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ABSTRACT

An untapped area of productivity gains hinges aomatic detection of user cognitive
characteristics. One such characteristic, spasahlization ability, relates to users’ computer
performance. In this dissertation, we describe\ehdehavior-based, spatial visualization
detection technique. The technique does not depersgnsors or knowledge of the
environment and can be adopted on generic compulieis Census Bureau location-based

address verification task, detection rates exce80&tand approached 90%.



CHAPTER 1. INTRODUCTION

1.1 General Problem
Through the proliferation of mobile devices, looatbased software services have grown
in both popularity and importance. According to ¥gih (2012),
“Location-based services (LBS)...provide functions that are location-aware, where the use of such

services is predicated on knowledge of where the services are engaged. LBS are oft-referenced
with regard to mobile devices, although LBS are not necessarily only used on mobiles.”

A McKinsey Institute report estimated that in 202&8% of the U.S. population (87
million) used location-based services (Manyikalef@11). This massive user base requires
varying levels of data fidelity. Accurate data igical to organizations like the United States
Census Bureau, which depends on authentic knowlefdgeery address in the nation to inform
the distribution of $400 billion of federal monieach year (Census Bureau, 2015). The
importance of location-based services extendsdio éttached user interfaces, which, from a
software engineering perspective, are the lociuoh&n-error management (cf. Maxion and
Reeder 2005, p. 26).

Scientific and commercial interests have devotetsic®rable resources to interface
research, but so far, the role of individual diéfieces has been underrepresented. The literature
suggests ample potential for improvement. For exengenyon, Crerar, and Wilkinson (2001)
derive the relevance of individual differences frarfundamental disparity between physical and
digital artifacts. Information processing predonmtia depends on symbol manipulation, so HCI
systems are black boxes that can only be interedgatrough their displays. By contrast, the
user can employ multiple strategies to investigémgsical artifacts. Therefore, cognitive

differences may express more strongly on compagist(pp. 21-22).



Spatial visualization ability is one individual tlifence that has been associated with user
performance. Ekstrom et al. (1976) defines it &g ‘dbility to manipulate or transform the image
of spatial patterns into other arrangements” (13) L13ome known correlates of this aptitude are
performance with command-line interfaces (JenniBgsyon and Murray 1991, Benyon 1993),
file system navigation (Vicente, Hayes, & Willigé887), searching an information retrieval
system (Downing, Moore, & Brown 2005), exploring@n-immersive virtual environment
(Modjeska & Chignell 2003), web browsing (Zhang &alvendy 2001), simulated driving
(Andrews and Westerman 2012), and remote contnaladts (Liu, Oman, Galvan, and Natapoff
2012).

The present work presents a spatial visualizateieadion technique drawing on
behaviors on a location-based task, without extes@asors.

1.2 Hypothesis

We hypothesize that on a location-based task tivalves address verification,
individual differences in spatial visualization liigilead to discernible variation in behaviors at
the user interface, and that an algorithm can neizeghe difference from the interface usage
data alone.

This hypothesis will be validated if we observeagithms detecting spatial visualization
ability reliably enough to become viable in thelngarld. To accept the hypothesis beyond a
reasonable doubt, we need to obtain favorableteepatsisting in multiple studies (two for the
dissertation) using different software implememtasi, and in different environments. Based on
results presented in the literature, a detectitgat80% will have outdone prior research. This
is because, other than in holistic cognitive fipgarting (Chang et al. 2013), we have not seen

any reports meeting a threshold of 80% correctatiete of cognition-related variable. Kapoor,



Burleson and Picard (2007), the classification apeported 79.17% accuracy in predicting user
frustration. The prediction algorithm drew on anmnation of software logs, posture-sensitive
chair, galvanic skin response sensor, face traeker pressure-sensitive mouse. However, the
authors’ achievement in classifying transient eoriis in an altogether different research vein
from the proposed dissertation’s aim to detectrapdex semi-permanent ability. Furthermore,
external sensors are barriers to adoption.

1.3 Testbed

The application testbed is an address verificatsk performed by quality control
officers of the U.S. Bureau of Census. The jothefBureau is to collect and maintain statistics
about the population and economy of the natiort) aitleast $400 billion of federal funds
dependent on this information each year (Censusdau015).

The Bureau of Census address verification taskheafollowing desirable properties: it
is a complex, professional, location-based tasét,tha Bureau’s workforce is numerous and
diverse.

The task consists of the following stages (stagasdl2 are interchangeable):

1. finding a specific address on a map;

2. locating the same address in reality;

3. ensuring the address is correctly reflectechermap and amending the map if
necessary.

Bureau of Census survey takers are a diverse pigukand data fidelity is entirely
dependent on employee competence. A computer dallego detect a user’s suitability for the

task during normal job duties opens a pathwaylevaat adaptations that can be automated.



The dissertation will show connections betweeniapaisualization ability and user
workflows. The detection technique will only emploser interface logs, because accounting for
non-software behaviors requires specialized equnpifmeicrophones, cameras, pressure Sensors,
galvanic skin response detectors, etc.) and woldiein adoption.

1.4 Contributions

The present work aims to bring four contributiomg€dmputer science.

1) Establish strong justification for greater inporation of individual differences into the
applied and theoretical research of intelligengifaices. To our knowledge, there are few if any
reports in the literature of detection of indivitld#ferences from professional tasks.

2) Demonstrate for the first time that it is possitor a generic computer device to
recognize a cognitive ability. Literature reportdetection of other user variables frequently
depend on external sensors and are therefore abkufor wide adoption.

3) Show that behavioral-based detection can ciranhthe need to know what
constitutes a user error, e.g. whether the addvassorrectly verified. Such a shortcut would
be highly valuable in complex workflows, which atgiquitous in professional computing,
because the need for environmental information dbel avoided altogether. As a result, both
software and hardware designs can be simple withentrificing the visualization detection
capability.

4) Establish a relationship between spatial vigadilbn ability and user preferences at the
interface, with a goal to guide adaptive systemgies

1.5 Organization
Chapter 2 surveys the existing literature and fimddtiple sources that are almost

relevant to the project, and a few that are diyaetlated, due to the relative novelty of the



behavioral approach. Chapter 3 discusses statistitcomes from three human-subject
experiments. Chapter 4 presents behavioral dift&® and infers decision models for the Paper
Map experiment. Chapter 5 presents detection made results. Chapter 6 investigates

potential adaptations. Chapter 7 concludes thertep



CHAPTER 2. REVIEW OF LITERATURE

2.1 Introduction

User differences have always been of interestdtesy designers. Benyon, Crerar, and
Wilkinson (2001) derive the relevance of individd#ferences from a fundamental disparity
between physical and digital artifacts: informatmocessing predominantly depends on symbol
manipulation, so HCI systems are black boxes thatonly be interrogated through their
displays. By contrast, there are multiple strateggeinvestigate physical artifacts. Therefore,
cognitive differences may express more stronglgamputer tasks (pp. 21-22).

Spatial visualization ability is one individual flifence that is frequently tested in
experiments. Ekstrom et al. (1976) defined it &g ‘ability to manipulate or transform the image
of spatial patterns into other arrangements” (13)1This aptitude correlates with performance in
command-line interfaces (Jennings, Benyon & Muf@91, Benyon 1993), file system
navigation (Vicente, Hayes & Williges 1987), seanghan information retrieval system
(Downing, Moore & Brown 2005), web browsing (Zhatigalvendy 2001), simulated driving
(Andrews & Westerman 2012), and remote controbbbts (Liu, Oman, Galvan, & Natapoff
2012).

Automated recognition of user variables is a ldrglel that adjoins multiple disciplines,
including computer science, psychology, human—cdsrpateraction, ethnography, industrial
design, many branches of engineering, instructideaign and industrial ergonomics. There is
an extensive list of reports on gathering inform@atabout the user, e.g. research on online
learning environments like Blackboard and WebCTit &uir variable of interest, spatial ability,

has never been automatically recognized. In additidrinsic cognitive abilities in general are



not represented as target variables. The mostasimuiblications come from the field of adaptive
interfaces.

Adaptive interfaces are encountered on any comgystem that autonomously changes
its interaction mode as a reaction to internabxemal cues. Rothrock, Koubek, Fuchs, Haas
and Salvendy (2002, pp. 58-63) use the term “vagaballing for adaptation” and discuss user
variables, situation variables, and system vargallser variables include an individual's
knowledge, performance, workload, personality amghdive style.

Van Velsen, Van Der Geest, Klaassen, & Steeho((#@08) reasoned about
“personalized” software as systems that employ stype of individual user model. With regard
to usability, Van Velsen et al. claimed that “compg a personalized system with one where the
personalization has been removed is deemed adatsparison” (p. 265) based on statements in
HO66k (1997), HOok (2000), and Bohnenberger, Jamdsarger, & Butz (2002), in the sense
that personalized systems have extra cross-sectoddongitudinal features which change the
overall mix of utilities provided by the systemhé&se are the words of just a few authors who
express a zeitgeist of strong desire for persoaiadiz — which has rendered it a ubiquitous goal
in most commercial and scientific software, andihassted it in multiple research domains.

Reports of user detection differ from our reseancéeveral ways:
1. To our knowledge, no attempts have been made tmnexe spatial visualization ability or
other specific cognitive abiliti€'sln contrast, we detect spatial visualization &pilivhich is

linked to performance in many computer tasks. Téteation is performed on a professional

! However, research exists on holistic cognitive fingerprinting, e.g. Chang et al. (2013)



task used by the Bureau of Census, and without ledge of whether the user solved the
task correctly.

2. Existing literature frequently uses external sesislor contrast, our research detects spatial
visualization ability based on ordinary user infddétection is deployable on basic
computing systems.

3. The published accuracy of recognition is relatidely, with correct classification of less
than 80% of instances. In contrast, our researcbvered detection rates of 84% and 87%,
which we deem practical enough for adoption inrted world.

2.2 Location of Research Objectives within the Scienkield

User modeling for user interfaces is a topic withibroad area called “human-centered
design”. Human-centered design refers to emphagimser qualities during the software
modeling process, as opposed to presenting araatien protocol and demanding that users
adopt it (Norman & Draper, 1986). While the fielahcbe systematized in multiple ways, we will
present Gleasure, Feller and O’Flaherty (2012Vssdin of human-centered design approaches
into four categories: metaphoric, idiomatic, contekized, and foundational. Metaphoric
approaches carry a real-world control (or othenvemtion over to the interface realm,
attempting to gain usability through the familigrdf the metaphor (Gleasure, Feller, &

O'Flaherty, 2012). An example would be a genericutator program such as those shipped

with most current operating systems.

Idiomatic design tries to co-opt operators’ knovgeaf existing digital systems,
perpetuating interaction modes that are alreadsgmtan previously produced software. Unlike
with the metaphoric approach, interface idiomswab as linguistic idioms) have no

comprehensible meaning outside of their intendedamsl therefore need to be explained



(Gleasure, Feller, & O'Flaherty, 2012). Idiomagatures include close buttons on most
graphical interface windows and blinking cursore@mmand-line environments.

Contextualized design may be somewhat misleadimghyed, as within Gleasure, Feller,
and O’Flaherty’s classification it refers to “int@l consistency within an application”, hence the
term “contextualized”; but in practice, the methlaodyy hinges on aligning the interface to user
expectations by observing actual users. In thisesethe real context is the (sample) user base.
Relevant investigative techniques span an array fredepth ethnographic studies to iterative
user evaluations (Gleasure, Feller, & O'Flaher®y,2).

Research from the fourth category, foundationaigieg$ocuses on subconscious and
unconscious factors in the interaction processtwieaauthors call “early perceptual and
prejudicial aspects on interaction.” Foundatioredign incorporates findings from neurological
and other sciences that may influence human behesgardless of self-awareness. While one
might raise the question whether foundational des@ part of contextualized design, Gleasure,
Feller and O’Flaherty distinguish between the tvasda on how conscious user expectations are.
Furthermore, foundational design does not necdgsimmand user involvement at the interface
creation stage, because readily available findiraya relevant sciences, such as psychomotor
studies’ outcomes, can be directly slotted intopteeess. Examples of potentially applicable
results are known ergonomic concerns, for exanipéedifficulty with which the elderly notice
some color combinations, or screen illuminatiorelsvthat promote alertness (Gleasure, Feller,
& O'Flaherty, 2012).

The metaphoric, idiomatic, contextualized and fatrmhal design spaces form a

continuum where user cognition becomes less ascclasscious, with foundational design
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reaching into behaviors where awareness is irrate(@leasure, Feller, & O'Flaherty, 2012).
The present work elicited behaviors in the subcouos foundational level.

Many of the papers in this literature survey depemexternal sensors such as galvanic
skin response sensors or gaze tracking devicesoninast, our detection technique operates
only on ordinary user input and is not computaiimmensive, which enables deployment on most
computer devices.

2.3 Literature Review Structure

Adaptation cues and responses naturally consttgiestematic description of adaptive
interfaces. For our project, we are predominamttgrested in cue acquisition subsystems. But
the available literature groups along applicatiomdins rather than adaptation mechanics - a
condition due to the interdisciplinary nature af thomain. In the rest of this chapter, we will
present reports from neuroergonomics, educaticaal ighining, personalized information
retrieval, adaptive hypermedia, multimodal inteefgc accessible interfaces, task detection
software, and industrial interfaces. None of tbeMiparable” experiments inform our approach
to a significant degree due to the relative noveftthe research problem, so we assemble a
context of research neighbors instead.

We encountered no research on address verificatidrcognitive abilities in a software
engineering context. What follows will be a listinfresearch that neighbors ours mostly in the
methodological area, but is otherwise of limiteditytto the central question: having the
software infer spatial ability as it observes tseru

2.4 Neuroergonomics
Parasuraman (2003) defined neuroergonomics asttity of brain and behavior at

work”. The field is an amalgamation of neurosceaad ergonomics, where ergonomics is “a
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scientific discipline concerned with the undersiagdf the interactions among humans and
other elements of a system, in order to optimizadnuwell-being and overall system
performance” (Mehta & Parasuraman 2013). Whildhsupostulation of the field should be
generally applicable to the dissertation’s godils,durrent state of neuroergonomics reduces its
practical relevance. In particular, the disciplis&oncerned with brain and body imaging
through external sensors, and the focus is on stateting what happens physiologically within
the user. Since physiological changes, such ashactivations, can refer to particular
cognitive states in considerable detail, some fofmuasi-mind-reading appears to be a long-
term goal. Atthe same time, the necessary equipfoephysiological detection is rare and
expensive, and therefore unsuitable for the prajasstasks we targeted. For example, Sciarini,
Grubb, & Fatolitis used an electroencephalograptxtomine workload changes on a Stroop
task, where a word for the name of a color is preskin a different color to induce cognitive
dissonance. The authors detected higher workloahwhe named color and the actual color
were mismatched, but their results depended oprésence of an expensive external device and
did not include automatic prediction. Similarhgi&ini, Fidopiastis, & Nicholson (2009) were
able to associate inter-beat intervals of the heagpatial ability during a Tetris-like task, but
attempting to replicate their results would req@ineelectrocardiograph to be attached to a
participant — a condition unfavorable to our gdalsing generic computer devices for
prediction.

Reeves et al. (2007); and Reeves & Schmorrow (20@%ey older adaptive systems

triggered by physiological signals.
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2.5 Educational Data Mining

The field of educational data mining frequentlylutes user modeling. Romero &
Ventura (2010) define educational data mining aséeimerging interdisciplinary research area
that deals with the development of methods to erpdata originating in an educational context.
EDM uses computational approaches to analyze ednehtiata in order to study educational
qguestions” (p. 1). The major sub-fields are edoceti hypermedia and intelligent tutoring.
Calvet Lifian & Juan Pérez (2015) distinguish edooat data mining from learning analytics
along several dimensions. The most salient diffegas that learning analytics is primarily
concerned with empowering human decisions andegfi@involvement, while educational data
mining places an emphasis on automated discoveradaptation (pp. 105-106). We next
present several research reports from the fieldatearelated to our project.

Antonenko, Toy, & Niederhauser (2012) reported tases of student workflow
differentiation based on cluster analysis of selwgs of an online learning environment. Their
research follows a user modeling pattern that perghroughout the field of educational data
mining: decision models describe states of learrangghly mutable variable, which makes
them only marginally useful for our purpose, whislto investigate a cognitive competence that
is immutable in the short term. In the first expegnt, education students were asked to assume
the role of high-school teachers and write a repmdmmending solutions to a school incident.
Based on server logs of time spent visiting relévasources, irrelevant resources, and writing,
participants were grouped into “discriminating istrgators”, “non-discriminating
investigators”, “non-discriminating writers” and fiters”. Investigators spent more time visiting
resources than writers, and discriminating paréiotp devoted less time to irrelevant resources.

Clustering identified non-discriminating investigeg as having an inferior strategy.
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In the second experiment, collaborating group$idd or four students had to select a
mortgage plan given a complex list of requireme@taster analysis pointed at high-performers
spending more time working on tailoring the problembmission and progressing at a steady
pace, while low-performers spent more time visiting available information resources and also
started working late. In this report, we see seimtegy differentiation between high and low
performers, a workflow outcome that is cruciallie success of this dissertation. What is less
useful to our research effort is that the stratifferentiation is an isolated observation not
connected to cognitive aptitudes.

Other recent examples in hypermedia-based eduetiata mining include Del Puerto
Paule-Ruiz, Riestra-Gonzalez, Sdnchez-SantillaRg&z-Pérez (2015), who mined six
association rules from hypermedia logs that infikibether a student would pass or fail a
course with greater than 97% accuracy. Xing, GRaakovic, & Goggins (2015) compared the
performance of genetic algorithms, Naive Bayes,saweral other machine-learning algorithms
to predict final grades in an online mathematiasrse. Campagni, Merlini, Sprugnoli, & Verri.
(2015) used clustering and sequential pattern égos to infer that college students who kept
close to the ideal sequence of computer scienaa®garing their college career graduated
faster and with higher grades. These reports &eeaisting in associating behaviors with final
outcomes, but they have a limit in their utilityttee dissertation work, because the target
variable, learning performance, is highly volatile.

The other part of educational data mining, InteligTutoring Systems, emphasizes
workflow analysis and has an ongoing interest &r wsodeling. Older papers that inform the
background of our research include Kinnebrew & Bis2012), who identified frequently

occurring online reading patterns for low-perforsmand high-performers on a climate change
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study topic. The source data was the sequencekd liisited and the time taken with each link.
High-performers tended to re-read important pageswere productive in both long and short
reading sessions, while low-performers were moceessful in long reading sessions and first-
time reads. While interesting from a data miningspective, the report by Kinnebrew and
Biswas is representative of its field in being cermed primarily with learning performance, a
target variable we already noted is volatile. Tdleeaways for our research from this
neighborhood in the literature are mostly aboubge@tion mechanics and, to a much lesser
extent, about cognitive properties of human subject

A common type of user modeling in intelligent tungy systems relies primarily on the
correctness of student answers. Koedinger, McLaughStamper (2012) created models from
large sets of student answers to automated tujoestions. The answers were coded as correct
and incorrect, and a student model consisted efjaence of questions and the expected
probability of failure on each one. The probabibifyfailure was predicated on student
proficiency, number of learning concepts involveificulty per concept, and experience with
the concept. The authors data-mined the modeiadostiperior concept combinations for the
tutors. In a good student model, the probabilitgwbr was relatively stable and declining.
Erratic jumps in failure rates or progressivelyreasing difficulty indicated a problematic
teaching sequence. To maximize predictive powent (meean square error of the predicted
sequence of correct-incorrect responses), thenawra regrouped concepts with a limited-
brute-force method. New answer-concept combinatigere formed by iteratively mutating
existing models with portions of man-made model®se models were created mostly
independently by teachers and not expected torbxee in a model search. The brute-force

approach discovered combinations with higher ptadigower than man-made models (which
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to that point were considered the standard), ane ingportantly, the improvements were
localized to particular spots in the question segas, pinpointing problematic teaching areas
that had eluded human experts.

Waalkens, Aleven, & Taatgen (2013) tested threferdint approaches to tutoring single-
variable linear equations. One tutor only allowadlents to use the standard strategy for solving
an equation, as taught in middle schools in theddnStates. Another tutor allowed students to
use minor variations on the standard strategy aatiitd accepted all possible solution paths.
The authors found that allowing strategy variationproved learning, but did not find
significant differences in teaching effectivenessa®en the multi-strategy tutor and the
standard-strategy-with-variations tutor. This fimglis relevant to our research in suggesting that
the effort to accommodate multiple workflows intsadre pays off even for a highly constrained
problem like single-variable equations.

Galan & Beal (2012) used EEG signals to prediaiestti success on SAT-level
mathematical problems. In this case, the cognitieglel consisted of two brainwave functions
denoting workload and engagement. The engagenggdlsiredicted the first error in 80
percent of the cases based on the first 20 s gbselata. The authors suggested adding a non-
intrusive EEG module to intelligent tutoring sessido help students stay interested in a
problem. This research is relevant to the propa&sgkrtation in its methodology: employing
machine learning techniques to infer a cognitivealde. But the invasive external sensors
create a distance between the work and our proeadt

In a recent sensor-oriented report, Petersen, BarRbu, Swigart, Gerber, & McKinsey
(2015) predicted chemistry performance on an iigetit tutoring system from gaze tracking

variables, with 66% accuracy. Their efforts shoseca drive in the community to improve tutor



16

adaptivity by knowing more about the user, while télatively low accuracy illustrates how
challenging user inference is even with a soplastit external sensor. However, their variables
of interest, learning gains and problem-solvingqgenance, do not directly relate to our
variable, spatial visualization ability.

Argenta and Hale (2015) provide another examplé@®bngoing interest in inferring
user state in intelligent tutoring systems. Thegyorted automatically reordering learning
modules within an educational game based on ptedsslt and in-game scores, in order to
maximize initial learning and subsequent retentigvhile the methodological story of how they
connected user assessment with tutoring presemtatiateresting to us, our research focuses on
professional tasks in the real world which canre@sbored independently by the computer due
to their open-ended nature.

The takeaway narrative from the educational datangiliterature spanning thousands of
articles is that there is high ongoing intereshfierring user states, and in particular in linking
learning gains to user modeling. However, thealdes of interest are not connected to our
spatial visualization detection, thereby limitifgptutility of educational data mining approaches
to the methodologies involved.

2.6 Personalized Information Retrieval and Adaptive etypedia

User modeling is a foundational aspect in the domaf personalized information
retrieval and adaptive hypermedia. These two dosna@ive considerable overlap with
educational data mining, which was covered in tleipus subsection, and which constitutes a
exceptionally large corpus of research reportshisisubsection, we will briefly cover
applications outside of formal education. Ourriest will be perfunctory due to the insufficient

relevance of user models available in this space.
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According to Steichen, Ashman, & Wade (2012), peatized information retrieval
“typically aims to bias search results towards nesonally relevant information by modifying
traditional document ranking algorithms”, while ptlae hypermedia biases “content retrieval
and presentation by adapting towards multiple atarsstics. Those characteristics, more
typically called personalisation ‘dimensions’, inde user goals or prior knowledge” (p. 1) In
these two domains, personalization is achieveditiir@ontent or result selection and is based
on what topics were visited by the user. Steiclhamman, & Wade (2012) and Knutov, De Bra,
& Pechenizkiy (2009) provide reviews of older adaphypermedia papers.

