
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2015

Diagram-based intelligent tutoring systems
Enruo Guo
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Artificial Intelligence and Robotics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Guo, Enruo, "Diagram-based intelligent tutoring systems" (2015). Graduate Theses and Dissertations. 14582.
https://lib.dr.iastate.edu/etd/14582

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14582&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14582&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14582&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14582&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14582&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=lib.dr.iastate.edu%2Fetd%2F14582&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/14582?utm_source=lib.dr.iastate.edu%2Fetd%2F14582&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Diagram-based intelligent tutoring systems

by

Enruo Guo

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Co-majors: Computer Science; Human Computer Interaction

Program of Study Committee:
Stephen Gilbert, Co-Major Professor

Les Miller, Co-Major Professor
John Jackman

Michael Dorneich
Johnny Wong

Iowa State University

Ames, Iowa

2015

Copyright © Enruo Guo, 2015. All rights reserved.

 ii

TABLE OF CONTENTS

 Page

ACKNOWLEDGMENTS .. iv

ABSTRACT .. vii

CHAPTER 1 INTRODUCTION .. 1

 1.1. Diagram as an Important Tool in STEM .. 2
 1.2. The Limits of Diagram as a Way of Communication 8
 1.3. The Rise of ITSs and Diagram-based ITSs ... 9
 1.4. Knowledge Representation to Facilitate Authoring Diagram-based ITSs 11
 1.5. Research Questions ... 11
 1.6. Contributions .. 12
 1.7. Organization of This Dissertation ... 14
 References ... 15

CHAPTER 2 LITERATURE REVIEW .. 18

 2.1. Intelligent Tutoring Systems (ITSs) .. 18
 2.2. Knowledge Representation and Ontology .. 38
 2.3. Diagrams .. 50
 2.4. Conclusion .. 54
 References ... 55

CHAPTER 3 STATICSTUTOR: FREE-BODY DIAGRAM TUTOR
FOR PROBLEM FRAMING ... 63

 Abstract ... 63
 3.1. Introduction ... 64
 3.2. Related Work .. 66
 3.3. StaticsTutor Interface and Architecture .. 68
 3.4. Preliminary Evaluation ... 74
 3.5. Conclusion and Future Work .. 77
 References ... 78

CHAPTER 4 A DECISION-CENTRIC PROBLEM FRAMING TUTOR
FOR THERMODYNAMICS .. 81

 Abstract ... 81

 iii

 4.1. Introduction ... 82
 4.2. Related Work .. 85
 4.3. Tutor Architecture ... 88
 4.4. Tutor Session .. 103
 4.5. Tutor Evaluation ... 106
 4.6. Conclusion and Future Work .. 107
 References ... 109

CHAPTER 5 INSTRUCTIONAL STRATEGIES IN DIAGRAM-BASED
ITSS: LESSONS LEARNED FROM TWO TUTORING SYSTEMS 113

 Abstract ... 113
 5.1. Introduction ... 114
 5.2. Background and Previous Work .. 114
 5.3. Instructional Guidelines in Diagram-based ITSs .. 117
 5.4. Conclusion and Future Work .. 125
 References ... 127

CHAPTER 6 AN ONTOLOGICAL APPROACH TO SUPPORT
KNOWLEDGE REPRESENTATION IN DIAGRAM-BASED
INTELLIGENT TUTORING SYSTEMS ... 129

 Abstract ... 129
 6.1. Introduction ... 130
 6.2. Literature Review ... 132
 6.3. Our Approach .. 135
 6.4. Applications in Three Domains ... 161
 6.5. Other Application: Concept Map .. 176
 6.6. Validation .. 180
 6.7. Discussion and Conclusion ... 194
 References .. 198

CHAPTER 7 CONLUSION AND FUTURE WORK 201

 7.1. Conclusion .. 201
 7.2. Future Work ... 205
 References .. 209
	
 	

 iv

ACKNOWLEDGMENTS

First and foremost, I would give my deepest thanks to the Holy Father, Holy Son,

and Holy Spirit, who directed me to start this Ph.D. program at the darkest time of my

life, helped me to find my interests, re-built my confidence, and guarded me all the way

in ups and downs. My dearest friend Jesus Christ always gave me wisdom and strength

when I was struggling in research and coursework. I can see this is God’s miracle that I

can finish my Ph.D. in computer science with a co-major in human computer interaction

within three years. Praise the Lord!

I would thank my advisor Dr. Stephen Gilbert. I still remember how grateful I was

to get the chance to start this project after a talk with him in Skype in 2012. During the

study, I am impressed by his enthusiasm in doing research and mentoring students, his

frankness, care and sincerity to students, and his efficiency to respond to any kinds of

query or request. I feel thankful for his generosity and cultivation to make students

become independent researchers. The three-year journey with him is absolutely a joyful

and memorable time in my life.

I would thank my co-major advisor Dr. Les Miller, whom I first met when I took a

course of him in 2011. When I started my dissertation topic, we always spent two hours

to talk every Wednesday afternoon. I was touched by his care and respect to students, in

addition to his rigorousness to research. During our meetings, he not only mentored me in

research by explaining his hand-written comments on paper, but also gave me lots of

insights for future direction through his personal stories. Without his help, I couldn’t

finish my dissertation on time.

 v

In addition, I would give my special thanks to Dr. Stephen Gilbert and Dr. Les

Miller for their time and efforts in revising this dissertation.

I would also give my thanks to the rest of my POS committee: Dr. John Jackman,

who was the PI of the problem framer project I worked before, showed his leadership and

guidance in helping me finish the two ITSs. Without the financial and technical support

from the project and his efforts in developing XDraw, I cannot get my degree in such a

short time. Dr. Johnny Wong, whom I met in Ames Chinese evangelical church at the

beginning of this program, gave me lots of encouragement on how to grow bigger and

stronger in Christ as a professional. I was moved by his role as a faculty but also leads a

church with many involvements. Dr. Michael Dorneich, whom I knew during 2013

summer REU program when both of us served as mentors of the undergraduates, inspired

me by his patience and love to students, as well as his technique specialty in training

systems. Also, I would give a special appreciation to the whole committee. Without all

your help, I could not schedule my prelim and final oral exam so smoothly.

I would take this opportunity to thank my Mom and Dad, and all my family

members, for their prayers, love, trust and endless supports. I am grateful to have them in

my life.

Furthermore, I would like to place my sense of gratitude to Home-for-Heart

Chinese Bible study fellowship. I can feel God’s love through these dear brothers and

sisters, such as Wei, Cindy, Chunquan, Landy, Jing, Dafang, Tianqi, Chong, Geng, and

the rest of the group.

In addition to that, I would thank Pastor David, G.P. and Nancy from Christ

Community Church, who gave me lots of inspirations on the walk with Jesus Christ by

 vi

their life-changing testimonies and teachings. A special thanks to my foreign friends

Joori and Daniel, who made my Ph.D. journey more fascinating through many casual

conversations, and thanks to be given to other brothers and sisters in the Body of Christ

as well.

Furthermore, I would thank all the members in problem framers project: Matt,

Gloria, LeAnn and Mostafa, for their two-year collaborations and help to make the

project complete. I would give special thanks to my lab-mate Mostafa, who made my

Ph.D. study experience enjoyable. Finally, I would thank the ITS team, such as Colin,

Jingyu, Jamiahus and Ben for their participation and sharing in our weekly meeting, the

ALC group such as Chase, Norene, Curtis and Amanda, and my other colleagues at

VRAC.

 vii

ABSTRACT

This work first presents two implementations of Intelligent Tutoring Systems (ITSs)

on engineering undergraduate-level diagram education: StaticsTutor for free-body

diagram and Thermo Cycle Tutor for refrigeration T-v diagram. Initial investigations on

several groups of students have shown their educational effectiveness.

Unlike text-based input, diagram has some intrinsic challenges that lead it hard to

teach. One example is conceptual knowledge is highly interconnected with procedural

knowledge. Learned from the two ITSs, we provided some general pedagogical

guidelines for the future Diagram-based ITSs.

Also, we learned classes can be used as a way of representing geometric shapes in

diagrams. Thus, we extended our work to the generality of how the current approach can

be applied to other domains. We chose a popular type of diagram, called Block Diagram,

which contains geometric objects and lines/arrows in connecting them. We developed a

methodology to represent a diagram’s information and an ontology of diagram evaluation

processes to diagnose students' diagrams. Our work contributes to the development of

Diagram-based ITSs authoring tools.

 1

CHAPTER 1

INTRODUCTION

In 2014, 34% of all bachelor’s degrees were in STEM field according to the report

from the National Student Clearinghouse Research Center (2015). Conceptual knowledge

learning is one of the crucial parts in STEM education. According to Rittle-Johnson

(2006, p. 2), conceptual knowledge is “understanding principles governing a domain and

the interrelations between units of knowledge in a domain.” Examples include Newton’s

law in mechanics, heat and laws of thermodynamics. Also, “robust misconceptions” were

noticed by researchers regarding force in statics, heat in thermodynamics, etc. They

explored reasons why those misconceptions are hard to resolve. One reason might be

that students tend to use analogies to help themselves understand those concepts. Thus, it

becomes a challenge to teach student conceptual knowledge.

To improve the traditional one-size-fits-all teaching approach, a growing field

called “personalized learning” has been investigated in recent two decades. National

Academy of Engineering (NAE, 2008) listed “advance personalized learning” as one of

the 14 grand challenges for engineering in the 21st century. Intelligent Tutoring Systems

(ITSs) are one of the areas to tackle this challenge. ITSs are an application of Artificial

Intelligence, which simulate a human tutor by giving tailored feedback to student and

present learning contents according to learners’ pace and status. Even though ITSs have

shown their effectiveness in many fields such as mathematics and physics (Koedinger et

al., 1997; Vanlehn et al., 2005), there aren’t many systems aimed at engineering

education, especially focused on correcting students’ misconceptions.

 2

A diagram is a convenient way of conveying conceptual knowledge in many

domains. Examples include free-body diagrams in statics, UML modeling diagrams in

software engineering, etc. However, unlike text-based representation, a diagram bears

some intrinsic challenges from pictorial representation, such as ambiguity and separation

of conceptual knowledge from procedural knowledge, which can make it hard to teach

and hard to learn. Also, a diagram’s underlying representation within a system is quite

different from sentential inputs or equations.

To help students convey conceptual knowledge through diagrams, our work

contains two parts: 1) By building two Diagram-based ITSs from different domains, we

gained hands-on experience on how diagrams can be represented, and explored some

pedagogical strategies that are useful for tutoring with diagrams; 2) we constructed a

general knowledge representation for diagrams, and described how it can be used to

design the evaluation and pedagogy processes used in future Diagram-based ITSs tutors. .

This chapter gives a brief introduction to diagrams and their advantages as a form

of knowledge representation. Also, the chapter discusses the intrinsic limits of diagrams

and how Intelligent Tutoring Systems (ITSs) can be used to teach them. Furthermore, it

describes the gaps between the current Diagram-based ITSs and the generalization to

other domains. Finally, the research questions addressed in this work and our

contributions to ITSs community are presented. An organization of this whole document

ends the chapter.

1.1. The Diagram as an Important Tool in STEM

Human beings use both internal and external representations when solving

problems. The internal representations are stored in the brain, whereas the external ones

 3

are recorded on paper or another outside medium. External representations include two

types of symbolic expressions: 1) Sentential representations, which is usually described

by natural language following some sequence; 2) Diagrammatic representation, where the

expression corresponds to the components of a diagram (Larkin & Simon, 1987).

According to Larkin and Simon (1987), unlike sequential representations, diagrams use

location in a 2d plane to index information which is often implicit in sentential

descriptions. Therefore, it saves time and cost to use diagrams to make information

explicit to use.

As Larkin and Simon (1987) summarized, diagrams have three important features

that are superior to sentential descriptions: 1) Locality, which says information in

diagrams can by grouped by their spatial location, so that search of relevant information

might be avoided in problem-solving; 2) Unnecessary to label, which says labels can be

avoided when information can be grouped by its location; 3) Perceptual ease, which says

perceptual inferences can be easily obtained by a diagram’s intrinsic graphic

representation.

As an example, Larkin and Simon (1987) used an energy-level graph (Figure 1.1) in

physical chemistry to explain the three features. While this figure is dissimilar from the

diagrams that are the focus of this research, it provides a good example for the three

features. 1) Locality: Energy is released if electron transition occurs between energy

states. The vertical arrows between states show all the possible transitions. The released

energy is calculated by the difference of E1 and E2, where E1 and E2 represent the

energy of higher and lower states, respectively. 2) Reduced labeling: The labels in Figure

1.1 are not essential to any of the inferences. 3) Perceptual ease: The diagram shows

 4

perceptually the relative size of energy levels, e.g., a greater energy is released by

transition_a, as transition_a has a longer arrow than transition_b. However, not all the

diagrams carry the three features, e.g., in UML diagrams, the locations and spatial

relations among elements are not considered. It is still worthwhile to mention how we can

benefit from diagrams. For most cases we discuss in this research, we focus on diagrams

that don’t describe an actual spatial arrangement, but rather provide cognitive utility and

depict relations among non-spatial variables. For example, arrows among objects in UML

diagrams reveal some relationship, but the spatial locations of the objects are less

important.

Figure 1.1. An energy level diagram of hydrogen atom. Reprinted from Larkin & Simon
(1987).

Based on a series of examples, Larkin and Simon (1987, p. 28) concluded that

“diagrams and human visual system provide, at essentially zero cost, all of the inferences

we have called ‘perceptual’.” Therefore, they are used extensively to facilitate

communication and comprehension in the scientific engineering world. Also, it is

 5

believed that visualized data would not only be understood faster and easier, but also

enhance analytical thinking more than corresponding text representations (Shah, 1997).

Given the advantages of pictorial representations, diagrams have been used in many

scientific domains at different levels of education. In physics, a free-body diagram is used

to represent forces and their relations in a system (Figure 1.2). Forces' relative magnitude

and direction are represented. Also, other relevant objects such as the reacting point and

contacting plane need to be represented in order to convey the complete message.

Furthermore, equations or text descriptions are used to demonstrate student’s knowledge

during the problem solving process. Thus, a free-body diagram becomes a major

representation of forces and system equilibrium in statics, which is required for most

engineering students.

In computer science, Unified Modeling Language (UML) is widely used in

software engineering to provide a standard way to visualize the design of a system, which

has many applications such as a system diagram, behavior diagram, class diagram,

interaction diagram, component diagram, etc. Figure 1.3 shows an example of an UML

class diagram. Three classes are included: BankAccount, CheckingAccount, and

SavingAccount. Variables and methods are defined within each class. A line with an

unfilled arrowhead is used to model the inheritance relationship among the classes.

Figure 1.4 shows a class hierarchy of Collection type. The dashed arrow indicates an

“implements” relation, whereas the solid arrow indicates an “extends” relation. As we

can see, UML diagram and the hierarchy diagram share similar features: they both

describe objects and how objects are related. Also, in comparison to Figure 1.1, these

 6

diagrams are not spatial. The arrows' direction and connections are important rather than

the location of the boxes.

In engineering, a process flow diagram is widely used to demonstrate the general

flow of plant processes and equipment, which usually includes major equipment items,

process piping, controls and connections, bypass and recirculation stream, names of

process stream, and operational conditions such as temperature, density and mass flow

rate. An example is shown in Figure 1.5. Even though there are several types of elements,

each of them can be abstracted as a block. Connections between the blocks are used to

depict the relationship or ownership or successive order between them. Therefore, the

process flow diagram has intrinsic similarity to UML and hierarchy diagrams in general.

Figure 1.2. A free-body diagram for a beam on a roller and a pin. Used with permission
from Gloria Starns.

 7

Figure 1.3. An example of UML class diagram. Inheritance is indicated by a solid line
with an unfilled arrowhead pointing at the super class.

Figure 1.4. A class hierarchy of Collection type. The dashed arrow indicates an
“implements” relation, whereas the solid arrow indicates an “extends” relation.

 8

Figure 1.5. A process flow diagram of a drinking water system.

1.2. The Limits of Diagrams as a Way of Communication

Researchers have found graph comprehension is a complex, interactive process

(Shah, 1997). Through serial, iterative cycles of identifying and relating the graphic

patterns, the viewer would form a mental model of the quantitative information from the

graph. Also, both bottom-up perceptual features and top-down factors such as the

viewer’s expectations or familiarity with the graph content would influence the process.

As a diagram is a type of graphic representation, it inherits the intrinsic complexity of

graphs. Because of that, in many disciplines, using a diagram to represent knowledge and

be understood by others becomes a difficult process. I.e., compared with a text

representation, it is harder to convey the message within a strictly defined, domain-

dependent diagram. At the same time, instructors have to undergo a more complex

process to understand and diagnose a student’s diagrammatic representation. Also, many

diagrams require specific symbols and predefined format to convey knowledge, which

means that students need to learn them ahead of time. Therefore, a big challenge arises:

 9

students have to go through some practice to convey their understanding on a diagram

with an appropriate format.

Furthermore, like other communications, diagrams have potential ambiguities. In

natural language, many people resolve ambiguity problems based on context, conventions

of communication and domain-specific knowledge. However, in diagrams, many

ambiguities are subtle and are more difficult to resolve than those in natural language.

Even though Futrelle (1999) has suggested some techniques on helping to resolve

diagram ambiguity, such as choosing grammar rules to apply in context-specific ways,

designing grammars to reflect graphics conventions and examining surrounding text, it is

still an open question on how much we can do to reduce diagram’s ambiguity.

1.3. The Rise of ITSs and Diagram-based ITSs

Defined by Psotka & Mutter (1988), an Intelligent Tutoring System (ITS) is aimed

at giving personalized instructions to learners at an appropriate time. It is designed to

simulate a human teacher’s behavior and guidance after interpreting student’s responses.

ITSs have shown their educational effectiveness in many areas. Its one-on-one tutoring

paradigm gives students more personalized guidance. ITSs have been used both in class

and for homework in mathematics, physics, computer programming, and other subjects

(Corbett, Koedinger, & Hadley, 2002; Oliveira Neto & Nascimento, 2012; Rai & Beck,

2012; Sklavakis & Refanidis, 2013; Vanlehn et al., 2005).

To make use of the benefit of ITSs’ one-on-one tutoring paradigm, many systems

have been developed to teach students how to draw a diagram. A few examples follow.

COLLECT-UML (Baghaei & Mitrovic, 2005) is a UML class diagram tutor where

students can both learn individually and collaboratively. EER-Tutor (Zakharov, Mitrovic,

 10

& Ohlsson, 2005) helps learning and practicing principles of Enhanced Entity-

relationship modeling in database course. Free-Body-Diagram Assistant (Roselli &

Howard, 2003) allows students to construct free-body diagrams on a given human body

picture and receive constructive feedback in the course of biomechanics. CogSketch

(Forbus et al., 2011), which is sketch-based educational software, has demonstrated the

powerful ability to understand sketched shapes and recognize them even after rotation or

change of position.

In general, like many existing ITSs, a Diagram-based ITS includes: 1) A user

interface that usually contains a drawing palette, 2) a pedagogical module which

incorporates an expert’s feedback and pedagogical strategies, 3) a domain model that

contains semantic or syntax constraints or knowledge applicable to all problems in the

system, and 4) a student model (Nkambou, 2010; Self, 1990). Based on different ITSs’

structures, some of them have a diagnosis module, which compares a student’s diagram

with expert’s solution, if the domain model is unable to automatically generate a solution.

If a student’s drawing doesn’t agree with the ideal drawing, instructional feedback or

hints will be given. Because the systems are designed to interpret varied student

responses, they are able to determine why a student’s understanding has gone astray.

Thus, personalized feedback is offered to fix their misconception or misunderstanding at

the earliest time possible. As a result, ITSs provide many benefits of a human tutor to

very large numbers of students, where the one-on-one interaction promotes students’

learning experience. Furthermore, ITSs provide real-time data to instructors and

developers to refine their teaching methods in the future.

 11

1.4. Knowledge Representation to Facilitate Authoring Diagram-based ITSs

In the last two decades, some work has been done on developing authoring systems,

with the aims at simplifying the process of creating an ITS, and decreasing the skill

threshold for the ITS builder. The most complicated aspect of creating an ITS is building

the domain model which contains the knowledge for student to learn. In Artificial

Intelligence, knowledge representation is the method of encoding knowledge in an

intelligent system’s knowledge base (Grundspenkis & Anohina-Naumeca, 2015). It

basically maps objects and relationships of the real world to computational objects and

relationships in a computer-readable format. Thus, constructing knowledge representation

about the domain to learn is a desirable feature of ITS authoring systems.

According to Murray (1999), there exists several types of ITS authoring tools.

However, very few tools focus on building tutors to teach diagrams. Even though some of

the Diagram-based ITSs (Suraweera & Mitrovic, 2004) provide an administration feature

which allows instructor to add a new problem and its ideal solution, it is strictly limited to

a particular domain. A generalized representation that could capture important features of

various types of diagrams in different disciplines would be valuable. Moreover, a

structure that explicitly contains an evaluation process and pedagogy instructions would

be of great benefit and should simplify the development of Diagram-based ITSs in the

future.

1.5. Research Questions

To facilitate the development of Diagram-based ITSs for various types of diagrams,

we use classes to represent a diagram’s information in the domain model, and an

ontological approach to include evaluation steps and pedagogical instructions. An

 12

ontology not only benefits knowledge articulation by breaking down a diagram into a set

of related elements, but also provides an embedded representation of a diagram, in which

authors can directly use such knowledge in diagram diagnosis. Furthermore, an

ontology’s intrinsic hierarchical structure supports knowledge management and

visualization when an author needs to view different types of elements in a diagram.

Moreover, re-use of the authored knowledge becomes feasible, since an existing ontology

can be easily exported to another ontology-friendly system. Finally, a diagram ontology

can support automated procedural knowledge creation. I.e., when the author draws the

ideal solution in the system, the drawing order of each element can be recorded and used

to create procedural knowledge automatically.

Therefore, the following questions are addressed in this work.

1. What can be learned from creating tutors with different underlying diagram

representations?

2. Can we extend this knowledge to other domains? Can a general representation

model for diagrams be developed?

3. Can we also develop a methodology to incorporate common evaluation

procedures and pedagogy instructions for Diagram-based ITSs?

The first question requires us to develop solutions in some specific domains. The

second and third questions ask if we can provide solutions by extending our current

methods to more general settings.

1.6. Contributions

This work contains two parts. Firstly, to answer our first question, we implemented

two diagram-based ITSs, StaticsTutor for free-body diagrams and Thermo Cycle Tutor

 13

for thermodynamics cycle T-v diagrams, based on pedagogical strategies from instructors

in undergraduate engineering courses. Initial investigations of several groups of students

showed that StaticsTutor can effectively identify students’ misconceptions, and that

Thermo Cycle Tutor can increase students’ learning gains relatively quickly. Even though

they belong to different domains, i.e., the T-v diagram is completely different from a

free-body diagram, we found there are some similarities when designing the evaluation

engine. Both tutors have a drawing palette that allows students to use the basic shapes,

such as line, point, rectangle, etc. In the tutor’s evaluation engine, each shape has a

representation class that contains possible functions of it. One example of such functions

is if_contact (another point) in class of Line, which checks whether an instance of Line

contacts with an instance of Point. The basic idea gained from this work is to use classes

to represent properties of the diagram and its components.

Secondly, to answer Questions 2 and 3, we found many existing diagrams belong to

the family of Block Diagram, which consists of geometric shapes by using lines or

arrows to connect them. Therefore, we chose Block Diagram as our target focus in this

work. Chapter 6 not only provides a general class representation of the knowledge in a

Block Diagram, but also presents the design of an ontology containing the evaluation

process and pedagogy types needed to handle evaluation outputs. This ontology includes

three evaluation steps: general property check, block property check and problem-

specific check, along with seven pedagogical instruction types. We demonstrate the

ability to use this ontology to create knowledge representations and design evaluation

processes in three situations: 1) creating a tutor from scratch for a given domain, 2)

creating a tutor in a new domain based on the information from an existing domain, and

 14

3) add a new tutored problem in an existing domain. We believe our approach can ease

the creation process for future Diagram-based ITSs

1.7. Organization of This Dissertation

In Chapter 2, we offer a literature review on Intelligent Tutoring Systems (ITSs)

and their major components, two main methods to model domain knowledge, and some

examples of diagram-based ITSs. Also, we include a brief description about desired goals

of the ITS authoring process and some existing strategies to achieve those goals. The

second part is about ontology, a method of knowledge representation in AI. We discuss

uses of ontologies, types, languages and tools to organize them, followed by some

evaluation methods. Moreover, a survey of classification of diagrams will be discussed.

Chapters 3 and 5 are extended versions of two conference papers published in the

12th International Conference on Intelligent Tutoring Systems. Chapter 3 discusses a free-

body diagram tutor in an engineering statics course (StaticsTutor), which focuses on

providing students tutoring experience at their problem framing stage. Chapter 5 is about

pedagogical guidelines and some practical issues for diagram-based ITSs, based on our

experience in two ITSs: Thermo Cycle Tutor and StaticsTutor. Chapter 4 presents

Thermo Cycle Tutor in more detail, a T-v diagram tutor for an undergraduate

thermodynamics course. A detailed system architecture of the tutor, as well as its

educational effectiveness is provided. This work will be submitted to the journal

Computers and Education. In Chapter 6, we describe knowledge representation and

ontologies applied to domain modeling in Diagram-based ITSs. Two main ontologies are

discussed: a general property ontology for block diagrams and an ontology for evaluation

 15

process-pedagogy. Chapter 7 concludes with a summary of the research. Also, future

work on another type of diagram is discussed.

REFERENCES

Baghaei, N., & Mitrovic, A. (2005). COLLECT-UML: Supporting Individual and
Collaborative Learning of UML Class Diagrams in a Constraint-based Intelligent
Tutoring System. In Proceedings of the 9th International Conference on
Knowledge-Based Intelligent Information and Engineering Systems - Volume Part
IV (pp. 458–464). Berlin, Heidelberg: Springer-Verlag. doi:10.1007/11554028_64

ConceptDraw. (2015). Engineering Diagrams. Retrieved April 3, 2015, from
http://conceptdraw.com/samples/engineering-and-technical-drawings

Corbett, A. T., Koedinger, K. R., & Hadley, W. S. (2002). Cognitive Tutors: From the
research classroom to all classrooms. In P. S. Goodman (Ed.), Technology enhanced
learning: Opportunities for change (pp. 235–263). Mahway, NJ: Lawrence Erlbaum
Associates.

Forbus, K., Usher, J., Lovett, A., Lockwood, K., & Wetzel, J. (2011). CogSketch: Sketch
Understanding for Cognitive Science Research and for Education. Topics in
Cognitive Science, 3(4), 648–666. doi:10.1111/j.1756-8765.2011.01149.x

Futrelle, R. P. (1999). Ambiguity in Visual Language Theory and Its Role in Diagram
Parsing. In Proceedings of the IEEE Symposium on Visual Languages (p. 172–).
Washington, DC, USA: IEEE Computer Society. Retrieved April 3, 2015, from
http://dl.acm.org/citation.cfm?id=832280.834534

Grundspenkis, J., & Anohina-Naumeca, A. (2015). Fundamentals of Artificial
Intelligence: knowledge representation and networked schemes. Lecture notes.
Retrieved March 3, 2015, from http://stpk.cs.rtu.lv/sites/all/files/stpk/lecture_7.pdf

Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent
Tutoring Goes To School in the Big City, 30–43.

Larkin, J. H., & Simon, H. A. (1987). Why a Diagram is (Sometimes) Worth Ten
Thousand Words. Cognitive Science, 11(1), 65–100. doi:10.1111/j.1551-
6708.1987.tb00863.x

Murray, T. (1999). Authoring Intelligent Tutoring Systems  : An Analysis of the State of
the Art, 98–129.

 16

NAE. (2008). NAE Grand Challenges. Retrieved April 3, 2015, from
http://engineeringchallenges.org/challenges/learning.aspx

NSC Research Center. (2015). National Student Clearinghouse Research Center.
Retrieved April 3, 2015, from http://nscresearchcenter.org

Oliveira Neto, J. D. De, & Nascimento, E. V. (2012). Intelligent Tutoring System for
Distance Education. Journal of Information Systems and Technology Management,
9(1), 109–122. doi:10.4301/S1807-17752012000100006

ProgramCreek. (2008). The interface and class hierarchy diagram of Java Collections.
Retrieved from http://www.programcreek.com/2009/02/the-interface-and-class-
hierarchy-for-collections/

Psotka, J., & Mutter, S. A. (1988). Intelligent Tutoring Systems: Lessons Learned.
Lawrence Erlbaum Associates.

Rai, D., & Beck, J. E. (2012). Math Learning Environment with Game-Like Elements  :
An Incremental Approach for Enhancing Student Engagement and Learning
Effectiveness. Proceedings of the 11th International Conference, ITS 2012, Chania,
Crete, Greece, June 14-18, 2012., 90–100.

Rittle-Johnson, B. (2006). Promoting transfer: Effects of self-explanation and direct
instruction. Child Development, 77(1), 1–15. doi:10.1111/j.1467-8624.2006.00852.x

Roselli, R. J., & Howard, L. (2003). Integration of an Interactive Free Body Diagram
Assistant with a Courseware Authoring Package and an Experimental Learning
Management System. In Proceedings of the American Society for Engineering
Education Annual Conference. Nashville, TN.

Self, J. (1990). Theoretical Foundations for Intelligent Tutoring Systems. J. Artif. Intell.
Educ., 1(4), 3–14. Retrieved from http://dl.acm.org/citation.cfm?id=95885.95888

Shah, P. (1997). A Model of the Cognitive and Perceptual Processes in Graphical Display
Comprehension. In M. Anderson (Ed.), Reasoning with diagrammatic
representations (pp. 94–101). Menlo Park, CA: AAAI Press.

Sklavakis, D., & Refanidis, I. (2013). MATHESIS  : An Intelligent Web-Based Algebra
Tutoring. International Journal of Artificial Intelligence in Education, 22, 191–218.
doi:10.3233/JAI-130036

Suraweera, P., & Mitrovic, A. (2004). An Intelligent Tutoring System for Entity
Relationship Modelling. Artificial Intelligence in Education, 14(3-4), 375–417.

Vanlehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., Wintersgill,
M. (2005). The Andes Physics Tutoring System: Lessons Learned. Int. J. Artif.

 17

Intell. Ed., 15(3), 147–204. Retrieved from
http://dl.acm.org/citation.cfm?id=1434930.1434932

Zakharov, K., Mitrovic, A., & Ohlsson, S. (2005). Feedback Micro-engineering in EER-
Tutor. In Proceedings of the 2005 Conference on Artificial Intelligence in
Education: Supporting Learning Through Intelligent and Socially Informed
Technology (pp. 718–725). Amsterdam, The Netherlands, The Netherlands: IOS
Press. Retrieved from http://dl.acm.org/citation.cfm?id=1562524.1562620

 18

CHAPTER 2

LITERATURE REVIEW

2.1. Intelligent Tutoring Systems (ITSs)

Because this research focuses on using Intelligent Tutoring Systems (ITSs) for

education with diagrams, it is worth noting what previous work has been done with ITSs

and particularly on Diagram-based ITSs. ITSs are computer-based systems that contain

learning contents as well as pedagogy strategies (Wenger, 1987). The earliest version

appeared in 1970s by Carbonell (1970), which is called Intelligent Computer-Assisted

Learning (ICAI). ICAI usually used hard-coded contents with no dynamic interaction.

Later, researchers found that one-on-one tutoring achieved performance two sigma better

than traditional teaching (Bloom, 1984), which motivated AI researchers to create

intelligent systems that tailored instruction to an individual’s needs and ability,

benefitting every student. The term “Intelligent Tutoring System” was finally coined by

Sleeman and Brown in 1982, in their volume of the same title (1982). As a part of AI in

an educational application, an ITS is designed to infer students’ mastery of topics based

on their performance, so that learning content or style can be adapted dynamically. Also,

“mixed-initiative” tutorial interactions are allowed in most ITSs, where students can have

more controls over their learning experience by asking questions or requesting hints. In

the recent two decades, ITSs have shown its success in many areas (Aleven, Mclaren,

Roll, & Koedinger, 2006; A. Corbett, 2001; Koedinger, Anderson, Hadley, & Mark,

1997; Vanlehn et al., 2005).

 19

2.1.1. Four components

According to Self (1990) and Nkambou (2010), an ITS in general contains four

components (Figure 2.1).

Figure 2.1. The four-component architecture of an Intelligent Tutoring System.

The Domain Model contains what the system wants to teach. It could include

various types of content in various formats. For instance, a curriculum with a series of

knowledge elements could serve as the domain model. The knowledge element can have

different granularities, whereas the structure of the curriculum can be organized

dynamically such as in hierarchies, semantic networks, etc. As a result, the domain model

can serve as a resource of expert knowledge, as well as a standard for diagnosing

student’s response or a detector for student’s errors.

The Student Model contains knowledge about the student’s cognitive and affective

states within the domain, and how they evolve. In a learner-centered ITS, the student

model becomes the core component. To achieve this goal, Wenger mentioned in his book

 20

(1987) that three main functions are desired in student model: 1) the student’s explicit

and inferred data should be acquired; 2) it should contain a representation of the student’s

state in terms of his/her knowledge and understandings based on the gathered data; 3) it

should offer some data-driven diagnosis of what is required to update the student’s state

of knowledge, selecting appropriate domain materials. Self (1988) identified six roles of

the student model: corrective, elaborative, strategic, diagnostic, predictive and evaluative.

These goals include help students remove or diagnose bugs in their knowledge, predict

their future actions and assess their performance.

The Expert Module is where ITSs choose tutoring strategies to help the student

during the problem solving process. It uses information from the domain and student

models. It involves decisions, which include whether or not to intervene once an error is

detected. And if an intervention is needed, it determines when an action should be taken,

and how it should be applied.

The student interacts with the tutoring system through a User Interface, where

different types of interactions might be involved, such as diagram construction, dialog

boxes, hints, and evaluation feedback. This component presents domain knowledge

through multimedia, simulations, etc.

In general, Diagram-based ITSs have a similar structure as many ITSs. One distinct

feature is the user interface, which usually has a drawing tool that allows the user to

choose and drag the basic shapes during the problem solving process. However, the

major difference is the knowledge representation within the domain model. In the next

section, we give a survey of domain modeling in ITSs, and then discuss the methods used

in current Diagram-based ITSs.

 21

2.1.2. Modeling domain knowledge

As we mentioned before, domain model contains the learning content to teach, it is

critical to have an explicit representation. Also, it is wise to include a problem solver in

the domain model, which use the representation for reasoning and getting a solution.

Furthermore, the model should be able to interpret student’s actions.

Historically, three types of models have been identified: 1) The black box models,

where representation is completely inexplicit and only final results are provided. 2) The

glass box models, an intermediate model that reasons as human expert, but with different

control structure. 3) The cognitive models, which try to mimic human cognition, with

respect to representation formalisms and inference mechanisms (Corbett, Koedinger, &

Anderson, 1997). Its objective is to support cognitively plausible reasoning. Anderson

(1996) proposed a theory, Adaptive Control of Thought (ACT-R), to understand human

cognition, upon which several ITSs have been built, such as Algebra Tutor (Singley et al.,

1989) and LISP Tutor (Corbett & Anderson, 1992).

