the procedure is:  

i). The representative conformations obtained after pruning the noise 

conformations are clustered together to form a hierarchical tree in which all the 

representative conformations form the leaf nodes and closest pairs of nodes are 
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iteratively merged together to form internal nodes (or sub-ensembles). (see Figure 

4.1, panel a). The experimental data, RDC’s, are replicated into M sets. These M 

sets are identical to one another except for a small amount of random Gaussian 

noise (replica noise) added to them. The purpose for this RDC data replication is 

to guard against over-fitting (63).   

 

Figure 4.1: In this illustration, all the solid shaded ovals are conformational states not yet reached. 
Line shaded ovals are conformational states reached and split into new ones. The unshaded ovals are 
the current conformational states. In the panel a, the hierarchical tree is formed by merging 
conformational states closest to each other. The only state visible at the start of protocol is root of the 
tree. In panel b, two new states are discovered and the split is approved by the RDCs. In panel c, one 
more cluster is discarded into 2 new states and again the split is approved by RDC's. In panel d, 
splitting exposes a few more conformational states but are found to be over-fitted by RDC's. The 
final states approved by RDC's are conformational clusters 123, 45, 6.  

 

ii). A traversal from the root node towards the leaf node introduces a new 

conformational state at every step. In our study, we found that one can confidently 
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move beyond representing the entire ensemble as one conformation state (the root 

node) to reach at a level where there are several sub-ensembles and assign relative 

populations to these sub-ensembles but not to the point where every conformation 

(leaf node) is assigned a weight. These exists a limit beyond which one cannot 

further divide a sub-ensemble without incurring over-fitting. This limit represents 

the extent to which relative populations can be assigned and it depends on the 

quality of the ensemble and the quality and quantity of the experimental data. 

 

iii). At every step of the traversal, the conformational states are weighed using the 

M replicas of experimental data. If the newly obtained conformational states are 

valid and are not subjected to over-fitting, the weights assigned by the M replicas 

of experimental data should highly correlate between one another (see Figure 4.1, 

panels b and c). The onset of over-fitting is when such correlations start to greatly 

degrade, signifying that the data is now being fitted to the random noise added to 

the replicas instead. A traversal is cancelled if it causes over-fitting. The process 

stops when no more traversal towards to the leaf nodes can be made (Figure 4.1, 

panel d). 

4.3.7 Picking the Right Level of Replica Noise !!"#$%&' to Promptly Detect Over-
fitting  

 

 Each of the RDC data-point in the replicas used in the above fitting procedure can 

be expressed as: 

 

  !"!!"#$%&' = !"!!"#$%&' +   !!"# +   !!"#$%&'                               (4) 
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where   !"!!"#$%&' represents actual dipolar couplings, !!"# experimental measurement 

noise in RDC that is the same across all the M sets of experimental data replicas, while 

!!"#$%&' is the random Gaussian noise added and is different for different replica. 

 

 In our study, we find that the experimental noise !!"# is large enough that when 

only one single NH RDC dataset (one data-point for all available residues) is used, it 

results in under-fitting, i.e., the conformation states cannot be fully separated and 

identified. Using multiple RDC datasets decreases the experimental noise by a factor of 

square root of n, where n is the number of datasets. A similar equation to (4) but for n 

RDC datasets could then be written as: 

 

!"!!"#$%&' = !"!!"#$%&' +   !!"#/ ! +   !!!"#$%&/ !            (5) 

 

 Along with decreasing the experimental noise, using multiple NH RDC datasets 

also helps in capturing the dynamics present in the native state ensemble well. In our 

study, we find that for a given number of NH RDC datasets some combination of NH 

RDC datasets can resolve the four states accurately while others fail to do so resulting in 

either under-fitting or over-fitting. Increasing the number of NH RDC to 4 or more 

datasets alleviates this problem significantly. This observation is in accordance to the 

degeneracy problem present in RDCs and studies in the past have suggested using 

multiple RDCs obtained in independent media to fully capture the dynamics (91).   
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Picking the right level of replica noise !!"#$%&' is critical in identifying over-fitting.  

 

a). If !!"#$%&' is too high, it will introduce too much uncertainty to the data and 

make it impossible to distinguish the conformation states.  

 

b). If !!"#$%&' is too low, it will not cause enough perturbation to the system that is 

needed to identify over-fitting.  

 

 Intuitively speaking, the replica noise represents a “shaking” to the solutions 

found by least square fitting. If there is an over-fitting or it is fitting to noises at a given 

step, the solution is unstable and some shaking in the noise level will produce a different 

solution. On the other hand, if it is fitting to the data, then the solution should be stable 

and some shaking will not disturb it.  

 

 As with experimental noise, the net effect of replica noise !!"#$%&' also gets 

reduced at a rate of the square root of n when n NH datasets are used (see Eq. (5)). 

Therefore, when n NH datasets are used, !!"#$%&' shouldbe increased proportionally (by 

! times) to maintain the same optimal level so that it can produce enough perturbation 

to identify over-fitting. Therefore the equation in (5) for n NH RDC datasets could be 

expressed as:  
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!"!!"#$%&' = !"!!"#$%&' +   !!"#/ ! +   ( !  !!"#$%&')/ !  

 

 = !"!!"#$%&' +   !!"#/ ! +   !!"#$%&'.               (6) 

 

where   !!"#$%&' is the optimal noise level required for single NH RDC dataset. In doing 

this, the level of experimental noise gets effectively reduced while the effective replica 

noise level remains the same. Details on obtaining   !!"#$%!" are given in the Results 

section. 

4.3.8 Solution Scattering Profile 
 
 Small Angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) 

data encode the information about the shape and size of the bio-molecules in solution (79, 

80).  The observed intensities from SAXS/WAXS are sensitive to the overall 

conformational distribution of the protein and are being regularly used as complementary 

data to those obtained from NMR or X-ray crystallographic studies (82, 87). Predicting 

the scattering profiles from either single structure or an ensemble are most routinely done 

using the Crysol software package (83).  Along with significantly improving the 

predictions, AXES (Analysis of X-ray scattering data for Ensemble of structures) (84) 

webserver, provides an easy method to predict such intensities from ensembles. The 

predicted intensities of all the ensembles or single structures used in this work are 

computed using a local version of AXES webserver, generously provided by Bax’s 

group. The experimental SAXS/WAXS data used in this work are reported in (84). The 

agreement between the predicted and experimental scattering intensities is most 

commonly denoted by the chi value that is	
  defined	
  as:	
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 !ℎ! =   
1
!

!!"! !! −   !!"#!    !!
! !!

!!

!!!

     (7) 

 

where Iexp and Icalc are the experimental and predicted scattering intensities at qi with a 

error of σi and M is the number of observed scattering intensities.  

4.4 Results and Discussion 
 
 
 In the following sections, we first obtain the optimal replica noise level (see 

Methods) required to identify over-fitting and then evaluate the success rate in resolving 

the four conformational states of the artificial native energy landscape when an increasing 

number of NH RDCs are used, up to 16 NH RDCs. We then apply the method to 

Ubiquitin and Hen Egg White Lysozyme (HEWL) ensembles to assign relative 

populations and examine the quality of weighted ensembles thus determined. 

   

4.4.1 Obtaining Optimal Replica Noise (!!"#$%&') 
 

 Recall that the role played by the replica noise is to cause just enough perturbation 

to identify over-fitting but such a perturbation may result also in under-fitting. Because of 

this behavior of optimization, the replica noise is chosen such that the four 

conformational states of the artificial energy landscape are fully resolved for the majority 

(>60%) of the time. This value was found to be 0.036 Hz per one experimental data point 
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and should be increased, by ! times, when n such data points are present when multiple 

experimental data sets are used.  

 

Accuracy of resolving the conformational states using different number of NH RDC 

datasets: 

 Using multiple NH RDC datasets helps reduce the degeneracy problem associated 

with RDC data sets. To estimate the errors introduced by fewer NH datasets, we run the 

protocol 100 times for a given number of NH datasets, using a random combination of 

NH datasets at every iteration. Each combination of NH datasets is then run another 100 

times and is marked as success if all four conformational states are identified for at least 

60% of the time. The frequencies of success, as a function of the number of NH datasets 

used, are plotted in Figure 4.2.  
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Figure 4.2: The frequency of success, defined as identifying the four conformational states accurately 
more than 60% of time, against the number of NH RDC datasets.  

 

 As expected, the success rates while using fewer (<4) NH datasets is low. It 

should be noted that, this behavior is not due to the presence of experimental noise or 

replica noise but RDC data itself as a few combinations of NH RDC datasets, even when 

using only 2 NH datasets, perform well. Increasing the number of datasets beyond 6 

increases the success rates beyond ~70% for all the experimental noises tested in this 

work.  
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Experimental data requirements and recommended procedure 

 

 Based on our results on artificial energy landscape, the confidence on the number 

of conformational states in the energy landscape depends on the number of experimental 

datasets and their capability to capture the native state dynamics. Beyond 6 NH datasets, 

the experimental noise does not seem to play a role and the conformational states could 

be resolved with ~70% confidence level. Highly erroneous data sets (  !!"# > 0.50  !") 

are not tested in this work but are shown to unreliable by (92). 

 

Recommendation: 

 To extending this work to actual protein ensembles, we recommend to use as 

many NH datasets as available with a minimum of 6 NH datasets.  Confidence on the 

correctness of the results (in terms of success rate) could be estimated based on Figure 

4.2.  

