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ABSTRACT 

 

An untapped area of productivity gains hinges on automatic detection of user cognitive 

characteristics.  One such characteristic, spatial visualization ability, relates to users’ computer 

performance. In this dissertation, we describe a novel, behavior-based, spatial visualization 

detection technique.  The technique does not depend on sensors or knowledge of the 

environment and can be adopted on generic computers.  In a Census Bureau location-based 

address verification task, detection rates exceeded 80% and approached 90%. 
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CHAPTER 1. INTRODUCTION 

1.1 General Problem 

Through the proliferation of mobile devices, location-based software services have grown 

in both popularity and importance. According to Wilson (2012), 

“Location-based services (LBS)...provide functions that are location-aware, where the use of such 
services is predicated on knowledge of where the services are engaged. LBS are oft-referenced 
with regard to mobile devices, although LBS are not necessarily only used on mobiles.”  
A McKinsey Institute report estimated that in 2011, 28% of the U.S. population (87 

million) used location-based services (Manyika et al. 2011). This massive user base requires 

varying levels of data fidelity. Accurate data is critical to organizations like the United States 

Census Bureau, which depends on authentic knowledge of every address in the nation to inform 

the distribution of $400 billion of federal monies each year (Census Bureau, 2015). The 

importance of location-based services extends to their attached user interfaces, which, from a 

software engineering perspective, are the loci of human-error management (cf. Maxion and 

Reeder 2005, p. 26). 

Scientific and commercial interests have devoted considerable resources to interface 

research, but so far, the role of individual differences has been underrepresented. The literature 

suggests ample potential for improvement. For example, Benyon, Crerar, and Wilkinson (2001) 

derive the relevance of individual differences from a fundamental disparity between physical and 

digital artifacts. Information processing predominantly depends on symbol manipulation, so HCI 

systems are black boxes that can only be interrogated through their displays. By contrast, the 

user can employ multiple strategies to investigate physical artifacts. Therefore, cognitive 

differences may express more strongly on computer tasks (pp. 21-22).  
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Spatial visualization ability is one individual difference that has been associated with user 

performance. Ekstrom et al. (1976) defines it as “the ability to manipulate or transform the image 

of spatial patterns into other arrangements” (p. 173). Some known correlates of this aptitude are 

performance with command-line interfaces (Jennings, Benyon and Murray 1991,  Benyon 1993), 

file system navigation (Vicente, Hayes, & Williges 1987), searching an information retrieval 

system (Downing, Moore, & Brown 2005), exploring a non-immersive virtual environment 

(Modjeska & Chignell 2003), web browsing (Zhang and Salvendy 2001), simulated driving 

(Andrews and Westerman 2012), and remote control of robots (Liu, Oman, Galvan, and Natapoff 

2012). 

The present work presents a spatial visualization detection technique drawing on 

behaviors on a location-based task, without external sensors.  

1.2 Hypothesis  

We hypothesize that on a location-based task that involves address verification, 

individual differences in spatial visualization ability lead to discernible variation in behaviors at 

the user interface, and that an algorithm can recognize the difference from the interface usage 

data alone. 

This hypothesis will be validated if we observe algorithms detecting spatial visualization 

ability reliably enough to become viable in the real world.  To accept the hypothesis beyond a 

reasonable doubt, we need to obtain favorable results persisting in multiple studies (two for the 

dissertation) using different software implementations, and in different environments.  Based on 

results presented in the literature, a detection rate of 80% will have outdone prior research. This 

is because, other than in holistic cognitive fingerprinting (Chang et al. 2013), we have not seen 

any reports meeting a threshold of 80% correct detection of cognition-related variable.  Kapoor, 
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Burleson and Picard (2007), the classification apex, reported 79.17% accuracy in predicting user 

frustration.  The prediction algorithm drew on a combination of software logs, posture-sensitive 

chair, galvanic skin response sensor, face tracker, and pressure-sensitive mouse. However, the 

authors’ achievement in classifying transient emotions is in an altogether different research vein 

from the proposed dissertation’s aim to detect a complex semi-permanent ability. Furthermore, 

external sensors are barriers to adoption. 

1.3 Testbed 

The application testbed is an address verification task performed by quality control 

officers of the U.S. Bureau of Census. The job of the Bureau is to collect and maintain statistics 

about the population and economy of the nation, with at least $400 billion of federal funds 

dependent on this information each year (Census Bureau 2015). 

The Bureau of Census address verification task has the following desirable properties: it 

is a complex, professional, location-based task, and the Bureau’s workforce is numerous and 

diverse.  

The task consists of the following stages (stages 1 and 2 are interchangeable):  

1. finding a specific address on a map;   

2. locating the same address in reality; 

3. ensuring the address is correctly reflected on the map and amending the map if 

necessary.  

Bureau of Census survey takers are a diverse population and data fidelity is entirely 

dependent on employee competence. A computer device able to detect a user’s suitability for the 

task during normal job duties opens a pathway to relevant adaptations that can be automated.  
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The dissertation will show connections between spatial visualization ability and user 

workflows. The detection technique will only employ user interface logs, because accounting for 

non-software behaviors requires specialized equipment (microphones, cameras, pressure sensors, 

galvanic skin response detectors, etc.) and would hinder adoption. 

1.4 Contributions 

The present work aims to bring four contributions to computer science.  

1) Establish strong justification for greater incorporation of individual differences into the 

applied and theoretical research of intelligent interfaces.  To our knowledge, there are few if any 

reports in the literature of detection of individual differences from professional tasks.   

2) Demonstrate for the first time that it is possible for a generic computer device to 

recognize a cognitive ability. Literature reports of detection of other user variables frequently 

depend on external sensors and are therefore unsuitable for wide adoption. 

3) Show that behavioral-based detection can circumvent the need to know what 

constitutes a user error, e.g. whether the address was correctly verified.  Such a shortcut would 

be highly valuable in complex workflows, which are ubiquitous in professional computing, 

because the need for environmental information would be avoided altogether.  As a result, both 

software and hardware designs can be simple without sacrificing the visualization detection 

capability. 

4) Establish a relationship between spatial visualization ability and user preferences at the 

interface, with a goal to guide adaptive system design. 

1.5 Organization 

Chapter 2 surveys the existing literature and finds multiple sources that are almost 

relevant to the project, and a few that are directly related, due to the relative novelty of the 
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behavioral approach.  Chapter 3 discusses statistical outcomes from three human-subject 

experiments.  Chapter 4 presents behavioral differences and infers decision models for the Paper 

Map experiment.  Chapter 5 presents detection models and results.  Chapter 6 investigates 

potential adaptations.  Chapter 7 concludes the report. 

  



6 

 

CHAPTER 2.  REVIEW OF LITERATURE 

2.1  Introduction 

User differences have always been of interest to system designers. Benyon, Crerar, and 

Wilkinson (2001) derive the relevance of individual differences from a fundamental disparity 

between physical and digital artifacts: information processing predominantly depends on symbol 

manipulation, so HCI systems are black boxes that can only be interrogated through their 

displays. By contrast, there are multiple strategies to investigate physical artifacts. Therefore, 

cognitive differences may express more strongly on computer tasks (pp. 21-22).  

Spatial visualization ability is one individual difference that is frequently tested in 

experiments. Ekstrom et al. (1976) defined it as “the ability to manipulate or transform the image 

of spatial patterns into other arrangements” (p. 173). This aptitude correlates with performance in 

command-line interfaces (Jennings, Benyon & Murray 1991, Benyon 1993), file system 

navigation (Vicente, Hayes & Williges 1987), searching an information retrieval system 

(Downing, Moore & Brown 2005), web browsing (Zhang & Salvendy 2001), simulated driving 

(Andrews & Westerman 2012), and remote control of robots (Liu, Oman, Galvan, & Natapoff 

2012).   

Automated recognition of user variables is a large field that adjoins multiple disciplines, 

including computer science, psychology, human–computer interaction, ethnography, industrial 

design, many branches of engineering, instructional design and industrial ergonomics. There is 

an extensive list of reports on gathering information about the user, e.g. research on online 

learning environments like Blackboard and WebCT.  But our variable of interest, spatial ability, 

has never been automatically recognized. In addition, intrinsic cognitive abilities in general are 
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not represented as target variables. The most similar publications come from the field of adaptive 

interfaces. 

Adaptive interfaces are encountered on any computer system that autonomously changes 

its interaction mode as a reaction to internal or external cues. Rothrock, Koubek, Fuchs, Haas 

and Salvendy (2002, pp. 58-63) use the term “variables calling for adaptation” and discuss user 

variables, situation variables, and system variables. User variables include an individual’s 

knowledge, performance, workload, personality and cognitive style. 

Van Velsen, Van Der Geest, Klaassen, & Steehouder  (2008) reasoned about 

“personalized” software as systems that employ some type of individual user model. With regard 

to usability, Van Velsen et al. claimed that “comparing a personalized system with one where the 

personalization has been removed is deemed a false comparison” (p. 265) based on statements in 

Höök (1997), Höök (2000), and Bohnenberger, Jameson, Kruger, & Butz (2002), in the sense 

that personalized systems have extra cross-sectional and longitudinal features which change the 

overall mix of utilities provided by the system.  These are the words of just a few authors who 

express a zeitgeist of strong desire for personalization – which has rendered it a ubiquitous goal 

in most commercial and scientific software, and has invested it in multiple research domains.  

Reports of user detection differ from our research in several ways: 

1. To our knowledge, no attempts have been made to recognize spatial visualization ability or 

other specific cognitive abilities.1 In contrast, we detect spatial visualization ability, which is 

linked to performance in many computer tasks. The detection is performed on a professional 

                                                 

1 However, research exists on holistic cognitive fingerprinting, e.g. Chang et al. (2013) 
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task used by the Bureau of Census, and without knowledge of whether the user solved the 

task correctly. 

2. Existing literature frequently uses external sensors. In contrast, our research detects spatial 

visualization ability based on ordinary user input. Detection is deployable on basic 

computing systems. 

3. The published accuracy of recognition is relatively low, with correct classification of less 

than 80% of instances. In contrast, our research uncovered detection rates of 84% and 87%, 

which we deem practical enough for adoption in the real world. 

2.2  Location of Research Objectives within the Scientific Field 

User modeling for user interfaces is a topic within a broad area called “human-centered 

design”. Human-centered design refers to emphasizing user qualities during the software 

modeling process, as opposed to presenting an interaction protocol and demanding that users 

adopt it (Norman & Draper, 1986). While the field can be systematized in multiple ways, we will 

present Gleasure, Feller and O’Flaherty (2012)’s division of human-centered design approaches 

into four categories: metaphoric, idiomatic, contextualized, and foundational. Metaphoric 

approaches carry a real-world control (or other) convention over to the interface realm, 

attempting to gain usability through the familiarity of the metaphor (Gleasure, Feller, & 

O'Flaherty, 2012). An example would be a generic calculator program such as those shipped 

with most current operating systems.  

Idiomatic design tries to co-opt operators’ knowledge of existing digital systems, 

perpetuating interaction modes that are already present in previously produced software. Unlike 

with the metaphoric approach, interface idioms (as well as linguistic idioms) have no 

comprehensible meaning outside of their intended use and therefore need to be explained 
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(Gleasure, Feller, & O'Flaherty, 2012). Idiomatic features include close buttons on most 

graphical interface windows and blinking cursors in command-line environments. 

Contextualized design may be somewhat misleadingly named, as within Gleasure, Feller, 

and O’Flaherty’s classification it refers to “internal consistency within an application”, hence the 

term “contextualized”; but in practice, the methodology hinges on aligning the interface to user 

expectations by observing actual users. In this sense, the real context is the (sample) user base. 

Relevant investigative techniques span an array from in-depth ethnographic studies to iterative 

user evaluations (Gleasure, Feller, & O'Flaherty, 2012).  

Research from the fourth category, foundational design, focuses on subconscious and 

unconscious factors in the interaction process, what the authors call “early perceptual and 

prejudicial aspects on interaction.” Foundational design incorporates findings from neurological 

and other sciences that may influence human behavior regardless of self-awareness. While one 

might raise the question whether foundational design is a part of contextualized design, Gleasure, 

Feller and O’Flaherty distinguish between the two based on how conscious user expectations are. 

Furthermore, foundational design does not necessarily demand user involvement at the interface 

creation stage, because readily available findings from relevant sciences, such as psychomotor 

studies’ outcomes, can be directly slotted into the process. Examples of potentially applicable 

results are known ergonomic concerns, for example, the difficulty with which the elderly notice 

some color combinations, or screen illumination levels that promote alertness (Gleasure, Feller, 

& O'Flaherty, 2012).   

The metaphoric, idiomatic, contextualized and foundational design spaces form a 

continuum where user cognition becomes less and less conscious, with foundational design 
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reaching into behaviors where awareness is irrelevant (Gleasure, Feller, & O'Flaherty, 2012).  

The present work elicited behaviors in the subconscious, foundational level. 

Many of the papers in this literature survey depend on external sensors such as galvanic 

skin response sensors or gaze tracking devices.  In contrast, our detection technique operates 

only on ordinary user input and is not computation-intensive, which enables deployment on most 

computer devices. 

2.3 Literature Review Structure 

Adaptation cues and responses naturally constitute a systematic description of adaptive 

interfaces. For our project, we are predominantly interested in cue acquisition subsystems. But 

the available literature groups along application domains rather than adaptation mechanics - a 

condition due to the interdisciplinary nature of the domain. In the rest of this chapter, we will 

present reports from neuroergonomics, educational data mining, personalized information 

retrieval, adaptive hypermedia, multimodal interfaces,  accessible interfaces, task detection 

software, and industrial interfaces.  None of the “comparable” experiments inform our approach 

to a significant degree due to the relative novelty of the research problem, so we assemble a 

context of research neighbors instead.   

We encountered no research on address verification and cognitive abilities in a software 

engineering context. What follows will be a listing of research that neighbors ours mostly in the 

methodological area, but is otherwise of limited utility to the central question: having the 

software infer spatial ability as it observes the user.  

2.4 Neuroergonomics 

Parasuraman (2003) defined neuroergonomics as “the study of brain and behavior at 

work”.  The field is an amalgamation of neuroscience and ergonomics, where ergonomics is “a 
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scientific discipline concerned with the understanding of the interactions among humans and 

other elements of a system, in order to optimize human well-being and overall system 

performance” (Mehta & Parasuraman 2013).  While such a postulation of the field should be 

generally applicable to the dissertation’s goals, the current state of neuroergonomics reduces its 

practical relevance.  In particular, the discipline is concerned with brain and body imaging 

through external sensors, and the focus is on understanding what happens physiologically within 

the user.  Since physiological changes, such as neural activations, can refer to particular 

cognitive states in considerable detail, some form of quasi-mind-reading appears to be a long-

term goal.  At the same time, the necessary equipment for physiological detection is rare and 

expensive, and therefore unsuitable for the professional tasks we targeted.  For example, Sciarini, 

Grubb, & Fatolitis used an electroencephalograph to examine workload changes on a Stroop 

task, where a word for the name of a color is presented in a different color to induce cognitive 

dissonance. The authors detected higher workload when the named color and the actual color 

were mismatched, but their results depended on the presence of an expensive external device and 

did not include automatic prediction.  Similarly, Sciarini, Fidopiastis, & Nicholson (2009) were 

able to associate inter-beat intervals of the heart to spatial ability during a Tetris-like task, but 

attempting to replicate their results would require an electrocardiograph to be attached to a 

participant – a condition unfavorable to our goal of using generic computer devices for 

prediction. 

Reeves et al. (2007); and Reeves & Schmorrow (2007) survey older adaptive systems 

triggered by physiological signals. 
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2.5 Educational Data Mining 

The field of educational data mining frequently includes user modeling. Romero & 

Ventura (2010) define educational data mining as “an emerging interdisciplinary research area 

that deals with the development of methods to explore data originating in an educational context. 

EDM uses computational approaches to analyze educational data in order to study educational 

questions” (p. 1). The major sub-fields are educational hypermedia and intelligent tutoring.  

Calvet Liñán & Juan Pérez (2015) distinguish educational data mining from learning analytics 

along several dimensions.  The most salient difference is that learning analytics is primarily 

concerned with empowering human decisions and strategic involvement, while educational data 

mining places an emphasis on automated discovery and adaptation (pp. 105-106). We next 

present several research reports from the field that are related to our project. 

Antonenko, Toy, & Niederhauser (2012) reported two cases of student workflow 

differentiation based on cluster analysis of server logs of an online learning environment. Their 

research follows a user modeling pattern that persists throughout the field of educational data 

mining: decision models describe states of learning, a highly mutable variable, which makes 

them only marginally useful for our purpose, which is to investigate a cognitive competence that 

is immutable in the short term. In the first experiment, education students were asked to assume 

the role of high-school teachers and write a report recommending solutions to a school incident. 

Based on server logs of time spent visiting relevant resources, irrelevant resources, and writing, 

participants were grouped into “discriminating investigators”, “non-discriminating 

investigators”, “non-discriminating writers” and “writers”. Investigators spent more time visiting 

resources than writers, and discriminating participants devoted less time to irrelevant resources. 

Clustering identified non-discriminating investigators as having an inferior strategy. 
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In the second experiment, collaborating groups of three or four students had to select a 

mortgage plan given a complex list of requirements. Cluster analysis pointed at high-performers 

spending more time working on tailoring the problem submission and progressing at a steady 

pace, while low-performers spent more time visiting the available information resources and also 

started working late.  In this report, we see some strategy differentiation between high and low 

performers, a workflow outcome that is crucial to the success of this dissertation.  What is less 

useful to our research effort is that the strategy differentiation is an isolated observation not 

connected to cognitive aptitudes. 

Other recent examples in hypermedia-based educational data mining include Del Puerto 

Paule-Ruiz, Riestra-Gonzalez, Sánchez-Santillan, & Pérez-Pérez (2015), who mined six 

association rules from hypermedia logs that inferred whether a student would pass or fail a 

course with greater than 97% accuracy.  Xing, Guo, Petakovic, & Goggins (2015) compared the 

performance of genetic algorithms, Naïve Bayes, and several other machine-learning algorithms 

to predict final grades in an online mathematics course.  Campagni, Merlini, Sprugnoli, & Verri. 

(2015) used clustering and sequential pattern algorithms to infer that college students who kept 

close to the ideal sequence of computer science exams during their college career graduated 

faster and with higher grades. These reports are interesting in associating behaviors with final 

outcomes, but they have a limit in their utility to the dissertation work, because the target 

variable, learning performance, is highly volatile. 

The other part of educational data mining, Intelligent Tutoring Systems, emphasizes 

workflow analysis and has an ongoing interest in user modeling. Older papers that inform the 

background of our research include Kinnebrew & Biswas (2012), who identified frequently 

occurring online reading patterns for low-performers and high-performers on a climate change 
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study topic. The source data was the sequence of links visited and the time taken with each link. 

High-performers tended to re-read important pages and were productive in both long and short 

reading sessions, while low-performers were more successful in long reading sessions and first-

time reads. While interesting from a data mining perspective, the report by Kinnebrew and 

Biswas is representative of its field in being concerned primarily with learning performance, a 

target variable we already noted is volatile. The takeaways for our research from this 

neighborhood in the literature are mostly about recognition mechanics and, to a much lesser 

extent, about cognitive properties of human subjects.. 

A common type of user modeling in intelligent tutoring systems relies primarily on the 

correctness of student answers. Koedinger, McLaughlin & Stamper (2012) created models from 

large sets of student answers to automated tutors’ questions. The answers were coded as correct 

and incorrect, and a student model consisted of a sequence of questions and the expected 

probability of failure on each one. The probability of failure was predicated on student 

proficiency, number of learning concepts involved, difficulty per concept, and experience with 

the concept. The authors data-mined the models to find superior concept combinations for the 

tutors. In a good student model, the probability of error was relatively stable and declining. 