User modeling in the information retrieval domamgne form or another, is often based
on browsing or search histories augmented withsrateother structures, and the models
themselves are information topic aggregationsdhabf interest to the user. A recent example
from this research vein can be found in de Camipes)andez-Luna, Huete, & Vicente-Lopez
(2014), who express a popular view: “An accurapgesentation of the user profile is very
important in order to obtain good retrieval results 1281). In their report, the authors
modified a political document search engine algponito accommodate individual user models
and serve more relevant results. Another recentysKotzyba, Siegert, Gossen, Wendemuth, &
Nurnberger, (2015), investigated exploratory vaioetrolled search specifically tailored for
children in third and fourth graders. The drawbatthe report was that it described a pilot-
sized study with only five children tested. Therus@dels were individual in nature and needed
further research to be able to generalize outcomes.

Thomas, Bailey, Moffat, & Scholer (2015) estimatesars’ utility from search tasks,
expressed as a user-desired number of relevamhsezaults. The independent variables

included search query length in characters, ind@idgearch word length, and several more
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complicated arithmetically-derived query-relate@uccteristics, as well as a user’s past search
profile. Four factors diminish the applicability this report to our investigation. First, the
target variable, user utility from searching, isfamoved from spatial visualization as a
cognitive ability. Second, a user’s utility of sefaresults cannot be known with certainty even
if the user reported a particular number of desiedelvant results, as users themselves may not
be aware of what their utility thresholds are. riihthe prediction performed relatively poorly
against a baseline. Fourth, utilizing individuehech profiles for each participant that were
unrelated to the experiment of the study weakeasHility to predict a user’s utility if these
profiles were absent.

Brennan, Kelly, and Arguello (2014) investigatetbrmation retrieval tasks and
associated higher spatial visualization abilityhaitsiting and abandoning more search engine
result pages, and with longer search queries. iSlagarticularly encouraging report, because it
demonstrated behavioral differences between low-hagh-spatial-visualization participants.
We will go into more detail into this publication Chapter 6, as it informs our understanding of
the connection between spatial visualization artdmg@l adaptations.

Overall, our impression from the domains of adagpliypermedia and personalized
information retrieval was that, on one hand, usedats did not investigate variables applicable
to our research, or, alternatively, if the useliatales were relevant, the reports did not contain
attempts at detection.

2.7 Multimodal Interfaces

The multimodal interfaces domain is concerned Wwithman-computer interaction

occurring through visual, aural and haptic chanrgéer modeling in this field can be elaborate

due to the presence of multiple information strefnm® the variety of sensors and effectors.
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Dumas, Lalanne, & Oviatt (2009) present an ovenaéwlder papers. The field overlaps with
educational data mining, and some of the papex®egead in that subsection of the literature
review are relevant in the multimodal interfacemd. For example, Petersen, Pardos, Rau,
Swigart, Gerber, & McKinsey (2015) predicted usarhing from an intelligent tutoring system
from electroencephalograph feeds, while Galan asal B2012) used an electroencephalograph
to predict success on SAT-level mathematical proble

User modeling in multimodal interfaces is intenegtio us due to potentially suggesting
approaches to harvesting and processing data fomated inference of spatial ability.
However, to the extent we have surveyed the lteeatve have not encountered a report that
directly informs that goal. Instead, recent exaaph the field classified student dialogue
utterances based on gestures and postures (EzeiG@dsgaard, Lester, & Boyer 2015),
predicted learning style on a basic mechanicalresgging task from speech, gesture and electro-
dermal sensors (Worsley & Blikstein 2015), prediatser choice of graphical or voice interface
(Schaffer, Schleicher, & Mdller 2015), or predictathd wandering while reading electronic
text from gaze tracking (Bixler & D’'Mello 2015). Wsley & Blikstein (2015) presented more
elaborate user models, but used external sengaunmsntation and did not relate to spatial
visualization. Schaffer, Schleicher, & Moéller (Z)lused a generalized utility user model to
predict what they suspect are individually diffarated users again with the help of external
sensors, and their variable of interest is notipent to our research. Bixler & D’Mello (2015)
are representative of a large and long-running-fy@m&ing research direction that has had
mediocre success in predictive accuracy, withittsgance reporting 72% correct classification
over a baseline of 60%. Overall, the multimodatifégces domain is a potential source of

technique inspiration in user modeling, but dodsimiorm our research substantially.
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2.8 Accessible Interfaces

The domain of accessible interfaces and assigtslanblogies, however, does provide
previous research that is relevant to our work.r&laee documented efforts to create adaptive
applications to furnish personalized aid basedsar interactions alone. Taylor, Sr., et al. (2009)
were able to automatically modify the appearanca web page presented to older adults in
order to minimize errors on a web use task. Th@ttian was triggered by interaction errors:
mouse-click errors, scrolling errors, and contexatesas errors. The resulting system provided
performance that was not significantly differerrfr the performance of a system where a
psychologist had determined the interface custaioizs for the users. Both the adaptive system
and the psychologist-determined system exhibitesiderably better performance than the
baseline, non-adaptive system. Unlike Taylor, &ral. (2009), we focused on a substantially
complicated map survey task. Furthermore, we didawkle accessibility challenges, but rather
more demanding workflow differentials among physgtally capable users.

Another relevant effort with the goal of improviagcessibility for older adults is
Hourcade et al. (2010). The authors’ system, Pa@silst, detected mouse-pointing errors
exhibited by the elderly and selectively turnedpomter slowdown to assist the user with hitting
the interface target. Again, our goal is not adbdgy, but support for physiologically capable
users. Additionally, our research pursues a monepbex workflow efficiency improvement.

Gonzalez-Rodriguez et al. (2009) introduced GADBRA jnterface personalization
system which employed a mixture of adaptive angtaide behavior. The system aimed to
improve accessibility, and personalized user-fadiadpgs for ability differentials like typing
speed and vision accuracy. Only dialogs were mogtdtand adapted, with fuzzy logic

compounding about fifty rules to reach final laydetisions. Adaptability in GADEA depended
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on questions about age, disabilities, and perque&trences, asked in the beginning of the
interactive session. Additionally, for adaptivigADEA included background monitors that
tracked user behavior at a dialog. They measuaddyspeed, pointing speed, mouse motion
accuracy, user reaction time and others. Numeadingis of these variables were converted to
categories, e.g. “low visual precision”, and usethie fuzzy logic aggregator. Its output was
categorical and could be converted back to pergentalues for scaling visual objects. An
example adaptation rule was:

IF USER_MOVEMENT_PRECISION IS LOW

AND USER_VISUAL_PRECISION IS HIGH THEN

INTERACTIVE_OBJECT_SIZE IS BIG.

The authors piloted the system with 26 participantgled into five groups according to
their visual accuracy. GADEA created dialogs sfpetd each group for five separate messages,
resulting in 25 dialogs in total. Participants evassked to indicate their preferred dialog out of
the five tailored choices for each message. Tligoasireported percentage of participant
preferences that matched GADEA'’s suggested peligatiah.

There are multiple methodology leads in the GADE#fework, but it did not infer user
cognitive ability and took a “dragnet” approachusability, which is quite useful for specific
applications such as critical systems monitoring.

2.9 Task Detection Software

Task detection is a domain tangentially relevarduoresearch in attempting to infer user
workflows in advanced environments. Two exampleptdsk detection publications are Rath,
Devaurs, & Lindstaedt (2010) and Rath (2010). Titb@'s used machine learning techniques to

classify interactive tasks on desktop computerg. ihteractive tasks were complex and spanned
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multiple applications. The authors constructedsifacstion features from document content,
application identifiers (e.g. Microsoft Word), wiom names, user actions, intra-application
interface tracking (through Microsoft’s accesstliframework), and users’ application-
switching patterns. Interface events and intertammaponents were highly ranked as
classification attributes. A recent report on tdskection appeared in Mirza, Chen, Hussain,
Majid, & Chen (2015), where the authors attemptediscriminate between desktop activities
during multitasking. While there is superficidddness between papers in this area and our
research - the user modeling features include grapbser interface events - the goals in the
field are completely dissimilar from our directiohinvestigation, and therefore the utility of the
literature is limited to possibly intriguing datasmg techniques.
2.10 Industrial Interfaces

User modeling application domains presents itsedfyistems supporting industrial and
military operators: fighter pilots, industrial pexs attendants, air traffic control personnel and
others. There is a sizable collection of publigaidetailing context-aware interfaces for
industrial and military workflows, but the presesh®/stems do not rely on user characteristics
alone. In almost all cases, there are other enwiesttal sensors that inform the software. In
contrast, the proposed dissertation will rely amtyordinary user input to make decisions.

In this domain, an older publication that only ddesed user characteristics is Yen &
Acay (2009). Their system changed the user interffa@n air traffic control task based on
detected user errors, completion time, and numbeser actions, complemented by mutations
introduced by a genetic algorithm. The adaptatimh @/aluation process was sequential and

iterative:
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1. users completed the task on one interface Marian

2. performance was used to rank the current irteréagainst all previously tested
variants,

3. a set of new interfaces was generated via thetigealgorithm, and

4. the process was repeated 80 times.

In case the genetic algorithm produced multipleriisices in a single generation, the
authors would only present a single variant for horaser evaluation, discarding the rest by
extrapolating performance based on the observed e variance from historic evaluations.
The underlying assumption for the extrapolationesgpp to be that user performance has a
Gaussian distribution with the historically obsehmean and variance. The utility of Yen &
Acay’s work to our dissertation project is limitdzkcause their framework made it possible to
know when the user committed an error.

A relatively recent interface project with induatrimplications is presented in Chang et
al. (2013). The authors developed a personal kalystauthentication system based on inter-
keystroke timings during typing tasks. The sofevamas aware of the individual cognitive
idiosyncrasies of its users exhibited in their irfkeystroke delays, being able to correctly
identify the user with precision exceeding 98%mnc8ithe research project is aimed at an overall
cognitive “fingerprint” of a user, we cannot dirgctonnect the outcomes to our research.
However, the sequential and timing user input flestwised in the recognition task inform the
machine-learning methodology we intend to useHerdissertation project.

2.11 Conclusion
In this chapter, we touched on an assembly ofdighat contain publications which are

“research neighbors” to the present work in preag@amily methodology. More generally, we
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have not been able to discover reports investigaiersistent cognitive abilities within a
software engineering context. This state of ttexdture may possibly be due to the scarcity of
breakthroughs in classification with the varialtlegt have been attempted so far, as well as to
light interest in behaviors from an engineeringupeint All of the surveyed fields seem to still
be moving towards obtaining better results withrtpamary variables, which are unrelated to

our project.
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CHAPTER 3. DESIGN AND PERFORMANCE STATISTICS

This chapter describes three human-subject expetgmavestigating individual
differences in address verification tasks. The eslverification tasks under consideration
consisted of the following stages (stages 1 ane 2néerchangeable):

1. find a specific address on a map;

2. locate the same address in reality;

3. ensure the address is correctly reflected on thpand amend the map if necessary.

The goals of this chapter are: (a) to convey tlps@nd intricacy of our data creation
efforts; and (b) to present performance resulthvprovide support for this dissertation’s
objectives, in the sense that recurring performaliiferentials may indicate the presence of
systematic behavioral differences.

The Paper Map study will be described first. Irpdrticipants verified addresses in the
field with pen and paper. The study allowed ushisenve between-user differentials in non-
software address verification, and therefore estalhe credibility of individual difference
research in this area.

The second experiment in this chapter is the StatipSimulation experiment, where
participants verified addresses on a tablet dewitie sitting at a desk. Information about the
address location in reality was presented in panmraedestrian-perspective photos of
residential neighborhoods. The experiment allou®tb observe a fully controlled environment
where both the available information about addiessel the verification workflow were

constrained.
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Lastly, in the Field-and-VR experiment, participgaosed a handheld device to verify
addresses in both the field and a high-fidelity iensive virtual environment. This experiment
allowed us to observe participants acting with aberable degrees of freedom.

3.1 Paper Map Study

Spatial visualization ability has been linked tofpanance on a variety of tasks. Some
examples include command-line interfaces (JenniBgeyon, & Murray 1991, Benyon 1993),
file system navigation (Vicente, Hayes, & Willigg887), searching an information retrieval
system (Downing, Moore, & Brown 2005), web brows{@pang and Salvendy 2001), simulated
driving (Andrews and Westerman 2012), and remotgrobof robots (Liu, Oman, Galvan, and
Natapoff 2012). The existence of these prior repsupported the possibility of individual
differences manifesting in address verification.

The design of the paper map study was based on-ameepaper protocol to avoid
constraints associated with computers. As softwacehardware could hamper the user with
hidden workflow bottlenecks, removing both woulbtbal the participant freedom of behavior.
The literature suggested a second benefit to awpidichnology: if divergent behavior was
observed on the core cognitive task, the diffeeémcould be magnified in subsequent computer-
based exercises (cf. Benyon, Crerar and Wilkin2001), pp. 21-22). A third advantage of a
paper-only approach would be to support other cdermxperiments by providing a baseline of
fundamental individual differences in address veatfon. The capability to compare statistical
results from a paper-only study against resultsh\feocomputer study would improve both

plausibility and generalizability of inference.



27

3.11 Teamroles

This research study was conducted in collaboratitim Kofi Whitney, Les Miller, and
Sarah Nusser. Drs. Miller and Nusser acted adtjaadvisors, while Kofi Whitney and Georgi
Batinov equally shared in the work of designing ardcuting the study.
3.1.2 Design

The experiment consisted of a cognitive test plaasia field exercise phase. Cognitive
testing was performed in a room at the lowa Stativéysity campus, while subsequent field
activities occurred in a residential neighborhobdmes, IA. In the field, twenty-six
participants were asked to check whether severeases in a residential neighborhood were
correctly reflected on a paper map, shown in Figuie Participants had to physically walk
through the neighborhood, find the requested addsgsand amend the paper map if it did not
accurately reflect reality. They were allowed totevend mark on the map as they saw fit.

3.1.2.1Recruitment, compensation, and compliance

This human-subject experiment was approved afteeweby lowa State University’s
Institutional Review Board. Participants were réed through flyers posted on the lowa State
University campus, and public bulletin boards ioagry stores and churches in Ames, IA.
Participants were also recruited through a postimghe computerized online Student job board
maintained by lowa State University. The compeaosatffered was a $10 Target Gift card for
participating in the cognitive testing phase, ag@@ fr participating in the field phase.
Completion of the phases was not necessary for enggtion to be offered. Participants were
apprised of their rights in the experiment throagttandardized Informed Consent form (see

APPENDIX B).
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Figure 3.1 Field exercise map given to participants

3.1.2.2Coqgnitive testing phase

During the cognitive testing phase, 99 participavese individually assessed on spatial
visualization ability (VZ-2, Ekstrom et al. 197&)sual memory (MV-2, Ekstrom et al. 1976),
and perspective-taking ability (Kozhevnikov et2006) (see appendices E, F, and G). The

location of the experiment was in an office on linga State University campus. The cognitive



29

testing phase lasted approximately an hour. Abggnning of the phase, participants had to
read and sign an informed consent form. Tests a@n@nistered in immediate succession, with
one-minute breaks between test sections and tbréeetminute breaks between testsThirteen
participants with spatial-visualization scores oweequal to 14.5 (out of possible 20) or
perspective-taking scores over 29 were assign#dtethigh-spatial group. Thirteen other
participants with spatial-visualization scores kel (out of 20) or perspective-taking scores
below 11 were assigned to the low-spatial groupspeetive-taking scores have no defined
maximum, but a score over 25 is considered highidgaants in the high-spatial and low-spatial
groups were admitted to the field exercise.

The map contains highly irregular intersections emdiing streets in the eastern half,
while the western half contains right-angle intetses and straight-line streets. There were
three addresses to verify in the “irregular” hdltlee map, three addresses to verify in the
“ordinary” half, and one address to verify on tlegth-south street bisecting the map.

3.1.2.3Field phase

During the field exercise, 26 participants (7 mpiesre taken individually to the exact
same spot in a residential neighborhood in Amesald hey were trained on locating addresses
in the field and the think-aloud protocol. An obsarprovided them with a clipboard with a
paper map of the neighborhood on the front sidéX279 mm/8x11.5 inches, shown in Figure
3.1), a list of seven addresses taped to the Hatle@lipboard, and a four-colored ink pen. The
next subsection reports on the details of targdtess selection.

The observer explained the task, the think-alowdgaol, and the possible results of each
scenario. The goal of a participant was to deteenmthether the seven addresses were correctly

reflected on the paper map. Participants would hayysically walk to an address in order to
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answer the question. If the map contained errbeg; were expected to mark or write on the map
to indicate the proper position of the addresstiétpants were further informed that

experimenters were not interested in map errotsikee not at the target addresses.

Figure 3.2 Example participant in the Ppr tu. Theaperma affixed to the front of the clipboard,
while a randomized list of target addresses identical to all participants is affixed to the back. The participant is
holding a four-colored pen and is able to mark on both map and address list as desired.

Four outcomes were possible for each addressd{ip-map, (2) move-on-map, (3)
delete-from-map, and (4)onfirm-on-map. Participants were told to only work on the reqeds
addresses and to ignore other possible errorseomép. Participants were not told that the map
contained no errors outside of target addresses.

After the initial explanation, participants weré&ed to locate and verify three training
addresses in the immediate vicinity on a simplifieap with only two streets, while the

observers answered procedure questions and profaddtack on the quality of the think-aloud.
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At the end of the training session, observers arexvany final questions participants
may have had. They also explained that they woatdatk or answer questions during the
experiment, other than to prompt the participarkeiep verbalizing or to ask about behavioral
details. Observers (1) returned the participahéoexact location where all trainees started; (2)
replaced the training map with the full exerciseorend (3) started an audio recorder (a Zoom
H2 Portable Stereo Recorder, worn by the partid¢jpeamd a GPS tracker (a HTC Android smart
phone, carried by the observer). The GPS trackemagagiven to the participant to avoid
interrupting the workflow to time-stamp scenariongetions. Additionally, observers walked
behind the participant, establishing a close agpration of the exercise path. Observers wrote
comments on standardized coding sheets of papearticipant in the experiment appears in
Figure 3.2.

After participants solved their final scenario, eh&rs audio-recorded an exit
guestionnaire of 13 items detailing the participmperceptions of the exercise (see APPENDIX
).

3.1.2.4Map composition and target addresses

The study map (shown in Figure 3.1) contained tayelis. Street layout and labeling
were composed from the Census Bureau’s TIGER/Latas®t, located on the Census Bureau
website at https://www.census.gov/geo/maps-dat@itoger-line.html. Address spots and labels
were based on a set of parcel centroids furnisiggdStory County Geographic Information
Services Office. This is a governmental unit in Bida, 1A, USA, online at
http://www.storycountyiowa.gov/index.aspx?NID=108e address spots were moved on the

map to align with buildings visible on geo-referedcsatellite photos. The resulting map layout
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was an approximation of the Census Bureau’s in-@eigial presentation, which is unavailable
to units outside the Bureau.

All participants verified the same seven addres$fesf an identical randomized list
order, and therefore could not benefit from inate@rroute hints. The list could be consulted at
all times by flipping the clipboard. The opposibeadtions of the map and list meant that both
could not be consulted at once unless the listag were detached from the clipboard. This
design choice made it obvious when users were aigthe list of addresses. Participants were
allowed to work on addresses in any order and caaildn to previously submitted scenarios as
many times as they wanted. Only final answers weeduated for correctness.

3.1.3 Results

The results in this section were published in W&ytrBatinov, Nusser, Miller, &
Ashenfelter (2011). Table 3.1 presents the obsecwerelations between the three cognitive
tests. The correlation valuay ére listed together with values expressing the probability the

correlation did not exist given the available w&sires.

Table 3.1. Cognitive test score correlations.

COGNITIVE TEST COGNITIVE TEST n r p

Spatial Visualization  Visual Memory 26 0.54 0.00
Spatial Visualization = Perspective-taking 260.44 0.02
Perspective-taking Visual Memory 260.36 0.07

The following performance ranges were observetienstudy: 30 to 66 minutes for
exercise completion times between 30 and 66 minprsonal distances traveled between 1.10
mi and 1.88 mi (1.77 km and 3.02 km), and O tac®irectly completed addresses per exercise.

Total time, distance traveled, error pre-detection, and the number @ rors made by each
participant were correlated with cognitive testreso Table 3.2 presents the significant

correlations between cognitive test scores andpeegnce metrics. Spatial visualization test
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scores were negatively correlated with total time ¢0.44, p = 0.02) and distance traveled €

21, r = -0.65, p = 0.00), revealing that lower-scoring participants tenttethke longer and travel
farther to complete the exercise. Perspective-tpkaores were negatively correlated with total
time ( = -0.51, p = 0.01), suggesting that, on average, participants vemvel perspective-

taking ability were slower in arriving at solutionadditionally, both spatial visualization scores
and perspective taking scores were positively tabed with error pre-detection, which tracks
the tendency of participants to notice addresgemdile initially familiarizing themselves with
the map. Correlations with pre-detection reveal kigh-ability participants were more likely to

detect flaws in the map model without needing dums reality.

Table 3.2 Correlations of cognitive test scores and petformance

COGNITIVE TEST PERFORMANCE METRIC n r p
Spatial Viz. Total Time 26 -0.44 0.02
Spatial Viz. Distance Traveled 21 -0.65 0.00
Spatial Viz. Error Pre-detection 21 044 0.05
Persp. Taking Total Time 26 -0.51 0.01
Persp. Taking Error Pre-detection 25 049 0.01

3.1.4 Conclusion

Overall, the Paper Map study provided evidence thatin address verification task,
increased spatial visualization ability and persipeetaking ability correlate with better
performance. The direction of the statistical catio®m was congruent with published findings in
other exercise types (e.g. command-line interfédesnings, Benyon and Murray (1991)),
simulated driving (Andrews and Westerman 2012) atencontrol of robots (Liu, Oman,
Galvan, and Natapoff (2012), suggesting that amesddverification task is one more activity

that is sensitive to spatial ability components] apatial visualization ability in particular.
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Evidence of performance differentials on the “be&gitask encouraged a search for behavioral
differentials.
3.2 Stationary Simulation Study

This exercise investigated individual differencesddress verification with significant
constraints on both software workflow and inforroatavailable in the panoramic views of the
target addresses. Twenty-four participants usedead verification software on a tablet device
while viewing photos of a neighborhood. Particiganere in a stationary seated position for the
duration of the exercise, and the photos were ayggl on two adjacent monitors (as shown in
Figure 3.1). Participants had to amend addresgitots on the tablet to reflect the information
presented on the monitors.
3.21 Teamroles

This research study was conducted in collaboratitim Michelle Rusch, Kofi Whitney,
Les Miller, and Sarah Nusser. It was publisheRasch, Nusser, Miller, Batinov, & Whiney
(2012). Drs. Miller and Nusser acted as facultyisahg, Michelle Rusch designed and executed
the study, Georgi Batinov wrote the software, asglsted with the study design and execution.
Kofi Whitney assisted with the study design, exeduhe study, and contributed to the software.
3.2.2 Design

The study consisted of two phases: a cognitiveplease and a computer exercise phase.

3.2.2.1Recruitment, compensation, and compliance

Participants were recruited through flyers postedhe lowa State University campus,
and public bulletin boards in grocery stores anarches in Ames, IA. The compensation offered
was a $10 Target Gift card for participating in tdognitive testing phase, and $20 for

participating in the computer exercise phase. Cetigi of the phases was not necessary for
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compensation to be offered. Participants wereisggiof their rights in the experiment through
a standardized Informed Consent form (see APPENDLX

3.2.2.2Coqgnitive test phase

In the cognitive examination portion of the expexit) participants had to solve three
psychometric tests in the exact same sequencerdbkst al.’s (1976) VZ-2 Paper-Folding test
of spatial visualization ability and Kozhevnikolvas.’s (2006) Perspective-taking test from the
Ekstrom et al. (1976) factor-referenced test batfeee Appendices E and G). The location of
the experiment was in an office on the lowa Statesérsity campus. The cognitive testing
phase lasted approximately an hour. At the begmafrthe phase, participants had to read and
sign an informed consent form. Tests were admirgdten immediate succession, with one-
minute breaks between test sections and threeenfinute breaks between tests. All tests by
Ekstrom et al. were paper-based, while Kozhevnidoal.’'s Perspective-taking test was carried
out on a desktop computer.