2.1.2.1 General purpose languages

According to Nkambou (2010), the selection of a language used to represent

domain knowledge must consider four important issues: 1). The expressivity, a measure

of the range of constructs, in terms of formality, flexibility, explicitness and accuracy, in

describing the components of the domain; 2) The inference capacity, which is based on a

formal semantic system and an inference procedure. It requires unambiguity in terms of

the language construction; 3) The cognitive plausibility both in terms of language

representation and reasoning; and 4) the pedagogical orientation. Also, a compromise has

to be made between expressivity and complexity (whether it is computable in real time).

 22

In AI, various languages rooted in logic and mathematics have been proposed to

represent knowledge. It usually has an easy-parsed grammar and well-defined semantics.

Thus, we will give a brief discussion of such general-purpose languages below.

2.1.2.1.1 Production rules

It was used by many early expert systems, and still is one of the most widely used

representation languages, due to its advantages such as natural expression, restricted

syntax and sound logic basis. Considering representation structures and reasoning logic,

it is cognitively plausible (Anderson, 1982). Many cognitive tutors use production rules

to encode the actions of expert and detect the rules the student is violating. Three

components are involved in a production rule system: 1) a working memory, which

includes all the information it acquires to solve the problem; 2) a rule base, which

contains information that can be applied to all the problems within a domain; and 3) an

interpreter, which takes in charge of the rule application on selection-execution cycle.

2.1.2.1.2 Semantic network

Semantic network is used to model human memory that has various connections or

associations between pieces of information. It contains nodes and links. Nodes are

corresponded to physical objects or their abstract representation, whereas links are used

to measure the relationship between them. An example is shown in Figure 2.2.

Following inheritance and instance links can do basic inference. E.g., Node T (Tweety) is

an instance of Node B (Birds). Other inferences such as path-based or node-based have

been discussed by Shapiro (1978).

 23

Figure 2.2. A simple example of a Semantic Network, from Nkambou (2010).

2.1.2.1.3 Ontology and description logics

As a formal specification, ontology has a clear definition of concepts and their

relationships. It contains two components: a terminology box that describes terminology

axioms such as concepts, and an assertion box that includes individuals. It is suitable to

build Description Logics, which could provide a rigorous and strong reasoning.

Ontology becomes a great tool to represent propositional knowledge. However, due

to its declarative property, it is not expressive enough for description of procedural

knowledge. As we know, in addition to conceptual knowledge, learning procedural

knowledge in ITSs is also a main focus. So a task ontology is highly desired to specify

how problem solving will ideally occur. In other words, the domain modeling should

consider the basis of the procedural components, so that the system is more

understandable and traceable (Brewster & O’Hara, 2007). Although, there is no standard

way of combining procedural knowledge with conceptualized domain knowledge, ease of

computation becomes an important factor, which basically needs to make the two levels

“loosely coupled” as in ACT-R.

 24

2.1.2.2 Pedagogically-oriented languages

Except for general-purpose languages, there are some other languages that have

strong pedagogical functions within the domain knowledge. They are usually in a less

formal manner.

Figure 2.3 shows MOT (Paquette, 2008). It contains facts, concepts, procedures and

principles as its knowledge units. Each unit is implemented as schema and grammar rules

are used to define connections between units. For example, a rule to specialization link

shows the transition of all abstract knowledge to other abstract knowledge, either by

specialization or generalization means. Domain knowledge formed by links of knowledge

units can be exported to OWL (Web Ontology Language).

Figure 2.3. Three types of knowledge in MOT, an example of a pedagogical-oriented
language, from Paquette (2008).

However, the pedagogical-oriented language has reduced expressivity. It is

insufficient to describe complex problems and the unrestrained graphic language cannot

guarantee logically sound and semantically valid axioms. Furthermore, the inference

 25

procedure is not ensured in terms of completeness and completion within a reasonable

time.

In conclusion, general-purpose languages have higher expressivity than

pedagogical-oriented languages. In particularly, ontology becomes the choice of

knowledge representation in ITS in the era of Semantic Web. It not only supports

inferences by providing different levels of expressiveness, but also supports integration of

multiple views. Furthermore, it is essentially a declarative approach that creates the

domain semantic memory. Thus, it is a solution to capture operational/procedural

knowledge, which is on top of the conceptual level. However, without restricted syntax

and structures based on a particular domain of diagrams, the knowledge captured by an

ontology would be limited. Therefore, other schemes to capture knowledge units can be

integrated with an ontology to extend its functionalities.

2.1.2.3 Cognitive modeling in ITS

According to Aleven (2010, p. 1), cognitive modeling “is the activity of producing a

detailed and precise description of the knowledge involved in student performance in a

given task domain, including strategies, problem-solving principles, and knowledge of

how to apply problem-solving principles in the context of specific problems.”

Two widely-used models are: 1) rule-based models (Anderson, Corbett, Koedinger,

& Pelletier, 1995; Vanlehn et al., 2005) that capture knowledge of generating step-by-

step solutions; and 2) constraint-based models (Mitrovic, Mayo, Suraweera, & Martin,

2001) that define requirements applied for all problems in a given domain.

In order to make cognitive model precisely mimics the details of human thinking

and problem solving, Aleven (2010) mentioned three concerns when developing

 26

cognitive models: 1). Flexibility, which means the model needs to cover wide variety in

student’s solution path in a given task domain, and different orders of steps in each path.

2). Cognitive fidelity, which requires the model partitions knowledge units or contents in

problem solving within the domain based on human’s psychological reality. Higher

cognitive fidelity would lead to a more precise understanding of the student, and a better-

adapted instruction to individual students. It’s helpful to have cognitive analysis as part of

the model development. 3) Ease of engineering. According to Murray (2003), about 200-

300 hours is required to produce 1 hour of tutoring instructions. Lowering the building

time is highly desired.

Now we will give a brief discussion about the two types of cognitive modeling.

2.1.2.3.1 Rule-based modeling

Cognitive Tutors, a popular ITS that has shown its effectiveness outside research

lab (Anderson et al., 1995; Koedinger et al.,1997), uses rule-based model: production

rule. It basically simulates solution paths in which student solves problems. A set of

production rules is developed in order to cover possible problem solving paths. By this

means, the tutor is able to understand students’ performance and track their knowledge

that has been defined in the cognitive model. By comparing student’s actions in any

giving situation with what the model would do in the same situation, the tutor could

interpret and access student’s solution path. Knowledge tracing algorithm (Corbett &

Anderson, 1995), has been used to estimate the probability of student’s mastery of each

targeted skill.

 27

2.1.2.3.2 Constraint-based modeling (CBM)

Because of the complexity of developing a production set in rule-based modeling

and its limitation in capturing all possible mistakes by students through buggy rules,

CBM (Ohlsson, 1994) tries to avoid enumerating mistakes. Instead, the fundamentals in

CBM are modeling the domain principles. It is based on the assumption that all correct

solutions should satisfy the domain principles. CBM uses a set of constraints to capture

domain knowledge, where each constraint represents a small section of the domain.

Student’s solution is thought to be correct only if all the constraints in the given domain

are satisfied. Thus, modularity becomes its major advantage.

A constraint contains a pair of relevance condition and satisfaction condition. The

relevance condition specifies features of the student’s solution that the constraint is

important. If it is true, then satisfaction condition should be also true.

Therefore, rather than modeling the origin of a mistake, CBM gives student

feedback only when a domain principle is violated. In other words, feedback message is

associated with each constraint directly. CBM can accept multiple correct solutions if

they do not violate the domain constraints. Furthermore, even solutions that haven’t been

considered by expert designers can be recognized as correct, at least they satisfy the

domain constraints. However, without cognitive modeling, CBM cannot probe the

incorrect knowledge that produces the mistake.

2.1.3. Diagram-based ITSs

A few ITSs have been developed to tutor students how to convey knowledge in a

diagram. The Andes physics tutor, which is one of the oldest ITSs to teach free-body

diagrams, sets a good example on how ITSs can improve students’ learning by giving

 28

step-by-step feedback. However, it didn’t have much emphasis on knowledge

representation within its diagrams, as most of the free-body diagram problems contained

only forces and two axes. Thus, we choose two other examples below that contain more

complicated diagrams, to show how diagram information can be represented in a domain

model.

2.1.3.1 CBM in Diagram-based ITSs

CBM is one of the popular and earliest approaches in domain modeling in Diagram-

based ITSs. Here we would like to discuss one well-known example: KERMIT

(Suraweera & Mitrovic, 2004). It teaches Entity Relationship (ER) Modeling.

KERMIT supports students problem solving on constructing ER schemas, by

providing tailored feedback according to her knowledge. Users can draw ER diagrams by

selecting some commonly used objects (shown in Table 2.1) from the UI. The

pedagogical module is supposed to present instructional feedback if a certain constraint

fails, or select a problem that suits student’s current knowledge state. The student

modeler which is based on CBM (Ohlsson, 1994), is aimed at comparing student’s

solution with expert solution and system’s knowledge base. The evaluation records will

be stored in student model.

As we mentioned the features of CBM, KERMIT diagnoses student’s diagram by

comparing against ideal solution according to a set of constraints. It accepts both ideal

solution same as expert’s and the alternative correct ones.

When students start to draw ER diagram, several objects are available in KERMIT

to be chosen from. They are shown in Table 2.1. For example, to create an entity node,

student needs to select a rectangle or a double rectangle shape, to represent a regular

 29

entity or a weak entity. Also, in order to distinguish attribute types visually, they are

represented in different shapes.

Microsoft Visio is used as the ER modeling workspace. All the objects are stored in

a list according to the order in which they are added. However, objects are in generic type

and could not be distinguished by their types in ER diagram. On the other hand,

KERMIT dynamically stores all the objects by its own representation. It contains two

lists of objects: entity and relationship. A separate list containing attributes is attached to

entity or relationship, and relationship list maintains a set of participating entities.

Table 2.1. Symbols available in KERMIT. From Suraweera & Mitrovic (2004).

Figure 2.4. An internal representation of the expert solution for the scenario “Students
live in halls.” Adapted from Suraweera & Mitrovic (2004).

 30

Expert solutions are stored in a textual form (shown in Figure 2.4). The system

constructs a runtime representation of the expert solution when a problem is delivered.

Objects are grouped by lists, which are similar to student’s solution. Diagnosis is based

on comparison between the lists of object according to constraint base.

Here we give detailed examples of constraints used by KERMIT, as ER diagrams

belong to the subfamily of Block Diagram in which we are interested. We would like to

discuss how CBM is applied to model domain knowledge and facilitate diagram

evaluation. Figure 2.5 shows an example of a syntactic constraint, Constraint 10. In order

to generate feedback, a constraint not only contains relevance condition and satisfaction

condition, it also has feedback messages to student when the constraint is violated. The

syntactic constraints describe syntactically valid ER schemas.

Figure 2.5. Constraint 10. A syntactic constraint that specifies all names of entities and
relationships need to be unique. “relCond” value is true which means it is always
satisfied to all student solutions. “satCond” says that names of all the entities and
relations are unique. Three types of feedback messages are attached to compose hints if
constraint is violated. “<viol>” tag would be replaced by the name of the constructs that
violated the constraint. “Construct” is set to entity and relation. The conceptID is used for
problem selection, where the system choses a problem for the student based on her
knowledge state. Each constraint is assigned to one concept. From Suraweera & Mitrovic
(2004).

Another type of constraints is called semantic constraints. They are used to

diagnose student’s solution by comparing it with the expert’s. An example “Constraint 67”

 31

is shown in Figure 2.6, which models the principle that weak entity is equivalent to

multivalued attribute. Therefore, KERMIT is able to accept other schema that has the

same representation as the correct solution (Figure 2.7).

Figure 2.6. Constraint 67. It deals with composite multivalued constraints, which can be
alternatively modeled by weak entity. From Suraweera & Mitrovic (2004).

Figure 2.7. The equivalent solution identified by Constraint 67. A weak entity is identical
to a multivalued attribute. From Suraweera & Mitrovic (2004).

The CBM has been applied as UML (Unified Modeling Language) class diagram

tutor with similar approach (Baghaei & Mitrovic, 2005). As we can see, CBM has shown

its success in modeling two types of Block Diagram: ER diagrams and UML class

 32

diagrams. However, we find there is still a gap: a generalized methodology of knowledge

representation for any type of diagram belonging to the family of Block Diagram. In the

next section, we will survey other approaches that have been applied in Diagram-based

ITSs, especially the pedagogical-oriented approach by Py et al. (2008), on which our

pedagogy ontology discussed in Chapter 6 is based.

2.1.3.2 Other diagram-based ITSs

There are some other ITSs teach diagrams that use less domain modeling. They

typically compare student’s solution with expert’s solution based on some matching

criteria, and feedback is enumerated by each condition. Free-body-Diagram Assistant

(Roselli, Howard, & Brophy, 2006) is an interactive tool that enables students construct

Free-body diagram for human body in biomechanics. The isolated human picture is given

when student starts. To interpret which component (force or couple) the student means

according to expert solution, three parameters are considered: 1) Type, such as weight,

magnetic force or friction force, 2) Location and 3) Orientation. In the first attempt, each

component in the student’s solution is compared with expert solution. Also, the number

of components in student’s diagram is checked. Feedback would mention which vectors

are correct and whether or not correct number of elements is included. In the second and

third attempts, additional information will be provided. For instance, it is able to detect

extra elements that are not part of the diagram.

Py (2008) has introduced Diagram. It supports UML diagram modeling. The

diagnosis module compares student’s diagram with a reference solution based on graph

matching algorithm, and produces a list of structure differences between the two

diagrams. Structural Differences Taxonomy (SDT, shown in Figure 2.8) is used to label

 33

partial matches. Their emphasis is on the design of pedagogical feedback that is built

upon SDT (Table 2.2). Feedback has three kinds: 1) Notify, which draws student’s

attention to some point of the diagram; 2) Questions. By asking binary-choice question,

the system encourages the learner to mentally check diagram’s property; 3) Suggestions,

which contains information about how to correct the diagram. The idea of separating

evaluation output from pedagogical feedback inspired us to develop the pedagogy

ontology as part of our evaluation process.

Other diagram ITSs are based on sketch or free-hand recognition, such as

CogSketch (Forbus et al., 2011), Mechanix (Valentine et al., 2012). These tools give

students more freedom to draw shapes they want and label them according to the problem

description. However, our work will not focus on these types of ITSs.

Based on the surveys on previous work, we found Py’s (2008) work on pedagogical

instruction design is very useful, i.e., its approach separates evaluation outputs from

pedagogical instructions, which illustrates a method to react to different types of errors

appropriately.

Figure 2.8. Structure differences taxonomy, from Py et al. (2008).

 34

Table 2.2. Correspondence between structural and pedagogical differences, from Py et al.
(2008).

2.1.4. Authoring Tools for Intelligent Tutoring Systems

Since ITSs are difficult and expensive to build, authoring systems (or authoring

tools) have been developed to support domain experts in creating their ITSs. Some cross-

domain tools have been developed, such as GIFT (Sottilare, 2012) and xPST (Blessing,

Gilbert, Ourada, & Ritter, 2007; Gilbert, Blessing, & Guo, 2015).

2.1.4.1 Authoring a domain model

As we discussed before, ITSs generally have four components. They are the

domain model, expert module, student model and user interface. In this dissertation, our

emphasis is on knowledge representation in the domain model. Therefore, we describe

several aspects of authoring a domain model (Murray, 1999). Several systems (Munro et

al., 1997; Nkambou, Gauthier, & Frasson, 1996) have tools to support visualization of

relationships between curriculum elements and authoring content object networks. Some

are limited to strict hierarchical representations, but most allow user-defined network

representations. Some systems provide WYSIWYG tools. In RIDES (Munro et al., 1997),

 35

authors can create components such as switches, levers, pipes, etc. They can also fill in

properties for each object such as its state condition, define the connection rules to other

components, and constraints between components.

Several types of knowledge can be included in domain expertise. They are problem

solving expertise, concepts, facts and procedural skills. Different structures are involved

to store different types of expertise. Furthermore, production-rule based modeling or

constraints is used to handle more complex skills. However, they are more demanding for

non-programmers. Also different knowledge representation schemas are used for

different types of knowledge, as different teaching strategies are applied for each type.

The DNA system (Shute, Torreano, & Willis, 1998) uses several connections such as

what, how and why to author different types of knowledge and link their relations.

2.1.4.2 Several aspects of building authoring tools

According to Murray (1999), there are five goals in building authoring tools. They

are listed below based on their importance:

1. Decrease effort in creating ITS. It includes reduced time, money, or other

resources.

2. Decrease skill threshold, which enables more people to participate.

3. Help experts to organize their knowledge.

4. Provide better support for design principles.

5. Enable rapid prototyping.

In order to achieve these goals, several methods were proposed by Murray (1999).

We will go through some of them in detail and relate them to Diagram-based ITSs.

 36

1) Using models to scaffold knowledge articulation.

When authoring an ITS, it is a process of knowledge articulation. Therefore, an

authoring tool with particular model or framework that scaffolds non-programmers to

build tutors is highly desired. One example could be, provide authors with templates to

organize and structure their authored information. Also, it is significant to give tools that

are able to decompose the contents into a series of knowledge unit, and assist the authors

to break down and elaborate the content at each level according to instructional elements

and their relations. In a Diagram-based ITS authoring tool, user interface forms with

different levels of granularity can be used to articulate information of elements in the

diagram.

2) Providing embedded knowledge and default knowledge

Embedded knowledge could be implied as part of the structure in the system, or

pre-wired constraints. Or it could be active knowledge that is runnable and produces

some results. For instance, 19 types of practice questions are generated as procedural

knowledge based on the embedded expertise in XAIDA (Redfield, 1996), where the

author can choose when using each type. To author a Diagram-based ITS, default

knowledge such as the general properties of the diagram, e.g., connectivity, should be

embedded within the authoring tool without requiring additional information.

3) Knowledge management

Authoring systems use many techniques to assist knowledge management and

organization, such as use templates, data entry forms or pop-up menus to support input. If

the input is limited to a finite set of value, a “choose” mode should be enabled instead of

asking author to type. Also, the design of authoring tool should try to separate the

 37

representation of content and tutoring strategy. However, due to the complexity and

diversity of different types of information in ITS, models are interconnected and cannot

be made completely independent. Furthermore, to assist manipulation of large

information spaces, tools that allow author to visualize both details and abstract

representation are highly desired. This property of an authoring tool is especially

important when authoring a diagram. E.g., an expert frequently needs to view the detailed

information from a part of a diagram simultaneously with the whole structure.

4) Knowledge visualization

Visualization tools are significant to help authors comprehend large amount of

interconnected information. However, the level of interactivity of the visualization tools

is primitive, comparing to many off-the-shelf software. A good example is LAT (Sparks,

Dooley, Meiskey, & Blumenthal, 1999). It has tools to visualize conversational

grammars, which consists of individual scripts that define the possible actions and

decision points in the conversation. Moreover, it supports visualization of both static

structure and run-time dynamics. In Diagram-based ITSs, for example, visualization tools

could support class authoring for each drawing object by displaying the number of

terminals in each object, its relative location, and how it relates to properties in class

representation.

5) Knowledge re-use

Many pieces such as domain knowledge, pedagogical strategies and user interface,

could be re-used. To author an ITS, the relative information can be imported from the

library and be re-used by any system. Many benefits are included, such as reduce author’s

workload and maintenance effort, and increase consistency. But it would also increase the

 38

cost in developing the library, and make the system harder to use. One aspect of

knowledge re-use with respect to Diagram-based ITSs is the re-use of the basic objects

from a drawing tool across many problems. Each object, when re-used, brings associated

properties and knowledge with it to a new diagram tutor.

6) Automated knowledge creation

This is one of the most interesting features, which can save author from entering,

deriving and articulating information. Authoring system could infer or produce

knowledge based on author’s demonstration or interaction with the system. One example

is RIDES (Munro et al., 1997). By recording expert’s action it is able to create

operational procedure knowledge. In Diagram-based ITSs, this feature is desirable, as

procedural knowledge about diagram construction can be automatically generated if the

system can capture the sequence of how an expert draws a diagram by adding each

additional piece.

2.2. Knowledge Representation and Ontology

In this section, we will give a short survey on knowledge representation, followed

by a thorough discussion on ontology. As we mentioned before, an ontology could be a

good solution in domain modeling in ITSs. Here, we offer a more detailed overview of

ontology design, components, types, usage and evaluation.

2.2.1. Knowledge representation in AI

In Artificial Intelligence, knowledge representation is the method to encode

knowledge in an intelligent system’s knowledge base. It maps objects and relationships

of the real world to computational objects and relationships in computer-tractable form.

In general, knowledge contains five categories (Grundspenkis & Anohina-Naumeca,

 39

2015). 1) Declarative knowledge describes what is known about a problem. It usually

lists statements about concepts or facts. 2) Procedural knowledge provides directions on

how a problem should be solved. It usually contains rules or strategies. 3) Heuristic

knowledge, also called shallow knowledge, describes a rule-of-thumb to guide the

reasoning process, and usually compiled by an expert through the experience of solving

past problems. 4) Meta-knowledge aims at enhancing problem solving efficiency by

referring to the other types of knowledge. It is used to pick other knowledge that is best

suited for problem solving. 5) Structural knowledge describes an expert’s overall mental

model of the problem. It contains rule sets, concept relationships, concept to object

relationships and so on. A diagram contains procedural knowledge about the order of

pieces appearing in the diagram and the role of each piece. Also it contains structural

knowledge about the relationships among the pieces.

Knowledge representation is a set of conventions about how to describe the

knowledge. The goal of this representation scheme is not only to capture the essential

features of a problem domain, but also to support knowledge application in a problem

solving process. In practices, four types of knowledge representation schemes have been

studied.

1) Logical scheme, which uses mathematical or orthographic symbols and inference

rules. It is strictly based on syntax and semantics.

2) Procedural scheme, which contains a set of instructions for problem solving. It

usually uses “IF-Then” rules to capture procedure knowledge. It is allowed to

separate a knowledge base from an inference mechanism.

 40

3) Networked scheme, where knowledge is represented as a graph. Nodes of a graph

display objects or concepts in a domain, and arcs define relationships between

objects and their attributes. An ontology is a type of networked scheme, which we

will discuss in the next a few sections.

4) Structured scheme, which extends network scheme by displaying each node as a

complex data structure.

Of these four, the most relevant knowledge representation in diagrams is the

networked scheme, where graphs can be used to model relations among objects in the

diagram.

2.2.2. Ontology definition

The term “ontology” originates in philosophy. Initially, it refers to the study of

being or existence and the organization of reality (Guarino & Giaretta, 1995; Studer,

Benjamins, & Fensel, 1998). Ontology can be understood as a manner of organizing

related concepts under a common specification, in order to facilitate knowledge sharing.

According to two widely adopted definitions provided by Tom Gruber (1993) and

Willem Borst (1997), Jakus et al. (2013, p. 29) defined ontology as following:

“An ontology is a formal and explicit specification of a shared conceptualization.”

In general, it is considered as a network with additional semantic relations. It uses

nodes as concepts, connecting by arrows to represent their relationship. Knowledge

sharing is one of the key roles of ontologies in computer science. Ontology contains a

few key features (Studer et al., 1998):

a. Ontologies are conceptualizations. They have abstract models that include

concepts to describe the real world, which act as a sort of surrogate of reality.

 41

b. Ontologies are explicit. Concepts, relations and other components are defined

explicitly.

c. Ontologies use formal language since they are intended to be readable by the

computers.

d. Ontologies are shared by a group of users who commit to a set of terms and

consensual knowledge.

Based on these features, an ontology is potentially a reasonable representation for a

pedagogical process because it can describe the knowledge units explicitly using formal

language that can be shared by the community of educators.

2.2.3. Ontology components

Before start to think about constructing an ontology, some issues need to be

addressed. Firstly, one needs to select relevant components from the domain model in

order to adequately describe a domain. Secondly, one has to consider the level of its

generality and reusability. Finally, ontology can be constructed by different approaches:

manually, semi-automatically or completely automatically.

According to varies resources (Gomez-Perez & Corcho, 2002; Khoo & Na, 2006;

Studer et al., 1998), the component of ontologies generally include: a) concepts, classes,

collections, set or types; b) objects, individuals, instances or entities; c) attributes,

properties, or features of concepts or objects; d) attribute values; e) relations among

classes or/and objects. Ontology is typically built on top of a taxonomy, which is a

hierarchical structure of concepts with limited “is-a-kind-of” relation among them.

Ontology then expands to a richer network by adding semantic relations and additional

components such as functions, restrictions or constraints. Figure 2.9 is an example of

 42

ontology with its taxonomical framework highlighted. This framework is further enriched

by other semantic relations represented with dashed arrows and italic text.

By decomposing diagram information into smaller components, such as objects,

attributes and relations, we can potentially use an ontology, along with classes, as an

appropriate representation for diagram knowledge. In Chapter 6 we explore this idea

further.

2.2.4. Ontology design

According to Noy & McGuinness (2001), there are some fundamental rules:

1). No single “ideal” solution. Alternatives always exist. Criteria including potential

applications, extensibility and maintainability could apply to choose the appropriate one.

2). It requires iterative process. By applying it to real-world problems or by

discussing it with the domain experts, we can evaluate and revise our initial design,

which continues through the entire lifecycle.

3). As the abstract concepts model the real objects, they need to maintain objects’

relationships in the domain of interest.

Four main stages are involved in the ontology lifecycle: 1) Specification, where the

purpose and scope will be defined. I.e., applications that might use the ontology, and the

competency questions it should answer; 2) Formalization, where models are constructed

to meet the requirement from specification stage; 3) Maintenance, which not only tracks

the ontology’s changes and evolution, but also detects if any inconsistency occurs; and 4)

Evaluation, which checks if the existing ontology meets the requirements (Guarino &

Welty, 2002).

 43

Figure 2.9. An example of ontology with a highlighted taxonomical structure. Picture is
reprinted from Jakus et al. (2013).

Therefore, there isn’t a unique solution for modeling diagram knowledge and its

evaluation processes. For our research, the solution depends its potential applications and

the extensibility to other domains. Also, as an initial investigation, we only focus on the

first two stages in the ontology lifecycle.

2.2.5. Types of ontologies

As we mentioned in previous content, ontologies are a sort of conceptualizations of

reality. To make it effectively reusable and to avoid developing new ontologies when

they are already available, it is necessary to divide ontologies into two levels of

generality.

 44

a. Generic ontologies, which are also called general, top-level or core ontologies,

contain knowledge that can be reusable across various domains. Very general and

domain-independent concepts are included in this type, such as events, time, space,

matter, actions, causality and behavior. Examples of generic ontologies are Cyc (Lenat &

Guha, 1989; OpenCy, 2012), Dublin Core (DCMI, 2015), and Suggested Upper Merged

Ontology (SUMO) (2015).

b. Specific ontologies, on the other hand, contain concepts that are specific to a

particular domain, application, task, method, etc. More than one type of specific

ontologies can be involved to address a particular problem. For instance, “ontology-

driven information systems” proposed by Guarino (1998) suggested, in addition to top-

level ontology, three distinct specific types of ontology can be involved: domain

ontology, task ontology and application ontology (Figure 2.10). Domain and task

ontologies contain terms representing concepts of a particular domain and a task or an

activity, respectively. Concepts in both types are specialized from a top-level ontology.

Application ontology contains subsets of concepts from domain and task ontologies that

can be used in a particular application.

Figure 2.10. Types of ontologies in an ontology-driven information system. Reprinted
from Guarino (1998).

 45

In our research, we are interested in specific ontologies, i.e., a domain ontology and

a task ontology, which can be used to model diagram knowledge and its related tasks. An

application ontology may be useful for modeling different types of diagrams.

2.2.6. Languages and tools to organize ontologies

Dedicated formal languages are used to encode ontologies, which allows the

sharing of knowledge and support machine processing by providing reasoning rules. In

general, ontology language can be classified into two groups.

a). Description logic which was originated from the field of artificial intelligence.

Two typical examples of such languages are KL-ONE (Brachman & Schmolze, 1985)

and LOOM (MacGregor & Bates, 1987).

b). First-order logic includes CYCL (Lenat & Guha, 1989), KIF (Genesereth &

Fikes, 1992), Ontolingua (Gruber, 1993) and Common Logic (2007).

With the advent of WWW, a new family of ontology languages was created with

the intent of knowledge sharing on the Internet. Examples include Simple HTML

Ontology Extension (SHOE) (Heflin, Hendler, & Luke, 1999), XML-based Ontology

exchange Language (XOL) (Karp, Chaudhri, & Thomere, 1999), and Web Ontology

Language (OWL) (2012). In addition, ontologies can also be represented by conceptual

graphs and semantic networks.

There are some well-known software tools to create ontologies manually, such as

TERMINAE (Biebow & Szulman, 1999; TERMINAE, 2012), Protégé (Noy et al., 2001;

Protege, 2014), OntoStudio (Semafora, 2012; Weiten, 2009), and HOZO (Mizoguchi,

Sunagawa, Kozaki, & Kitamura, 2007). Besides that, approaches of creating ontologies

automatically or semi-automatically from existing information resources such as text

 46

document (Fortuna, Grobelnik, & Mladenic, 2007), web document (Navigli & Velardi,

2004) and multimedia (Jaimes & Smith, 2003) have been developed, which is called

“ontology learning”.

However, as an initial conceptual design, we are not focused on implementing the

ontologies using formal languages. Also, the existing software for ontology creation

doesn’t provide a good visualization tool to support our applications. Therefore, we

constructed the ontologies manually, which gives us more flexibility and a better

visualization.

2.2.7. Ontology use

The primary purpose of the effort to define and organize ontologies is to facilitate

knowledge sharing. It has been used in numerous cases, such as intelligent agent,

semantic web services, natural language processing, media content annotation and

knowledge extraction. For example, intelligent agent in pervasive computing

environments, where agents cooperate with each other and with other devices and

services in order to support human activities and needs in an “anywhere, anytime

fashion” (Chen, Finin, & Joshi, 2003). One example is the Intelligent Context Broker

(ICB). ICB integrates information from different sources and combines into a coherent

model. The model is eventually used for reasoning and shared with other agents.

 47

Figure 2.11. A part of the ontology supporting the intelligent context broker, from Chen
et al. (2003).

Figure 2.11 shows part of an ontology supporting the task ICB. The ontology is

used to model a situation in which a speaker gives an invited speech or a presentation at a

meeting in a particular room in a building. The room also hosts other people as the

audience. Environmental agents are included too, which provide environmental

information, such as if a particular room is hosting an event, what are the intentions of the

participants and their representation group.

 48

Ikeda, Seta, & Mizoguchi (1997) discussed an ontology-based authoring tool for

computer-based training (CBT) system. The tool allows the user to design the skeleton of

the CBT, such as its process of interest. Three layers of ontology is defined: a) core task

ontology with the least dependency lays foundation for other layers by defining inherent

concepts; b) task-type specific ontology, on the second level, is a theory of

concepts/vocabulary to describe task models of a certain type of task; c) task-domain

ontology, on the top level, describes domain models from the task-type perspective.

The ontology from ICB provides a good example from which to learn within the

context of our own research. Unlike the domain ontology, it is more dynamic, involving

events, people and other resources for reasoning. Thus, we consider our work can

incorporate both a domain ontology and task ontology to fulfill the goal of modeling both

a diagram’s knowledge representation and its evaluation process.

2.2.8. Ontology evaluation

Once ontology is built, an evaluation is expected which guarantees the initial

requirements are met. Evaluation is an ongoing process throughout the lifecycle of

management and activities. Also, ontology evaluation can be applied to test the

homogeneity of some automatically-generated ontologies from different resources, where

duplicate instances or clusters might exist. In addition, it is useful for end users to select

the best ontology from several ontologies with similar areas of interest. Generally

speaking, current approaches include three dimensions.

a. Evolution-based

As ontology changes over time, this approach tracks changes across different

versions. It not only provides the quality of the ontology, but also detects or recovers any

 49

invalid changes during the evolution. It could happen due to the changes in the domain,

conceptualization or the explicit specification (Noy & Klein 2004).

b. Logical (or rule-based)

Logical approaches use rules to detect conflicts in ontologies. The rules can be

built-in rules in the ontology languages, or user-defined. For instance, if two classes are

defined as disjoint relation, the ontology cannot have statements that an instance is a

member of both classes. This technique seeks to evaluate the quality of ontology and

detect any possible errors.

c. Metric-based (or feature-based)

By gathering different types of information presented in the ontology, metric-based

approaches evaluate ontology quality from a quantitative perspective, oQual (Gangemi,

Catenacci, Ciaramita, & Lehmann, 2006) evaluates ontologies in three dimensions: 1)

structural, 2) functional, and 3) usability profiling. OntoClean (Guarino & Welty, 2004)

uses a set of four features (Rigidity, Identity, Unity and Dependence) to evaluate each

class in the ontology, and further identifies any problematic areas. This approach would

result in classes being moved up or down in the ontology hierarchy, or new classes being

added.

However, in our current work, the above-mentioned ontology evaluation methods

are not appropriate, as the ontologies we developed are small in size, with limited

instances. Also, due to the limited applications, there are no significant evolutional

changes.

 50

2.3. Diagrams

A diagram is a type of information graphic that “preserves explicitly the

information about topological and geometric relations among the components of the

problem.” (Larkin & Simon, 1987, p. 2) Information is indexed by its location. It

facilitates grouping related pieces of information, which supports perceptual inferences.

However, information graph has broader scope than diagram. According to Nakatsu

(2010), there are four main types: 1) charts and graphs with quantitative values; 2) maps

which shows spatial and directional relationship; 3) tables which includes rows and

columns to demonstrate some meanings; and 4) diagrams. There are some other types

that do not fit into any of these four categories, such as pictorial illustrations.

Nakatsu (2010, p. 58) gave the definition of diagram as “information graphics that

are made up primarily of geometric shapes, such as rectangles, circles, diamonds, or

triangles, that are typically (but not always) interconnected by lines or arrows. One of the

major purposes of a diagram is to show how things, people, ideas, activities, etc.

interrelate and interconnect.” There are a few advantages diagrams possess over verbal

descriptions. 1) Information representation becomes more efficient by stripping down

information complexity to its core. 2) Diagrams can illustrate patterns in data that may

appear disordered in text. 3) Diagrams can reduce ambiguity with a more structured

description.

There are enormous varieties of types of diagrams. Table 2.3 shows a few samples

of diagrams in some domain areas. Examples include, circuit or logic diagrams used by

electrical engineers; Entity-relationship diagram that is used by database developer to

serve as a blueprint of future relational tables; and website maps that show its structure.

 51

Table 2.3. Some domain-specific diagramming techniques. Reprinted from Nakatsu
(2010).

 52

Figure 2.12. A classification of diagrams. Reprinted from Nakatsu (2010).

2.3.1. Classification of diagrams

A classification of diagrams are provided by Nakatsu (2010), shown in Figure 2.12.

In general, it is categorized into six subtypes: a) System topology; b) Sequence and flow;

c) Hierarchy and classification; d) Association; e) Cause and effect and f) Logic

reasoning. We will describe the first five categories in more detail below, since the last

category, Logic reasoning, uses a different representation scheme for the purposes of

inferences and logic reasoning tasks.