 

4.4.2 Weighted Ubiquitin Ensembles 
 
 
 In our previous work (63), we determined a weighted X-ray ensemble using all 

the available data for Ubiquitin which consisted of 22 NH RDC datasets and 2 multi-

vector RDC datasets. 16 conformations out of 143 conformations were selected to form a 

weighted ensemble. The PDB ids of the 143 X-ray structures are given in 4.13.  The 

weighted X-ray ensemble is shown in Table 4.3 along with the compositions of the 

conformational states and the weights assigned to each conformational state. In 
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comparison, the weighted X-ray ensemble determined using only NH RDC datasets is 

shown in Table 4.4. 

 

Table 4.3: The six conformational clusters and their weights of the weighted X-ray ensemble using all 
the possible data including multi-vector datasets. The conformations included in each cluster are 
listed by their PDB ids as well as chain identifiers. 

Cluster Final weight ± std Composition 
Cluster1 0.55 ± 0.03 1AAR-B, 1UBQ-A, 2C7M-B, 2C7N-H, 2QHO-

A, 3EHV-C, 3M3J-A, 3M3J-E 
Cluster2 0.29 ± 0.03 2G45-B, 2G45-E, 2HD5-B 
Cluster3 0.064 ± 0.001 2DX5-B, 3KW5-B 
Cluster4 0.043 ± 0.002 1YD8-V 
Cluster5 0.027 ± 0.004 3HIU-A 
Cluster6 0.026 + 0.001 1TBE-A 
 

Table 4.4: The three conformational clusters and their weights of weighted X-ray ensemble using 22 
NH RDC datasets. The conformations included in each cluster are listed by their PDB ids as well as 
chain identifiers. 

Cluster Final 
weight 

Composition 

Cluster1 0.57  1CMX-B, 1UBI-A, 1UBQ-A, 1WR6-H, 1XD3-D, 
2C7M-B, 2WWZ-A, 3EHV-C, 3M3J-E  

Cluster2 0.28 2G45-B, 2G45-E, 2HD5-B, 2IBI-B, 3A9J-B, 3A9K-B, 
3EHV-B 

Cluster3 0.15 1AAR-B, 2QHO-A, 3M3J-A, 3M3J-C 
 

 

 Cluster 1 of the weighted X-ray ensemble determined using only NH RDC 

datasets (see Table 4.4) contains conformations very similar to 1UBQ and the 

composition matches to Cluster 1 determined using both NH RDC and multi-vector 

datasets (see Table 4.3). The weights assigned in both cases also are highly similar. 

 

 The second largest weighted cluster, Cluster 2 in Table 4.3, consisted solely of 

“switched” conformations. The corresponding cluster in Table 4.4, also cluster 2, consists 
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mostly of the conformations belonging to the “switched” state such as 2G45-E, 2G45-B, 

2HD5-B, 2IBI-B, 3A9J-B, and 3A9K-B. In addition, it contains a conformation (3EHV-

B) that is not bound to deubiquitinating enzymes and is not in the “switch” state. The 

weight assigned to this conformational state also is similar between Tables 4.3 and 4.4.  

 

 Cluster3 in Table 4.4 also consists of conformations from Cluster1 in Table 4.3, 

conformations close to 1UBQ but distant in comparison to the conformations in Cluster1 

of Table 4.4. The clusters in Table III that have less significant weights (< 0.10) are not 

selected at all when only NH RDC datasets are used for assigning weights.  

 

Table 4.5: Q-factors of the different bond vectors of the weighted X-ray ensemble as well as some 
other ensembles. For the weighted ensemble using only NH RDC, except NH all the remaining bond 
vectors act as cross-validation while CAHA serves as a cross-validation for ensembles using NH 
RDCs along with multi-vector datasets. 

NH CaC CaHa CN CHN Description 
0.18 0.11 0.16 0.10 0.228 Unweighted X-ray 
0.12	
   0.10	
   0.14	
   0.09	
   0.19	
   Weighted X-ray using multi-

vector datasets 
0.13	
   0.10	
   0.14	
   0.09	
   0.19	
   Weighted X-ray using only 

NH RDC 
 

 

 Table 4.5 lists the RDC Q-factors of different bond vectors. From the table, we 

can see that the weighted ensemble obtained using only NH RDCs have similar 

performance to the one that is obtained using 22 NH RDCs and 2 multi-vector RDC 

datasets. Both perform significantly better than the unweighted ensemble. For the 

weighted ensemble obtained using only NH RDC’s, the remaining bond vectors serve as 
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cross-validations and it should be noted that there is a consistent improvement in all their 

Q-factors, indicating no or minimal over-fitting.  

 

Table 4.6: RMSDs of residual chemical shift anisotropy (RCSA) as predicted by representations of 
Ubiquitin. None of the adjustable parameters in the RCSA was modified while predicting the 
chemical shifts. QNH is the Q-factor of the NH dataset that was used in obtaining the alignment 
tensor.  The same alignment tensor was used in the RCSA computations. 

Carbonyl Nitrogen Amide QNH Description 
6.89 17.3 1.61 0.17 Unweighted X-ray 
6.37 16.2 1.57 0.11 Weighted X-ray using multi-vector 

datasets 
6.85 16.9 1.56 0.11 Weighted X-ray using only NH 

RDC 
 

 Table 4.6 lists the RMSDs between the experimental Residual Chemical Shift 

Anisotropy (RCSA) and back-calculated ones from the ensembles. Both weighted 

ensemble representations show an improvement over the unweighted ensemble. Since 

RCSA was not used in the weight-fitting process, this further corroborates that there is 

none or minimal over-fitting in the weighting process. The RMSDs of the weighted 

ensemble obtained using multi-vector RDCs is very similar to the RMSDs of the 

ensemble using only NH RDCs, indicating that the two representations have similar 

quality. 

 

 Based on these results, we can confidently state that the native energy landscape 

of Ubiquitin can be described by 2 conformational states, conformations similar to 1UBQ 

with relative population weight of ~0.7 and the “switched” conformation with relative 

population weight of ~0.3. These results agree well with what was found in the 1 μs 

simulation conducted by Shaw’s group (66). 
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4.4.3 Weighted Hen Egg White Lysozyme (HEWL) Ensembles 
 

 While Ubiquitin has been the model protein for NMR studies, Hen Egg White 

Lysozyme (HEWL) is studied extensively using X-ray crystallography with more than 

400 different X-ray structures available in the PDB (10). The PDB ids along with the 

chain identifiers of all the X-ray conformations used in this work are listed in the Table 

4.14. The X-ray conformation, 193L (93), is used a reference conformation for the 

unbound HEWL.  

 

 A single co-ordinate called the pincer angle can conveniently track the dynamics 

of HEWL. This angle is defined as the angle between the alpha helix (residues: 111, 112, 

113, 114), the hinge region (residues: 80, 81, 82, 83, 84, 90, 91, 92, 93) and the beta sheet 

(residues: 44, 45, 51, 52) (88).  While the unbound form of HEWL has a narrow range of 

motion (55o to 56o), the conformations bound to anti-bodies or substrate exhibit a slightly 

broader range (55o to 59o).  

 

 HEWL has been studied using NMR techniques also (88, 90, 91, 94) and up to 8 

NH RDC’s in multiple media and backbone nitrogen RCSA in two media are available in 

the literature. This makes HEWL an ideal case for our method to be applied to identify 

conformational states within its native state ensemble. Following the same procedure 

outlined for Ubiquitin, we next extend our method to the HEWL X-ray ensemble. 
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 Table 4.7 lists the different conformational states identified for HEWL native 

state ensemble along with their PDB ids and the corresponding pincer angle distribution. 

All the conformations belonging to Cluster1 exhibit a narrow range of pincer angle 

distribution commonly exhibited by unbound HEWL. All the conformations except 

1HEW and 4GN5 are unbound HEWL conformations. The conformations identified in 

Cluster2 exhibit a distinct pincer angle distribution from the conformations obtained in 

Cluster1 and all these conformations are bound to anti-body. 1SQ2, the lone member of 

Cluster3 is bound to anti-body but with a pincer angle less than ones observed in 

Cluster2.  

Table 4.7: The three conformational clusters and their weights of weighted X-ray ensemble of HEWL 
along with the pincer angle distribution. The conformations included in each cluster are listed by 
their PDB ids as well as chain identifiers.  

Cluster Final 
weight 

Pincer angle distribution Composition 

Cluster1 0.57 55.04o to 57.06o 1AKI, 1B0D, 1F0W, 1HEW, 
1HF4_B, 1JPO, 1LJ3_B, 1LJ4_B, 
1LJE_B, 1LJF_B, 1LJG_B, 
1LJH_B, 1LJI_B, 1LJJ_B, 
1LJK_B, 1LZB, 1LZC, 1T6V_M, 
1UC0, 1UCO_B, 2LYZ, 3LYO, 
3LYZ, 4GN5_C, 5LYM_B, 6LYZ, 
7LYZ, 8LYZ, 9LYZ 

Cluster2 0.30 57.23o to 59.54o 1JTO-L, 1MEL-L, 1MEL-M 
Cluster3 0.13 56.24o 1SQ2-L 
 

 The Q-factors for NH RDCs obtained in different alignment media are given in 

Table 4.8 for different representations of HEWL. 1E8L, the NMR solution structure of 

HEWL, performs well only on NH1and NH3, RDCs that were used in the refinement 

process. It performs very poorly on the rest of the RDCs that were not used in its 

refinement. This observation raises doubts about the quality of this solution structure. It 
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also indicates that the native state of HEWL may consist of distinct substates that a single 

average structure cannot fully capture. 