3.2.2.3Computer exercise phase

For the computer exercise phase, twenty-four ppéts (twelve males) were taken
individually to a room with the computer tablet ama adjacent twenty-inch LCD monitors
shown in Figure 3.3. The location of the experimgas in an office on the lowa State
University campus. In a stationary seated posifianticipants used address verification
software running on the tablet. Their task wasgafy the map location of addresses in a town
against photos of the addresses taken from a peateperspective (Figure 3.3). The adjacent
monitors showed a combined photographed view ofsMes of the street at the target address.
The observer explained the nature of the task akedathe participants to complete two untimed

training scenarios, which were of similar type aifficulty as the experimental scenarios.
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Participants were allowed to ask questions duitiegitaining. At the end of the training, the
observer offered to answer any additional questidhgure 3.5 shows a storyboard of the

interface for one scenario.

Figure 3.3 Example participant in Stationary Simulation study (photo courtesy of Michelle Rusch). Participant
is in a stationary sitting position at a desk, and the verification software is loaded on a tablet computer fixed in
a stationary position. The two scteens show photos of two sides of a street.

The remainder of this section presents an overaiescenario types and participant
workflow. Further detail on the workflow pertaittssoftware specifics and is described in the
following “Materials” section.

In the experimental task, participants had to yeeh target addresses. Five scenario
types were tested:

a) address needed to be added to the map;

b) address needed to be deleted from the map;

c) address needed to be moved to a different location;
d) address was present and required no correctivenaend

e) address was absent and required no correctivenactio
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Each scenario type was tested in two out of tegetaaddresses. Addresses and their
sequence did not vary among participants. The sofivinap and photos depicted Cedar Falls,
lowa.

The software for this exercise offered helper goastalong the way. Figure 3.2 shows
one path through the software, corresponding toaoe (b), “address needed to be deleted from
the map”. Participants went through the followseguence while completing a target scenario:

locate the address on the photos;

1) answer a software question of whether the addrestse

2) find the address on the map, if possible;

3) answer a computer question of whether the addsess the map;

4) answer a software question of whether the addsassthe correct location; and
5) add, delete, or move the address, if applicable.

3.2.2.4Materials

Georgi Batinov wrote the tablet software for thelr@ds verification exercise in the Java
1.5 programming language and the Swing graphibeddy. The software was loaded onto a
Gateway M1300 tablet device with a 500 MHz CPU, BIR of random access memory, a 40
GB Hard Disk Drive and a 12.1-inch (307 mm) activatrix color screen with resolution of
1024x768 pixels (246 x 184 mm, see Figure 3.3). th® experiment, the tablet was oriented in
landscape mode, with a horizontally positioned vaidie of the screen. The dimensions of the
software were smaller than the tablet display toenotosely emulate the screen real estate of
handheld device that could be used for addresfoation in the field. The interface area
dimensions were 2 Y4 inches (57 mm) in width byches (76 mm) in height and the map area

dimensions were 2 1/16 inches (52 mm) in width BY8linches (48 mm) in height.
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Kofi Whitney wrote the image display software irvdd.6. Two copies with separate
photo sets were loaded on two desktop computersidr20-inch Dell LCD screens with 4:3
display ratios. The monitors were 16 inches (4@®4 wide and 12 inches (30.48 cm) tall. The
verification software sent photo display commaradghe desktop computers via a wired local
area network. The adjacent monitors showed a caedlphotographed view of two sides of the
street at the target address. Both desktops an@iet ran the Windows XP Professional
operating system. Participants used a stylus otatiiet’'s touch screen to perform software
operations. Every time a participant signaled thet ©f a scenario, the tablet software
commanded the display stations to change the emmieatal view. At the end of the two
training scenarios, the displays were commandetioav red stop lights until the observer
finished answering any last questions by the pp#id. Figure 3.3 displays the tablet computer
and the environmental displays as they were usgdglthe experiment.

There were two interface versions presented toguaahts: the “guided” interface and
the “unguided” interface. The guided interface hdditional elements compared to the
unguided interface (Figure 3.4.). A yellow boxla top of the guided interface area contained
all the steps necessary to complete the currenasiog with the current step highlighted. To the
right of the yellow box, a white box contained astruction on what to do for the current

workflow step. The instructions changed as workfkieps progressed (Figure 3.5).
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Flgure 3.4 Guided intetface (left) and unguided interface (right) (figure taken from Rusch, Nusset, Miller,
Batinov, & Whiney (2012).

Figure 3.5 presents a sequence of screenshots afltlress verification software with
the guiding elements visible. The sequence depl@Esages in the software interface as a
participant proceeded through a type (b) scen&aagress needed to be deleted from the map.”
The interface combined a map area (in the centién)arext display of the current target, pan
and zoom buttons, * add mapspot” and “delete mapsadio buttons, an “undo” button with
the text “Reset Map”, a “Submit” button, and optadiy, a step-by-step instruction list at the top
of the interface. The software logged and timestdradl user interface actions (e.g. button

clicks) as well as all mouse movement and events.
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Figure 3.5 Address verification workflow: screenshots proceed from left to right and then down.
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The real-world photos in the experiment were malaijedl to reflect actual scenarios that
address verification employees would encountehenfield. For example, a building was
removed from a photo that was present on the soétweap, to simulate a situation where the
building had been razed between consecutive Cenigsusys. Another manipulation was
inserting label overlays on photographed streatisbanidings to make the names and addresses
of objects in the photo obvious to the participahhe scenarios varied along six factors: photo,
street name, road configuration (four-way intensegtthree-way intersection, and others), map
location, and user facing depicted on the phototfnsouth, east, west).

The map used in the experiment was assembled in A8BIS from data layers of (1)
streets, provided by the Census Bureau TIGER/Lémeess at http://www.census.gov/geo/maps-
data/data/tiger-line.html, and (2) address locatigmovided by the lowa Department of
Transportation. The resulting map, visible in figsi 3.4 and 3.5, approximates the visual
presentation used by Census Bureau survey takéhms field. The Census Bureau map was,
naturally, not available to us for the experimehie to privacy concerns.

3.2.3 Results

Ordinary-least-squares regression identified pagtef interdependence between
participant performance and cognitive test scoresre was statistical significance in
relationships involving both spatial visualizati®fZ) and perspective-taking (PT) abilities. To
gain more understanding of the relationship betvagetial visualization and perspective taking,
two extra variables were constructed to capturerdint aspects of the co-variability of the two
predictors. While perspective-taking ability wast mteresting on its own, it became relevant in
combinations with spatial visualization ability @a 3.3). For that reason, the report contains

three sets of analyses: (a) one with spatial vizai@n only; (b) one with spatial visualization
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and the difference VZ-PT, which captures the “dffe€ having lower perspective-taking; and
(c) an analysis with the average of (VZ+PT)/2 tbgetwith the difference VZ-PT, where the
first term captures synergistic patterns of the psgchometric scores, and the second term

captures the “effect of the gap”.

Table 3.3 P values for ANOVA F-tests for petformance and behavioral variables.

Variable Time (s) Accuracy (log m)
Spatial Visualization (VZ) 0.001°

Spatial Difference (VZ-PT) 0.006° 0.02¢

Spatial Average (VZ+PT)/2 0.05¢

a) Model only with VZ.
b) Model with both VZ and Spatial Difference.
c) Model with both Spatial Average and Spatial Diffese.

The following response variables were tested: tota in seconds and accuracy of target
address placement in m (log-transformed and tHowialg percentage interpretation). With
both time and accuracy, lower scores (in seconddanmeters) indicated better performance.

The significant predictor variables included:

% Age, as a factor variable with levels 18-29, 308949, 50-59, and 60 and over;
+« Gender as a factor variable (0 = male, 1 = female);
« Gender*Interface, as an interaction factor variaalpturing difference in male-female
response to guided vs. unguided interfaces;
« Spatial Visualization (VZ) as a numeric predictor;
«» Spatial Difference (VZ-PT) as a numeric predict@asuring “the gap”; and
+« Spatial Average ((VZ+PT)/2) as a numeric predich@asuring synergy.
In the analysis including both the spatial average spatial difference, the average of

visualization and perspective taking was statiljidmked to total time. The coefficient

estimate was -320 (SE=145). The coefficient isrpreted as follows: for every two points in
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either spatial visualization or perspective takafgity, the participant spent 320 seconds less on
the exercise! The analysis with spatial visualma@énd spatial difference had a significant
coefficient for spatial visualization of -327 (SB€) and a significant coefficient for spatial
difference of -245 (SE=74), indicating similar cmlesable increases in time performance.

The analysis including both spatial average antiaphfference revealed a negative
relationship between spatial difference and housimglocation (in log meters). The value of
the coefficient was -.69 (SE=.26), which is intetpd as follows: for every point of difference
between spatial visualization and perspective tgkime user-determined housing unit locations
was 69% farther from target location.

3.24 Conclusion

The Stationary Simulation study unearthed eviderigeerformance differentials on a
computerized address verification task with a aams¢d workflow. The outcomes from the
Stationary Simulation experiment supplement theaues from the “baseline” Paper Map
study. The existence of statistically significaptformance measures encouraged us to search
for behavioral differentials. Behavioral differexis became the backbone of the detection
technique.

3.3 Field and Virtual Reality Study

In the third address verification experiment, maptnts verified addresses with a
handheld device in both the field and a high-figalinmersive virtual environment. This new
design built on both the freeform nature of thegrapap study and the experience with
software-aided workflows acquired in the Station@myulation study. The key features of the

design were (a) participants’ ability to freely neowside the experimental area, and (b) an
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interface which allowed completing scenarios in arger and resubmitting answers at will.
Like previous studies, the experiment containedgnitive testing phase and an exercise phase.
331 Teamroles

This research study was conducted in collaboratitim Kofi Whitney, Les Miller, and
Sarah Nusser. Drs. Miller and Nusser acted adtjaadvisors, while Kofi Whitney and Georgi
Batinov shared the work in designing and executnegstudy equally.
3.3.2 Design

3.3.2.1Recruitment, Compensation, and Compliance

Participants were recruited through flyers postedhe lowa State University campus,
and public bulletin boards in grocery stores anarches in Ames, IA. Participants were also
recruited through a posting on the computerizetherbtudent job board maintained by lowa
State University. The compensation offered was@Harget Gift card for participating in the
cognitive testing phase, and $20 for participatmthe field phase. Completion of the phases
was not necessary for compensation to be offelRadtticipants were apprised of their rights in
the experiment through a standardized Informed @urf®rm (see APPENDIX M).

3.3.2.2Coqgnitive Testing Phase

During the cognitive testing phase, one-hundredtamshty-four participants were
individually assessed on spatial visualizationyalsmemory, and perspective-taking ability. The
tests were VZ-2, MV-2, and P-2 by Esktrom et a@7@), and the perspective-taking assessment
in Kozhevnikov et al. (2006). The location of thegeriment was in an office on the lowa State
University campus. The cognitive testing phaseethsipproximately an hour. At the beginning

of the phase, participants had to read and signfarmed consent form. Tests were



46

administered in immediate succession, with one-eibueaks between test sections and three-
to-five-minute breaks between tests.

Participants with spatial visualization scores tgethan or equal to 15 or less than 9 (out
of 20) were randomly assigned to one of two treatsan the exercise phase. Pairs from either
the low or high spatial visualization groups weardomized together, allowing each participant
a .5 probability of assignment to either the virtigality treatment or the field treatment. Thirty-
two participants (14 males) were admitted to trewsd phase of the experiment.

3.3.2.3Exercise phase — Field Treatment

For the field treatment, 15 participants (8 malesje taken individually to the exact
same spot in a residential neighborhood in Amesald hey were first trained on using the
handheld device, locating addresses in the field,the think-aloud protocol. An observer
provided them with a stylus and a handheld compat®haros Traveler 535x with a 240x320,
3.5” transflective screen and a 624 MHz Intel PXB2®rocessor. The observer explained the
task: determining whether a list of six addressas worrectly reflected on a software map
(shown in Figure 3.6). Participants would havehgscally walk to an address in order to
answer the question. If the map contained errbey; had to use the software’s editing features
to position the address at the correct locatiorenrove it altogether. Four outcomes were
possible. An address needed to either be addé tmap, deleted, moved to a new location, or
confirmed without changing the map. Participantseaeld to only correct the requested
addresses and to ignore other possible errorseom#p. The map contained no errors outside of

scenario addresses (Figure 3.7).
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Figure 3.6 Address verification software with address list extended

Participants were then taught how to navigate aidlee software map, and were also
instructed to verbalize all their thoughts for akhaloud protocol. The map software was started
in training mode and participants were asked tatland verify three training addresses in the
immediate vicinity, while the observers answeraacpdure questions and provided feedback on
the quality of the think-aloud. At the end of tih@ining session, observers answered the
participant’s final questions, and also explaireat bbservers would not talk during the actual
exercise or answer questions, other than to promepparticipant to keep verbalizing or to ask
about behavioral details.

Observers then returned the participant to thetdeaation where all trainees started,
switched the map software to experiment mode, tartesl an audio recorder (worn by the
participant) and a GPS tracker (carried by the mlese The GPS tracker was not given to the

participant so that they would not be interruptetirhe-stamp scenario completions. In return,



48

observers shadowed the participant, establishtigse approximation of the exercise path

Figure 3.7 depicts an example participant in th&lfi
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Figure 3.7 A correct map together with the errors introduced to six target addresses. 2111 Graeber St, 2124
Hughes Ave, 2110 Country Club Blvd, 2103 Country Club Blvd, and 2030 Cessna St were moved to an incorrect
location, while 2116 Country Club Blvd was deleted.

All exercise-takers verified the same six addre§ses an identical randomized list

order (see Figure 3.7 for a complete list of tesgegether with their error status), and therefore

could not benefit from inadvertent route hints. Tieecould be invoked at all times in software
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by tapping the currently selected scenario (Figuég. Participants were allowed to work on
addresses in any order and could return to preljicudmitted scenarios as many times as they
wanted. Only final answers were evaluated for aness.

After participants solved their final scenario,tfe®uld signal that they had finished the

exercise.

Figure 3.8 Dr. Les Miller inside the C6 immersive virtual environment. Five of the six projection walls of the
environment are visible. The sixth wall is retracted to expose the participant for the shoot. A street sign of
Greeley Street is in the foreground. The steteoscopic double image allows for depth perception when the user
is wearing stereo glasses (pictured).

3.3.2.4Exercise phase — Virtual Reality Treatment

Seventeen participants (6 males) were randomlgmsdito the virtual reality treatment
and were taken individually to a C6 immersive \aitceality environment on the lowa State

University campus (Figure 3.8).
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3.3.2.4.1 Virtual reality model

The virtual setting loaded in the environment wéwsgh-fidelity three-dimensional
model of the residential area (Figure 3.9), witle amore block modeled outside the westernmost
and easternmost extents of the map. The dimensifahe model were roughly 600 x 600 m
(2000 x 2000 feet). The model was created in Skgtgittp://www.sketchup.com) and
imported into the virtual reality environment thgiuVR Juggler (http://www.vrjuggler.org).
Housing units and streets were georeferenced. Actussing units were represented by house
models of similar size and style selected from &kab’s repository of three-dimensional
housing models (http://sketchup.google.com/3dwarsel). The neighborhood model also
incorporated notable landmarks in the area, ssiges, curbs, textured surfaces, a day sky with
sun, and trees and shrubs. Multi-lane streets plitdbsulevards were represented correctly. The
model did not include sidewalks.

3.3.2.4.2 Virtual reality equipment

The virtual reality room was a cube with dimensi8r35 x 3.05 x 3.05 m. Each of the
six walls displayed stereo images of 4096 x 40%@lpiat approximately 16 frames per second.
Video projection was driven by a cluster of 48 H800 workstations with 96 nVidia Quadro
graphics cards sending video frames to 24 Sony SRO6 digital cinema projectors.
InterSense’s 1S-900 tracking system tracked theqggaaint’'s head location and gaze direction,
and the stereo perspective dynamically shifted ighuser’'s gaze. The participant wore active

stereo glasses.



51

3T Tt 2 e ey =4

Figure 3.9 The virtual environment model was a high-fidelity replica of an Ames neighborhood.
3.3.2.4.3 Moving in virtual reality

Movement in the environment was accomplished ypste towards the desired
direction. A circular spot in the center of theditpapproximately 0.6 m (24 in) in diameter, was
the “dead zone”. If the participant’s head was tedan the column of the spot, all movement
stopped. Stepping outside the dead zone wouldmataring the virtual reality model in the
opposite direction of the step, giving the illusmiithe participant moving through the model in
the direction of the step. As the participant segpploser to the walls, movement speed
increased, from approximately 0.1 m/s to a maxinofimpproximately 2.22 m/s (8 km/h or 5
mi/h). The maximum speed was set to a slow troabee of concerns that a higher speed could
not be encountered in the range of walking speeaitable to participants in the field treatment,

and a lower maximum speed could bore participaiatissing them to lose focus.
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3.3.2.4.4 Protocol differences from the Field treatment

The exact same protocol was employed for bothrtreats, with one exception. Prior to
introducing the handheld device, participants viexied on moving inside the virtual
environment.

3.3.3 Results

The results in this section were published in BatinWhitney, Miller, Nusser, Stanfill, &
Ashenfelter (2013). When compared to the Paper $tagy, The Field-VR study had a similar,
albeit more complicated, design. Taking into ac¢dahe findings from the Paper Map and

Stationary Simulation studies, we postulated tiieiong two performance hypotheses:

Hypothesis 1: High-spatial-visualization participants would travel significantly
shorter distances than low-spatial-visualization participants.
Hypothesis 2: High-spatial-visualization participants would take less time than

low-spatial-visualization participants in both the field and virtual
environments.
To accommodate the increased complexity of the raxjgat, the statistical tool of choice
was ordinary-least-squares regression. The modklttee following form:
(2) Y=E+S+E*S+G,
where:
% Y is the response variable (a performance metg(distance) and log(time));
« E is a factor variable denoting environment type (ield, 1 = virtual);
% S is a factor variable denoting spatial visual@atbility (O = high; 1 = low);

« E*S is an interaction of the environment and spéiels; and

*,

» G is a factor variable for gender (0 = female; male).
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The log form of the response variable allows f@ayaaterpretation of regression
coefficient: a coefficient, when multiplied by 10fescribes the percentage change in the
response variable that is attributable to a chahdgvel of the predictor variable. lllustrative
examples from the actual data will be presenteshort order.

The Environment* Spatial interaction term is attempting to capture diffexesin
performance of a given spatial ability level whka environment varies. What that term adds to
the model is accounting for possibility of high-Bpbparticipants having greater or smaller
performance differential from low-spatial particig when in virtual reality, as compared to the
differential in the field.

Table 3.4 presents the results where time is thgorese variable.

Table 3.4 Regtession results for log(time).

Term Estimate Std. Error t-value Pr(>|t))
(intercept) 3.338 0.112 29.814 0.00
Environment 0.083 0.159 0.524 0.605
Spatial visualization 0.398 0.152 2.622 0.014
Gender 0.005 0.107 0.050 0.961
Env*Spatial 0.014 0.209 0.068 0.946

Of the tested variables, only spatial visualizappooved to be a significant predictor of time
performance. The log form of the response allow®sdate the significant result in the
following form: low spatial visualization participts, on average, took 39.8% more time to
complete the exercise. The other potential predictbowed no evidence of gender or
environment affecting the time performance of ggrants.

Table 3.5 shows outcomes for the ordinary-leastusegiregression model where distance

is the response variable.
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Table 3.5 Regtession results for log(distance).

Term Estimate Std. Error t-value Pr(>|t))
(intercept) 0.021 0.117 0.177 0.861
Environment 0.268 0.166 1.617 0.117
Spatial visualization 0.373 0.159 2.355 0.026
Gender 0.029 0.111 0.261 0.796
Env*Spatial -0.425 0.218 -1.944 0.062

The log form of the response variable allows usagain to state the performance result
as a percentage. The model suggests that low-spatt&cipants, on average, travelled 37.3%
longer distances while completing the exercise. dther predictors — environment and gender —
once again failed to reach significance levels.l@aB.4 and 3.5 show that both performance
hypotheses were validated.
3.34 Conclusion

The virtual reality and field treatments preserdatkw set of environments, new
locations, new software, and a new protocol torexiur understanding of the relationship
between spatial ability and computer behaviorsthis last and most elaborate of the three
experiments, performance differentials were on@ralinked to spatial visualization ability.
The existence of performance statistics encourtgedearch for behavioral statistics, which
would then promote behaviors for spatial visual@atietection.

3.4 Conclusion

Behavioral differentials are crucial to the propbsiessertation as the backbone of any
approach to automatic recognition of spatial vieadilon. This chapter reported on our
investigations of address verification in thredidig experiments: the “baseline” Paper Map
study, the “constrained workflow” Stationary Simida study, and the “unconstrained

workflow” Field and VR study. All three researchespts produced statistical evidence for the
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divergence in performance between high-spatialalization and low-spatial-visualization
participants. These quantitative outcomes wergatdrs of the potential of behavioral
differentials, which empowered automated abilityognition. As a logical next step, the coming

chapter reports on behavioral statistics.
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CHAPTER 4. BEHAVIORAL STATISTICS

Chapter 3 presented statistically significant peniance differentials between high-
spatial-visualization and low-spatial-visualizatiparticipants in all three address verification
experiments. The availability of statistical resuh performance encouraged a search for
systematic behaviors that can inform computeripadial visualization detection. This chapter
reports on statistical evidence of behaviors intkinee studies.

4.1 Paper Map Study

The Paper Map Study was described in detail in @n&dp Data for the statistical tests on
behavior came from three sources: user notes, \wrseotes, and think-aloud protocols. Data
from user notes consisted of the number and cleadns of the marks made by users on the
provided paper map and address list. Observesmmaietained the number and descriptions of
behaviors exhibited by users. Think-aloud proteagére audio recordings of participants who
verbalized their thoughts as they confronted tres@sge. The recordings were encoded into a rich
set of events that could support statistical qgeri€he set of unique think-aloud codes can be
found in APPENDIX H.

4.1.1 Annotation behaviors
The correlations of cognitive test scores and atmg behaviors of participants were

tested. Four behaviors exhibited significant datrens to cognitive ability (Table 4.1).

Table 4.1 Association of cognitive test scotes with map and list variables (Welch’s ¢ test)

Variable Cognitive Test Y,-Yy, (SE(Y{-Yy)" | p

Iﬁ;get streets highlighted on Spatial Visualization -4.25 1.54 0.01
Map annotations Perspective-taking -4.45 1.52 0,02
List annotations Perspective-taking -4.31 1.90 0,05
Route sequence on list Visual Memory 3.29 1.11 0/01

* Y1 is the mean of cognitive test scores for all wkbilgited the behavior.
** Yo is the mean of cognitive test scores for all witbribt exhibit the behavior.
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Participants with lower spatial visualization stended to highlight target streets on
the map. Additionally, participants with lower ppective-taking scores tended to leave (1)
more marks on the map and, (2) more marks onshefladdresses. The above three behavioral
differences provide evidence that lower-spatial{gtparticipants desired and created more
visual workflow elements. This outcome resonatdh tie findings of Jennings, Benyon and
Murray (1991), where high-spatial-ability particiga performed better with a command-line
interface.