Erratic jumps in failure rates or progressively increasing difficulty indicated a problematic 

teaching sequence. To maximize predictive power (root mean square error of the predicted 

sequence of correct-incorrect responses), the researchers regrouped concepts with a limited-

brute-force method. New answer-concept combinations were formed by iteratively mutating 

existing models with portions of man-made models. Those models were created mostly 

independently by teachers and not expected to be remixed in a model search. The brute-force 

approach discovered combinations with higher predictive power than man-made models (which 
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to that point were considered the standard), and more importantly, the improvements were 

localized to particular spots in the question sequences, pinpointing problematic teaching areas 

that had eluded human experts.  

Waalkens, Aleven, & Taatgen (2013) tested three different approaches to tutoring single-

variable linear equations. One tutor only allowed students to use the standard strategy for solving 

an equation, as taught in middle schools in the United States. Another tutor allowed students to 

use minor variations on the standard strategy, and a third accepted all possible solution paths. 

The authors found that allowing strategy variations improved learning, but did not find 

significant differences in teaching effectiveness between the multi-strategy tutor and the 

standard-strategy-with-variations tutor. This finding is relevant to our research in suggesting that 

the effort to accommodate multiple workflows in software pays off even for a highly constrained 

problem like single-variable equations. 

Galán & Beal (2012) used EEG signals to predict student success on SAT-level 

mathematical problems. In this case, the cognitive model consisted of two brainwave functions 

denoting workload and engagement. The engagement signal predicted the first error in 80 

percent of the cases based on the first 20 s of sensor data.  The authors suggested adding a non-

intrusive EEG module to intelligent tutoring sessions to help students stay interested in a 

problem. This research is relevant to the proposed dissertation in its methodology: employing 

machine learning techniques to infer a cognitive variable.  But the invasive external sensors 

create a distance between the work and our project goal. 

In a recent sensor-oriented report, Petersen, Pardos, Rau, Swigart, Gerber, & McKinsey 

(2015) predicted chemistry performance on an intelligent tutoring system from gaze tracking 

variables, with 66% accuracy.  Their efforts showcase a drive in the community to improve tutor 
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adaptivity by knowing more about the user, while the relatively low accuracy illustrates how 

challenging user inference is even with a sophisticated external sensor. However, their variables 

of interest, learning gains and problem-solving performance, do not directly relate to our 

variable, spatial visualization ability.  

Argenta and Hale (2015) provide another example of the ongoing interest in inferring 

user state in intelligent tutoring systems.  They reported automatically reordering learning 

modules within an educational game based on pre-test result and in-game scores, in order to 

maximize initial learning and subsequent retention.  While the methodological story of how they 

connected user assessment with tutoring presentation is interesting to us, our research focuses on 

professional tasks in the real world which cannot be scored independently by the computer due 

to their open-ended nature. 

The takeaway narrative from the educational data mining literature spanning thousands of 

articles is that there is high ongoing interest in inferring user states, and in particular in linking 

learning gains to user modeling.  However, the variables of interest are not connected to our 

spatial visualization detection, thereby limiting the utility of educational data mining approaches 

to the methodologies involved. 

2.6 Personalized Information Retrieval and Adaptive Hypermedia 

User modeling is a foundational aspect in the domains of personalized information 

retrieval and adaptive hypermedia. These two domains have considerable overlap with 

educational data mining, which was covered in the previous subsection, and which constitutes a 

exceptionally large corpus of research reports. In this subsection, we will briefly cover 

applications outside of formal education.  Our interest will be perfunctory due to the insufficient 

relevance of user models available in this space. 
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According to Steichen, Ashman, & Wade (2012), personalized information retrieval 

“typically aims to bias search results towards more personally relevant information by modifying 

traditional document ranking algorithms”, while adaptive hypermedia biases “content retrieval 

and presentation by adapting towards multiple characteristics. Those characteristics, more 

typically called personalisation ‘dimensions’, include user goals or prior knowledge” (p. 1) In 

these two domains, personalization is achieved through content or result selection and is based 

on what topics were visited by the user. Steichen, Ashman, & Wade (2012) and Knutov, De Bra, 

& Pechenizkiy (2009) provide reviews of older adaptive hypermedia papers.  

User modeling in the information retrieval domain, in one form or another, is often based 

on browsing or search histories augmented with rules or other structures, and the models 

themselves are information topic aggregations that are of interest to the user.  A recent example 

from this research vein can be found in de Campos, Fernández-Luna, Huete, & Vicente-Lopez 

(2014), who express a popular view: “An accurate representation of the user profile is very 

important in order to obtain good retrieval results” (p. 1281).  In their report, the authors 

modified a political document search engine algorithm to accommodate individual user models 

and serve more relevant results.  Another recent study, Kotzyba, Siegert, Gossen, Wendemuth, & 

Nürnberger, (2015), investigated exploratory voice-controlled search specifically tailored for 

children in third and fourth graders.  The drawback of the report was that it described a pilot-

sized study with only five children tested. The user models were individual in nature and needed 

further research to be able to generalize outcomes.    

Thomas, Bailey, Moffat, & Scholer (2015) estimated users’ utility from search tasks, 

expressed as a user-desired number of relevant search results. The independent variables 

included search query length in characters, individual search word length, and several more 
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complicated arithmetically-derived query-related characteristics, as well as a user’s past search 

profile.  Four factors diminish the applicability of this report to our investigation.  First, the 

target variable, user utility from searching, is far removed from spatial visualization as a 

cognitive ability.  Second, a user’s utility of search results cannot be known with certainty even 

if the user reported a particular number of desired relevant results, as users themselves may not 

be aware of what their utility thresholds are.  Third, the prediction performed relatively poorly 

against a baseline.  Fourth, utilizing individual search profiles for each participant that were 

unrelated to the experiment of the study weakens the ability to predict a user’s utility if these 

profiles were absent. 

Brennan, Kelly, and Arguello (2014) investigated information retrieval tasks and 

associated higher spatial visualization ability with visiting and abandoning more search engine 

result pages, and with longer search queries.  This is a particularly encouraging report, because it 

demonstrated behavioral differences between low- and high-spatial-visualization participants. 

We will go into more detail into this publication in Chapter 6, as it informs our understanding of 

the connection between spatial visualization and potential adaptations.  

 Overall, our impression from the domains of adaptive hypermedia and personalized 

information retrieval was that, on one hand, user models did not investigate variables applicable 

to our research, or, alternatively, if the user variables were relevant, the reports did not contain 

attempts at detection.  

2.7 Multimodal Interfaces 

The multimodal interfaces domain is concerned with human-computer interaction 

occurring through visual, aural and haptic channels. User modeling in this field can be elaborate 

due to the presence of multiple information streams from the variety of sensors and effectors.  
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Dumas, Lalanne, & Oviatt (2009) present an overview of older papers. The field overlaps with 

educational data mining, and some of the papers surveyed in that subsection of the literature 

review are relevant in the multimodal interfaces domain.  For example, Petersen, Pardos, Rau, 

Swigart, Gerber, & McKinsey (2015) predicted user learning from an intelligent tutoring system 

from electroencephalograph feeds, while Galan and Beal (2012) used an electroencephalograph 

to predict success on SAT-level mathematical problems.  

User modeling in multimodal interfaces is interesting to us due to potentially suggesting 

approaches to harvesting and processing data for automated inference of spatial ability.  

However, to the extent we have surveyed the literature, we have not encountered a report that 

directly informs that goal.  Instead, recent examples in the field classified student dialogue 

utterances based on gestures and postures (Ezen-Can, Grafsgaard, Lester, & Boyer 2015), 

predicted learning style on a basic mechanical engineering task from speech, gesture and electro-

dermal sensors (Worsley & Blikstein 2015), predicted user choice of graphical or voice interface 

(Schaffer, Schleicher, & Möller 2015), or predicted mind wandering while reading electronic 

text from gaze tracking (Bixler & D’Mello 2015). Worsley & Blikstein (2015) presented more 

elaborate user models, but used external sensor instrumentation and did not relate to spatial 

visualization.  Schaffer, Schleicher, & Möller (2015) used a generalized utility user model to 

predict what they suspect are individually differentiated users again with the help of external 

sensors, and their variable of interest is not pertinent to our research.  Bixler & D’Mello (2015) 

are representative of a large and long-running gaze-tracking research direction that has had 

mediocre success in predictive accuracy, with this instance reporting 72% correct classification 

over a baseline of 60%. Overall, the multimodal interfaces domain is a potential source of 

technique inspiration in user modeling, but does not inform our research substantially. 
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2.8 Accessible Interfaces 

The domain of accessible interfaces and assistive technologies, however, does provide 

previous research that is relevant to our work. There are documented efforts to create adaptive 

applications to furnish personalized aid based on user interactions alone. Taylor, Sr., et al. (2009) 

were able to automatically modify the appearance of a web page presented to older adults in 

order to minimize errors on a web use task. The adaptation was triggered by interaction errors: 

mouse-click errors, scrolling errors, and content access errors. The resulting system provided 

performance that was not significantly different from the performance of a system where a 

psychologist had determined the interface customizations for the users. Both the adaptive system 

and the psychologist-determined system exhibited considerably better performance than the 

baseline, non-adaptive system. Unlike Taylor, Sr., et al. (2009), we focused on a substantially 

complicated map survey task. Furthermore, we did not tackle accessibility challenges, but rather 

more demanding workflow differentials among physiologically capable users.  

Another relevant effort with the goal of improving accessibility for older adults is 

Hourcade et al. (2010). The authors’ system, PointAssist, detected mouse-pointing errors 

exhibited by the elderly and selectively turned on pointer slowdown to assist the user with hitting 

the interface target. Again, our goal is not accessibility, but support for physiologically capable 

users. Additionally, our research pursues a more complex workflow efficiency improvement. 

Gonzalez-Rodriguez et al. (2009) introduced GADEA, an interface personalization 

system which employed a mixture of adaptive and adaptable behavior. The system aimed to 

improve accessibility, and personalized user-facing dialogs for ability differentials like typing 

speed and vision accuracy. Only dialogs were monitored and adapted, with fuzzy logic 

compounding about fifty rules to reach final layout decisions. Adaptability in GADEA depended 
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on questions about age, disabilities, and personal preferences, asked in the beginning of the 

interactive session. Additionally, for adaptivity, GADEA included background monitors that 

tracked user behavior at a dialog. They measured typing speed, pointing speed, mouse motion 

accuracy, user reaction time and others. Numeric readings of these variables were converted to 

categories, e.g. “low visual precision”, and used in the fuzzy logic aggregator. Its output was 

categorical and could be converted back to percentage values for scaling visual objects. An 

example adaptation rule was: 

IF USER_MOVEMENT_PRECISION IS LOW 

AND USER_VISUAL_PRECISION IS HIGH THEN 

INTERACTIVE_OBJECT_SIZE IS BIG.  

The authors piloted the system with 26 participants divided into five groups according to 

their visual accuracy.  GADEA created dialogs specific to each group for five separate messages, 

resulting in 25 dialogs in total.  Participants were asked to indicate their preferred dialog out of 

the five tailored choices for each message.  The authors reported percentage of participant 

preferences that matched GADEA’s suggested personalization. 

There are multiple methodology leads in the GADEA framework, but it did not infer user 

cognitive ability and took a “dragnet” approach to usability, which is quite useful for specific 

applications such as critical systems monitoring.  

2.9 Task Detection Software 

Task detection is a domain tangentially relevant to our research in attempting to infer user 

workflows in advanced environments. Two example older task detection publications are Rath, 

Devaurs, & Lindstaedt (2010) and Rath (2010). The authors used machine learning techniques to 

classify interactive tasks on desktop computers. The interactive tasks were complex and spanned 
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multiple applications. The authors constructed classification features from document content, 

application identifiers (e.g. Microsoft Word), window names, user actions, intra-application 

interface tracking (through Microsoft’s accessibility framework), and users’ application-

switching patterns. Interface events and interface components were highly ranked as 

classification attributes. A recent report on task detection appeared in Mirza, Chen, Hussain, 

Majid, & Chen (2015), where the authors attempted to discriminate between desktop activities 

during multitasking.  While there is superficial likeness between papers in this area and our 

research - the user modeling features include graphical user interface events - the goals in the 

field are completely dissimilar from our direction of investigation, and therefore the utility of the 

literature is limited to possibly intriguing data-mining techniques. 

2.10 Industrial Interfaces 

User modeling application domains presents itself in systems supporting industrial and 

military operators: fighter pilots, industrial process attendants, air traffic control personnel and 

others. There is a sizable collection of publications detailing context-aware interfaces for 

industrial and military workflows, but the presented systems do not rely on user characteristics 

alone. In almost all cases, there are other environmental sensors that inform the software.   In 

contrast, the proposed dissertation will rely only on ordinary user input to make decisions.  

In this domain, an older publication that only considered user characteristics is Yen & 

Acay (2009). Their system changed the user interface to an air traffic control task based on 

detected user errors, completion time, and number of user actions, complemented by mutations 

introduced by a genetic algorithm. The adaptation and evaluation process was sequential and 

iterative:  
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1. users completed the task on one interface variant, 

2. performance was used to rank the current interface against all previously tested 

variants, 

3. a set of new interfaces was generated via the genetic algorithm, and 

4. the process was repeated 80 times.  

In case the genetic algorithm produced multiple interfaces in a single generation, the 

authors would only present a single variant for human user evaluation, discarding the rest by 

extrapolating performance based on the observed mean and variance from historic evaluations. 

The underlying assumption for the extrapolation appears to be that user performance has a 

Gaussian distribution with the historically observed mean and variance.  The utility of Yen & 

Acay’s work to our dissertation project is limited, because their framework made it possible to 

know when the user committed an error. 

A relatively recent interface project with industrial implications is presented in Chang et 

al. (2013). The authors developed a personal keystroke authentication system based on inter-

keystroke timings during typing tasks.  The software was aware of the individual cognitive 

idiosyncrasies of its users exhibited in their inter-keystroke delays, being able to correctly 

identify the user with precision exceeding 98%.  Since the research project is aimed at an overall 

cognitive “fingerprint” of a user, we cannot directly connect the outcomes to our research.  

However, the sequential and timing user input features used in the recognition task inform the 

machine-learning methodology we intend to use for the dissertation project. 

2.11 Conclusion 

In this chapter, we touched on an assembly of fields that contain publications which are 

“research neighbors” to the present work in predominantly methodology.  More generally, we 
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have not been able to discover reports investigating persistent cognitive abilities within a 

software engineering context.  This state of the literature may possibly be due to the scarcity of 

breakthroughs in classification with the variables that have been attempted so far, as well as to 

light interest in behaviors from an engineering viewpoint All of the surveyed fields seem to still 

be moving towards obtaining better results with their primary variables, which are unrelated to 

our project. 
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CHAPTER 3. DESIGN AND PERFORMANCE STATISTICS  

This chapter describes three human-subject experiments investigating individual 

differences in address verification tasks. The address verification tasks under consideration 

consisted of the following stages (stages 1 and 2 are interchangeable):  

1. find a specific address on a map;   

2. locate the same address in reality; 

3. ensure the address is correctly reflected on the map and amend the map if necessary.  

The goals of this chapter are: (a) to convey the scope and intricacy of our data creation 

efforts; and (b) to present performance results which provide support for this dissertation’s 

objectives, in the sense that recurring performance differentials may indicate the presence of 

systematic behavioral differences. 

The Paper Map study will be described first. In it, participants verified addresses in the 

field with pen and paper. The study allowed us to observe between-user differentials in non-

software address verification, and therefore establish the credibility of individual difference 

research in this area.    

The second experiment in this chapter is the Stationary Simulation experiment, where 

participants verified addresses on a tablet device while sitting at a desk.  Information about the 

address location in reality was presented in panoramic pedestrian-perspective photos of 

residential neighborhoods.  The experiment allowed us to observe a fully controlled environment 

where both the available information about addresses and the verification workflow were 

constrained.  
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Lastly, in the Field-and-VR experiment, participants used a handheld device to verify 

addresses in both the field and a high-fidelity immersive virtual environment.  This experiment 

allowed us to observe participants acting with considerable degrees of freedom. 

3.1 Paper Map Study 

Spatial visualization ability has been linked to performance on a variety of tasks.  Some 

examples include command-line interfaces (Jennings, Benyon, & Murray 1991, Benyon 1993), 

file system navigation (Vicente, Hayes, & Williges 1987), searching an information retrieval 

system (Downing, Moore, & Brown 2005), web browsing (Zhang and Salvendy 2001), simulated 

driving (Andrews and Westerman 2012), and remote control of robots (Liu, Oman, Galvan, and 

Natapoff 2012).  The existence of these prior reports supported the possibility of individual 

differences manifesting in address verification.   

The design of the paper map study was based on a pen-and-paper protocol to avoid 

constraints associated with computers.  As software and hardware could hamper the user with 

hidden workflow bottlenecks, removing both would allow the participant freedom of behavior. 

The literature suggested a second benefit to avoiding technology: if divergent behavior was 

observed on the core cognitive task, the differentials could be magnified in subsequent computer-

based exercises (cf. Benyon, Crerar and Wilkinson (2001), pp. 21-22). A third advantage of a 

paper-only approach would be to support other computer experiments by providing a baseline of 

fundamental individual differences in address verification.  The capability to compare statistical 

results from a paper-only study against results from a computer study would improve both 

plausibility and generalizability of inference. 
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3.1.1 Team roles 

This research study was conducted in collaboration with Kofi Whitney, Les Miller, and 

Sarah Nusser.  Drs. Miller and Nusser acted as faculty advisors, while Kofi Whitney and Georgi 

Batinov equally shared in the work of designing and executing the study.  

3.1.2 Design 

The experiment consisted of a cognitive test phase and a field exercise phase. Cognitive 

testing was performed in a room at the Iowa State University campus, while subsequent field 

activities occurred in a residential neighborhood of Ames, IA. In the field, twenty-six 

participants were asked to check whether seven addresses in a residential neighborhood were 

correctly reflected on a paper map, shown in Figure 3.1. Participants had to physically walk 

through the neighborhood, find the requested addresses, and amend the paper map if it did not 

accurately reflect reality. They were allowed to write and mark on the map as they saw fit. 

3.1.2.1 Recruitment, compensation, and compliance 

This human-subject experiment was approved after review by Iowa State University’s 

Institutional Review Board. Participants were recruited through flyers posted on the Iowa State 

University campus, and public bulletin boards in grocery stores and churches in Ames, IA. 

Participants were also recruited through a posting on the computerized online Student job board 

maintained by Iowa State University.  The compensation offered was a $10 Target Gift card for 

participating in the cognitive testing phase, and $20 for participating in the field phase. 

Completion of the phases was not necessary for compensation to be offered.  Participants were 

apprised of their rights in the experiment through a standardized Informed Consent form (see 

APPENDIX B).  
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 Figure 3.1 Field exercise map given to participants 

3.1.2.2 Cognitive testing phase 

During the cognitive testing phase, 99 participants were individually assessed on spatial 

visualization ability (VZ-2, Ekstrom et al. 1976), visual memory (MV-2, Ekstrom et al. 1976), 

and perspective-taking ability (Kozhevnikov et al. 2006) (see appendices E, F, and G). The 

location of the experiment was in an office on the Iowa State University campus. The cognitive 
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testing phase lasted approximately an hour. At the beginning of the phase, participants had to 

read and sign an informed consent form. Tests were administered in immediate succession, with 

one-minute breaks between test sections and three-to-five-minute breaks between testsThirteen 

participants with spatial-visualization scores over or equal to 14.5 (out of possible 20) or 

perspective-taking scores over 29 were assigned to the high-spatial group. Thirteen other 

participants with spatial-visualization scores below 12 (out of 20) or perspective-taking scores 

below 11 were assigned to the low-spatial group. Perspective-taking scores have no defined 

maximum, but a score over 25 is considered high. Participants in the high-spatial and low-spatial 

groups were admitted to the field exercise. 

The map contains highly irregular intersections and curving streets in the eastern half, 

while the western half contains right-angle intersections and straight-line streets. There were 

three addresses to verify in the “irregular” half of the map, three addresses to verify in the 

“ordinary” half, and one address to verify on the north-south street bisecting the map. 