 

Table 4.8: Q-factors for NH RDCs obtained for different representations of HEWL. 

NH1	
  	
   NH2	
   NH3	
   NH4	
   NH5	
   NH6	
   NH7	
   NH8	
   Ensemble/	
  
Structure 

0.26	
   0.34	
   0.22	
   0.25	
   0.25	
   0.23	
   0.23	
   0.28	
   Unweighted	
  
X-­‐ray 

0.21	
   0.30	
   0.18	
   0.21	
   0.20	
   0.20	
   0.23	
   0.28	
   Weighted	
  
X-­‐ray 

0.08	
   0.36	
   0.08	
   0.27	
   0.31	
   0.28	
   0.40	
   0.35	
   1E8L	
  (94) 
0.26	
   0.34	
   0.23	
   0.26	
   0.27	
   0.24	
   0.26	
   0.28	
   193L	
  (93) 
0.21	
   0.31	
   0.16	
   0.20	
   0.29	
   0.20	
   0.27	
   0.25	
   193L	
  with	
  

optimized	
  H	
  
positions	
  (91) 

0.17	
   0.14	
   0.14	
   0.18	
   0.22	
   0.16	
   0.22	
   0.20	
   RDC	
  restrained	
  
Ensemble	
  (88) 

 

 193L, the reference conformation of unbound HEWL and a crystal structure, 

performs better than the solution structure for all the RDCs that were not used in the 

refinement of 1E8L. In (91), Redfield and co-workers used the same reference X-ray 

conformation 193L but with hydrogen positions optimized to reproduce NH RDCs and 

found it performed better than 193L itself. The RDC restrained ensemble (88), consisting 

of hundreds of conformations, refined using NH1 and NH3 datasets seems to perform the 

best among all the representations. But it should be noted that the refinement protocol 

used to obtain the ensemble implicitly optimizes hydrogen atom positions to best 

reproduce NH RDCs.  

 

 The weighted X-ray ensemble as determined by our method does not have any 

such optimizations performed on it but uses the RDCs only to select and assign weights 
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to conformational states in the ensemble. Comparing to the unweighted X-ray ensemble, 

the weighted X-ray ensemble shows a consistent decrease in Q-factors indicating 

minimal or no over-fitting in the process. Except for Q-factor obtained for NH2, 

weighted X-ray, 193L with optimized H position, and RDC restrained ensemble perform 

similarly in reproducing the RDCs.  

 

 Interestingly, these three solutions represent three distinct options of representing 

the native state of a protein. 193L represents an average/single structure solution. The 

RDC restrained ensemble is a regular ensemble representation that has been commonly 

used and consists of hundreds of diverse conformations. Lastly, the weighted X-ray 

ensemble is an ESP ensemble that we propose. It is an ensemble that consists of only a 

small number of conformations but has relative populations assigned to them. As 

aforementioned, these three representations of HEWL give similar performance in 

reproducing RDCs (see Table 4.8). It thus would be highly interesting if there are some 

other experimental data that can be used to further distinguish the quality of these three 

representations.  In the following, we look into RCSA and SAXS/WAXS data. The 

results indicate that these three representations are not of the same quality. The RDC 

restrained ensemble does poorly in reproducing the WAXS data, suggesting that it might 

have over-fitted the RDCs data using its hundreds of conformations. 193L with modified 

hydrogen positions performs similarly to the ESP representation. However, it might be 

difficult to fully justify the validity of using modified hydrogen positions. 
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Cross-validation using Residual Chemical Shift Anisotropy (RCSA) 

 

Table 4.9: RMSDs of residual chemical shift anisotropy (RCSA) as predicted by representations of 
HEWL. None of the adjustable parameters in the RCSA was modified while predicting the chemical 
shifts. QNH is the Q-factor of the NH dataset that was used in obtaining the alignment tensor.  The 
same alignment tensor was used in the RCSA computations. RCSA RMSD for RDC restrained 
ensemble (88) was not reported in the literature. 

NH1 medium NH3 Medium  
 

RDC 
Q-factor 

RCSA 
RMSD 

RDC 
Q-factor 

RCSA 
RMSD 

Ensemble/Structure	
  

0.26 22.7 0.22 24.02 Unweighted	
  X-­‐ray	
  
0.21 21.41 0.18 20.61 Weighted	
  X-­‐ray	
  
0.08 27.39 0.08 27.86 1E8L	
  (94) 
0.26 23.12 0.23 24.87 193L	
  (93) 
0.21 20.93 0.18 19.22 193L	
  with	
  optimized	
  H	
  positions	
  (91) 

 

 As with Ubiquitin, RCSA serve as an unbiased cross-validation since they are not 

used in the refinement or the weight fitting protocol itself. In Table 4.9, we list the 

RMSD between the experimental 15N RCSA to the back-calculated ones from the 

ensembles. From the table it is seen that the weighted X-ray ensemble is significantly 

better than the unweighted, confirming the significance of weighting. 1E8L, the solution 

structure that was determined using NH1 and NH3 RDCs as constraints, performs much 

more poorly also in RCSA RMSD. This, together with its unusually high RDC Q-factors 

in media whose data were not used in its refinement, indicates this solution structure 

probably was overly fitted to the NH1 and NH3 RDC data. The weighted ensemble 

performs better also than a single structure such as 193L. The 193L structure with 

optimized H position, however, performs similarly to the weighted X-ray ensemble. The 

RCSA RMSD for the RDC restrained ensemble (88) was not reported in the literature. 
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Cross-validation using Solution Scattering profile 

 Solution scattering profiles are observed scattered intensities of X-rays that are 

collected as a function of the scattering vector q. Typically a q value of 0 to ~0.3 Å falls 

into the Small Angle X-ray scattering (SAXS) regime while the range for the Wide Angle 

X-ray scattering (WAXS) regime is ~0.1 to 2.5 Å. The information encoded in these two 

regimes along with the results obtained for different structure or ensemble representations 

of HEWL are presented in the following two sections. 

 

Small Angle X-ray Scattering (SAXS) 

 Scattering intensities observed at SAXS encode information about the overall size 

and shape of the molecule, radius of gyration (Rg) and other low-resolution information 

(86). Table 4.10 lists the chi value obtained by different representations of HEWL. 

Table 4.10: SAXS or WAXS Chi values obtained for different representations of HEWL. A 
representative ensemble of 188 conformations of the RDC restrained ensemble is used for computing 
SAXS/WAXS profiles.  

SAXS chi WAXS chi Merged Chi Ensemble/Structure 
0.12 1.52 1.04 Unweighted	
  X-­‐ray	
  
0.12 1.46 0.98 Weighted	
  X-­‐ray	
  
0.15 3.51 2.47 1E8L	
  (94) 
0.12 1.62 1.01 193L	
  (93) 
0.13 1.66 0.96 193L	
  with	
  optimized	
  H	
  positions	
  

(91) 
0.12 2.21 2.21 RDC	
  restrained	
  Ensemble	
  (88) 

 

 From the Table 4.10 we can see that at a low resolution of SAXS regime, all the 

representations of HEWL perform equally well. The weighted X-ray ensemble and 

unweighted X-ray ensemble chi values are the same, even though the number of 

conformations in the weighted X-ray ensemble (28 conformations) is only a small 
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fraction of the unweighted X-ray ensemble (432 conformations). This adds confidence on 

the conformations selected by the protocol to form the weighted X-ray ensemble.  

 

 Figure 4.3 plots the relative intensities (Iexp/Icalc) for different representations. As 

observed in the chi values, all the representations perform equally well with 1E8L 

deviating the most amongst the possible representations.   

 

Wide Angle X-ray Scattering (WAXS) 

 

 Scattering intensities observed at wider angles (higher q) encode information of 

higher resolution than SAXS but at the cost of potentially bringing in a higher noise level 

since the intensity of solution scattering also increases. Since data used in this analysis 

are limited to the range of q values that are less than 1.0 Å,	
  the	
  extent	
  of	
  this	
  noise	
  is	
  

limited.	
  WAXS	
  data	
  are	
  often	
  used	
  to	
  validate	
  structural	
  models	
  and	
  to	
  identify	
  

structural	
  changes	
  (86).	
  Table	
  4.10	
  lists	
  the	
  WAXS	
  chi	
  values	
  obtained	
  for	
  different	
  

representations	
  of	
  HEWL.	
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Figure 4.3: Relative intensities (Iexp/Icalc) as a function of q in the SAXS regime for different 
representations of HEWL. The chi values obtained for different representations also are given. 

	
  

	
   Table	
  4.10	
  shows	
  that	
  the	
  single	
  conformation	
  193L	
  reproduces	
  WAXS	
  data	
  

extremely	
  well.	
  Weighted	
  X-­‐ray	
  ensemble	
  performs	
  better	
  than	
  the	
  unweighted,	
  

again	
  confirming	
  the	
  significance	
  of	
  the	
  weights.	
  The	
  reweighting	
  process	
  also	
  

excludes	
  a	
  large	
  number	
  of	
  structures	
  from	
  the	
  ensemble	
  and	
  keeps	
  only	
  a	
  small	
  

subset	
  of	
  structures,	
  probably	
  those	
  of	
  higher	
  quality,	
  to	
  represent	
  the	
  native	
  state.	
  