2.3.1.1 System topology

This type of diagram usually uses a conceptual model to represent the organization

of components. An example of this kind is a network diagram, containing icons to

represent different kinds of components (PCs, printers, servers, etc.) in the network. Also,

abstract shapes such as circles, rectangles, triangles, etc. can be applied.

 53

2.3.1.2 Sequence and flow

A flowchart is the best example of this type of diagram. Flowcharts are very

common and typically show temporal or chronological orders. They contain sequenced

activities and decision nodes. A data flow diagram is another type of flowchart, which

shows how data flows into or out of a system, or where and when it shall be stored.

In general, three basic shapes are used. 1) An ellipse represents the terminator,

which begins and ends a flowchart. This shape sometimes is left out. 2) A rectangle

represents the action or process. 3) A diamond represents a decision point. A question

needs to appear at the entry point in the diamond node, where different answers would

result in different paths. In general, arrows are used to connect all shapes, with an

indication of the sequence of activities.

2.3.1.3 Hierarchy and classification

Hierarchy is a diagram showing parent-child relationships. Three uses of hierarchy

were discussed by Nakatsu (2010) : 1) an organizational chart to represent organizational

structure, 2) an inheritance hierarchy to represent taxonomy or classification, and 3)

composition models showing the whole-to-part relationships.

2.3.1.4 Association

An association diagram generally models the relationship between objects, e.g., in a

semantic network or entity-relationship diagram. In AI, a semantic network is a

knowledge representation scheme that supports efficient information retrieval. Basically,

three parts are involved:

Unit: words or phrases that represent the object.

Property: words or phrases that represent the feature or attribute of the units.

 54

Pointer: unidirectional or bidirectional association between the units.

An example of semantic network might illustrate the relationships of characters in a

movie, with the rectangles representing the main characters and the links denoting their

relationships. In software engineering, an entity-relationship diagram (ER diagram) is

used to describe the data or information aspects of a business domain or its process

requirements, which will later be implemented in a database. Although there are varieties

of ER diagram, the most general components are:

Entity, which is represented by a rectangle, is the subject the system tries to model.

In the future, it should be converted to a database table.

Relationship, which is represented by diamond, shows how entities are related.

Cardinality denotes entity occurrence. It usually has values like one-to-one, one-

to-many or many-to-many.

2.3.1.5 Causality

A causal diagram is a diagram that depicts causal relationships between objects.

Arrows are used to link the objects, with the cause node pointing to the effect node.

Examples include directed graphs with all links directed and fault tress to show events

that will cause a fault or an undesirable event.

2.4. Conclusion

In this chapter, in order to help answer our three research questions, we gave a

survey on Intelligent Tutoring Systems (ITSs), knowledge representation in AI and

diagrams classification.

To help answer our first research question, which requires us to implement real

ITSs to teach diagrams, we described the four components in ITSs, and a few domain

 55

modeling approaches. We discussed two Diagram-based ITSs, KERMIT and Diagram,

which used constraint-based modeling and structure difference taxonomy, respectively.

We learned that knowledge representation in diagrams can be broken down into small

objects from a drawing palette. Also, it is wiser to separate evaluation outcomes from the

pedagogical feedback. We adapted this idea when designing diagram evaluation ontology

by adding additional pedagogical-oriented nodes as a separate part (Research Question

3). Then we mentioned a few suggestions for creating future ITSs more efficiently, such

as providing embedded knowledge, knowledge re-use, and knowledge management.

These suggestions become guidelines when we want to design a general diagram

knowledge representation in domain modeling, which relate to our second research

question.

To help answer Research Questions 2 and 3, we then discussed ontology and

knowledge representation in AI. The purpose of this part is to provide a basic

understanding of ontology types, components and designs. To make the survey complete,

we also discussed ontology evaluation, even though it is not our focus. Furthermore, a

discussion on diagrams was provided, which is important in categorizing diagrams and

getting common attributes from each type. This part plays an essential role in helping

develop the general property ontology in Chapter 6.

REFERENCES

Aleven, V. (2010). Rule-Based Cognitive Modeling for Intelligent Tutoring Systems. In
R. Nkambou, J. Bourdeau, & R. Mizoguchi (Eds.), Advances in Intelligent Tutoring
Systems (pp. 33–62). Springer Berlin Heidelberg.

Aleven, V., Mclaren, B., Roll, I., & Koedinger, K. (2006). Toward meta-cognitive
tutoring: A model of help seeking with a cognitive tutor. International Journal of
Artificial Intelligence in Education, 16(2), 101–128. doi:10.1.1.121.9138

 56

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 98(4), 369–
406.

Anderson, J. R. (1996). The architecture of cognition. Lawrence Erlbaum Associates Inc.,
NJ.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive
Tutors: Lessons Learned. Journal of the Learning Sciences, 4(2), 167–207.

Baghaei, N., & Mitrovic, A. (2005). COLLECT-UML: Supporting Individual and
Collaborative Learning of UML Class Diagrams in a Constraint-based Intelligent
Tutoring System. In Proceedings of the 9th International Conference on
Knowledge-Based Intelligent Information and Engineering Systems - Volume Part
IV (pp. 458–464). Berlin, Heidelberg: Springer-Verlag. doi:10.1007/11554028_64

Biebow, B., & Szulman, S. (1999). TERMINAE: A Linguistic-Based Tool for the
Building of a Domain Ontology. In Proceedings of the 11th European Workshop on
Knowledge Acquisition, Modeling and Management (pp. 49–66). London, UK:
Springer-Verlag. Retrieved from http://dl.acm.org/citation.cfm?id=645360.650759

Blessing, S., Gilbert, S., Ourada, S., & Ritter, S. (2007). Lowering the Bar for Creating
Model-Tracing Intelligent Tutoring Systems. Artificial Intelligence in Education,
158, 443–450.

Bloom, B. (1984). The 2 Sigma Problem: The Search for Methods of Group Instruction
as Effective as One-to-One Tutoring, Educational Researcher, 13:6(4-16).

Borst, W. (1997). Construction of engineering ontologies for knowledge sharing and
reuse. Centre for Telematics and Information Technology.

Brachman, R. J., & Schmolze, J. G. (1985). An overview of the KL-ONE Knowledge
Representation System. Cognitive Science, 9(2), 171–216.
doi:http://dx.doi.org/10.1016/S0364-0213(85)80014-8

Brewster, C., & O’Hara, K. (2007). Knowledge representation with ontologies: Present
challenges—Future possibilities. International Journal of Human-Computer Studies,
65(7), 563–568. doi:10.1016/j.ijhcs.2007.04.003

Carbonell, J. R. (1970). AI in CAI: An Artificial-Intelligence Approach to Computer-
Assisted Instruction. Man-Machine Systems, IEEE Transactions on, 11(4), 190–202.
doi:10.1109/TMMS.1970.299942

Chen, H., Finin, T., & Joshi, A. (2003). An Ontology for Context-aware Pervasive
Computing Environments. Knowl. Eng. Rev., 18(3), 197–207.
doi:DOI:10.1017/S0269888904000025

 57

CommonLogic. (2007). Common Logic Working Group. Retrieved February 16, 2015,
from http://cl.tamu.edu

Corbett, A. (2001). Cognitive Computer Tutors  : Solving the Two-Sigma Problem, 137–
147.

Corbett, A. T., & Anderson, J. R. (1995). Knowledge tracing: Modeling the acquisition of
procedural knowledge. User Modeling and User-Adapted Interaction, 4(4), 253–
278.

Corbett, A. T., Koedinger, K. R., & Anderson, J. R. (1997). Inteligent Tutoring Systems.
In T. K. Helander & P. Landauer (Eds.), Handbook of Human-Computer
Interaction. Elsevier Science, Amsterdam.

Corbett, A.T., Anderson, J. R. (1992). The LISP intelligent tutoring system: Research in
skill ac-quisition. In J. Larkin, R. Chabay, & C. Scheftic (Eds.), Computer Assisted
Instruc-tion and Intelligent Tutoring Systems: Establishing Communication and
Collaboration. Erl- baum, Hillsdale.

DCMI. (2015). Dublin Core Metadata Initiative Home Page. Retrieved February 16,
2015, from http://dublincore.org

Forbus, K., Usher, J., Lovett, A., Lockwood, K., & Wetzel, J. (2011). CogSketch: Sketch
Understanding for Cognitive Science Research and for Education. Topics in
Cognitive Science, 3(4), 648–666. doi:10.1111/j.1756-8765.2011.01149.x

Fortuna, B., Grobelnik, M., & Mladenic, D. (2007). OntoGen: Semi-automatic Ontology
Editor. In Proceedings of the 2007 Conference on Human Interface: Part II (pp.
309–318). Berlin, Heidelberg: Springer-Verlag. Retrieved from
http://dl.acm.org/citation.cfm?id=1766591.1766627

Gangemi, A., Catenacci, C., Ciaramita, M., & Lehmann, J. (2006). Ontology evaluation
and validation. Proceedings of the 3rd European Semantic Web Conference
(ESWC2006), 3, 140–154.

Genesereth, M., & Fikes, R. (1992). Knowledge interchange format, version 3.0,
reference manual.

Gilbert, S., Blessing, S., & Guo, E. (2015). Authoring effective embedded tutors: An
overview of the Extensible Problem Specific Tutor (xPST) System. International
Journal of Artificial Intelligence in Education. DOI: 10.1007/s40593-015-0045-0.

Gomez-Perez, A., & Corcho, O. (2002). Ontology languages for the semantic web. IEEE
Intell Syst, 17(1), 54–60.

 58

Gruber, T. (1993). A translation approach to portable ontology specifications. Knowl
Acquis, 5(2), 199–220.

Grundspenkis, J., & Anohina-Naumeca, A. (2015). Fundamentals of Artificial
Intelligence: knowledge representation and networked schemes. Lecture notes.
Retrieved March 3, 2015, from http://stpk.cs.rtu.lv/sites/all/files/stpk/lecture_7.pdf

Guarino, N. (1998). Formal ontology and information systems. In Proceedings of formal
ontology in information systems. Trento, Italy.

Guarino, N., & Giaretta, P. (1995). Ontologies and knowledge bases, towards a
terminological clarification. In M. NJI (Ed.), Towards very large knowledge bases
(pp. 25–32).

Guarino, N., & Welty, C. (2002). Evaluating Ontological Decisions with OntoClean.
Commun. ACM, 45(2), 61–65. doi:10.1145/503124.503150

Guarino, N., & Welty, C. (2004). An overview of ontoclean. In S. Staab & R. Studer
(Eds.), Handbook on ontologie (pp. 151–159). Springer Berlin Heidelberg.

Heflin, J., Hendler, J., & Luke, S. (1999). SHOE: a knowledge representation language
for internet applications.

HOZO. (2012). Hozo: ontology editor. Retrieved February 16, 2015, from
http://www.hozo.jp

Ikeda, M., Seta, K., & Mizoguchi, R. (1997). Task ontology makes it easier to use
authoring tools. IJCAI International Joint Conference on Artificial Intelligence, 1,
342–347.

Jaimes, A., & Smith, J. R. (2003). Semi-automatic, data-driven construction of
multimedia ontologies. In Proceedings of 2003 International Conference on
Multimedia and Expo. ICME ’03. Baltimore. doi:10.1109/ICME.2003.1221034

Jakus, G., Milutinovic, V., Omerovic, S., & Tomazic, S. (2013). Concepts, Ontologies,
and Knowledge representation. springer.

Karp, R., Chaudhri, V., & Thomere, J. (1999). XOL: An XML-based ontology exchange
language, version 0.4. Retrieved February 16, 2015, from
http://www.ai.sri.com/pkarp/xol/xol.html

Khoo, C. S. G., & Na, J.-C. (2006). Semantic relations in information science. Annual
Review of Information Science and Technology, 40(1), 157–228.
doi:10.1002/aris.1440400112

 59

Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent
Tutoring Goes To School in the Big City. International Journal of Artificial
Intelligence in Education, 8, 30–43.

Larkin, J. H., & Simon, H. A. (1987). Why a Diagram is (Sometimes) Worth Ten
Thousand Words. Cognitive Science, 11(1), 65–100. doi:10.1111/j.1551-
6708.1987.tb00863.x

Lenat, D. B., & Guha, R. V. (1989). Building Large Knowledge-Based Systems;
Representation and Inference in the Cyc Project (1st ed.). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.

López, M. F., Gómez-Pérez, A., Sierra, J. P., & Sierra, A. P. (1999). Building a Chemical
Ontology Using Methontology and the Ontology Design Environment. IEEE
Intelligent Systems, 14(1), 37–46. doi:10.1109/5254.747904

MacGregor, R., & Bates, R. (1987). The loom knowledge representation language.

Mitrovic, A., Mayo, M., Suraweera, P., & Martin, B. (2001). Constraint-Based Tutors: A
Success Story. In Proceedings of the 14th International Conference on Industrial
and Engineering Applications of Artificial Intelligence and Expert Systems:
Engineering of Intelligent Systems (pp. 931–940). London, UK, UK: Springer-
Verlag. Retrieved from http://dl.acm.org/citation.cfm?id=646863.707788

Mizoguchi, R., Sunagawa, E., Kozaki, K., & Kitamura, Y. (2007). The Model of Roles
Within an Ontology Development Tool: Hozo. Appl. Ontol., 2(2), 159–179.
Retrieved from http://dl.acm.org/citation.cfm?id=1412401.1412406

Munro, A., Johnson, M. C., Pizzini, Q. A., Surmon, D. S., Towne, D. M., & Wogulis, J.
L. (1997). Authoring Simulation-centered tutors with RIDES. International Journal
of Artificial Intelligence in Education, 8, 284–316.

Murray, T. (1999). Authoring Intelligent Tutoring Systems  : An Analysis of the State of
the Art, 98–129.

Murray, T. (2003). An overview of intelligent tutoring system authoring tools: Updated
analysis of the state of the art. In S. Murray, T., Blessing, S., Ainsworth (Ed.),
Authoring tools for advanced learning environments. Kluwer Academic Publishers,
Dordrecht.

Nakatsu, R. T. (2010). Diagrammatic reasoning in AI. John Wiley & Sons, Inc.

Navigli, R., & Velardi, P. (2004). Learning Domain Ontologies from Document
Warehouses and Dedicated Web Sites. Comput. Linguist., 30(2), 151–179.
doi:10.1162/089120104323093276

 60

Nkambou, R. (2010). Modeling the Domain: An Introduction to the Expert Module. In R.
Nkambou, J. Bourdeau, & R. Mizoguchi (Eds.), Advances in Intelligent Tutoring
Systems. Springer Berlin Heidelberg.

Nkambou, R., Gauthier, G., & Frasson, C. (1996). CREAM-Tools: An Authoring
Environment for Curriculum and Course Biulding in an Intelligent Tutoring System.
In Proceedings of the Third International Conference on Computer Aided Learning
and Instruction in Science and Engineering (pp. 186–194). London, UK, UK:
Springer-Verlag. Retrieved from http://dl.acm.org/citation.cfm?id=647337.723211

Noy, N. F., & Klein, M. (2004). Ontology Evolution: Not the Same As Schema
Evolution. Knowl. Inf. Syst., 6(4), 428–440. doi:10.1007/s10115-003-0137-2

Noy, N. F., & McGuinness, D. (2001). Ontology development 101: A guide to creating
your first ontology. Stanford Knowledge Systems Laboratory Technical Report KSL-
01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880, 1–25.
doi:10.1016/j.artmed.2004.01.014

Noy, N. F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R. W., & Musen, M. A.
(2001). Creating Semantic Web Contents with Protege-2000. IEEE Intelligent
Systems, 16(2), 60–71. doi:10.1109/5254.920601

Ohlsson, S. (1994). Constraint-based Student Modelling. In J. E. Greer & G. McCalla
(Eds.), Student Modelling: the Key to Individualized Knowledge-based Instruction.
Berlin: Springer.

OpenCy. (2012). OpenCyc Home page. Retrieved February 16, 2015, from
http://www.cyc.com/platform/opencyc

OWL. (2012). OWL 2 Web Ontology Language Document Overview (Second Edition).
Retrieved February 16, 2015, from http://www.w3.org/TR/owl2-overview/

Paquette, G. (2008). Graphical Ontology Modeling Language for Learning
Environments. Tech- Nology, Instruction., Cognition and Learning, 5(133–168).

Protege. (2014). The Protege Main Page. Retrieved February 16, 2015, from
http://protege.stanford.edu

Py, D., Alonso, M., Auxepaules, L., & Lemeunier, T. (2008). Design of Pedagogical
Feedbacks in a Learning Environment for Object-Oriented Modeling. In
Proceedings of Educators Symposium at the 11th IEEE International Conference
MODELS (pp. 39–50).

Redfield, C. L. (1996). Demonstration of the experimental advanced instructional design
advisor. In Proceedings of the 3rd International Conference on Intelligent Tutoring
Systems. Montreal, Quebec, Canada.

 61

Roselli, R. J., Howard, L., & Brophy, S. (2006). A computer-based free body diagram
assistant. Computer Applications in Engineering Education, 14(4), 281–290.
doi:10.1002/cae.20088

Self, J. (1988). Student models: What use are they. In P. Ercoli & R. Lewis (Eds.),
Artificial Intelligence Tools in Education. North Holland, Amsterdam.

Self, J. (1990). Theoretical Foundations for Intelligent Tutoring Systems. J. Artif. Intell.
Educ., 1(4), 3–14. Retrieved from http://dl.acm.org/citation.cfm?id=95885.95888

Semafora. (2012). Semafora Systems. Retrieved February 16, 2015, from
http://www.semafora-systems.com/en/products/ontostudio/

Shapiro, S. . (1978). Path-based and node-based inference in semantic networks. In
Proceedings of the 1978 workshop on Theoretical issues in natural language
processing, ACM- SIGART (pp. 219–225).

Shute, V. J., Torreano, L. A., & Willis, R. E. (1998). DNA - Uncorking the Bottleneck in
Knowledge Elicitation and Organization. In Proceedings of the 4th International
Conference on Intelligent Tutoring Systems (pp. 146–155). London, UK, UK:
Springer-Verlag. Retrieved from http://dl.acm.org/citation.cfm?id=648029.745331

Singley, M. K., Anderson, J. R., Gevins, J. S., & Hoffman, D. (1989). The algebra word
problem tutor. Artificial Intelligence and Education, 267–275.

Sleeman, D. H., & Brown, J. S. (Eds.). (1982). Intelligent Tutoring Systems. Academic
Press, New York.

Sottilare, R. (2012). Adaptive Tutoring & the Generalized Intelligent Framework for
Tutoring, (October).

Sparks, R., Dooley, S., Meiskey, L., & Blumenthal, R. (1999). The LEAP Authoring
Tool: Supporting complex courseware authoring through reuse, rapid prototyping,
and interactive visualizations. International Journal of Artificial Intelligence in
Education (IJAIED), 10, 75–97. Retrieved from http://telearn.archives-
ouvertes.fr/hal-00197337

Studer, R., Benjamins, V., & Fensel, D. (1998). Knowledge engineering: principles and
methods. Data Knowledge Engineering, 25(1-2), 161–197.

SUMO. (2015). The Suggested Upper Merged Ontology (SUMO). Retrieved February
16, 2015, from http://www.adampease.org/OP/

Suraweera, P., & Mitrovic, A. (2004). An Intelligent Tutoring System for Entity
Relationship Modelling. Artificial Intelligence in Education, 14(3-4), 375–417.

 62

TERMINAE. (2012). Terminae Main Page. Retrieved February 16, 2015, from
http://lipn.univ-paris13.fr/terminae/index.php/Main_Page

Valentine, S., Vides, F., Lucchese, G., Turner, D., Kim, H., Li, W., Hammond, T. (2012).
Mechanix: A Sketch-Based Tutoring System for Statics Courses. Retrieved from
http://www.aaai.org/ocs/index.php/IAAI/IAAI-12/paper/view/4857

Vanlehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., …
Wintersgill, M. (2005). The Andes Physics Tutoring System: Lessons Learned. Int.
J. Artif. Intell. Ed., 15(3), 147–204. Retrieved from
http://dl.acm.org/citation.cfm?id=1434930.1434932

Weiten, M. (2009). OntoSTUDIO® as a Ontology Engineering Environment. In J.
Davies, M. Grobelnik, & D. Mladenic (Eds.), Semantic Knowledge Management:
integrating ontology management, knowledge discovery, and human. (pp. 51–60).
Springer Berlin Heidelberg.

Wenger, E. (1987). Artificial intelligence and tutoring systems: Computational
approaches to the communication of knowledge. Morgan Kaufmann Pub.

 63

CHAPTER 3

STATICSTUTOR: FREE BODY DIAGRAM TUTOR FOR
PROBLEM FRAMING

This chapter is an extended version from a paper published in the 12th International
Conference on Intelligent Tutoring Systems, with author list:

Enruo Guo, Stephen Gilbert, John Jackman, Gloria Starns, Mathew Hagge, LeAnn

Faidley, Mostafa Amin-Naseri

Enruo Guo’s roles in this research included substantial contributions to 1) the conception
and design of the tutor, namely the development of the tutoring system underlying the
diagramming tool (the domain-wide check functions, evaluation process, and feedback
generation), and 2) collection of diagnostic student data from the system. She wrote the
following portions of this chapter: 3.2 Related Work, 3.3 StaticsTutor Interface and
Architecture, half of 3.4 Preliminary Evaluation, and 3.5 Conclusions and Future Work.

Abstract

While Intelligent Tutoring Systems have been designed to teach free-body

diagrams, existing software often forces students to define variables and equations that

may not be necessary for conceptual understanding during the problem framing stage.

StaticsTutor was developed to analyze solutions from a student-drawn diagram and

recognize misconceptions at the earliest stages of problem framing, without requiring

numerical force values or the need to provide equilibrium equations. Preliminary results

with 81 undergraduates showed that it detects several frequent misconceptions in statics

and that students are interested in using it, though they have suggestions for

improvement. Data suggested that students who rate the tutor feedback most helpful are

those who need it the most. This research offers insights in the development of a

diagram-based tutor to help problem framing, which can be generalized to tutors for other

forms of diagrams.

 64

Keywords: intelligent tutoring system, statics tutor, free-body diagram.

3.1.Introduction

If you are one of the over 100,000 freshman engineering students in the U.S.

(National Science Foundation & National Center for Science and Engineering Statistics,

2013), you will likely take a course in engineering mechanics called statics. Streveler, et

al.’s (2008) elegant overview of conceptual learning within engineering notes that statics,

along with thermal science and electrical circuits, is one of the most difficult learning

domains. Chi (2005) and Reiner, et al. (2000) address the question of why some

misconceptions are particularly prevalent and difficult to correct. Their results suggest

that particularly problematic misconceptions may be based on metaphors to physical

phenomena that are similar but not quite right, e.g., thinking of electrical current as a

fluid. Or, difficult misconceptions are based on phenomena with unobservable

components or relationships. Computer simulations are mentioned as a potential solution.

This paper describes the StaticsTutor, an attempt to provide students not only with the

simulation, but also with interactive feedback that directly addresses conceptual

challenges. StaticsTutor was developed as part of a problem framing research project

funded by the National Science Foundation (EEC-1025133). This paper describes an

initial assessment of the StaticsTutor's usability and an exploration of the dynamics of its

usage with 81 engineering undergraduates.

A student assigned a homework problem using StaticsTutor sees a problem

statement and a descriptive figure for the statics problem shown on the left side of a web-

based interface (Figure 3.1). The student begins by first drawing the overall problem

information in a drawing area to the right of the problem statement, i.e., a beam, its

 65

support forces, external forces, and/or moments. The drawing software offers a typical

drawing palette but has been customized for engineering. It includes tools to create force

vectors, moments, labels, coordinate systems, etc. A point object is placed on the beam to

show the location of supports and externally applied forces. The student must complete

the free body diagram required by the problem, using the given forces to solve for the

unknown forces.

Figure 3.1. A rope and pin problem. (a) A pop-up window summarizes problem-specific
feedback. (b) A pop-up window is triggered by a potential misconception and gives an
example on how a pin/hinge reacts in a system and how the reaction forces should be
represented.

At any point while working on the problem, the student may click a button labeled,

"Check Free Body Diagram," which invokes the tutor. The tutor provides feedback in a

popup window based on comparing the student's diagram with a known solution to this

problem and with a set of general rules about free body diagrams that apply across

 66

problems. The student receives feedback at two conceptual levels. First, are all the pieces

of the diagram present? Second, are there any likely misconceptions?

The student's tutoring experience described above raises the following research

questions. 1) How is StaticsTutor different than existing tutors for science and

engineering diagrams? 2) How do students engage with StaticsTutor, and do they find it

usable and useful? 3) Does StaticsTutor help prevent misconceptions on future problems

in the real world? In this initial research the first two questions are addressed.

3.2.Related Work

It is well established that engineering problem solving skills are critical for students

to become practicing engineers. The most important stage of problem solving is problem

framing, which occurs at the onset of problem solving in which students structure the

problem using reasoning and metacognitive skills (Diefes-Dux, H. A., Salim, 2009;

Redish, E. F., Smith, 2008). When they know to do so, students typically attempt framing

as the first step of the problem solving process (Liikkanen & Perttula, 2009; Litzinger,

Lattuca, Hadgraft, & Newstetter, 2011), and Voss & Post (1988) found that early framing

leads to better success in later stages of the problem.

A model-tracing tutor can be successful for well-defined problem-solving

procedures, but recognizing the student’s model for solving an open-ended engineering

challenge is a work in progress. In the last a few decades, Intelligent Tutoring Systems

(ITSs) have steadily improved to make content more accessible to the average students

(Koedinger et al., 1997; Sottilare, Goldberg, Brawner, & Holden, 2012). Tutors have

been used both in class and for homework in mathematics, physics, computer

programming, and other subjects (Anderson et al., 1995; Corbett, Koedinger, & Hadley,

 67

2002; Johnson & Holder, 2010; Vanlehn et al., 2005). While these systems have been

successful, many do not explicitly tutor on underlying concepts, focusing instead on

helping students master the procedural skills needed to solve problems. StaticsTutor was

designed with the intent to distract students as little as possible with numerical values and

focus on the concepts of statics: equilibrium, resolution of forces into their orthogonal

components, and summation of moments about any moment axis consistently using the

rules of vector multiplication.

A variety of previous ITSs, interactive media, and YouTube videos have addressed

free body diagrams. A YouTube search on “free-body diagram physics” reveals a few

hundred results, most of which are simple tutorials (Gmuchomas, 2009; PhysicsEH,

2008). Interactive media and simulations are available as well: MasteringPhysics

(Pearson, 2015) is a website accompanying Pearson physics textbooks that helps students

solve their physics homework. There are also some Java applets that teach free body

diagram drawing, and calculate the net force on an object, e.g., Hwang (2004). Force

Effect by Autodesk enables students to create models on an iPad and subsequently

acquire equations of equilibrium. However, none of these multimedia tools are ITSs that

are able to communicate interactively with students and help them learn to solve a series

of problems.

In the domain of intelligent tutors, we can expect more personalized feedback and

conceptual teaching. Evaluations have shown that Andes (Vanlehn et al., 2005) helps

students learned more significantly comparing doing homework on paper. Unlike other

systems, Andes requires students to enter intermediate steps, such as defining variables,

 68

drawing vectors, etc. Feedback is provided after each step. Hints are also available during

the middle of problem solving process.

There are some other existing diagram-based tutoring systems. COLLECT-UML

(Baghaei & Mitrovic, 2005) supports students learning UML class diagram either

individually or collaboratively. EER-Tutor (Zakharov et al., 2005) helps learning and

practicing principles of Enhanced Entity-relationship modeling. Free-Body-Diagram

Assistant (Roselli & Howard, 2003) provides students opportunities to construct FBDs

for the human body and receive constructive feedback in biomechanics. CogSketch

(Forbus et al., 2011), which is a sketch-based educational software application, has

demonstrated the powerful ability to understand sketched shapes and recognize them

even after rotation or change of position. Labeling provides a rapid way to match

instructor and student components. However, in engineering statics, many problems ask

the student to define one or more forces without requiring specific labels on those forces,

so matching by labels has some limitations. Mechanix (Valentine et al., 2012) is a free-

body diagram tutoring system based on free-hand drawing recognition. A checklist area

is shown with specific instructions to guide students in order to finish the problem, such

as drawing the object from the picture, drawing the axis, given forces and reaction forces.

However, a typing mode is still needed to check the value of each force. Unlike the

existing free body diagram tutors, StaticsTutor addresses conceptual understanding at the

problem framing stage.

3.3.StaticsTutor Interface and Architecture

The tutor uses a web-based drawing interface, XDraw, developed internally by

author John Jackman using the Microsoft Silverlight framework. A backend database

 69

saves students diagrams. StaticsTutor communicates with XDraw via a TCP socket

between the two servers. Currently, authoring is based on xml files on the tutor server. In

the future, a GUI will be implemented to serve as an authoring tool and interface. XDraw

supports basic drawing objects such as points, lines, rectangles and vectors as well as

free-hand drawing. A coordinate system is an object that is defined by the drawing tool as

well. Students can rotate the coordinate system to facilitate solving the problem so that

the angle of the forces would be adjusted based on the new axes.

The drawing can be designated as scaled or un-scaled. A scaled drawing allows the

students to set up a grid scale for distance and the magnitude and units of force vectors.

Also, a measuring tool is provided to measure distance between any two points. The

scaled mode can be applied to vector magnitude check and distance measurement. The

un-scaled mode provides more flexibility in creating a free-body diagram at the problem

framing stage. For this study, students used the un-scaled mode to solve problems.

The StaticsTutor architecture is shown in Figure 3.2. Components labeled

"Problem…" contain information specific to the particular problem, while the domain-

wide components are used across statics problems. This overall architecture has been

used by a tutor in thermodynamics courses as well, the Thermo Cycle Tutor (Guo et al.,

in preparation), which indicates the generality and feasibility to different domains.

The tutor includes five parts. The problem solution, created by an expert instructor,

contains a correct diagram and appropriate force values. The tutor can designate the

student correct if the student's diagram is conceptually equivalent to the problem solution

even if not identical. E.g., for a pin, the force could be pulling from below or pushing

from above and both would be correct. Similarly, point B in Figure 3.1 must be between

 70

A and C, and not too close to either side, but its exact position is not important. The

problem solution contains the number of forces reacting at each point, and the angle of

each force. Magnitudes of forces are not represented because this approach is focused on

conceptual structure. The tutor can accept all the possible correct angles. A tolerance

value for the angles can be added by the solution author to make the tutor more accepting

of student vectors that are not exact, e.g., 10 degrees. Also, the tutor gives students the

freedom to draw either resultant forces or resolved forces in a selected orthogonal

coordinate system.

Figure 3.2. The architecture of StaticsTutor. The boxes labeled "Problem…" are specific
to the problem at hand, while the "Domain-Wide" components are used across statics
problems.

StaticsTutor's problem evaluation sequence evaluates the free-body diagram in a

number of steps inspired by the three overall stages of problem framing defined by

several authors (Cuban, 1990; K. A. Leithwood & Stager, 1989; K. Leithwood &

Steinbach, 1992). First, the learner defines the stated problem. Second, the learner

reflects on the stated problem, which involves a) a review of his or her personal

assumptions about the problem situation, b) identification of a clear interpretation of the

 71

problem, and c) identification of preexisting solutions embedded in the problem situation

defined at stage a. Third, the learner reframes the problem if necessary.

In the example problem in this paper (Figure 3.1), the StaticsTutor problem

evaluation sequence contains the following eight steps. A beam (1 meter) is attached to a

wall using a pin (point A) and a rope (point B). An external force (500 Newtons) acting at

point C is pushing downward on the beam. The weight of the beam can be neglected

since the problem statement does not indicate otherwise. Initially, the tutor takes three

steps to consider if the student has clear recognition of the stated problem, which contains

check of whether all non-force components are present, and a check of the given forces:

Step_1 “if a beam is present and point A, B and C are present and in correct relative

location,” Step_2 “if the number of forces at point C is correct,” and Step_3 “if the angle

of force at point C is correct.” These three steps correspond to the first stage of problem

framing: defining the problem. Each step functions by calling one or more of the domain-

wide check functions. E.g., a check function that accepts a diagram point and the number

of expected forces at that point per the problem solution might look like

numForcesCorrect(point, expectedNumForces) and return a True or False. More detail

on check functions provided below.

The tutor's next steps (4-7) focus on second stage in problem framing: whether the

student has a clear interpretation of the problem. It contains Step_4 “if the number of

forces at point A is correct,” Step_5 “if the angle of the forces at point A are correct,”

Step_6 “if the number of forces at point B is correct,” and Step_7 “if the angle of the

forces at point B are correct.” If any of the angles of the student diagram do not match the

problem solution, the tutor will offer problem-specific feedback, such as, "Please check

 72

the angle of the force at point A." Also, the tutor evaluates the student's interpretation of

the problem by evaluating the diagram components with a pool of domain-wide

misconceptions. If the pin (point A), for example, does not have both its vertical and

horizontal components represented, then the student may not understand that a pin exerts

forces in both directions, and would receive the misconception feedback for pins. There

are similar misconception feedback checks for ropes, hinges and rollers. Domain-wide

misconception feedback contains texts and pictorial explanations created by co-authors

Starns and Faidley, who teach engineering statics. The feedback has been used in

multiple problems.

The last stage is to check student’s reframing of the problem. To check for

reframing, StaticsTutor looks for extra information that may have drawn initially before

the student recognized the type of problem appropriately. Step_8 checks for anomalies

such as a force that is not associated with any point or line, or an extra point that is not

needed. Each of the eight steps needs to be satisfied for the problem to be complete.

Note that the eight steps of the problem evaluation sequence described above are

specific to the particular problem posed, although the evaluation functions they used are

the domain-wide check functions. Therefore, problem authors can change the evaluation

sequence based on the needs of the problem or based on different pedagogical

preferences, though most likely the sequence will still correspond to the three stages of

problem framing. For example, the check for extra information might be removed if the

instructor is not interested in this sort of evaluation. Also, some experts do not require

students to draw the beam if the beam’s weight is negligible, in which case they might

chose to remove the beam check.

 73

It is important to describe the check functions in more detail because they support

StaticsTutor's approach that is agnostic of force values, enabling the more generic

problem framing analysis. A pool of domain-wide check functions is available to the

problem evaluation sequence. This pool contains general checks applicable to all

problems, such as check the angle of a force, check the number of forces attached to a

point, etc. Check functions were designed in three levels to handle forces. First, a force

can be directly accessed via its label, if it has been pre-defined by the problem statement,

i.e., F1, and the student has labeled it. Second, a force can be indirectly accessed via its

contacting point, e.g., a pin. In most situations, the name of the contacting point is given

in the problem statement. Students have the flexibility to draw forces attached to

contacting points and name the forces to their liking. By this means, StaticsTutor does not

need to enforce labeling of the forces in order to ensure a match with the expert solution.

Third, a force can be attached to other objects, e.g., a line, where it might represent the

weight of a beam. StaticsTutor gives point association a higher priority than other object

association. So a force is considered as object-associated only if it is not attached to any

point.