3.1.2.3 Field phase 

During the field exercise, 26 participants (7 males) were taken individually to the exact 

same spot in a residential neighborhood in Ames, Iowa. They were trained on locating addresses 

in the field and the think-aloud protocol. An observer provided them with a clipboard with a 

paper map of the neighborhood on the front side (216x279 mm/8x11.5 inches, shown in Figure 

3.1), a list of seven addresses taped to the back of the clipboard, and a four-colored ink pen.   The 

next subsection reports on the details of target address selection. 

The observer explained the task, the think-aloud protocol, and the possible results of each 

scenario. The goal of a participant was to determine whether the seven addresses were correctly 

reflected on the paper map. Participants would have to physically walk to an address in order to 
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answer the question. If the map contained errors, they were expected to mark or write on the map 

to indicate the proper position of the address. Participants were further informed that 

experimenters were not interested in map errors that were not at the target addresses. 

 Figure 3.2 Example participant in the Paper Map Study. The paper map is affixed to the front of the clipboard, 
while a randomized list of target addresses identical to all participants is affixed to the back. The participant is 
holding a four-colored pen and is able to mark on both map and address list as desired. 

Four outcomes were possible for each address: (1) add-to-map, (2) move-on-map, (3) 

delete-from-map, and (4) confirm-on-map. Participants were told to only work on the requested 

addresses and to ignore other possible errors on the map. Participants were not told that the map 

contained no errors outside of target addresses. 

After the initial explanation, participants were asked to locate and verify three training 

addresses in the immediate vicinity on a simplified map with only two streets, while the 

observers answered procedure questions and provided feedback on the quality of the think-aloud.  
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At the end of the training session, observers answered any final questions participants 

may have had. They also explained that they would not talk or answer questions during the 

experiment, other than to prompt the participant to keep verbalizing or to ask about behavioral 

details. Observers (1) returned the participant to the exact location where all trainees started; (2) 

replaced the training map with the full exercise map; and (3) started an audio recorder (a Zoom 

H2 Portable Stereo Recorder, worn by the participant) and a GPS tracker (a HTC Android smart 

phone, carried by the observer). The GPS tracker was not given to the participant to avoid 

interrupting the workflow to time-stamp scenario completions. Additionally, observers walked 

behind the participant, establishing a close approximation of the exercise path. Observers wrote 

comments on standardized coding sheets of paper. A participant in the experiment appears in 

Figure 3.2.  

After participants solved their final scenario, observers audio-recorded an exit 

questionnaire of 13 items detailing the participant’s perceptions of the exercise (see APPENDIX 

I). 

3.1.2.4 Map composition and target addresses 

The study map (shown in Figure 3.1) contained two layers. Street layout and labeling 

were composed from the Census Bureau’s TIGER/Line dataset, located on the Census Bureau 

website at https://www.census.gov/geo/maps-data/data/tiger-line.html. Address spots and labels 

were based on a set of parcel centroids furnished by the Story County Geographic Information 

Services Office. This is a governmental unit in Nevada, IA, USA, online at 

http://www.storycountyiowa.gov/index.aspx?NID=103. The address spots were moved on the 

map to align with buildings visible on geo-referenced satellite photos. The resulting map layout 
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was an approximation of the Census Bureau’s in-house visual presentation, which is unavailable 

to units outside the Bureau. 

All participants verified the same seven addresses off of an identical randomized list 

order, and therefore could not benefit from inadvertent route hints. The list could be consulted at 

all times by flipping the clipboard. The opposite locations of the map and list meant that both 

could not be consulted at once unless the list or map were detached from the clipboard.  This 

design choice made it obvious when users were checking the list of addresses.  Participants were 

allowed to work on addresses in any order and could return to previously submitted scenarios as 

many times as they wanted. Only final answers were evaluated for correctness.  

3.1.3 Results 

The results in this section were published in Whitney, Batinov, Nusser, Miller, & 

Ashenfelter (2011).  Table 3.1 presents the observed correlations between the three cognitive 

tests. The correlation values (r) are listed together with p values expressing the probability the 

correlation did not exist given the available test scores. 

Table 3.1. Cognitive test score correlations. 
COGNITIVE TEST COGNITIVE TEST n r p 
Spatial Visualization Visual Memory 26 0.54 0.00 
Spatial Visualization Perspective-taking 26 0.44 0.02 
Perspective-taking Visual Memory 26 0.36 0.07 

 
The following performance ranges were observed in the study: 30 to 66 minutes for 

exercise completion times between 30 and 66 minutes, personal distances traveled between 1.10 

mi and 1.88 mi (1.77 km  and 3.02 km), and 0 to 3 incorrectly completed addresses per exercise. 

Total time, distance traveled, error pre-detection, and the number of errors made by each 

participant were correlated with cognitive test scores. Table 3.2 presents the significant 

correlations between cognitive test scores and performance metrics.  Spatial visualization test 
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scores were negatively correlated with total time (r = -0.44, p = 0.02) and distance traveled (n = 

21, r = -0.65, p = 0.00), revealing that lower-scoring participants tended to take longer and travel 

farther to complete the exercise. Perspective-taking scores were negatively correlated with total 

time (r = -0.51, p = 0.01), suggesting that, on average, participants with lower perspective-

taking ability were slower in arriving at solutions.  Additionally, both spatial visualization scores 

and perspective taking scores were positively correlated with error pre-detection, which tracks 

the tendency of participants to notice address errors while initially familiarizing themselves with 

the map. Correlations with pre-detection reveal that high-ability participants were more likely to 

detect flaws in the map model without needing cues from reality.     

Table 3.2 Correlations of cognitive test scores and performance 
COGNITIVE TEST PERFORMANCE METRIC n r p 
Spatial Viz. Total Time 26 -0.44 0.02 
Spatial Viz. Distance Traveled 21 -0.65 0.00 
Spatial Viz. Error Pre-detection 21 0.44 0.05 
Persp. Taking Total Time 26 -0.51 0.01 
Persp. Taking Error Pre-detection 25 0.49 0.01 

 

3.1.4 Conclusion 

Overall, the Paper Map study provided evidence that, for an address verification task, 

increased spatial visualization ability and perspective-taking ability correlate with better 

performance. The direction of the statistical connection was congruent with published findings in 

other exercise types (e.g. command-line interfaces (Jennings, Benyon and Murray (1991)), 

simulated driving (Andrews and Westerman 2012), remote control of robots (Liu, Oman, 

Galvan, and Natapoff (2012), suggesting that an address verification task is one more activity 

that is sensitive to spatial ability components, and spatial visualization ability in particular.  
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Evidence of performance differentials on the “baseline” task encouraged a search for behavioral 

differentials. 

3.2  Stationary Simulation Study 

This exercise investigated individual differences in address verification with significant 

constraints on both software workflow and information available in the panoramic views of the 

target addresses.  Twenty-four participants used address verification software on a tablet device 

while viewing photos of a neighborhood. Participants were in a stationary seated position for the 

duration of the exercise, and the photos were displayed on two adjacent monitors (as shown in 

Figure 3.1).  Participants had to amend address locations on the tablet to reflect the information 

presented on the monitors.  

3.2.1 Team roles 

This research study was conducted in collaboration with Michelle Rusch, Kofi Whitney, 

Les Miller, and Sarah Nusser.  It was published as Rusch, Nusser, Miller, Batinov,  & Whiney  

(2012). Drs. Miller and Nusser acted as faculty advisors, Michelle Rusch designed and executed 

the study, Georgi Batinov wrote the software, and assisted with the study design and execution. 

Kofi Whitney assisted with the study design, executed the study, and contributed to the software. 

3.2.2 Design 

The study consisted of two phases: a cognitive test phase and a computer exercise phase. 

3.2.2.1 Recruitment, compensation, and compliance 

Participants were recruited through flyers posted on the Iowa State University campus, 

and public bulletin boards in grocery stores and churches in Ames, IA. The compensation offered 

was a $10 Target Gift card for participating in the cognitive testing phase, and $20 for 

participating in the computer exercise phase. Completion of the phases was not necessary for 
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compensation to be offered.  Participants were apprised of their rights in the experiment through 

a standardized Informed Consent form (see APPENDIX K). 

3.2.2.2 Cognitive test phase 

In the cognitive examination portion of the experiment, participants had to solve three 

psychometric tests in the exact same sequence: Ekstrom et al.’s (1976) VZ-2 Paper-Folding test 

of spatial visualization ability and  Kozhevnikov et al.’s (2006) Perspective-taking test from the 

Ekstrom et al. (1976) factor-referenced test battery (see Appendices E and G). The location of 

the experiment was in an office on the Iowa State University campus. The cognitive testing 

phase lasted approximately an hour. At the beginning of the phase, participants had to read and 

sign an informed consent form. Tests were administered in immediate succession, with one-

minute breaks between test sections and three-to-five-minute breaks between tests.  All tests by 

Ekstrom et al. were paper-based, while Kozhevnikov et al.’s Perspective-taking test was carried 

out on a desktop computer. 

3.2.2.3 Computer exercise phase 

For the computer exercise phase, twenty-four participants (twelve males) were taken 

individually to a room with the computer tablet and two adjacent twenty-inch LCD monitors 

shown in Figure 3.3. The location of the experiment was in an office on the Iowa State 

University campus. In a stationary seated position, participants used address verification 

software running on the tablet.   Their task was to verify the map location of addresses in a town 

against photos of the addresses taken from a pedestrian perspective (Figure 3.3). The adjacent 

monitors showed a combined photographed view of two sides of the street at the target address.  

The observer explained the nature of the task and asked the participants to complete two untimed 

training scenarios, which were of similar type and difficulty as the experimental scenarios. 
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Participants were allowed to ask questions during the training. At the end of the training, the 

observer offered to answer any additional questions.  Figure 3.5 shows a storyboard of the 

interface for one scenario. 

 Figure 3.3 Example participant in Stationary Simulation study (photo courtesy of Michelle Rusch).  Participant 
is in a stationary sitting position at a desk, and the verification software is loaded on a tablet computer fixed in 
a stationary position.  The two screens show photos of two sides of a street. 

The remainder of this section presents an overview of scenario types and participant 

workflow.  Further detail on the workflow pertains to software specifics and is described in the 

following “Materials” section.  

In the experimental task, participants had to verify ten target addresses. Five scenario 

types were tested: 

a) address needed to be added to the map; 

b) address needed to be deleted from the map; 

c) address needed to be moved to a different location; 

d) address was present and required no corrective action; and 

e) address was absent and required no corrective action. 
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Each scenario type was tested in two out of ten target addresses. Addresses and their 

sequence did not vary among participants. The software map and photos depicted Cedar Falls, 

Iowa. 

The software for this exercise offered helper questions along the way. Figure 3.2 shows 

one path through the software, corresponding to scenario (b), “address needed to be deleted from 

the map”.  Participants went through the following sequence while completing a target scenario: 

locate the address on the photos;  

1) answer a software question of whether the address exists;  

2) find the address on the map, if possible;  

3) answer a computer question of whether the address is on the map; 

4) answer a software question of whether the address is in the correct location; and 

5) add, delete, or move the address, if applicable. 

3.2.2.4 Materials 

Georgi Batinov wrote the tablet software for the address verification exercise in the Java 

1.5 programming language and the Swing graphical library. The software was loaded onto a 

Gateway M1300 tablet device with a 500 MHz CPU, 512 MB of random access memory, a 40 

GB Hard Disk Drive and a 12.1-inch (307 mm) active matrix color screen with resolution of 

1024x768 pixels (246 x 184 mm, see Figure 3.3).  For the experiment, the tablet was oriented in 

landscape mode, with a horizontally positioned wide side of the screen. The dimensions of the 

software were smaller than the tablet display to more closely emulate the screen real estate of 

handheld device that could be used for address verification in the field.  The interface area 

dimensions were 2 ¼ inches (57 mm) in width by 3 inches (76 mm) in height and the map area 

dimensions were 2 1/16 inches (52 mm) in width by 1 7/8 inches (48 mm) in height. 
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Kofi Whitney wrote the image display software in Java 1.6.  Two copies with separate 

photo sets were loaded on two desktop computers driving 20-inch Dell LCD screens with 4:3 

display ratios.  The monitors were 16 inches (40.64 cm) wide and 12 inches (30.48 cm) tall. The 

verification software sent photo display commands to the desktop computers via a wired local 

area network. The adjacent monitors showed a combined photographed view of two sides of the 

street at the target address.  Both desktops and the tablet ran the Windows XP Professional 

operating system. Participants used a stylus on the tablet’s touch screen to perform software 

operations. Every time a participant signaled the start of a scenario, the tablet software 

commanded the display stations to change the environmental view.  At the end of the two 

training scenarios, the displays were commanded to show red stop lights until the observer 

finished answering any last questions by the participant. Figure 3.3 displays the tablet computer 

and the environmental displays as they were used during the experiment.  

There were two interface versions presented to participants: the “guided” interface and 

the “unguided” interface.  The guided interface had additional elements compared to the 

unguided interface (Figure 3.4.).  A yellow box at the top of the guided interface area contained 

all the steps necessary to complete the current scenario, with the current step highlighted.  To the 

right of the yellow box, a white box contained an instruction on what to do for the current 

workflow step. The instructions changed as workflow steps progressed (Figure 3.5). 
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 Figure 3.4 Guided interface (left) and unguided interface (right) (figure taken from Rusch, Nusser, Miller, 
Batinov, & Whiney (2012). 

Figure 3.5 presents a sequence of screenshots of the address verification software with 

the guiding elements visible.  The sequence depicts changes in the software interface as a 

participant proceeded through a type (b) scenario, “address needed to be deleted from the map.” 

The interface combined a map area (in the center) with a text display of the current target, pan 

and zoom buttons, “ add mapspot” and “delete mapspot” radio buttons, an “undo” button with 

the text “Reset Map”, a “Submit” button, and optionally, a step-by-step instruction list at the top 

of the interface. The software logged and timestamped all user interface actions (e.g. button 

clicks) as well as all mouse movement and events.
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 Figure 3.5 Address verification workflow: screenshots proceed from left to right and then down. 
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The real-world photos in the experiment were manipulated to reflect actual scenarios that 

address verification employees would encounter in the field.  For example, a building was 

removed from a photo that was present on the software map, to simulate a situation where the 

building had been razed between consecutive Census surveys. Another manipulation was 

inserting label overlays on photographed streets and buildings to make the names and addresses 

of objects in the photo obvious to the participant.  The scenarios varied along six factors: photo, 

street name, road configuration (four-way intersection, three-way intersection, and others), map 

location, and user facing depicted on the photo (north, south, east, west). 

The map used in the experiment was assembled in ESRI ArcGIS from data layers of (1) 

streets, provided by the Census Bureau TIGER/Line servers at http://www.census.gov/geo/maps-

data/data/tiger-line.html, and (2) address locations, provided by the Iowa Department of 

Transportation.  The resulting map, visible in figures 3.4 and 3.5, approximates the visual 

presentation used by Census Bureau survey takers in the field.  The Census Bureau map was, 

naturally, not available to us for the experiment, due to privacy concerns. 

3.2.3 Results 

Ordinary-least-squares regression identified patterns of interdependence between 

participant performance and cognitive test scores. There was statistical significance in 

relationships involving both spatial visualization (VZ) and perspective-taking (PT) abilities.  To 

gain more understanding of the relationship between spatial visualization and perspective taking, 

two extra variables were constructed to capture different aspects of the co-variability of the two 

predictors.  While perspective-taking ability was not interesting on its own, it became relevant in 

combinations with spatial visualization ability (Table 3.3). For that reason, the report contains 

three sets of analyses: (a) one with spatial visualization only; (b) one with spatial visualization 
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and the difference VZ-PT, which captures the “effect” of having lower perspective-taking; and 

(c) an analysis with the average of (VZ+PT)/2 together with the difference VZ-PT, where the 

first term captures synergistic patterns of the two psychometric scores, and the second term 

captures the “effect of the gap”. 

Table 3.3 P values for ANOVA F-tests for performance and behavioral variables. 
Variable Time (s) Accuracy (log m) 
Spatial Visualization (VZ) 0.001b  
Spatial Difference (VZ-PT) 0.006b 0.02c 
Spatial Average (VZ+PT)/2 0.05c  

a) Model only with VZ. 
b) Model with both VZ and Spatial Difference. 
c) Model with both Spatial Average and Spatial Difference. 
 

The following response variables were tested: total time in seconds and accuracy of target 

address placement in m (log-transformed and thus allowing percentage interpretation).  With 

both time and accuracy, lower scores (in seconds and log meters) indicated better performance. 

The significant predictor variables included: 

� Age, as a factor variable with levels 18-29, 30-39, 40-49, 50-59, and 60 and over; 

� Gender as a factor variable (0 = male, 1 = female); 

� Gender*Interface, as an interaction factor variable capturing difference in male-female 

response to guided vs. unguided interfaces;  

� Spatial Visualization (VZ) as a numeric predictor;  

� Spatial Difference (VZ-PT) as a numeric predictor measuring “the gap”; and 

� Spatial Average ((VZ+PT)/2) as a numeric predictor measuring synergy. 

In the analysis including both the spatial average and spatial difference, the average of 

visualization and perspective taking was statistically linked to total time.  The coefficient 

estimate was -320 (SE=145). The coefficient is interpreted as follows: for every two points in 
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either spatial visualization or perspective taking ability, the participant spent 320 seconds less on 

the exercise! The analysis with spatial visualization and spatial difference had a significant 

coefficient for spatial visualization of -327 (SE=189) and a significant coefficient for spatial 

difference of -245 (SE=74), indicating similar considerable increases in time performance. 

The analysis including both spatial average and spatial difference revealed a negative 

relationship between spatial difference and housing unit location (in log meters).  The value of 

the coefficient was -.69 (SE=.26), which is interpreted as follows: for every point of difference 

between spatial visualization and perspective taking, the user-determined housing unit locations 

was 69% farther from target location.   

3.2.4 Conclusion 

The Stationary Simulation study unearthed evidence of performance differentials on a 

computerized address verification task with a constrained workflow.  The outcomes from the 

Stationary Simulation experiment supplement the outcomes from the “baseline” Paper Map 

study.  The existence of statistically significant performance measures encouraged us to search 

for behavioral differentials.  Behavioral differentials became the backbone of the detection 

technique. 

3.3 Field and Virtual Reality Study 

In the third address verification experiment, participants verified addresses with a 

handheld device in both the field and a high-fidelity immersive virtual environment.  This new 

design built on both the freeform nature of the paper map study and the experience with 

software-aided workflows acquired in the Stationary Simulation study.  The key features of the 

design were (a) participants’ ability to freely move inside the experimental area, and (b) an 
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interface which allowed completing scenarios in any order and resubmitting answers at will.   

Like previous studies, the experiment contained a cognitive testing phase and an exercise phase. 

3.3.1 Team roles 

This research study was conducted in collaboration with Kofi Whitney, Les Miller, and 

Sarah Nusser.  Drs. Miller and Nusser acted as faculty advisors, while Kofi Whitney and Georgi 

Batinov shared the work in designing and executing the study equally.   

3.3.2 Design 

3.3.2.1 Recruitment, Compensation, and Compliance 

Participants were recruited through flyers posted on the Iowa State University campus, 

and public bulletin boards in grocery stores and churches in Ames, IA. Participants were also 

recruited through a posting on the computerized online Student job board maintained by Iowa 

State University.  The compensation offered was a $10 Target Gift card for participating in the 

cognitive testing phase, and $20 for participating in the field phase. Completion of the phases 

was not necessary for compensation to be offered.  Participants were apprised of their rights in 

the experiment through a standardized Informed Consent form (see APPENDIX M). 

3.3.2.2 Cognitive Testing Phase  

During the cognitive testing phase, one-hundred-and-twenty-four participants were 

individually assessed on spatial visualization, visual memory, and perspective-taking ability. The 

tests were VZ-2, MV-2, and P-2 by Esktrom et al. (1976), and the perspective-taking assessment 

in Kozhevnikov et al. (2006). The location of the experiment was in an office on the Iowa State 

University campus. The cognitive testing phase lasted approximately an hour. At the beginning 

of the phase, participants had to read and sign an informed consent form. Tests were 
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administered in immediate succession, with one-minute breaks between test sections and three-

to-five-minute breaks between tests.  