In the fourth behavioral difference, participanigmhigher visual memory were more
likely to record an ordering of visited addressé&his result superficially appears counter-
intuitive because of the previous three behaviétewever, the sequences were written on the
list of addresses on the back of the clipboardctviprevented users from viewing the map
concurrently with the list. All but one user (whetached the back sheet) were forced to flip
back and forth between map and list. High-visuahmory participants would have an advantage
at recording the route sequence without lookindhatmap.

4.1.2 Observer-reported behaviors

More statistically significant behavioral differexsecwere present in user behaviors
reported by observers. The data for this statistiest consisted of the number of observed
occurrences of a particular behavior, as recorgesturly administrators. Spatial visualization
test scores were positively correlated vatiaress error pre-detection (n= 21,r = 044, p =
0.05), which tracked user tendency to discover mapreataring the map inspection at the
beginning of the exercise. This correlation suggbgih-spatial users made inferences about

target correctness based on reading map detag.alon
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Spatial visualization scores were also positivelgrelated withnearest address selection
(n=21,r =045, p= 0.04), which tracked user tendency to choose the d@seslable address
when selecting verification targets. This correlatsuggests high-spatial users minimized
distance traveled in the short term: a strategylvhppears to have contributed to the improved
performance of the high-spatial group.

Perspective-taking test scores were positivelystated withaddress error pre-detection
(n=25,r = 0.49, p = 0.01) andcardinal heading usage (n = 23, r = 0.51, p = 0.01), indicating
that participants with higher perspective-takingres found target address errors during initial
map inspection, and also verbalized a cardinallireouth-east-west) frame of reference.

4.1.3 Phase-specific behaviors

4.1.3.1Workflow phases

Two broad workflow phases were distinguishablehia Yerification of a single address:
the “approach” phase and the “verification” pha3ée user was in the “verification” phase when
in a physical vicinity of the target housing urhiat contained enough information to verify the
address. The user was in the “approach” phasdle wavigating to the target vicinity.

The approach and verification phases were distgigad as follows. The vicinity of a
target housing unit included two immediate neiglhmr the left, two immediate neighbors on the
right, and three immediate neighbors on the opgpsitte of the street. The approach phase ended
when a participant verified a neighboring addresshe ground.

4.1.3.2Think-aloud protocols

Think-aloud protocols were audio recordings of ipgvénts who verbalized their thoughts
as they confronted the exercise. The recordirgye wncoded into a rich set of events that could

support statistical queries. The set of uniquektfaloud codes can be found in APPENDIX H.
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Analysis of the protocols yielded a number of sigaiit behavioral differences between
participants of low spatial ability and high spha@aility. The findings from the approach and
verification phases are discussed in their owneest

4.1.3.3Approach phase

Eleven statistically significant behavioral diffaces were discovered through Wilcoxon-
Mann-Whitney two-tailed tests during the approaelgs (Table II). Four of these behaviors were

only exhibited by the low-spatial group.

TABLE 4.2 BEHAVIORAL DIFFERENCES - APPROACH STAGE (WILCOXON-MANN-WHITNEY TWO-TAILED TEST)

Behavior Group that ismore p-value | Only onegroup
likely to exhibit the exhibitsthe
behavior behavior

Heading selected Low 0.00 Yes

Identified map relation Low 0.045 Yes

erroneously

Numbering pattern Low 0.02

recognized

Map relation identified Low 0.04

Map rotated High 0.00

Navigation plan reinforced Low 0.02

Planning with a map Low 0.01 Yes

Orient self with regard to | Low 0.00 Yes

cardinal directions

Position located on map Low 0.02

Recall target Low 0.0497

Street identified Low 0.02

The only behavior that was exhibited more frequelnyl the high-ability group was map
rotation (“map rotated”, n = 21, p = 0.00), in whithe participant would turn the map in a two-
dimensional plane roughly perpendicular to theregmcidence, in order to align it with either
their facing direction (and thus obtain a “track-upew of the map) or with known elements in

reality, for example, when determining if an address in the correct location.
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Low-spatial participants were more likely to veibalplanning with a map (“planning
with a map”, n = 21, p = 0.01). We found no staté evidence for difference in verbosity
between low-spatial and high-spatial participaftss means low-spatial participants spent more
time planning with the map.

Continuing the pattern of map behaviors, low-sp@i@aticipants were more likely to
speak out relations inferred from the map (“maptreh identified”, n = 21, p = 0.04). At the
same time, low-spatial users were the only groupa&e observable mistakes while decoding
the map (“identified map relation erroneously”, 2E p = 0.045). This behavioral differential
cannot be attributed to spending more time withntlag, because map usage was also tracked
with the very frequent “check map” event, which wags statistically significant between the
two groups.

Low-spatial participants were also more likely erlvalize recognizing street numbering
patterns, which included odd-or-even sides of theesand directions of number increase or
decrease (“numbering pattern recognized”, n = 210@2). The low-spatial group exhibited a
behavior called “orient self with regard to cardidaections”, whereby a participant would
convey having aligned themselves along a northkseast-west frame of reference (n = 21, p =
0.00). An example of the behavior would be théest@nt, “Facing west, Ash Avenue is in front
of me.” This finding needs to be contrasted with tlrdinal-usage differential reported in the
“Observer-Reported Behaviors” section (n = 23,@G1), where high-perspective-taking
participants were more likely to use a cardinainfesof reference. The two findings are not
contradictory, as explicit self-alignment was ophgsent in the low-spatial group, while cardinal

direction usage was encountered in both groups.
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The “heading selected” event denoted a particidanlaring an immediate direction of
movement using egocentric or geographic framefefeace such as “I am going to turn left” or
“I am heading south”. Low-spatial participantses¢éd a heading more frequently (n =21, p =
0.00).

Low-spatial participants were also more likely trbalize refinements to their
navigation plans, as evidenced by the “navigatian peinforced” variable (n = 21, p = 0.02).

For a navigation pronouncement to be considerddrg i needed to contain at least two
segments, such as, “l will take Ash and then Peaticsget to Greeley”, or a segment and two
turns, such as “I will turn right on Ash and thenrt left after two blocks to get to the address”.
Shorter navigation pronouncements were not corsibelaborate enough to constitute planning.
Yet statistics in Chapter 3 showed that low-spataaticipants took a longer route to complete
the exercise, and we already saw that low-spassutended to select a heading more
frequently. Both of these behaviors show thatithespatial group exhibited lower planning
efficiency.

Low-spatial participants mentioned street nameseroften (“street identified”, p =
0.02), recalled their previously chosen target asslior street more often (“recall target”, p =
0.0497), and located their own position on the mape often (“position located on map”, p =
0.02). All three behavioral differentials pointless efficient interaction with the map. Street
names were the second most common cue categonadfteess numbers. However, there was a
limited set of streets within the exercise aredpsespatial participants repeated street names
more often. Unlike address numbers, which didhaste complex relationships to one another,
street relations formed the strategic layout ofakercise. Further, the experiment design used a

complex, non-uniform street layout. The inefficignic assembling cues, as portrayed by the
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“street identified” variable, was accompanied bgaing efforts to keep refreshing the mental
model, as evidenced by low-spatial users more &ptjy recalling their previously chosen
targets and more frequently determining their oagation.

4.1.3.4Verification phase

During the verification stage, the high-spatialknakzation group was more likely to
rotate the map (Wilcoxon-Mann-Whitney two-tailedtien = 21, p = 0.01). When rotating the
map, a participant would change the orientatiothefmap in a two-dimensional plane roughly
perpendicular to their gaze incidence, so theydtadk at the spatial configuration from a
different angle. Participants would sometimesestiaat they rotated the map to align it with the
direction they were currently facing, thereby usantjrack-up” map view. Another reason they
rotated the map was to match the direction ofdihget address configuration on the map with
reality in order to solve the scenario.

4.1.3.5Summary of phase-specific behaviors

The phase-specific behavior outcomes were, as gewhon-intuitive. A naive
expectation of group behavior differentials woultdieipate the high-ability participants to
exhibit more strategies, on average, while engatiiagxercise, but a more complex picture of
behavioral differences emerged: low-spatial pgréinis engaged a set of strategies more often
than their high-ability counterparts, with higheported incidence, but lower effectiveness.
Figure 4.1 represents the differential decision el®tbr low-spatial and high-spatial users in the

Paper Map study.
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Figute 4.1 Decision Models for the Paper Map study.



64

4.1.4 Conclusion

Behavioral analysis discovered systematic diffeesrizetween the low-spatial and high-
spatial groups. The “baseline” Paper Map expertreanouraged further research into
behaviors for automated ability detection.

4.2 Stationary Simulation Study

The behavioral results in this section were presippublished in Rusch, Nusser, Miller,
Batinov, & Whitney (2012). The study design wasatied in the previous chapter.

Ordinary-least-squares regression was used to atémuhe variation in number of
zoom actions, number of software map resets, ambauof pan actions. All three software

behaviors were significant (Table IlI).

Table 4.3 Stationary Simulation Study: ordinary-least-squares regtession p-values for behavior.

Variable Number of zoom Number of map | Number of pan
actions* reset actions** | actions***

Spatial Visualization (VZ) 0.03 0.03 0.03

Spatial Difference (VZ-PT) 0.02

Spatial Average (VZ+PT)/2

a) Model only with VZ.
b) Model with both VZ and Spatial Difference.
c) Model with both Spatial Average and Spatial Diffece.
* Number of times the map view was switched betwlegrer- and higher-scale versions.
** Number of times the map view was returned tanitial geographic coordinates and scale.
*** Number of times the user clicked a button to veahe map view a set distance to the north, saats$t, or
west.

The number of zoom actions is defined as the nurmbimes the user switched the map
view between lower- and higher-scale versionsckiig the “zoom-in” button, labeled in the
software with a “+” sign) switched the view to aver-scale (higher-detail) version of the map
while remaining centered on the currently obseme@d. Clicking on the “zoom-out” button
(labeled in the software with a “-* sign) changhld view to a higher-scale (lower-detail) version

of the map while remaining centered on the curyesitserved area.
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In the analysis with spatial visualization abilagd spatial difference, spatial
visualization ability was negatively associatedwmabom, at a coefficient of -5.56 and a standard
error of 2.36, suggesting that each extra poispeatial ability was associated with five and a
half fewer zoom actions.

Map reset actions occurred when participants aticke “Reset map” button. The map
view was returned to its initial geographic cooedes and initial scale. These coordinates were
different for each of the ten experimental scersarilm the analysis with spatial visualization
only, spatial visualization ability was found to begatively associated with number of map
resets, with a coefficient of -1.93 and a stan@ardr of 0.82. The interpretation of this resalt i
that for each extra point of spatial visualizataimlity, participants reset the map on 2 fewer
occasions.

Pan actions were defined as the user clicking dtieed'up”, “down”, “right”, and “left”
buttons to move the map view by a set distanckdmorth, south, east, and west, while keeping
the map scale constant. In the combined analyitiisspatial visualization and spatial
difference, number of pan actions was negativedpasated with the difference between spatial
visualization and perspective taking abilities (ficeent value = -52.13, standard error = 19.94),
while in analysis with spatial visualization onpan actions were significantly associated with
spatial visualization. The statistical findingsferced a perspective that people with relatively
higher spatial visualization ability tended to @anund the map considerably less. This
outcome harmonized with Paper Map Study findings libw-spatial participants were less
efficient with the paper map.

This section presented evidence in support ofehsibility of automatic detection. Pan

actions, zoom actions, and reset actions weretiWare events that could be utilized by a
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computer device to make decisions on whether apassessed low or high spatial visualization
ability. We expected to see these behaviors imehcetection algorithms.
4.2.1 Conclusion

Behavioral analysis in the Stationary Simulatioaviled direct evidence of
differentiation between spatial visualization lesvat the user interface. The outcomes of this
study encouraged further work on automatic detactio

4.3 Field and VR study

The final address verification experiment was dasibto observe participants with a
handheld device verifying street addresses in thatield and a high-fidelity immersive virtual
environment. This design built on both the freeforature of the paper map study and the
experience with software-aided workflows acquimnethie Stationary Simulation study, with new
handheld hardware and software that was desigthexkrkall possible workflow constraints
present in the Stationary Simulation experimertie Key features of the third experiment were
(a) participants’ ability to free-roam as they fdueddresses to verify; (b) all work was
performed on a small PDA-style handheld computgrtie graphical user interface allowed
completing scenarios in any order and resubmitimgvers at will; and (d), data was acquired
from both the real world and a high-fidelity immieesvirtual environment. Like the previous
studies, the experiment contained a cognitiveriggthase and an exercise phase. For complete
details on the experimental setup, please ref€ht@pter 3.

Ordinary-least-squares regression revealed sigmifibehavioral coefficients. The results
in this section were published in Batinov, WhitnByller, Nusser, Stanfill, & Ashenfelter

(2013).
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Table 4.4 Ordinary-least-squares regression results for log(time) as the response variable

Term Estimate Std. Error  t-value  Pr(>jt])
(Intercept) 3.111 0.120 25.979  0.000**
Environment 0.041 0.138 0.297 0.769
Spatial 0.301 0.134 2.235 0.034**
Resetpans 0.036 0.011 3.213 0.003**

*Marginally significant at p < 0.10.
**Statistically significant at p < 0.05.
***Statistically significant at p<0.01.

In the regression of Table 4.4, both spatial abdind the Resetpans variable were
significant. Resetpans was a numeric variable eigudl5(Resets-mean(Resets)/sd(Resets) +
Pans-mean(Pans)/sd(Pans)). This was the mean obthmlized values of reset and pan actions
performed by the user. Dividing by the standardatean was used to normalize the contribution
of resets and pans to the variable, because parsmae frequent than resets. The Resetpans
coefficient indicated that participants took 3.6%rmtime to complete the exercise for each
standard deviation of reset and pan actions.

A regression with log(Distance) is presented inl&ah5.

Table 4.5 Ordinary-least-squares regression tesults for Log(Distance) as the response variable

Term Estimate Std.Error  t-value  Pr(>ft|)
(Intercept) -0.200 0.128 -1.563 0.130
Environment 0.227 0.148 1.541 0.135
Spatial 0.278 0.144 1.932 0.064*
Resetpans 0.035 0.012 2.915 0.007***

*Statistically suggestive at p < 0.10.
**Statistically significant at p < 0.05.
***Statistically significant at p < 0.01.

The Resetpans variable was once again significahpasitive, contributing an extra
3.5% to variability per standard deviation. The atential explanations for this statistic are
quite fascinating. Either participants were movanglessly as they were performing additional
pan and reset actions, or they made wrong choicésaveling which they had to correct.

Overall, when we introduced software actions adlipters for user performance in the

Field and Virtual Reality experiment, the combipatof reset and pan actions was statistically
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significant. This outcome harmonized with the siigance of software actions in the Stationary
Simulation study and encouraged further progress.
4.4  Conclusion

In this chapter, we presented statistical analgs@ser behavior from three experiments.
We purposefully omitted any qualitative discussodithe observed strategies of participants,
because qualitative observations do not constiuiticient reason to instrument a software
response. Quantitative findings, on the other hamule critical to the detection effort.

The behavioral narrative in this chapter reveahed between-group differentials in
spatial visualization persisted across the thregeements. Data transformations revealed
statistically significant relationships involvinger behaviors. The persistence of behavioral
outcomes was the strongest indicator to continseareh. The next chapter discusses the actual

detection technique for the Stationary Simulatitud$ and the Field and Virtual Reality Study.
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CHAPTER 5. AUTOMATIC DETECTION

Chapters 3 and 4 reported on statistical evidemcpdrformance and behavioral
differentiation between high- and low-spatial-viszeion users on address verification tasks
like those performed by the Bureau of Census. diiserved statistical differentials suggested
spatial visualization ability is detectable. Thetngtep, therefore, was to attempt detection. This
chapter will describe a successful approach. Asudsed in Chapter 1 and Chapter 2, the goal
was to achieve 80% or higher percent correct ptiedis. Such accuracy would improve on
results in the current literature and be high ehaagallow practical application.

An additional goal was to use no additional sensorsrder to facilitate adoption on
generic devices in industry. Although frequengparted in the literature, sensor feedback,
including galvanic skin response, eye trackingpresssure detectors, was considered an
impediment to adoption, for three reasons. Fsemsors could require effort from users, as in
the case of a galvanic skin response sensor, aneftine could be a “nuisance” to be avoided.
Second, sensors are still in the process of beagpmidespread and are not available on all
devices. Third, the cost of additional hardwareld¢@mpede large deployments.

The following sections present detection outconudsesred on the Stationary Simulation
Study and the Field and Virtual Reality Study. Tesults are encouraging: differences between
the two experimental protocols did not prevent tdgkection rates, and therefore provided
ecological validity to the detection approach.particular, the Stationary Simulation Study had
an especially restrictive protocol, while the Fialal Virtual Reality study had an unconstrained
protocol. In the Stationary Simulation Study, adrverification was accompanied by an
unavoidable sequence of questions, addresses hadstived in a fixed order, participants

could not move, and verification cues were presasded on photographs. Conversely, in the
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Field and Virtual Reality Study, there were no imediate questions to answer, addresses could
be verified repeatedly in any order, participamsld navigate the environment at their leisure,
and select their own verification cues. We achilvetter than 80% accuracy in both studies,
demonstrating the viability of the approach to imskar protocols and environments.

The chapter’s first section discusses what featemebled successful detection: user map
operations with or without geographical tZgghe section also provides a short example of the
data representation, followed by the list of leagnalgorithms. Sections 5.2 and 5.3 present the
detection outcomes for the Stationary Simulatiodh Eield and Virtual Reality experiments,
respectively. Section 5.4 examines the best-paifay algorithms in detail to verify the learning
models make sense. Section 5.5 outlines the baitivns of the detection approach to current
state of research, and Section 5.6 discusses etjoast for future deployments. Section 5.7
concludes the chapter.

5.1 Feature Selection
5.1.1 Theneed for alow feature-to-instanceratio

Each participant log contained between 2,727 add5P8 lines of text, thereby
associating a myriad of features with each clasifhn instance. A problem arose: when there
are many features relative to classification insggnn a corpus, machine learning algorithms
struggle with interpreting the available informatj@ condition known as the “curse of
dimensionality” (e.g. Blum and Langley 1997, pp52#6, Domingos 2012, p. 81-82). An

intuitive explanation for this phenomenon is thatleadditional feature’s marginal effect is to

2 Chapter 6 shows that geographical distribution of behavior differentials in the Field and Virtual Reality Study
mirrored the outcomes in the Paper Map Study.
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explode the classification space that an instaeeglsito be mapped to. For example, from an
algorithm’s viewpoint, an instance with ten Booldaatures, which are the simplest class of
features, needs to be classified against up%m2more than a million, unknown instances.
Contrastingly, an instance with twenty Boolean deas needs to be classified agairt§t @

more than a billion, possible instances. The nurobéaining observations (participants)
shrinks relative to the feature space with eaclitiatd! feature. A difficulty also arises from
extra features that may be redundant or irrelevaulditionally, in high dimensions,
distributions do not resemble their low-dimensioc@lnterparts and so impede both
approximation and intuition: for example, a mangrdnsional Gaussian distribution has almost
all its weight in the tails (Blum and Langley 199p. 245-246, Domingos 2012, p. 81-82).

To counteract the challenge of multiple features,can search for pattern-rich subsets of
features. These subsets are computationally awdithignically easier to compare, but more
importantly in our case, they were supposed touragiehavioral differences between
participants. We already saw statistical analys@evious chapters showing some map
operations varied significantly with spatial visaation ability. Therefore, we mounted a
detection effort based on tracking map operations.

There were four reasons why the set of map op@&sbecame the set of classification
features. First, in our map-centered experimesttivare, they constituted the majority of
interface affordances, and participants spent alalbtheir actions performing map operations.
Second, zoom, pan and reset operations were gtatissignificant in the analysis of the
Stationary Simulation and Field and Virtual Reafitydies. Third, map operations had intuitive
interpretations in terms of human behavior. Finglptocol stages in the Stationary Simulation

experiment could not be admitted as classificafi@tures, because they provided indirect
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knowledge about the state of the world. In paléicun the Stationary Simulation protocol,
participants were presented with the following dioes about the address: “Is the address on the
ground?”, “Is the address on the map?”, “Is therestslin the correct location?”, and if they
answered incorrectly, they were forced to redostge preceding the question.

The exact forms of the transformations for botld&s will be described presently. In the

Stationary Simulation Study, there were 12 evantbeé data transformation (Table 5.1).

Table 5.1 List of intetface events used for classification in the Stationary Simulation Study
Character I nterface Event

Pan up

Pan down

Pan left

Pan right

Zoom out

Zoom in

Center zoom

Impossible pan or zoom command

Zoom in one level through zoom slider

Zoom out one level though zoom slider

Zoom out two levels through zoom slider

Reset map

VOWoT *X + 1 VALZD

All events were map operations related to zoonpagning, centering and resetting the
view. Detailed discussions of the operations aesgmted in section 4.2. Not all possible map
operations were represented, because the partisigehnot utilize all affordances in the
interface. In particular, the zoom slider allowegkflevels of zoom in and zoom out, for a total
of ten zoom slider operations, but only three eftén were encountered in the course of the
experiment.

In the Field and Virtual Reality Study (Table 5.2¢lditional event symbols denoted a
switch to each of six target addresses. This diffee in event sets between the experiments was
due to the freedom to select targets freely ineqmeriment but not the other. Participants in the

Field and Virtual Reality chose to utilize fifteehthe available map operations, as opposed to
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choosing twelve of the available operations for$t&ionary Simulation Study. Of the ten
possible zoom-slider operations mentioned in tle®ipus paragraph, participants utilized six
distinct operations, while in the Stationary Sintigla Study they had utilized three. Rounding
up the set of features was a categorical variabt®tihg whether the participant had worked in

the field or virtual environment (Table 5.2 listkiaterface classification features).

Table 5.2 List of interface events used for classification in the Field and Virtual Reality Study
Char acter I nterface Event

Pan up

Pan down

Pan left

Pan right

Zoom out

Zoom in

Center zoom

Impossible pan or zoom command

Zoom in one level through zoom slider

Zoom in two levels through zoom slider

Zoom in four levels through zoom slider

Zoom out one level though zoom slider

Zoom out two levels through zoom slider

Zoom out three levels through zoom slider

Change target to address 1

Change target to address 2

Change target to address 3

Change target to address 4

Change target to address 5

Change target to address 6

Change target

Reset map

TINTVZZIrXaUOOWooo *X + 1 VALZD

Even though the second set of operations appeassdevably larger than the first,
conceptually the two are near-identical. The extram actions in the Field-and-Virtual-Reality
group pertain to the same widget, the zoom slaich was unchanged from the first
experiment, but was used more by participantsersétond experiment. The core difference
between the action sets was the addition of a ataddress functionality, which added a degree

of freedom to how users could approach the task.
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The divergence between the two operation sets wedsrece for the broader relevance of
our detection approach, as it was proved succeisshdth cases.
5.1.2 Geo-tagging and location attributesfor interface actions

In the Virtual Reality Study, participants were stdtionary — they moved through a
“physical” (real or virtual) environment and contally changed their geographical location.
The motion of participants in virtual or real spat@bled the geo-tagging of interface
commands. All interface events had GPS coordinategh reflected the “ground” location at
which the interface event occurred, as opposeldasoftware map location of the event.
Consequently, the availability of geotagged infatioraallowed reasoning about the location of
user behaviors. Actions were viewed within congertiircles centered on target addresses as
the focal points (Figure 5.1).