Lastly, a student model is constructed for the purposes of tracking student

performance, recording the student’s misunderstandings and facilitating the instructor’s

analysis. The student model contains: 1) the series of student drawings, each of which is

automatically saved when the student sends a request for feedback; 2) the feedback

message generated by the tutor; and 3) answers to a post-survey that is administered

using third-party software.

 74

3.4. Preliminary Evaluation

StaticsTutor was tested on 81 engineering undergraduates in Fall 2013 who were

enrolled in the first-year mechanical engineering courses. Pre-requisites for the two

courses were trigonometry proficiency and concurrent enrollment in the first semester

calculus course. A statics problem was offered as a homework assignment using

StaticsTutor. Students were allowed to do the homework anytime in a one-week period

on their own PC or laptop. In addition to the drawing activity, an initial pilot test of an

equilibrium table activity was being conducted along with the main activity. After

students finished their drawing, they were guided to an equilibrium table with its own

tutor that helped students to write their equations and find the unknown values. However,

the focus of this study is only the diagram part of the tutor. After the students finished the

problem, they then completed a survey with some background questions as well as some

user experience questions. The user experience survey was adapted from Lewis’ (1995)

CSUQ questionnaire and used a five-point Likert scale, with 1 being strongly disagree

and 5 strongly agree.

Each time a student requested feedback from the tutor, his/her drawing was saved

and was evaluated per the 8-step evaluation sequence described above. In total, all

students requested feedback 714 times. Different methods of failure during these

sequences were categorized in Table 3.1. Looking at students’ mistakes, 25.5% of the

feedback focused on missing the basics (Step_1). Most students mastered those basics

and continued. Few students need help placing the forces at point C. However, about

50% of the total feedback was related to the hinge and rope points, known potential

 75

misconceptions. Again, most students continued after feedback. The small percentage of

Fully_Correct evaluations is to be expected, since there would be one per student.

It is worth noting the dynamics of these feedback requests. About 24% of students

solved the problem completely before their first request for feedback, so that the request

simply confirmed that they were finished. The remaining students made between 2 and

32 requests, with a mean of 6.8 and median of 4. Their time to complete the problems

waw similarly distributed with a maximum time of 44 minutes, a mean of 7.8 minutes,

and median of 3.8 minutes. Finally, out of the 81 participants, only 64 students

successfully completing the problem (79%). The non-completing students' mean time on

the problem was 5.5 minutes.

Table 3.1. Methods of Failure: Categories of Tutor Feedback Across 714 Requests.

Basics
missing

Forces at
C missing

Hinge &
Rope

Rope
Issue

Hinge
Issue

Extraneous Info Fully
Correct

25.5% 2.8% 15.7% 16.1% 18.9% 1.4% 19.6%

Comparing the students’ background information with their performance reveals

that we could likely benefit from customizing the tutoring experience for different skill

levels. Students who had taken physics or statics before had lower problem solving times

and fewer feedback requests on average. Also, among the students who completed the

problem on their first submission (i.e., without any feedback) all of them had at least one

of the two courses.

Students were asked to complete survey questions after using XDraw. The survey

was consisted of four main categories of questions: nine questions on usability, three

questions about their productivity using the tutor, two on whether they believe they had

learned things in the activity, and three other question about the quality of the feedback

 76

they were given. The mean usability score was 3.5 (SD 1.11), which shows an overall

positive experience with the tutor. The mean for each usability question score is shown in

Figure 3.3. Students were slightly positive, mean 3.04 (SD 1.08) on whether they

believed they learned new things in the activity. However, they didn’t feel as positive

about their productivity using the tutor: mean 2.86 (SD 1.17). A likely explanation for

this is that the accompanying pilot test of the equilibrium table was not well synchronized

with the drawing, and presented some students with frustrating technical issues. This

issue may also have had a negative impact on the students’ estimation of feedback

quality, mean 2.73 (SD 1.08). However, in free response comments, several students

mentioned a desire for more specific feedback that would help them better understand

what was wrong with their drawing. The misconception feedback was intended for that

purpose, but can still be improved.

Figure 3.3. Means on usability scores.

There was an interesting pattern in rating the quality of feedback. Three Likert

questions were asked, e.g., “The feedback is easy to understand.” Unexpectedly those

 77

students who were unable to finish the problem, on average, rated the feedback better on

all three questions than those who completed the activity. These differences appear

statistically significant, but the data fail the normality assumption, and the Mann-Whitney

U test did not reveal significance. However, it was a notable trend that may arise because

the tutor was designed for students who have difficulty in problem solving, and therefore

that group found it more helpful. More data are needed to confirm.

3.5. Conclusions and Future Work

As most existing ITSs require students to define variables and equilibrium

equations that may not be necessary during the problem framing stage, there is a potential

contribution by StaticsTutor. Its evaluation is based on the three subskills in problem

framing: 1) defining, 2) reflecting and 3) reframing the problem. It can evaluate a free-

body diagram without requiring labeling of the forces, and can detect misconceptions

based on each problem component. The architecture of StaticsTutor provides the

instructor the freedom to choose the procedure and pieces he or she would like to

evaluate and also gives students the option of either drawing resultant forces or

decomposing them using a specified coordinate system.

Future work will integrate the ability to customize feedback based on the student

model data carried from problem to problem. Results from student surveys also indicated

that students are not yet satisfied with the overall productivity of StaticsTutor.

Improvements to the StaticsTutor interface to facilitate the problem framing and drawing

stages continue to be incorporated and are based on feedback from both expert users and

students.

 78

REFERENCES

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive
Tutors: Lessons Learned. Journal of the Learning Sciences, 4(2), 167–207.

Baghaei, N., & Mitrovic, A. (2005). COLLECT-UML: Supporting Individual and
Collaborative Learning of UML Class Diagrams in a Constraint-based Intelligent
Tutoring System. In Proceedings of the 9th International Conference on
Knowledge-Based Intelligent Information and Engineering Systems - Volume Part
IV (pp. 458–464). Berlin, Heidelberg: Springer-Verlag. doi:10.1007/11554028_64

Chi, M. T. H. (2005). Commonsense Conceptions of Emergent Processes: Why Some
Misconceptions Are Robust. Journal of the Learning Sciences, 14, 161–199.

Corbett, A. T., Koedinger, K. R., & Hadley, W. S. (2002). Cognitive Tutors: From the
research classroom to all classrooms. In P. S. Goodman (Ed.), Technology enhanced
learning: Opportunities for change (pp. 235–263). Mahway, NJ: Lawrence Erlbaum
Associates.

Cuban, L. (1990). Problem-finding: Problem-based learning project.

Diefes-Dux, H. A., Salim, A. (2009). Problem Formulation during Model-Eliciting
Activities: Characterization of First-Year Students’ Responses. In Proceedings of
the Research in Engineering Education Symposium 2009. Palm Cove, Queensland,
Australia.

Forbus, K., Usher, J., Lovett, A., Lockwood, K., & Wetzel, J. (2011). CogSketch: Sketch
Understanding for Cognitive Science Research and for Education. Topics in
Cognitive Science, 3(4), 648–666. doi:10.1111/j.1756-8765.2011.01149.x

Gmuchomas. (2009). Free body diagrams. Retrieved April 4, 2015, from
http://www.youtube.com/watch?v=TFgKj4w35BM

Guo, E., Jackman, J., Gilbert, S., Hagge, M., Starns, G., Faidley, L., & Amin-Naseri, M.
(in preparation). Decision-centric problem framing tutor for thermodynamics.

Hwang, F.-K. (2004). Free body force diagram. Retrieved April 4, 2014, from
http://www.thephysicsfront.org/items/detail.cfm?ID=1870

Johnson, B. G., & Holder, D. A. (2010). A Model-Tracing Intelligent Tutoring System
for Assigning Oxidation Numbers in Chemical Formulas. Chemical Educator, 15,
447–454.

Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent
Tutoring Goes To School in the Big City, 30–43.

 79

Leithwood, K. A., & Stager, M. (1989). Expertise in Principals’ Problem Solving.
Educational Administration Quarterly, 25, 126–161.

Leithwood, K., & Steinbach, R. (1992). Improving the Problem-Solving Expertise of
School Administrators: Theory and Practice. Education and Urban Society, 24(317-
345).

Lewis, J. R. (1995). IBM computer usability satisfaction questionnaires: psychometric
evaluation and instructions for use. International Journal of Human‐ Computer
Interaction, 7, 57–78.

Liikkanen, L. A., & Perttula, M. (2009). Exploring problem decomposition in conceptual
design among novice designers. Design Studies, 30(1), 38–59.
doi:http://dx.doi.org/10.1016/j.destud.2008.07.003

Litzinger, T., Lattuca, L. R., Hadgraft, R., & Newstetter, W. (2011). Engineering
Education and the Development of Expertise. Journal of Engineering Education,
100(1), 123–150. doi:10.1002/j.2168-9830.2011.tb00006.x

National Science Foundation, & National Center for Science and Engineering Statistics.
(2013). Women, Minorities, and Persons with Disabilities in Science and
Engineering. Arlington, VA. Retrieved from http://www.nsf.gov/statistics/wmpd/

Pearson. (2015). Mastering Physics. Retrieved April 4, 2015, from
http://www.masteringphysics.com

PhysicsEH. (2008). Free body diagrams physics help. Retrieved April 4, 2015, from
http://www.youtube.com/watch?v=BuPfDI7TyL0

Redish, E. F., Smith, K. A. (2008). Looking beyond content: Skill development for
engineers. Journal of Engineering Education, 97(3), 295–307.

Reiner, M., Slotta, J. D., Chi, M. T. H., & Resnick, L. B. (2000). Naive Physics
Reasoning: A Commitment to Substance-Based Conceptions. Cognition and
Instruction, 18, 1–34.

Roselli, R. J., & Howard, L. (2003). Integration of an Interactive Free Body Diagram
Assistant with a Courseware Authoring Package and an Experimental Learning
Management System. In Proceedings of the American Society for Engineering
Education Annual Conference. Nashville, TN.

Sottilare, R. a, Goldberg, B. S., Brawner, K. W., & Holden, H. K. (2012). A Modular
Framework to Support the Authoring and Assessment of Adaptive Computer-Based
Tutoring Systems (CBTS), (12017), 1–13.

 80

Streveler, R., Litzinger, T., Miller, R. L., & Steif, P. S. (2008). Learning conceptual
knowledge in the engineering sciences: Overview and future research directions.
Journal of Engineering Education, 97(3), 279–294. doi:10.1002/j.2168-
9830.2008.tb00979.x/

Valentine, S., Vides, F., Lucchese, G., Turner, D., Kim, H., Li, W., … Hammond, T.
(2012). Mechanix: A Sketch-Based Tutoring System for Statics Courses. Retrieved
from http://www.aaai.org/ocs/index.php/IAAI/IAAI-12/paper/view/4857

Vanlehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., …
Wintersgill, M. (2005). The Andes Physics Tutoring System: Lessons Learned. Int.
J. Artif. Intell. Ed., 15(3), 147–204. Retrieved from
http://dl.acm.org/citation.cfm?id=1434930.1434932

Voss, J. F., & Post, T. A. (1988). On the solving of ill-structured problems. Hillsdale, NJ,
England: Lawrence Erlbaum Associates, Inc.

Zakharov, K., Mitrovic, A., & Ohlsson, S. (2005). Feedback Micro-engineering in EER-
Tutor. In Proceedings of the 2005 Conference on Artificial Intelligence in
Education: Supporting Learning Through Intelligent and Socially Informed
Technology (pp. 718–725). Amsterdam, The Netherlands, The Netherlands: IOS
Press. Retrieved from http://dl.acm.org/citation.cfm?id=1562524.1562620

 81

CHAPTER 4

A DECISION-CENTRIC PROBLEM FRAMING TUTOR FOR
THERMODYNAMICS

This chapter will be submitted to the journal Computers and Education

with author list:

Enruo Guo, John Jackman, Stephen Gilbert, Mathew Hagge, Gloria Starns, LeAnn
Faidley, Mostafa Amin-Naseri

Enruo Guo’s role included: 1) develop the domain model, expert module and evaluation
engine of the tutoring system; 2) collect diagnostic data; 3) write most parts of the paper,
except the Introduction and 4.2.2 and 4.2.3 within Related Work.

Abstract

We present Thermo Cycle Tutor, a Decision-centric tutoring system to help

engineering undergraduates during problem framing stage in a thermodynamics course.

By implementing a set of core decisions in a refrigeration cycle, and pedagogical

instructions from a thermodynamics expert, the tutor has shown its effectiveness in

improving students’ test scores. The tutor contains eight components: drawing interface,

domain model, expert module, evaluation engine, pedagogical module, student model, UI

controller, and training materials. Features about the tutor include: auto-generation of

expert solution based on domain rules and problem-specific input; interpretation of

student’s drawing in a sophisticated way so that procedural knowledge and conceptual

knowledge can be handled differently; a pool of check functions that allows knowledge

reuse and re-organization for future authoring.

 82

4.1. Introduction

Chen et al, (2010) reported on the positive effects of rapid feedback on student

learning in a classroom scenario for a statics course. Students answered multiple choice

quiz questions using hand-held devices followed by immediate feedback on their

answers. Students could also see the aggregate data on all the student answers. The

results were used in real time by the instructor to identify misconceptions and poor

understanding of the material in order to provide a more focused explanation of the

concepts and principles. Similar approaches have been implemented using clickers to

provide immediate feedback in classrooms (Bursic, 2012; Patterson, B., Kilpatrick, J.,

Woebkenberg, 2010; Perkins, K. K., Turpen, 2009). Both Bursic and Patterson et al.

found that feedback increased the level of student engagement in class but had no

significant effect on student learning.

Shute (2008) has reviewed a variety of formative feedback approaches that have

been used to improve student learning, finding that the effects of feedback on student

learning are inconsistent. It was recommended that feedback should be targeted for the

individual and not just the task at hand. Formative assessment was described as an

evaluation performed on an individual basis that was designed to change student thinking

and behavior. Hattie and Timperley (2007) analyzed multiple feedback approaches and

claimed that, effective feedback needs to be clear, purposeful and meaningful. It should

be compatible with students’ prior knowledge with some logical connections.

They also recommended against providing feedback for students who have a poor

understanding of the underlying concepts but rather a focused instructional effort to help

student learning. Traditionally, feedback is given informally (e.g., answering questions in

 83

class or during office hours) and formally (e.g., assignments or exams). The difficulty in

this approach is scalability and frequency, as the number of students in a class increases.

When multiple instructors are involved there is often significant variability in the quality

of feedback.

Researchers from the Pittsburgh Advanced Cognitive Tutor Center and the Science

of Learning Center at Carnegie Mellon have pioneered the development of cognitive

tutors that provide feedback with an emphasis on “learning-by-doing.” This work has led

to tutor software in mathematics for secondary education that has been widely used and is

based on Adaptive Control of Thought-Rational (ACT-R) theory of human

cognition(Anderson, 1996). A review of the research literature on the effectiveness of this

approach reported inconsistent effects on student learning (Education, 2013).

The Open Learning Initiative (OLI) at Carnegie Mellon University provides a set of

courses that consist of multimedia content partitioned into modules (Lovett, M., Meyer,

O., Thille, 2008; Steif, P. S., A. Dollár, 2009). Students receive immediate feedback

from questions (e.g., multiple choice, short answer) that are presented at regular intervals

throughout a module. In addition, end-of-module exercises provide a summative

assessment of what the student has learned in the module. Students proceed in a linear

fashion through the modules. Their research has shown that students using OLI

instruction achieved the same or better learning outcomes in much less time than students

taking a traditional course.

One of the National Academy of Engineering grand challenges is to advance

personalized learning (Engineering, 2008). It is widely recognized that current practices

of delivering standard lectures and assessments do not address the needs of a diverse

 84

body of students that come to a class with very different levels of understanding and

preparation. To provide a personalized learning environment, a model of student

understanding is needed so that instruction can be customized for each student who is on

a different learning trajectory.

The most important stage of problem solving is problem framing, which occurs at

the onset of problem solving in which students structure the problem using reasoning and

metacognitive skills (Diefes-Dux, H. A., Salim, 2009; Redish, E. F., Smith, 2008). We

have found that students’ ability to frame a problem is inextricably linked to their grasp

of underlying concepts and principles associated with problem elements. Therefore,

developing a more general theory of problem framing that can lead to significant

improvements in engineering problem solving skills must consider the relationship of

these skills to students’ understanding of the relevant concepts and principles.

Instead of solving large numbers of problems to gain expertise, students that

develop good problem framing skills should be able to achieve expertise with smaller

problem sets. Without good problem framing skills, students will resort to poor strategies

such as formula matching or memorizing similar problems, which will be insufficient

when dealing with new problems that they have not seen. Our premise is that students

will require less problem solving practice with more explicit decision making during

problem framing and become domain experts much faster, because their decision making,

understanding, and thought processes are much more like that of an expert when they

have internalized a more explicit decision making process.

 85

4.2. Related Work

4.2.1. Intelligent Tutoring Systems (ITSs)

ITSs are computer-based systems, which contains learning contents as well as

pedagogy strategies to teach (Wenger, 1987). It is designed to simulate human teacher’s

behavior and guidance after interpreting student’s responses. Currently, ITSs have shown

their educational effectiveness in many areas. Its one-on-one tutoring paradigm gives

students more personalized guidance. ITSs have been used both in class and for

homework in mathematics, physics, computer programming, and other subjects (A. T.

Corbett et al., 2002; Oliveira Neto & Nascimento, 2012; Rai & Beck, 2012; Sklavakis &

Refanidis, 2013; Vanlehn et al., 2005). Also, ITSs was incorporated in e-learning systems

to provide personalized courses of action based on student’s profile (Dolenc & Aberšek,

2015; Schiaffino, Garcia, & Amandi, 2008). To benefit ITSs’ one-on-one tutoring

paradigm, many systems have been developed to teach students how to draw a diagram.

A few examples are listed. COLLECT-UML (Baghaei & Mitrovic, 2005) supports

computer science students to learn UML class diagrams either individually or

collaboratively. EER- Tutor (Zakharov et al., 2005) helps learning and practicing

principles of Enhanced Entity-relationship modeling in database course. CogSketch

(Forbus et al., 2011), which is a sketch-based educational software, has demonstrated the

powerful ability to understand sketched shapes and recognize them even after rotation or

change of position. Free-Body-Diagram Assistant (Roselli & Howard, 2003) allows

students to construct FBDs on a given human body picture and receive constructive

feedback in the course of biomechanics. StaticsTutor (Guo et al., 2014) is a Free-body

 86

diagram tutoring system for engineering undergraduates with emphasis on student’s

conceptual understanding at problem framing stage.

In general, a Diagram-based ITS includes 1) User interface that usually contains a

drawing palette; 2) Pedagogical module which incorporates expert’s feedback and

pedagogical strategies; 3) Domain model that contains semantic or syntax constraints or

knowledge applicable to all problems in the system; and 4) Student model. Given the

varieties of different ITSs structures, some of them have a diagnosis module, which

compares student’s diagram with expert’s solution, if the domain model is unable to

automatically generate a solution. If student’s drawing doesn’t agree with the ideal

drawing, an instructional feedback or hint will be given. Because the systems are

designed to interpret varied student’ responses, they are able to determine why student’s

understanding has gone astray. Thus, personalized feedback is offered to fix their

misconception or misunderstanding at the earliest time.

4.2.2. Decision-centered pedagogy

The process of formulating a general to specific decision set, learning about

individual student understanding, and helping students make decisions through their

current understanding is called decision based learning (DBL). The goal of DBL is to

allow students to solve problems without full expertise (like a novice), and to improve

conceptual understanding and expertise through the decision making/instructor feedback

loop. Students’ decisions give the instructor specific knowledge about the students, and

allow the instructor to provide individualized feedback in the form of additional questions

or activities. The instructor feedback is designed to develop students’ understanding to

the point where they can make the correct decision, based solely on the students’ thought

 87

process (Figure 4.1). This process is ideally suited to a tutoring system because the

decision making process reveals information about each student, the success or failure of

the instructor’s help, and the effectiveness of the instructor’s decision set in creating

understanding that can be applied to all future problems.

Figure 4.1. The Decision-based Learning (DBL) process. From Hagge et al. (submitted).

4.2.3. Thermodynamics domain

It is well established that thermodynamics is a major challenge for undergraduate

engineering students in terms of their ability to understand and properly use the concepts

and principles at a level that is necessary to solve engineering problems (Miller et al.,

2006; Prevost, Haudek, Urban-Lurain, & Merrill, 2012; R. A. Streveler, Litzinger, Miller,

& Steif, 2008). Chi (2005) and Reiner, et al. (2000) address the question of why some

misconceptions are particularly prevalent and difficult to correct. Their results suggest

that particularly problematic misconceptions may be based on metaphors to physical

phenomena that are similar but not quite right, e.g. thinking of electrical current as a

fluid. Computer simulations are mentioned as a potential solution. One approach to

improve student understanding of thermodynamics was to create more interactive

instructional materials using computer-based instruction to supplement traditional

 88

textbooks (Anderson & Taraban, 2005; Taraban, Anderson, Sharma, & Weigold, 2003).

Interactions included answering multiple choice and short answer questions as well as

controlling simulations of devices and system behaviors. To identify students’

misconceptions about thermodynamics, Beall (1994) posed conceptual questions to the

students and asked them to write a response. This assessment of student understanding

was used to clear up misconceptions in subsequent lectures. Building on this work,

Prevost et al. (2012) scaled the approach to large classes using automated text analysis to

provide instructors with an analysis of students’ constructed responses. However, none of

their approaches rely on computer-based intelligent systems to detect misconceptions

through diagrams in thermodynamics problems.

The remainder of this paper is organized as follows: In Section 4.3, we describe the

tutor architecture. Section 4.4 illustrates the tutor operation using an example session, and

conclusions are drawn in Section 4.5.

4.3. Tutor Architecture

Thermo Cycle Tutor uses a web-based drawing interface, XDraw, developed by

author Jackman using the Microsoft Silverlight framework. Communication between the

drawing tool and tutor server is based on TCP Socket. A backend database saves students

diagrams and activity logs. XDraw supports basic drawing objects such as points, lines,

rectangles and vectors as well as free-hand drawing. It was used as the user interface for

StaticsTutor (Guo et al., 2014) in statics course before. By adding some domain-specific

objects in the drawing palette, such as a beta-distribution curve as a shape for a vapor

dome, XDraw is customized to serve as the drawing interface for thermodynamics

domain.

 89

The overall architecture of Thermo Cycle Tutor includes eight components (Figure

4.2). They are 1) Web-based Drawing tool XDraw, as we mentioned before; 2) Domain

model, which includes concepts and rules of the domain to be learned; 3) Expert module,

which generates expert solution from domain rules; 4) Evaluation engine, which

compares the student’s drawing with expert’s solution based on a series of check steps; 5)

Pedagogical module, which defines pedagogical instructions based on student’s activities;

6) Student model, which saves student’s drawing and its corresponding tutor feedback for

post analysis; 7) UI controller that controls displays and activities based on messages

from tutor server; and 8) Training materials and pre/post test materials for assessment,

provided by domain experts.

Figure 4.2. Thermo Cycle Tutor architecture.

Let’s briefly describe a student’s user experience with the tutor. After reading the

problem description, the student is asked to draw a T-v diagram (see Figure 4.3) to

 90

describe the behavior of the system as the first step in framing the problem. The goal of

the tutor is to assess students’ decision making with regard to the drawing so that

inferences can be made concerning their conceptual understanding of thermodynamics.

Figure 4.3. A T-v diagram example from the Thermo Cycle Tutor.

After the student submits the drawing, the UI controller saves the current version of

the drawing and sends it to the evaluation engine through a TCP socket. The evaluation

engine is based on domain model and expert module. The expert module is represented as

a sequence of decisions that need to be made while describing the behavior of the system.

Upon receipt of a request message from the UI controller, the evaluation engine assesses

the drawing and sends a feedback message back to the UI controller. The feedback is

encoded and saved with the current version of the drawing for each student. According to

the feedback, student model (a state transition model) is updated to reflect the current

 91

state of the student’s understanding. Once the student receives feedback, he/she will be

redirected to the pedagogical module that may ask context-sensitive questions about

concepts or display an instructional video. The student can then modify the diagram and

re-submit. This process iterates until the student quits or successfully completes the

diagram. In the following sections, we will discuss domain model, expert module,

evaluation engine and student model in details.

4.3.1. Domain model

The tutor domain is focused on the physical properties of some commonly-used

components in thermodynamics problems. Specifically, the goal is to understand how a

system of components (e.g., a compressor) behaves in terms of pressure, temperature,

specific volume, and entropy. Based on the physical properties, a rule is associated with

each component. For example, when a fluid moves through a pump, a change in state

occurs because the pressure will increase, while the temperature and specific volume will

increase slightly. The domain author specifies the rules that are applied to the

components (e.g. to assume constant specific volume). Table 4.1 shows the rules

associated with system components. These rules are static and can be applied to many

problems in the thermodynamics domain. Rules are saved in a database table and are

retrieved to generate the expert solution when a new problem is authored. We will

discuss the details in the expert module section.

 92

Table 4.1. Rules for system component behavior. Note “between” is used to describe
properties within component that has either two inputs and one output, or one input and
two outputs.

Component Pressure Temperature Specific Volume Entropy

expansion valve decreases decreases increases increases
evaporator same same or increases increases increases
compressor increases increases decreases same or increases
mixing chamber same between between between
condenser same decreases or same decreases decrease
liquid -gas separator same same between between
pump increases same or increases same, increase same or increases
turbine decreases decreases increases same or increases

4.3.2. Expert module

The expert module is where expert knowledge represents in both domain-wide and

problem-specific scales. It includes three parts: an expert solution, an evaluation

sequence and feedback to student.

4.3.2.1. An expert solution to a given problem

Expert module uses domain rules to automatically generate an expert solution once

problem-specific information is given. An expert solution is represented by an .xml file,

which defines all elements in the solution and the relationship between elements. For the

T-v diagram, the elements include a vapor dome, pressure lines, and states (locations and

spatial relations to other states) from an expert’s point of view as shown in Figure 4.4.

Step 1. Generate expert result table.

To generate the expert solution, system-input information is used to describe all

the components in the system and the system states for a given problem. For each

component, the input and output states are specified. An example of the ComponentState

table for a mixing chamber having two input states and one output state is shown in Table

 93

4.2. The SystemState table example shown in Table 4.3 describes the phase for each state.

The phase information determines the location of a state in the T-v diagram. For example,

if a state is in the saturated liquid phase, it should be located on the left edge of vapor

dome, whereas if a state is in two-phase, its location should be underneath the vapor

dome with no contact with the curve.

Figure 4.4. A snippet of an expert solution that was automatically generated from domain
knowledge, ComponentState table and SystemState table.

Table 4.2. A ComponentState table example for a mixing chamber.

Component Component ID StateNo StateType

mixing chamber 4 9 Input

mixing chamber 4 4 Input

mixing chamber 4 5 Output

Table 4.3. A SystemState table example.

State Phase
1 saturated liquid
2 two-phase
3 saturated vapor
4 superheat
5 superheat
6 superheat
7 saturated liquid
8 two-phase
9 saturated vapor

 94

An expert result table that describes system behavior is computed for a given

problem based on the rules of the domain model, the ComponentState and SystemState

table. In the expert result table shown in Table 4.4, “=” corresponds to no change, “<”

corresponds to increase comparing to values when material flow enters the component,

and “>” corresponds to decrease. The components in a specific system are matched with

the behavior of pressure, temperature and specific volume. Some of the behaviors can

have multiple results, such as the temperature change in an evaporator could increase or

stay the same. So “<” or “=”are both listed in the expert result table.

Table 4.4. An example of expert result table.

Component Component ID Input State Output state P T v

expansion valve 1 1 2 > > <

evaporator 2 2 3 = =,< <

compressor 3 3 4 < < >

mixing chamber 4 9 5 = <,>,= <,>,=

mixing chamber 4 4 5 = <,>,= <,>,=

compressor 5 5 6 < < >

condenser 6 6 7 = =,> >

expansion valve 7 7 8 > > <

liq-gas separator 8 8 1 = = <,>,=

liq-gas separator 8 8 9 = = <,>,=

Step 2. Determine the number of pressures and assign relative pressure to each

state.

The expert module uses the expert result table to compute the total number of

pressures in the given system based on pressure’s equal and unequal relations. The

algorithm first selects pairs of input state and output state that have equal sign in the P

 95

column in each row, and groups them together if they share either input state or output

state. The number of distinct groups equals the number of pressures in the system. Then it

checks the unequal relations between each group, and ranks them with a relative pressure

value. States that belong to the same group would be assigned with a same relative

pressure value.

Step 3. Compose the expert solution as an .xml file.

The final step is to convert the expert result table and relative pressure value to an

.xml file. Figure 4.4 shows an excerpt of a final expert solution. It includes overall

information about the drawing, such as the number of pressures, the number of points

(i.e., states), and point-wise information as well. For each point, the file contains its id,

relative pressure value, phase information and relationship to other related points. The

related point is defined by the expert result table, where a pair of input state and output

state within a component is regarded as related. Also, it translates the mathematics

relation (“less than”, “equal” and “greater than”) in pressure, temperature and specific

volume to spatial-wise relation, such as “left”, “right”, “above”, “below” or “equal”. For

example, in T-v diagram, temperature and specific volume are represented in y and x

axis, respectively. As State 1 has a larger temperature, but a smaller specific volume than

State 2, it should be located on above and on the left side of State 2 in T-v diagram.

Moreover, it has a larger pressure value, which means it should be located in a pressure

line that is above State 2’s. As it is shown in Figure 4.4, r1, r2 and r3 represent

temperature, specific volume and pressure relations, respectively.

 96

4.3.2.2.Evaluation on student’s decisions

As we mentioned before, Thermo Cycle Tutor is a Decision-based Learning tutor,

which implemented a set of decisions according to a thermodynamics expert Dr. Hagge

who is also the co-author of this paper. Thus, the expert module includes a sequence of

evaluation to understand student’s knowledge.

1). Is a vapor dome present? A student needs to determine that phase changes are

involved and therefore, a vapor dome is necessary.

2) Does the diagram have the correct number of pressure lines? This is an indicator

that the student understands system behavior. Pressure lines can be recognized if any

three connected line segments are each in a separate region (liquid, two-phase and gas

region), or two connected line segments with a horizontal segment in two-phase region

and a segment in either liquid or gas region.

3) Are the pressure lines drawn correctly? This is another indicator that the student

understands system behavior. Each line should have three segments, a positive slope

segment in the liquid region, a horizontal segment in the two-phase region, and a positive

slope segment in the superheat region.

4) Are the pressures for each pressure line and the phase change temperatures

correctly identified? This indicates that the student knows how to find the correct

pressure and temperature values. The pressure labels for each line should appear in the

super heat region and the phase change temperature for each pressure needs to be

identified on the temperature axis.

5) Are all the states included on the vapor dome? In problem description and state

diagram, each state is given and labeled. Student is expected to use points to represent all

 97

the states mentioned in problem statement, and locate each of them on an appropriate

pressure line.

6). Are all the components correctly represented? Each component includes two or

three states and is given in the state diagram. In domain model, we have discussed the

general rules in each component. Student is expected to move around the state points so

that the spatial relationship between states satisfies the physical and chemical properties

in each component.

7). Is phase information of each state correctly identified? A vapor dome divides

phase into five regions: liquid, saturated liquid, two-phase, saturated gas and super-heat.

The last step is to check if a state is at the correct region. Student is expected to move

around the points to the correct position. As you may notice, step (6) and (7) are

correlated. Moving a point to another position might change the relative location to some

other points. In order to prevent student falling into the “error-in-a-loop”, tutor wants to

ensure student knows the relative location of each point before he/she anchors the point

to a region.

4.3.2.3. Feedback to student

Expert module also contains feedback to students for each check step. The feedback

could be explicit, such as “State 1 should be saturated liquid at middle pressure”, if

student fails to put State 1 at left edge of vapor dome. Or it could be implicit by

forwarding them to some other activities. For example, if the number of pressures is

incorrect, tutor’s feedback could be “There appears to be some misconceptions about the

number of pressures in a refrigeration cycle. Let’s examine the individual components in

the cycle and how they affect the pressure.” To make it effective and easy-to-understand,

 98

we consulted a domain expert to compose the feedback. The feedback was prepared for

both pass and fail in each check monitored by the evaluation engine.

4.3.3. Evaluation engine

Evaluation engine is where the tutor evaluates student’s drawing and sends result

message to the UI controller. When a student clicks the submit_drawing button, the UI

controller immediately sends the drawing file to evaluation engine. Once the evaluation

engine receives the file, it converts the drawing to a .xml file with similar structure as the

expert solution, by detecting information such as pressure lines, state location and so on.

Then it compares the generated file with expert solution by following the check

procedure defined by the expert module, and sends feedback message to UI controller

when either error is found or the student successfully passes the problem.

In general, it contains four parts: 1) A module to create a structured .xml document

based on student’s drawing; 2) A pool of check functions that can be called by different

applications; 3) A start model to initialize and begin check process; 4) Feedback to UI

controller.

 4.3.3.1. A module to create a structured .xml document

The structured document has the same elements as the expert solution, such as

number of pressures, number of states, and for each state, the relative pressure, phase

information and relationship to other states. To make it happen, there are some

challenges.

a). Handle different shapes of vapor dome input.

The shape and location of a vapor dome is crucial in determining pressure lines and

understanding the relative location of points. To draw a vapor dome, a student first

 99

selects a vapor dome template which follows a beta distribution from the tool bar, places

it at any location in the canvas, and then drags it both horizontally and vertically to reach

a certain size. Two steps were carried out to handle varied shapes and origin locations: 1)

Drawing’s origin is adjusted based on vapor dome’s origin. 2) An inverse function is

used to map x and y values in the vapor dome back to a template shape. By this means,

tutor is able to interpret a vapor dome object in varied shapes and locations.

b). Handle sloppy drawings of pressure line.

In a T-v diagram in general, a complete and correct pressure line should contain

three segments: a horizontal segment in two-phase region, two segments with each in

liquid and gas region with a positive slope, respectively. However, student might produce

varied patterns based on his/her procedure knowledge. (I.e. how to represent a pressure

line.) One of the common mistakes is, instead of including three segments, student tends

to draw two segments, a horizontal line in the two-phase region and a sloped line in either

liquid or gas region. Or instead of drawing a positive-slope segment in liquid or gas

region, a very low-slope (<10 degrees) line is drawn. The procedure knowledge is

different from conceptual knowledge. I.e., student knows the possible number of

pressures in the system, but fails to draw the pressure line correctly. To handle this, tutor

uses larger tolerance when performing the initial checks, but decreases the tolerance as

the student proceeds.

c). Handle some sophisticated situations.

Sometimes, when a student starts to frame the problem by sketching a few number

of pressure lines, he/she doesn’t have a clear understanding of how many lines should be

there. After anchoring all the states on appropriate pressure lines, he/she realizes only

 100

some of the pressure lines are valid, but leaves the extra ones empty. Evaluation engine

should be able to recognize the empty pressure lines and doesn’t count them when

interpreting the number of pressures. By this means, it gives students more freedom and

encourages them to explore the problem space as much as possible before going to the

details. Thus, Thermo Cycle Tutor is able to handle student’s action with a more accurate

understanding.