Participants with spatial visualization scores greater than or equal to 15 or less than 9 (out 

of 20) were randomly assigned to one of two treatments in the exercise phase. Pairs from either 

the low or high spatial visualization groups were randomized together, allowing each participant 

a .5 probability of assignment to either the virtual reality treatment or the field treatment. Thirty-

two participants (14 males) were admitted to the second phase of the experiment.  

3.3.2.3 Exercise phase – Field Treatment 

For the field treatment, 15 participants (8 males) were taken individually to the exact 

same spot in a residential neighborhood in Ames, Iowa. They were first trained on using the 

handheld device, locating addresses in the field, and the think-aloud protocol. An observer 

provided them with a stylus and a handheld computer: a Pharos Traveler 535x with a 240x320, 

3.5” transflective screen and a 624 MHz Intel PXA270 processor. The observer explained the 

task: determining whether a list of six addresses was correctly reflected on a software map 

(shown in Figure 3.6). Participants would have to physically walk to an address in order to 

answer the question. If the map contained errors, they had to use the software’s editing features 

to position the address at the correct location or remove it altogether. Four outcomes were 

possible. An address needed to either be added to the map, deleted, moved to a new location, or 

confirmed without changing the map. Participants were told to only correct the requested 

addresses and to ignore other possible errors on the map. The map contained no errors outside of 

scenario addresses (Figure 3.7).  
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 Figure 3.6 Address verification software with address list extended 

Participants were then taught how to navigate and edit the software map, and were also 

instructed to verbalize all their thoughts for a think-aloud protocol. The map software was started 

in training mode and participants were asked to locate and verify three training addresses in the 

immediate vicinity, while the observers answered procedure questions and provided feedback on 

the quality of the think-aloud. At the end of the training session, observers answered the 

participant’s final questions, and also explained that observers would not talk during the actual 

exercise or answer questions, other than to prompt the participant to keep verbalizing or to ask 

about behavioral details.  

 Observers then returned the participant to the exact location where all trainees started, 

switched the map software to experiment mode, and started an audio recorder (worn by the 

participant) and a GPS tracker (carried by the observer). The GPS tracker was not given to the 

participant so that they would not be interrupted to time-stamp scenario completions. In return, 
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observers shadowed the participant, establishing a close approximation of the exercise path. 

Figure 3.7 depicts an example participant in the field.  

 Figure 3.7 A correct map together with the errors introduced to six target addresses. 2111 Graeber St, 2124 
Hughes Ave, 2110 Country Club Blvd, 2103 Country Club Blvd, and 2030 Cessna St were moved to an incorrect 
location, while 2116 Country Club Blvd was deleted. 

All exercise-takers verified the same six addresses from an identical randomized list 

order (see Figure 3.7 for a complete list of targets together with their error status), and therefore 

could not benefit from inadvertent route hints. The list could be invoked at all times in software 
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by tapping the currently selected scenario (Figure 3.6). Participants were allowed to work on 

addresses in any order and could return to previously submitted scenarios as many times as they 

wanted. Only final answers were evaluated for correctness.  

After participants solved their final scenario, they could signal that they had finished the 

exercise. 

 Figure 3.8 Dr. Les Miller inside the C6 immersive virtual environment. Five of the six projection walls of the 
environment are visible.  The sixth wall is retracted to expose the participant for the shoot. A street sign of 
Greeley Street is in the foreground. The stereoscopic double image allows for depth perception when the user 
is wearing stereo glasses (pictured). 

3.3.2.4 Exercise phase – Virtual Reality Treatment 

Seventeen participants (6 males) were randomly assigned to the virtual reality treatment 

and were taken individually to a C6 immersive virtual reality environment on the Iowa State 

University campus (Figure 3.8).  
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3.3.2.4.1 Virtual reality model 

The virtual setting loaded in the environment was a high-fidelity three-dimensional 

model of the residential area (Figure 3.9), with one more block modeled outside the westernmost 

and easternmost extents of the map. The dimensions of the model were roughly 600 x 600 m 

(2000 x 2000 feet). The model was created in SketchUp (http://www.sketchup.com) and 

imported into the virtual reality environment through VR Juggler (http://www.vrjuggler.org). 

Housing units and streets were georeferenced. Actual housing units were represented by house 

models of similar size and style selected from Sketchup’s repository of three-dimensional 

housing models (http://sketchup.google.com/3dwarehouse/). The neighborhood model also 

incorporated notable landmarks in the area, street signs, curbs, textured surfaces, a day sky with 

sun, and trees and shrubs. Multi-lane streets and split boulevards were represented correctly. The 

model did not include sidewalks. 

3.3.2.4.2 Virtual reality equipment  

The virtual reality room was a cube with dimensions 3.05 x 3.05 x 3.05 m. Each of the 

six walls displayed stereo images of 4096 x 4096 pixels at approximately 16 frames per second. 

Video projection was driven by a cluster of 48 HP xw9300 workstations with 96 nVidia Quadro 

graphics cards sending video frames to 24 Sony SRX-S105 digital cinema projectors. 

InterSense’s IS-900 tracking system tracked the participant’s head location and gaze direction, 

and the stereo perspective dynamically shifted with the user’s gaze. The participant wore active 

stereo glasses.  
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 Figure 3.9 The virtual environment model was a high-fidelity replica of an Ames neighborhood. 

3.3.2.4.3 Moving in virtual reality  

Movement in the environment was accomplished by stepping towards the desired 

direction. A circular spot in the center of the floor, approximately 0.6 m (24 in) in diameter, was 

the “dead zone”. If the participant’s head was located in the column of the spot, all movement 

stopped. Stepping outside the dead zone would start moving the virtual reality model in the 

opposite direction of the step, giving the illusion of the participant moving through the model in 

the direction of the step. As the participant stepped closer to the walls, movement speed 

increased, from approximately 0.1 m/s to a maximum of approximately 2.22 m/s (8 km/h or 5 

mi/h). The maximum speed was set to a slow trot because of concerns that a higher speed could 

not be encountered in the range of walking speeds available to participants in the field treatment, 

and a lower maximum speed could bore participants, causing them to lose focus.  
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3.3.2.4.4 Protocol differences from the Field treatment 

The exact same protocol was employed for both treatments, with one exception.  Prior to 

introducing the handheld device, participants were trained on moving inside the virtual 

environment.  

3.3.3 Results  

The results in this section were published in Batinov, Whitney, Miller, Nusser, Stanfill, & 

Ashenfelter (2013). When compared to the Paper Map Study, The Field-VR study had a similar, 

albeit more complicated, design. Taking into account the findings from the Paper Map and 

Stationary Simulation studies, we postulated the following two performance hypotheses: 

Hypothesis 1: High-spatial-visualization participants would travel significantly 
shorter distances than low-spatial-visualization participants. 

Hypothesis 2: High-spatial-visualization participants would take less time than 
low-spatial-visualization participants in both the field and virtual 
environments. 

 

To accommodate the increased complexity of the experiment, the statistical tool of choice 

was ordinary-least-squares regression. The model took the following form: 

(1) Y = E + S + E*S + G,  

where: 

� Y is the response variable (a performance metric, log(distance) and log(time)); 

� E is a factor variable denoting environment type (0 = field, 1 = virtual); 

� S is a factor variable denoting spatial visualization ability (0 = high; 1 = low); 

� E*S is an interaction of the environment and spatial levels; and 

� G is a factor variable for gender (0 = female; 1 = male). 
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The log form of the response variable allows for easy interpretation of regression 

coefficient: a coefficient, when multiplied by 100, describes the percentage change in the 

response variable that is attributable to a change of level of the predictor variable.  Illustrative 

examples from the actual data will be presented in short order. 

The Environment*Spatial interaction term is attempting to capture differences in 

performance of a given spatial ability level when the environment varies.  What that term adds to 

the model is accounting for possibility of high-spatial participants having greater or smaller 

performance differential from low-spatial participants when in virtual reality, as compared to the 

differential in the field. 

Table 3.4 presents the results where time is the response variable.   

Table 3.4 Regression results for log(time). 

 

Of the tested variables, only spatial visualization proved to be a significant predictor of time 

performance. The log form of the response allows us to state the significant result in the 

following form: low spatial visualization participants, on average, took 39.8% more time to 

complete the exercise. The other potential predictors showed no evidence of gender or 

environment affecting the time performance of participants.   

Table 3.5 shows outcomes for the ordinary-least-squares regression model where distance 

is the response variable.  

Term Estimate Std. Error t-value Pr(>|t|) 
(intercept) 3.338 0.112 29.814 0.00 
Environment 0.083 0.159 0.524 0.605 
Spatial visualization 0.398 0.152 2.622 0.014 
Gender 0.005 0.107 0.050 0.961 
Env*Spatial 0.014 0.209 0.068 0.946 
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Table 3.5 Regression results for log(distance). 

 

The log form of the response variable allows us once again to state the performance result 

as a percentage. The model suggests that low-spatial participants, on average, travelled 37.3% 

longer distances while completing the exercise. The other predictors – environment and gender – 

once again failed to reach significance levels. Tables 3.4 and 3.5 show that both performance 

hypotheses were validated. 

3.3.4 Conclusion 

The virtual reality and field treatments presented a new set of environments, new 

locations, new software, and a new protocol to extend our understanding of the relationship 

between spatial ability and computer behaviors.  In this last and most elaborate of the three 

experiments, performance differentials were once again linked to spatial visualization ability.  

The existence of performance statistics encouraged the search for behavioral statistics, which 

would then promote behaviors for spatial visualization detection. 

3.4 Conclusion 

Behavioral differentials are crucial to the proposed dissertation as the backbone of any 

approach to automatic recognition of spatial visualization.  This chapter reported on our 

investigations of address verification in three distinct experiments: the “baseline” Paper Map 

study, the “constrained workflow” Stationary Simulation study, and the “unconstrained 

workflow” Field and VR study. All three research attempts produced statistical evidence for the 

Term Estimate Std. Error t-value Pr(>|t|) 
(intercept) 0.021 0.117 0.177 0.861 
Environment 0.268 0.166 1.617 0.117 
Spatial visualization 0.373 0.159 2.355 0.026 
Gender 0.029 0.111 0.261 0.796 
Env*Spatial -0.425 0.218 -1.944 0.062 
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divergence in performance between high-spatial-visualization and low-spatial-visualization 

participants.  These quantitative outcomes were indicators of the potential of behavioral 

differentials, which empowered automated ability recognition. As a logical next step, the coming 

chapter reports on behavioral statistics. 
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CHAPTER 4. BEHAVIORAL STATISTICS 

Chapter 3 presented statistically significant performance differentials between high-

spatial-visualization and low-spatial-visualization participants in all three address verification 

experiments.  The availability of statistical results in performance encouraged a search for 

systematic behaviors that can inform computerized spatial visualization detection.  This chapter 

reports on statistical evidence of behaviors in the three studies.  

4.1 Paper Map Study 

The Paper Map Study was described in detail in Chapter 3.  Data for the statistical tests on 

behavior came from three sources: user notes, observer notes, and think-aloud protocols.  Data 

from user notes consisted of the number and classifications of the marks made by users on the 

provided paper map and address list.  Observer notes contained the number and descriptions of 

behaviors exhibited by users.  Think-aloud protocols were audio recordings of participants who 

verbalized their thoughts as they confronted the exercise.  The recordings were encoded into a rich 

set of events that could support statistical queries.  The set of unique think-aloud codes can be 

found in APPENDIX H. 

4.1.1 Annotation behaviors 

The correlations of cognitive test scores and annotating behaviors of participants were 

tested.  Four behaviors exhibited significant correlations to cognitive ability (Table 4.1). 

Table 4.1 Association of cognitive test scores with map and list variables (Welch’s t test) 
Variable Cognitive Test ���-	���* ��(���-	���)** p 
Target streets highlighted on 
map 

Spatial Visualization -4.25 1.54 0.01 

Map annotations Perspective-taking -4.45 1.52 0.02 
List annotations Perspective-taking -4.31 1.90 0.05 
Route sequence on list Visual Memory 3.29 1.11 0.01 

* ��1 is the mean of cognitive test scores for all who exhibited the behavior.  
** ��0 is the mean of cognitive test scores for all who did not exhibit the behavior. 
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Participants with lower spatial visualization scores tended to highlight target streets on 

the map.  Additionally, participants with lower perspective-taking scores tended to leave (1) 

more marks on the map and, (2) more marks on the list of addresses.  The above three behavioral 

differences provide evidence that lower-spatial-ability participants desired and created more 

visual workflow elements. This outcome resonates with the findings of Jennings, Benyon and 

Murray (1991), where high-spatial-ability participants performed better with a command-line 

interface. 

In the fourth behavioral difference, participants with higher visual memory were more 

likely to record an ordering of visited addresses.  This result superficially appears counter-

intuitive because of the previous three behaviors.  However, the sequences were written on the 

list of addresses on the back of the clipboard, which prevented users from viewing the map 

concurrently with the list.  All but one user (who detached the back sheet) were forced to flip 

back and forth between map and list.  High-visual-memory participants would have an advantage 

at recording the route sequence without looking at the map.   

4.1.2 Observer-reported behaviors 

More statistically significant behavioral differences were present in user behaviors 

reported by observers. The data for this statistical test consisted of the number of observed 

occurrences of a particular behavior, as recorded by study administrators. Spatial visualization 

test scores were positively correlated with address error pre-detection (n = 21, r = 0.44, p = 

0.05), which tracked user tendency to discover map errors during the map inspection at the 

beginning of the exercise. This correlation suggests high-spatial users made inferences about 

target correctness based on reading map detail alone.   
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Spatial visualization scores were also positively correlated with nearest address selection 

(n = 21, r = 0.45, p = 0.04), which tracked user tendency to choose the closest available address 

when selecting verification targets. This correlation suggests high-spatial users minimized 

distance traveled in the short term: a strategy which appears to have contributed to the improved 

performance of the high-spatial group. 

Perspective-taking test scores were positively correlated with address error pre-detection 

(n = 25, r = 0.49, p = 0.01) and cardinal heading usage (n = 23, r = 0.51, p = 0.01), indicating 

that participants with higher perspective-taking scores found target address errors during initial 

map inspection, and also verbalized a cardinal (north-south-east-west) frame of reference. 

4.1.3 Phase-specific behaviors 

4.1.3.1 Workflow phases 

Two broad workflow phases were distinguishable in the verification of a single address: 

the “approach” phase and the “verification” phase.  The user was in the “verification” phase when 

in a physical vicinity of the target housing unit that contained enough information to verify the 

address.    The user was in the “approach” phase while navigating to the target vicinity.   

The approach and verification phases were distinguished as follows.  The vicinity of a 

target housing unit included two immediate neighbors on the left, two immediate neighbors on the 

right, and three immediate neighbors on the opposing side of the street.  The approach phase ended 

when a participant verified a neighboring address on the ground.  

4.1.3.2 Think-aloud protocols 

Think-aloud protocols were audio recordings of participants who verbalized their thoughts 

as they confronted the exercise.   The recordings were encoded into a rich set of events that could 

support statistical queries.  The set of unique think-aloud codes can be found in APPENDIX H.  
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Analysis of the protocols yielded a number of significant behavioral differences between 

participants of low spatial ability and high spatial ability.  The findings from the approach and 

verification phases are discussed in their own sections.   

4.1.3.3 Approach phase 

Eleven statistically significant behavioral differences were discovered through Wilcoxon-

Mann-Whitney two-tailed tests during the approach stage (Table II).  Four of these behaviors were 

only exhibited by the low-spatial group.   

TABLE 4.2 BEHAVIORAL DIFFERENCES - APPROACH STAGE (WILCOXON-MANN-WHITNEY TWO-TAILED TEST) 
Behavior Group that is more 

likely to exhibit the 
behavior 

p-value Only one group 
exhibits the 
behavior 

Heading selected Low 0.00 Yes 
Identified map relation 
erroneously 

Low 0.045 Yes 

Numbering pattern 
recognized 

Low 0.02  

Map relation identified Low 0.04  
Map rotated High 0.00  
Navigation plan reinforced Low 0.02  
Planning with a map Low 0.01 Yes 
Orient self with regard to 
cardinal directions 

Low 0.00 Yes 

Position located on map Low 0.02  
Recall target Low 0.0497  
Street identified Low 0.02  

 
The only behavior that was exhibited more frequently by the high-ability group was map 

rotation (“map rotated”, n = 21, p = 0.00), in which the participant would turn the map in a two-

dimensional plane roughly perpendicular to their gaze incidence, in order to align it with either 

their facing direction (and thus obtain a “track-up” view of the map) or with known elements in 

reality, for example, when determining if an address was in the correct location.   
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Low-spatial participants were more likely to verbalize planning with a map (“planning 

with a map”, n = 21, p = 0.01).  We found no statistical evidence for difference in verbosity 

between low-spatial and high-spatial participants. This means low-spatial participants spent more 

time planning with the map.  

Continuing the pattern of map behaviors, low-spatial participants were more likely to 

speak out relations inferred from the map (“map relation identified”, n = 21, p = 0.04). At the 

same time, low-spatial users were the only group to make observable mistakes while decoding 

the map (“identified map relation erroneously”, n = 21, p = 0.045).  This behavioral differential 

cannot be attributed to spending more time with the map, because map usage was also tracked 

with the very frequent “check map” event, which was not statistically significant between the 

two groups.  

Low-spatial participants were also more likely to verbalize recognizing street numbering 

patterns, which included odd-or-even sides of the street and directions of number increase or 

decrease (“numbering pattern recognized”, n = 21, p = 0.02). The low-spatial group exhibited a 

behavior called “orient self with regard to cardinal directions”, whereby a participant would 

convey having aligned themselves along a north-south-east-west frame of reference (n = 21, p = 

0.00).  An example of the behavior would be the statement, “Facing west, Ash Avenue is in front 

of me.” This finding needs to be contrasted with the cardinal-usage differential reported in the 

“Observer-Reported Behaviors” section (n = 23, p = 0.01), where high-perspective-taking 

participants were more likely to use a cardinal frame of reference.  The two findings are not 

contradictory, as explicit self-alignment was only present in the low-spatial group, while cardinal 

direction usage was encountered in both groups.  
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The “heading selected” event denoted a participant declaring an immediate direction of 

movement using egocentric or geographic frame of reference such as “I am going to turn left” or 

“I am heading south”.  Low-spatial participants selected a heading more frequently (n = 21, p = 

0.00). 

Low-spatial participants were also more likely to verbalize refinements to their 

navigation plans, as evidenced by the “navigation plan reinforced” variable (n = 21, p = 0.02). 

For a navigation pronouncement to be considered a plan, it needed to contain at least two 

segments, such as, “I will take Ash and then Pearson to get to Greeley”, or a segment and two 

turns, such as “I will turn right on Ash and then turn left after two blocks to get to the address”. 

Shorter navigation pronouncements were not considered elaborate enough to constitute planning. 

Yet statistics in Chapter 3 showed that low-spatial participants took a longer route to complete 

the exercise, and we already saw that low-spatial users tended to select a heading more 

frequently.  Both of these behaviors show that the low-spatial group exhibited lower planning 

efficiency. 

Low-spatial participants mentioned street names more often (“street identified”, p = 

0.02), recalled their previously chosen target address or street more often (“recall target”, p = 

0.0497), and located their own position on the map more often (“position located on map”, p = 

0.02).  All three behavioral differentials point to less efficient interaction with the map.  Street 

names were the second most common cue category after address numbers. However, there was a 

limited set of streets within the exercise area, so low-spatial participants repeated street names 

more often.  Unlike address numbers, which did not have complex relationships to one another, 

street relations formed the strategic layout of the exercise. Further, the experiment design used a 

complex, non-uniform street layout. The inefficiency in assembling cues, as portrayed by the 
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“street identified” variable, was accompanied by ongoing efforts to keep refreshing the mental 

model, as evidenced by low-spatial users more frequently recalling their previously chosen 

targets and more frequently determining their own location.  