Geo-tagging allowed us to view interface actiors there initiated within an arbitrary
radius (e.g. 30 m, 40 m, 50 m, 60 m) of each okth@ddresses. When statistical analysis and
machine-learning schemes were applied to geo-taggedace events, a Radius parameter
described the physical (or virtual for the Fieldlafirtual Reality Study) area of the map where
the behaviors occurred. For example, a radius ah@0 Table 5.6 means that the results of
automatic detection were based on the set of axterévents that occurred within 50 meters of
each of the six target addresses. In Figure Sddias of 60 m corresponds to the third ring
around an address. Chapter 6 includes a survetatdtically significant software differentials
in the Field and Virtual Reality Study. In contrabe stationary simulation study did not allow
user movement and could not be viewed from a gggeid perspective.

Chapter 6 is going to show in more detail that beral differentials happened outside

of the immediate vicinity of the target, which asponds to the “Approach Phase” of the
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decision models in Chapter 4. The decision moefa the Paper Map Study were
characterized by multiple differentials in the aggorh phase and few differentials in the
verification phase. The geo-located user actioritee Field and Virtual Reality study mirrored
this pattern. This correspondence between therége and Field and Virtual Reality studies
furnishes extra evidence that statistical outcofreea the two software experiments are not

flukes, but rather indicators of a systemic linkvieen user ability and behavior.

Figure 5.1 A visualization of concentric circles of differing radii centered on the six target addresses of the
Field and Virtual Reality study. Geo-tagged intetface events inside the areas of the circles were used for
spatial visualization detection. The outetmost circles have radii of approximately 100 m.
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5.1.3 Datarepresentation

The detection-ready data representation was in AleffRat. This format consists of a
collection of observations together with a collestof attributes. Each feature was an interface
action that had been encountered in at least agre U$e occurrences of each action in each
user’s history were counted. To illustrate the pes; Figure 5.2 presents an ARFF file for the
Stationary Simulation Study. Each user is assigmedof two possible labels, “high-spatial” or

“low-spatial”.

% 1. Title: ARFF file for Stationary Simulation Stu
% twelve attributes and four participants.

@relation '1-grams-weka.filters.unsupervised.attrib
8,11-weka.filters.unsupervised.attribute.Remove-R1,

dy with

ute.Remove-R2-3,7-
14-1517

@attribute + numeric
@attribute x numeric
@attribute > numeric
@attribute A numeric
@attribute < numeric
@attribute V numeric
@attribute - numeric
@attribute C numeric
@attribute b numeric
@attribute R numeric
@attribute B numeric
@attribute * numeric
@attribute vz_cat {Low,High}

@data
26,9,10,4,6,4,3,0,0,0,0,0,High
25,14,10,30,13,29,5,0,0,0,0,0,High
22,16,5,10,6,16,3,1,1,0,0,0,High

... (21 participants omitted)
20,28,15,14,11,36,3,0,0,4,11,0,Low
Figure 5.2 An ARFTF file with twelve features, four participants and a classification attribute (vz_cat = Spatial
Visualization Category). Each @artribute line represents a feature that participants are categorized on. Each
line past the @data tag tepresents a single participant, and is a collection of numeric values. The WEKA
framework patses this type of file and enables the execution of machine learning algorithms.

As seen in Figure 5.2, the final form of the data set of numeric values associated with
each participant. Given these collections of nuisib@achine learning schemes attempted to

detect visualization ability through a variety e€hniques, from hyperplanes to Bayesian
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inference to decision trees. The results sectuathshow that meta-classifiers were the most
effective at separating high-spatial-visualizatimm low-spatial-visualization participants.
5.1.4 Algorithms

The data in ARFF format was processed by a battieby stock machine learning
algorithms from the Weka 3.7.3 framework. The athms represented as many
methodological groups of machine learning approgs@secould be obtained through the Weka
framework without installing additional softwar&he groups in the battery included Naive
Bayes, nearest-neighbor, meta, rules-based, treedpaeural-network-based, regression-based,
support-vector-machine, and miscellaneous algorttpas. The complete list of algorithms
appears in Figure 5.3. The parameters for the ithgs used in our work were not changed
from their default settings in the Weka framewoMthough there were many tweakable
algorithm settings, and consequently an inexhaestriety of learning schemes, if user
behavior were systematically linked to spatial @is&zation ability, several algorithms ought to
have succeeded. However, the literature searcihapi€r 2 had revealed that detection of
cognition-related variables is at an early stagexgioration, so spatial visualization detection

was by no means guaranteed.
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bayes.BayesianLogisticRegression -D -Tl 5.0E-4 -S 0

bayes.BayesNet -D -Q bayes.net.search.local.K2 -- -
bayes.net.estimate.SimpleEstimator -- -A 0.5

bayes.NaiveBayes

functions.Logistic -R 1.0E-8 -M -1

functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500

functions.RBFNetwork -B 2 -S1-R 1.0E-8 -M -1 -W 0

functions.SimpleLogistic -1 0 -M 500 -H 50 -W 0.0

functions.SMO -C 1.0 -L 0.0010 -P 1.0E-12-N 0 -V -
functions.supportVector.PolyKernel -C 250007 -E 1.0

functions.SPegasos -F 0 -L 1.0E-4 -E 500

functions.VotedPerceptron -l 1 -E 1.0 -S 1 -M 10000

lazy.IB1

lazy.IBk -K 1 -W 0 -A "weka.core.neighboursearch.Li
weka.core.EuclideanDistance -R first-last”

lazy.KStar -B 20 -M a

lazy.LWL -U 0 -K -1 -A "weka.core.neighboursearch.L
weka.core.EuclideanDistance -R first-last" -W trees

meta.AdaBoostM1 -P 100 -S 1 -1 10 -W trees.Decision

meta.Bagging -P 100 -S 1 -num-slots 1 -1 10 -W tree
1-L-1

meta.Dagging -F 10 -S 1 -W functions.SMO -- -C 1.0
-K "functions.supportVector.PolyKernel -C 250007 -E

meta.Decorate -E 10 -R 1.0 -S 1 -I 10 -W weka.class

meta.ClassificationViaRegression -W weka.classifier

meta.END -S 1 -| 10 -W meta.nestedDichotomies.ND --

meta.FilteredClassifier -F "supervised.attribute.Di
--C0.25-M2

meta.LogitBoost -P 100 -F 0 -R 1 -L -1.797693134862
trees.DecisionStump

meta.MultiBoostAB -C 3 -P 100 -S 1 -1 10 -W weka.cl

meta.RealAdaBoost -P 100 -H 1.0 -S 1 -1 10 -W weka.

meta.RandomCommittee -S 1 -num-slots 1 -1 10 -W wek
0-M10-S1

meta.RandomSubSpace -P 0.5 -S 1 -num-slots 1 - 10
-M2-V0.0010-N3-S1-L-1

meta.Stacking -X 10 -M "rules.ZeroR " -S 1 -num-slo

misc.HyperPipes

misc.VFI -B 0.6

rules.ConjunctiveRule -N3-M2.0-P-1-S 1

rules.DecisionTable -X 1 -S "BestFirst -D 1 -N 5"

rules.DTNB -X 1

rules.FURIA-F3-N2.0-02-S1-p0-s0

rules.JRip-F3-N2.0-02-S1

rules.NNge -G 5 -1 5

rules.OLM-R0-C1-UO0

rules.OneR -B 6

rules.PART-M2-C0.25-Q 1

rules.Ridor -F 3-S1-N 2.0

trees.ADTree -B 10 -E -3

trees.BFTree-S1-M 2 -N5-C 1.0 -P POSTPRUNED

trees.DecisionStump

trees.FT -115-F0-M 15 -W 0.0

trees.J48 -C 0.25 -M 2

trees.J48graft -C 0.25 -M 2

trees.LADTree -B 10

trees.LMT -1 -1 -M 15 -W 0.0

trees.NBTree

trees.RandomForest -1 10-K0-S 1

trees.RandomTree -K 0-M 1.0-S 1

trees.REPTree -M 2 -V 0.0010-N3-S1-L-1

trees.SimpleCart-S1-M2.0-N5-C 1.0

.5-H1-vV0.27 -R R:0.01-316
P 1-SBAYES -E

-V0-S0-E20-Ha
1

1-W1-K

nearNNSearch -A

inearNNSearch -A”
.DecisionStump
Stump
S.REPTree ---M 2 -V 0.0010 -N 3 -S

-L 0.0010-P 1.0E-12-NO-V-1-W 1
1.0"

ifiers.trees.J48 -- -C 0.25 -M 2

s.trees.M5P -- -M 4.0

-S1-W trees.J48 -- -C 0.25-M 2

scretize -R first-last" -W trees.J48

3157E308 -H1.0-S 1 -1 10 -W
assifiers.trees.DecisionStump
classifiers.trees.DecisionStump
a.classifiers.trees.RandomTree -- -K

-W weka.classifiers.trees.REPTree --

ts 1 -B "rules.ZeroR"

Figure 5.3 The Weka 3.7.3 framework enabled the application of a battery of 52 machine learning algorithms to
individual-user intetface event sequences. The algotithms were run with their default settings in the
framework, included here for verification putposes. The conceptual group of each algorithm is also displayed,
and includes Naive Bayes, nearest-neighbot, meta, rules-based, tree-based, neural-network-based, regression-
based, support-vector-machine, and miscellaneous algorithms.
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5.2 Stationary Simulation Results
5.2.1 Participant demographics
Twenty-five individual-user software logs were ab&al from the Stationary Simulation
Study. Demographically, the group was comprisetidofemales and 11 males. Twelve
participants (the low-spatial-visualization subgypbhad scored 10 or fewer points on the VZ-2
measure (Ekstrom et al, 1976), while 13 participdtite high-spatial-visualization subgroup)

had scored 14.75 points or more (Table 5.3).

Table 5.3 Basic characteristics of users in the Stationaty Simulation Study. Low-spatial-visualization
participants scoted 10 points ot less on the VZ-2 test (Ekstrom 1976). Conversely, high-spatial-visualization
participants scored 14.75 points or more.

L ow-spatial-visualization  High-gspatial-visualization Total
Women 7 7 14
Men 5 6 11
Total 12 13
5.2.2 Results

Classification accuracy (percentage of correct gemswas measured for 25-fold leave-
one-out classification. The baseline of 52% coratassification was obtained by the computer
predicting that every participant belonged the tgghtial visualization group, which was larger,
with 13 out of 25 participants. Four algorithmsfpemed with accuracy of 80% or greater, and
twelve more algorithms performed with accuracy lesw70% and 80%. The two best-
performing algorithms predicted spatial visualiaatability correctly in 84% of the cases. Table

5.4 contains the detection results.
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Table 5.4 Classification success of spatial visualization ability in the Stationaty Simulation Study. The baseline
of 52% cotrect classification was achieved by the computer predicting that every participant had high spatial
visualization ability. The two best-petforming algorithms detected spatial visualization ability correctly in 84%
of the cases.

Algorithm Number Number  Number Number  Accuracy
Correct Incorrect Lows Highs (percent correct)
Incorrect Incorrect
Support Vector Machine 21 4 4 0 84%
Bagging with REPTree 21 4 3 1 84%
Decorate with J48 20 5 3 2 80%
Naive Bayes 20 5 3 2 80%
ClassificationViaRegression19 6 4 2 76%
with M5
IB1 19 6 3 3 76%
IBK 19 6 3 3 76%
MultiBoostAB with 19 6 5 1 76%
Decision Stump
RealADABoost 19 6 4 2 76%
LAD Tree 18 7 4 3 2%
Logistic Model Tree 18 7 5 2 72%
RandomSubSpace with 18 7 4 3 72%
RepTree
Random Tree 18 7 4 3 2%
RBFNetwork 18 7 4 3 2%
Simple Logistic 18 7 5 2 72%
Voting Feature Intervals 18 7 3 4 72%
Baseline (predict high) 13 12 12 0 52%

From the above outcomes, we concluded that autordetection in the Stationary
Simulation Study surpassed the 80% accuracy thig:shat we set out as the goal of the
dissertation. A range of algorithms (16 out of p2jformed considerably better than the
baseline, supporting the notion that individuafetiénces manifest systematically in interface
behaviors.

The results of the Stationary Simulation Study ssted that a constrained address
verification protocol lends itself to automatic eletion of spatial visualization ability.

Constraints in the Stationary Simulation Study wasdollows: (a) no movement was afforded to
participants; (b) a fixed set of ground cues appgasn two computer screens were pre-selected
by experimenters; and (c) the software workflowoecéd that each address be engaged in a

particular order and by following a particular eéverification steps. To establish the validity
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of detection results beyond the borders of theiotstl study protocol, we needed a separate
experiment without the constraints of the Statigr&imulation study’s design. That role was
filled by the Field and Virtual Reality experimemthere participants were allowed freedom of
movement, freedom of cue acquisition from reabtygd freedom to verify addresses in arbitrary
order and as many times as they desired.
5.3 Field and Virtual Reality Results

As mentioned in the previous section, successfidatien in the Stationary Simulation
Study fulfilled the expectation that spatial vismation ability is automatically detectable in
constrained-protocol and constrained-environmeenagos. To strengthen the position of this
dissertation, we now proceed with results fromdbemparatively unconstrained Field and
Virtual Reality Study.
5.3.1 Participant demographics

Thirty-one individual-user software logs were obtl from the Field and Virtual Reality
Study. Demographically, the group was comprise€igiiteen females and thirteen males.
Seventeen participants (the low-spatial-visual@asubgroup) had scored less than 9 points on
the VZ-2 measure (Ekstrom et al, 1976), while feert participants (the high-spatial-

visualization subgroup) had scored 15 points orenfdable 5.5).

Table 5.5 Basic characteristics of users in the Field and Virtual Reality Study. Low-spatial-visualization
participants scored less than 9 points on the VZ-2 test (Ekstrom 1976). Conversely, high-spatial-visualization
participants scored 15 points or more.

L ow-spatial-visualization  High-gpatial-visualization Total
Women 11 7 18
Men 6 7 13

Total 17 14
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5.3.2 Results: Field and Virtual Reality Study

Detection accuracy in percent was measured fooRlLkkave-one-out classification. The
accuracy baseline (classifying every participanibasspatial-visualization, which would be
correct in 17 out of 31 cases) was 54.84%. Fotgatien algorithms performed with greater
than 80% accuracy, and seventeen more algorithnigrped with accuracy between 70% and
80%. The two best-performing algorithms detecteatiapvisualization ability correctly in
87.10% of the cases. Table 5.6 shows detectiaccomss.

The high accuracy of automatic detection in thédréad Virtual Reality Study validated
the story that had been anticipated by the Papgr $fady and corroborated by the Stationary
Simulation Study: systematic differences in behaaidhe interface reveal the spatial
visualization ability of the user. Algorithm aceay in both the constrained-protocol experiment
and the relaxed-protocol experiment has establiahaditial level of ecological validity of
automatic detection.

5.4 Interpretation of Algorithmic Outcomes
This section investigates the type and mecharfiatgorithms that correctly determined
participants’ ability. A closer look at the predact models will verify that detection was
meaningful and will connect the results to statsfrom previous chapters.
5.4.1 Plurality of algorithms

Before examining the top performers, the issuestéation quality versus quantity needs
to be addressed. A plurality of algorithms wittatiely high accuracy is an important adjunct
to the quality of detection. If the results indeadta few successful algorithms while the rest were

insignificant, the validity of the detection clawould be diminished. Conversely, a large
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guantity of relatively good performers supplemegtine top performers implies that behavioral

differences are systematic and discoverable byrsivapproaches.

Table 5.6 Automated detection success on the Stationary Simulation Study. The baseline of 54.84% cotrect
classification was achieved by the computer predicting that every participant had low spatial visualization
ability. The two best-petforming algorithms detected spatial visualization ability correctly in 87.10% of the
cases. The Radius column describes the area from which geo-tagged interface events were taken. The area
was comprised of six circles centered on the six target addresses. For example, a radius of 65m means that
interface actions that occurred within 65 m of each of the six addresses were used for detection.

Radius Algorithm Number Number  Number  Number  Accuracy
from Correct Incorrect Lows Highs (percent
target Incorrect Incorrect correct)
65m ClassificationViaRegression 27 4 2 2 87.10%
with M5°
70m Naive Bayes Tree 27 4 2 2 87.10%
55m BFTree 25 6 2 4 80.65%
95m FURIA 25 6 0 6 80.65%
95m ADTree 24 7 3 4 77.42%
60m Bagging with REPTree 24 7 5 2 77.42%
50m DecisionStump 24 7 5 2 77.42%
95m JRip 24 7 2 5 77.42%
50m Locally Weighted Learning 24 7 2 5 77.42%
90m LogitBoost 24 7 3 4 77.42%
80m OneR 24 7 2 5 77.42%
70m RandomForest 24 7 3 4 77.42%
65m Conjunctive Rule 23 8 1 7 74.19%
65m IB1 23 8 5 3 74.19%
65m IBk 23 8 5 3 74.19%
65m RandomCommittee with 23 8 2 6 74.19%
RandomTree
60m RealAdaBoost with 23 8 4 4 74.19%
DecisionStump
65m RIDOR 23 8 4 4 74.19%
65m Decorate with J48 22 9 5 4 70.97%
50m MultiBoostAB with 22 9 7 2 70.97%
DecisionStump
65m Support Vector Machine 22 9 4 5 70.97%
105m SimpleCart 22 9 7 2 70.97%
N/A Baseline (predict low) 17 14 0 15 54.84%

The results from both experiments show that comakde portions of the algorithm
battery were moderately successful or better. 8ixtaut of 52 algorithms for the Stationary
Simulation Study and 21 out of 52 algorithms onFkredd and Virtual Reality experiment
exhibited better than 70% accuracy against respgebaselines of 52% and 54.84%. Further,

eight algorithms overlapped between studies: Bagdghipport Vector Machine, Decorate,
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RealAdaBoost, MultiBoostAB, I1B1, IBk, and ClassdimnViaRegression. Five of the eight
belong to the meta family of algorithms, where adbalgorithm is informed and improved upon
by the meta-algorithm. This outcome is consistatit theoretical results in the machine
learning literature that point to “meta” algorithmeglucing generalization error compared to base
algorithms (e.g. Krogh and Vedelsby (1995) for emslkes, and Wolpert (1992) for stacked
generalizers). Meta-algorithms were used withetkeect same default parameters in both
experiments, and no custom tailoring of algorithwias performed.
5.4.2 Analysisof the best detection schemes

Eight algorithms overcame the 80% threshold sétigdissertation. Of those eight, two
algorithms achieved 87.10% accuracy on the Fietth\artual Reality Study and two more
achieved 84% accuracy on the Stationary Simul&ioiwly, for a total of four top-performing
algorithms. One algorithm from each pair performadl only on one study, and one algorithm
from each pair performed well in both studies. rEf@re, the two absolute best performers were
(a) ClassificationViaRegression, with accuracy 0f18% in the Field and Virtual Reality
experiment and 76% in the Stationary Simulatiord$t@and, and (b) Bagging with accuracy of
84% in the Stationary Simulation Study and 77.48%e Field and Virtual Reality Study. Both
winner algorithms were meta-algorithms that worgadicularly well with small samples and
unstable distributions of observations. The follogvparagraphs examine the prediction models
constructed by the two best algorithms.

5.4.2.1Prediction models for the Stationary Simulationdytu

The BAGGing (Bootstrap AGGregating) machine leagrapproach was proposed by
Breiman (1996). It is an ensemble classificatioprapch, which means that it aggregates the

votes of multiple classifiers to reach a decisibme central technique of the algorithm is to
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create multiple learning datasets from the origieatning data set by drawing data points at
randomwith replacement. Creating a dataset by drawing with replacemendlied

bootstrapping. As a result, in each of these nesotstrap” data sets, the same data point can be
present multiple times. If the size of the newadsdt is equal to the size of the original data set
the probability of a particular data point appegrat least once is approximately 0.632 (Breiman
1996, p. 136).

After the bootstrap samples have been create@saifier is built from each new learning
set, and then all the classifiers vote on the palgilata. The Weka software default instructions
were to create 10 classifiers of type REPTree. RE&®is a binary-decision-tree classifier that
splits the feature space consecutively at the gbattminimizes misclassification error,
effectively creating hyperrectangles, each labelgd a particular class, that cover the feature
space. The ten decision trees for the Stationanpftion Study are drawn in Figure 5.4 on the
next page.

Figure 5.4 exhibits ten different decision treest trose from ten bootstrap samples
created by drawing from the original sample withlaeement. Zoom-in, zoom-out actions, pan-
up, pan-down, center-zoom, and reset-map actianthardriving features in this classification.
More map operations of any kind usually let thessifier decide that the participant is of low-
spatial-visualization ability. The lone exceptianliree 4, where the algorithm decided high-
spatial-ability participants inhabit the regionween 22 and 25.5 zoom-in operations. But even
that classification tree had a higher-priority raksigning low spatial visualization ability to
participants who executed five or more pan-up dpmra. Panning was the most-heavily-

utilized feature for detection, followed by zoomirgntering the zoom, and map resets. The



decisions of the Bagging algorithm are human-imtgble and congruent with the behavioral

expectations built by our traditional statisticablyses in Chapters 3 and 4.

Tree 1 ! Tree 2 Tree 3 Tree 4 ! Tree 5
V<F1|6'5: V>=16.5 V>;28: V<28 IV<30:H |lv>=3o:L|l A<5: H |l A>=5 Il B<7:H |IB>=7:L|

l +<285 |l+>=i8'5: | x<17:H l x>=17:L | I+>=55'5: II +<255 |
Xx<2.5:H X >=2.5:L l +>=22: H l +<22:L

l V<21:H |lv>=21:L|l L l +<27:H |l+>=27:L|lR<O.5:H|lR>=O.5:L|l V<32:H Il V>32:L |

Figute 5.4 The ten REP tree classifiers created by the Bagging algorithm for the Stationary Simulation Study.
H denotes High spatial visualization ability; L denotes Low spatial visualization ability; V is the pan-down
action; A is the pan-up action; B is an action zooming out one level through the slider widget; + is the zoom-in
action; x is the center-zoom action; R is the reset-map action. In general, more map actions are associated
with lower spatial visualization ability. Trees are quite distinct from one another due to the sampling process
producing variegated bootstrap samples.

&5

B

The other algorithm with best overall performanoeboth experiments was the meta
classifier ClassificationViaRegression (Frank, Wanglis, Holmes, and Witten 1998) which
implements a M5 tree (Quinlan 1992, Wang and Witt897). The M5 algorithm makes
binary decisions that partition the instance spgacdainimize the mean squared error between the
model’s predictions and the class labels of 0 afildw spatial visualization and high spatial
visualization ability). When the tree is prundtkg teaves become linear regression models that
contain the attributes in the pruned subtrees a&sifying tree with regressions at the leaves is
built for each class label (low spatial visualipatability and high spatial visualization ability).

For the Stationary Simulation study, the Classiima/iaRegression algorithm produced

two trivial (single-node) M5 trees that reducevm tlinear regression models:
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Low spatial visualization score:

(1) YL =-0.2282 + 0.0149 * center_zoom + 0.229 * pamvrdo

High spatial visualization score:

(2) Yn =1.2282 — 0.0149 * center_zoom — 0.229 * pan_down

During detection, the algorithm computes bothand Y4 values and chooses the class
label with the higher score. In linear model ¢hpre pan-down and center-zoom actions
contributed to a higher score for low spatial vimadion ability, while in linear model (2), more
pan-down and center-zoom actions decreased the frdnigh spatial visualization ability.
This combination of linear models acted on a subktte classification features utilized by the
Bagging algorithm, and it only contained two inst@ ten voting classifiers. The relative
simplicity of the classification scheme may expl@iassificationViaRegression’s lower
detection accuracy of 76% against the 84% achibydtie Bagging classifier.