As	
  a	
  result,	
  weighted	
  X-­‐ray	
  ensemble	
  does	
  better	
  than	
  both	
  the	
  unweighted	
  X-­‐ray	
  

ensemble	
  and	
  193L	
  itself.	
  RDC	
  restrained	
  ensemble	
  (De Simone et al., 2013) has	
  

many	
  conformations	
  very	
  different	
  from	
  193L	
  and	
  does	
  poorly	
  in	
  reproducing	
  

WAXS	
  data.	
  1E8L	
  performs	
  the	
  worst	
  amongst	
  all	
  the	
  representations.	
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The	
  chi	
  values	
  obtained	
  by	
  merging	
  SAXS	
  and	
  WAXS	
  data	
  are	
  also	
  reported	
  in	
  Table	
  

4.10.	
  Figure 4.4 plots the relative intensities (Iexp/Icalc) for different representations.  

 

 

Figure 4.4: Relative intensities (Iexp/Icalc) as a function of q in the WAXS regime for different 
representations of HEWL. The chi values obtained for different representations also are given. 

 

4.5 Conclusions 
 

 As a continuation of our previous work (63) that demonstrated the significance of 

assigning relative populations to protein ensembles and how it can greatly enhance an 

ensemble’s quality, the focus of this work is to determine what is the minimal amount of 
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experimental data required to do such weight assignments. Though our previous study 

used both a large number of NH RDCs and several multi-vector RDCs, we demonstrate 

in this work that a much lesser amount of RDCs are needed. Specifically, we show that a 

minimum of 6 NH RDCs is sufficient to confidently assign weights with a high 

confidence. This is highly significant since it puts much less a burden on experimental 

data collection and thus increases the potential for the method to be applied to many more 

proteins to improve ensemble quality. 

 

 To establish that NH RDCs are sufficient for weight assignment, we perform a 

series of tests both on an artificial ensemble and on Ubiquitin. Our results show that the 

weighted Ubiquitin ensemble determined using only NH RDCs has a similar quality to 

the one determined using 22 NH RDCs and 2 multi-vector RDCs. 

 

 We then extend and apply the method to hen egg white Lysozyme (HEWL), and 

determine a weighted, 3-conformation state ensemble. This newly constructed, weighted 

ensemble performs significantly better than the unweighted ensemble, NMR solution 

structure, or crystal structure without optimized H positions, in RDCs, RCSA, or solution 

scattering profiles. Moreover, the two dominating conformation states match closely to, i) 

the unbounded state with a smaller pincer angle, and ii) the antibody-bound state that has 

a larger pincer angle, respectively. Our results indict that the unbound state has a 

population of nearly 60%, while the antibody-bound state a population of 30%.  
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 Average structure representation of the native state of HEWL, 193L with 

optimized H positions, reproduces RDCs, RCSA and the solution scattering profile 

accurately. But this representation could possibly be uninformative, if the native states of 

HEWL indeed occupy multiple substates. Additionally, using optimized H position is not 

fully justified. Ensembles naturally incorporate multiple substates and we show that 

weighted X-ray ensemble provides a natural extension without compromising the quality 

of experimental data reproduction. Weighted X-ray ensemble does better also in 

capturing the solution scattering profiles significantly better than the RDC restrained 

ensemble (88), implying the presence of over-fitting in the latter.  

 

 Along with our previous work, results from this work corroborate that for some 

proteins, a single structure is not sufficient to represent its native state fully. An ensemble 

of conformation is better suited for that purpose and introducing relative populations to 

the ensembles can significantly improve the quality of the ensembles and greatly reduce 

the potential risk of over-fitting. The improvement is reflected not only in greatly reduced 

RDC factors, but also in greatly reduced RCSA RMSDs. 

 

 We believe that our method can help significantly improve the quality of 

ensembles for many proteins. And we thus recommend to the NMR community that RDC 

data be collected for more proteins, especially for those proteins for which there already 

exist a large number of experimental structures in the PDB (10), such as HIV protease, 

Adelnyte Kinase, etc.  Once sufficient experimental RDC data are collected and becomes 

available for these proteins that have high biological significance, our method can be 
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applied to, i) identify the conformation states of these proteins;  ii) determine the relative 

population of each conformation state. Such in-depth knowledge of the conformation 

states such as their compositions and their relative populations should provide new 

understanding of the native states of these proteins and insights into their functional 

mechanisms.  RCSA and SAXS/WAXS data also are recommended to be collected for 

these proteins, as they can serve as a good cross-validation.   
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4.6 Appendix 
 
 

Table 4.11: RDC datasets used for Ubiquitin, coded according to (55) 

Experimental data type RDC data 
NH A1, A2, A4, A6, A7, A8, A9, A10, A11, A12, A13, 

A16, A21, A22, A23, A24, A25, A26, A27, A28, A29, 
A34, A36 

NH, CN, CHN, CaC and 
CaHa 

(56) (2 sets) 

 
 

Table 4.12: RDC datasets used for HEWL along with the table code assigned in (91) 

NH RDC code Table code in (91) 

NH1 S2 
NH2 S3 
NH3 S4 
NH4 S5 
NH5 S6 
NH6 S7 
NH7 S8 
NH8 S9 

 

Table 4.13: PDB ids as well as chain identifiers of the 143 Ubiquitin X-ray conformations  used in this 
work to form the Ubiquitin X-ray ensemble. 

1AAR-A, 1AAR-B, 1CMX-B, 1F9J-A, 1F9J-B, 1NBF-C, 1NBF-D, 1OGW- A, 1P3Q-
U, 1P3Q-V, 1S1Q-B, 1S1Q-D, 1TBE-A, 1TBE-B, 1UBI-A, 1UBQ- A, 1UZX-B, 
1WR6-E, 1WR6-F, 1WR6-G, 1WR6-H, 1WRD-B, 1XD3-B, 1XD3-D, 1YD8-U, 
1YD8-V, 2AYO-B, 2C7M-B, 2C7N-B, 2C7N-D, 2C7N- F, 2C7N-H, 2C7N-J, 2C7N-
L, 2D3G-A, 2D3G-B, 2DX5-B, 2FID-A, 2FIF- A, 2FIF-C, 2FIF-E, 2G45-B, 2G45-E, 
2GMI-C, 2HD5-B, 2HTH-A, 2IBI- B, 2J7Q-B, 2J7Q-D, 2JF5-A, 2JF5-B, 2O6V-A, 
2O6V-C, 2O6V-E, 2O6V- G, 2OOB-B, 2QHO-A, 2QHO-C, 2QHO-E, 2QHO-G, 
2WDT-B, 2WDT- D, 2WWZ-A, 2WWZ-B, 2WX0-A, 2WX0-B, 2WX0-E, 2WX0-F, 
2WX1- A, 2XEW-A, 2XEW-B, 2XEW-C, 2XEW-D, 2XEW-E, 2XEW-F, 2XEW- G, 
2XEW-H, 2XEW-I, 2XEW-J, 2XEW-K, 2XEW-L, 2XK5-A, 2ZCC-C, 2ZNV-C, 
3A1Q-A, 3A1Q-D, 3A33-B, 3A9J-B, 3A9K-B, 3ALB-A, 3ALB- B, 3ALB-C, 3ALB-
D, 3BY4-B, 3C0R-B, 3C0R-D, 3EEC-A, 3EEC-B, 3EFU-A, 3EHV-B, 3EHV-C, 
3H1U-A, 3H1U-B, 3H7P-B, 3H7S-A, 3H7S-B, 3HM3-A, 3HM3-B, 3HM3-C, 3HM3-
D, 3I3T-B, 3I3T-D, 3I3T-F, 3I3T-H, 3IFW-B, 3IHP-C, 3IHP-D, 3JSV-B, 3JVZ-X, 
3JVZ-Y, 3JW0-X, 3JW0-Y, 3K9P-B, 3KVF-B, 3KW5-B, 3LDZ-E, 3LDZ-F, 3LDZ-
G, 3M3J-A, 3M3J-B, 3M3J-C, 3M3J-D, 3M3J-E, 3M3J-F, 3MHS-D, 3NHE-B, 
3NOB-B, 3NOB- C, 3NOB-D, 3NOB-E, 3NOB-F, 3NOB-G, 3NOB-H 
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Table 4.14: PDB ids of Hen Egg White Lysozyme (HEWL) X-ray conformations  used in this work to 
form the X-ray ensemble. 