4.3.3.2. A pool of check functions

Basically, check functions support the comparison of the expert solution with

student’s understanding. The pool contains several routines that can be called by any

application. For example, to check if a student includes all the states, a check function is

called by first retrieving the number of state values in expert solution and student’s

drawing, and then compare the two values. If student’s solution has less number of states,

the function will return the missing state id, so that the UI controller could take further

actions. To make them modular and easy to use, we design some functions that can be

reused by taking state id and attribute as inputs. For example, to check how pressure,

temperature and specific volume changes in expansion valve, only one function is

associated. This function would take state id 1 and 2 that represent expansion valve in a

problem set, plus the name of one property, such as pressure. To check the other

properties, the function can be re-called by the evaluation process. In summary, the idea

of check functions is to allow evaluation step be reused and re-organized by different

applications. In the future, it will become a support for the authoring tools, where

domain experts can issue the type and order of evaluation by simply selecting and

grouping the check functions.

 101

4.3.3.3. A start model

A start model is built on top of the check functions. It serves as a problem-specific

agent of the expert module. Basically, it maps the evaluation steps defined by expert

module to check functions. Also, it attaches feedback from expert module to the mapped

check functions. For example, to complete the component check, which is the 6th step

defined by expert module, the start model would first break it down into 8 components

check. And then for each component, it calls the underlying check functions by taking the

input and output state ids, as well as the attribute name (P, T or v). It is noteworthy,

expert solution might not include all the information in the problem space, i.e. the exact

phase change temperature under a certain pressure. Instead, it contains the overall picture

of relative pressure value and relative spatial relation information for each component.

Thus, in order to support numeric value check, the start model needs to take specified

value from user input and calls the relevant check function. For example, to check

pressure label, expert must tell the evaluation engine the correct value and tolerance

he/she could accept, since such information is not represented by expert solution. The

underlying check functions are located in the same function pool as the other functions.

The only difference is that the correct answer is retrieved from user input instead of from

the generated expert solution. This add-on model gives tutor more flexibility to handle

both drawing’s spatial relation and numeric value input.

4.3.3.4. Feedback to UI controller

There are two types of feedback to UI controller. One is the feedback message that

would be displayed to student. This type of feedback is specified by the expert module

initially, and mapped by start model as evaluation process starts. Another one is the

 102

action feedback to the UI controller. The action feedback is designed to support further

pedagogical-oriented tutorials or activities. Furthermore, in order to facilitate tracking

students’ performance and analyzing their changes of performance and understanding,

evaluation engine encodes pass or fail results from each check step. The codes include

results from all the check steps defined in the evaluation procedure, even though

feedback message only targets on the first encountered error. The codes are saved every

time a new request is submitted, which gives tutor a better understanding of student’s

current state.

4.3.4. Pedagogical module

A pedagogical module defines what pedagogical instructions should be provided

based on students’ actions. This module was developed based on pedagogies from one

thermodynamics expert Dr. Hagge. In general, it includes 1) the types of feedback

available on tutor server, such as texts in a pop-up window, erred drawing piece with

highlighted color, standalone tutorial videos, multiple-choice questions and pictorial

illustration, and 2) the mapping between the types of feedback to student’s error or

misconception. Details of this module can be found in his separate paper on Decision-

based Learning Tutor (Hagge et al., submitted).

4.3.5. Student model

A student model is constructed for the purpose of tracking students’ performance,

recording their misunderstandings and facilitating instructor’s further analysis. Generally

speaking, it contains information from three resources. 1. Student’s drawing data from

the drawing interface. The drawing is automatically saved once student sends a request

for hint. The drawing data is an .xml file that contains all the objects’ spatial information

 103

as well as their text labels. It is saved along with student’s id and a timestamp. Student’s

drawing data can be retrieved by querying the user id for post analysis. 2. Feedback

message and evaluation code generated by the evaluation engine. As we mentioned

before, feedback conveys information either a hint if an error is found or a confirmation if

the drawing passes the check. When a hint button is clicked, a feedback would be

displayed in a pop-up window, and be saved in the student model as well. 3. Survey, pre-

test and post-test data from a third-party software. To better understand students’

background, their domain knowledge and other subjective information, a survey is

prepared before and after the students use Thermo Cycle Tutor. Pre-test and post-test are

used for the purpose of evaluating students’ knowledge gains. By having these data, tutor

could have a deeper understanding of the students’ knowledge state, their knowledge

gains after using the tutor, how they feel the effectiveness of the tutor, and possible

suggestions on the features of the software.

4.4.Tutor Session

In this session, we will give an example to show how tutor helps a student to go

through a refrigeration cycle problem. As is shown in Figure 4.5 (a), when the tutor was

launched, an introduction video about how to use the tutor was displayed at the central of

the canvas. After exiting it, the student drew a vapor dome and two sets of connected

lines to represent pressure lines. He also added some points on the pressure lines to

indicate the states. When submit_drawing button was clicked, a feedback was displayed,

“There appears to be some misconception about the number of pressures in a

refrigeration cycle.” A multiple-choice question was popped up to clarify if student has a

misconception of the number of pressures by asking “how many pressures are there in the

 104

refrigeration cycle?” As student correctly answered the question, tutor confirmed it and

prompted him to re-draw the diagram by applying 3 pressures. After he added one more

pressure line and clicked the submit button, a feedback popped up “Please draw the entire

constant pressure line in all 3 regions for each of your pressures”. Student was told the

pressure line was incomplete. So he added a positive-slope line on liquid region for each

pressure line, and hit feedback. He then was expected to label pressure lines in super-heat

region, and an option to watch a demo video about how-to-label. Pressure value for a

given temperature can be found in property tables in right upper corner. When the student

labeled the pressure value and phase change temperature accordingly, and clicked the

submit_button again, he got a message saying, “There appears to be some misconceptions

about the specific volume change in a compressor.” He was then directed to three

multiple-choice questions about the changes of pressure, temperature and specific volume

in a compressor. As he successfully answered these questions, a prompt message said,

“Please modify state 3 and 4 to reflect this.” He then squeezed state 9, 5 and 4, so that

state 4 can be drawn on the left side of state 3. After the modification, he resubmitted the

drawing and got a confirmation message saying his drawing was correct.

 105

Figure 4.5. An example showing student’s interaction with Thermo Cycle Tutor.

 106

4.5. Tutor Evaluation

Thermo Cycle Tutor has been tested by 7 groups of engineering undergraduates

with a total number of 373 at Iowa State University in last two years. To evaluate tutor’s

effectiveness, a pre-test containing 18 multiple-choice questions about the physical

properties of 6 components was provided before students used the tutor. After about 40

minutes activity with the tutor, students were asked to answer the same questions. A

paired t-test on the test scores was performed. Every group of students’ test has shown a

large improvement in understanding, regardless of the instructors or class size (Figure

4.6). Detailed discussion will be included in a separate publication by Dr. Hagge.

Figure 4.6. Tutor test results of 373 engineering undergraduates. Numbers inside the
bracket show the number of students in each group. From left to right, p-values for paired
t-test: 7.5E-21, 3.0E-10, 7.7E-12, 7.9E-7, 4.9E-5, 2.33E-11, and 3.47E-18. Cohen’s d is
calculated as the effect size, shown as black diamonds. Note: Summer 2013 Thermo 1
students’ score is out of 16 possible points due to poorly worded pre/post questions. The
rest of the scores are out of 18 possible points.

 107

4.6. Conclusion and Future Work

In this paper, we present Thermo Cycle Tutor, a Decision-based Learning tutoring

system to help engineering undergraduates in thermodynamics courses. In general, it

contains eight components: drawing interface, domain model, expert module, evaluation

engine, pedagogical module, student model, UI controller, and training materials.

Drawing interface allows students to pick and draw objects on a canvas and seek help

from tutor. Expert solution can be generated automatically in expert module once

problem-specific information is given. Evaluation is taken place in evaluation engine

where a set of decisions has to be met in order to pass. The system implemented

pedagogical instructions from a thermodynamics expert. Furthermore, UI controller

controls the data flow and communication message between drawing interface and

evaluation engine.

As we discussed before, a student model is used to store student’s drawing

information as well as his/her knowledge states. Currently, the student model only

supports post analysis by instructors. In the future, we’d like to incorporate it with

evaluation engine in real-time feedback composition. If a student gets the same mistake

for 3 times (error-in-a-loop), instead of repeating the same feedback message, student

model should alert the evaluation engine that a special feedback is needed to help the

student jump out of the loop. Also, if some inconsistency between the pre-test answer and

the drawing is found, student model should inform the evaluation engine to give a more

personalized feedback. For example, the pre-test results show that the student has a

correct understanding of how pressure changes in expansion valve. However, the drawing

doesn’t represent the correct relationship between input and output state in an expansion

 108

valve. Obviously, the mistake doesn’t come from misconceptions. Instead, it might come

from incomplete procedure knowledge. (I.e., how to map the physical and chemical

relations within a component into a spatial relation between states.) Therefore, instead of

sending him/her for activities that correct the conceptual misunderstanding, tutor might

give a tutorial on how-to-represent-states on vapor dome.

Also, student model could be used to guide evaluation engine for different check

options. As we know, the problem-specific checks defined in expert module is a complete

map of the path that a student should go through in order to solve the problem. It contains

the knowledge space that a human expert expects a successful problem solver. The main

part of the tutor is to convert that knowledge to some measurable actions, such as

drawing of states or pressure line, and then evaluate their outcomes. However, some of

the students might have stronger background or have prior experience in solving similar

problems. When framing the problem, those students may skip some of the steps and

reach the final outcome in a shorter path. For instance, after the student identifies there

are 3 pressure lines and draws them correctly, he/she can anchor states in appropriate

lines directly. Identifying the pressure value and phase change temperature would be

helpful to understand the problem and be beneficial for future problem solving. It is not

counted as a necessary step, however. To benefit both advanced students and average

students, the evaluation engine could consult student model to classify if the student

needs a complete check path or only a few key checks. The goal of constructing student

model is not only to understand students’ background knowledge, interpret their

misconception, support personalized feedback and post analysis, but also provide each

student an individualized tutoring experience.

 109

Acknowledgement

This material is based upon work supported by the National Science Foundation

under Grant Number EEC-1025133. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

REFERENCES

Anderson, E. E., & Taraban, R. (2005). Implementing and Assessing Computer- based
Active Learning Materials in Introductory Thermodynamics. International Journal
of Engineering Education, 21(6), 1168–1176.

Anderson, J. R. (1996). ACT: A simple theory of complex cognition. American
Psychologist, 51, 355–365.

Baghaei, N., & Mitrovic, A. (2005). COLLECT-UML: Supporting Individual and
Collaborative Learning of UML Class Diagrams in a Constraint-based Intelligent
Tutoring System. In Proceedings of the 9th International Conference on
Knowledge-Based Intelligent Information and Engineering Systems - Volume Part
IV (pp. 458–464). Berlin, Heidelberg: Springer-Verlag. doi:10.1007/11554028_64

Beall, H. (1994). Probing Student Misconceptions in Thermodynamics with In-Class
Writing. Journal of Chemical Education, 71(12), 1056. doi:10.1021/ed071p1056

Bursic, K. M. (2012). Does The Use Of Clickers Increase Conceptual Understanding In
The Engineering Economy Classroom? In Proceedings of the 2012 ASEE Annual
Conference. San Antonio, TX.

Chen, J. C., Whittinghill, D.C., Kadlowec, J. A. (2010). Classes That Click: Fast, Rich
Feedback to Enhance Student Learning and Satisfaction. Journal of Engineering
Education, 99(2), 159–168.

Chi, M. T. H. (2005). Commonsense Conceptions of Emergent Processes: Why Some
Misconceptions Are Robust. Journal of the Learning Sciences, 14, 161–199.

Corbett, A. T., Koedinger, K. R., & Hadley, W. S. (2002). Cognitive Tutors: From the
research classroom to all classrooms. In P. S. Goodman (Ed.), Technology enhanced
learning: Opportunities for change (pp. 235–263). Mahway, NJ: Lawrence Erlbaum
Associates.

Diefes-Dux, H. A., Salim, A. (2009). Problem Formulation during Model-Eliciting
Activities: Characterization of First-Year Students’ Responses. In Proceedings of

 110

the Research in Engineering Education Symposium 2009. Palm Cove, Queensland,
Australia.

Dolenc, K., & Aberšek, B. (2015). TECH8 Intelligent and adaptive e-learning system:
Integration into Technology and Science classrooms in lower secondary schools.
Computers & Education, 82, 354–365. doi:10.1016/j.compedu.2014.12.010

Education, U. S. D. of. (2013). What Works Clearinghouse. High School Mathematics
intervention report: Carnegie Learning Curricula and Cognitive Tutor®. Retrieved
from http://whatworks.ed.gov.

Engineering, N. A. of. (2008). NAE grand challenges for engineering. Retrieved from
http://www.engineeringchallenges.org/cms/8996/9127.aspx.

Forbus, K., Usher, J., Lovett, A., Lockwood, K., & Wetzel, J. (2011). CogSketch: Sketch
Understanding for Cognitive Science Research and for Education. Topics in
Cognitive Science, 3(4), 648–666. doi:10.1111/j.1756-8765.2011.01149.x

Guo, E., Gilbert, S., Jackman, J., Starns, G., Hagge, M., Faidley, L., & Amin-Naseri, M.
(2014). StaticsTutor  : Free Body Diagram Tutor for Problem Framing. In
Proceedings of the 12th International Conference of Intelligent Tutoring Systems.
(Vol. 8474, pp. 448–455). Honolulu, HI.

Hagge, M., Amin-Naseri, M., Jackman, J., Guo, E., Gilbert, S., Starns, G., Faidley,L.
(submitted to Advances in Engineering Education). Decision-based Learning for
Thermodynamics Phase Diagram.

Hattie, J., & Timperley, H. (2007). The Power of Feedback. Review of Educational
Research, 77(1), 81–112. doi:10.3102/003465430298487

Lovett, M., Meyer, O., Thille, C. (2008). The Open Learning Initiative: Measuring the
effectiveness of the OLI statistics course in accelerating student learning. Journal of
Interactive Media in Education.

Miller, R. L., Streveler, R. A., Olds, B. M., Chi, M. T. H., Nelson, M. A., & Geist, M. R.
(2006). Misconceptions about rate processes: preliminary evidence for the
importance of emergent conceptual schemas in thermal and transport sciences. In
Proceedings of the American Society for Engineering Education Annual Conference.
Chicago, IL.

Oliveira Neto, J. D. De, & Nascimento, E. V. (2012). Intelligent Tutoring System for
Distance Education. Journal of Information Systems and Technology Management,
9(1), 109–122. doi:10.4301/S1807-17752012000100006

 111

Patterson, B., Kilpatrick, J., Woebkenberg, E. (2010). Evidence for Teaching Practice:
The Impact of Clickers in a Large Classroom Environment. Nurse Education Today,
30(7), 603–607.

Perkins, K. K., Turpen, C. (2009). Student Perspectives on Using Clickers in Upper-
division Physics Courses. In 2009 Physics Education Research Conference. AIP
Conference Proceedings (pp. 225–228).

Prevost, L., Haudek, K., Urban-Lurain, M., & Merrill, J. (2012). Examining student
constructed explanations of thermodynamics using lexical analysis. In Proceedings
of the 2012 Frontiers in Education Conference. Seattle, WA.

Rai, D., & Beck, J. E. (2012). Math Learning Environment with Game-Like Elements  :
An Incremental Approach for Enhancing Student Engagement and Learning
Effectiveness. Proceedings of the 11th International Conference, ITS 2012, Chania,
Crete, Greece, June 14-18, 2012., 90–100.

Redish, E. F., Smith, K. A. (2008). Looking beyond content: Skill development for
engineers. Journal of Engineering Education, 97(3), 295–307.

Reiner, M., Slotta, J. D., Chi, M. T. H., & Resnick, L. B. (2000). Naive Physics
Reasoning: A Commitment to Substance-Based Conceptions. Cognition and
Instruction, 18, 1–34.

Roselli, R. J., & Howard, L. (2003). Integration of an Interactive Free Body Diagram
Assistant with a Courseware Authoring Package and an Experimental Learning
Management System. In Proceedings of the American Society for Engineering
Education Annual Conference. Nashville, TN.

Schiaffino, S., Garcia, P., & Amandi, A. (2008). eTeacher: Providing personalized
assistance to e-learning students. Computers & Education, 51(4), 1744–1754.
doi:10.1016/j.compedu.2008.05.008

Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research,
78(1), 153–189.

Sklavakis, D., & Refanidis, I. (2013). MATHESIS  : An Intelligent Web-Based Algebra
Tutoring. International Journal of Artificial Intelligence in Education, 22, 191–218.
doi:10.3233/JAI-130036

Steif, P. S., A. Dollár, A. (2009). Web-based Statics Course: Study of Usage Patterns and
Learning Gains. Journal of Engineering Education, 98(321-333).

Streveler, R. A., Litzinger, T. A., Miller, R. L., & Steif, P. S. (2008). Learning conceptual
knowledge in the engineering sciences: Overview and future research directions.
Journal of Engineering Education, 97(3), 279–294.

 112

Taraban, R., Anderson, E. E., Sharma, M. P., & Weigold, A. (2003). Developing a model
of students’ navigations in computer modules for introductory thermodynamics. In
Proceedings of American Society for Engineering Education Annual Conference.
Nashville, TN.

Vanlehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., Wintersgill,
M. (2005). The Andes Physics Tutoring System: Lessons Learned. Int. J. Artif.
Intell. Ed., 15(3), 147–204. Retrieved from
http://dl.acm.org/citation.cfm?id=1434930.1434932

Wenger, E. (1987). Artificial intelligence and tutoring systems: Computational
approaches to the communication of knowledge. Morgan Kaufmann Pub.

Zakharov, K., Mitrovic, A., & Ohlsson, S. (2005). Feedback Micro-engineering in EER-
Tutor. In Proceedings of the 2005 Conference on Artificial Intelligence in
Education: Supporting Learning Through Intelligent and Socially Informed
Technology (pp. 718–725). Amsterdam, The Netherlands, The Netherlands: IOS
Press. Retrieved from http://dl.acm.org/citation.cfm?id=1562524.1562620

 113

CHAPTER 5

INSTRUCTIONAL STRATEGIES IN DIAGRAM-BASED ITSS:
LESSONS LEARNED FROM TWO TUTORING SYSTEMS

This chapter is an extended version from a paper published in the 12th International
Conference on Intelligent Tutoring Systems.

Enruo Guo, Stephen Gilbert

Abstract

Unlike text-based input in an Intelligent Tutoring System (ITS), a diagram is

perceived as a whole state; the operation sequence is less important. Traditional step-wise

coaching is not as appropriate in Diagram-based ITSs. From two previous tutoring

systems, StaticsTutor and Thermo Cycle Tutor, we propose cross-domain pedagogical

guidelines for Diagram-based ITSs. In particular, instruction needs to be mapped to a

hierarchical understanding of the diagram, where each level focuses on different

characteristics of the drawing. Also, a personalized evaluation sequence is desired, where

evaluation steps are ordered by the student’s current knowledge. Finally, instruction

needs to address conceptual knowledge and procedure expertise separately. Some

practical suggestions are described to achieve these goals, such as 1) use different

tolerances for error at different levels of evaluation, 2) use Q&A to resolve diagram

ambiguity, 3) early loading of expertise that is important to avoid difficult-to-fix

diagrammatic states and 4) determine if the new evidence violates the existing

understanding of the student.

 114

5.1. Introduction

Given the comprehensive advantages of pictorial representations, diagrams play a

big role in scientific cognition, e.g., free-body diagrams in physics, T-v diagrams in

thermodynamics, circuit diagrams in electrical engineering, and UML diagrams in soft-

ware engineering. Cognitive models of graphics comprehension (Shah, 1997) propose

that graphics comprehension involves interaction between bottom-up perceptual

processes of encoding information from the graphic as well as top-down processes of

applying graph schemas and domain knowledge, which makes it a challenge to teach

students how to use diagrams to represent information.

In this paper, we discuss lessons regarding pedagogy that we learned from two

Diagram-based ITSs, and provide cross-domain guidelines for the design of future

Diagram-based ITSs.

5.2. Background and Previous Work

We have designed and implemented two Diagram-based ITSs in engineering statics

and thermodynamics courses: StaticsTutor (Guo et al., 2014) for free-body diagrams, and

Thermo Cycle Tutor (Guo et al., 2015), for T-v diagrams in refrigeration cycles. Even

though they focus on different domains, pedagogy in both systems aimed at helping

students’ conceptual understanding and decision-making at the earliest stage of problem

framing.

StaticsTutor was developed to analyze student’s drawn free-body diagrams and

recognize misconceptions without requiring numerical force values or the need to provide

equilibrium equations. Preliminary results with 81 engineering undergraduates in fall

2013 showed that StaticsTutor could detect students' misconceptions that were

 115

categorized as “missing basics,” “hinge issue,” “rope issue,” and so on. A post-survey

indicated an overall positive experience with the tutor with a mean usability score of 3.5

(SD 1.11).

The Thermo Cycle Tutor implemented a teaching pedagogy (Hagge et al.,

submitted) based on decision-making, where class concepts are posed as a set of simple

questions that can be answered for all problems in the thermodynamics courses. In fall

2013, 42 undergraduate engineering students were given a pre-test on refrigeration cycles

and then given the Thermo Cycle Tutor to complete a homework problem. They then

took a post-test. Students’ post-test scores improved from 70% to 89% on average. To

test retention, they were given a second post-test after four weeks, and they scored an

average of 81% better than the pre-test with no additional lectures on refrigeration cycles.

Both tutors faced the challenge of how to analyze the students' diagrams

computationally, and how to give appropriate feedback. Pedagogical questions that arise

include, “If there are multiple issues with the diagram, which issue should receive feed-

back first?” “Given an error in the diagram, what can I infer about the student's

misconceptions, if any?” “When should I evaluate the diagram, at each step of

construction, or only at the end?”

5.2.1. Previous work on diagram interpretation

Koffman and Friedman (1976) designed an early instructional tool for diagramming

to assist beginning programmers in learning to make a computer-aided flow diagrams.

They emphasized the problem-framing aspects of diagram planning, and wanted students

to use the diagrams to learn the program logic before implementing the code. Because

these diagrams represent the flow of a program's state, they can be represented mostly

 116

linearly, with some loops. As students added the flow diagram in the authors' system,

each new component was evaluated for whether it fit with the existing logic, and

feedback was given if there was a conflict.

Usually it is difficult to analyze a diagram at each step of its construction, because

there are typically graphic elements that must be added one at a time (though in no

particular order), and at some points during this construction process, the diagram does

not make sense if viewed in its partially completed state. However, in Koffman and

Friedman's case, the linear structure and the level of granularity of their diagram

components helped this system avoid these open-ended ambiguities that usually occur

during construction.

Futrelle (1990) attempted to apply a level of abstraction to diagrams by offering a

diagram grammar and process for automatic computational diagram analysis loosely

based on computer vision. His approach, however, was focused on analyzing the

diagrams, rather than tutoring using diagrams.

5.2.2. Pedagogy in ITSs

A class diagram editor for UML was developed by Py et al. (2008) that focused on

the learner’s metacognitive skills in the modeling task. They designed three types of

interventions: 1) Notify, general feedback drawing student’s attention to some part of the

diagram; 2) Question, asking the learner about the diagram’s properties; and 3) Propose,

very specific feedback suggesting how to correct the diagram. In the present research, the

focus is how to match the feedback to the appropriate hierarchical level of abstraction

within the diagram. Perhaps future work might combine these approaches.

 117

It is worth mentioning pedagogy in Andes tutor (Conati, Gertner, VanLehn, &

Druzdzel, 1997). Instead of limiting students to a predefined optimal solution, it allows

them to explore the problem solving space. A solution graph representation, which

contains several types of nodes, is used to model all possible solution paths, upon which a

Bayesian network is built. Then Bayesian inference is applied to designate student’s

current goal node and a rule-application node where the student is stuck in the middle. A

hint is then generated to coach that knowledge accordingly. Even though Andes focuses

on text-based inputs, this step-by-step coaching strategy also applies to diagram-based

systems. However, there are some differences that make pedagogy in diagrams

challenging: 1) A diagram should be perceived as an entire state, no matter when and

how an element is added to the diagram. Step-by-step coaching needs to be redesigned

appropriately. 2) Even though sequence is less important in a diagram, it does require a

series of actions to be applied in order to meet a certain requirement in a given state. This

means that the diagram must be properly defined as several sequential stages, where each

stage represents certain conceptual understanding. Within a stage, the sequence of actions

does not likely matter.

5.3. Instructional Guidelines in Diagram-based ITSs

5.3.1 Instruction needs follow a hierarchical understanding of the diagram

Even though diagrams vary across domains, there are usually underlying concepts

that drive core questions that should be answered during the assessment process. The core

questions can be defined through an expert module, which might vary based on the

expert’s instructional and pedagogical preferences. However, a general architecture that

fits in a cross-domain evaluation system is highly desired. For this purpose, we propose

 118

three levels of hierarchy for diagram evaluation. Before defining the levels theoretically,

we offer an illustrative example from thermodynamics. Figure 5.1 shows three T-v

diagrams. These diagrams are used to abstractly represent how pressures, temperature,

and volumes change within a mechanical refrigeration system, which may contain

compressors, pumps, valves, etc. The Thermo Cycle Tutor basically asked six questions:

1. Is a vapor dome needed? (Are there phase changes in the cycle?)

2. How many pressures are present in the cycle?

3. How is a pressure line drawn on a T-v diagram?

4. How should phase change P and T be labeled on the diagram?

5. What are the P, T and v relations for each component?

6. How can the problem information, and the decisions above uniquely identify each

state?

While these questions are particular to refrigeration cycles, they have the following

characteristics which apply across domains: some of them focus on the student's

conceptual understanding (1, 2, 5), and some focus on the procedural skill of how to

make a diagram appropriately (3, 4). Of course, these two aspects are tightly coupled, and

some questions apply to both (6).

It is noteworthy that the six questions follow a hierarchical understanding of the

diagram. At Level 1, nine straight-line segments are recognized on a vapor dome (Figure

5.1a), where each three connected segments represent a pressure line. At this level, the

message that the diagram conveys is simply that there are three pressures in this system.

At Level 2 (Figure 5.1b), more details are shown: some text labels are attached to the

pressure line segments at the right-hand side, and tick marks are added to show the phase

 119

change temperatures. These additions give the viewer more concrete information about

the exact value of the pressures and phase change temperatures. Then, at Level 3 (Figure

5.1c), by adding some points with labels on the pressure line segments, the diagram

brings in details on the state information and how it interacts with the pressures and phase

change temperatures.

Figure 5.1. Three levels in a refrigeration cycle T-v diagram. (a). A vapor dome with
three pressures. (b). Labels of phase-change temperature and pressure values were added.
(c). State information was anchored on the pressure line.

To generalize the levels just described, Level 1 focuses on basic graph-style

structures and the spatial relations between each other. At Level 1, the tutor has a rough

idea of what components are present and their connections. To give feedback at Level 1,

the Diagram-based ITS needs to incorporate domain knowledge. Level 2 focuses on

object identities and their object-type-specific relationships. At this level, attributes about

an object will be identified through domain knowledge and some text labels. These

include object name and possible values relate to object. Spatial relationships from Level

1 will be transformed to more specific numerical relationships. As is shown at Figure 5.1

(b), the numeric value has been explicitly shown in each pressure line, so it is easy to tell

the second pressure is 0.67 (1 - 0.33) psi higher than the first pressure, whereas Figure 5.1

(a) only tells the second pressure is above the first one. Level 3 focuses on properties or

children of Level 2 objects. In this level, details on Level 2 objects will be revealed and

 120

examined. The details could comprise sub-objects that constitute a Level 2 object, or sub-

objects that are attached to a Level 2 object but themselves are not considered as basic

structures at Level 1.

Instructional feedback can be composed based on the level of specificity. The lower

level error should be tackled first, as it is more fundamental and serves as the basis of the

higher-level object. For instance, if a Level 1 object is missing, it doesn’t make sense to

correct a Level 2 object as by definition its structure is based on Level 1 object. We

propose this “divide-and-conquer” strategy where each piece can be mapped to one or

more states of student’s understanding.

5.3.2. Customized evaluation and instruction from individual to individual

A diagram embeds a student’s conceptual understanding, while evaluation by the

expert module is trying to infer it. Thus evaluation questions need to be somehow

mapped to domain-wide concepts. In order to track student’s knowledge on each concept,

it is necessary to register them in student model. A complete set of evaluation steps will

be applied to the student’s diagram at the beginning, as the domain-wide concepts in the

student model is not determined. As the student finishes a problem, he/her student model

will get updated, with some concepts being checked as passed. How to define a concept

as mastered is not in the scope of this paper. The next time, the expert module should

consult student’s concept inventory before initializing the tutoring process. For example,

we have implemented six questions in the expert module in the Thermo Cycle Tutor.

However, for the student who has understood phase change temperature, how to use the

reference form to locate the value, and how it should appear in a T-v diagram, expert

instruction would skip question 4, which checks the label of phase change temperature in

 121

the future T-v diagram evaluation. Or, the tutoring system could give different feedback

when error is found in the mastered concept.

5.3.3. Instruction needs to separate conceptual knowledge from procedure

expertise

There are some practical issues when the evaluation engine assesses a student’s

drawing based on the elements defined in the expert module. How to handle these issues

will affect the usefulness and quality of instructional feedback, student’s engagement and

their learning gains.

In most cases, when a student starts to frame a problem, he/she doesn’t have a clear

idea of what information needs to be drawn, and what might be a proper way to represent

it. So a sloppy drawing with some incomplete elements might be submitted to the system

for help. In order to provide the most useful instructional feedback, the tutor is desired to

“read” information from the sloppy drawing. The information includes what might be the

student’s intention, what knowledge he/she might have known or not known and what

other knowledge needs to be further determined from the drawing.

Figure 5.2. Examples of wrong drawings on refrigeration cycle T-v diagram. (a) and (b)
Incomplete pressure line. (c). Wrong pressure line representation which uses a negative
slope.

The student might not be able to represent his/her conceptual understanding in the

drawing in a correct way at the beginning. However, when the student gets familiar with

 122

the procedure or gains some expertize on how to represent the knowledge, he/she can

focus more on the conceptual part. So a tutoring system needs to set apart these two types

of questions, and give instructional feedback separately. Figure 5.2 (a) and (b) show two

examples of sloppy drawing where a vapor dome and three coupled lines were present.

To be considered as a correct representation of a pressure line, three connected segments

should be included. However, the incomplete drawing still implies that the author thought

there were three pressure lines. Assume three pressure lines are the correct answer in

expert solution. In this case, the tutor’s instructional feedback should focus on how to

help them to construct a pressure line, instead of correcting the number of pressures

because zero "true" pressure lines were detected in the diagram.

Figure 5.2 (c) shows an incorrect representation of pressure line, since slope of the

two sided-lines should be positive. For many beginners, they tend to borrow the shape

that they learned in P-v diagram, which is negative, and apply it to T-v diagram. Even

though the tutor cannot detect correct pressure lines, it should be able to probe students’

intention, and give them appropriate instruction such as “This is not a P-v diagram.

Would you like help on drawing pressure lines in a T-v diagram?”

In order to facilitate this strategy, we provide some guidelines when implementing

tutor evaluation engine.

5.3.3.1. Diagrams require different tolerances at different levels of evaluation.

As we mentioned earlier, instruction could be based on evaluation of a three-level

hierarchical structure of the drawing. A different tolerance could be assigned to each

level. A larger tolerance could be used to detect if a basic structure is present. For

instance, in order to check the number of pressures, the tolerance for gaps between line

 123

segments could be a larger value. When it passes the Level 1 check, and goes to the next

level, which checks the representation correctness, this tolerance would decrease, and any

big gap would need to be filled. Two examples with incomplete pressure lines (Figure 5.2

a and b) would pass the number of pressure check, given a higher tolerance on

recognizing a pressure line. After a student passed the Level 1 check, the incomplete

pressure line issue would be addressed due to a lower tolerance on how a pressure line

should be drawn.

5.3.3.2. Diagrams' inherent ambiguity can be resolved with Q&A.

Due to the intrinsic complexity and ambiguity of a drawing, it is safer to confirm

the information that is conveyed in a drawing with some text inputs. For example, if a

drawing fails on a number_of_pressures check, a multiple choice question pops up and

asks student to choose how many pressures in the system. If it is correct, it indicates that

the student’s conceptual understanding is correct, but some procedural issue causes the

failure, e.g., he/she accidentally clicks the submit button without finishing the pressure

line. Another example is shown in Figure 5.3. The student did a good job on drawing

pressure lines, labeling pressure and phase change temperature, and anchoring points on

pressure lines to show the state changes in each component. However, feedback from the

tutor said, “There appears to be some misconceptions about the specific volume change

in a compressor.” Then the tutor directed the student to three multiple-choice questions

regarding pressure, temperature and specific volume change in a compressor. The student

answered all the questions correctly and was told to “modify state 3 and 4 to reflect this.”

These successful answers imply that the student understood the knowledge in a

compressor, but didn’t incorporate it into the drawing.

 124

5.3.3.3.Conceptual and procedural performance in diagrams can be tightly

coupled.

This problem is critical and stems from the fact that some aspects of constructing

the drawing can make it difficult to edit elements later. This situation can frustrate a

student if it occurs late in the problem solving. As is shown in Figure 5.3, after the

student realized state 3 should have a larger volume than state 4 (which means state 3

should appear on right side of state 4 in the T-v diagram), it is impossible for the student

to change it in the diagram because there is no room. However, the student would not

realize this issue until he/she reached this step with no prior experience on this type of

problem. To alleviate this form of unnecessary frustration, when a particular problem is

initialized by student, the evaluation engine should be able to load some practical

expertise information about the base objects, e.g., the shape of the vapor dome should not

be too thin and the distance between the horizontal lines should be greater than some

threshold.

5.3.3.4.New error can be generated as a by-product after fixing an observed error.

For most cases, spatial objects are correlated. The relative position of one object to

another may be affected if we update its relation to a third object. It happens a lot after

student fixes one error based on tutor’s instruction, another error would come up because

of the new operation. This tells us throwing all errors at once is not a good idea, as new

errors would be generated as student proceeds. Instead, correct their misconception one at

a time by some text-based input, and the knowledge should allow them to fix at least one

error on the drawing each time. However, if new evidence is found that an error occurs

on a concept that has been thought as mastered, how should tutor respond? There is a big

 125

chance that this error is generated as the by-product of fixing another error, where student

is unaware of this new one. In this case, tutor’s instruction should not focus on

conceptual correction, but serve as a reminder, e.g., “Please check the expansion valve.”

Also, the student model should have a different index to store this type of error for future

coaching and post analysis.

5.4. Conclusion and Future Work

In this chapter, we discussed some cross-domain pedagogical strategies in Diagram-

based ITSs, which we learned from two systems we developed: Statics Tutor and Thermo

Cycle Tutor. Even though they bear different underlying evaluation structures, it is

noteworthy, due to their diagrammatic representations, they share similar features in

pedagogy design.