5.4.2.2Prediction models for the Field and Virtual Reaftydy

For the Field and Virtual Reality Study, the Bagpaigorithm produced the following
ten classification trees (shown in Figure 5.5).e Bhlient classification features in Figure 5.5 are
zoom-in actions, pan-up actions, pan-left actipas, and zoom actions that were impossible,
and target address switches. As with the StatioBanulation experiment, more map operations
were related to lower spatial visualization abiltjore target address switches were a sign of
less robust planning or difficulties with addressnpletion. Impossible zoom and pan actions
also indicated difficulties with the task. Themxmargin of freedom in the interface of the Field
and Virtual Reality experiment allowed non-map @pens, in this case, intention-signaling

(through target switching) to became a new soufcketction.
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Figure 5.5. The ten REP tree classifiers created by the Bagging algorithm for the Field and Virtual Reality
Study. H denotes High spatial visualization ability; L denotes Low spatial visualization ability; > is the pan-
left action; A is the pan-up action; Z is the action to switch the target address; + is the zoom-in action; *is a
pan or zoom action that was not possible on the map. Like in the Stationary Simulation Study, more map
actions ate associated with lowert spatial visualization ability. Zoom actions ate the most salient classification
feature, followed by pans. Impossible pan ot zoom commands and target switching also signal differences in
spatial visualization ability.

H

The other top-performing detection scheme, ClasgifinViaRegression, reached an
accuracy of 87.10% on the Field and Virtual Reaitperiment through the following set of
models (Figure 5.6).

The ClassificationViaRegression detection schensgaipd on a similar set of map
operations as the Bagging scheme, selecting thenwat salient features from Bagging.
However, the M5P decision tree distinguished casese map operations had differing relative
weights in determining the predicted class, thetahlighting sub-groups of low- and high-
spatial-visualization participants. In the low-sghvisualization model, participants with fewer

pan actions were considered less likely to havedpatial visualization ability, but their zoom
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actions were more than twice as important as gramractions in increasing the likelihood of low

spatial visualization.

VR

Low spatial visualization

/J\ /J\

pan_up <=9: pan_up > 9:
Low_VZ =-0.0338 + 0.037*zoom_in + 0.0171*pan_up Low_VZ=0.3116 + 0.0202*zoom_in+0.0282*pan_up
\/ \_/

)

High Spatial Visualization

_<

Py pn

pan_up <=9: pan_up >9:
High_VZ = 1.0338 - 0.037*z00m_in -0.0171*pan_up High_VZ = 0.6884 - 0.0202*zoom_in - 0.0282*pan_up

Figure 5.6. Field and Virtual Reality Study M5" classification trees with regressions at the leaves. In the low
spatial visualization classifier, mote map operations led to a higher score for low spatial visualization ability,
while in the high spatial visualization classifier , more map operations led to a lower score for high spatial
visualization ability and a lower likelihood of a high spatial visualization prediction. What is noteworthy is the
classifier has isolated subgroups within each class that have differing likelihoods to be labeled low- ot high-
spatial-visualization, and their map operations have differing relative weights.

Conversely, participants with more pan actions veeresidered more likely to have low
spatial visualization ability, and each extra petiom increased that likelihood even faster. In
the high-spatial-visualization model, the reverss\wue: extra zoom actions mattered more to
participants who panned infrequently, while frequasnners were considered low-spatial-ability

candidates. Overall, the complexity of each regoassodel allowed the
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ClassificationViaRegression algorithm to separate- land high-spatial ability cohorts into
further subgroups where map operations had difenaights, and this finer level of distinction
may have been the reason for the high accuradyessdheme.

5.4.3 Conclusion

This subsection investigated the quantity, quadityd predictive models of algorithms
that exhibited higher performance on the Statiofsmulation and Field and Virtual Reality
studies. Four outcomes became evident. Firste thas a plurality of algorithms that detected
spatial visualization ability, with eight algorittsnmeeting the 80% detection accuracy goal (four
in each study), and twenty-two more algorithms @ainig rates between 70% and 80% on one or
both of the studies. The long list of useful datetschemes lends strong support to the
expectation that spatial visualization ability wak detectable in future applications.

Second, four algorithms achieved detection rateéé6 on the Stationary Simulation
Study or 87.10% on the Field and Virtual Realitydst, which means that in the pack of 30
“good” algorithms there are some that are “excélleand therefore practicable.

Third, algorithms of the “meta” type, which is cheterized by various forms of
classifier aggregation and extension, were densggesented among high performers. This
outcome is consistent with theoretical resulthmachine learning literature that point to
“meta” algorithms reducing generalization error gamed to base algorithms (e.g. Krogh and
Vedelsby (1995) for ensembles, and Wolpert (1962%facked generalizers).

Fourth, the most successful predictive models lwyilalgorithms were intuitively
meaningful. Machine learning in multidimensionaasgs can fail to make sense intuitively,
which leaves investigators with no assurance tietecision making was not based on

meaningless patterns or flukes in the data. Tlais mot the case in the current work. The models
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(a) supplied an understandable interpretation ®@fgcision making and (b) validated the
effectiveness of data transformations and algosthm
5.5 Results in Light of the Existing Literature

As described in more detail in Chapter 2, userisgn®sults in the current literature
have two or more of the following conditions: (ayestigating volatile (rather than semi-
permanent) cognitive variables such as learningfiaustration; (b) relying on one or more
sensors such as galvanic skin response, pressurgaae tracking; (c) detection rates in the
70% range and no higher; (d) user variables notected with personal computer ability; and
(e), results not related to classification of fetuisers. For example, Chang et al. (2013)
achieved 98% accuracy in cognitive fingerprintingnf keystroke dynamics, but did not detect
user variables other than “uniqueness”. Theretbidr research was unrelated to the current
dissertation.

In contrast, our results allow the detection oémspermanent cognitive ability that is
known to relate to user’'s computer performancee détection technique does not depend on
sensors and is immediately deployable on generngaters. Detection rates exceeded 80% and
approached 90%. The algorithm does not need tar kvfzether the user made mistakes, so
detection can be unaware of environmental conditiand therefore need no sensors! The final
outcome is that we can detect user ability on aptexr) location-based, professional task
without any knowledge of the environment, considraeducing both hardware and software
costs through simplification. The dissertation fesakes inroads into intelligent interfaces for

professional workflows - with a shortcut completbiypassing the environment!
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5.6 How to Deploy Detection

Previous sections of this chapter established tyugliantity, interpretation, and validity
of detection outcomes on the Stationary Simulatiod Field and Virtual Reality experiments.
This section explains how the detection technicarelze deployed in future projects in industry
or academia.

5.6.1 Implementation methodology

In the Stationary Simulation and Field and VirtRaality experiments, we did not
observe a “one-size fits all” algorithm that acl@dwetection accuracy over 80% on all data sets.
Instead, there were eight algorithms that had aoyuof 80% or better, but they had varying
performance profiles. Four algorithms: BFTree, FAIRNaive Bayes, and Naive Bayes Tree
achieved high accuracy (80.00%, 80.65%, and 87.10%@ne experiment. Two algorithms,
Decorate and Support Vector Machine achieved highracy (respectively 80% and 84%) on
one experiment and accuracy of 70.97% on anofhiee. two best performers, Bagging and
ClassificationViaRegression/MP™ scored 84% and @%.in one study and 76% and 77.42% in
the other study. Table 5.7 shows comparative pedoce of notable algorithms on both
experiments.

There are three observations that can be made @bble 5.7. First, there were no
“silver-bullet” algorithms with greater than 80%rfoemance on all data sets. Second,
algorithms segregated into six performance grougs dffering accuracy profiles, and five of
the six groups performed considerably better inexperiment. Third, eight algorithms

performed “adequately” on both data sets.
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Table 5.7 Comparative petformance of notable detection algotithms in the Stationary Simulation and Field and
Virtual Reality expetiments. The algorithms grouped along different petformance profiles. Detection accuracy
of 80% or higher is highlighted. Accuracy less than 70.97% is not listed. Algorithms are listed in descending
order of performance.

Algorithm Detection accuracy Detection accuracy  Group Label

(% correct), (% correct),

Stationary Field and Virtual

Simulation Study Reality Study
Bagging 84.00% 77.42% Best Performance
ClassificationViaRegression/MP™  76.00% 87.10%
Decorate 80.00% 70.97% High performance and
Support Vector Machine 84.00% 70.97% some carry-over

capability

BFTree 80.65% High performance on
Furia 80.65% one experiment and no
Naive Bayes 80% carry-over capability
Naive Bayes Tree 87.10%
IB1 76.00% 74.19% Some capability in both
IBk 76.00% 74.19% experiments
MultiBoostAB 76.00% 70.97%
RealAdaBoost 76.00% 74.19%
ADTree 77.42% Some capability in the
Conjunctive Rule 74.19% Field and Virtual
Decision Stump 77.42% Reality experiment
JRip 77.42%
Locally Weighted Learning 77.42%
Logit Boost 77.42%
OneR 77.42%
Random Committee 74.19%
Random Forest 77.42%
RIDOR 74.19%
SimpleCart 70.97%
LAD Tree 72.00% Some capability in the
Logistic Model Tree 72.00% Stationary Simulation
Random Tree 72.00% experiment
Random Subspace 72.00%
RBF Network 72.00%
Simple Logistic 72.00%
Voting Feature Intervals 72.00%

The majority of algorithms performed better in mf¢he two studies. Therefore, there
appears to be a connection between the detaitedaxperimental protocol and an algorithms’

suitability. We propose the following approachatdeployment. As a first step, the software
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designers ought to roll out a pilot study to deteewhat algorithms perform well. After the
best schemes have been found, they ought to kgratéel into the second, and full, deployment.
We will next discuss the expected accuracy fronfhsrcapproach.
5.6.2 Accuracy expectationsfor new deployments

The outcomes in Table 5.6. should alleviate fehtsw accuracy in the future. In
particular, eight algorithms met the 80% accurdegghold set forth in the goal of the
dissertation. Twenty-two other algorithms achiedetection rates between 70.97% and 80%,
for a total of 30 algorithms with notable accurdagainst baselines of 50% and 54%). Further,
eight algorithms achieved notable accuracy on Hath sets in parallel (between 70.97% and
87.10%). Since the protocol differences betwegresments were considerable, these accuracy
results are evidence that algorithms can be paed between address verification protocols. In
the absence of a pilot rollout, the expectationdietection accuracy would be at least in the 70%
range. Conversely, with a pilot rollout, the tagrfprmers are expected to exceed 80%.
Overfitting is not a concern as long as a repredemet sample is obtained for the pilot, because
our accuracy estimates are based on cross-valdigohniques.

5.7 Conclusion

We obtained evidence that spatial visualizatiotgibs systematically linked to user
behaviors at the interface, and that a generic cbenglevice can be trained to recognize user
spatial visualization from map-oriented, locaticasbd interfaces. A multitude of reports in the
literature relate spatial visualization and computage. But how can we engineer interfaces to
take advantage of visualization detection? Chaptevestigates data from our experiments and

published work to provide answers.
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CHAPTER 6. POTENTIAL SPATIO-VISUAL ADAPTATIONS

Previously, we found spatial visualization impgmsformance on a location-based
address verification task, and also uncoveredssitzily significant divergent behaviors. But
how can we engineer interfaces to take advantagesadlization detection? From a system
design perspective, divergent behaviors are exgaoteequire divergent software workflows,
because, in general, software workflow is tailai@dser behavior. Interface adaptations are
expected to maximize performance and satisfacbomtividuals.

However, spatio-visual adaptation guidelines werereadily available due to the
novelty of the research. The relationship betwessimaviors and software adaptations has not
been investigated in detail. This chapter provide®smmendations based on existing
publications and our experimental results. Thetdirst highlights leads in the literature to
argue the value of spatial-visualization-based td&m specifically. Section 6.2 draws together
several reports to elicit an adaptation directi®ection 6.3 affirms the directive through
additional behavioral analysis of the Field andtval Reality experiment. Section 6.4 presents
specific adaptation recommendations. Section é¥slades the discussion.

6.1 Adaptation Leads in the Literature

Literature on spatial-visualization-related softeradaptations is limited due to the
novelty of the research. Existing reports falbitwo heavily populated and mutually exclusive
categories: spatial visualization research thas am concern itself with software adaptations,
e.g. Campbell (2011) compared user performancesonadl-screen device and a large-screen
device; or adaptation research that does not tapgetal visualization, e.g. Ohm, Bienk,
Kattenbeck, Ludwig, & Muller (2016) compared naviga aids for users with varying sense of

direction (Figure 6.1). In contrast to the avaitalilerature, successful adaptation
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recommendations would require both a spatial-vizagbn orientation and an alternative-

interface human-subject experiment.

1) Indoor User Logger 1) Indoor User Logger

\

Stairs

'L_/:
S5

—

Go to the left and up the stairs. Go to the left and up the stairs.

Recognized Reached Recognized Reached

Figure 6.1 Detailed (left) and abstract indoor navigation aid in Ohm, Bienk, Kattenbeck, Ludwig, & Miiller
(2016). Participants with strong self-reported sense of direction petformed considerably better with the abstract
interface.

The lack of relevant literature can be explaingdhe behavioral focus of the present
dissertation: existing reports are heavily weightagards the performance characteristics of
spatial visualization, and not towards how paracifs actuallyised the interface. In contrast,
our work expected performance differentials to lggvan and emphasized behavioral
observation from the outset.

While glancing discussion of behavior was presemhany publications, almost none can
be used for adaptation discussions due to thedhakernative-interface experiments. A notable
exception is Brennan, Kelly, & Arguello (2014), wtested 21 participants of low and high
spatial visualization ability (measured via Eksti®ifi976) VZ-2 Paper Folding Test) on web
search tasks in the “entertainment” and “scienacktachnology” domains. Three types of tasks

were investigated: (i) obtaining a definite ansteea question, (i) assembling a roster of items
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and explanations, and (iii) generating a solutmar open-ended question. High-spatial-
visualization participants performed more searchssd longer search word combinations,
viewed more pages, abandoned more pages, andhesséarch engine result pages more, but
spent less time per page. A critical finding waat tuser-reported workload was unaffected by
spatial visualization ability (p.173), signalingatithe individual difference influences user
workflow subconsciously. An immediate corollarythsit participants would be unable to self-
select adaptations in an interface.

The behavioral results in Brennan, Kelly, & Argae{R014) are complemented by
performance results in Downing, Moore, & Brown (8D0Thirty-seven participants engaged in
information retrieval via a library interface fodeanced search of articles. Participants searched
for articles related to two business-related goastitwo biology-related questions, and a
domain-neutral question used as a baseline. $psimlization was determined by a combined
score on Ekstrom et al.’s (1976) VZ-1 Form BoardtTand VZ-2 Paper Folding Test. High-
spatial-visualization users found the first relavanticle faster, and found more relevant articles
than their low-spatial-visualization counterparfsconclusion from this article and the spatial-
visualization-related information-retrieval litewa¢ is that high-spatial-visualization users are
expected to outdo other user groups during seasitstand the performance differentials would
increase with the complexity of the interface. Gpanstep further in explaining the phenomenon,
Zhang and Salvendy (2001) positetdividuals with high spatial ability, however, tend to
outperform individuals with low spatial ability only when information search tasks require the use of
spatial ability in mentally constructing a model of the organization and structure of embedded task
information”. Since information organization is relevant wthbinterface design and application

content, the immediate conclusion, as with Brenkaatly, and Arguello (2014), is that not all
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users could be expected to choose the best adaysétir themselves, due to a spatial
visualization disadvantage.

Literature accounts of training different visuatina groups describe high-spatial-
visualization users as benefitting from differeppeoaches than low-spatial-visualization users.
Froese, Tory, Evans & Shrikhande (2013) showedhiggt- and low-spatial-visualization users
benefitted differently from three types of compiged training for an orthogonal projection
task. Spatial visualization ability was measureththe Vandenberg & Kuse (1978) Mental
Rotations Test One-hundred-and-seventeen users were first catdhle task of choosing
correct orthogonal views of three-dimensional otgjeafterwards, they received one of three
types of training, which showed either static intediate steps, or animated rotations, or no
intermediate steps at all. The users then perfdram@ther set of orthogonal projection tasks,
and their results were compared to their initiafg@nance. Low-spatial-visualization
participants benefitted the most from static-imageing (18% improvement), less from
animation-based training (17% improvement), andehst from the no-intermediate-results
training (10% improvement) (p.2814). High-spatiualization participants had a different
profile of training results. They benefitted m&sim no-intermediate-results training (6%
improvement), then from static-intermediate-resttiging (5% improvement), and the least
from animation-based training (1% improvement)2®14). The study showed that the most
effective methods of training for each group wére least effective methods for the other. The
training differences reinforce an expectation #yatem engineers can use spatial-visualization-

related adaptations to modify user performance.

3 The MRT test is a widely-used alternative to the Ekstrom et al. (1976) Paper Folding Test.
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More evidence of spatial-visualization groups bealffgcted differentially is furnished by
Nguyen (2012). Sixty low- and high-spatial-visuatibn participants were tested on their
understanding of simple and complex anatomicalatgj@fter being trained on (a) six canonical
views of a cube; (b) six canonical views of theeahj and (c) animated views of the object.
Spatial visualization ability was measured withoanputer version of the Vandenberg & Kuse
(1978) Mental Rotations Test. Figure 6.2 showstaworthy outcome: while in two
treatments, high-spatial-visualization participadsred higher, in the third, low-spatial-
visualization participants outperformed them. teAhammering on the superior computer
ability of high-spatial-visualization users for mas this dissertation work, it is refreshing tese
conditions in which they switch roles with theirnucterparts and become the underdogs. This
remarkable result suggests that, under certainitonsl, interface design is salient enough to
dictate users’ performance outcomes.

Another report of interface-dependent performanftferdntials will be investigated in
the next section, after the adaptation guidanseated explicitly.

6.2 A Directive for Spatio-Visual Adaptation

Despite sparse publications on spatial-visualinabiased adaptation, our experimental
data and several reports in the literature poiat definite distinction: high-spatial-visualization
users prefer and benefit from survey knowledgelenbiwv-spatial-visualization users prefer and
benefit from landmark knowledge. This is consisteith the landmark-route-survey acquisition
process described in Siegel and White (1975).iglocess, a user first recognizes landmarks,
then links them together to form routes, and roatasgive rise to a holistic, or survey,
understanding of an area. The connection betwezhRS model and spatial visualization will

be explained after presenting the next report.
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Figure 6.2. Task scotes from Nguyen (2012) after three diffeting training modes. Low-spatial-visualization and
high-spatial-visualization participants exhibit differing petformance profiles, flip-flopping in performance
depending on treatment.

Bay & Ziefle (2008) trained 30 participants ageti©en a menu navigation task for a
smart phone, with the explicit goal of observing thteraction of landmark, route, and survey
knowledge and spatial visualization ability. Sglatisualization was measured through the
Tewes (1983) Mosaic Test. Training was conduatetiriee treatments: (a) a landmark mode,
where participants were given the exact menu cedmweomplete the task; (b) survey mode,
where participants were given the entire hierahgil possible selections; and (c) a combined
mode of landmark, survey, and route knowledge, @/participants were allowed to interact
with the device for five minutes. High-spatial-védization participants performed best after
pure-survey training, while low-spatial-visualizatiparticipants performed best after pure-
landmark training, outperforming high-spatial-viszation participants in time, number of steps

taken, and number of undo actions.
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Both Bay & Ziefle (2008) and Nguyen (2012) reportexdning modes that set low-
spatial-visualization participants ahead of theghkability counterparts. These findings were
counterintuitive and striking in light of the exigg literature: despite high-spatial-visualization
users being the “favorites” on computer tasks, gaetion modes exist that can overturn
expectations of performance. Of course, based iiig¥¢, Elkerton, Vicente, & Hayes (1990),
the impact of such designs depends heavily ontgoek

However, just because the individual differences

have been assayed and isolated does not guarantee that the accommodation

will be successful. This difficulty is acknowledged by Egan and Gomez (1985,

p. 215): "The step of accommodating individual differences not only tests the

analyses that precede it, but it also tests the theory of how an experimental
manipulation ... will change the original task." (p. c-23)

Bay & Ziefle’s (2008) dichotomy of survey and lanairk knowledge preferences
mapping to high- and low-spatial-visualization papants were corroborated by our own data,
which will be examined in the next section. Butawls the nature of the relation between
landmark preference, survey preference, and spasialization ability? The answers can be
pieced together from the accounts in Rodes & Gydefl12) and Meneghetti, Gyselinck,
Pazzaglia, & De Beni (2009).

Rodes & Gugerty (2012) investigated sixteen paréiots drawing a map from memory,
after having used simulated aerial navigation safexfor an unmanned aerial vehicle. Spatial
visualization ability was tested through Ekstronales (1976) VZ-2 Paper Folding Test. After
controlling for visual memory, spatial visualizatiability was significantly associated with map
draw error and therefore quality of recall! Thigamme was surprising and counter-intuitive, as
it suggested spatial visualization had a sepafégetdrom visual memory on the construction

and retention of survey knowledge. The marginfdatfof spatial visualization ability could
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explain why low-spatial-ability participants aresg$ecomfortable with survey knowledge and
prefer landmark knowledge.

Meneghetti, Gyselinck, Pazzaglia, & De Beni (2068) a psychological study of 76
participants where recall of spatial and non-spéddt descriptions was measured while being
interfered with through secondary tasks of spatigbing and articulatory suppression. Spatial
tapping consisted of tapping the four corners 80 & 24 cm rectangular board and interfered
with visuospatial working memory, while the artiatdry suppression task (repeating the
syllables “ba-be-bi-bo-bu”) interfered with verlbvabrking memory. Spatial visualization ability
was measured by the Vandenberg & Kuse (1978) M&u#dtions Test. High-spatial-
visualization participants were able to overconeeititerference for the spatial text description
(but not for the non-spatial description), whilevlspatial-visualization participants suffered
recall degradation for all treatments. These aue®showed that spatial ability is used as an
additional resource when processing spatial desmng and allowed high-spatial-visualization
users to not require additional “executive resositcAs a result, high-VZ users appear to have
extra capacity to manipulate and exploit surveywkiedge that is subconscious, per the
outcomes from Brennan, Kelly, and Arguello (201#).effect, high-VZ users appear to be have
a preference for survey knowledge due to a moamstazbook-hero “superpower”: they can
exploit survey knowledge as it arrives without egigg additional “executive resources”. On
the other hand, low-spatial-visualization particifsalack the spatial-visualization “superpower”
and cannot exploit survey knowledge, instead prefgtandmark knowledge.

Rhodes & Gugerty (2012) and Meneghetti, Gys&li Pazzaglia, & De Beni (2009)

appear to have clarified how the landmark-routersyiprocess in Siegel and White (1975)
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manifests itself in low- and high-spatial-visuatina interface preferences. This view was
corroborated by our data, as described in the sexntton.
6.3 Adaptation Indicators in the Field and Virtual Rsabtudy

To gain insight into participants’ interface prefeces, we further investigated their
behaviors in the Field and Virtual Reality Studyor this purpose, behaviors were defined as
sequences of user actions of length up to 9. Losgguences were not considered due to
computational cost. Additionally, the longer tle sf actions, the less probable its replication
within the set of 31 users. A total of more th&)0D0 unique sequences were present in the raw
data of the Field and Virtual Reality Study alorepresenting a gamut of behaviors of different
length. Wilcoxon-Mann-Whitney tests were perforntedind statistically significant divergent
behaviors consisting of up to 9 consecutive intsfeommands. Approximately 17,000 interface
action sequences of length 1-through-9 were conddageveen spatial-visualization groups.
Figure 6.3 presents differential user behavios incation-based context.