193L, 194L, 1AKI, 1AZF, 1B0D, 1B2K, 1BGI, 1BVX, 1BWH, 1BWI, 1BWJ, 1C08, 
1C10, 1DPW, 1DPX, 1DQJ, 1F0W, 1F10, 1FDL, 1G7H, 1G7I, 1G7J, 1G7L, 1G7M, 
1GPQ, 1GWD, 1H87, 1HC0, 1HEL, 1HEW, 1HF4, 1HSW, 1HSX, 1IC4, 1IC5, 1IC7, 
1IEE, 1J1O, 1J1P, 1J1X, 1JIS, 1JIT, 1JIY, 1JJ0, 1JJ1, 1JJ3, 1JPO, 1JTO, 1JTT, 1KIP, 
1KIQ, 1KIR, 1LCN, 1LJ3, 1LJ4, 1LJE, 1LJF, 1LJG, 1LJH, 1LJI, 1LJJ, 1LJK, 1LKR, 
1LKS, 1LMA, 1LPI, 1LSA, 1LSB, 1LSC, 1LSD, 1LSE, 1LSF, 1LYO, 1LYS, 1LZ8, 
1LZ9, 1LZA, 1LZB, 1LZC, 1LZT, 1MEL, 1MLC, 1N4F, 1NDM, 1P2C, 1PS5, 1QIO, 
1QTK, 1RCM, 1RFP, 1RI8, 1RJC, 1SQ2, 1T3P, 1T6V, 1UA6, 1UC0, 1UCO, 1UIG, 
1UIH, 1UUZ, 1V7S, 1V7T, 1VAT, 1VAU, 1VDP, 1VDQ, 1VDS, 1VDT, 1VED, 
1VFB, 1W6Z, 1WTM, 1WTN, 1XEI, 1XEJ, 1XEK, 1XFP, 1XGP, 1XGQ, 1XGR, 
1XGT, 1XGU, 1YIK, 1YIL, 1YKX, 1YKY, 1YKZ, 1YL0, 1YL1, 1YQV, 1Z55, 
1ZV5, 1ZVY, 2A7D, 2A7F, 2AUB, 2BLX, 2BLY, 2BPU, 2C8O, 2C8P, 2CDS, 2CGI, 
2D4I, 2D4J, 2D4K, 2D6B, 2D91, 2DQC, 2DQD, 2DQE, 2DQF, 2DQG, 2DQH, 
2DQI, 2DQJ, 2EIZ, 2EKS, 2EPE, 2F2N, 2F30, 2F4A, 2F4G, 2FBB, 2G4P, 2G4Q, 
2H9J, 2H9K, 2HTX, 2HU1, 2HU3, 2HUB, 2I25, 2I26, 2I6Z, 2LYM, 2LYO, 2LYZ, 
2LZT, 2PC2, 2Q0M, 2VB1, 2W1L, 2W1M, 2W1X, 2W1Y, 2X0A, 2XBR, 2XBS, 
2XJW, 2XTH, 2YBH, 2YBI, 2YBJ, 2YBL, 2YBM, 2YBN, 2YDG, 2YSS, 2YVB, 
2Z12, 2Z18, 2Z19, 2ZNX, 2ZQ3, 2ZQ4, 2ZYP, 3A34, 3A67, 3A6B, 3A6C, 3A8Z, 
3A90, 3A91, 3A92, 3A93, 3A94, 3A95, 3A96, 3AGG, 3AGH, 3AGI, 3AJN, 3ATN, 
3ATO, 3AW6, 3AW7, 3AZ4, 3AZ6, 3AZ7, 3B6L, 3B72, 3D9A, 3E3D, 3EMS, 
3EXD, 3F6Z, 3IJU, 3IJV, 3KAM, 3LYM, 3LYO, 3LYT, 3LYZ, 3LZT, 3M18, 3M3U, 
3N9A, 3N9C, 3N9E, 3P4Z, 3P64, 3P65, 3P66, 3P68, 3QE8, 3QNG, 3RNX, 3RT5, 
3RU5, 3RW8, 3RZ4, 3SP3, 3T6U, 3TMU, 3TMV, 3TMW, 3TMX, 3TXB, 3TXD, 
3TXE, 3TXF, 3TXG, 3TXH, 3TXI, 3TXJ, 3ULR, 3VFX, 3W6A, 3ZEK, 4A7D, 
4AGA, 4AXT, 4B0D, 4B1A, 4B49, 4B4E, 4B4I, 4B4J, 4BAD, 4BAF, 4BAP, 4BS7, 
4C3W, 4D9Z, 4DD0, 4DD1, 4DD2, 4DD3, 4DD4, 4DD6, 4DD7, 4DD9, 4DDA, 
4DDC, 4DT3, 4E3U, 4EOF, 4ET8, 4ET9, 4ETA, 4ETB, 4ETC, 4ETD, 4ETE, 4FJR, 
4G49, 4G4A, 4G4B, 4G4C, 4G4H, 4GCB, 4GCC, 4GN3, 4GN4, 4GN5, 4H1P, 
4H8X, 4H8Y, 4H8Z, 4H90, 4H91, 4H92, 4H93, 4H94, 4H9A, 4H9B, 4H9C, 4H9E, 
4H9F, 4H9H, 4H9I, 4HP0, 4HPI, 4HSF, 4HTK, 4HTN, 4HTQ, 4HV1, 4I8S, 4IAT, 
4II8, 4J1A, 4J1B, 4J7V, 4KXI, 4LFP, 4LFX, 4LGK, 4LT0, 4LT1, 4LT2, 4LT3, 
4LYM, 4LYO, 4LYT, 4LYZ, 4LZT, 4M4O, 4MR1, 4N5R, 4NEB, 4NFV, 4NG1, 
4NG8, 4NGI, 4NGJ, 4NGK, 4NGL, 4NGO, 4NGV, 4NGW, 4NGY, 4NGZ, 4NY5, 
4O34, 4OOO, 4P2E, 4QEQ, 4TUN, 5LYM, 5LYT, 5LYZ, 6LYT, 6LYZ, 7LYZ, 
8LYZ, 9LYZ 
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The following contains preliminary results of an ongoing work. 

 

5.1 Abstract 
 
 Nuclear Magnetic Resonance (NMR) has played a pivotal role in capturing the 

structure and dynamics of proteins in native state. Traditionally such dynamic data has 

been structurally modeled using single or average structure. But for more and more 

proteins, it is becoming increasingly evident that an ensemble of conformations rather 

than a single structure might capture the dynamics better. Indeed, a number of recent 

works on ensemble refinement saw a significant increase in the quality of reproduction of 

experimental data. However, it is unclear whether the increase is due to a better 

description of protein native states or due to over-fitting. In this work, using synthetic 

experimental data on Residual dipolar Couplings (RDCs) and Nuclear Over-hauser 

effects (NOEs) , we show that ensemble refinements of arbitrary number of 

conformations do not increase the structural quality of the solution and the cross-

validation data typically used, CaHa RDC, can be well reproduced even where there is  

over-fitting. Such overfitting can be avoided if good initial conformations are provided 

and appropriate relative populations are assigned to them.  

 

CHAPTER 5. DO ENSEMBLE REFINEMENTS USING 
RESIDUAL DIPOLAR COUPLING IMPROVE THE 

STRUCTURAL QUALITY? 
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5.2 Introduction 
 
 Proteins in solution can occupy multiple conformational states and the stability of 

a conformational state depends upon the relative free energy of the state(3, 5, 42). 

Nuclear Magnetic resonance (NMR) experiments probe the dynamics of bio-molecules in 

their native states and the resultant data from such experiments are time and ensemble 

averages. Even though the data obtained from NMR experiments have been traditionally 

used to model the underlying native state ensemble, most of these uses are found in loop 

modeling (65), rigid body docking (95) and force-field optimization (96), to name a few. 

In this work, we focus exclusively on protocols used in structural modeling of protein 

native states.  

 

 Single structure refinements or single-copy refinements enforce that all NMR data 

constraints along with the covalent geometry regulations or empirical constraints should 

be satisfied in one single conformation. Generally such a refinement is carried many 

times and the best 10-20 structures are reported. It is unclear if any structure in such an 

ensemble represents a “true” conformational state of the protein, as single structure 

refinements would result in average conformations. Extracting dynamics from such an 

ensemble may also be difficult. For Ubiquitin, one of the most studied proteins, a single 

structure has been shown to be sufficient in reproducing most experimental data (29, 30).  

 

 On the other hand, ensemble refinements are attempted in the recent past where 

instead of forcing all the NMR constraints on one conformation, an ensemble of 

conformations is used. In all of these cases, all the members of the ensemble are given 
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equal weight. The R-factors (quality of fit indicators) of such a refinement have been 

considerably improved compared to single structure refinements but it is unclear whether 

the fit is better because of a better structural representation of the underlying native states 

or the large increase in parameters when multiple conformations are used. In an elegant 

work by Clore et al. (32), it was shown that an ensemble refinement of 2 structures 

significantly improves the cross-validation, the CaHa RDC R-factors, compared to single 

structure refinement and increasing the ensemble size beyond that does not show much 

improvement in the R-factors. While this work is important in identifying the minimal 

number of conformations required to satisfy the experimental data without over-fitting, 

there was no analysis on the quality of the solution itself.  

 

 There has been a lot of recent work aimed at determining an ensemble of 

conformations for Ubiquitin, such as MUMO (33), EROS (23) and ERNST (34). All of 

these refinement protocols used an ensemble of size 8 in their refinement protocols to 

satisfy experimental data.  Typically the refinement protocol was run in many cycles and 

the resulting solutions from every cycle were pooled to form an ensemble. Consequently, 

these ensembles contain 100s of conformations. All of these ensembles are shown to 

represent the dynamics well but there is little confidence that any given conformation 

within the ensemble truly belongs to the native state ensemble, since the ensemble might 

be under-constrained or over-fitted(9, 35). 

 In our extensive cross-validation studies using varied experimental data (see 

chapter 3), we have shown that ensembles of 100s of conformations do not perform 

significantly better than a weighted ensemble that has two significantly populated 
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conformational states (63) or even an average structure representation. These 

observations raise some fundamental questions on the quality of the solution provided by 

ensemble refinements.  