In particular, instructional feedback needs to be mapped to a hierarchical

understanding of the diagram. Personalized evaluation is desired which is based on

student’s current knowledge state. Also, it should be able to separate conceptual

knowledge from procedure expertise. In order to achieve that, we proposed some

suggestions, such as 1) allow different tolerances at different levels of evaluations, 2) use

Q&A to reduce ambiguity, 3) determine if conceptual knowledge can be applied by

procedure expertise in current drawing, and 4) determine if the new evidence violates the

existing understanding of the student. Though these suggestions are mainly abstracted

from quantitative diagrams or diagrams contain point-wise relation, we believe they are

still useful for other types of diagrams that don’t consider about the spatial location of its

components. For instance, for diagrams containing geometric shapes and links among

them (Block Diagram), we can still customize diagram evaluation based on student’s

 126

current understanding. E.g., if a student has already mastered the concept of inheritance

relation in Entity-Relationship diagram, tutoring system might ignore errors from this

type of connection in the future problem. Also, the idea of separating conceptual

knowledge from procedure expertise is applicable to any type of diagram. For instance,

different types of shapes are used to model different elements in process flow diagram,

such as a diamond as a decision node. Thus, students need to get used to those shapes in

order to convey their knowledge smoothly.

We propose the future authoring tool for Diagram-based ITSs will support the

above-mentioned pedagogical strategies. The tool will allow instructors to define a)

concepts in the knowledge base, b) objects and tolerances in each hierarchical level, c)

evaluation pieces which link to one or more concepts and d) guidelines of procedural

expertise. In the next chapter, we will discuss another aspect of creating authoring tool:

how to represent diagram’s knowledge from a general perspective, and evaluation

process to diagnose student’s diagram. Also, we will give a more practical way to include

pedagogical instructions to handle diagnostic output. We use different schemes to

categorize pedagogical instructions in chapter 6, since Block Diagrams have different

features from quantitative diagrams.

 127

Figure 5.3. (a). A refrigeration cycle T-v diagram. (b). Three windows that displayed
questions about pressure, temperature and specific volume change in a compressor.

REFERENCES

Conati, C., Gertner, A., VanLehn, K., & Druzdzel, M. (1997). On-line student modeling
for coached problem solving using Bayesian networks. In A. Jameson, C. Paris, &
C. Tasso (Eds.), User Modeling: Proceedings of the Sixth International Conference
(pp. 231–242). Vienna: Springer.

Futrelle, R. P. (1990). Strategies for Diagram Understanding: Generalized Equivalence,
Object/Spatial Data Pyramids, and Animate Vision. In 10th ICPR International
Conference on Pattern Recognition (pp. 403–408).

Guo, E., Gilbert, S., Jackman, J., Starns, G., Hagge, M., Faidley, L., & Amin-Naseri, M.
(2014). StaticsTutor  : Free Body Diagram Tutor for Problem Framing. In
Proceedings of the 12th International Conference of Intelligent Tutoring Systems.
(Vol. 8474, pp. 448–455). Honolulu, HI.

Guo, E., Jackman, J., Gilbert, S., Hagge, M., Starns, G., Faidley, L., & Amin-Naseri, M.
(2015). Decision-centric problem framing tutor for thermodynamics (working
paper).

 128

Hagge, M., Amin-Naseri, M., Jackman, J., Guo, E., Gilbert, S., Starns, G., Faidley,L.
(submitted to Advances in Engineering Education). Decision-based Learning for
Thermodynamics Phase Diagram.

Koffman, E. B., & Friedman, F. L. (1976). A computer-aided flow diagram teaching
system. SIGCSE Bull., 8(1), 350–354.

Py, D., Alonso, M., Auxepaules, L., & Lemeunier, T. (2008). Design of Pedagogical
Feedbacks in a Learning Environment for Object-Oriented Modeling. In
Proceedings of Educators Symposium at the 11th IEEE International Conference
MODELS (pp. 39–50).

Shah, P. (1997). A Model of the Cognitive and Perceptual Processes in Graphical Display
Comprehension. In M. Anderson (Ed.), Reasoning with diagrammatic
representations (pp. 94–101). Menlo Park, CA: AAAI Press.

 129

CHAPTER 6

AN ONTOLOGICAL APPROACH TO SUPPORT
KNOWLEDGE REPRESENTATION IN DIAGRAM-BASED

INTELLIGENT TUTORING SYSTEMS

This chapter will be submitted to the journal Computers and Education
with author list:

Enruo Guo, Stephen Gilbert, Les Miller

Abstract

In this work, we use an ontological approach to represent both domain knowledge

and an evaluation process for Diagram-based Intelligent Tutoring Systems (ITSs). These

two forms of knowledge are quite different—the structure and content of a diagram itself

vs. the process that an expert uses to analyze a diagram. Our approach is designed to ease

the creation of Diagram-based ITSs by allowing knowledge re-use. Specifically, a

general property ontology is provided which categorizes Block Diagrams into five

subtypes, where each subtype is given properties based on its critical features.

Knowledge representation of Block Diagrams is modeled by abstract classes, such as

BLOCK, REPRESENTATION, CONTENT, OPERATION and CONNECTION, which

provide a modular way to allow an evaluation system to parse the diagram and build an

internal knowledge representation. To address the second overall form of knowledge, the

evaluation process, we describe a diagram evaluation ontology which uses the class

representation and includes three steps: 1) general property check, which evaluates if the

given diagram satisfies the properties defined by the general property ontology; 2) block

property check, which detects if each block is appropriately represented and includes the

 130

permitted number of connections and connecting types; and 3) problem-specific check,

which checks whether a student’s diagram has similar information as the expert’s

solution in a given problem. Conceptual knowledge can be also evaluated in terms of

conceptual connections between blocks. Furthermore, we extend this ontology by adding

the pedagogical instructions to handle the outputs of the evaluation process. Applications

in four domains are discussed (process flow diagrams, ER diagrams, circuit diagrams,

and concept maps) to demonstrate that our approach is feasible in different areas. Finally,

we give three case studies to validate our class representation and evaluation/pedagogy

ontologies.

6.1. Introduction

There are barriers in developing an Intelligent Tutoring System (ITS). Authoring an

ITS requires excessive efforts in modeling domain knowledge, either through rule-based

or constraint-based approach, along with designing diagnostic steps, and developing

pedagogical feedback to students (Murray, 2003). It is helpful to provide a standard

structure for experts, so that they can build each piece modularly. Also, knowledge re-use

is highly desirable, since it will eliminate redundant work and save time, if

commonalities exist between the new domain and a previously modeled one. Therefore,

an underlying support to an authoring tool that allows knowledge re-use and modularity

becomes an good solution for experts to create an ITS with the least effort.

Diagnostic steps in ITSs are usually a part of the expert module, which specify the

sequence in evaluation and components needing to be addressed by the tutor. Also,

pedagogical activities are offered to resolve any errors in the problem-solving process. In

general, diagnostic steps are domain-dependent and require expertise to design. For

 131

Diagram-based ITSs, designing those steps becomes even harder. Unlike text-based

inputs, diagrams can be drawn in different sequences of edits, though they should be

perceived as an entire state by a tutoring system. However, some pieces are more

fundamental, on which other pieces are based. At times, the sequence of adding elements

does matter. Thus, evaluating a diagram becomes more challenging. Diagram diagnosis

needs to incorporate both instructional expertise, such as domain knowledge, and

pedagogical expertise about the diagram representation itself. Therefore, our research

questions follow.

Research Questions: Is there a general way to represent a diagram’s domain

knowledge that is applicable to various types of diagrams, to support the

authoring of a Diagram-based ITS? Can we also create evaluation

procedures and tutoring instructions on top of it?

We use class as an explicit form of knowledge representation for domain modeling

in Diagram-based ITSs. Evaluation / pedagogy ontologies to articulate evaluation steps

and expert’s feedback are also provided. To demonstrate the validity of the ontologies,

we will validate the process involved in creating a tutor design from scratch using the

class representations and ontologies. Then two examples of generalization will be

discussed: 1) a big transfer: the process of creating the three-step evaluation ontology in a

new area based on the existing ontology and the changes that are needed, and 2) a small

transfer: the process needed to create the evaluation ontology for a new problem within

the same domain. Thus, by introducing modular structure and enabling the knowledge re-

use, we provide an important methodology that can be used to design future Diagram-

based ITSs.

 132

6.2. Literature Review

6.2.1. Introduction to ontologies

In Artificial Intelligence, knowledge representation is the method for encoding

knowledge in an intelligent system’s knowledge base. As one of many knowledge

representation methods, ontologies have been used in many fields in the last decades. In

order to facilitate knowledge sharing, ontologies are used to organize related concepts

under a common specification. According to two widely adopted definitions provided by

Tom Gruber (1993) and Willem Borst (1997), Jakus et al. (2013, p 29) defined ontology

as following:

“A formal and explicit specification of a shared conceptualization.”

The purpose of creating ontologies includes: 1) knowledge sharing; 2) domain

knowledge re-use; 3) making domain assumptions explicit; 4) separating domain

knowledge from operational knowledge; and 5) analyzing domain knowledge (Noy &

McGuinness, 2001).

An ontology has a few key aspects. It includes conceptualizations by using abstract

models to describe the real world. It defines explicit concepts and relations. It uses formal

language that is intended to be readable by the computers. And lastly, it is shared by a

group of users who commit to a set of terms and consensual knowledge (Studer,

Benjamins, & Fensel, 1998).

According to previous research (Gomez-Perez & Corcho, 2002; Khoo & Na, 2006;

Studer et al., 1998), the components of ontologies generally include: a) concepts, classes,

collections, set or types; b) objects, individuals, instances or entities; c) attributes,

properties, or features of concepts; d) attribute values; and e) relations among classes

 133

or/and objects. An ontology is typically built on top of a taxonomy, and then expands to

a richer network by adding semantic relations and additional components such as

functions, restrictions or constraints.

As Noy & McGuinness (2001) have mentioned, there are some fundamental rules in

creating ontologies:

1). There are always alternatives when modeling a domain. Criteria including

potential applications, extensibility and maintainability could apply in choosing the

appropriate approach.

2). Ontology development needs an iterative process. By applying it to real-world

problems or by discussing it with the domain experts, we can evaluate and revise our

initial design, which continues through the entire lifecycle.

3). The abstract concepts need to maintain real-world objects’ relationships in the

domain of interest.

Four main stages are involved in the ontology lifecycle: 1) Specification, where the

purpose and scope is defined; 2) Formalization, where models are built according to the

requirements from specification stage; 3) Maintenance, which tracks changes and

evolution, and detects any inconsistency as well; and 4) Evaluation, which checks if the

existing ontology meets the requirements (Guarino & Welty, 2002).

6.2.2. Ontology as a way of domain modeling in ITSs

One of the biggest obstacles in ITSs development is the cost of creating domain

model from scratch. One solution is domain ontology engineering (Zouaq & Nkambou,

2010). Basically, two main advantages are involved: 1) knowledge sharing and re-use

between any ontology-friendly environments, and 2) enabling knowledge extraction

 134

automatically, which is called “Ontology Learning” (Zouaq & Nkambou, 2010). It is

believed ITS could benefit from an integration with the Semantic Web by better reuse of

its educational components and sharing (Zouaq & Nkambou, 2010). Educational

Semantic Web (Aroyo & Dicheva, 2004) is a good example. It uses ontologies to index

and structure the learning content.

6.2.3. Task ontology

Effort has been made by other researchers to improve the authoring process by

applying ontologies in some ITSs (Ikeda et al., 1997; Chen et al., 1998). For example, a

task ontology that captures semantic features in the system can be used to represent

problem solving descriptions. According to Ikeda, Seta, & Mizoguchi (1997), the

advantages of integrating a task ontology with authoring tools include: 1) Descriptiveness

and readability; 2) conceptual level operationality – it simulates the problem solving at

the conceptual level; and 3) symbol level operationality – it can make the task description

runnable by converting it to symbol level code.

Ikeda et al. (1997) discussed an ontology-based authoring tool. The tool allows the

user to design the skeleton of the training process, add training material, and adjust the

process control in details. Three layers of ontology are defined: a) core task ontology

with the least dependency lays foundation for other layers; b) task-type specific ontology,

on the second level, is a theory of concepts/vocabulary to describe task models; c) task-

domain ontology, on the top level, describes domain models from the task-type

perspective. Thus, an ontology that contains both domain knowledge and task-specific

information can be a good solution to capture both a diagram’s representation and an

evaluation process for Diagram-based ITSs authoring tools.

 135

6.3. Our Approach

6.3.1. Overview

In this section, we will have our focus on one type of diagram, which contains

geometric shapes and connections to demonstrate relationships, flow, or pattern. As each

geometric shape can be viewed as a block, we call it a Block Diagram. Many diagrams

belong to this category, such as process flow diagrams, UML diagrams, ER diagrams,

concept maps and circuit diagrams. Even though, in some diagrams, the geometric shape

represents conceptual meaning under a given domain, whereas some don’t, they share

similar structures with respect to the steps of evaluation, e.g., “Are all critical blocks

included?”, “Are connections among blocks appropriate?” and so on. In our work, we try

to make the creation of Diagram-based ITSs, based on Block Diagrams, easier and more

modular to manipulate.

Figure 6.1. A classification of Block Diagrams, adapted from Nakatsu (2010).

6.3.1.1 Overview of general property

First of all, five subtypes of Block Diagram were defined based on the work of

Nakatsu (2010), shown in Figure 6.1. Each subcategory has some intrinsic features that

can be conveyed through diagraming. E.g., one subcategory in Block Diagram is

Sequence and Flow, which indicates arrows are needed to show the flow from one object

to another. If the given diagram uses lines instead of arrows in connecting objects, it

 136

would fail to be a Sequence and Flow subtype. Therefore, some general evaluation needs

to occur to detect the validity of the subtype, before going through diagnosis of problem-

specific knowledge. Example diagrams in each subtype and their properties are described

below. Such information is critical when creating a Diagram-based ITS in a new domain.

Thus, we use "general property" to refer to intrinsic properties that carry some conceptual

meanings or restrictions based on their subcategory type.

6.3.1.2 Overview of block property

Also, some diagrams use specific representations to convey the meaning of objects.

For instance, in an entity relationship (ER) diagram, a rectangle is used to represent an

entity, an oval is used for an attribute and a diamond for a relation. A person familiar

with these diagrams can immediately transfer the shapes to their conceptual meanings. In

addition to that, each representation has certain “rules” to capture its domain knowledge

for an object, e.g., to which pieces it must be connected, to which pieces it could be

connected, and the minimum or maximum number of connections it can have. This

information is dependent on the particular type of Block Diagram. We call this sort of

information the “block property”.

6.3.1.3 Overview of problem-specific property

Finally, we build the diagram representation and compare it with the expert’s

solution. There are two major questions: What kind of information in the diagram is

critical in terms of representing the student’s understanding? How can we make it

modular so that it works for different subtypes in Block Diagrams? After evaluating

many types of Block Diagrams, we have identified several kinds of information: number

of blocks and number of connections in the diagram, and information on each block and

 137

each connection. Some of the blocks are more critical, i.e., they convey important

knowledge, which cannot be replaced or neglected. For example, an entity node in ER

diagram is critical, which generally needs to be implemented as a database table.

However, an attribute node is not as critical as an entity node, as it represents the property

of an entity that is only a column within a database table. Different attribute nodes can

carry similar information. E.g., in an online shopping user profile within ER modeling, an

entity called user can have either an attribute date-of-birth or age, which both capture

how old the user is. Also, in some domains, connections can be associated with some

conceptual meanings. For example, in a process flow diagram, connections pointing

to/out a decision node can be interpreted as a decision-making condition. Any connection

errors involved in this node would indicate a misconception in decision-making process.

In summary, we call the information mentioned above “problem-specific”.

Here, we propose an evaluation ontology to deal with the five subcategories in

Block Diagram (See Figure 6.3 and detailed discussion in Section 6.3.3). The ontology

contains three branches, which correspond to the three types of information we discussed

above. They are:

1) general property check, which checks if the diagram satisfies the

properties of the subcategory it belongs to;

2) block property check, which checks if each block meets the rules based on

its domain knowledge; and

3) problem-specific check, which checks if the information in terms of

instances of blocks and connections is correct, according to expert’s

solution.

 138

Then next, we apply this ontology to three domains to demonstrate its feasibility.

Furthermore, we give three case studies to show the ease of creating evaluation procedure

for Diagram-based ITSs. More importantly, we want to show that this method can be

implemented as the default knowledge in the future authoring systems for Diagram-based

ITSs.

6.3.1. Definitions

To make our discussion clear, we will give some definitions.

An Information graphic or Infographic is a graphical visual representation of

information, data or knowledge intended to present information quickly and clearly

(Smiciklas, 2012). Nakatsu (2010) suggested information graphics have a bigger scope

than diagrams. Based on his explanation, diagram is an information graphic that consists

of geometric shapes and connections such as lines or arrows. The purpose of diagram is

to show entities, such as things, people or activities, and their interrelationships in a

qualitative way. However, his definition on diagram excludes some important

information graphics in STEM such as quantitative graph. Therefore, the diagram defined

by Nakatsu (2010) is called Block Diagram in our definition.

A Block Diagram is an information graphic that is made up primarily of geometric

shapes with connections by lines or arrows. Some texts might be attached along the

connections to show dependency relation, operation and logic condition, etc. The spatial

location of each element in the diagram is not considered, whereas only the appearance of

the object and its connectivity to other objects are of interest. For our purposes, we

assume that all diagrams of interest are members of established or widely-used diagram

 139

types, e.g., those used in STEM fields or business. We adapt the classification of

diagrams from Nakatsu (2010) and choose five categories as is shown in Figure 6.1.

6.3.2. Classes in a Block Diagram

We define classes that will be useful in capturing information in Block Diagram,

i.e., a Block Diagram can be represented as a few instances of several classes. Two

important classes are BLOCK and CONNECTION. The concept of block and connection

as definition components of a Block Diagrams is not new. The Systems Modeling

Language (SysML) is a general-purpose modeling language extended from Unified

Modeling Language (System Modeling Language, 2015). Elements in SysML include

Block and Connector. Block is the modular unit that describes the structure of a system,

which includes both structural and behavioral features, whereas Connector can be used to

define relationships between Blocks. Detailed information about the link can be

associated with the connector properties that contain complicated visual representations.

Also, in SysML, specific keywords are defined to capture different property types or

operations. For instance, a “part” is a property defining the local usage of a block. A

block that represents the definition of a wheel can be used in different ways. A front

wheel and a rear wheel can have different usage. For each individual usage, content-

specific values or constraints can be defined, e.g., 25 psi for the front tires and 30 psi for

the rear tires. However, our focus is not to design sophisticated classes that model system

properties or behaviors. Instead, a simple but clean class representation is desired to

capture general properties that a Block Diagram might possess.

 140

Based on the definition of Block Diagram, we perceive it as a set of blocks and

connections. Therefore, classes that capture the features of blocks and connections are

developed.

a) Class BLOCK and its related classes.

A block is a basic element in a Block Diagram. The geometric shape of a block

cannot be either subdivided, or partially represent the object. Within a block, there shall

be no other connections. To model the class BLOCK, three attributes are necessary:

REPRESENTATION, CONTENT and OPERATION. Note each of them is an individual

class, which we will discuss in the following.

REPRESENTATION: A geometric object that represents the block. A shape is

associated with a representation, which is domain-dependent. For instance, a rectangle

represents a process step in process flow diagram, whereas it stands for an entity in

entity-relationship diagram. In some domains, representation can reveal the identity of

the block. Furthermore, considering how it can be connected to other block, there can be

strict requirements on the location of the terminals, and how many numbers of

connections can be made. Each domain needs to implement a set of representations to

facilitate diagramming the knowledge, as well as making the knowledge re-usable. Here,

we list ten properties that a REPRESENTATION class would posses.

• Identity: the identity of a REPRESENTATION, if the shape can reveal it. It is a

string variable type. For instance, the identity of a rectangle in a circuit diagram is

a resistor.

• Shape: a geometric object available from the drawing palette. It is the geometric

construction of a REPRESENTATION. Internally, it is an object with a name such

 141

as rectangle, a function that is used to generate it, and a few important parameters

that decide its size and location.

• Num_of_Terminals: the maximum number of connections that a

REPRESENTATION can have. The value type of this property is either ND (not

defined) or an integer.

• Terminals: the contact points of a REPRESENTATION, based on user-defined

terminal name. The value type is either ND or a list of string.

• Loc_of_Terminals: the location of the contact points of a REPRESENTATION. It

pairs the user-defined terminal name with its spatial location. The value type is

either ND or a Hashtable with a string type as the key and a POINT type as the

value.

• Equiv_Terminals: terminals with similar properties that serve as alternatives for

members within the same group. The value type is either ND or a list of terminals.

• ARandomTerminal: any point on the perimeter of the shape. This property is used

to capture a contacting point from a random position. The value type is a POINT.

• AVertexTerminal: any point at the vertices of the shape. This property is used to

capture a contacting point from the vertices position. The value type is a POINT.

• ABaseTerminal: any point at the lowest side of the shape. This property is used to

capture a contacting point from the base position, which usually applies to shapes

with a horizontal side at the bottom, such as a triangle. The value type is a

POINT.

• ANonBaseTerminal: any point not at the base side of the shape. It is a

complement of ABaseTerminal. The value type is a POINT.

 142

Note: not all the properties are available in each domain. An example representation

class ISA is shown in Figure 6.2, which defines four properties. For those domains that

have limited terminals, Num_of_Terminals, Terminals, Loc_of_Terminals and

Equiv_Terminals must be defined together. For instance, a resistor in circuit diagram has

two terminals in the long axis direction.

Figure 6.2. A representation class ISA in ER diagrams.

CONTENT: The texts within a BLOCK. Based on different applications, the texts

may contain a variety of information, such as conceptual names, labels, functions, values

or properties associated with the block. We listed four types of information below, where

CONTENT may involve in one or up to four kinds in real applications.

• Label: the texts that reveal the name of a BLOCK. E.g., a label with “personnel”

can be put inside of an entity block in an entity-relationship diagram. It is a string

variable type.

• Value: the numerical value that relates to a BLOCK. E.g., 100 V can be attached

to a voltage node in circuit diagram. It is a string type.

• Function: the function that belongs to a BLOCK. E.g., functions are specified in

each class of UML diagram. It is a string type.

 143

• Property: the property or attribute that is associated with a BLOCK. E.g., property

is specified in each class of UML diagram. It is a string type.

OPERATION: An action based on any arrow/line pointing out from the BLOCK.

This property mainly applies to sequence/flow or semantic type diagrams, whereas it is

rare for the relation/hierarchy types diagrams. It contains three components:

• Label: the texts that reveal the action. For example, a label with “to the UV clean

system” is attached to a water pump in a process flow diagram. It is a string

variable type.

• Terminal: the contact point where the operation points out from a BLOCK. It is

either a ND or a POINT type.

• Operation type: the shape of the operation. It is either a LINE or an ARROW.

b). Class CONNECTION and its related classes.

CONNECTION captures how two BLOCKs are linked. Four components are

considered: the two connected nodes, the linkage type between them and labels

associated with the link.

• Node_1: the first BLOCK associated with the connection. It is a BLOCK type.

• Node_2: the second BLOCK associated with the connection. It is a BLOCK type.

Node_1 and Node_2 are exchangeable.

• Label: the texts along with the CONNECTION. It is a string variable type.

• Connecting type: the shape of the CONNECTION. It is either a LINE or an

ARROW.

LINE: a straight connection between two points.

• Point_1: the first end point of a LINE. It is a POINT type.

 144

• Point_2: the second end point of a LINE. It is a POINT type. Point_1 and Point_2

are exchangeable.

ARROW: a line with an arrowhead pointing to one end.

• StartPoint: the start point of an ARROW. It is a POINT type.

• EndPoint: the end point of an ARROW. It is a POINT type.

POINT: an exact position on a plane surface.

• X_location: the x coordinate of a POINT. It is a float type.

• Y_location: the y coordinate of a POINT. It is a float type.

6.3.3. Block Diagram evaluation

In our work, we design an evaluation process that contains three steps (see yellow

nodes in Figure 6.3). The first step is to check general properties, which is problem-

independent and domain-independent. At this stage, an expert solution is not necessarily

needed. The general property check evaluates whether the given diagram satisfies the

properties of a subcategory within a Block Diagram, e.g., "Is this diagram a valid ER

diagram?" Second, the system runs a block property check. It is problem-independent

too. However, it relies on domain knowledge, which checks the properties associated

with each block’s representation. Such property includes number of connections and legal

connection type: "Is this diagram well-formed according to the rules of this domain?"

Third, it does problem-specific check. In this step the system compares an expert solution

with the student’s drawing by retrieving block-wise and connection-wise information,

where the classes we defined earlier will be used to construct knowledge representation.

Note the evaluation engine goes through each step sequentially. If a student’s

drawing fails on general check, the tutor will stop and return pedagogical instructions to

 145

correct the error. If all items in general check are satisfied, tutor will continue to the next

step. Below we will discuss each check in detail.

6.3.3.1 General property check

Figure 6.4 shows a general property check ontology for Block Diagrams. We

explain it below. This ontology is based on diagram categorization research by Nakatsu

(2010), which seeks to help tutor authors answer the question, "Is this a valid Block

Diagram? Does it meet additional requirements from the subcategory it belongs to?” For

example, what is required to make a valid inheritance hierarchy diagram? This general

property ontology is used to validate whether a give diagram has a correct diagramming

format with an appropriate connectivity links. We will discuss this ontology from three

perspectives.

Figure 6.3. An ontology that includes evaluation steps and pedagogy types to handle
evaluation process outputs in Block Diagrams. Yellow nodes: 3-step evaluation process.
Orange nodes: pedagogical instruction types. Green nodes: abstract classes that need to
be implemented based on domain-dependent knowledge. White nodes: data structures
that include information from a diagram. Yellow, white, and orange nodes apply across
domains; green nodes are domain-dependent.

 146

Figure 6.4. An ontology that includes general properties in Block Diagrams. Red nodes:
top level subcategories in Block Diagrams. Green nodes: second level subtypes under
each subcategories. White nodes: properties associated with Block Diagrams and their
subcategories.

1) Five subcategories at first level

The five subcategories of Block Diagrams were modeled by the “is-a” hierarchy

among the dark-red ovals, which were adapted from Nakatsu's (2010) work. This first

level includes:

a. System topology, which uses a conceptual model to represent the organization of

components. Examples include network diagrams, circuit diagrams, and conceptual

models. In this type, only lines are required to connect to objects.

b. Sequence and flow, which shows temporal or chronological orders. Examples

include various flowcharts. In this type, directed lines are used to indicate the

sequence or flow from one object to another.

c. Hierarchy/classification, which shows a taxonomy, organization, or composition

of a system, by using a downward direction to indicate the parent-child relation.

Examples include composition models, hierarchy, etc. In this type, directed lines are

used to model the parent-child relation in an inheritance hierarchy diagram.

 147

d. Association, which shows how objects are related to one another. Examples

include semantic networks and ER diagrams. As discussed above, in a semantic

network, arrow is used to model the directed relation between nodes. In ER

diagrams, entity nodes are not allowed to have duplications, i.e., every rectangle in

ER diagrams must have unique content.

e. Cause and effect, which depicts causal relationships between objects. In this type,

arrows are used to show direction of the cause and effect relation. Examples include

directed graphs and influence diagrams.

2) Second level “is-a” relation

The second level “is-a” relation (from green ovals to red ovals) was created based

on the definition of each subcategory and some examples from Nakatsu’s (2010) work.

This level gives concrete examples which can be directly referred to when creating a new

ITS. For instance, this ontology shows that an ER diagram belongs to the association

subtype. If an expert wants to create an ER diagram tutor, properties associated with an

ER diagram can be retrieved from this ontology and then be evaluated during the general

property check step.

3) Properties of Block Diagrams and their subcategories

Our contribution to this ontology consists of summarizing the major properties of

each subtype, i.e., what basic features must be included, and what checks must be made

by the tutoring engine (see white ovals in Figure 6.4). Based on our observation, a Block

Diagram should satisfy two properties:

a. Connectivity, which checks if there is any outlying block that has no connection

to other blocks. Also, it checks whether there is an isolated group of blocks that cannot be

 148

reached by other blocks. This property indicates there should be at least 2 blocks in a

Block Diagram.

b. Integrity, which checks whether there is a block that is self-connected, i.e., two

terminals from one block are connected directly. In general, self-connection is not

common in many diagrams.

In addition, based on the definition and properties of each subtype, there are a few

other checks for some of them. In the sequence and flow subtype, a “flow” check is

required, which detects whether arrows are used between objects. In the cause and effect

subtype, a “direction” check is needed, which examines whether objects are linked by

directed line/arrows to reveal the casual and effect relation. In semantic networks, a

“directed relation” should be used to model relations between nodes. In inheritance

hierarchy, a “parent-child” relation is designated by an arrow pointing from a child node

to a parent node. In the ontology, different phrases are used in different subcategories to

describe the same geometric shape (in this case, an arrow). This is because we think

using conceptual meaning is more reliable and straightforward than simple pictorial

representation when constructing the ontology. In hierarchy/inheritance subtype, a

“uniqueness” check is applied to find whether there is any duplicate block with same

content, as it is rare to have same concept/component appear more than once. In ER

diagrams, the “uniqueness” check is used to detect if any entity node has been

reproduced in the same diagram, as duplicated entities are not allowed in ER diagram.

Note that blocks are treated as identical if they share same content and representation.

 149

6.3.3.2 Block property check

Having described the general property check, which is domain-independent and

problem-independent, we move now to the block property check, which is still problem-

independent but does depend on the domain knowledge of how a block should be

correctly represented and how it should be validly connected. In particular, it checks the

properties associated with each block’s representation, such as the allowable number of

connections and permitted connection type. The evaluation engine will iterate through

each block in a student’s diagram to do this type of check. Since it is domain-dependent,

we use an example to illustrate how it works (Figure 6.4). The detailed block property

check within three subcategories will be discussed in Section 6.4.

Figure 6.4. Block property ontology in ER diagrams.

 150

Figure 6.5. A personnel database ER model.

After the diagram meets the general properties we defined in Figure 6.3, it will be

forwarded to the block property check in the second branch. The Representation class

(green oval under block property) will be iterated one at a time. The connecting rules for

each representation class is dependent on the domain knowledge. Thus, a separate block

property ontology is required to handle that check. When the evaluation process reaches

the block property check, it will move to the domain-dependent block property ontology

to validate each representation object. Thus, Figure 6.3 represents the domain

independent ontology, with the domain dependent components being represented in

further sub-ontologies such as Figure 6.5. Here, we give an example: a block property

ontology in an Entity-Relationship (ER) diagram. As is shown in Figure 6.4, three types

of relationship are defined. This ontology is an example we created based on our

understanding in ER modeling. It may not contain a complete relationship among blocks.

 151

Here, we only use it as an example to demonstrate functions in block property check. The

black arrows specify the parent-child relations between nodes. Four white nodes, which

have information about the number of connections, organize the block representations in

ER diagram into four types: has_one_connection, has_one_or_greater_than_

one_connections, has_two_connections, has_two_or_greater_ than_two_connections.

The red double-ended arrows specify the connection type that a representation can be

connected to. This is used to capture the knowledge that an attribute or multivalued

attribute can be linked to an entity or a relation node, but it might not be required. The

purple one-way arrows indicate a “must_connect” relation. E.g., a relation node must be

associated with two entities. As another example, an ISA representation needs to connect

to at least two entity nodes, to demonstrate the hierarchy relations between them. The

block property can be used across problems within a domain. Figure 6.5 shows a simple

ER diagram that models a personnel database. We can use this sample ER diagram to

illustrate how the block property ontology in Figure 6.4 would apply during the block

property check. Three entities are defined (shown in blue rectangles), where Employee

has three attribute nodes: Salary, Name, and ID, Department has one attribute DName,

and Manager inherits properties from Employee through an ISA relationship. Two

relations, WorksIn and ManageBy are defined to connect the three entities. We can see in

Figure 6.5 that each attribute node is associated with one entity, and entities are linked

through either inheritance or specific relations, which satisfies the requirements from

Figure 6.4. If an attribute node, e.g., the ID node in entity Employee, is shared by another

object WorksIn, it would violate the block property ontology, which says an attribute

node can have only one connection.

 152

When the evaluation starts, it iterates through each block in the diagram, and

retrieves its relevant requirements from the block property ontology. These requirements

are used to determine whether the given block has a valid representation.

6.3.3.3 Problem-specific check

The third step, after the general property check and the block property check, is to

compare whether the given diagram contains similar information as the expert’s diagram,

as a solution to the given problem. It is problem-specific and is based on the expert

solution. Below we list seven items that would be valuable in revealing information from

a diagram. BLOCK and CONNECTION classes and their related ones would be used to

represent these items. The seven items contain diagram information from two

perspectives: 1) information about objects (BLOCK): critical blocks, supplemental

blocks, number of blocks; and 2) information about connectivity among objects

(CONNECTION): critical connections, supplemental connections, conceptual

connections and number of connections. In particular, objects are tagged in two types:

critical and supplemental, according to the importance of the objects in conveying

knowledge in a diagram. Domain experts can label objects as critical or supplemental

when authoring the expert solution. Or, if an object’s representation can reveal its

identity, the tutoring system could automatically classify an object’s importance.

Critical blocks- blocks that have the highest priority to be checked. They are

usually the fundamental and primary elements in a diagram. They will all be included in

the expert solution. If a block’s identity can be inferred from its representation shape, by

searching domain knowledge and problem input, the tutoring system can automatically

identify critical blocks from the expert solution. Otherwise, by default, all the blocks that

 153

appear in expert solution are critical. Or, the expert can specify specific blocks as critical

when authoring the problem.

Critical connections- important connections between critical blocks. They should

all be included in expert solution. Again, if a block’s identity can be inferred from its

representation shape, the system can automate the search process by finding all the

connections between critical blocks. Otherwise, by default, all the connections appearing

in the expert solution are critical. Or, the expert needs to specify them when authoring the

problem.

Supplemental blocks- blocks that receive a secondary check. They are the

complement of critical blocks, i.e., all blocks that are not critical. They are less important

than the critical blocks since they are not the backbone of the diagram, i.e., they alone

cannot make meaning but rather have to be attached to the critical blocks. Supplemental

blocks can extend the information and provide more details about the critical blocks.

Again, if a block’s identity can be inferred, the tutoring system should automatically

detect the supplemental blocks. Otherwise, by default, it has a null value (no blocks are

supplemental). If the expert, while authoring, designates any blocks as critical, then all

other blocks become supplemental. Or, the expert can specifically designate a block as

supplemental.

Supplemental connections- connections between supplemental blocks, or between

supplemental blocks and critical blocks. By default, it has a null value if a block’s

identity cannot be inferred (no connections are supplemental). The expert can also

manually specify them, too.

 154

Number of blocks- the number of blocks included in expert solution.

Number of connections- the number of connections included in expert solution.

Conceptual connections- grouped connections that together convey a concept.