4.1.3.4 Verification phase 

During the verification stage, the high-spatial-visualization group was more likely to 

rotate the map (Wilcoxon-Mann-Whitney two-tailed test, n = 21, p = 0.01). When rotating the 

map, a participant would change the orientation of the map in a two-dimensional plane roughly 

perpendicular to their gaze incidence, so they could look at the spatial configuration from a 

different angle.  Participants would sometimes state that they rotated the map to align it with the 

direction they were currently facing, thereby using a “track-up” map view.  Another reason they 

rotated the map was to match the direction of the target address configuration on the map with 

reality in order to solve the scenario.  

4.1.3.5 Summary of phase-specific behaviors 

The phase-specific behavior outcomes were, as a whole, non-intuitive.  A naïve 

expectation of group behavior differentials would anticipate the high-ability participants to 

exhibit more strategies, on average, while engaging the exercise, but a more complex picture of 

behavioral differences emerged: low-spatial participants engaged a set of strategies more often 

than their high-ability counterparts, with higher reported incidence, but lower effectiveness.  

Figure 4.1 represents the differential decision models for low-spatial and high-spatial users in the 

Paper Map study. 
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 Figure 4.1 Decision Models for the Paper Map study. 
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4.1.4 Conclusion 

Behavioral analysis discovered systematic differences between the low-spatial and high-

spatial groups.  The “baseline” Paper Map experiment encouraged further research into 

behaviors for automated ability detection. 

4.2 Stationary Simulation Study 

The behavioral results in this section were previously published in Rusch, Nusser, Miller, 

Batinov, & Whitney (2012).  The study design was described in the previous chapter. 

Ordinary-least-squares regression was used to account for the variation in  number of 

zoom actions, number of software map resets, and number of pan actions.  All three software 

behaviors were significant (Table III). 

Table 4.3 Stationary Simulation Study: ordinary-least-squares regression p-values for behavior. 
Variable Number of zoom 

actions* 
Number of map 
reset actions** 

Number of pan 
actions*** 

Spatial Visualization (VZ) 0.03b 0.03a 0.03a 
Spatial Difference (VZ-PT)   0.02c 
Spatial Average (VZ+PT)/2    

a) Model only with VZ. 
b) Model with both VZ and Spatial Difference. 
c) Model with both Spatial Average and Spatial Difference. 

* Number of times the map view was switched between lower- and higher-scale versions.  
** Number of times the map view was returned to its initial geographic coordinates and scale. 
*** Number of times the user clicked a button to move the map view a set distance to the north, south, east, or 
west. 

The number of zoom actions is defined as the number of times the user switched the map 

view between lower- and higher-scale versions.  Clicking the “zoom-in” button, labeled in the 

software with a “+” sign) switched the view to a lower-scale (higher-detail) version of the map 

while remaining centered on the currently observed area.  Clicking on the “zoom-out” button 

(labeled in the software with a “-“ sign) changed the view to a higher-scale (lower-detail) version 

of the map while remaining centered on the currently observed area.  
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In the analysis with spatial visualization ability and spatial difference, spatial 

visualization ability was negatively associated with zoom, at a coefficient of -5.56 and a standard 

error of 2.36, suggesting that each extra point in spatial ability was associated with five and a 

half fewer zoom actions.  

Map reset actions occurred when participants clicked the “Reset map” button.  The map 

view was returned to its initial geographic coordinates and initial scale.  These coordinates were 

different for each of the ten experimental scenarios.  In the analysis with spatial visualization 

only, spatial visualization ability was found to be negatively associated with number of map 

resets, with a coefficient of -1.93 and a standard error of 0.82.  The interpretation of this result is 

that for each extra point of spatial visualization ability, participants reset the map on 2 fewer 

occasions. 

Pan actions were defined as the user clicking one of the “up”, “down”, “right”, and “left” 

buttons to move the map view by a set distance to the north, south, east, and west, while keeping 

the map scale constant.  In the combined analysis with spatial visualization and spatial 

difference, number of pan actions was negatively associated with the difference between spatial 

visualization and perspective taking abilities (coefficient value = -52.13, standard error = 19.94), 

while in analysis with spatial visualization only, pan actions were significantly associated with 

spatial visualization.  The statistical findings reinforced a perspective that people with relatively 

higher spatial visualization ability tended to pan around the map considerably less.  This 

outcome harmonized with Paper Map Study findings that low-spatial participants were less 

efficient with the paper map. 

This section presented evidence in support of the feasibility of automatic detection.  Pan 

actions, zoom actions, and reset actions were all software events that could be utilized by a 
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computer device to make decisions on whether a user possessed low or high spatial visualization 

ability.  We expected to see these behaviors in actual detection algorithms.  

4.2.1 Conclusion 

Behavioral analysis in the Stationary Simulation provided direct evidence of 

differentiation between spatial visualization levels at the user interface.  The outcomes of this 

study encouraged further work on automatic detection.  

4.3 Field and VR study 

The final address verification experiment was designed to observe participants with a 

handheld device verifying street addresses in both the field and a high-fidelity immersive virtual 

environment.  This design built on both the freeform nature of the paper map study and the 

experience with software-aided workflows acquired in the Stationary Simulation study, with new 

handheld hardware and software that was designed relaxed all possible workflow constraints 

present in the Stationary Simulation experiment.  The key features of the third experiment were 

(a) participants’ ability to free-roam as they found addresses to verify; (b) all work was 

performed on a small PDA-style handheld computer; (c) the graphical user interface allowed 

completing scenarios in any order and resubmitting answers at will; and (d), data was acquired 

from both the real world and a high-fidelity immersive virtual environment.  Like the previous 

studies, the experiment contained a cognitive testing phase and an exercise phase.  For complete 

details on the experimental setup, please refer to Chapter 3.   

Ordinary-least-squares regression revealed significant behavioral coefficients. The results 

in this section were published in Batinov, Whitney, Miller, Nusser, Stanfill, & Ashenfelter 

(2013). 
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Table 4.4 Ordinary-least-squares regression results for log(time) as the response variable 
Term Estimate Std. Error t-value Pr(>|t|) 
(Intercept) 3.111 0.120 25.979 0.000** 
Environment 0.041 0.138 0.297 0.769 
Spatial 0.301 0.134 2.235 0.034** 
Resetpans 0.036 0.011 3.213 0.003** 

*Marginally significant at p < 0.10.  
**Statistically significant at p < 0.05. 
***Statistically significant at p<0.01. 

In the regression of Table 4.4, both spatial ability and the Resetpans variable were 

significant. Resetpans was a numeric variable equal to 0.5(Resets-mean(Resets)/sd(Resets) + 

Pans-mean(Pans)/sd(Pans)). This was the mean of the normalized values of reset and pan actions 

performed by the user. Dividing by the standard deviation was used to normalize the contribution 

of resets and pans to the variable, because pans were more frequent than resets. The Resetpans 

coefficient indicated that participants took 3.6% more time to complete the exercise for each 

standard deviation of reset and pan actions.   

A regression with log(Distance) is presented in Table 4.5. 

Table 4.5 Ordinary-least-squares regression results for Log(Distance) as the response variable 
Term Estimate Std. Error t-value Pr(>|t|) 
(Intercept) -0.200 0.128 -1.563 0.130 
Environment 0.227 0.148 1.541 0.135 
Spatial 0.278 0.144 1.932 0.064* 
Resetpans 0.035 0.012 2.915 0.007*** 

*Statistically suggestive at p < 0.10.  
**Statistically significant at p < 0.05. 
***Statistically significant at p < 0.01. 

The Resetpans variable was once again significant and positive, contributing an extra 

3.5% to variability per standard deviation. The two potential explanations for this statistic are 

quite fascinating. Either participants were moving aimlessly as they were performing additional 

pan and reset actions, or they made wrong choices on traveling which they had to correct. 

Overall, when we introduced software actions as predictors for user performance in the 

Field and Virtual Reality experiment, the combination of reset and pan actions was statistically 
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significant. This outcome harmonized with the significance of software actions in the Stationary 

Simulation study and encouraged further progress. 

4.4  Conclusion 

In this chapter, we presented statistical analyses of user behavior from three experiments.  

We purposefully omitted any qualitative discussion of the observed strategies of participants, 

because qualitative observations do not constitute sufficient reason to instrument a software 

response.  Quantitative findings, on the other hand, were critical to the detection effort.  

The behavioral narrative in this chapter revealed that between-group differentials in 

spatial visualization persisted across the three experiments. Data transformations revealed 

statistically significant relationships involving user behaviors.  The persistence of behavioral 

outcomes was the strongest indicator to continue research.  The next chapter discusses the actual 

detection technique for the Stationary Simulation Study and the Field and Virtual Reality Study.  
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CHAPTER 5. AUTOMATIC DETECTION 

Chapters 3 and 4 reported on statistical evidence for performance and behavioral 

differentiation between high- and low-spatial-visualization users on address verification tasks 

like those performed by the Bureau of Census.  The observed statistical differentials suggested 

spatial visualization ability is detectable. The next step, therefore, was to attempt detection. This 

chapter will describe a successful approach. As discussed in Chapter 1 and Chapter 2, the goal 

was to achieve 80% or higher percent correct predictions.  Such accuracy would improve on 

results in the current literature and be high enough to allow practical application.  

An additional goal was to use no additional sensors, in order to facilitate adoption on 

generic devices in industry.  Although frequently reported in the literature, sensor feedback, 

including galvanic skin response, eye tracking, or pressure detectors, was considered an 

impediment to adoption, for three reasons.  First, sensors could require effort from users, as in 

the case of a galvanic skin response sensor, and therefore could be a “nuisance” to be avoided.  

Second, sensors are still in the process of becoming widespread and are not available on all 

devices. Third, the cost of additional hardware could impede large deployments. 

The following sections present detection outcomes achieved on the Stationary Simulation 

Study and the Field and Virtual Reality Study. The results are encouraging:   differences between 

the two experimental protocols did not prevent high detection rates, and therefore provided 

ecological validity to the detection approach.  In particular, the Stationary Simulation Study had 

an especially restrictive protocol, while the Field and Virtual Reality study had an unconstrained 

protocol.  In the Stationary Simulation Study, address verification was accompanied by an 

unavoidable sequence of questions, addresses had to be solved in a fixed order, participants 

could not move, and verification cues were pre-assembled on photographs. Conversely, in the 
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Field and Virtual Reality Study, there were no intermediate questions to answer, addresses could 

be verified repeatedly in any order, participants could navigate the environment at their leisure, 

and select their own verification cues.  We achieved better than 80% accuracy in both studies, 

demonstrating the viability of the approach to dissimilar protocols and environments. 

The chapter’s first section discusses what features enabled successful detection: user map 

operations with or without geographical tags.2 The section also provides a short example of the 

data representation, followed by the list of learning algorithms. Sections 5.2 and 5.3 present the 

detection outcomes for the Stationary Simulation and Field and Virtual Reality experiments, 

respectively.  Section 5.4 examines the best-performing algorithms in detail to verify the learning 

models make sense.  Section 5.5 outlines the contributions of the detection approach to current 

state of research, and Section 5.6 discusses expectations for future deployments.  Section 5.7 

concludes the chapter. 

5.1 Feature Selection 

5.1.1 The need for a low feature-to-instance ratio 

Each participant log contained between 2,727 and 101,528 lines of text, thereby 

associating a myriad of features with each classification instance. A problem arose: when there 

are many features relative to classification instances in a corpus, machine learning algorithms 

struggle with interpreting the available information, a condition known as the “curse of 

dimensionality” (e.g. Blum and Langley 1997, pp. 245-246, Domingos 2012, p. 81-82). An 

intuitive explanation for this phenomenon is that each additional feature’s marginal effect is to 

                                                 

2 Chapter 6 shows that geographical distribution of behavior differentials in the Field and Virtual Reality Study 
mirrored the outcomes in the Paper Map Study. 
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explode the classification space that an instance needs to be mapped to. For example, from an 

algorithm’s viewpoint, an instance with ten Boolean features, which are the simplest class of 

features, needs to be classified against up to 210, or more than a million, unknown instances. 

Contrastingly, an instance with twenty Boolean features needs to be classified against 220, or 

more than a billion, possible instances. The number of training observations (participants) 

shrinks relative to the feature space with each additional feature. A difficulty also arises from 

extra features that may be redundant or irrelevant.  Additionally, in high dimensions, 

distributions do not resemble their low-dimensional counterparts and so impede both 

approximation and intuition: for example, a many-dimensional Gaussian distribution has almost 

all its weight in the tails (Blum and Langley 1997, pp. 245-246, Domingos 2012, p. 81-82).  

To counteract the challenge of multiple features, we can search for pattern-rich subsets of 

features. These subsets are computationally and algorithmically easier to compare, but more 

importantly in our case, they were supposed to capture behavioral differences between 

participants.  We already saw statistical analysis in previous chapters showing some map 

operations varied significantly with spatial visualization ability. Therefore, we mounted a 

detection effort based on tracking map operations.  

There were four reasons why the set of map operations became the set of classification 

features.  First, in our map-centered experimental software, they constituted the majority of 

interface affordances, and participants spent almost all their actions performing map operations. 

Second, zoom, pan and reset operations were statistically significant in the analysis of the 

Stationary Simulation and Field and Virtual Reality studies.  Third, map operations had intuitive 

interpretations in terms of human behavior. Finally, protocol stages in the Stationary Simulation 

experiment could not be admitted as classification features, because they provided indirect 
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knowledge about the state of the world.  In particular, in the Stationary Simulation protocol, 

participants were presented with the following questions about the address: “Is the address on the 

ground?”, “Is the address on the map?”, “Is the address in the correct location?”, and if they 

answered incorrectly, they were forced to redo the stage preceding the question. 

The exact forms of the transformations for both studies will be described presently. In the 

Stationary Simulation Study, there were 12 events in the data transformation (Table 5.1).   

Table 5.1 List of interface events used for classification in the Stationary Simulation Study 
Character Interface Event 

A Pan up 
V 
< 
> 
- 
+ 
x 
* 
b 
B 
C 
R 

Pan down 
Pan left 
Pan right 
Zoom out 
Zoom in 
Center zoom 
Impossible pan or zoom command 
Zoom in one level through zoom slider 
Zoom out one level though zoom slider 
Zoom out two levels through zoom slider 
Reset map 

All events were map operations related to zooming, panning, centering and resetting the 

view. Detailed discussions of the operations are presented in section 4.2.  Not all possible map 

operations were represented, because the participants did not utilize all affordances in the 

interface. In particular, the zoom slider allowed five levels of zoom in and zoom out, for a total 

of ten zoom slider operations, but only three of the ten were encountered in the course of the 

experiment.  

In the Field and Virtual Reality Study (Table 5.2), additional event symbols denoted a 

switch to each of six target addresses. This difference in event sets between the experiments was 

due to the freedom to select targets freely in one experiment but not the other.  Participants in the 

Field and Virtual Reality chose to utilize fifteen of the available map operations, as opposed to 
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choosing twelve of the available operations for the Stationary Simulation Study.  Of the ten 

possible zoom-slider operations mentioned in the previous paragraph, participants utilized six 

distinct operations, while in the Stationary Simulation Study they had utilized three.  Rounding 

up the set of features was a categorical variable denoting whether the participant had worked in 

the field or virtual environment (Table 5.2 lists all interface classification features).  

Table 5.2 List of interface events used for classification in the Field and Virtual Reality Study 
Character Interface Event 

A Pan up 
V 
< 
> 
- 
+ 
x 
* 
b 
c 
e 
B 
C 
D 
J 
K 
L 
M 
N 
P 
Z 
R 

Pan down 
Pan left 
Pan right 
Zoom out 
Zoom in 
Center zoom 
Impossible pan or zoom command 
Zoom in one level through zoom slider 
Zoom in two levels through zoom slider 
Zoom in four levels through zoom slider 
Zoom out one level though zoom slider 
Zoom out two levels through zoom slider 
Zoom out three levels through zoom slider 
Change target to address 1 
Change target to address 2 
Change target to address 3 
Change target to address 4 
Change target to address 5 
Change target to address 6 
Change target 
Reset map 

 

Even though the second set of operations appears considerably larger than the first, 

conceptually the two are near-identical. The extra zoom actions in the Field-and-Virtual-Reality 

group pertain to the same widget, the zoom slider, which was unchanged from the first 

experiment, but was used more by participants in the second experiment. The core difference 

between the action sets was the addition of a change-address functionality, which added a degree 

of freedom to how users could approach the task. 
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The divergence between the two operation sets was evidence for the broader relevance of 

our detection approach, as it was proved successful in both cases. 

5.1.2 Geo-tagging and location attributes for interface actions 

In the Virtual Reality Study, participants were not stationary – they moved through a 

“physical” (real or virtual) environment and continually changed their geographical location.  

The motion of participants in virtual or real space enabled the geo-tagging of interface 

commands.  All interface events had GPS coordinates, which reflected the “ground” location at 

which the interface event occurred, as opposed to the software map location of the event. 

Consequently, the availability of geotagged information allowed reasoning about the location of 

user behaviors.  Actions were viewed within concentric circles centered on target addresses as 

the focal points (Figure 5.1). 

Geo-tagging allowed us to view interface actions that were initiated within an arbitrary 

radius (e.g. 30 m, 40 m, 50 m, 60 m) of each of the six addresses.  When statistical analysis and 

machine-learning schemes were applied to geo-tagged interface events, a Radius parameter 

described the physical (or virtual for the Field and Virtual Reality Study) area of the map where 

the behaviors occurred. For example, a radius of 60 m in Table 5.6 means that the results of 

automatic detection were based on the set of interface events that occurred within 50 meters of 

each of the six target addresses. In Figure 5.1, a radius of 60 m corresponds to the third ring 

around an address.  Chapter 6 includes a survey of statistically significant software differentials 

in the Field and Virtual Reality Study.  In contrast, the stationary simulation study did not allow 

user movement and could not be viewed from a geo-tagged perspective. 

Chapter 6 is going to show in more detail that behavioral differentials happened outside 

of the immediate vicinity of the target, which corresponds to the “Approach Phase” of the 
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decision models in Chapter 4.  The decision models from the Paper Map Study were 

characterized by multiple differentials in the approach phase and few differentials in the 

verification phase.  The geo-located user actions in the Field and Virtual Reality study mirrored 

this pattern.  This correspondence between the Paper Map and Field and Virtual Reality studies 

furnishes extra evidence that statistical outcomes from the two software experiments are not 

flukes, but rather indicators of a systemic link between user ability and behavior. 

 Figure 5.1 A visualization of concentric circles of differing radii centered on the six target addresses of the 
Field and Virtual Reality study.  Geo-tagged interface events inside the areas of the circles were used for 
spatial visualization detection. The outermost circles have radii of approximately 100 m. 
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5.1.3 Data representation 

The detection-ready data representation was in ARFF format.  This format consists of a 

collection of observations together with a collection of attributes. Each feature was an interface 

action that had been encountered in at least one user.  The occurrences of each action in each 

user’s history were counted. To illustrate the process, Figure 5.2 presents an ARFF file for the 

Stationary Simulation Study.  Each user is assigned one of two possible labels, “high-spatial” or 

“low-spatial”.   

% 1. Title: ARFF file for Stationary Simulation Stu dy with  
%    twelve attributes and four participants. 
 
@relation '1-grams-weka.filters.unsupervised.attrib ute.Remove-R2-3,7-
8,11-weka.filters.unsupervised.attribute.Remove-R1, 14-15,17' 
 
@attribute + numeric 
@attribute x numeric 
@attribute > numeric 
@attribute A numeric 
@attribute < numeric 
@attribute V numeric 
@attribute - numeric 
@attribute C numeric 
@attribute b numeric 
@attribute R numeric 
@attribute B numeric 
@attribute * numeric 
@attribute vz_cat {Low,High} 
 
@data 
26,9,10,4,6,4,3,0,0,0,0,0,High 
25,14,10,30,13,29,5,0,0,0,0,0,High 
22,16,5,10,6,16,3,1,1,0,0,0,High 
... (21 participants omitted) 
20,28,15,14,11,36,3,0,0,4,11,0,Low 

Figure 5.2 An ARFF file with twelve features, four participants and a classification attribute (vz_cat = Spatial 
Visualization Category). Each @attribute line represents a feature that participants are categorized on. Each 
line past the @data tag represents a single participant, and is a collection of numeric values. The WEKA 
framework parses this type of file and enables the execution of machine learning algorithms. 