 

 In this work, we aim to assess the quality of ensemble refinements using synthetic 

data. The simplest representation of an ensemble is a two membered ensemble with equal 

or unequal weights. Two distinct conformations of Ubiquitin are used to represent the 

native state ensemble, from which synthetic experimental data, RDCs and NOEs, is 

generated.  These synthetic data are then used to guide refinements in a similar manner to 

conventional ensemble refinements and the resulting solution is verified with respect to 

the reproduction of experimental data (RDCs and NOEs) as well as structural similarity 

to the reference ensemble.  

 

5.3 Materials and Methods 
 

5.3.1 Reference Structures and Dynamics 
 
 To thoroughly test the quality of solution obtained by average structure or 

ensemble refinements we used an artificial native state ensemble whose structural and 

dynamic properties are known. The benefit of using such reference ensembles is that they 

can be used as a standard to assess the quality of any obtained solution from the 

refinement protocols (33). To keep the synthetic set-up as close as possible to native 

state, 2 distinct states of Ubiquitin 1AAR-B and 2HD5-B, representing unbound state and 

“switched” state of Ubiquitin respectively, are chosen to form the reference structures. 
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These two conformations have a backbone RMSD of ~1 Å away from each other and are 

shown to represent the majorly populated conformation states of the protein (63).   

 Assuming that these two states are the only possible conformational states, the 

dynamics in the native state are obtained by local sampling around these states using 

CONCOORD (59).  A damp factor of 0.5 is used, which effectively produces sampling 

conformations that are about 0.5 Å away from the reference structures. The first 3 

principal components (PCs) in the principal component analysis (PCA) of the resultant 

ensemble capture more than 75% of the dynamics.  

 

5.3.2 Synthetic Experimental Data 
 
 Under the assumption that the native state only contains 2 conformations, 

synthetic NOE constraints and RDCs are generated from the reference structures 

mimicking the experimental data constraints obtained from NMR experiments as closely 

as possible. These synthetic experimental data constraints are used in the 

structure/ensemble refinement protocols that follow. 

 

Nuclear Over-hauser Effect constraints:  

 The distance constraints used in the refinement of 1D3Z (29) was used to generate 

synthetic experimental data using the 2 reference structures. A total of 2727 NOEs are 

available for 1D3Z, out of which 1320 distance restraints are used after removing 

ambiguous restraints. Any NOE distance constraint less than 5 Å was given a lower 

bound of 1.8 Å. To simulate experimental errors observed in NOEs, Gaussian noise of 

10% of the magnitudes of the observed values was added to the distance constraints (41).  
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Residual Dipolar Couplings: 

 Synthetic RDC datasets matching the composition of the real experimental RDC 

data of Ubiquitin are generated using the two reference structures. The RDC datasets 

along with the codes assigned by Lakomek (55, 57) are given in (63) along with details 

on computing RDCs from ensembles. Briefly, the average directional cosine matrix of the 

ensemble is first calculated from the ensemble. Then for each of the experimental 

datasets the best-fit Saupe matrix is determined using 1D3Z NMR ensemble. Multiplying 

the average directional cosine matrix with this Saupe matrix produces synthetic RDC 

datasets. At this point, these RDC datasets are noise-free. In reality, experimental data 

contains noise of about 0.5 to 1.0 Hz (24, 31), we added Guassian noise to the artificially 

generated RDC data that are originally noise-free. The standard deviations of the noise 

are 0.26 Hz, 0.1 Hz, 0.5 Hz, 0.1 Hz and 0.1 Hz for NH, CaC, CaHa, CN and CHN 

datasets respectively, as was done in (Clore and Schwieters, 2004a). Note that because of 

the way in which the synthetic RDC data are generated, the given conformation ensemble 

can perfectly reproduce these RDC data prior to the adding of the noise, but not so after. 

 

 Synthetic experimental data are obtained using only the 2 reference structures 

under equal weighted and un-equal weighted conditions by applying the weights 

appropriately during the back-calculations of the data.  
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Cross-Validation: 

 R-factor is a commonly used measure of the agreement between the experimental 

and calculated RDCs and is defined as: 

 

 !-­‐!"#$%& =
∑ !!"#! − !exp

!

2  ∑ !exp
!

 (3) 

 

 where !!"#! is the calculated RDC and !!"# is the experimental RDC. 

 

 Unlike Lange et al (23)who used CN vector for cross-validation, the CaHa dataset 

was used for cross-validation in this work. Given that the data used in refinement 

includes CaC, CHN, NH vector orientations, CN RDC might not be the best choice. 

CaHa vector, on the other hand, is not in the peptide plane and is thus independent of 

other bond vector orientations, making it a better cross-validation dataset. Along with 

CaHa RDC, 20% of NOE distance restraints are randomly chosen to be left out as 

additional cross-validation.  

 

Structural properties of the refinement solution: 

 RMSD has been used as a measure to assess the structural similarity between 

conformations. Every conformation belonging to the refinement solution is assigned to 

one of the 2 reference structures based on its RMSDs to the reference structures.  
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5.3.3 Refinement Protocol 
 
 Refinement protocol similar to the one detailed in (32) is used in the average 

structure or ensemble refinements. Briefly, torsional angle dynamics and minimization 

followed by Cartesian minimization are performed. The final step of Cartesian 

minimization is important to allow acceptable degree of deviation from ideal covalent 

geometry. The force constants for bond and angular terms are optimized so as to 

minimize the deviation from ideal covalent geometry. The maximum allowed deviation is 

set to be 5o and the average deviation is less than 2.5o. The force constants for RDCs are 

scaled with respect to NH RDC (CN: 25, CAC: 15, CHN: 5) and are ramped up 

geometrically from 0.4 to 4 kcal mol-1 Hz-2 throughout the 2500 steps of simulated 

annealing protocol with the temperature cooling from 400 K to 300 K. Each cycle is 

performed 16 times and the final solution is reported. 24 such solutions are generated for 

all the ensemble/structures used in this work. XPLOR-NIH (28) software suite is used to 

perform the simulated annealing and minimization.  

 

5.4 Results and Discussion 
 
 In this section we test the quality of solutions achieved by various refinement 

protocols using cross validation R-factors and structural similarities to the reference 

ensemble. We present the analysis of a simple equal weighted reference ensemble of two 

conformations and then increase the complexity by allowing unequal weights in the 

reference ensemble.  
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5.4.1 Equal weighted Reference Ensemble 
 
 In this scenario, the two conformations in the reference ensemble are given equal 

weights and are used in the generation of the artificial RDC data. 1UBQ-A was used as 

the starting conformation(s). Different ensemble sizes of 1, 2, 3, 4, 6 and 8 were tested. 

All conformations in the ensemble are given the same weight.  

Table 5.1: Quality of solutions for assessed by reproduction of experimental data and structural 
similarity to the reference ensemble. The data shown here are the R-factors for RDCs, RMSD for 
NOE distance constraints and RMSD for structural similarity. The percentage of solutions close to 
reference structure 1 or 2 is computed by finding the fraction of conformations closer to reference 
structure 1 or 2. The Ne number represents the ensemble size. The solution denoted by Ne value of 
2u is generated by starting the refinement with initial conformations close to the reference structures. 

R-factors for bond 

vectors 

Ne=1 Ne=2 Ne=3 Ne=4 Ne=6 Ne=8 Ne=2u 

NH 9.9 4.9 5.8 3.8 3.3 3.0 4.5 

CAC 9.7 5.5 6.7 4.4 3.5 2.7 5.3 

CHN 9.8 4.0 4.9 3.6 3.4 3.0 4.0 

CN 12.6 6.7 6.7 5.3 4.5 4.0 6.1 

 

NOE 0.14 0.09 0.08 0.07 0.07 0.07 0.09 

Cross-Validation R-factors and NOE RMSD 

CAHA 13.2 12.3 11.4 10.7 10.06 11.1 8.3 

NOE (free) 0.29 0.28 0.28 0.31 0.32 0.34 0.25 

Structural Properties: percentages of conformations closer to reference structure 1 

than 2 (or vice versa) and their mean RMSD to the closer reference structure 

% conf. closer to Ref1 0 8 24 32 41 41 50 

Mean RMSD to Ref1 NA 1.21 1.53 1.78 2.15 2.44 0.79 
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Table 5.1 continued 

% conf. closer to Ref2 100 92 76 68 59 59 50 

Mean RMSD to Ref2 0.6 1.1 1.51 1.70 2.1 2.40 0.69 

 

 Figure 5.1 plots the distributions of the solutions of different ensemble sizes in the 

principal component space defined by the first two PCs of the reference ensemble. To 

this end, two hundred conformations are first generated by following CONCORD 

procedure near both conformation 1 and conformation 2 in the reference ensemble (the 

gray dots in Figure 5.1). The PCs are obtained by applying PCA to these 400 

conformations (gray dots). The cross-validation R-facs for different ensemble sizes also 

are given in the figure. To examine the importance of having ‘good’ initial conformations 

in refinement, a refinement starting with two conformations close to the two reference 

structures was also performed and the resulting distribution is shown as 2u in the figure. 

Figure 5.2 plots the same distribution against the first and third PC of the reference 

ensemble. The statistics on the reproduction quality of both experimental data (both 

working and cross-validation) and structural properties are given in Table 5.1.  
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Figure 5.1: Distribution of equal weighted refinement solutions of different ensemble sizes on the 
principal component space defined by the first two PCs of the reference ensemble. The experimental 
data used to guide the refinement is generated by assigning equal weights to the reference structures. 
The gray dots are the distribution of the structures generated by local sampling around the reference 
structures by CONCOORD. The solution marked 2u is obtained by a refinement starting with 
conformations close to the reference structures (one of the gray dots).  
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Figure 5.2: Distribution of equal weighted refinement solutions of different ensemble sizes on the 
principal component space defined by the first and third PCs of the reference ensemble. The 
experimental data used to guide the refinement is generated by assigning equal weights to the 
reference structures. The gray dots are the distribution of the structures generated by local sampling 
around the reference structures by CONCOORD. The solution marked 2u is obtained by a 
refinement starting with conformations close to the reference structures (one of the gray dots). 