Conceptual connections are not additional connections, but a subset from critical

connections and supplemental connections. They are defined by the expert author to

enable the tutor to give specific feedback clarifying conceptual knowledge. If a block’s

identity can be inferred from its shape, the tutoring system will combine domain

knowledge and the block’s identity to group connections with shared properties. For

instance, in ER diagrams, connections from an entity (shown as a rectangle) to its

attributes (ellipses) can be grouped to represent a single concept: entity-attribute. In

another example, if an ER diagram requires an employee ID as a key object, the

connection between an employee entity and the ID attribute is a conceptual connection.

These conceptual connections are important pedagogically to identify conceptual

misunderstandings. If student’s diagram misses any connection or has additional

connection between entity and attribute, it will fail on conceptual connection check.

Another example, in process flow diagram, a diamond shape represents a decision-

making process. Related connections on this block can reveal the student’s knowledge on

how to make a decision in such circumstance. So if any error is detected among

connections to/from decision-making object, we think a decision-making misconception

is found. The mapping between representations and conceptual connections can be found

in the ontology of each type of block diagram. In addition, the expert can manually define

conceptual knowledge among connections, if the shape of a block does not imply its

 155

identity. Conceptual connections can have several categories. The expert can specify

them by defining each one as an individual concept, which relates to a set of connections.

The seven items of the problem-specific check listed above can apply to any type of

Block Diagram. Specifically, every diagram will have a value for Number of blocks and

Number of connections. Depending on the applications, some of the seven items might

have a null value. E.g., if experts don’t map domain concepts to connections in the

diagram, conceptual connections would be an empty set. Another example is that in a

concept map, the block representation doesn’t reveal its conceptual meaning. According

to our definition, by default, all blocks appearing in the expert solution will be critical.

Thus, supplemental blocks will have a null value.

6.3.4. Pedagogy in Block Diagrams

One feature of our method that distinguishes it from other systems that simply

analyze diagrams, is that it gives instructional feedback in response to errors in the

diagram and helps the student move forward. Pedagogical instruction is given based on

the output of the evaluation process. As we stated before, there are three evaluation steps:

1) General property check, 2) Block property check, and 3) Problem-specific check.

Instructional feedback attempts to resolve each type of error one at a time (Figure 6.3).

Before we start to discuss our pedagogy approach, we would like to mention some

earlier work on Diagram-based ITSs using constraint-based modeling (CBM). Unlike

rule-based modeling to model both the correct solution path and the buggy ones, CBM

uses set of constraints to capture domain knowledge, where each constraint represents a

small section of the domain. The instructional feedback is bounded with each constraint,

so that the violation of a constraint triggers feedback to a student. Without a cognitive

 156

model, CBM can provide feedback without knowing what causes the violation of the

constraint. When using systems that can generate multiple possible feedback messages

simultaneously, the tutor architect has to resolve the problem of what to do in this

situation: i.e., if a few constraints are violated, should the tutor generate a feedback

message by concatenating feedback messages from all the violated constraints, or only

pick one with the highest priority? Also, bounding feedback with constraints is less

flexible in terms of modularity. E.g., different domain experts might give different

feedback whereas constraints are stable with a domain. To update a feedback, it is

unnecessary to change the constraint. Thus, for the domain expert who has no

programming experience, a separate pedagogical module that is able to generate feedback

based on structure differences is highly desired. Structure difference is a concept we

adopted from Py et al. (2008), which states the difference between expert solution and

student’s diagram in terms of connectivity among objects. The components within the

pedagogical module, i.e., types of errors, and feedback messages addressing each error,

should be accessed and updated by the domain expert easily without significant

programming work. Based on Py et al. (2008), we developed a pedagogy taxonomy to

handle different types of errors, based on the structure differences between expert’s and

student’s solution. However, the structure differences taxonomy in Py’s work focuses on

one particular domain, UML, which cannot be easily generated to other domains. In order

to benefit all possible diagrams in the Block Diagram family, we propose a more general

and easier-to-manipulate approach to map pedagogical feedback to diagnosis output.

 157

Feedback from general property check

Feedback on overall appearance will address any error from general property check

outputs. If several errors are found in the general property check, the feedback message

delivered will concatenate feedback from all the errors. For instance, if a student’s

process flow diagram has two isolated groups of blocks, and undirected lines as

connection type, the system would decide the diagram violates two properties:

connectivity and flow. The resulting feedback would prompt, “Consider that a process

flow diagram requires any block to be reachable from other blocks. In order to

demonstrate the flow, you need to use arrows to indicate the direction of flow.”

Feedback from block property check

The block property check gives feedback on each problematic block representation.

For instance, if entity node (a rectangle) is connected to another entity node, which is not

permitted in ER diagram, evaluation engine will send entity-check-fail notion to

pedagogy model. If more than one block representations fail, instruction composition

would concatenate feedback of all failed types of blocks. For example, if two entity

blocks are failed, only one message tackling representation properties in entity block will

be provided. However, if both an entity and an attribute block fail the check, instructional

message will include how to represent entity and attribute object in ER diagram.

Feedback from problem-specific check

To define problem-specific errors, we used Py et al.’s definitions (2008) and

summarized with five categories: omission, insertion, replacement, reversion of direction

and misconception. These five categories of errors are described below.

 158

a). Omission error: if a student’s diagram has fewer blocks than the expert-defined

critical blocks. To check if a student’s diagram is missing any blocks, the system

compares all blocks in the collection. If any block is missing, feedback is triggered to

prompt the student about the omission of the block. Note that the detail of the feedback

depends on the expert’s pedagogical strategy and preference. E.g., an expert could

prompt the student with the details of the missing block, or mention only that some block

is omitted without indicating which one.

b). Insertion error: if the student’s diagram has more blocks than expert-defined

critical blocks plus supplemental blocks. To evaluate whether a student’s drawing has

extra blocks, the system goes through blocks from critical blocks to supplemental blocks

as defined by the expert. If any block is outside the collection, an error will be triggered,

and feedback on how to fix insertion error will be generated by the pedagogy module.

c). Replacement error: if the student’s diagram has the correct number of

connections and number of blocks, but some blocks in the expert diagram are replaced

with incorrect blocks. In practice, this error can be interpreted as the student’s diagram

has the same number of connections and number of blocks as the expert solution, but with

different collections of critical blocks and supplemental blocks. For example, if the expert

solution is shown in Figure 6.6 (a), while the student drawing is shown in (b). The

student’s diagram has the same number of blocks (3) and same number of connections (2)

as the expert’s diagram. However, it contains a block D, which is not shown in expert

solution. Therefore, it satisfies the definition of a replacement error. Furthermore, the

student’s diagram may have different linkage arrangements from expert solution. As is

also shown in Figure 6.6 (c, expert) and (d, student), the student and expert’s drawings

 159

have same number of blocks (5) and same number of connections (4). However, block B

has 3 connections in expert diagram, whereas it has only 2 connections in student

drawing. Still, this configuration satisfies our definition of replacement error.

Figure 6.6. Block Diagram examples to illustrate replacement error type. (a) and (c) are
expert solutions. (b) and (d) are student solutions. The blocks highlighted by blue colors
are critical blocks.

d). Reversion of direction error: a connection has a reversed relation between two

blocks in student’s diagram. It depends on evaluation output from critical connections

and supplemental connections. If any connection has a reversed direction link, feedback

will be triggered for this error.

e). Misconception error: if student’s diagram fails on the conceptual connection

check. As described above, conceptual connections are grouped connections that together

convey a concept. The system automatically detects conceptual connections from the

expert solution by combing domain knowledge and a block’s identity if it is inferable

from its shape. Therefore, feedback generated by misconception error will be the same

across problems in a particular domain. However, if conceptual connections are not

 160

available in a particular problem, the misconception node will be ignored in the pedagogy

module.

The two sections 6.3.3 and 6.3.4 we discussed above can be organized in an

ontology showing in Figure 6.3. In particular, the yellow nodes denote the three

evaluation steps (Section 6.3.3.1 to 6.3.3.3). Also, it includes classes (green notes) we

defined in Block Diagram in Section 6.3.2 to relate class representation with evaluation

elements. Pedagogy feedback to correct errors in each evaluation step is shown in orange

nodes. Blue arrows are used to model the relations between error nodes and different

levels of information in the diagram, which have been discussed in Section 6.3.4.

Let us walk through an example of using the ontologies with a new diagram. To use

the evaluation/pedagogy ontology (Figure 6.3), two processes are involved. First, given a

diagram, its diagnosis should follow the three-step evaluation process. In particular, a

function is tied to each property defined in general propety ontology (Figure 6.4). Thus,

all relevant functions are enabled in general property check. Pedagogical instructions are

prepared for each property. In the block property check step, the representation check

(yellow node) will be processed by being directed to the block property ontology (see an

example in Figure 6.5). By iterating through each block, its number of connections and

connecting types will be validated. Pedagogical feedback should be prepared for each

block type. In problem-specific check step, the system will parse the diagram and build

internal representation of the diagram information by filling the values/instances in the

white ovals. In this step, pedagogical instructions for five types of errors should be

provided. Since the error type is generic, that works across any Block Diagram, and

ideally, the pedagogical instructions will be re-used to across domains.

 161

Even though the above process is somewhat complex, it is systematic and well-

defined. Without these ontology-based tools, a domain expert wanting to evaluate a new

diagram would need to start from scratch. The first step would be defining the

components of the diagram, and the next would be specifying the order of evaluation

steps. Because different experts have different preferences, the results of these decisions

might vary significantly without a tool like the above ontologies to guide them. Also,

using these tools enables more significant time savings when applying them to multiple

problems within a domain, because the newly adapted ontologies can be re-used for each

new problem.

6.4. Applications in Three Domains

In this section, we choose three types of diagrams from the five subcategories in

Block Diagram to demonstrate the application of our knowledge representation design

and evaluation ontology work. The ontologies are applied to process flow diagrams, ER

diagrams, and circuit diagrams.

6.4.1. Process flow diagram

The process flow diagram is commonly used in engineering to indicate the general

flow of processes and equipment. It contains a set of elements indicating possible

materials, data, conditions, or operations. Note color can be a visual tool to group objects

but is not considered here.

6.4.1.1. Representations

Below shows a list of representation classes widely used in process flow diagram.

As an explanation, we only pick five. There are other kinds of representations in process

flow diagram.

 162

PROCESS- It describes a procedure or activity.

• Shape:

• Identity: process

• ARandomTerminal: any point at the periphery of the shape

TERMINATOR- It indicates the beginning or ending of a process and link to other

related process.

• Shape:

• Identity: terminator

• ARandomTerminal: any point at the periphery of the shape

DATA- It defines data that are required to support a process step.

• Shape:

• Identity: data

• ARandomTerminal: any point at the periphery of the shape

DECISION- It describes a decision point in the process and the subsequent process

steps that depend on which option is selected. It has at least three connections, with one

entry and two exists.

• Shape:

• Identity: decision

• ARandomTerminal: any point at the periphery of the shape

• AVertexTerminal: any point at the vertices of the shape

CONNECTOR- It represents converging paths. It has at least two entries, but one

exit.

 163

• Shape:

• Identity: connector

• ARandomTerminal: any point at the periphery of the shape

6.4.1.2. Process flow diagram evaluation

1) General property check. Based on Figure 6.4, it should include integrity,

connectivity and flow check.

2) Block property check. Based on domain knowledge, here we build an ontology

to illustrate legal connections between each type of representation (Figure 6.7). Basically,

there is no restriction on the maximum number of connections on each type, and they are

allowed to connect to any type on the representation list. According to the definition, the

PROCESS, TERMINATOR and DATA should have at least one connection, and the

DECISION and CONNECTOR should have at least three connections.

3). The problem-specific check will include the components we defined before.

Please check Figure 6.3. Note it defines one more relation between representation node

and problem-specific check. I.e., the decision block is related to decision making, which

is a type of conceptual connection. In other words, connections entering or exiting from

the decision block will be considered to be conceptual connections. If a student makes an

error on connections from a decision block, he/she would fail the conceptual connections

check. An example of a process flow diagram and its evaluation ontology will be

discussed in Section 6.6 in Case Study 1.

 164

Figure 6.7. Block property ontology in process flow diagrams.

6.4.2. ER diagram

As a second example domain, in software engineering, the Entity-Relation diagram

is used to describe the data or information aspects of a business domain or its process

requirements, which will later be implemented in a database. The main components of an

ER diagram are entities and relationships among them.

6.4.2.1. Representations

Below is a list of representation classes commonly used in an ER diagram. Note

that the color associated below with each shape of representation will not affect the

meaning. Color is used in this document as a way to distinguish and highlight each type.

ENTITY- It describes a subject relevant to a system and can be a person or an

object.

• Shape:

• Identity: entity

 165

• ARandomTerminal: any point at the periphery of the shape.

WEAK ENTITY- It is an entity that cannot be identified by its own attributes.

Instead, it depends on the existence of another entity. E.g., The order item entity will be

meaningless without an order entity. Thus, its primary key should contain a foreign key

as well as its attributes.

• Shape:

• Identity: weak entity

• ARandomTerminal: any point at the periphery of the shape.

RELATION- It describes how entities interact. (It can have many terminals, and the

location is not fixed. But it is traditionally better to have connections at the vertices.)

• Shape:

• Identity: relation

• AVertexTerminal: a point from the four vertices. By convention, this is

used to connect any entity node.

• ARandomTerminal: any point at the periphery of the shape.

WEAK RELATION- It defines how an entity interacts with weak entity.

• Shape:

• Identity: weak relation

• AVertexTerminal: a point from the four vertices. By convention, this is

used to connect any entity node.

• ARandomTerminal: any point at the periphery of the shape.

 166

ATTRIBUTE- It is a property or a characteristic of an entity or relation. Therefore,

an attribute cannot have its own attributes. It cannot exist by itself either.

• Shape:

• Identity: attribute

• ARandomTerminal : any point at the periphery of the shape.

MULTIVALUED ATTRIBUTE- It models an attribute that can have more than one

value. One example is that multiple subject values could be associated with a teacher

entity.

• Shape:

• Identity: multivalued attribute

• ARandomTerminal: any point at the periphery of the shape.

ISA- It models the inheritance relation between two entities. E.g., a student entity

ISA person entity.

• Shape:

• Identity: Is-a relation

• ABaseTerminal(Point): a point from the lower side. By convention, this is

used to connect child entity node.

• ANonBaseTerminal(Point): any point from the two inclined sides. By

convention, this is used to connect parent entity node.

6.4.2.2. Conceptual connections

Here we define three types of connections as conceptual connections in an ER

diagram.

 167

Entity-relation: connections between an ENTITY and a RELATION. This type

models how an entity participates in a relation.

Entity-attribute: connections between an ENTITY and an ATTRIBUTE. This type

models properties within an entity.

Entity-inheritance: connections between two ENTITY nodes. In other words, it

models a parent/child node relationship.

6.4.2.3. ER diagram evaluation

1) General property check. Based on Figure 6.4, it should include uniqueness,

connectivity, and integrity check.

2) Block property check. Based on definition of each representation class, we build

an ontology to specify legal connections among them. The block property ontology is

shown in Figure 6.4.

 a. Any ATTRIBUTE or MULTIVALUED ATTRIBUTE should have exactly one

connection to either an ENTITY or WEAK ENTITY or to a RELATION or WEAK

RELATION, since based on the definition, they cannot be shared by different objects.

 b. Any ENTITY or WEAK ENTITY should have at least one connection. We don’t

set up an upper bound at this stage, however.

 c. Any RELATION or WEAK RELATION should have at least two connections.

According to their definitions, they are used to connect an ENTITY or WEAK ENTITY.

3) Problem-specific check. Again, it has the same components discussed in Figure

6.3. For conceptual connections, we define three sub-types: Entity-relation, Entity-

attribute and Entity-inheritance. Each of them is related to some representation classes.

If a student’s drawing fails on any one of them, the corresponding misconception will get

 168

activated. For instance, if student incorrectly put a link between an ISA and an

ATTRIBUTE node, the system would decide the student has misconceptions on both

entity-inheritance and entity-attribute concepts. Two ER diagram examples will be

discussed in Section 6.6 in Case Studies 2 and 3.

6.4.3. Circuit diagram

A third type is circuit diagram. A circuit diagram or electrical diagram is a

graphical representation of an electrical circuit. A schematic diagram shows the

components and connections of the circuit using standardized symbolic representations.

Symbols are used to represent the features of the physical device.

6.4.3.1. Representations

Below shows a list of representation classes widely used in circuit diagram. Once

they are defined, they can be re-used across problems.

RESISTER

 Shape:

 Identity: resister

 Terminals: Tl_1, Tl_2

 Loc_of_Terminals: (Tl_1, P1), (Tl_2, P2),

 Num_of_Terminals: 2

 Equiv_Terminals: <Tl_1, Tl_2>

EARTH GROUND

 Shape:

 Identity: earth ground

 Terminals: Tl

 169

 Loc_Terminal: (Tl, P)

 Num_of_Terminals: 1

BATTERY

 Shape:

 Identity: battery

 Terminals: Tl_pos, Tl_neg

 Loc_of_Terminals: (Tl_pos, P1), (Tl_neg, P2)

 Num_of_Terminals: 2

AC VOLTAGE SOURCES

 Shape:

 Identity: AC voltage

 Terminals: Tl_1, Tl_2

 Loc_of_Terminals: (Tl_1, P1), (Tl_2, P2)

 Num_of_Terminals: 2

 Equiv_Terminals : <Tl_1, Tl_2>

DC VOLTAGE SOURCES

 Shape:

 Identity: DC voltage

 Terminals: Tl_pos, Tl_neg

 Loc_of_Terminals: (Tl_pos, P1), (Tl_neg, P2)

 170

 Num_of_Terminals: 2

LED/DIODES

 Shape:

 Identity: diode

 Terminals: Tl_pos, Tl_neg

 Loc_of_Terminals: (Tl_pos, P1), (Tl_neg, P2)

 Num_of_Terminals: 2

SWITCH

 Shape:

 Identity: switch

 Terminals: Tl_1, Tl_2

 Loc_of_Terminals: (Tl_1, P1), (Tl_2, P2)

 Num_of_Terminals: 2

 Equiv_Terminals: <Tl_1, Tl_2>

CAPACITOR

 Shape:

 Identity: capacitor

 Terminals: Tl_1, Tl_2

 Loc_of_Terminals: (Tl_1, P1), (Tl_2, P1)

 Num_of_Terminals: 2

 Equiv_Terminals : <Tl_1, Tl_2>

 171

POLARIZED CAPACITOR

 Shape:

 Identity: polarized capacitor

 Terminals: Tl_pos, Tl_neg

 Loc_of_Terminals: (Tl_pos, P1), (Tl_neg, P2)

 Num_of_Terminals: 2

BRIDGE RECTIFIER

 Shape:

 Identity: bridge rectifier

 Terminals: Tl_ac_1, Tl_ac_2, Tl_pos, Tl_neg

 Loc_of_Terminals: (Tl_ac_1, P1), (Tl_ac_2, P2), (Tl_pos, P3), (Tl_neg, P4)

 Num_of_Terminals: 4

 Equiv_Terminals : <Tl_ac_1, Tl_ac_2>

TRANSFORMER

 Shape:

 Identity: transformer

 Terminals: Tl_low_1, Tl_low_2, Tl_high_1, Tl_high_2

 Loc_of_Terminals: (Tl_low_1, P1), (Tl_low_2, P2), (Tl_high_1, P3), (Tl_high_2,

P4)

 Num_of_Terminals: 4

 Equiv_Terminals : <Tl_low_1, Tl_low_2>, <Tl_high_1, Tl_high_2>

 172

NPN BIPOLAR TRANSFORMER

 Shape:

 Identity: NPN bipolar transformer

 Terminals: Base, Emitter, collector

 Loc_of_Terminals: (Base, B), (Emitter, E), (Collector, C)

 Num_of_Terminals: 3

PNP BIPOLAR TRANSFORMER

 Shape:

 Identity: PNP bipolar transformer

 Terminals: Base, Emitter, collector

 Loc_of_Terminals: (Base, B), (Emitter, E), (Collector, C)

 Num_of_Terminals: 3

6.4.3.2. Circuit diagram evaluation

1). General property check. According to Figure 6.4, it includes connectivity and

integrity check.

2). Block property check. Based on the definition of each representation, we build

an ontology to illustrate legal connections among them. As is shown in Figure 6.9, the

representation classes are categorized into four sub-classes, based on their allowable

connections. For instance, EARTH GROUND can have only one connection, whereas

TRANSFORMER must have four connections by linking two AC VOLTAGE SOURCE.

The blue double arrow shows a can-be-connected relation, whereas the orange arrow

indicates a need-to-be-connected relation, based on the conceptual level of each object.

 173

Note that the information in this block property ontology is not complete. The purpose of

showing it is simply to illustrate a way that a block property can be represented.

Figure 6.8. Block property ontology in circuit diagrams.

3). Problem-specific check. It follows the rules defined in Figure 6.3. Even though

the shape of a block reveals its identity, without having problem-specific information, the

system cannot identify critical blocks automatically. In conceptual connections, we define

two sub-classes: Rectifier and AC voltage transform. The definition of rectifier is to

change AC to DC. So if student’s drawing fails on connections from BRIDGE

RECTIFIER, the system will decide he/she has a misconception on how a rectifier should

work. Another concept is AC voltage transform, where connections from a transformer in

the diagram can depict it.

 174

Figure 6.9. Evaluation process ontology in a circuit diagram. Yellow nodes: 3-step
evaluation process. Note, the general property ontology (Figure 6.4) is required to
retrieve diagram’s properties for general property check. The block property check for
each representation class will be forwarded to a domain-dependent block property
ontology (Figure 6.9). Green nodes: abstract classes that are domain-dependent. White
nodes: data structures that contain information from a diagram. Purple nodes:
information/instances retrieved from an expert diagram. Detailed information is shown in
Tables 6.1 and 6.2. Blue nodes: general property or conceptual connection subtypes that
belong to a given domain. Across-domain nodes: yellow and white; Domain-dependent
nodes: blue and green; problem-dependent nodes: purple.

Figure 6.10. A circuit diagram example.

 175

6.4.3.3. An example

Here, we use an example (Figure 6.10) to demonstrate knowledge representation in

problem-specific check. The relevant information is listed below, and its corresponding

evaluation ontology is shown in Figure 6.9.

Number of Blocks: 7

Number of Connections: 19

Set of Blocks: see Table 6.1.

Table 6.1. Set of BLOCKs in circuit diagram (Figure 11).

Block Content->label Representation Operation

B_1 2N3055 NPN bipolar
transistor

Label: 13.8 VDC out
Terminal: P3

B_2 TT801 NPN bipolar
transistor N/A

B_3 560 Ω
 Resistor N/A

B_4 560 Ω
 Resistor N/A

B_5 4.7 mF, 4700µF
 Polarized capacitor Label: -out

Terminal: P2

B_6 N/A Bridge rectifier Label: -out
Terminal: P4

B_7 Pri 110-240v ~ sec
16-20v~ Transformer N/A

Set of Connections: see Table 6.2.

Critical Blocks: B_1 – B_7

Critical Connections: C_1- C_19

Supplemental Blocks: None

Supplemental Connections: None

Conceptual Connections:

 Rectifier: C_7, C_10, C_11, C_12, C_13, C_16, C_18, C_19

 AC voltage transform: C_12, C_13

 176

Table 6.2. Set of CONNECTIONs in circuit diagram (Figure 11).

Connection Node_1 Node_2 Label Connecting Type
Point_1 Point_2

C_1 B_1 B_2 N/A Line B_1-> P1 B_2 ->P2
C_2 B_1 B_2 N/A Line B_1-> P3 B_2 ->P3
C_3 B_2 B_4 N/A Line B_2 -> P3 B_4 ->P1
C_4 B_2 B_4 N/A Line B_2 ->P1 B_4 ->P2
C_5 B_1 B_4 N/A Line B_1 -> P2 B_4 ->P1
C_6 B_1 B_5 N/A Line B_1 ->P3 B_5 ->P1
C_7 B_1 B_6 N/A Line B_1 -> P2 B_6 ->P3
C_8 B_3 B_5 N/A Line B_3 ->P2 B_5 ->P2
C_9 B_2 B_3 N/A Line B_2 -> P1 B_3 ->P1

C_10 B_5 B_6 N/A Line B_5-> P2 B_6 -> P4
C_11 B_5 B_6 N/A Line B_5 -> P1 B_6 ->P3
C_12 B_6 B_7 N/A Line B_6 ->P1 B_7 ->P1
C_13 B_6 B_7 N/A Line B_6 -> P2 B_7->P2
C_14 B_4 B_5 N/A Line B_4->P1 B_5->P1
C_15 B_3 B_4 N/A Line B_3 ->P1 B_4 ->P2
C_16 B_4 B_6 N/A Line B_4->P1 B_6 ->P3
C_17 B_2 B_5 N/A Line B_2 ->P3 B_5 ->P1
C_18 B_3 B_6 N/A Line B_3 ->P2 B_6 ->P4
C_19 B_2 B_6 N/A Line B_2 ->P3 B_6 ->P3

6.4.4. Summary

In this section, we have demonstrated that our knowledge representation and

evaluation process are applicable to three different domains. In particular, we provided

class representation, block property and evaluation ontologies for process flow diagrams,

ER diagrams and circuit diagrams. Examples of the process flow diagram and ER

diagram will be discussed in our case studies in Section 6.6. In the next section, we will

continue to apply our ontologies in another domain that doesn’t use specific geometric

shape to represent the conceptual information.

6.5. Other Application: Concept Map

To demonstrate that our ontologies can be applied to a more general type of

diagram, in which block shape doesn’t contribute to the meaning of the content, we test it

with concept map. A concept map or conceptual diagram is a diagram that shows a

suggested relationship between concepts. It is a graphical tool that supports organize and

 177

structure knowledge (Hager, Scheiber, & Corbin, 1997). In general, information is

represented as boxes or circles, with labeled arrows in a downward-branching

hierarchical structure. Linking phrases can be used to articulate relationships between

concepts.

6.5.1. Evaluation ontology

Based on general property ontology in Figure 6.4, the concept map belongs to the

inheritance/hierarchy subfamily, where parent-child relations need to be denoted by using

arrows to link the blocks. By inheriting properties from all of its upper-level categories, it

should have four attributes: connectivity, integrity, uniqueness and parent-child relation,

shown by the blue nodes at the left branch in Figure 6.12.

In a concept map, the shape of the block doesn’t reveal specific meaning; only the

content inside the block matters. So the block property check will be skipped. (See the

middle branch was eliminated in Figure 6.12.)

Again, the problem-specific check follows the components we defined in Figure

6.3.

 178

Figure 6.11. Evaluation process ontology in a concept map. Only general property check
and problem-specific check are defined. Yellow nodes: 3-step evaluation process. Note,
the general property ontology (Figure 6.4) is required to retrieve the diagram’s properties
for general property check. Green nodes: abstract classes that are domain-dependent.
Note representation classes are not defined. White nodes: data structures that contain
information from a diagram. Purple nodes: information/instances retrieved from an expert
diagram. Detailed information is shown in Tables 6.3 and 6.4. Blue nodes: general
property or conceptual connection subtypes that belong to a given domain. Across-
domain nodes: yellow and white; Domain-dependent nodes: blue and green; problem-
dependent nodes: purple.

6.5.2. An example

Figure 6.12. A concept map in chemistry: categories of matter.

 179

As an example, assume Figure 6.12 is the expert solution. After parsing the

diagram, the system should maintain a set of information, which is shown below. The

information will be used in problem-specific check step, where student’s diagram will be

converted to similar format and compared with the expert’s knowledge. Figure 6.12

shows the corresponding evaluation ontology. A parent-child concept is defined to as one

of the conceptual connection types.

Number of Blocks: 7

Number of Connections: 6

Set of blocks: see Table 6.3.

Set of connections: see Table 6.4.

Table 6.3. Set of BLOCKs in concept map (Figure 6.13).

Block Content->label Representation Operation
B_1 Matter N/A N/A
B_2 Mixture N/A N/A
B_3 Pure N/A N/A
B_4 Homogeneous N/A N/A
B_5 Heterogeneous N/A N/A
B_6 Element N/A N/A
B_7 Compound N/A N/A

Table 6.4. Set of CONNECTIONs in concept map (Figure 6.13).

Connection Node
_1

Node
_2 Label Connecting

type

StartPoint EndPoint

C_1 B_1 B_2 Can be separated by
physical means Arrow B_1->

ARandomTerminal
B_2 ->

ARandomTerminal

C_2 B_1 B_3
Cannot be further

separated by
physical means

Arrow B_1->
ARandomTerminal

B_3->
ARandomTerminal

C_3 B_2 B_4 Uniform throughout Arrow B_2->
ARandomTerminal

B_4->
ARandomTerminal

C_4 B_2 B_5 Non-uniform
distribution Arrow B_2->

ARandomTerminal
B_5->

ARandomTerminal

C_5 B_3 B_6 Contain only one
kind of atom Arrow B_3->

ARandomTerminal
B_6->

ARandomTerminal

C_6 B_3 B_7
Contain two or more

types of atoms in
whole number ratio

Arrow B_3->
ARandomTerminal

B_7->
ARandomTerminal

 180

Critical Blocks: B_1 –B_7

Critical Connections: C_1 – C_6

Supplemental Blocks: None

Supplemental Connections: None

Conceptual Connections

Parent-child: C_1 – C_6

To summarize, in this section, we applied our ontologies to a concept map, which

doesn’t use specific geometric shape to reveal conceptual knowledge. Compared with the

previous three types in Section 6.4, it is more general and needs less implementation.

Thus, we demonstrate our method is feasible to various subtypes of Block Diagram.

6.6. Validation

Now we would like to offer three case studies to demonstrate how to use the general

property ontology (Figure 6.4) and evaluation/pedagogy ontology (Figure 6.3) to create

ITSs to tutor student’s diagrams. The three cases are prepared to demonstrate that our

approach 1) is a good method to construct knowledge representation and evaluation

process for a Diagram-based ITS from scratch, 2) is easy to transfer to another domain

based on the existing information, and 3) is easy to create a new problem once a domain

has defined.

Case Study 1. Construct an evaluation process ontology for process flow diagram

from scratch.

An expert plans to create an ITS to tutor a process flow diagram (Figure 6.13) in an

engineering course. The ITS should contain 1) a domain model which includes a set of

rules on how each domain-defined object should connect, restrictions on number of

 181

terminals with each object 2) an expert model with an expert solution, 3) an evaluation

engine that has algorithms to compare student’s diagram with the expert solution, and 4)

a pedagogical model which is able to generate feedback to student when an error is

detected.

Without the aid of a design tool, this process is time-consuming. As we discussed in

Chapter 2, the current widely used approach in tutoring diagrams is constraint-based

modeling (CBM). CBM uses set of constraints to capture domain knowledge, where each

constraint represents a small section of the domain. The student’s solution is deemed

correct only if all the constraints in the given domain are satisfied, in addition to

matching the knowledge in expert solution. CBM gives student feedback only when a

domain principle is violated. Therefore, to create an ITS in a process flow diagram using

CBM approach, the expert has to construct a set of domain-wide constraints with

feedback associated, e.g., “all the processes should be linked by directed line.” A

comparison between the expert and student’s drawing is based on text representations by

converting the graphic information to syntax-based relations. As one can notice, this is

tedious work requiring significant domain expertise, software design, knowledge

representation and programming.

To show the benefit of our method, we use Block Diagram evaluation ontology and

general property ontology to simplify the process, since a process flow diagram is a

subtype of Block Diagram.

 182

Figure 6.13. A fix-lamp process flow diagram, used in Case Study_1.

Assume there exists a UI that allows the expert to draw the diagram, i.e., a drawing

palette that contains the representation objects from the specific domain. In other words,

our method can understand each piece from this diagram automatically. A representation

class is needed to model each representation object in the drawing palette, which will be

used to create the inner computational representation of the drawing. As is mentioned in

Section 6.4, we defined five classes in process flow diagram: PROCESS, TERMINATOR,

DATA, DECISION and CONNECTOR.

Then our solution is to build an inner representation of this diagram by using the

classes we defined. Instances of BLOCKS and CONNECTIONS are created and named

(left column in Table 6.5 and Table 6.6). Note: the bolded words indicate class type.

Table 6.5. Set of BLOCKs in the process flow diagram.
Block Content->label Representation Operation
B_1 Lamp doesn’t work Terminator N/A
B_2 Lamp plugged in? Decision N/A
B_3 Bulb burned out? Decision N/A
B_4 Repair lamp Terminator N/A
B_5 Plug in lamp Terminator N/A
B_6 Replace bulb Terminator N/A

 183

Table 6.6. Set of CONNECTIONs in the process flow diagram.
Connection Node_1 Node_2 Label Connecting

type

StartPoint EndPoint

C_1 B_1 B_2 N/A Arrow B_1->
ARandomTerminal

B_2 ->
ARandomTerminal

C_2 B_2 B_3 N/A Arrow B_2->
ARandomTerminal

B_3->
ARandomTerminal

C_3 B_3 B_4 N/A Arrow B_3->
ARandomTerminal

B_4->
ARandomTerminal

C_4 B_2 B_5 N/A Arrow B_2->
ARandomTerminal

B_5->
ARandomTerminal

C_5 B_3 B_6 N/A Arrow B_3->
ARandomTerminal

B_6->
ARandomTerminal

Consulting Figure 6.3, the evaluation steps are denoted with yellow nodes, which

have three branches: block diagram general property, block property and problem-

specific property. We then discuss how to construct an evaluation ontology for the fix-

lamp process flow diagram problem.

a) General property check. By consulting Figure 6.4, we notice that process flow

diagram is in the “sequence and flow” category, which has a property node “flow.” This

indicates that the general property check in a process flow diagram includes flow, in

addition to the two general features, connectivity and integrity, applicable for all block

diagrams.

b) Block property check. As we mentioned previously, this step will iteratively

check blocks in the diagram to check if they have a valid representation. An abstract

class, REPRESENTATION, is defined to capture a block’s properties across domains.

Therefore, domain-wide classes have to be created to inherit and implement the

properties from REPRESENTATION class. In particular, for each subclass, the expert

shall specify its identity, shape and properties associated with terminals, such as number

of terminals, location of terminals, equivalent terminals, and some special terminals if it

is applicable. In this example, three classes are needed: PROCESS, TERMINATOR and

 184

DECISION. Details about these classes in process flow diagram have been discussed in

Section 6.4. The Representation oval in Figure 6.3 will be expanded by adding these

three representation class nodes. Each of the representation class node will be validated

by consulting block property ontology of process flow diagram (Figure 6.8).

Figure 6.14. Fix-lamp process flow diagram evaluation ontologies. Yellow nodes: 3-step
evaluation process. Note: the general property ontology (Figure 6.4) is required to
retrieve diagram’s properties for general property check. The block property check for
each representation class will be forwarded to a domain-dependent block property
ontology (Figure 6.8). Green nodes: abstract classes that are domain-dependent. White
nodes: data structures that contain information from a diagram. Purple nodes:
information/instances retrieved from an expert diagram. Detailed information is shown in
Tables 6.5 and 6.6. Blue nodes: general property or conceptual connection subtypes that
belong to a given domain. Across-domain nodes: yellow and white; Domain-dependent
nodes: blue and green; problem-dependent nodes: purple.

c) Problem-specific check. Based on Figure 6.3, this step involves seven

components: number of blocks, number of connections, critical blocks, supplemental

blocks, critical connections, supplemental connections and conceptual connections, and

two classes: BLOCK and CONNECTION. Information for each component can be

retrieved from the diagram. Table 6.5 and Table 6.6 show a set of instances of BLOCK

 185

and CONNECTION, respectively, which can be used to fill in the purple nodes with

hasValue or hasInstances relation. Categories of conceptual connections can be defined

too, where any representation class can be related, shown by a blue node in right lower

corner in Figure 6.15. The completed evaluation ontology is in Figure 6.15.