As seen in Figure 5.2, the final form of the data is a set of numeric values associated with 

each participant.  Given these collections of numbers, machine learning schemes attempted to 

detect visualization ability through a variety of techniques, from hyperplanes to Bayesian 
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inference to decision trees.  The results sections will show that meta-classifiers were the most 

effective at separating high-spatial-visualization from low-spatial-visualization participants.   

5.1.4 Algorithms 

The data in ARFF format was processed by a battery of 52 stock machine learning 

algorithms from the Weka 3.7.3 framework.  The algorithms represented as many 

methodological groups of machine learning approaches as could be obtained through the Weka 

framework without installing additional software.  The groups in the battery included Naïve 

Bayes, nearest-neighbor, meta, rules-based, tree-based, neural-network-based, regression-based, 

support-vector-machine, and miscellaneous algorithm types.  The complete list of algorithms 

appears in Figure 5.3. The parameters for the algorithms used in our work were not changed 

from their default settings in the Weka framework.  Although there were many tweakable 

algorithm settings, and consequently an inexhaustible variety of learning schemes, if user 

behavior were systematically linked to spatial visualization ability, several algorithms ought to 

have succeeded. However, the literature search in Chapter 2 had revealed that detection of 

cognition-related variables is at an early stage of exploration, so spatial visualization detection 

was by no means guaranteed.  



78 

 

bayes.BayesianLogisticRegression -D -Tl 5.0E-4 -S 0 .5 -H 1 -V 0.27 -R R:0.01-316 
bayes.BayesNet -D -Q bayes.net.search.local.K2 -- - P 1 -S BAYES -E 

bayes.net.estimate.SimpleEstimator -- -A 0.5 
bayes.NaiveBayes 
functions.Logistic -R 1.0E-8 -M -1 
functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500  -V 0 -S 0 -E 20 -H a  
functions.RBFNetwork -B 2 -S 1 -R 1.0E-8 -M -1 -W 0 .1 
functions.SimpleLogistic -I 0 -M 500 -H 50 -W 0.0 
functions.SMO -C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V - 1 -W 1 -K 

functions.supportVector.PolyKernel -C 250007 -E 1.0  
functions.SPegasos -F 0 -L 1.0E-4 -E 500 
functions.VotedPerceptron -I 1 -E 1.0 -S 1 -M 10000   
lazy.IB1 
lazy.IBk -K 1 -W 0 -A "weka.core.neighboursearch.Li nearNNSearch -A 

weka.core.EuclideanDistance -R first-last"  
lazy.KStar -B 20 -M a 
lazy.LWL -U 0 -K -1 -A "weka.core.neighboursearch.L inearNNSearch -A” 

weka.core.EuclideanDistance -R first-last" -W trees .DecisionStump  
meta.AdaBoostM1 -P 100 -S 1 -I 10 -W trees.Decision Stump 
meta.Bagging -P 100 -S 1 -num-slots 1 -I 10 -W tree s.REPTree -- -M 2 -V 0.0010 -N 3 -S 

1 -L -1 
meta.Dagging -F 10 -S 1 -W functions.SMO -- -C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 

-K "functions.supportVector.PolyKernel -C 250007 -E  1.0"  
meta.Decorate -E 10 -R 1.0 -S 1 -I 10 -W weka.class ifiers.trees.J48 -- -C 0.25 -M 2  
meta.ClassificationViaRegression -W weka.classifier s.trees.M5P -- -M 4.0 
meta.END -S 1 -I 10 -W meta.nestedDichotomies.ND --  -S 1 -W trees.J48 -- -C 0.25 -M 2 
meta.FilteredClassifier -F "supervised.attribute.Di scretize -R first-last" -W trees.J48 

-- -C 0.25 -M 2 
meta.LogitBoost -P 100 -F 0 -R 1 -L -1.797693134862 3157E308 -H 1.0 -S 1 -I 10 -W 

trees.DecisionStump 
meta.MultiBoostAB -C 3 -P 100 -S 1 -I 10 -W weka.cl assifiers.trees.DecisionStump 
meta.RealAdaBoost -P 100 -H 1.0 -S 1 -I 10 -W weka. classifiers.trees.DecisionStump 
meta.RandomCommittee -S 1 -num-slots 1 -I 10 -W wek a.classifiers.trees.RandomTree -- -K 

0 -M 1.0 -S 1 
meta.RandomSubSpace -P 0.5 -S 1 -num-slots 1 -I 10 -W weka.classifiers.trees.REPTree -- 

-M 2 -V 0.0010 -N 3 -S 1 -L -1 
meta.Stacking -X 10 -M "rules.ZeroR " -S 1 -num-slo ts 1 -B "rules.ZeroR" 
misc.HyperPipes 
misc.VFI -B 0.6 
rules.ConjunctiveRule -N 3 -M 2.0 -P -1 -S 1  
rules.DecisionTable -X 1 -S "BestFirst -D 1 -N 5"  
rules.DTNB -X 1  
rules.FURIA -F 3 -N 2.0 -O 2 -S 1 -p 0 -s 0  
rules.JRip -F 3 -N 2.0 -O 2 -S 1  
rules.NNge -G 5 -I 5 
rules.OLM -R 0 -C 1 -U 0  
rules.OneR -B 6 
rules.PART -M 2 -C 0.25 -Q 1 
rules.Ridor -F 3 -S 1 -N 2.0  
trees.ADTree -B 10 -E -3  
trees.BFTree -S 1 -M 2 -N 5 -C 1.0 -P POSTPRUNED  
trees.DecisionStump   
trees.FT -I 15 -F 0 -M 15 -W 0.0  
trees.J48 -C 0.25 -M 2  
trees.J48graft -C 0.25 -M 2 
trees.LADTree -B 10 
trees.LMT -I -1 -M 15 -W 0.0 
trees.NBTree   
trees.RandomForest -I 10 -K 0 -S 1 
trees.RandomTree -K 0 -M 1.0 -S 1 
trees.REPTree -M 2 -V 0.0010 -N 3 -S 1 -L -1 
trees.SimpleCart -S 1 -M 2.0 -N 5 -C 1.0 

Figure 5.3 The Weka 3.7.3 framework enabled the application of a battery of 52 machine learning algorithms to 
individual-user interface event sequences.  The algorithms were run with their default settings in the 
framework, included here for verification purposes. The conceptual group of each algorithm is also displayed, 
and includes Naïve Bayes, nearest-neighbor, meta, rules-based, tree-based, neural-network-based, regression-
based, support-vector-machine, and miscellaneous algorithms.  
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5.2  Stationary Simulation Results 

5.2.1 Participant demographics 

Twenty-five individual-user software logs were obtained from the Stationary Simulation 

Study.  Demographically, the group was comprised of 14 females and 11 males.  Twelve 

participants (the low-spatial-visualization subgroup) had scored 10 or fewer points on the VZ-2 

measure (Ekstrom et al, 1976), while 13 participants (the high-spatial-visualization subgroup) 

had scored 14.75 points or more (Table 5.3). 

Table 5.3 Basic characteristics of users in the Stationary Simulation Study. Low-spatial-visualization 
participants scored 10 points or less on the VZ-2 test (Ekstrom 1976).  Conversely, high-spatial-visualization 
participants scored 14.75 points or more. 

 Low-spatial-visualization High-spatial-visualization Total 
Women 7 7 14 
Men 5 6 11 
Total 12 13  

 

5.2.2 Results 

Classification accuracy (percentage of correct guesses) was measured for 25-fold leave-

one-out classification. The baseline of 52% correct classification was obtained by the computer 

predicting that every participant belonged the high spatial visualization group, which was larger, 

with 13 out of 25 participants.  Four algorithms performed with accuracy of 80% or greater, and 

twelve more algorithms performed with accuracy between 70% and 80%. The two best-

performing algorithms predicted spatial visualization ability correctly in 84% of the cases.  Table 

5.4 contains the detection results. 
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Table 5.4 Classification success of spatial visualization ability in the Stationary Simulation Study. The baseline 
of 52% correct classification was achieved by the computer predicting that every participant had high spatial 
visualization ability. The two best-performing algorithms detected spatial visualization ability correctly in 84% 
of the cases. 

Algorithm Number 
Correct 

Number 
Incorrect 

Number 
Lows 
Incorrect 

Number 
Highs 
Incorrect 

Accuracy 
(percent correct) 

Support Vector Machine 21 4 4 0 84% 
Bagging with REPTree 21 4 3 1 84% 
Decorate with J48 20 5 3 2 80% 
Naïve Bayes 20 5 3 2 80% 
ClassificationViaRegression 
with M5` 

19 6 4 2 76% 

IB1 19 6 3 3 76% 
IBk 19 6 3 3 76% 
MultiBoostAB with 
Decision Stump 

19 6 5 1 76% 

RealADABoost 19 6 4 2 76% 
LAD Tree 18 7 4 3 72% 
Logistic Model Tree 18 7 5 2 72% 
RandomSubSpace with 
RepTree 

18 7 4 3 72% 

Random Tree 18 7 4 3 72% 
RBFNetwork 18 7 4 3 72% 
Simple Logistic 18 7 5 2 72% 
Voting Feature Intervals 18 7 3 4 72% 
      
Baseline (predict high) 13 12 12 0 52% 

From the above outcomes, we concluded that automatic detection in the Stationary 

Simulation Study surpassed the 80% accuracy threshold that we set out as the goal of the 

dissertation.  A range of algorithms (16 out of 52) performed considerably better than the 

baseline, supporting the notion that individual differences manifest systematically in interface 

behaviors. 

The results of the Stationary Simulation Study suggested that a constrained address 

verification protocol lends itself to automatic detection of spatial visualization ability.  

Constraints in the Stationary Simulation Study were as follows: (a) no movement was afforded to 

participants; (b) a fixed set of ground cues appearing on two computer screens were pre-selected 

by experimenters; and (c) the software workflow enforced that each address be engaged in a 

particular order and by following a particular set of verification steps.  To establish the validity 
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of detection results beyond the borders of the restricted study protocol, we needed a separate 

experiment without the constraints of the Stationary Simulation study’s design.  That role was 

filled by the Field and Virtual Reality experiment, where participants were allowed freedom of 

movement, freedom of cue acquisition from reality, and freedom to verify addresses in arbitrary 

order and as many times as they desired.   

5.3  Field and Virtual Reality Results 

As mentioned in the previous section, successful detection in the Stationary Simulation 

Study fulfilled the expectation that spatial visualization ability is automatically detectable in 

constrained-protocol and constrained-environment scenarios.  To strengthen the position of this 

dissertation, we now proceed with results from the comparatively unconstrained Field and 

Virtual Reality Study.   

5.3.1 Participant demographics 

Thirty-one individual-user software logs were obtained from the Field and Virtual Reality 

Study.  Demographically, the group was comprised of eighteen females and thirteen males.  

Seventeen participants (the low-spatial-visualization subgroup) had scored less than 9 points on 

the VZ-2 measure (Ekstrom et al, 1976), while fourteen participants (the high-spatial-

visualization subgroup) had scored 15 points or more (Table 5.5).  

Table 5.5 Basic characteristics of users in the Field and Virtual Reality Study. Low-spatial-visualization 
participants scored less than 9 points on the VZ-2 test (Ekstrom 1976).  Conversely, high-spatial-visualization 
participants scored 15 points or more. 

 Low-spatial-visualization High-spatial-visualization Total 
Women 11 7 18 
Men 6 7 13 
Total 17 14  
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5.3.2 Results: Field and Virtual Reality Study 

Detection accuracy in percent was measured for 31-fold leave-one-out classification. The 

accuracy baseline (classifying every participant as low-spatial-visualization, which would be 

correct in 17 out of 31 cases) was 54.84%.  Four detection algorithms performed with greater 

than 80% accuracy, and seventeen more algorithms performed with accuracy between 70% and 

80%. The two best-performing algorithms detected spatial visualization ability correctly in 

87.10% of the cases.  Table 5.6 shows detection outcomes. 

The high accuracy of automatic detection in the Field and Virtual Reality Study validated 

the story that had been anticipated by the Paper Map Study and corroborated by the Stationary 

Simulation Study: systematic differences in behavior at the interface reveal the spatial 

visualization ability of the user.  Algorithm accuracy in both the constrained-protocol experiment 

and the relaxed-protocol experiment has established an initial level of ecological validity of 

automatic detection. 

5.4  Interpretation of Algorithmic Outcomes 

 This section investigates the type and mechanics of algorithms that correctly determined 

participants’ ability. A closer look at the prediction models will verify that detection was 

meaningful and will connect the results to statistics from previous chapters.  

5.4.1 Plurality of algorithms 

Before examining the top performers, the issue of detection quality versus quantity needs 

to be addressed.  A plurality of algorithms with relatively high accuracy is an important adjunct 

to the quality of detection. If the results indicated a few successful algorithms while the rest were 

insignificant, the validity of the detection claim would be diminished.  Conversely, a large 



83 

 

quantity of relatively good performers supplementing the top performers implies that behavioral 

differences are systematic and discoverable by diverse approaches.   

Table 5.6 Automated detection success on the Stationary Simulation Study. The baseline of 54.84% correct 
classification was achieved by the computer predicting that every participant had low spatial visualization 
ability. The two best-performing algorithms detected spatial visualization ability correctly in 87.10% of the 
cases. The Radius column describes the area from which geo-tagged interface events were taken.  The area 
was comprised of six circles centered on the six target addresses. For example, a radius of 65m means that 
interface actions that occurred within 65 m of each of the six addresses were used for detection. 

Radius 
from 
target 

Algorithm Number 
Correct 

Number 
Incorrect 

Number 
Lows 
Incorrect 

Number 
Highs 
Incorrect 

Accuracy 
(percent 
correct) 

65m  ClassificationViaRegression 
with M5` 

27 4 2 2 87.10% 

70m  Naïve Bayes Tree 27 4 2 2 87.10% 
55m  BFTree 25 6 2 4 80.65% 
95m  FURIA 25 6 0 6 80.65% 
95m ADTree 24 7 3 4 77.42% 
60m Bagging with REPTree 24 7 5 2 77.42% 
50m DecisionStump 24 7 5 2 77.42% 
95m JRip 24 7 2 5 77.42% 
50m  Locally Weighted Learning 24 7 2 5 77.42% 
90m LogitBoost 24 7 3 4 77.42% 
80m OneR 24 7 2 5 77.42% 
70m RandomForest 24 7 3 4 77.42% 
65m Conjunctive Rule 23 8 1 7 74.19% 
65m IB1 23 8 5 3 74.19% 
65m IBk 23 8 5 3 74.19% 
65m RandomCommittee with 

RandomTree 
23 8 2 6 74.19% 

60m RealAdaBoost with 
DecisionStump 

23 8 4 4 74.19% 

65m RIDOR 23 8 4 4 74.19% 
65m Decorate with J48 22 9 5 4 70.97% 
50m MultiBoostAB with 

DecisionStump 
22 9 7 2 70.97% 

65m Support Vector Machine 22 9 4 5 70.97% 
105m SimpleCart 22 9 7 2 70.97% 
       
N/A Baseline (predict low) 17 14 0 15 54.84% 
       

The results from both experiments show that considerable portions of the algorithm 

battery were moderately successful or better. Sixteen out of 52 algorithms for the Stationary 

Simulation Study and 21 out of 52 algorithms on the Field and Virtual Reality experiment 

exhibited better than 70% accuracy against respective baselines of 52% and 54.84%.  Further, 

eight algorithms overlapped between studies: Bagging, Support Vector Machine, Decorate, 
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RealAdaBoost, MultiBoostAB, IB1, IBk, and ClassificationViaRegression.  Five of the eight 

belong to the meta family of algorithms, where a base algorithm is informed and improved upon 

by the meta-algorithm.  This outcome is consistent with theoretical results in the machine 

learning literature that point to “meta” algorithms reducing generalization error compared to base 

algorithms (e.g. Krogh and Vedelsby (1995) for ensembles, and Wolpert (1992) for stacked 

generalizers).  Meta-algorithms were used with the exact same default parameters in both 

experiments, and no custom tailoring of algorithms was performed.    

5.4.2 Analysis of the best detection schemes 

Eight algorithms overcame the 80% threshold set in this dissertation. Of those eight, two 

algorithms achieved 87.10% accuracy on the Field and Virtual Reality Study and two more 

achieved 84% accuracy on the Stationary Simulation Study, for a total of four top-performing 

algorithms.  One algorithm from each pair performed well only on one study, and one algorithm 

from each pair performed well in both studies.  Therefore, the two absolute best performers were 

(a) ClassificationViaRegression, with accuracy of 87.10% in the Field and Virtual Reality 

experiment and 76% in the Stationary Simulation Study and, and (b) Bagging with accuracy of 

84% in the Stationary Simulation Study and 77.42% in the Field and Virtual Reality Study. Both 

winner algorithms were meta-algorithms that worked particularly well with small samples and 

unstable distributions of observations. The following paragraphs examine the prediction models 

constructed by the two best algorithms. 

5.4.2.1 Prediction models for the Stationary Simulation Study  

The BAGGing (Bootstrap AGGregating) machine learning approach was proposed by 

Breiman (1996). It is an ensemble classification approach, which means that it aggregates the 

votes of multiple classifiers to reach a decision. The central technique of the algorithm is to 
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create multiple learning datasets from the original learning data set by drawing data points at 

random with replacement. Creating a dataset by drawing with replacement is called 

bootstrapping.  As a result, in each of these new “bootstrap” data sets, the same data point can be 

present multiple times.  If the size of the new data set is equal to the size of the original data set, 

the probability of a particular data point appearing at least once is approximately 0.632 (Breiman 

1996, p. 136).   

After the bootstrap samples have been created, a classifier is built from each new learning 

set, and then all the classifiers vote on the original data.  The Weka software default instructions 

were to create 10 classifiers of type REPTree.  REPTree is a binary-decision-tree classifier that 

splits the feature space consecutively at the point that minimizes misclassification error, 

effectively creating hyperrectangles, each labeled with a particular class, that cover the feature 

space. The ten decision trees for the Stationary Simulation Study are drawn in Figure 5.4 on the 

next page. 

Figure 5.4 exhibits ten different decision trees that arose from ten bootstrap samples 

created by drawing from the original sample with replacement.  Zoom-in, zoom-out actions, pan-

up, pan-down, center-zoom, and reset-map actions are the driving features in this classification. 

More map operations of any kind usually let the classifier decide that the participant is of low-

spatial-visualization ability. The lone exception is Tree 4, where the algorithm decided high-

spatial-ability participants inhabit the region between 22 and 25.5 zoom-in operations. But even 

that classification tree had a higher-priority rule assigning low spatial visualization ability to 

participants who executed five or more pan-up operations.  Panning was the most-heavily-

utilized feature for detection, followed by zooming, centering the zoom, and map resets.  The 
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decisions of the Bagging algorithm are human-interpretable and congruent with the behavioral 

expectations built by our traditional statistical analyses in Chapters 3 and 4. 

  Figure 5.4 The ten REP tree classifiers created by the Bagging algorithm for the Stationary Simulation Study.  
H denotes High spatial visualization ability; L denotes Low spatial visualization ability; V is the pan-down 
action; A is the pan-up action; B is an action zooming out one level through the slider widget; + is the zoom-in 
action; x is the center-zoom action; R is the reset-map action. In general, more map actions are associated 
with lower spatial visualization ability.  Trees are quite distinct from one another due to the sampling process 
producing variegated bootstrap samples. 