 
 From Figures 5.1 and 5.2, we see that single structure refinement (i.e., Ne=1), 

represented by black dots, resolves into an average structure that lies nearly at the center 

of the two reference structures and all the structures are slightly closer to second 

reference structure than the first reference structure (for no particular reason). Increasing 

the ensemble size to 2 increases the spread away from the average structure but does not 

necessarily sample conformations closer to the reference structures. As a matter of fact, 

we see that the conformations move further away from the reference structures than the 

average structure, as indicated by the increasing RMSD distances to the reference 
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structures in Table 5.1. Interestingly, we see also a decrease in cross-validation R-factor 

as ensemble sizes increase even though the structural quality is not getting better. Though 

increasing the ensemble size increases the sampling away from the average structure and 

has the potential of sampling conformations closer to the native states, in our testing it 

ends up sampling conformations that actually further away from the native state. Lange et 

al. (23) in their seminal work  found that nearly all the X-ray conformations of Ubiquitin 

in the Protein Data bank (10) are close to at least one of  conformations in the ensemble 

that they determined using RDCs and NOEs as constraints  and thereby concluded that 

conformational selection should be favored over induced-fit model in explaining 

Ubiquitin binding modes. Based on our results given above, it becomes doubtful if such 

inferences can be drawn confidently, since conformations obtained by ensemble 

refinements may be further away from the native state even though they appear to reduce 

cross-validation R-factors.  

 The importance of having good initial conformations is clearly seen in the last 

column of Table 5.1 and the results denoted by 2u in Figure 5.1. The ensemble 

refinement using two structures close to the reference ensemble as starting point  

(denoted by 2u in Figure 5.1 and 5.2 and in Table 5.1) achieves the best sampling around 

the reference states along with the lowest R-factors amongst all the refinements. A 

plausible explanation is that there are many local energy minima on the energy landscape 

defined by the RDCs (97) and a starting point(s) far away from the global minima can be 

stuck in these local minima, as a result of which the resulting ensemble may be far way 

from the reference ensemble structure wise though it reduces cross-validation R-factors. 
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5.4.2 Un-equal weighted Refinements 
 
 
 In this scenario, the reference structures in the ensemble are given unequal 

weights.   Specifically reference 1 is given a weight of 70% and reference2 a weight of 

30%. This is a close representation of the Ubiquitin native states where structures close to 

1UBQ (represented by reference1) are shown to have a weight of about70% and the 

“switched” conformation (represented by reference2) a weight of 30% (63). Similar to 

the first scenario, 1UBQ-A is used as the starting conformation(s) and different ensemble 

sizes of 1, 2, 3, 4, 6 and 8 are tested. All conformations are given equal weights. 

 

Explicit Weighting vs Equal weighted Refinements: 

 In addition to the equal weighted ensembles of different sizes, a refinement 

starting with 2 structures close to reference structures and with appropriate weights 

assigned to each conformation (70% to the conformation close to reference 1 and 30% to 

the conformation close to reference 2) is also performed. The results obtained using this 

refinement scheme, called the explicit-weighting scheme, are denoted by 2w.  

 

 Figure 5.3 plots the distributions of the refinement solutions for different 

ensemble sizes in the principal component space defined by the first two PCs of the 

reference ensemble, along with the cross-validation R-factors for different refinements. 

Figure 5.4 plots the distributions in the space of the first and third PCs of the reference 

ensemble. The statistics on the reproduction quality of both experimental data (both 

working and cross-validation) and structural properties are shown in Table 5.2. 
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Figure 5.3: Distribution of equal weighted refinement solutions of different ensemble sizes on the 
principal component space defined by the first two PCs of the reference ensemble. The experimental 
data used to guide the refinement is generated by assigning un-equal weights to the reference 
structures. The gray dots are the distribution of the structures generated by local sampling around 
the reference structures by CONCOORD. The solution marked 2w is obtained by a refinement 
starting with conformations, appropriately weighted, close to the reference structures (one of the 
gray dots). 

 
 
 As observed with the equal-weighted reference ensemble, single or average 

structure refinement produces solutions that lie closer to one reference conformation than 

other and cannot capture the underlying dynamics of the native state. Increasing the 

ensemble size to 2 spreads the sampling around the mean conformation but does not 

capture the 2 states any better than single structure refinement, as indicated by the 

increase in RMSD in Table II. Further increase in the ensemble size results in an even 

wider distribution that moves farther away from the reference structures. The importance 
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of having ‘good’ initial conformations can be seen again, as explicit weighted refinement 

(last column in Table 5.2) results in both a good sampling around the reference states and 

lowest cross-validation statistics. It should be noted that the quality of sampling around 

conformational state with lower relative population (30%, reference2) is poorer in 

comparison to the other conformation with a higher relative population (reference1). This 

is attributed to the procedure used to compute alignment tensors in XPLOR-NIH suite. 

XPLOR-NIH estimates the tensors based on pseudo atom approach and restrains the 

rhombicity and magnitude of the alignment instead of using singular value decomposition 

of the direction cosine matrix computed from molecular co-ordinates, which is more 

accurate. Though the pseudo atom approach works fairly well for many cases including 

single and equal weighted refinements, the estimation introduces errors when the 

experimental data is obtained from a weighted ensemble with one dominant 

conformation. The error is large enough that even starting with the reference structures 

themselves and with the exact weights can still result in a solution that deviates from the 

reference structures, with RMSDs similar to those observed in case 2w.  

 



	
   133	
  

 
Figure 5.4: Distribution of equal weighted refinement solutions of different ensemble sizes on the 
principal component space defined by the first and third PCs of the reference ensemble. The 
experimental data used to guide the refinement is generated by assigning un-equal weights to the 
reference structures. The gray dots are the distribution of the structures generated by local sampling 
around the reference structures by CONCOORD. The solution marked 2w is obtained by a 
refinement starting with conformations, appropriately weighted, close to the reference structures 
(one of the gray dots). 
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Table 5.2: Quality of solutions for an un-equal weighted reference ensemble assessed by reproduction 
of experimental data and structural similarity to the reference ensemble. The data shown here are 
the R-factors for RDCs, RMSD for NOE distance constraints and RMSD for structural similarity. 
The percentage of solutions closer to one reference structure than the other is computed by finding 
the fraction of conformations that are closer to that reference structure. The Ne number represents 
the ensemble size. The solution denoted by Ne value of 2w is generated by starting the refinement 
with initial conformations close to the reference structure and with appropriate weights. 

R-factors for bond 

vectors 

Ne=1 Ne=2 Ne=3 Ne=4 Ne=6 Ne=8 Ne=2w 

NH 13.1 5.3 4.5 3.8 3.3 3.2 4.7 

CAC 11.0 5.4 4.5 3.7 2.9 2.5 5.0 

CHN 16.8 4.9 4.0 3.7 3.3 3.1 4.2 

CN 17.0 7.4 5.6 4.9 4.0 3.7 6.3 

 

NOE 0.13 0.08 0.07 0.06 0.07 0.06 0.07 

Cross-Validation R-factors and NOE RMSD 

CAHA 12.6 10.0 8.0 9.0 9.3 10.1 6.6 

NOE (free) 0.21 0.21 0.23 0.26 0.32 0.29 0.20 

Structural Properties: percentages of conformations closer to reference structure 1 than 2 

(or vice versa) and their mean RMSD to the closer reference structure 

% conf. closer to Ref1 4 47 61 61 51 55 50 

Mean RMSD to Ref1 0.73 0.93 1.24 1.55 1.90 2.14 0.64 

% conf. closer to Ref2 96 53 39 39 49 45 50 

Mean RMSD to Ref2 0.66 1.22 1.27 1.56 2.06 2.53 1.1 
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Implicit weighting refinement scheme: 

 In the explicit weighting scheme, the weights are explicitly assigned to the initial 

conformations in the refinement protocol. Alternatively, such weights can be reflected 

implicitly by choosing an equal weighted ensemble whose numbers of structures that are 

close to each of reference structures are in proportion to the relative populations of the 

reference structures. To test if implicit refinement scheme would result in similar solution 

to the explicit weighting scheme, we test equal weighted implicit refinements of different 

ensemble sizes starting from 3. The ensemble composition is set to approximately reflect 

the population weights of the reference structures. The resulting structural quality of such 

refinements is given in Table 5.3 and the distributions of the conformations along the 

principal components of the reference ensemble are shown in Figures 5.5 and 5.6.  
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Figure 5.5: Distribution of implicit weighted refinement solutions of different ensemble sizes on the 
principal component space defined by the first two PCs of the reference ensemble. The experimental 
data used to guide the refinement is generated by assigning un-equal weights to the reference 
structures. The gray dots are the distribution of the structures generated by local sampling around 
the reference structures by CONCOORD. The solution marked 2w is obtained by a refinement 
starting with conformations, appropriately weighted, close to the reference structures (one of the 
gray dots). 