The longest behavior sequences that were statigtsignificant consisted of 4 actions.
Only the longest sequences in a series were rettolfdaibsequences were also significant at a

differentp-value, they were even more common, and were alsarded.
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Figure 6.3 Geolocated statistically significant user behaviors in the Field and Virtual Reality experiment. The
concentric circles indicate at what distance from the target address the behavior was significantly frequent.
Behaviors in the top half of the graph were exhibited by high-spatial-visualization participants, while
behaviors in the bottom half were exhibited by their low-spatial-visualization counterparts.

It is notable that statistically significant befaal differences started at 25 m from
target for low-spatial-visualization participantsdeat 50m from target for high-spatial-
visualization participants. Differentials betwegnoups manifested during the “Approach”

phase. This outcome mirrors and reinforces thePslap Study decision model in Chapter 4,
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where the majority of behaviors were also obsergtihg the “Approach” phase. Figure 6.4

contains a more fine-grained location-based prasentof behaviors.

Behavior| 25| 30| 35| 40| 453 50 55 60 65 70 F5 80 |85 |90 [95 (1006 |l@f
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Figure 6.4 Location-based presentation of statistically significant participant behaviors. Darker gray indicates
high-spatial-visualization behaviors, while lighter gray indicates their low-spatial-visualization counterparts.
Column headings show distance in meters from target address. Column heading “Inf’ means “infinity”.
Action symbols are explained in Table 5.2.

Another observation regarding overall differencesseen visualization groups is that
there are fewer behaviors exhibited by high-spaislalization participants, again mirroring the
decision model for the Paper Map Study. Furtheemloigh-spatial-visualization behaviors

show an emphasis on the L, K, and Z events, whieladdress-switching actions initiated by the
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user. This address-switching set of behaviorsarsrthe frequent page visitation and
abandonment behaviors exhibited by high-spatialatization participants on the search engine
task in Brennan, Kelly, & Arguello (2014).

High-spatial-visualization participants also exted:

(a) Stepwise progression (ZVAV, Z><>): after an addmsgsmission, move the map
view in a direction, move back, move forward agana remain at the new map
location. This is a behavior to solidify surveyokviedge while making progress;

(b) Survey information acquisition (<--). Participamtere zooming out to add context.

In contrast, low-spatial-visualization participaetdibited:

(a) Magnification (+, ++, ++++, +A, +<, >+, +<+, <++@}: a set of behaviors that
indicates a preference for a more zoomed-in magltematively, for a view that
minimizes survey information.

(b) Reversals (Z<>, VA<, +-, +*-): zooms or pans tha&rareversed and the view
returned to its original location, after which awnéirection might be chosen. This
class of behaviors indicates searching, confusi@anohoring on a landmark.

(c) Impossible commands (*+, -*+): a set of behaviofseve participants attempted to
pan or zoom past the boundaries of the map and wemened that they cannot do
So.

(d) Complex viewport trajectories (<<A, <V+, <++, +<#<<): these sequences indicate
participants embarking on panning-and-zooming “expens” around the map,
which may be the result of a zoomed-in view thatimizes survey information.

Overall, high-spatial-visualization participantshéited survey-information-preference

behaviors, while low-spatial-visualization partiaids exhibited survey-information-avoiding
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behaviors and landmark-preference behaviors, demsigith Bay and Ziefle (2008), the
landmark-route-survey model of Siegel and White7G)9and the interplays between visual
memory, spatial visualization ability, and workimgmory uncovered in Rodes & Gugerty
(2012) and Meneghetti, Gyselinck, Pazzaglia, & @®ig2009). The evidence in the literature
and our data suggests the dichotomy between skn@yledge preference and landmark
knowledge preference appears to map to the divisatween high-spatial-visualization- and
low-spatial-visualization users. The next stefpisecommend adaptations based on survey- and
landmark-oriented publications.
6.4 Adaptation Recommendations

Buering, Gerkin and Reiterer (2006) tested higtamv-spatial-visualization
participants on answering questions about moviestéal a scatterplot graph where each dot was
a graphical object presenting the movie (Fig. 6:-B)e horizontal axis denoted a popularity

score, while the vertical axis denoted year ofaste

Overview + Detall  J* ¢ 17:24 (D onrvlen +Detail  J* o< 16:96 (D
b3 1

Fear and Loathing in Las Vegas

Year:1996

Rating: 7,1 i
Length: 118 et
Language: English

558 Genre: Comedy Drama
Country: USA

LI

Actors:
Johnny Depp (Raoul Duke)
Benicio Del Toro (Dr. Gonzo)

left do not have an overview window, while the two screens on the right are from the intetface with an overview
window. High-spatial-visualization participants petformed better without the overview window, while low-
spatial-visualization participants petformed better with the overview window.

The experimental adaptation wasawer view window that shared screen real estate with
the freely zoomable graph view (Figure 6.5, rightigh-spatial-visualization participants took

longer to complete the experiment with an overwawdow (as compared to having no
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overview window), while low-spatial-visualizatiomgicipants took longer to complete the
experiment without anverview window (as compared to having an overview window).

Delikostidis, Elzakker, & Kraak (2016)’s studyo#tied user requirements for two mobile
location-based applications. The authors repdhatiandmark visuals “helpful for orientation
and navigation were particularly road patterns simds, street names, parks/squares and
roundabouts. Helpful but not always visible landksasn the map were: bridges, pedestrian
paths, and important or tall buildings visible frandistance”. Additionally, the authors clarified
that “Popped-up photos of landmarks were regardadae helpful than their 3D
representations”. The authors’ observations candmwporated into an interface adaptation with
enlarged landmarks in the map view to draw the attention of the ugenlargement may be
based on proximity to the user. Térdarged landmarks should be accompanied by muted
visual presentation of the rest of the map in otdexvoid overwhelming the user’s spatial
visualization capability.

Stanney, Chen, Wedell, and Breaux (2003, pp. 243-Aropose a visualization of
timestamped waypoints to aid in recovering orientation. An adaptatibatttargets low-spatial-
visualization users could go one step further adinually display the entire route from the
start of the work session, withmestamped and connected visited landmarks.

Willis, Holscher, Wilbertz, & Li (2009) tested pripants on their survey knowledge of
an environment after having explored it with a papap or a mobile phone map. Mobile phone
participants took 46 minutes on average to fandethemselves with the environment while
walking inside it on a predetermined path. In cast, paper map users studied a map for an
average of 18 minutes and never set foot in theahspace. At the end of training all

participants were taken to a location within theiemment and asked to provide direction and
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distance estimates to various targets. Mobile phgarticipants were unable to perform at the
level of their paper map counterparts despite takmuch longer to familiarize themselves with
the environment. One problem discovered by theaastivas that mobile map users had a
relatively passive interaction with the softwarepnolue to having to follow a predetermined
route. The authors suggested that participeontéirm infor mation about the area while
traversing the route, in order to keep alert amdlai@ engaged in learning the spatial layout.
Conversely, extra survey-level confirmations regdiof low-spatial-visualization users might
overwhelm and bewilder them. Landmark-level conéitions may provide a benefit instead.
This adaptation also addresses observed behanithne Field and Virtual Reality Study where
high-spatial-visualization participants overlooketbortant environmental cues and solved tasks
incorrectly due to an overly hasty approach toetkgeriment.

Willis, Holscher, Wilbertz, & Li (2009) also idafied unstable cognitive schemata
resulting from fragmented survey knowledge acquirech a small screen. The suggested
remedy was to enabfe e-planning on suitably zoomed out representations, which should be
revisited periodically to solidify the connection betweeagments. This adaptation aligns with
planning behaviors observed in the Paper Map saslwell as with a high-VZ software
behavior from the Field and Virtual Reality stufiyan-left, zoom-out, zoom-out”. In contrast,
low-VZ software behaviors from the same study wererwhelmingly composed of zoom-in
actions. Therefore, a planning adaptation coutdmwenience low-spatial-visualization
participants considerably if their preference ialbsorb information in smaller chunks.

6.5 Conclusion
Reports in the literature and data from the Field ¥irtual Reality Study suggested that

high-spatial-ability users would be best serveatdgptations enhancing the availability of
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survey information. Conversely, low-spatial-visaation participants should benefit from
landmark-oriented adaptations. More adaptatioreexgents targeting spatial visualization

ability are needed to fill the gap in current urst@nding.
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CHAPTER 7. CONCLUSION

In this dissertation, we described a novel, behavased spatial visualization detection
technique that can be adopted on generic compateces.

Other user-sensing results in the current liteeaixhibit two or more of the following
conditions: (a) investigating volatile (rather trgemi-permanent) cognitive variables such as
learning and frustration; (b) relying on one or meensors such as galvanic skin response,
pressure, and gaze tracking; (c) detection ratdseiir0% range and no higher; (d) user variables
not connected with personal computer ability; aa)d fesults not related to classification of
future users.

In contrast, our results allow the detection oémspermanent cognitive ability that is
known to relate to users’ computer performancee détection technique does not depend on
sensors and is immediately deployable on genenpaters. Detection rates exceeded 80% and
approached 90%. The algorithm does not need tw kvizether the user made mistakes, so
detection can be unaware of environmental conditiand therefore need no sensors. User
ability is detectable on a complex, location-baggdfessional task without any knowledge of
the environment, thereby reducing both hardwaresaifitvare costs through simplification.

The detection of spatial visualization ability at® coupling with ability-specific
software adaptations. Sources in the literatwlecate that low-spatial-visualization users
benefit from landmark-oriented adaptations, whilghkspatial-visualization users prefer survey-
oriented adaptations. Experimental data and phddiseports imply user-selected adaptations
cannot be guaranteed to enhance performance dbe sobconscious nature of individual

differences. An automatic solution should be immeted instead.
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The present study is an early step towards opewdizing the close relationship between
spatial visualization ability and users’ computetivaties. An immediate next step is to build an
adaptive system and validate the current desigeaapons. More participants are necessary!
While the literature does not present any detradiicthe proposed adaptations, they will
strongly influence the workflow and must be ceetfi

More rigorous feature engineering could be apgiethe detection technique in order to
bring detection accuracy higher. The availabla datludes precise timing and cursor
movement traces that are yet untapped.

Medium-term goals include determining a more dethkdomposition of the user base
with regard to spatial visualization. In partiaylénere are indicators of several sub-groups with
varying levels of ability and behavior. A multi-piarpant user study is necessary to bring out
sufficient representation of all cohorts alongfilérange of spatial visualization. The projest i
expected to be complicated by interference fronemwtiser characteristics.

The present detection technique need not be limitéacation-based interfaces. While
map-centered systems all but guarantee spatialization ability is pertinent, the literature is
unequivocal with regard to the ability playing &ron multiple other task types such as
advanced information retrieval and remote teledpmraf robots.

In the long term, new developments in the psychplafgspatial knowledge, e.g.
Meneghetti, Labate, Pazzaglia, Hamilton, & Gysdi(2016), invite embracing a more complex
model of visuospatial processing, with multipleiindual differences, and subsequently
discovering the boundaries of the relevant despgics. The outcome of such extensive activity

would be cognition-aware software engineering, @ghitively-tuned interfaces.
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Newspaper advertisement

Participants Needed for Research Study

We are looking for participants to verify street addresses in a
neighborhood. Participants must be [SU students, aged 18 or older,
and fluent in English. Participants should have minima! exposure to
Ames neighborhoods.

Participants completing the study will be offered compensation.

For more information or to schedule an appointment, please contact:
Kofi Whitney @ kwhitnevi@iastate.edu or (803) 546-0007,
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26 Seplember 2009
12 Seple

SCHEDULING SCRIPTS (continued)
Field Exercise - Email
Subject: Address Verification Study - Ficld Exercisc
Dear [Student 's Name],”
You have received this email because you participated in the screening portion of our Address
Verification Study. We have reviewed your screening information and would like to invite you to
participate in the field exercise portion of the smudy. This exercise will take approximately 2 hours to

complete. You will receive a $20 gift card for your participation.

Please refer to your lnformed Consent document for additional information regarding the study. You are
welcome to contact us if you would like to receive another copy.

Click here [Doodle Scheduling Link] to schedule the field exercise.
Note: We may contact you to reschedule if weather conditions are not favorable,

‘I'hank you on behalf of my research group for participating in this study.

Sincerely,

Kofi Whitney

Graduate Assistant

Department of Computer Science

Your participaiion in this study is completely voluntary and you may withdraw at any time. The data that

we collect Jrom you will be kept confidential, If'you have any questions or concerns about this study,
please contact Kafl Whitney @ 803-546-0007 or Dr. Les Miller @ 515-294-7934.
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SCHEDULING SCRIPTS

*The Doodle Online scheduling toal will be used — hutp./Awvew.doodie.conm®
*After a student hus been scheduled, a follov up email will be sent wilh appoiniment information™

Screening — Email

Subject: Address Verification Study - Screening
Dear [Student's Name],

You have received this email because you have expressed an interest to participate in our Address
Verification Study. The next step is to schedule you for the screening portion of the study. The screening
will involve a background information questionnaire and a series of cognitive tests. Screening will take
approximately 1 hour to complete. You will receive a $10 gift card for participating in the screening.

You may be selected after this screening to later participate in a field exercise that will take
approximately 2 hours to complete. We ask that you schedule this initial screening i and only if you
intend to participate in the field exercise. Compensation for the field exercise is a $20 gift card.

Click here [Daadg Scheduling Link] to schedule a screening appointment.
Thank you on behalf of my research group for participating in this study.
Sincerely,

Kofi Whitney
Graduate Assistant
Department of Computer Science

Your participation in this study is completely voluntary and you may withdraw af any time. The data that
we collect from you will be kept confidential. If you have any questions or concerns about this study,
please contact Kofi Whitmey @ 803-546-0007 or Dr. Les Miller @ 515-294-7934.

Screening - Phone

* “Hello, my name is | Scheduler’s Name|. 1am calling you beczuse you have expressed an interest to
participate in cur Address Verification Study. I'd like to remind you that your perticipetion in this
study is completely voluntary and you may withdraw at any time. The data that we collect from you
will be kept confidential™

* “May [ continue?”

* “The next step is to schedule you for the screening portion of the study. The screening will involve a
background information questionnaire and & series of cognitive tests. Screening will take
approximately Thour to complete. You will receive a $10 gift card for participating in the screening.
You may be selected after this screening to later participate in a field exercise that will take
approximately 2 hours to complete. We ask that you schedule this initial screening if and only if you
intend to participate in the field exercise. Compensation for the field exercise is a $20 gift card.”

¢ “May I email you the information that [ have discussed along with a link that will allow you to
schedule your screening appointment?”

*  “Thank you for your time.”
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INFORMED CONSENT

The purpose of this research study is to gather information on how individuals compare addresses on a street with
information on a paper map.

You will complete 2 brief background questionnaire followed by 3 cognitive assessments. This will take
approximately 1 hour. Some subjects will be cantacted at a later date to schedule an appointment for a field
exercise. If selected for the field exercise, we will explain the task and train you on the procedures. You will then be
transported, via CyRide, to an Ames neighborhood where you will practice the procedures. Next, we will give you a
list of addresses to find and verify against a map that we provide. During the field exercise, you will be asked to
think aloud as you reason through the task and this will be audio-recorded. This exercise will take approximately 2
hours to complete. There are no known rigks to participation other than concerns that are normally associated with
walking through a neighborhood.

There are no direet benefits to you as a participant other than the cducational experience of being invelved in an
study. Your participation is helping us learn how we can improve address listing methods, By participating in this
study, you will be offered 2 $10 gift card for the background questionnaire and cognitive assessments. If you are
selected for the field exercise, you will be offered an additional $20 gift card for participation. You will need to sign
a receipt for both gift cards.

Your participation in this study is completely veluntary and you may withdraw at any time. You may skip any parn
of this study that makes you feel uncomfortable or withdraw from the study at any time without penalty or loss of
henefits to which you may otherwise he entifled,

Records identifying participants will be kept confidential to the extent permitted by applicable laws and regulations
and will not be made publicly available. However, federal government agencies, the National Science Foundation,
and the Instifutional Review Board (a committee that reviews and approves human subject research studies) may
inspect and/or copy your records for quality assurance and data analysis. These records may contain private
informztion. To ensure confidentiality to the extent permitted by law, the following measures will be taken:

Data that identifies participants will be kept confidential. The information taken from this scssion will be assigned a
unique code. Your name will not be associated with this information. Only researchers from Iowa State University
working on this project will have access to data collected during this study. Study records will be kept confidential
under password protected computer files. Data will be retained for two years and then will be destroyed.

The data results from this research may be used for educational or scientific purposes and may be presented at
scientific and/or educational meetings or published in professional journals. Results will be released in summary
form only with no personal identifying information.

For further information about the study contact Kofi Whitney at (803) 546-0007 ot Dr, Les Miller at (515) 294~
7588. If you have any questions about the rights of research subjects or research-related injury, please centact the
IRB Administrator, (515) 2944566, IRB(@liastate edu, or Director, Office for Responsible Research, (515) 294-
3115, 1138 Pearson Hall, Ames, [A 50011.

Your signature indicates that you veluntarily agree to participate in this study, that the study has been explained to
you, that you bave bzen given the time to read the document and that your questions heve been satisfactorily
answered, You will reecive a copy of the written informed consent.

Participant’s Name (printed)

(Parlicipant’s Signature) ) (Darz)
INVESTIGATOR STATEMENT
I certify that the participant has heen given adsquate time to read and learn about the study and all of their questions

“have been answered. It is my opinion that the participant understands the purpose, risks, benefits and the procedures
that wili be followed in this study and has voluntarily agreed to participate.

(Signature of Person Obtaining Informed Consent) (Date)
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TRAINING SCRIPT
*Participants wiil read along as this is dictated by the facilitator*

You will be presented with the following training materials: (1) a map of the residential area and (2) a list of
addresses.

You will be asked to determine whether the addresses are accurately reflected on the map. You may verify ke list
addresses in any order that you prefer. Four outcomes are possible during verification: (1) the ground situation is
correctly reflected on the map; (2) the map erroneously displays a housing unit that is not on the ground; (3) the map
erroneously displays a housing unit that is on the ground but incorrect; (4) the map does not display a housing unit
appearing on the ground. Procedures for modifying your map will now be outlined by the facilitator.

A “think-aloud” method will be used during this exercise. You have been equipped with an audic recording device.
You will be asked to verbalize your thoughts about performing the task throughout the exercise. These thoughts will
be recorded to help us accuratcly recall your approach.

We ask that you perform this exercise using your typical practices for interpreting a map and identifving residential
homes. It is important that you say aloud everything that you think or do. Do not feel uncomfortable or embarrassed
about your approach or any of your thoughts. Even the minute pieces of information that you provide are important to
us and all of your input will be held in the strictest of confidence,

Your facilitators role will be only to observe and record your behavior. They will not interact wiih you other than to
encourage you fo think aloud or to. get clarification on something that you said that cannot be verbally understood.
‘We will begin by a mock exercise to acclimate you to the think-alond process.

Once you have completed the training, you will then move on to the main exercise. It will be conducted in the same
manner as the training—you should expect your observer (o be completely passive at this point unless you have
stopped verbalizing your thoughts. Before beginning the main exercise, please ensure that you are comfortable with
the procedure and that all of your questions have been answered.

22
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CODING SHEET
Date: Observer: ] ID:
Address: _ Onder:_ Agctio: VAMD Incidental verification O Time taken:
Map Body
Check: _ ~ Heading:
Rotation:
Modification: Body rotation:
Street Miscellaneous
Sign check: Confusion sources:
Numbering:
Odd/cven: List modification:
Other:
NOTES

23



132

APPENDIX E. EKSTROM ET AL. (1976) TEST OF SPATIALISUALIZATION

(continued on next page)



133

T 00506
28 September 2006
12 Sapiember 2010

irallen Date:

Paper Folding Test — V2-2

Suggested by Thurstone's Punched Holes. For each item successive
drawings illustrate two or three folds rn'arle {n a syuare sheet of paper.
The final drawing of the folded paper shows where a hole {s punched in -
jc. The subject selects one of 5 drawings to show how che punched sheet
would appear when fully reopenad.

Length of each part: 10 items, 3 minutes

Suitable for grades 9-16

| L ] :,M.J'
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N PAPER FOLDING TEST — vz-2

Tn this test you are to imagine the Ffolding and unfolding of pieces of
paper. In each problém in the test there are scme figures drswn at the left
of & vertical line and there are cthers drawn at the right of the line. The
figures at the left represent a square piece of raper being folded, and the
laat of these figures has one or two smell eircles drawa on 1t to show, where
the paper has been punched. Each hcle is punched thréugh all the thicknesses
of, pager at that point. One of the five figures at the right of the vertical
line shows where the holes will be when the paper is completely unfolded. You
are to decide vhich one of these figures s correct end draw en X through that

‘figure.
Now try the sample problem below. (In this problem only cne hole was

punched in the folded paper.)

5]

A " D

"I

1 ]
Lo L

The correct answer to the sample problem above is _c-and so it shenld have
bteen marked with an X. The figures below show how the paper was folded and

why C is thes correct ansuer.

OB e YA

p—

—

Tn these problems all of the folds that are made are shown in the figures
at the left of the line, and the paper is not turned or moved in any way except
to meke the folds shown in the figures. Remember, the answer is the figure .
that shows the positions of the holes when the paper is completely unfolded.

Your scorve on this test will te the nurber marked correctly minus a
fractiod of the number marked incorrectly. Therefore, 1t will not be to your
advantage to guess uxrless you are able to eliminate cne or more of the answer
choices as wrong. S

You will have 3 minutés for each of the two parts of this test. ~Fach
part has L page. When you have finished Part 1, STOP. Please do not go on
to Part 2 uatil you are asked to do =o.

DO HOT TWRN THIS PAGE UWPIL ASKED TO 20 dC.
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Pare 2 ) V-2

Part 1 (% minutes)
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DO KOT.GO ON TO THE MEXT PAGE UNTIL. ASKED TO DO S0. stop
CP.

Copyright @ 1962 by Educational Testing Service. All rights resarved.
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DO NOT GO BACK TO PART 1, AND
DO NOT GO O TO ANY OTHER TEST UNTIL ASKED T0O DO 50.
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WY  MEMORY, VISUAL

Factor
The ability .1:_0 vememban the confiquration, Location,
and oriemtation of figural material

There has baen coneiderabie debate as Lo whet_her‘o: not this factor
::'_s due to tast cohtent. Thurstone (1945) thought that "the pnaﬁbriiing
factor transce:_l%irr_he nature of the content' but mere recent :researcﬁ. has
demonstrated the existence of iconic mémory, which is used to store visual
impressions. . This suggests rhat visual memcry is not simply. the result of
rest content but involves cognitive precesses different,from those used in
other memory £actors.

There may be sub faetors .of wisual WeWOTY . Guilford describes six
figurél mediory abilities. -Petrov (1970) has found separate factors horth
fotr icopic memary and for short-term retention of visual material.

Identification: Guiiford, MFU, MFC, and MFR, possibly others.

References: 21, 33, 55; 86, 91, 108, 109,-155, 164, 165, 174, and 179.