The other algorithm with best overall performance on both experiments was the meta 

classifier ClassificationViaRegression (Frank, Wang, Inglis, Holmes, and Witten 1998) which 

implements a M5` tree (Quinlan 1992, Wang and Witten 1997). The M5` algorithm makes 

binary decisions that partition the instance space to minimize the mean squared error between the 

model’s predictions and the class labels of 0 and 1 (low spatial visualization and high spatial 

visualization ability).  When the tree is pruned, the leaves become linear regression models that 

contain the attributes in the pruned subtrees. A classifying tree with regressions at the leaves is 

built for each class label (low spatial visualization ability and high spatial visualization ability).  

For the Stationary Simulation study, the ClassificationViaRegression algorithm produced 

two trivial (single-node) M5 trees that reduce to two linear regression models: 

Tree 1

V < 16.5: 
H V >= 16.5

+ < 28.5

x < 2.5: H x >= 2.5:L

+>=28.5: 
L

Tree 2

V >= 28: 
H V < 28

x < 17: H x>=17:L 

Tree 3

V < 30:H V >= 30: L

Tree 4

A<5: H A >= 5

+>= 25.5: 
L + < 25.5

+>= 22: H + < 22: L

Tree 5

B < 7: H B >= 7: L

Tree 6

V < 21:H V >= 21: L

Tree 7

L

Tree 8

+ < 27: H + >= 27: L

Tree 9

R < 0.5: H R >= 0.5: L

Tree 10

V < 32: H V > 32: L
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Low spatial visualization score: 

(1) YL = – 0.2282 + 0.0149 * center_zoom + 0.229 * pan_down 

High spatial visualization score: 

(2) YH = 1.2282 – 0.0149 * center_zoom – 0.229 * pan_down 

During detection, the algorithm computes both YL and YH values and chooses the class 

label with the higher score.  In linear model (1), more pan-down and center-zoom actions 

contributed to a higher score for low spatial visualization ability, while in linear model (2), more 

pan-down and center-zoom actions decreased the score for high spatial visualization ability.  

This combination of linear models acted on a subset of the classification features utilized by the 

Bagging algorithm, and it only contained two instead of ten voting classifiers.  The relative 

simplicity of the classification scheme may explain ClassificationViaRegression’s lower 

detection accuracy of 76% against the 84% achieved by the Bagging classifier. 

5.4.2.2 Prediction models for the Field and Virtual Reality Study 

For the Field and Virtual Reality Study, the Bagging algorithm produced the following 

ten classification trees (shown in Figure 5.5).  The salient classification features in Figure 5.5 are 

zoom-in actions, pan-up actions, pan-left actions, pan and zoom actions that were impossible, 

and target address switches. As with the Stationary Simulation experiment, more map operations 

were related to lower spatial visualization ability. More target address switches were a sign of 

less robust planning or difficulties with address completion.  Impossible zoom and pan actions 

also indicated difficulties with the task.  The extra margin of freedom in the interface of the Field 

and Virtual Reality experiment allowed non-map operations, in this case, intention-signaling 

(through target switching) to became a new source of detection.  
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 Figure 5.5. The ten REP tree classifiers created by the Bagging algorithm for the Field and Virtual Reality 
Study.  H denotes High spatial visualization ability; L denotes Low spatial visualization ability; > is the pan-
left action; A is the pan-up action; Z is the action to switch the target address; + is the zoom-in action; * is a 
pan or zoom action that was not possible on the map. Like in the Stationary Simulation Study, more map 
actions are associated with lower spatial visualization ability.  Zoom actions are the most salient classification 
feature, followed by pans. Impossible pan or zoom commands and target switching also signal differences in 
spatial visualization ability. 

The other top-performing detection scheme, ClassificationViaRegression, reached an 

accuracy of 87.10% on the Field and Virtual Reality experiment through the following set of 

models (Figure 5.6). 

The ClassificationViaRegression detection scheme operated on a similar set of map 

operations as the Bagging scheme, selecting the two most salient features from Bagging.  

However, the M5P decision tree distinguished cases where map operations had differing relative 

weights in determining the predicted class, thereby highlighting sub-groups of low- and high-

spatial-visualization participants.  In the low-spatial-visualization model, participants with fewer 

pan actions were considered less likely to have low spatial visualization ability, but their zoom 

Tree 1

L

Tree 2

H

Tree 3

* < 1.5

A < 7.5: H A >= 7.5: 
L

* >= 1.5: L

Tree 4

+ < 10.5

Z < 9.5: H Z >=9.5: L

+ >=10.5: 
L

Tree 5

A < 7.5: H A >= 7.5: 
L

Tree 6

+ < 10.5: 
H

+ >= 
10.5: L

Tree 7

L

Tree 8

+ < 9.5

A < 9: H A >= 9: L

+ >= 9.5: 
L

Tree 9

+ < 7.5: H + >= 7.5: 
L

Tree 10

+ < 5.5: H + >= 5.5

> < 8.5: H > >= 8.5: 
L
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actions were more than twice as important as their pan actions in increasing the likelihood of low 

spatial visualization.   

 Figure 5.6. Field and Virtual Reality Study M5` classification trees with regressions at the leaves.  In the low 
spatial visualization classifier, more map operations led to a higher score for low spatial visualization ability, 
while in the high spatial visualization classifier , more map operations led to a lower score for high spatial 
visualization ability and a lower likelihood of a high spatial visualization prediction. What is noteworthy is the 
classifier has isolated subgroups within each class that have differing likelihoods to be labeled low- or high-
spatial-visualization, and their map operations have differing relative weights.  

Conversely, participants with more pan actions were considered more likely to have low 

spatial visualization ability, and each extra pan action increased that likelihood even faster.  In 

the high-spatial-visualization model, the reverse was true: extra zoom actions mattered more to 

participants who panned infrequently, while frequent panners were considered low-spatial-ability 

candidates. Overall, the complexity of each regression model allowed the 

Low spatial visualization 

pan_up <= 9:  
Low_VZ = -0.0338 + 0.037*zoom_in + 0.0171*pan_up

pan_up > 9: 
Low_VZ = 0.3116 + 0.0202*zoom_in+0.0282*pan_up

High Spatial Visualization

pan_up <= 9: 
High_VZ = 1.0338 - 0.037*zoom_in -0.0171*pan_up

pan_up > 9: 
High_VZ = 0.6884 - 0.0202*zoom_in - 0.0282*pan_up
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ClassificationViaRegression algorithm to separate low- and high-spatial ability cohorts into 

further subgroups where map operations had differing weights, and this finer level of distinction 

may have been the reason for the high accuracy of the scheme. 

5.4.3 Conclusion 

This subsection investigated the quantity, quality, and predictive models of algorithms 

that exhibited higher performance on the Stationary Simulation and Field and Virtual Reality 

studies.  Four outcomes became evident. First, there was a plurality of algorithms that detected 

spatial visualization ability, with eight algorithms meeting the 80% detection accuracy goal (four 

in each study), and twenty-two more algorithms achieving rates between 70% and 80% on one or 

both of the studies.  The long list of useful detection schemes lends strong support to the 

expectation that spatial visualization ability will be detectable in future applications.  

Second, four algorithms achieved detection rates of 84% on the Stationary Simulation 

Study or 87.10% on the Field and Virtual Reality study, which means that in the pack of 30 

“good” algorithms there are some that are “excellent”, and therefore practicable. 

Third, algorithms of the “meta” type, which is characterized by various forms of 

classifier aggregation and extension, were densely represented among high performers.  This 

outcome is consistent with theoretical results in the machine learning literature that point to 

“meta” algorithms reducing generalization error compared to base algorithms (e.g. Krogh and 

Vedelsby (1995) for ensembles, and Wolpert (1992) for stacked generalizers).  

Fourth, the most successful predictive models built by algorithms were intuitively 

meaningful. Machine learning in multidimensional spaces can fail to make sense intuitively, 

which leaves investigators with no assurance that the decision making was not based on 

meaningless patterns or flukes in the data.  This was not the case in the current work. The models 
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(a) supplied an understandable interpretation of the decision making and (b) validated the 

effectiveness of data transformations and algorithms.   

5.5 Results in Light of the Existing Literature 

As described in more detail in Chapter 2, user-sensing results in the current literature 

have two or more of the following conditions: (a) investigating volatile (rather than semi-

permanent) cognitive variables such as learning and frustration; (b) relying on one or more 

sensors such as galvanic skin response, pressure, and gaze tracking; (c) detection rates in the 

70% range and no higher; (d) user variables not connected with personal computer ability; and 

(e), results not related to classification of future users.   For example, Chang et al. (2013) 

achieved 98% accuracy in cognitive fingerprinting from keystroke dynamics, but did not detect 

user variables other than “uniqueness”.  Therefore, their research was unrelated to the current 

dissertation. 

In contrast, our results allow the detection of a semi-permanent cognitive ability that is 

known to relate to user’s computer performance.  The detection technique does not depend on 

sensors and is immediately deployable on generic computers.  Detection rates exceeded 80% and 

approached 90%.  The algorithm does not need to know whether the user made mistakes, so 

detection can be unaware of environmental conditions, and therefore need no sensors! The final 

outcome is that we can detect user ability on a complex, location-based, professional task 

without any knowledge of the environment, considerably reducing both hardware and software 

costs through simplification. The dissertation result makes inroads into intelligent interfaces for 

professional workflows - with a shortcut completely bypassing the environment! 
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5.6  How to Deploy Detection 

Previous sections of this chapter established quality, quantity, interpretation, and validity 

of detection outcomes on the Stationary Simulation and Field and Virtual Reality experiments. 

This section explains how the detection technique can be deployed in future projects in industry 

or academia. 

5.6.1 Implementation methodology 

In the Stationary Simulation and Field and Virtual Reality experiments, we did not 

observe a “one-size fits all” algorithm that achieved detection accuracy over 80% on all data sets.  

Instead, there were eight algorithms that had accuracy of 80% or better, but they had varying 

performance profiles. Four algorithms: BFTree, FURIA, Naïve Bayes, and Naïve Bayes Tree 

achieved high accuracy (80.00%, 80.65%, and 87.10%) on one experiment.  Two algorithms, 

Decorate and Support Vector Machine achieved high accuracy (respectively 80% and 84%) on 

one experiment and accuracy of 70.97% on another.  The two best performers, Bagging and 

ClassificationViaRegression/MP` scored 84% and 87.10% in one study and 76% and 77.42% in 

the other study. Table 5.7 shows comparative performance of notable algorithms on both 

experiments. 

There are three observations that can be made about Table 5.7.  First, there were no 

“silver-bullet” algorithms with greater than 80% performance on all data sets.  Second, 

algorithms segregated into six performance groups with differing accuracy profiles, and five of 

the six groups performed considerably better in one experiment. Third, eight algorithms 

performed “adequately” on both data sets.  
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Table 5.7 Comparative performance of notable detection algorithms in the Stationary Simulation and Field and 
Virtual Reality experiments. The algorithms grouped along different performance profiles. Detection accuracy 
of 80% or higher is highlighted. Accuracy less than 70.97% is not listed.  Algorithms are listed in descending 
order of performance. 

Algorithm Detection accuracy 
(% correct), 
Stationary 
Simulation Study 

Detection accuracy 
(% correct), 
Field and Virtual 
Reality Study 

Group Label 

    
Bagging 84.00% 77.42% Best Performance 
ClassificationViaRegression/MP` 76.00% 87.10%  
    
Decorate 80.00% 70.97% High performance and 

some carry-over 
capability  

Support Vector Machine 84.00% 70.97% 

    
BFTree  80.65% High performance on 

one experiment and no 
carry-over capability 

Furia  80.65% 
Naïve Bayes 80%  

Naïve Bayes Tree  87.10% 
    
IB1 76.00% 74.19% Some capability in both 

experiments IBk 76.00% 74.19% 
MultiBoostAB 76.00% 70.97% 
RealAdaBoost 76.00% 74.19% 
    
ADTree  77.42% Some capability in the 

Field and Virtual 
Reality experiment 

Conjunctive Rule  74.19% 
Decision Stump  77.42% 
JRip  77.42% 
Locally Weighted Learning  77.42% 
Logit Boost  77.42% 
OneR  77.42% 
Random Committee  74.19% 
Random Forest  77.42% 
RIDOR  74.19% 
SimpleCart  70.97% 
    
LAD Tree 72.00%  Some capability in the 

Stationary Simulation 
experiment 

Logistic Model Tree 72.00%  
Random Tree 72.00%  
Random Subspace 72.00%  
RBF Network 72.00%  
Simple Logistic 72.00%  
Voting Feature Intervals 72.00%  

 

The majority of algorithms performed better in one of the two studies. Therefore, there 

appears to be a connection between the details of the experimental protocol and an algorithms’ 

suitability.  We propose the following approach to a deployment. As a first step, the software 
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designers ought to roll out a pilot study to determine what algorithms perform well. After the 

best schemes have been found, they ought to be integrated into the second, and full, deployment. 

We will next discuss the expected accuracy from such an approach. 

5.6.2 Accuracy expectations for new deployments 

The outcomes in Table 5.6. should alleviate fears of low accuracy in the future.  In 

particular, eight algorithms met the 80% accuracy threshold set forth in the goal of the 

dissertation.  Twenty-two other algorithms achieved detection rates between 70.97% and 80%, 

for a total of 30 algorithms with notable accuracy (against baselines of 50% and 54%).  Further, 

eight algorithms achieved notable accuracy on both data sets in parallel (between 70.97% and 

87.10%).  Since the protocol differences between experiments were considerable, these accuracy 

results are evidence that algorithms can be ported over between address verification protocols. In 

the absence of a pilot rollout, the expectation for detection accuracy would be at least in the 70% 

range.  Conversely, with a pilot rollout, the top performers are expected to exceed 80%.  

Overfitting is not a concern as long as a representative sample is obtained for the pilot, because 

our accuracy estimates are based on cross-validation techniques.  

5.7  Conclusion 

We obtained evidence that spatial visualization ability is systematically linked to user 

behaviors at the interface, and that a generic computer device can be trained to recognize user 

spatial visualization from map-oriented, location-based interfaces.  A multitude of reports in the 

literature relate spatial visualization and computer usage.  But how can we engineer interfaces to 

take advantage of visualization detection?  Chapter 6 investigates data from our experiments and 

published work to provide answers.  
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CHAPTER 6.  POTENTIAL SPATIO-VISUAL ADAPTATIONS  

Previously, we found spatial visualization impacts performance on a location-based 

address verification task, and also uncovered statistically significant divergent behaviors. But 

how can we engineer interfaces to take advantage of visualization detection? From a system 

design perspective, divergent behaviors are expected to require divergent software workflows, 

because, in general, software workflow is tailored to user behavior. Interface adaptations are 

expected to maximize performance and satisfaction for individuals. 

 However, spatio-visual adaptation guidelines were not readily available due to the 

novelty of the research.  The relationship between behaviors and software adaptations has not 

been investigated in detail.  This chapter provides recommendations based on existing 

publications and our experimental results.  The chapter first highlights leads in the literature to 

argue the value of spatial-visualization-based adaptation specifically.  Section 6.2 draws together 

several reports to elicit an adaptation directive.  Section 6.3 affirms the directive through 

additional behavioral analysis of the Field and Virtual Reality experiment.  Section 6.4 presents 

specific adaptation recommendations.  Section 6.5 concludes the discussion. 

6.1 Adaptation Leads in the Literature   

Literature on spatial-visualization-related software adaptations is limited due to the 

novelty of the research.  Existing reports fall into two heavily populated and mutually exclusive 

categories: spatial visualization research that does not concern itself with software adaptations, 

e.g. Campbell (2011) compared user performance on a small-screen device and a large-screen 

device; or adaptation research that does not target spatial visualization, e.g. Ohm, Bienk, 

Kattenbeck, Ludwig, & Müller (2016) compared navigation aids for users with varying sense of 

direction (Figure 6.1). In contrast to the available literature, successful adaptation 



96 

 

recommendations would require both a spatial-visualization orientation and an alternative-

interface human-subject experiment.    

 Figure 6.1 Detailed (left) and abstract indoor navigation aid in Ohm, Bienk, Kattenbeck, Ludwig, & Müller 
(2016). Participants with strong self-reported sense of direction performed considerably better with the abstract 
interface. 

 The lack of relevant literature can be explained by the behavioral focus of the present 

dissertation: existing reports are heavily weighted towards the performance characteristics of 

spatial visualization, and not towards how participants actually used the interface.  In contrast, 

our work expected performance differentials to be a given and emphasized behavioral 

observation from the outset. 

While glancing discussion of behavior was present in many publications, almost none can 

be used for adaptation discussions due to the lack of alternative-interface experiments.  A notable 

exception is Brennan, Kelly, & Arguello (2014), who tested 21 participants of low and high 

spatial visualization ability (measured via Ekstrom’s (1976) VZ-2 Paper Folding Test) on web 

search tasks in the “entertainment” and “science and technology” domains.  Three types of tasks 

were investigated: (i) obtaining a definite answer to a question, (ii) assembling a roster of items 
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and explanations, and (iii) generating a solution to an open-ended question.  High-spatial-

visualization participants performed more searches, used longer search word combinations, 

viewed more pages, abandoned more pages, and used the search engine result pages more, but 

spent less time per page.  A critical finding was that user-reported workload was unaffected by 

spatial visualization ability (p.173), signaling that the individual difference influences user 

workflow subconsciously.  An immediate corollary is that participants would be unable to self-

select adaptations in an interface.  

The behavioral results in Brennan, Kelly, & Arguello (2014) are complemented by 

performance results in Downing, Moore, & Brown (2005).  Thirty-seven participants engaged in 

information retrieval via a library interface for advanced search of articles.  Participants searched 

for articles related to two business-related questions, two biology-related questions, and a 

domain-neutral question used as a baseline.  Spatial visualization was determined by a combined 

score on Ekstrom et al.’s (1976) VZ-1 Form Board Test and VZ-2 Paper Folding Test.  High-

spatial-visualization users found the first relevant article faster, and found more relevant articles 

than their low-spatial-visualization counterparts.  A conclusion from this article and the spatial-

visualization-related information-retrieval literature is that high-spatial-visualization users are 

expected to outdo other user groups during search tasks, and the performance differentials would 

increase with the complexity of the interface. Going a step further in explaining the phenomenon, 

Zhang and Salvendy (2001) posited, “Individuals with high spatial ability, however, tend to 

outperform individuals with low spatial ability only when information search tasks require the use of 

spatial ability in mentally constructing a model of the organization and structure of embedded task 

information”.  Since information organization is relevant to both interface design and application 

content, the immediate conclusion, as with Brennan, Kelly, and Arguello (2014), is that not all 
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users could be expected to choose the best adaptations for themselves, due to a spatial 

visualization disadvantage.  

Literature accounts of training different visualization groups describe high-spatial-

visualization users as benefitting from different approaches than low-spatial-visualization users.  

Froese, Tory, Evans & Shrikhande (2013) showed that high- and low-spatial-visualization users 

benefitted differently from three types of computerized training for an orthogonal projection 

task.  Spatial visualization ability was measured with the Vandenberg & Kuse (1978) Mental 

Rotations Test3.  One-hundred-and-seventeen users were first rated on the task of choosing 

correct orthogonal views of three-dimensional objects. Afterwards, they received one of three 

types of training, which showed either static intermediate steps, or animated rotations, or no 

intermediate steps at all.  The users then performed another set of orthogonal projection tasks, 

and their results were compared to their initial performance.  Low-spatial-visualization 

participants benefitted the most from static-image training (18% improvement), less from 

animation-based training (17% improvement), and the least from the no-intermediate-results 

training (10% improvement) (p.2814).  High-spatial-visualization participants had a different 

profile of training results.  They benefitted most from no-intermediate-results training (6% 

improvement), then from static-intermediate-results training (5% improvement), and the least 

from animation-based training (1% improvement) (p. 2814).  The study showed that the most 

effective methods of training for each group were the least effective methods for the other.  The 

training differences reinforce an expectation that system engineers can use spatial-visualization-

related adaptations to modify user performance. 