Furthermore, to complete the design process discussed in Figure 6.3, feedback for

each pedagogy type needs to be defined by the expert.

In Case Study 1, we described an example of how to build an evaluation ontology

for a process flow diagram. By comparing our method with the complexity of using a

traditional method, we solve the knowledge representation issue and the design of an

evaluation process in a simpler and modular way. Two assumptions were made: 1) a

drawing tool UI is available for expert to pick geometric shape and draw a diagram

containing these shapes and 2) the class representation for each geometric shape has been

created according to our discussion in Section 6.4. Our methodology first creates

instances of BLOCKs and CONNECTIONs by interpreting components in the diagram.

Then the evaluation ontology is generated according to Figure 6.4 and Figure 6.3 by

filling instances of classes from the example.

Case Study 2. Construct an evaluation ontology for an ER diagram, given that the

evaluation ontology for process flow diagram is available from Case Study 1.

Now the expert wants to create an ER diagram tutoring system for a computer

science database course (an example shown in Figure 6.5). Without any help from an

existing authoring system, she needs to construct the domain, student, expert and

pedagogy models from scratch. Unlike a process flow diagram, an ER diagram has

different rules regarding how each object should connect and restrictions on number of

 186

terminals with each object. Also, a different approach needs to be applied to check if a

student’s drawing matches with an expert’s diagram. Moreover, a new type of pedagogy

model is desired to meet the requirements and concepts in ER modeling. As noted above,

this process is painful.

Table 6.7. Instances of BLOCKs in personnel ER diagram.
Block Content->label Representation Operation
B_1 Employee Entity N/A
B_2 Manager Entity N/A
B_3 Department Entity N/A

B_11 Salary Attribute N/A
B_12 Name Attribute N/A
B_13 ID Attribute N/A
B_4 isa ISA N/A
B_5 ManagedBy Relation N/A
B_6 WorksIn Relation N/A

B_31 DName Attribute N/A

Table 6.8. Instances of CONNECTIONs in personnel ER diagram.
Connection Node_1 Node_2 Label Connecting

type

Point_1 Point_2

C_1 B_1 B_4 N/A Line B_1->
ARandomTerminal

B_4 ->
ANoneBaseTerminal

C_2 B_2 B_4 N/A Line B_2 ->
AVertexTerminal B_4-> ABaseTerminal

C_3 B_2 B_5 u Line B_2->
ARandomTerminal

B_5 ->
AVertexTerminal

C_4 B_5 B_3 u Line B_5 ->
AVertexTerminal

B_3->
ARandomTerminal

C_5 B_3 B_6 m Line B_3->
ARandomTerminal

B_6->
AVertexTerminal

C_6 B_1 B_6 u Line B_1->
ARandomTerminal

B_6->
AVertexTerminal

C_7 B_1 B_11 N/A Line B_1->
ARandomTerminal

B_11->
ARandomTerminal

C_8 B_1 B_12 N/A Line B_1->
ARandomTerminal

B_12->
ARandomTerminal

C_9 B_1 B_13 N/A Line B_1->
ARandomTerminal

B_13->
ARandomTerminal

C_10 B_3 B_31 N/A Line B_3->
ARandomTerminal

B_31->
ARandomTerminal

Fortunately, since process flow diagrams and ER diagrams both belong to Block

Diagram, we can simplify this process by modifying the existing process flow diagram

evaluation ontology. Like the assumptions we made in Case Study 1, the expert first uses

 187

the drawing tool to choose representation shapes and to complete a diagram. Each

representation has a class to model its properties. As described in Section 6.4, we have

defined seven classes in ER diagram. Once the expert finishes the diagram, instances of

BLOCKs and CONNECTIONs will be created automatically based on the assumption of

our approach (Table 6.7 and Table 6.8).

Then an evaluation process will be created by consulting Figure 6.4 and Figure 6.3,

after combing information from Table 6.7 and Table 6.8.

a) General property check. By consulting Figure 6.4, we notice that the ER diagram

is in the association category with an additional property node “uniqueness.” This

indicates that the general property check in ER diagram includes uniqueness, in addition

to the two general features, connectivity and integrity, applicable for all block diagrams.

Therefore, compared with the existing process flow diagram evaluation ontology, the

node flow should be replaced by uniqueness.

b) Block property check. In the ER modeling domain, new classes need to be

constructed to capture types of block’s representation by inheriting the abstract

REPRESENTATION class. Therefore, the classes defined in process flow diagram cannot

be reused. In an ER diagram, four classes are needed: ENTITY, ATTRIBUTE, RELATION

and ISA, which have been discussed in Section 6.4. In the evaluation ontology, the four

representation classes will be attached to the representation ovals under the block

property check step. Then the evaluation for each representation block will be forwarded

to the block property ontology for ER diagram (Figure 6.5).

c) Problem-specific check. Even though a process flow diagram is quite different

from an ER diagram, our approach uses a similar inner representation to process the

 188

diagram and construct instances of BLOCK and CONNECTION. Therefore, only values

in purple nodes in Figure 6.15 need to be modified by consulting Table 6.7 and Table 6.8.

Categories of conceptual connections need to incorporate the current domain concepts

(blue nodes on the right side in Figure 6.16), and the representation class can be related

(green nodes on the left side in Figure 6.16).

Moreover, feedback from pedagogy module needs to get adjusted accordingly. The

domain expert has to specify feedback to tackle each type of instruction for when an error

is detected.

Figure 6.15. Evaluation ontology for a personnel ER modeling. Yellow nodes: 3-step
evaluation process. Note: the general property ontology (Figure 6.4) is required to
retrieve diagram’s properties for general property check. The block property check for
each representation class will be forwarded to a domain-dependent block property
ontology (Figure 6.5). Green nodes: abstract classes that are domain-dependent. White
nodes: data structures that contain information from a diagram. Purple nodes:
information/instances retrieved from an expert diagram. Detailed information is shown in
Tables 6.7 and 6.8. Blue nodes: general property or conceptual connection subtypes that
belong to a given domain. Across-domain nodes: yellow and white; Domain-dependent
nodes: blue and green; problem-dependent nodes: purple.

 189

In Case Study 2, we applied our method to ER diagrams based on what we had

created in Case Study 1 for process flow diagrams. The purpose of giving this example is

to demonstrate how our method can be easily transferred to another domain. As we stated

before, representation classes are domain-dependent. Therefore, classes from process

flow diagram cannot be re-used. So the major effort of creating a new domain tutor

design is to make corresponding representation classes. Then it is a simple routine to get

instances of BLOCKs and CONNECTIONs from the diagram. The evaluation ontology

retains a similar structure, except that conceptual connections need to be defined

specifically for each area.

Case Study 3. Create an evaluation ontology to handle a new problem in ER

modeling, given that an existing ontology for an ER diagram is available from Case

Study 2.

Now the expert wants to add another ER diagram problem (Figure 6.16) to the

existing ER diagram tutoring system. What changes does she need to make?

Figure 6.16. An online shopping database ER modeling diagram.

 190

As the expert has an existing ER diagram tutoring system design with all the

representation classes available, according to Figure 6.3, she doesn’t need to make any

changes in general-property check step and block-property check step. Instead, only

problem-specific properties need to be modified (the purple nodes in Figure 6.16). As is

shown in Figure 6.3, it contains seven components: critical blocks, supplemental blocks,

critical connections, supplemental connections, number of blocks, number of connections

and conceptual connections. Based on our earlier explanation, the system should identify

the value of each component by either analyzing expert’s diagram, or allow the expert to

input the information manually. Therefore, to establish a knowledge representation of

problem-specific information from the expert diagram, it can go over each block in the

diagram and retrieve the text contents from it, i.e., construct class CONTENT and class

OPERATION if applicable. In other words, instances of the BLOCK class can be built

easily by parsing the expert’s solution without extra effort to construct domain

knowledge representation (Table 6.9 and Table 6.10). Notice this new problem doesn’t

have an instance of ISA class. Therefore, ISA is disabled in the representation class and in

conceptual connection. Entity-inheritance is not necessary anymore (shown in grey node

in Figure 6.17).

Still, no change is needed in the pedagogy module. Notice that five types of

feedback in the pedagogy module are related to problem-specific check results.

Misconception type is the only one that might be neglected if there is no conceptual

connection existing in the expert solution. Once the information is captured, the ontology

is ready to be implemented to tutor the next problem.

 191

Table 6.9. Instances of BLOCKs in online shopping database ER modeling.
Block Content->label Representation Operation
B_1 Customer Entity N/A
B_2 Makes Relation N/A
B_3 Order Entity N/A
B_4 Includes Relation N/A
B_5 Product Entity N/A

B_11 Customer-no Attribute N/A
B_12 Name Attribute N/A
B_13 Email Attribute N/A
B_31 Order-no Attribute N/A
B_32 Order-date Attribute N/A
B_33 Handling-cost Attribute N/A
B_41 Unit-price Attribute N/A
B_42 Quantity Attribute N/A
B_51 Product-no Attribute N/A
B_52 Product-name Attribute N/A
B_53 List-price Attribute N/A

Table 6.10. Instances of CONNECTIONs in online shopping database ER

modeling.
Connection Node_1 Node_2 Label Connecting

type

Point_1 Point_2

C_1 B_1 B_2 1 Line B_1->
ARandomTerminal

B_2 ->
AVertexTerminal

C_2 B_2 B_3 M Line B_2 ->
AVertexTerminal

B_3->
ARandomTerminal

C_3 B_3 B_4 M Line B_3->
ARandomTerminal

B_4 ->
AVertexTerminal

C_4 B_4 B_5 M Line B_4 ->
AVertexTerminal

B_5->
ARandomTerminal

C_5 B_1 B_11 N/A Line B_1->
ARandomTerminal

B_11->
ARandomTerminal

C_6 B_1 B_12 N/A Line B_1->
ARandomTerminal

B_12->
ARandomTerminal

C_7 B_1 B_13 N/A Line B_1->
ARandomTerminal

B_13->
ARandomTerminal

C_8 B_3 B_31 N/A Line B_3->
ARandomTerminal

B_31->
ARandomTerminal

C_9 B_3 B_32 N/A Line B_3->
ARandomTerminal

B_32->
ARandomTerminal

C_10 B_3 B_33 N/A Line B_3->
ARandomTerminal

B_33->
ARandomTerminal

C_11 B_4 B_41 N/A Line B_4->
ARandomTerminal

B_41->
ARandomTerminal

C_12 B_4 B_42 N/A Line B_4->
ARandomTerminal

B_42->
ARandomTerminal

C_13 B_5 B_51 N/A Line B_5->
ARandomTerminal

B_51->
ARandomTerminal

C_14 B_5 B_52 N/A Line B_5->
ARandomTerminal

B_52->
ARandomTerminal

C_15 B_5 B_53 N/A Line B_5->
ARandomTerminal

B_53->
ARandomTerminal

 192

Figure 6.17. Evaluation ontology for an online shopping database ER modeling. .Yellow
nodes: 3-step evaluation process. Note: the general property ontology (Figure 6.4) is
required to retrieve diagram’s properties for general property check. The block property
check for each representation class will be forwarded to a domain-dependent block
property ontology (Figure 6.5). Green nodes: abstract classes that are domain-dependent.
White nodes: data structures that contain information from a diagram. Purple nodes:
information/instances retrieved from an expert diagram. Detailed information is shown in
Tables 6.9 and 6.10. Blue nodes: general property or conceptual connection subtypes that
belong to a given domain. Gray nodes: domain-dependent nodes that are not used in this
problem. Across-domain nodes: yellow and white; Domain-dependent nodes: blue, green
and gray; problem-dependent nodes: purple.

In summary, if an expert wants to create a new problem tutor design in the same

domain, she doesn’t need any modification of the pedagogy module. In evaluation steps,

the general property and block property checks will remain the same, as they are domain-

dependent. She only needs to update the problem-specific property in order to handle the

new problem, i.e., update instances of the seven white nodes in Figure 6.17. This case

study shows that our method has a low entry point to generate new problems within a

 193

domain. This is the situation that most tutor design occurs. A domain expert who has a

specific need in one type of diagram always has the need to create several problems to

address the principles.

In this section, we offered three case studies to illustrate how our method can be

generalized. It can be helpful in creating a diagram tutor design from scratch. Also, it can

be easily transferred to another type of diagram, and support the creation of a new

problem within the same domain. The evaluation ontology can be used as the default

knowledge representation in a Diagram-based ITSs authoring tool. The three-step

evaluation (yellow nodes and white nodes) can be implemented as the default process

that only requires experts to customize based on their needs. The general property

ontology (Figure 6.4) can serve as basis for representing knowledge in the authoring tool.

When authoring the general property check, domain experts can retrieve the general

properties associated with their target diagram by choosing from a list of existing Block

Diagrams. If their interested diagrams are not on the list, they can access the general

property ontology and find their diagram’s subcategory. Properties can be defined for this

new Block Diagram domain. Thus, the general property ontology can be expanded by

domain experts. In addition to the yellow nodes and the white nodes, the abstract class

nodes (green ovals in Figure 6.3) will be extended by adding the domain-dependent

representation nodes (green ovals in Figure 6.18) to facilitate the block property check.

These domain-dependent representation nodes can be either articulated by experts’ input,

or automatically entered by the system if the block representation reveals their identities.

Finally, after the experts upload their correct diagram solution, all the purple nodes can

be created when the system parses the diagram.

 194

The benefit of this ontology becomes more clear when one imagines attempting to

create an evaluation process from scratch, or trying to create an evaluation process for

one domain based on the evaluation process of another domain. If there is no ontology, or

the ontology is empty, careful planning and thinking is required. If the components of

Figure 6.3 are all present, any appropriate components can be re-used in the new domain.

6.7. Discussion and Conclusion

In this chapter, we chose Block Diagram as our target interest, which contains

geometric shapes and connections to demonstrate relationships, flow, pattern, etc. A

general property ontology is provided which categories Block Diagram into five

subtypes, where each subtype is given properties based on its intrinsic relations.

To address the research question asked at the beginning of this chapter, we used

abstract classes to model the geometric representations in Block Diagram, such as

BLOCK, REPRESENTATION, CONTENT, OPERATION and CONNECTION. It

provided a modular way to allow the evaluation system to parse the diagram and build

internal knowledge representation. The diagram evaluation ontology was built on top of

this representation, which included three steps: 1) general property check, which

evaluates if the given diagram satisfies the properties from the general property ontology;

2) block property check, which detects if each block is appropriately represented and if

the properties associated with each block’s representation include legal number of

connections and permitted connecting types (domain-dependent); and 3) problem-specific

check, which checks if the given diagram has similar information as the expert’s. In

particular, this ontology constructs an internal representation of the knowledge from the

diagram by using the classes we defined before, and compares it with the expert’s

 195

knowledge, which is problem-dependent. Conceptual knowledge can be also included in

terms of conceptual connections between blocks. Furthermore, pedagogical instruction

will be given based on the outputs of the evaluation process. In particular, one type of

instruction will be provided to the general property and block property check, whereas

five categories of instruction can be used by the problem-specific check, such as

insertion, omission, replacement, reversion of direction and misconception. Thus, we

answered our question by constructing abstract classes as knowledge representation for

Block Diagram, and developing the general property ontology and evaluation/pedagogy

ontology to set as designs for a future Diagram-based ITS authoring tool.

To demonstrate with examples, three applications in process flow diagram, entity-

relationship diagram and circuit diagram were discussed. Block properties and evaluation

ontologies were provided. Also, a more general type that doesn’t have block properties,

concept map, was included. From those examples in different domains, we showed our

general ontology and evaluation/pedagogy ontology were indeed a solution to ease the

expert’s process and help to describe domain knowledge in authoring Diagram-based

ITSs.

Then we gave three case studies to validate our class representation and

evaluation/pedagogy ontologies. 1) The process involved in creating a new tutor design

from scratch using our ontologies; 2) the process of creating a tutor design in another

domain based on the existing ontology and the changes needed (big transfer); 3) the

process needed in adding a new problem within the same domain (small transfer). As we

mentioned before, it is hard to construct an ontology when starting from scratch.

However, when the backbone of the evaluation ontology is constructed, it supports

 196

information reuse and edits. The ontological approach saves domain experts time and

effort if a new series of problems are required. In the future, ontology generation could be

enabled by an input system. I.e., by filling domain knowledge rules associated with each

block, the system could generate an ontology that is readable by the computer. For

example, the block property ontology for ER diagrams could be generated by asking

experts a couple of questions about each block, such as the maximum number of

connections, legal connecting types, etc.

Our method brings an important methodology for the design of future authoring

tools for Diagram-based ITSs. First, the general property ontology provides guidelines on

diagramming based on the intrinsic properties that each type of diagram category

possesses. This property merely depends on the domain. We believe the existing

diagrams in STEM which bear the definition of Block Diagrams belong to one of the five

subcategories we defined in this chapter. In that sense, ideally, our method can be applied

to any Block Diagram in STEM.

Secondly, the block property ontology carries domain-dependent knowledge, which

supports knowledge reuse by domain experts. Once the representation class is created, it

can be reused across problems within the domain. New types of block can be easily

added to the existing representations, if the expert wants to extend the domain

knowledge. A future authoring tool to construct the block property ontology will be

beneficial. Furthermore, the block property ontology can be used not only to diagnose

student’s drawing, but also to serve as expert knowledge to validate an expert’s solution.

I.e., when the expert has errors in the solution, the block property ontology is able to

detect them and further give hints to correct them. For instance, in an ER diagram, the

 197

expert solution has two entities linked together by accident. In the block property

ontology, it says an ENTITY can only be connected to a RELATION or ATTRIBUTE or

ISA. By consulting the block property ontology, it is easy to find this violates the domain

knowledge. On the other hand, the block property ontology can be revised by the expert

if its current representation is not sufficient or inappropriate. There are cases when it is

created but used by different experts. So allowing the block property ontology to be

updated by the current expert would be a convenient solution.

Moreover, if experts have different evaluation approaches, our method could help

them to align their ideas. For example, in the domain of process flow diagrams, Expert A

might prefer to first check the existence of the blocks, and then check if there are flows

among the blocks. Expert B, on the other hand, who uses the same ideas as our method,

wants to check if the diagram is a valid process flow diagram, e.g., whether arrows are

used to link blocks. Both evaluation processes are appropriate as they focus on different

priorities. Thus, a student’s diagram would receive different instructions based on their

different evaluation processes. However, our method will provide an insight to Expert A

that checking the validity of a process flow diagram should possibly receive higher

priority than his or her first check on block existence, as it applies to any process flow

diagrams.

However, in the current stage, our method cannot optimize an expert’s solution, as

we don’t have a sophisticated model to do reasoning. The problem-specific check only

depends on an expert solution, i.e., the number of blocks, number of connections,

instances of blocks and connections. In some cases, the expert’s solution might not be the

optimum solution in terms of using the fewest blocks and connections to represent the

 198

required contents. Also, when there might be more than one solution to a problem, our

approach will expect the expert to provide all alternative solutions and check if student’s

solution satisfies anyone of them. Further improvements are needed to solve these

situations. For example, like constraint-based modeling, we could add an equivalence

property to our block property ontology. The equivalence property would specify the

possible equivalent representations, e.g., an item can be replaced by another item within

the group. For instance, in an ER diagram, a WEAK ENTITY can be modeled by an

ATTRIBUTE.

To summarize, by using abstract classes to represent diagram knowledge and

ontologies to help evaluation process and pedagogical feedback generation, we answered

our research questions for this chapter: “Is there a general way to represent a diagram’s

domain knowledge that is applicable to various types of diagrams, to support the

authoring of a Diagram-based ITS? Can we also create evaluation procedures and

tutoring instructions on top of it?” Case studies in three situations validated that the

ontologies are applicable to different areas across different types of diagrams. We noted

that our approach will be a good solution to support the design of future Diagram-based

ITSs. It not only makes the knowledge representations easier to construct, but also it

builds a modular structure to evaluate a diagram, which can be generalized to various

types of diagrams in the family of Block Diagram.

REFERENCES

Aroyo, L., & Dicheva, D. (2004). The new challenges for e-learning: The Educational
Semantic Web. Educational Technology and Society, 7(4), 59–69.

Borst, W. (1997). Construction of engineering ontologies for knowledge sharing and
reuse. Centre for Telematics and Information Technology.

 199

Chen, W., Hayashi, Y., Jin, L., Ikeda, M., & Riichiro Mizoguchi. (1998). An Ontology-
based Intelligent Authoring Tool. Proc. of the Sixth International Conference on
Computers in Education, 41–49.

Gomez-Perez, A., & Corcho, O. (2002). Ontology languages for the semantic web. IEEE
Intell Syst, 17(1), 54–60.

Gruber, T. (1993). A translation approach to portable ontology specifications. Knowl
Acquis, 5(2), 199–220.

Grundspenkis, J., & Anohina-Naumeca, A. (2015). Fundamentals of Artificial
Intelligence: knowledge representation and networked schemes. Lecture notes.
Retrieved March 3, 2015, from http://stpk.cs.rtu.lv/sites/all/files/stpk/lecture_7.pdf

Guarino, N., & Welty, C. (2002). Evaluating Ontological Decisions with OntoClean.
Commun. ACM, 45(2), 61–65. doi:10.1145/503124.503150

Hager, P. J., Scheiber, H. J., & Corbin, N. C. (1997). Designing & Delivering: Scientific,
Technical, and Managerial Presentations. New York  ; Toronto  : J. Wiley.

Ikeda, M., Seta, K., & Mizoguchi, R. (1997). Task ontology makes it easier lb use
authoring tools. IJCAI International Joint Conference on Artificial Intelligence, 1,
342–347.

Khoo, C. S. G., & Na, J.-C. (2006). Semantic relations in information science. Annual
Review of Information Science and Technology, 40(1), 157–228.
doi:10.1002/aris.1440400112

Larkin, J. H., & Simon, H. A. (1987). Why a Diagram is (Sometimes) Worth Ten
Thousand Words. Cognitive Science, 11(1), 65–100. doi:10.1111/j.1551-
6708.1987.tb00863.x

Murray, T. (2003). An overview of intelligent tutoring system authoring tools: Updated
analysis of the state of the art. In S. Murray, T., Blessing, S., Ainsworth (Ed.),
Authoring tools for advanced learning environments. Kluwer Academic Publishers,
Dordrecht.

Nakatsu, R. T. (2010). Diagrammatic reasoning in AI. John Wiley & Sons, Inc.

Noy, N. F., & McGuinness, D. (2001). Ontology development 101: A guide to creating
your first ontology. Stanford Knowledge Systems Laboratory Technical Report KSL-
01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880, 1–25.
doi:10.1016/j.artmed.2004.01.014

Py, D., Alonso, M., Auxepaules, L., & Lemeunier, T. (2008). Design of Pedagogical
Feedbacks in a Learning Environment for Object-Oriented Modeling. In

 200

Proceedings of Educators Symposium at the 11th IEEE International Conference
MODELS (pp. 39–50).

Smiciklas, M. (2012). The Power of Infographics: Using Pictures to Communicate and
Connect with Your Audience. Pearson education, Inc.

Studer, R., Benjamins, V., & Fensel, D. (1998). Knowledge engineering: principles and
methods. Data Knowledge Engineering, 25(1-2), 161–197.

Systems Modeling Language. (2015). Retrieved June 29, 2015 from
http://www.omgsysml.org

Zouaq, A., & Nkambou, R. (2009). Enhancing Learning Objects with an Ontology-Based
Memory. IEEE Transactions on Knowledge and Data Engineering, 21(6), 881–893.

 Zouaq, A., & Nkambou, R. (2010). A survey of domain ontology engineering: methods
and tools. In R. Nkambou, J. Bourdeau, & R. Mizoguchi (Eds.), Advances in
Intelligent Tutoring Systems. Springer Berlin Heidelberg.

 201

CHAPTER 7

 CONCLUSION AND FUTURE WORK

7.1. Conclusion

In this chapter, we will give a brief summary of our work, and discuss each piece of

the work to answer our research questions in Chapter 1.

Generally speaking, our work contains two contributions. First, we developed two

Diagram-based Intelligent Tutoring Systems (ITSs) to understand their usage. One is the

StaticsTutor for free-body diagrams, which helps undergraduates to focus on the

conceptual understandings but avoid numeric values or equations during the problem

framing stage. The other one is the Thermo Cycle Tutor for thermodynamics cycle T-v

diagrams. It implemented decision-based pedagogical strategies from a domain expert in

an undergraduate thermodynamics course. Initial investigations of several groups of

students across four semesters and a few instructors have shown that StaticsTutor can

effectively identify students’ misconceptions, whereas Thermo Cycle Tutor can increase

students’ learning gain very quickly, as shown by comparing their pretest and posttest

scores.

These two ITSs answered our first question: what can be learned from creating

tutors with different underlying representations?

From the implementation perspective, we learned that software classes can be used

to represent geometric shapes in a diagram. Even though a T-v diagram has a different

structure than a free-body diagram, we used a similar method to parse the diagram and

create inner class representation. T-v diagrams, which are more complicated, need

 202

higher-level classes to reveal the conceptual level representation. For instance, a pressure

line in a T-v diagram constitutes one horizontal line and two positive-sloped lines. So a

PRESSURE LINE class was constructed which contains three instances of the class LINE.

Methods within each class are also developed, to deal with properties or operations to

instances of other classes or to itself. For example, above (a line) in class POINT, is a

Boolean method, which returns true if an instance of class POINT is above an instance of

class LINE. Therefore, we found that class representation is a general solution to

knowledge representation on different types of diagrams.

From a pedagogical perspective, since research in ITS is not only to diagnose a

student’s solution, but also to improve a student’s learning by giving tutoring

instructions, we proposed some pedagogical guidelines in Chapter 5 that we learned from

the two tutors. Tutoring a student’s diagram can be difficult. One big issue is that

conceptual knowledge might not be properly presented through diagrams. I.e., students

understand the concept, but due to lack of procedural expertise or carelessness, they

cannot convey it correctly in the diagram. Thus we suggested some methods, such as

allowing different tolerances at different levels of evaluations, using Q&A to reduce

ambiguity, determining if conceptual knowledge can be applied by procedure expertise in

the current drawing, and determining if the new evidence violates the existing

understanding of the student.

Second, to answer Research Questions 2 and 3, which are about the generality of

how the current approach can be applied to other domains, we developed the following.

1) We chose a target. As we noticed that many diagrams contain geometric objects

and use lines/arrows to connect them, such as process flow diagram, entity-relationship

 203

diagram, circuit diagram, concept map, etc., we abstracted them as Block Diagrams.

Based on Nakatsu (2010), we categorized Block Diagrams into five subtypes, on which a

general property ontology was developed. Property nodes and instances nodes were

added to make the ontology workable for Diagram-based ITSs.

2) We modeled a Block Diagram through classes. Knowledge representation on

Block Diagrams was modeled by abstract classes, such as BLOCK, REPRESENTATION,

CONTENT, OPERATION and CONNECTION. The REPRESENTATION class needs to

be extended to actually represent objects in a domain. One example is the class ENTITY

in ER diagram. It is inherited from REPRESENTATION class. Once a representation

class is defined, it can be reused across problems. The class modeling allows the

evaluation system to parse the diagram and build internal knowledge representation.

Also, a block property ontology is defined to deal with the appropriate representation of

each block, such as the number of connections it can have and the type of blocks it is

allowed to link or must be linked.

3) We developed an evaluation/pedagogy ontology on top of the class

representation and two property ontologies. In general, the evaluation/pedagogy ontology

contains three steps: 1) general property check, which checks if the given diagram

satisfies the properties from the general property ontology; 2) block property check,

which detects if each block is appropriately represented; and 3) problem-specific check,

which checks if the given diagram contains similar information to what could be in the

expert’s solution. In particular, the general property check and block property check are

based on the information from the two ontologies in items 1 and 2. Conceptual

knowledge can be also implied through conceptual connections between blocks, which

 204

can be either user-defined or system-automated. Seven pedagogical instruction nodes

were added to the evaluation/pedagogy ontology to handle the outputs of the evaluation

process. We also applied our approach to three domains: process flow diagrams, ER

diagrams and circuit diagrams, to further demonstrate it is workable across different

domain areas. To validate our class representation, property ontology and

evaluation/pedagogy ontology, three case studies were provided. The case studies

demonstrated the process when a new tutor design is created from scratch, the process

when it moves to a new domain and what changes are needed, and the process of adding

a new problem in an existing domain.

To summarize, we believe our work will contribute to the development of the future

Diagram-based ITSs authoring tools. In our vision, the future authoring system would

implement the evaluation/pedagogy ontology as a default structure. The general property

ontology could be loaded in the system too, allowing experts to choose their domain of

interest. Once it is chosen, the relevant objects in a drawing palette would be presented to

the user. Domain experts would care most about the creation of the block property

ontology and classes. So an effective UI to make these steps simpler is desired. Also, it is

expected to support class editing and reuse by existing experts, e.g., adding or removing a

property from an existing class created by other experts. Furthermore, the tool should

support authoring an expert solution and automatic conversion of geometric objects to

class representations. By this means, an authoring system would be able to convert a

drawing to the system’s inner representation with the least efforts by domain experts, and

the evaluation process and pedagogical instructions would be constructed seamlessly to

support diagnosis and tutoring.

 205

7.2. Future Work

This section describes how the process we followed might be extended to other

diagrams beyond Block Diagrams. The Thermo Cycle Tutor helped undergraduates with

T-v diagrams in a thermodynamics course. Unlike a Block Diagram, it contained two

axes (temperature and volume) where the location of states (points) was considered. This

type of diagram is an example of a large category of diagrams in STEM. Figure 7.1

shows one example of P-v diagram in a diesel cycle. Even though the diagram contains

four elements and there are some connections among them, it is different from a Block

Diagram. The location of the elements is of interest and plays a crucial role in conveying

messages from the diagram. Instead, Block Diagram doesn’t model the location of each

element/block.

Figure 7.1. P-v diagram for a diesel cycle.

We call this type of diagram a Quantitative Diagram. It includes an x and y axis to

demonstrate the relations of two variables in two-dimensional space. Data points are

presented to show trends, changes or separations. In addition, it might contain other

objects other than points to facilitate the demonstration.

 206

Like a Block Diagram, we can use classes to model internal knowledge within the

Quantitative Diagram. However it needs more complexity. Some classes in Quantitative

Diagram are listed below:

1) Axis. It is a part of the Cartesian coordinate system. Several attributes can

be included, such as the axis name, unit, maximum/minimum value it possesses.

2) Point. It is the atomic type in the drawing. Its x and y values, label or

descriptions can be modeled as attributes.

3) Connection. It models the linkage or association between points. This

class is similar to the CONNECTION class in Block Diagram, which might contain the

two connecting nodes, connecting type and labels along with the connection.

4) Special object. This type is unique in Quantitative Diagrams. As we

discussed before, a T-v diagram uses a vapor dome to separate the 2-d space to five

regions. Locations of each point regarding to the vapor dome is important. In this case,

vapor dome can be modeled as a special object. Note, it is not usual to have special object

in Quantitative Diagrams, and the shape and properties of special object vary from

domain to domain. Therefore, this type needs domain experts to define explicitly based

on their purpose.

Moreover, the connecting type needs more sophisticated consideration. In Block

Diagrams, only two types are modeled: LINE and ARROW. Since we only care about if

the two blocks are connected, and if the relationship such as flow, cause/effect or

inheritance between them is correct, it is sufficient to model a connecting type with a

direction (arrow) or non-direction (line). However, in a Quantitative Diagram, the

connecting type becomes more sensitive. Besides line and arrow, there could be more

 207

types. As shown in Figure 7.1, a concave upward curve is used to model an isentropic

transition from state 1 to 2 during the compression stage. Also, an arrow can be added to

the curve to show the flow. For instance, the curve from 1 to 2 has different directions

than that of 3 to 4.

Based on domain requirements and potential applications, the Quantitative Diagram

can have many varieties. Some of them focus on the points’ relative spatial relation and

how they are connected (by line or arrow or curve). An example is the P-v diagram.

Some of them only consider the points’ absolute location in respect to the two axes

whereas the connections are less important. The velocity-time diagram, for example,

contains velocity at each time moment, which will be of interest. Some of them have

additional concerns on the extreme points, e.g., a local minimum or maximum. For

instance, an enzyme reaction rate diagram, in which the rate increases as the substrate’s

concentration increases until it reaches a constant rate. Therefore, the point that

represents the constant reaction rate will be an extreme point and is one of the big

concerns in the diagram diagnosis. Thus, we would suggest categorize Quantitative

Diagram into several subtypes and abstract the properties/requirements of each type. Like

Block Diagram, a general property ontology can be used by diagram evaluation.

To evaluate Quantitative Diagrams, we can still apply a similar method to what we

used in Block Diagrams: an evaluation ontology. However, as there isn’t a block property

within each point, the block property check will be removed. So, two steps can be

involved: a general property check and problem-specific check. The general property

check can be based on a general property ontology as we just mentioned. The problem-

specific check will apply the class representations to retrieve point-wise and connection-

 208

wise information from the diagram, e.g., x-axis, y-axis, number of points, number of

connections, instances of points and instances of connections. As in Block Diagrams,

points/connections can be labeled as critical or supplemental. However, it is hard to

automate this process, as there isn’t a shape associated with a point. Conceptual

knowledge can also be embedded, e.g., an extreme point in some diagrams reveals how

students perceive the scientific process based on their domain knowledge. Pedagogy

instructions can be extended from what we discussed in Block Diagram. More careful

design is needed to address a point’s wrong spatial location with respect to the axes, or

relative spatial location among points.

To conclude, the methods we used to model Block Diagrams can be used to model

Quantitative Diagrams, which capture spatial relations among points in the Cartesian

coordinate system. Like a Block Diagram, it can be categorized into a few subtypes

according to the requirements or features in the diagram, on which general property

check can be applied. Since it is more sensitive than a Block Diagram to the objects’

geometric location and the way of connecting them, additional or more sophisticated

classes, such as AXIS and POINT are needed to fulfill the purposes. On the other hand,

object’s representation is not considered in Quantitative Diagrams, as all the objects are

abstracted as points. Thus, only two evaluation steps are needed in Quantitative Diagram

tutoring systems: general property check and problem-specific check.

This example is just one application of potential future work of this research. The

example shows that our approach may be a solution to other types of diagram with some

modifications. We look forward to the application of these methods to a wide variety of

complex student knowledge representations, esp. other categories of diagrams.

 209

REFERENCES

Nakatsu, R. T. (2010). Diagrammatic reasoning in AI. John Wiley & Sons, Inc.

	2015
	Diagram-based intelligent tutoring systems
	Enruo Guo
	Recommended Citation

	Dissertation_Guo_ready_to_submit