12 Se

2009
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3uilding Memotry, — MI=2

The subject is asked ‘to indicate the location of a number of
buildings séen on-a previously studied map.
Lengzh of each part: 12 items, .4 minutes for memorizing,
4 minutes for te?ﬁing

Suitable for grades b6-1A
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Nime - : _

BUILDING MEMORY —— MV-2

Thia is a test of your ability to remember the pesition of things on

a street map.

You will be given a map with streets and buildings and other structures
to study. After you have had some time to jearn che street layout and the
different kinds of structures, you will be asked to turn to a test page. On
that page you will find the streef map and numbered picturés of come of the
structures. - You will be asked to pyt zn X on the letter that shows where
2ach of the structures was located on the study map. s

Now look at this simple and enlarged sample:

imiffim|

oo
ao

on
10
N

After you have studied the sample sbove for a minute, turn to the
next page. . . ) ) )

ER [ T, 811 rishrs raserved.
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Page 2 ¥ -2
For cach item ma.r‘s.. an X

Lock at the nuxbered houses on the lefc.
+h vhere sach house

on the lecter below each building that corrasponds Wi
was located on cthe study map.

1.

oo
5 |oo

=l0a

O
[l
B C D E

Your answers [or sample item 1 should be A, for 2,'C; and for 3, B.

11 be the number of buildings placed
Therefote, .it will not be
e leccations

Your score on rhis test wi
correctly minue a fraction of the number wWrong.
to your advantage to guess unless you can eliminate some of Ch

as definitely wrong.

There are two sections to each part of this cest. The first section 1is
a map which you will study for 4 minutes. The second is the test section and
containe, 12 structures to be located on the map. = You will have 4 minutes to
wark your amswers. Mark 4, B, C, D, or.E for each building. In the test
section, the buildings will be mixed up and not necessarily mear the part of
the map where you first saw then, '

This test has two parts. When you have finished Part 1, STOP. Flease
do not go on to Part 2 until vou are asked to do 80.

DO NOT TURH fIEIS PACE UNTIL ASKED TO DO S0

. Pl mmme A
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18U RB # 1 00 366

Apioved Date: 28 Seplember 2008
2010 %

Expiralion Date: 12 Septer

Page 4 ' My~2
TEST PAGE
Part i (4 minutes

Mark an X oa the letter below each building that shows

whers it was geén oa tha map.

||
| —
= I 1l

DO NOT TURN THIS PAGR UNTIL ASKED TO DO 50

STOP.

Copyright @1915 by Educational Testing Service. All righte reserved.
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Part 2 (4 minutes)

L)

UNTIL ASKED TO DO SC

NOT TURN THIS PAGE
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I
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|

TEST PACE ‘

Part 2 (4 minutes) i
13.
Merk an X on the letter below each building that shows
A B C D B where it was seen on the map.
14. H W \1 \ \
A 3 CDE '
) A \ B | e 5 I o \ E
15. % : ]
A B C D E \ \ A
16. Sm \ E 5 D
Y===1
A B GC D E ¢
v, EE

A B C D E

f”' J}w' A7

a s ¢ D E

19- gﬁ

A B C D E

20, @

A B C D E

21.

A B C D E

22, C . | -
’ ,L cp 3 :\\ W.E \m\\ﬁ

DO NOT GO BACK TO PART 1 AND DO NOT G0 ON 'O ANY OTHER TEST
., ' STOP.

A B CDE

Copyright @ 1975 by Bducational Testing Service. 411 rights reserved.
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APPENDIX G. KOZHEVNIKOV ET AL. (2006) TEST OF PERE&ETIVE-TAKING
ABILITY

(continued on next page)
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Perspective Taking Ability Test (PTA-Test)

Recent research of Prof. Maria Kozhevnikov (Department of Psychology, George
Mason University, VA) has shown that there are two distinet abilities: mental
rolation (an ability to imagine rotation of objects from a fixed perspective) and
perspective taking (an ability to imagine a reoriented-self) [pdf]. The second skill
(perspective-taking) is the skili, which is important for navigaling in space.

Up until now, the existing tests did not dissaciate successfully between mental
rotation and perspective-taking abilities, since most existing tests could be solved
by using mental rotation as well as perspective taking strategy. As a result, all the
existing commercially-available spatial tests measure mostly mental rotation
ability (e.g. the ability to imagine rotating objects from a fixed perspective),
which is a different ability not related to navigational skills.

We have developed the Compulerized
Perspective-Taking Ability (CPTA) test to
measura spatial orientation ability. This new
test was successfully validated and
copyrighted jointly by MM Virtual Design,
LLC and Rutgers University (see PTA test
— features). The results suggest that while
ﬁ - solving this test, people in fact encode the
.} objects shown on the display with respect toa
body-centered coordinate system. It was also
shown thal while this test predicts reliably the
spatial navigationa! abilitics, mental rotation
tests do not.

T rerselanuae

Our new Computerized Perspective-Taking Abitity Test is the first valid measure
of spatial orientation ability and could be successfully used for rescarch as well as
for training purposes and personnel selection in the professions that require high
navigational abilities (e.g., astronauts, pilots, drivers). :
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Imagine you aré the figure.
Yaou are facing the Liniversity.
Mow gaint tothe Afvport

05385
28 September 2009
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APPENDIX H. PAPER MAP STUDY: LIST OF CODES IN THINKLOUD PROTOCOLS

# pattern recognized
address expected

address verified

anchored on landmark
check address

check map

check surroundings
confused

target location estimated
edit map

street expected

heading selected

identify street

landmark added

map relation identified
map rotated

navigation plan reinforced
near-target address verified
noted address location
planning

planning check map
position located on map
recall solution to previous scenario
recall target

recognize # pattern

select heading

select target

signal turn

street identified

target address error suspected
target changed

target recalled

target selected

target sequenced

target street identified

tried to locate target but failed

turn signaled

acquire cue

added street name

attempting to plan

change target

check address

express frustration

identified map relation erroneously
intermediate goal set

intersection expected

landmark expected

landmark identified

learn about area layout

looking for street sign
near-target address verified second time
numbering pattern recognized
orient self with regard to cardinal
directions

realize going the wrong way
recalled travel sequence

select intermediate target

target address error found
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APPENDIX I. PAPER MAP STUDY: POST-STUDY QUESTIONNRE

(continued on next page)
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FIELD EXERCISE TESTS & QUESTIONNAIRE

Direction Test
*A lest of direction will occur just before the fleld exercise begins. The answer will he vecorded by facilitator *

1. “Point due North.”

*Field exercise has been administered and is now complete. *

Starting Point Test & Direction Test
*A test to determine if the participant can locate their starting point will be administered followed by an additional test of direction.

1. “Point to your starting location.”
2. “Point due North.™

Post-Questionnaire
*Questionnaire questions will be read to the puriicipant. The answers will be recorded and laver rranscribed®

1. How did vou decide what address to start with?

2, How did you decide what address to do next? Did you change this approach for later addresses?

3. What features of the map were most helpful?

4.  What features do you wish were on the map?

5. What features of the map could you have gone without?

6. Did the setting affect your appreach to completing the tasks (e.g. weather, traffic, etc.)? If so, how?
7. - How hard was it for you to find the addresses on the ground? Very Easy [1] - [5] Very Difficult

8. What address was the casiest to verify?

9. 'What address was the most difficult fo verify?

10. What distracted you from the task?

24
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APPENDIX J. STATIONARY SIMULATION STUDY: ADVERTISING

(continued on next page)
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Newspaper advertisement

Participants Needed for
Tablet PC Study

We are looking for participants who are familiar with
computers to perform tasks using tablet PC software

Those that participate in the study will
be offered compensation

Contact Michelle Rusch at
mirusch@iastate.edu or (515) 294-9773

Email notification

Participants Needed for Tablet PC Study

We are looking for participants who are familiar with computers to perform tasks using
tablet PC software.

Those that participate in the study will be offered compensation.

For more information, please contact Michelle Rusch at mlrusch@iastate.edu or
(515) 294-9773.
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RESEARCH STUDY

Participants needed for a study on software interface
design for the tablet PC.

We are looking for participants who are familiar with
computers to perform tasks using tablet PC software. If
you volunteer to participate, your performance using a
user interface will be captured.

The experiment takes about two hours. Subjects who
participate in the study will be provided with
compensation.

For more information or to schedule an appointment, please contact:
Email: mlrusch@iastate.edu

Michelle Rusch
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APPENDIX K. STATIONARY SIMULATION STUDY: INFORMED ®NSENT FORM

(continued on next page)
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Letter of introduction with elements of consent
Software interface design

Our goal is to study software interface design on tablet PCs.

The exercise will take about two hours to complete. During the study you may expect the following
procedures to be followed. You will compleie two short questionnaires, a few training and cognition
assessments, and one exercise using a software interface.

There are no known risks to participation other than ergonomic concerns that are normally associated
in the usage of the tablet PC.

There are no direct benefits to you as a participant other than the educational ¢xperience of being
involved in an cxperiment. Your participation is helping the United States Census Bureau to develop
better software.

By participating in this study, you will be provided with a $30 gift card for your pariicipation.

Your participation in this study is completely veluntary and you may withdraw from the study at any
time.

Records identifying participants will be kept confidential. Results will be released in summary form
only.

Only researchers from lowa State University working on this project will have access to data collected
during this study.

The data collected in this research may be used for educational or scientific purposes and may be
presented at scientific and/or educational meetings or published in professional journals. Published
results will be in summary form only with no personal identifying information.

For further information about the study contact Michelle Rusch or Dr. Sarah Nusser at

(515) 294-9773. If you have any questions about the rights of research subjects or research-related
injury, please contact Janice Canny, Director, Office of Research Assurances

(515) 294-4566, jes1959@iastate.edu.

Participant’s Name (printed)

(Participant’s Signature) (Date)
INVESTIGATOR STATEMENT

I certify that the participant has been given adequate time to read and learn about the study and all of
their questions have been answered. It is my opinion that the participant understands the purpose,
risks, benefits and the procedures that will be followed in this study and has voluntarily agreed to
participate.

(Signature of Person Obtaining Informed Consent) (Date}

ORC 05/03
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APPENDIX L. FIELD AND VR STUDY: ADVERTISING AND SCHEDULING SCRIPTS

(continued on next page)
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PARTICIPANTS NEEDED

for ISU study.

Participants must be 18 or older, fluent in English, and capable of using a

mobile device.

Compensation will be offered.

GEORGI BATINOV

Email: batinov@iastate.edu
Phone: (515) 450-5435

For more information or to schedule an appointment, please contact:
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Newspaper advertisement

Participants Needed for Research Study

Participants must be 18 or older, fluent in English, and capable of
using a mobile device.

Participants in the study will be offered compensation.

For more information or to schedule an appointment, please contact
Georgi Batinov: batinov @iastate.edu or (515) 450-5435.

Email advertisement
Subject: Participants Needed for Research Study
Participants must be 18 or older, fluent in English, and capable of using a mobile device.
Participants in the study will be offered compensation.

For more information or to schedule an appointment, please contact Georgi Batinov: batinov @iastate.edu or
(515) 450-5435.
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SCHEDULING SCRIPTS
*The Doodle Online scheduling tool will be used — http:/fwww.doodle.com*
*After a student has been scheduled, a follow up email will be sent with appointment information™

Screening — Email

Subject: Address Verification Study - Screening
Dear [Participant’s Name],

You have received this email because you have expressed an interest to participate in our Address Verification Study.
The next step is to schedule you for the screening portion of the study. The screening will involve a background
information questionnaire and a serics of cognitive tests. Screening will take approximately 1 hour to complete, after
which you will receive a $10 gift certificate as compensation.

You may be sclected after this screening to later participate in a field exercise that will take approximately 2 hours to
complete. We ask that you schedule this initial screening if and only if you intend to participate in the field exercise.
You will receive a $20 gift certificate for participating in the exercise.

Click here [Doodle Scheduling Link] to schedule a screening appointment.

Georgi Batinov
Graduate Assistant
Department of Computer Science

Your participation in this study is completely voluntary and vou may withdraw at any time. The data that we collect from
vou will be kept confidential. If you have any questions or concerns about this study, please contact Georgi Batinov@
515-450-5435 or Dr. Les Miller @ 515-294-7934.

Screening — Phone

¢ “Hello, my name is [Scheduler’s Name]. I am calling you because you have expressed an interest to participate in our
Address Verification Study. I'd like to remind you that your participation in this study is completely voluntary and
you may withdraw at any time. The data that we collect from you will be kept confidential.”
“May I continue?”

®  “The next step is to schedule you for the screening portion of the study. The screening will involve a background
information questionnaire and a series of cognitive tests. Screening will take approximately 1 hour to complete, after
which you will receive a $10 gift certificate as compensation. You may be selected after this screening to later
participate in a field exercise that will take approximately 2 hours to complete. We ask that you schedule this initial
screening if and only if you intend to participate in the field exercise. You will receive a $20 gift certificate for
participating in the exercise.

® “May I email you the information that I have discussed along with a link that will allow you to schedule your
screening appointment?”

¢ “Thank you for your time.”
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SCHEDULING SCRIPTS (continued)
Field Exercise — Email
Subject: Address Verification Study - Field Exercise
Dear [Participant’s Name],
You have received this email because you participated in the screening portion of our Address Verification Study. We
have reviewed your screening information and would like to invite you to participate in the field exercise portion of the

study. This exercise will take approximately 2 hours to complete. You will receive a $20 gift certificate for participating.

Please refer to your Informed Consent document for additional information regarding the study. You are welcome to
contact us if you would like to receive another copy.

Click here [Doodle Scheduling Link]| to schedule the field exercise.
Note: We may contact you to reschedule if weather conditions are not favorable.

Georgi Batinov
Graduate Assistant
Department of Computer Science

Your participation in this study is completely voluntary and you may withdraw at any time. The data that we collect from
vou will be kept confidential. If vou have any questions or concerns about this studv, please contact Georgi Batinov @
515-450-5435 or Dr. Les Miller @ 515-294-7934..



162

APPENDIX M. FIELD AND VR STUDY: INFORMED CONSENT FRM

(continued on next page)
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INFORMED CONSENT
The purpose of this study is to find out how individuals survey addresses in the field.

You will complete a brief questionnaire followed by 4 cognitive assessments. This will take approximately 1
hour. Somie subjects will be contacted at a later date for a field exercise. You will be given a $10 gift
certificate for participation in this phase of the experiment, and you will need to sign a receipt for the gift
certificate.

If selected for the field exercise, we will explain the task and train you. You will then be transported, via
CyRide, to an Ames neighborhood where you will practice the procedures. Next, we will give you a list of
addresses to find and verify against a map that we provide on a handheld computer. This exercise will take
approximately 2 hours. There are no known risks to participation other than concerns that are normally
associated with walking through a neighborhood. You will receive a $20 gift certificate for participating, and
you will need to sign a receipt for it.

There are no direct benefits to you as a participant other than the educational experience of being involved in an
study. Your participation is helping us learn how we can improve address listing methods.

Your participation in this study is completely voluntary and you may withdraw at any time. You may skip any
part of this study that makes you feel uncomfortable or withdraw from the study at any time without penalty or
loss of benefits to which you may otherwise be entitled.

Records identifying participants will be kept confidential to the extent permitted by applicable laws and
regulations and will not be made publicly available. However, federal government agencies, the National
Science Foundation, and the Institutional Review Board (a committee that reviews and approves human subject
research studies) may inspect and/or copy your records for quality assurance and data analysis. These records
may contain private information. To ensure confidentiality to the extent permitted by law, the following
measures will be taken:

Data that identifies participants will be kept confidential. The information taken from this session will be
assigned a unique code. Your name will not be associated with this information. Only researchers from lowa
State University working on this project will have access to data collected during this study. Study records will
be kept confidential under password protected computer files. Data will be retained for two years and then will
be destroyed.

The data results from this research may be used for educational or scientific purposes and may be presented at
scientific and/or educational meetings or published in professional journals. Results will be released in
summary form only with no personal identifying information.

For further information about the study contact Georgi Batinov at (515) 450-5435 or Dr. Les Miller at (515)
294-7588. If you have any questions about the rights of research subjects, please contact the IRB
Administrator, (515) 294-4566, IRB @iastate.edu, 1138 Pearson Hall, Ames, 1A 50011.

Your signature indicates that you voluntarily agree to participate in this study, that the study has been explained
to you, that you have been given the time to read the document and that your questions have been satisfactorily
answered. You will receive a copy of the written informed consent.
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Participant’s Name (printed)

(Participant’s Signature) (Date)
INVESTIGATOR STATEMENT
I certify that the participant has been given adequate time to read and learn about the study and all of their

questions have been answered. It is my opinion that the participant understands the purpose, risks, benefits and
the procedures that will be followed in this study and has voluntarily agreed to participate.

(Signature of Person Obtaining Informed Consent) (Date)
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APPENDIX N. FIELD AND VR STUDY: TRAINING SCRIPT
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Date: 2/4/2011 Observer: ID:

TRAINING SCRIPT

1 will give you a map and a list of three addresses.

Please determine if the addresses from the list are properly shown on the map. You may verify
them in any order.

There are four possible outcomes for each address on the list:

1. The address on the list appears correctly on the map and in the neighborhood — Ne
Change;

2. The address on the list does appear on the map but is located in a different location in
the neighborhood - Move.

3. The address on the list does not appear on the map but does appear in the
neighborhood - Add;

4. The address on the list does not appear on the map or in the neighborhood - Delete;

You may approach the task however you see fit.

The first three addresses are for training. While you work on them I can answer your questions.
Please ensure you are comfortable with the task before we move to the main exercise.

Practice Notes / Pointers
* did any strategies/observations emerge (¢.g. numbering pattemns) / note places where you can 1 and coach participant *
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APPENDIX O. FIELD AND VR STUDY: ADDRESS VERIFICATI® SOFTWARE
STORYBOARD\

(continued on next page)
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MAP EDITOR STORYBOARD
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APPENDIX P. FIELD AND VR STUDY OBSERVER CODING SHHE
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CODING SHEET

Date: 12/5/2015 Observer: 1ID:
Address: Order#: Action: VAMD Time of Verification:
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APPENDIX Q. STUDY COMPENSATION RECEIPT FORM

(continued on next page)



172

CONFIDENTIAL CONFIDENTIAL CONFIDENTIAL CONFIDENTIAL

lowa State University
Research Participant Receipt Form (RPRF)

Use if this payment is iess than $75

lowa State University (ISU) is required to maintain the confidentiality of information about
research study participants while still complying with record keeping requirements of the State
of lowa, the Internal Revenue Service (IRS), and funding agencies. The purpose of this form is
to serve as documentation of the receipt of compensation associated with participation in a
research study conducted by ISU personnel.

l, . have received/or am requesting compensation in

(Print Research Parlicipant Name) the form and amount indicated below:
[J Cash $
O Check 3
& Gift Ceriificate/Card $_ s0.00

[ Other Property — Describe:

Value: §

Research Participant Signaturs Date

TO ISU PERSONNEL.:
Research sarlicipanis may be given the opporiunily (o pariicipate without receiving payment if they choose not to complate
this receipi form.

This form provides decumentation for gift cerfificates/cards or other property purchased by ISU p-card—keep original form
as part of your p-card documentation.

If an 1SU check needs to be issued for payment, attach RPRF to complatec honoraria voucher and submit ' Accounting,
3606 ASE,
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APPENDIX R. PAPER MAP STUDY: INSTITUTIONAL REVIEW BARD APPROVAL
PAGE

(continued on next page)
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IOWA STATE UNIVERSITY inststionl Revew Boad

Office for Responsible Research

OF SCIENCE AND TECHNOLOGY Vice President [or Research
1138 Pearson Hall
DATE: 28 September 2009 Ames, lowa 50011-2207
. . 515 294-4560

TO: Kofi Whitney FAX 515 204-4267

226 Atanasoff Hall
CC: Dr. Les Miller

112 Atanasoff Hall
FROM: Roxanne Bappe, IRB Coordinator

Office for Responsible Research

TITLE: How do we use a paper map? An exploratory study of spatial ability and
decision making.

IRB ID: 09-386

Approval Date: 28 September 2009
Date for Continuing Review: 12 September 2010

The Chair of the Institutional Review Board of lowa State Universitylﬁas; reviewed and approved
this project. Please refer to the IRB ID number shown above in all correspondence regarding this
study.

Your study has been approved according to the dates shown above. To ensure compliance with
federal regulations (45 CFR 46 & 21 CFR 586), please be sure to:

* Use the documents with the IRB approval stamp in your research.

= Obtain [RB approval prior to implementing any changes to the study by completing the
“Continuing Review and/or Madification” form.

» Immediately inform the IRB of (1) all serious and/or unexpected adverse experiences
involving risks to subjects or others; and (2) any other unanticipated problems involving
risks fo subjects or others.

» Stop all research activity if IRB approval lapses, unless continuation is necessary to
prevent harm to research participants. Research activity can resume once IRB approval is
reestablished.

¢ Complete a new continuing review form at least three tc four weeks prior to the date for
continuing review as noted above to provide sufficient time for the IRB to review and
approve continuation of the study. We will send a courtesy reminder as this date approaches.

Research Investigators are expected to comply with the principles of the Belmont Report, and state
and federal regulations regarding the involvement of humans in research. These documents are
located on the Office for Responsible Research website [www.compliance.iastate.edu] or
available by calling (515) 294-4566.

Upen completion of the project, please submit a Project Closure Form 1o the Office for
Responsible Research, 1138 Pearson Hall, to officially close the project.
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APPENDIX S. FIELD AND VR STUDY: INSTITUTIONAL REVIEV BOARD APPROVAL
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JOWA STATE UNIVERSITY Ol o et e

OF SCIENCE AND TECHNOLOGY Viee President for Research
1138 Pearson Hall
Ames, lowi 5001 1-2207
515 294-4506

Date:
To:

From:

Title:

FAX 515 204-4267

4/1/2010
Georgi Batinov CC: Dr. Les Miller
226 Atanasoff Hall 112 Atanasoff Hall

Office for Responsible Research

Do spatial ability differences persist in a virtual environment?

IRB Num: 10-075

Approval Date: 3/31/2010 Continuing Review Date: 3/30/2011

Submission Type: New Review Type: Expedited

The project referenced above has received approval from the Institutional Review Board (IRB) at lowa State University,
Please refer to the IRB ID number shown above in all correspondence regarding this study.

Your study has been approved according to the dates shown above, To ensure compliance with federal regulations (45 CFR
46 & 21 CFR 56), please be sure to:

.

Use only the approved study materials in your research, including the recruitment materials and informed
consent documents that have the IRB approval stamp.

Obtain IRB approval prior to implementing any changes to the study by submitting the "Continuing Review and/or
Modification” form.

Imimediately inform the IRB of (1) all serious andior unexpected adverse experlences involving risks to subjects
or others; and {2} any other unanticipated problems involving risks to subjects or others.

Stop all research activity if IRB approval lapses, unless continuation is necessary to prevent harm to research
participants. Research activity can resume once IRB approval is reestablished.

Complete a new continuing review form at least three to four weeks prior 1o the date for continuing review as
noted above to provide sufficient time for the IRB to review and approve continuation of the study. We will send a
courtesy reminder as this date approaches.

Research investigators are expected to comply with the principles of the Belmont Report, and state and federal regulations
regarding the involvement of humans in research. These documents are located on the Office for Responsible Research

website hitp:/fwww compliance.iastate edu/irb/forms/ or available by calling (515) 294-4566.

Upon completion of the project, please submit a Project Closure Form 1o the Office for Responsible Research, 1138 Pearson
Hall, to officially close the project.
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