                                                 

3 The MRT test is a widely-used alternative to the Ekstrom et al. (1976) Paper Folding Test. 
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More evidence of spatial-visualization groups being affected differentially is furnished by 

Nguyen (2012). Sixty low- and high-spatial-visualization participants were tested on their 

understanding of simple and complex anatomical objects, after being trained on (a) six canonical 

views of a cube; (b) six canonical views of the object; and (c) animated views of the object.  

Spatial visualization ability was measured with a computer version of the Vandenberg & Kuse 

(1978) Mental Rotations Test.  Figure 6.2 shows a noteworthy outcome:  while in two 

treatments, high-spatial-visualization participants scored higher, in the third, low-spatial-

visualization participants outperformed them.    After hammering on the superior computer 

ability of high-spatial-visualization users for most of this dissertation work, it is refreshing to see 

conditions in which they switch roles with their counterparts and become the underdogs.  This 

remarkable result suggests that, under certain conditions, interface design is salient enough to 

dictate users’ performance outcomes. 

Another report of interface-dependent performance differentials will be investigated in 

the next section, after the adaptation guidance is stated explicitly. 

6.2 A Directive for Spatio-Visual Adaptation 

Despite sparse publications on spatial-visualization-based adaptation, our experimental 

data and several reports in the literature point to a definite distinction: high-spatial-visualization 

users prefer and benefit from survey knowledge, while low-spatial-visualization users prefer and 

benefit from landmark knowledge. This is consistent with the landmark-route-survey acquisition 

process described in Siegel and White (1975). In this process, a user first recognizes landmarks, 

then links them together to form routes, and routes can give rise to a holistic, or survey, 

understanding of an area.  The connection between the LRS model and spatial visualization will 

be explained after presenting the next report. 
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 Figure 6.2. Task scores from Nguyen (2012) after three differing training modes. Low-spatial-visualization and 
high-spatial-visualization participants exhibit differing performance profiles,  flip-flopping in performance 
depending on treatment.   

Bay & Ziefle (2008) trained 30 participants aged 9-14 on a menu navigation task for a 

smart phone, with the explicit goal of observing the interaction of landmark, route, and survey 

knowledge and spatial visualization ability.   Spatial visualization was measured through the 

Tewes (1983) Mosaic Test.  Training was conducted in three treatments: (a) a landmark mode, 

where participants were given the exact menu choices to complete the task; (b) survey mode, 

where participants were given the entire hierarchy of all possible selections; and (c) a combined 

mode of landmark, survey, and route knowledge, where participants were allowed to interact 

with the device for five minutes. High-spatial-visualization participants performed best after 

pure-survey training, while low-spatial-visualization participants performed best after pure-

landmark training, outperforming high-spatial-visualization participants in time, number of steps 

taken, and number of undo actions.  
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Both Bay & Ziefle (2008) and Nguyen (2012) reported training modes that set low-

spatial-visualization participants ahead of their high-ability counterparts.  These findings were 

counterintuitive and striking in light of the existing literature: despite high-spatial-visualization 

users being the “favorites” on computer tasks, presentation modes exist that can overturn 

expectations of performance.  Of course, based on Williges, Elkerton, Vicente, & Hayes (1990), 

the impact of such designs depends heavily on task type: 

However,  just  because  the  individual  differences 
have  been  assayed  and  isolated  does  not  guarantee  that the  accommodation 
will  be  successful.  This  difficulty  is  acknowledged  by  Egan  and  Gomez  (1985, 
p.  215):  "The  step  of  accommodating  individual  differences  not  only  tests  the 
analyses  that  precede  it,  but  it  also  tests  the  theory  of  how  an  experimental 
manipulation  ...  will  change the  original  task."  (p. c-23) 
Bay & Ziefle’s (2008) dichotomy of survey and landmark knowledge preferences 

mapping to high- and low-spatial-visualization participants were corroborated by our own data, 

which will be examined in the next section.  But what is the nature of the relation between 

landmark preference, survey preference, and spatial visualization ability?  The answers can be 

pieced together from the accounts in Rodes & Gugerty (2012) and Meneghetti, Gyselinck, 

Pazzaglia, & De Beni (2009).   

Rodes & Gugerty (2012) investigated sixteen participants drawing a map from memory, 

after having used simulated aerial navigation software for an unmanned aerial vehicle.   Spatial 

visualization ability was tested through Ekstrom et al.’s (1976) VZ-2 Paper Folding Test.  After 

controlling for visual memory, spatial visualization ability was significantly associated with map 

draw error and therefore quality of recall! This outcome was surprising and counter-intuitive, as 

it suggested spatial visualization had a separate effect from visual memory on the construction 

and retention of survey knowledge.  The marginal effect of spatial visualization ability could 



102 

 

explain why low-spatial-ability participants are less comfortable with survey knowledge and 

prefer landmark knowledge.   

Meneghetti, Gyselinck, Pazzaglia, & De Beni (2009) ran a psychological study of 76 

participants where recall of spatial and non-spatial text descriptions was measured while being 

interfered with through secondary tasks of spatial tapping and articulatory suppression.  Spatial 

tapping consisted of tapping the four corners of a 30 x 24 cm rectangular board and interfered 

with visuospatial working memory, while the articulatory suppression task (repeating the 

syllables “ba-be-bi-bo-bu”) interfered with verbal working memory. Spatial visualization ability 

was measured by the Vandenberg & Kuse (1978) Mental Rotations Test.  High-spatial-

visualization participants were able to overcome the interference for the spatial text description 

(but not for the non-spatial description), while low-spatial-visualization participants suffered 

recall degradation for all treatments.  These outcomes showed that spatial ability is used as an 

additional resource when processing spatial descriptions, and allowed high-spatial-visualization 

users to not require additional “executive resources”. As a result, high-VZ users appear to have 

extra capacity to manipulate and exploit survey knowledge that is subconscious, per the 

outcomes from Brennan, Kelly, and Arguello (2014).  In effect, high-VZ users appear to be have 

a preference for survey knowledge due to a modest comic-book-hero “superpower”: they can 

exploit survey knowledge as it arrives without engaging additional “executive resources”.  On 

the other hand, low-spatial-visualization participants lack the spatial-visualization “superpower” 

and cannot exploit survey knowledge, instead preferring landmark knowledge. 

     Rhodes & Gugerty (2012) and Meneghetti, Gyselinck, Pazzaglia, & De Beni (2009) 

appear to have clarified how the landmark-route-survey process in Siegel and White (1975) 
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manifests itself in low- and high-spatial-visualization interface preferences.  This view was 

corroborated by our data, as described in the next section. 

6.3 Adaptation Indicators in the Field and Virtual Reality Study 

To gain insight into participants’ interface preferences, we further investigated their 

behaviors in the Field and Virtual Reality Study.  For this purpose, behaviors were defined as 

sequences of user actions of length up to 9. Longer sequences were not considered due to 

computational cost.  Additionally, the longer the set of actions, the less probable its replication 

within the set of 31 users.  A total of more than 16,000 unique sequences were present in the raw 

data of the Field and Virtual Reality Study alone, representing a gamut of behaviors of different 

length.  Wilcoxon-Mann-Whitney tests were performed to find statistically significant divergent 

behaviors consisting of up to 9 consecutive interface commands. Approximately 17,000 interface 

action sequences of length 1-through-9 were compared between spatial-visualization groups. 

Figure 6.3 presents differential user behaviors in a location-based context.  

The longest behavior sequences that were statistically significant consisted of 4 actions.  

Only the longest sequences in a series were recorded. If subsequences were also significant at a 

different p-value, they were even more common, and were also recorded. 
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Figure 6.3 Geolocated statistically significant user behaviors in the Field and Virtual Reality experiment. The 
concentric circles indicate at what distance from the target address the behavior was significantly frequent.  
Behaviors in the top half of the graph were exhibited by high-spatial-visualization participants, while 
behaviors in the bottom half were exhibited by their low-spatial-visualization counterparts. 

  It is notable that statistically significant behavioral differences started at 25 m from 

target for low-spatial-visualization participants and at 50m from target for high-spatial-

visualization participants.  Differentials between groups manifested during the “Approach” 

phase.  This outcome mirrors and reinforces the Paper Map Study decision model in Chapter 4, 
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where the majority of behaviors were also observed during the “Approach” phase.  Figure 6.4 

contains a more fine-grained location-based presentation of behaviors. 

Behavior 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 Inf 
ZA      x             
Z<V            x x x x    
ZVAV                x x x 
Z><>                x   
AKZ         x x  x x x x x x x 
<<KZ         x x x x x x x x x x 
LZV         x x x x x x x x x x 
<--       x            
                   Z< x                  
<> x x                 
JZ< x x                 
Z<> x x x x x x x x x x      x x x 
+     x x x x x x x x x x x x x  
++     x x x x x  x x x x     
+A   x x  x x x  x x x x x x x x  
+-           x x x x x x x  
++++       x x x x x x x x x x x x 
++KZ       x            
*+     x x x           x 
-*+                  x 
V+       x x x x x x x x x  x  
<V+       x x x x x x x x x x x  
VV        x x  x x x x    x 
<<A      x x x x x x  x x x x x x 
VA<          x x x x x x x x x 
+<      x x   x x x x x x x x  
+<+         x x x x x x x x x x 
>+          x         
+<<                  x 
<++       x x x x x x x x x x x x 

Figure 6.4 Location-based presentation of statistically significant participant behaviors. Darker gray indicates 
high-spatial-visualization behaviors, while lighter gray indicates their low-spatial-visualization counterparts. 
Column headings show distance in meters from target address. Column heading “Inf” means “infinity”. 
Action symbols are explained in Table 5.2. 

Another observation regarding overall differences between visualization groups is that 

there are fewer behaviors exhibited by high-spatial-visualization participants, again mirroring the 

decision model for the Paper Map Study.  Furthermore, high-spatial-visualization behaviors 

show an emphasis on the L, K, and Z events, which are address-switching actions initiated by the 
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user.  This address-switching set of behaviors mirrors the frequent page visitation and 

abandonment behaviors exhibited by high-spatial-visualization participants on the search engine 

task in Brennan, Kelly, & Arguello (2014).   

High-spatial-visualization participants also exhibited: 

(a) Stepwise progression (ZVAV, Z><>): after an address submission, move the map 

view in a direction, move back, move forward again and remain at the new map 

location.  This is a behavior to solidify survey knowledge while making progress; 

(b) Survey information acquisition (<--). Participants were zooming out to add context. 

In contrast, low-spatial-visualization participants exhibited: 

(a) Magnification (+, ++, ++++, +A, +<, >+, +<+, <++ etc.): a set of behaviors that 

indicates a preference for a more zoomed-in map, or alternatively, for a view that 

minimizes survey information.  

(b) Reversals (Z<>, VA<, +-, +*-): zooms or pans that were reversed and the view 

returned to its original location, after which a new direction might be chosen. This 

class of behaviors indicates searching, confusion or anchoring on a landmark. 

(c) Impossible commands (*+, -*+): a set of behaviors where participants attempted to 

pan or zoom past the boundaries of the map and were informed that they cannot do 

so. 

(d) Complex viewport trajectories (<<A, <V+, <++, +<+, +<<): these sequences indicate 

participants embarking on panning-and-zooming “expeditions” around the map, 

which may be the result of a zoomed-in view that minimizes survey information.  

Overall, high-spatial-visualization participants exhibited survey-information-preference 

behaviors, while low-spatial-visualization participants exhibited survey-information-avoiding 
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behaviors and landmark-preference behaviors, consistent with Bay and Ziefle (2008), the 

landmark-route-survey model of Siegel and White (1975), and the interplays between visual 

memory, spatial visualization ability, and working memory uncovered in Rodes & Gugerty 

(2012) and Meneghetti, Gyselinck, Pazzaglia, & De Beni (2009). The evidence in the literature 

and our data suggests the dichotomy between survey knowledge preference and landmark 

knowledge preference appears to map to the division between high-spatial-visualization- and 

low-spatial-visualization users.  The next step is to recommend adaptations based on survey- and 

landmark-oriented publications. 

6.4 Adaptation Recommendations 

 Buering, Gerkin and Reiterer (2006) tested high-and low-spatial-visualization 

participants on answering questions about movies located a scatterplot graph where each dot was 

a graphical object presenting the movie (Fig. 6.5).  The horizontal axis denoted a popularity 

score, while the vertical axis denoted year of release. 

 Figure 6.5 Alternative small-screen interfaces in Buering, Gerkin and Reiterer (2006).  The two screens on the 
left do not have an overview window, while the two screens on the right are from the interface with an overview 
window.  High-spatial-visualization participants performed better without the overview window, while low-
spatial-visualization participants performed better with the overview window. 

The experimental adaptation was an overview window that shared screen real estate with 

the freely zoomable graph view (Figure 6.5, right). High-spatial-visualization participants took 

longer to complete the experiment with an overview window (as compared to having no 
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overview window), while low-spatial-visualization participants took longer to complete the 

experiment without an overview window (as compared to having an overview window).  

  Delikostidis, Elzakker, & Kraak (2016)’s study elicited user requirements for two mobile 

location-based applications.  The authors reported that landmark visuals “helpful for orientation 

and navigation were particularly road patterns and sizes, street names, parks/squares and 

roundabouts. Helpful but not always visible landmarks on the map were: bridges, pedestrian 

paths, and important or tall buildings visible from a distance”.  Additionally, the authors clarified 

that “Popped-up photos of landmarks were regarded as more helpful than their 3D 

representations”.  The authors’ observations can be incorporated into an interface adaptation with 

enlarged landmarks in the map view to draw the attention of the user.  Enlargement may be 

based on proximity to the user.  The enlarged landmarks should be accompanied by muted 

visual presentation of the rest of the map in order to avoid overwhelming the user’s spatial 

visualization capability. 

 Stanney, Chen, Wedell, and Breaux (2003, pp. 213-214) propose a visualization of 

timestamped waypoints to aid in recovering orientation.  An adaptation that targets low-spatial-

visualization users could go one step further and continually display the entire route from the 

start of the work session, with timestamped and connected visited landmarks. 

 Willis, Hölscher, Wilbertz, & Li (2009) tested participants on their survey knowledge of 

an environment after having explored it with a paper map or a mobile phone map.  Mobile phone 

participants took 46 minutes on average to familiarize themselves with the environment while 

walking inside it on a predetermined path.  In contrast, paper map users studied a map for an 

average of 18 minutes and never set foot in the actual space.  At the end of training all 

participants were taken to a location within the environment and asked to provide direction and 
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distance estimates to various targets.  Mobile phone participants were unable to perform at the 

level of their paper map counterparts despite taking much longer to familiarize themselves with 

the environment. One problem discovered by the authors was that mobile map users had a 

relatively passive interaction with the software map due to having to follow a predetermined 

route.  The authors suggested that participants confirm information about the area while 

traversing the route, in order to keep alert and remain engaged in learning the spatial layout.  

Conversely, extra survey-level confirmations required of low-spatial-visualization users might 

overwhelm and bewilder them.  Landmark-level confirmations may provide a benefit instead.  

This adaptation also addresses observed behaviors in the Field and Virtual Reality Study where 

high-spatial-visualization participants overlooked important environmental cues and solved tasks 

incorrectly due to an overly hasty approach to the experiment.   

Willis, Hölscher, Wilbertz, & Li (2009)  also identified unstable cognitive schemata 

resulting from fragmented survey knowledge acquired from a small screen.  The suggested 

remedy was to enable pre-planning on suitably zoomed out representations, which should be 

revisited periodically to solidify the connection between fragments. This adaptation aligns with 

planning behaviors observed in the Paper Map study, as well as with a high-VZ software 

behavior from the Field and Virtual Reality study: “pan-left, zoom-out, zoom-out”.  In contrast, 

low-VZ software behaviors from the same study were overwhelmingly composed of zoom-in 

actions.  Therefore, a planning adaptation could inconvenience low-spatial-visualization 

participants considerably if their preference is to absorb information in smaller chunks. 

6.5 Conclusion 

Reports in the literature and data from the Field and Virtual Reality Study suggested that 

high-spatial-ability users would be best served by adaptations enhancing the availability of 
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survey information.  Conversely, low-spatial-visualization participants should benefit from 

landmark-oriented adaptations.  More adaptation experiments targeting spatial visualization 

ability are needed to fill the gap in current understanding. 
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CHAPTER 7. CONCLUSION 

In this dissertation, we described a novel, behavior-based spatial visualization detection 

technique that can be adopted on generic computer devices.   

Other user-sensing results in the current literature exhibit two or more of the following 

conditions: (a) investigating volatile (rather than semi-permanent) cognitive variables such as 

learning and frustration; (b) relying on one or more sensors such as galvanic skin response, 

pressure, and gaze tracking; (c) detection rates in the 70% range and no higher; (d) user variables 

not connected with personal computer ability; and (e), results not related to classification of 

future users.   

In contrast, our results allow the detection of a semi-permanent cognitive ability that is 

known to relate to users’ computer performance.  The detection technique does not depend on 

sensors and is immediately deployable on generic computers.  Detection rates exceeded 80% and 

approached 90%.  The algorithm does not need to know whether the user made mistakes, so 

detection can be unaware of environmental conditions, and therefore need no sensors. User 

ability is detectable on a complex, location-based, professional task without any knowledge of 

the environment, thereby reducing both hardware and software costs through simplification.  

The detection of spatial visualization ability allows coupling with ability-specific 

software adaptations.  Sources in the literature indicate that low-spatial-visualization users 

benefit from landmark-oriented adaptations, while high-spatial-visualization users prefer survey-

oriented adaptations.  Experimental data and published reports imply user-selected adaptations 

cannot be guaranteed to enhance performance due to the subconscious nature of individual 

differences. An automatic solution should be implemented instead. 
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The present study is an early step towards operationalizing the close relationship between 

spatial visualization ability and users’ computer activities. An immediate next step is to build an 

adaptive system and validate the current design expectations.  More participants are necessary! 

While the literature does not present any detraction to the proposed adaptations, they will 

strongly influence the workflow and must be certified.   

More rigorous feature engineering could be applied to the detection technique in order to 

bring detection accuracy higher.  The available data includes precise timing and cursor 

movement traces that are yet untapped. 

Medium-term goals include determining a more detailed composition of the user base 

with regard to spatial visualization.  In particular, there are indicators of several sub-groups with 

varying levels of ability and behavior. A multi-participant user study is necessary to bring out 

sufficient representation of all cohorts along the full range of spatial visualization.  The project is 

expected to be complicated by interference from other user characteristics. 

The present detection technique need not be limited to location-based interfaces.  While 

map-centered systems all but guarantee spatial visualization ability is pertinent, the literature is 

unequivocal with regard to the ability playing a role in multiple other task types such as 

advanced information retrieval and remote teleoperation of robots. 

In the long term, new developments in the psychology of spatial knowledge, e.g. 

Meneghetti, Labate, Pazzaglia, Hamilton, & Gyselinck (2016), invite embracing a more complex 

model of visuospatial processing, with multiple individual differences, and subsequently 

discovering the boundaries of the relevant design space.  The outcome of such extensive activity 

would be cognition-aware software engineering, and cognitively-tuned interfaces. 
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APPENDIX H. PAPER MAP STUDY: LIST OF CODES IN THINK-ALOUD PROTOCOLS 

 

# pattern recognized 
address expected 
address verified 
anchored on landmark 
check address 
check map 
check surroundings 
confused 
target location estimated 
edit map 
street expected 
heading selected 
identify street 
landmark added 
map relation identified 
map rotated 
navigation plan reinforced 
near-target address verified 
noted address location 
planning 
planning check map 
position located on map 
recall solution to previous scenario 
recall target 
recognize # pattern 
select heading 
select target 
signal turn 
street identified 
target address error suspected 
target changed 
target recalled 
target selected 
target sequenced 
target street identified 
tried to locate target but failed 

turn signaled 
acquire cue 
added street name 
attempting to plan 
change target 
check address 
express frustration 
identified map relation erroneously 
intermediate goal set 
intersection expected 
landmark expected 
landmark identified 
learn about area layout 
looking for street sign 
near-target address verified second time 
numbering pattern recognized 
orient self with regard to cardinal 
directions 
realize going the wrong way 
recalled travel sequence 
select intermediate target 
target address error found 
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