 

 

 From the Figures 5.5 and 5.6, we see that the results of the minimal possible 

representation that encodes implicit weights, Ne=3, stay closer to the reference ensemble 

than larger ensembles. The quality of its solution conformations, in terms of its closeness 

to the reference states, is slightly worse than explicit weighting refinement in Table 5.3. 

Increasing the number of conformations in the implicit weighting scheme results in wider 

conformational distribution and larger deviation from the reference structures. This result 
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strongly indicates that ensembles that use sheer numbers of conformations to represent 

relative populations of conformation states are much more vulnerable than those that use 

a minimum number of conformations but with proper relative populations assigned to 

them.  

 

Figure 5.6: Distribution of implicit weighted refinement solutions of different ensemble sizes on the 
principal component space defined by the first and third PCs of the reference ensemble. The 
experimental data used to guide the refinement is generated by assigning un-equal weights to the 
reference structures. The gray dots are the distribution of the structures generated by local sampling 
around the reference structures by CONCOORD. The solution marked 2w is obtained by a 
refinement starting with conformations close to the reference structures (one of the gray dots). 
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Table 5.3: The structural quality of solution generated by implicit weighting in comparison to explicit 
weighting in the refinement scheme. For a given ensemble size, conformations close to the reference 
ensemble were chosen proportional to the weights assigned in the experimental data for implicitly 
weighted refinement scheme. The explicitly weighted refinement scheme, denoted by Ne=2w, used 
only two conformations close to the reference structures along with explicit assignment of weights in 
the refinement protocol. 

 Ne=3 Ne=4 Ne=6 Ne=8 Ne=2w 

Ensemble composition. 

(# conf close to ref. 1, # 

conf close to ref. 2)  

(2, 1) (3,1) (4,2) (6,2) (1,1) 

% conf. close to Ref. 1 66 66 63 64 50 

RMSD to Ref1 1.06 1.33 1.68 1.93 0.64 

% conf. close to Ref. 2 34 34 37 36 50 

RMSD to Ref2 0.92 1.35 1.78 2.14 1.1 

 

 

5.5 Future Work 
 
 Ensemble refinements, instead of single structure refinements, have been 

proposed to better capture the structure and dynamics of the native states of 

biomolecules. Ensemble refinements of 8 or more replicas have been used routinely in 

refinements of Ubiquitin (23, 34) and Lysozyme (88) and are shown to reproduce the 

experimental data better than single structure refinements. Though work by Clore et al 

(32) identified the minimum number of conformations required to satisfy the 
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experimental data for Ubiquitin, there has been no detailed study on the structural quality 

of the solutions generated by ensemble refinements.  

 In this work by using synthetic data, we show that ensemble refinements do not 

necessarily improve the structure quality of the solutions but can result in conformations 

further away from the native states, though the ensembles may appear to be able to 

reproduce experimental RDC/NOE data better and even pass cross-validations. Our 

results show that a decrease in cross-validation R-factors does not necessarily mean the 

solution is moving closer structurally.  

 Our results show that having good initial conformations in refinement can 

alleviate the problem. Good initial conformations are those structurally similar to the 

target structures. Practically speaking, these could be existing X-ray structures of the 

protein being studied. Previous work in our lab has extensively focused on identifying 

representative conformational states among existing structures and assigning appropriate 

weights to them based on RDC data. We envision that ensemble refinements based on 

these starting conformations should further improve the quality of solutions and help 

better quantify the under-lying conformational states of the protein. 
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 Proteins are dynamic molecules and even the native states of a protein are not a 

single static structure but spread over a broader region of the conformation space. As a 

result, for many proteins, an ensemble of conformations provide a more accurate 

depiction of the native states (7, 9). When using ensembles to represent the dynamic 

nature of the native states and to gain insights into protein functional mechanisms, care 

must be taken in their construction, making sure that they capture the underlying native 

states reliably. But constructing such reliable ensembles based on experimental data 

constraints proves to be challenging as it is a heavily under-constrained problem and can 

be easily over-fitted (35).  

 

The two key requirements for deriving high quality ensembles are:  

 1). Experimental data capturing the dynamics of the native states in the 

biologically relevant time scales.  

 2). Conformational sampling capturing the representative conformations of the 

native states.  

 In our work described in Chapter 2, we have shown that, given a reasonable 

conformational sampling, RDCs could be used as a guide to construct a high quality 

ensemble. Specifically, we have shown that the native state of Ubiquitin could be well 

represented by a few conformational states whose relative populations are determined 

using RDCs as constraints. In addition to the abundant experimental data that are 

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 
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available, Ubiquitin has also over a hundred X-ray structures. Such collections of 

structures of one same protein were hypothesized to represent different conformational 

states of the native states (17), Putting them all together, it makes Ubiquitin an ideal 

model system for constructing such weighted ensembles. The conformational states 

identified by our method (Vammi et al., 2014) (see Chapter 2) were shown to be 

biologically relevant to the functions of Ubiquitin and the relative populations assigned to 

them matched closely to observations from a long molecular dynamics simulation (66).  

 Traditionally the native state of proteins is structurally represented by a single or 

average structure representation, or an equal weighted ensemble consisting of hundreds 

of conformations. Single structure representations, owing to their lack of structural 

variance, may suffer under-fitting while ensembles of hundreds of conformations are 

highly susceptible to over-fitting due their large number of model parameters. The 

weighted ensemble representation can be thought of as an intermediate scheme between 

these two representations. The weighted ensemble representation uses minimal 

conformational states, whose relative populations are determined using experimental 

data, thus minimizing the problem of over-fitting while still capturing the dynamics that a 

single structure misses. To assess the quality of such a representation, we have performed 

extensive cross validation studies using varied experimental data and compared it against 

the traditional structural representations in Chapter 3. The cross-validation results clearly 

show that weighted ensembles represent the native state equally well or in some cases 

better, than traditional representations.  
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 To make the method developed in Chapter 2 more generally applicable to other 

proteins, two significant bottlenecks have to be solved: 

 1). Ubiquitin, being the model protein for NMR studies, has abundant 

experimental data, which is not the case for many other proteins.  

 2). Reasonable conformational sampling to allow reliable construction of 

weighted ensembles.  

 

 In Chapter 4, we resolve the first bottleneck by identifying the minimal 

experimental data that are required to construct weighted ensembles. We show that 

weighted ensembles could be constructed using as few as 6 NH RDC datasets and theses 

ensembles are of similar quality to the ones constructed using both NH RDCs and multi-

vector RDCs. To test if this observation can be extended to other proteins, we choose 

Hen Egg White Lysozyme (HEWL),  the model protein in X-ray crystallographic studies, 

as an example since there are hundreds of HEWL structures deposited in PDB and eight 

NH RDCs available in the literature. In our extensive cross-validation studies, the 

weighted ensemble representation of HEWL is shown to perform better than any other 

ensemble representation in literature and competes well with the average structure 

representation.  

 

 One may wonder if the RDC requirement for assigning relative populations could 

be further lowered. Though we recommend using 6 or more NH datasets to construct 

weighted ensembles in Chapter 4, in our studies we did observe that some combinations 

of even two NH RDC datasets are good enough to construct weighted ensembles. 
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However, currently it is not known how to identify and select such combinations. A 

careful study that takes into account both the dynamics present in the native states and the 

dynamics encoded in the RDCs is needed and could potentially minimize the NH RDC 

requirements for ensemble weight assignment even further.  

 

 Good quality conformational sampling remains to be the biggest bottleneck in 

applying the method in Chapter 4 to other proteins that have satisfied the minimal 

experimental data requirement. We have attempted to resolve this by resorting to 

structural or ensemble refinements using experimental data as constraints in Chapter 5. 

Our preliminary results show that ensemble refinements with arbitrary starting points, 

though increasing the chances of sampling conformations away from the average 

structure and having the potential of sampling conformations close to the native states, 

often ends up sampling conformations farther away from the native states.  

 

 In Chapter 5, we find also that ensemble refinements with a reasonably good 

starting point (i.e., good initial conformations) are able to solve the aforementioned 

problem of sampling conformations farther away from the native states and sample 

conformations close to the native states. The work presented in Chapter 2 and Chapter 4 

focuses exclusively on identifying such good starting points with minimal over-fitting. 

An immediate future work is to use solutions obtained by the methods described in 

Chapters 2 and 4 as initial conformations (or starting points) for further refinements 

(Chapter 5).  
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 The methods described in Chapter 2 and Chapter 4 are tolerant of structural 

sampling noise but they require the majorly populated conformational states of the native 

state represented sufficiently well in the initial pool of conformations, an essential 

requirement for any sample and select strategy. As long as this criterion is satisfied, the 

weighting protocol would identify the representative conformations and rightly assign 

weights. Molecular dynamics simulations have been often used to generate such 

ensembles (62) for proteins and nucleic acids (36) and it would be interesting to see if 

such ensembles result in similar solutions.  

 

 Experimental data capturing the dynamics at different resolutions and time scales 

are integrated to further enhance our understanding of dynamics of bio-molecules (81, 98, 

99). Typically solution scattering profiles are used along with residual dipolar couplings 

to provide orientation restraints (100). Solution scattering profiles themselves contain 

low-resolution information on the dynamics of protein and can be used for large proteins 

that are beyond the regime of NMR experiments. Similar to our work using RDCs, a lot 

of work on obtaining the minimal weighted ensemble using solution scatter profiles has 

been done by different groups (101-103). Another potential direction for future research 

is to extend our RDCs-based method and use solution scattering profiles instead to 

construct weighted ensembles.  
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