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ABSTRACT

Nowadays, it is fairly common for robots to manipulate different objects and perform

sophisticated tasks. They lift up massive hard and soft objects, plan the motion with

specific speed, and repeat complex tasks with high precision. However, without carefully

control, even the most sophisticated robots would not be able to achieve a simple task.

Robot grasping of deformable objects is an under-researched area. The difficulty

comes from both mechanics and computation. First, deformation caused by grasping

motions changes the global geometry of the object. Second, different from rigid body

grasping whose torques are invariant, the torques exerted by the grasping fingers vary

during the deformation.

Collision is a common phenomenon in robot manipulation that takes place when

objects collide together, as observed in the games of marbles, billiards, and bowling.

To make the robot purposefully make use of impact to perform better at certain tasks,

a general and computationally efficient model is needed for predicting the outcome of

impact. And also, tasks to alter the trajectory of a flying object are also common in

our daily life, like batting a baseball, playing ping-pong ball. A good motion planning

strategy based on impact is necessary for the robots to accomplish these tasks.

The thesis investigates problems of deformable grasping and impact-based manipula-

tion on rigid bodies. The work contains deformable grasping on 2D and 3D soft objects,

multi-body collision modeling, and motion planning of batting a flying object.

In the first part of the thesis, in 2D space an algorithm is proposed to characterize

the best resistance by a grasp to an adversary finger which minimizes the work done by

the grasping fingers. An optimization scheme is offered to handle the general case of



xi

frictional segment contact. And also, an efficient squeeze-and-test strategy is introduced

for a two-finger robot hand to grasp and lift a 3D deformable object resting on the plane.

Next, an n-body impulse-based collision model that works with or without friction is

studied. The model could be used to determine the post-collision motions of any number

of objects engaged in the collision. Making use of the impact model, the final part of the

thesis investigated the task of batting a flying object with a manipulator. First, motion

planning of the task in 2D space is studied. In the frictionless case, a closed-form solution

is analyzed, simulated, and validated via the task of a WAM Arm batting a hexagonal

object. In the frictional case, contact friction introduces a continuum of solutions, from

which we select the one that expends the minimum kinetic energy of the manipulator.

Next, analyses and results are generalized to 3D. Without friction the problem ends up

with one-dimensional set of solution, from which optimum is obtained. For frictional case

hitting normal is fixed for simplicity. The system is then transferred to a root-finding

problem, and Newton’s method is applied to find the optimal planning.
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CHAPTER 1. INTRODUCTION

The difficulty of robot grasping of deformable objects comes from not only mechanics

but also computation. First of all, deformation caused by the grasp actions alters the

global geometry of the object. Second, during deformation an object’s contacts with the

fingers grow from points into areas. Inside the contact area, contact points that stick to

the finger may later slide while points that slide may stick later. The torques exerted

by the grasping fingers are changing during the deformation, different from rigid body

grasping whose torques are invariant.

In the first part of the thesis , we investigate how to characterize the quality of a

squeeze grasp in 2D grasping proposed in (15). A successful rigid body grasp should

not cause any movement of the contact points. However, on deformable objects, the

grasping fingers perform some work due to deformation, most of which is converted to

strain energy. Therefore, it makes sense to have an energy-based metric for measuring the

quality of grasp. The deformation-space approach (14) was proposed by Gopalakrishnan

and Goldberg to characterize the optimal grasp as the one from which the potential

energy needed for a release equals the amount at the elastic limit of the object. In this

thesis, we present a measure by the amount of the work performed by the grasping fingers

to resist a disturbing finger under known displacement.

Next, a simple strategy is introduced for a robot hand without using tactile sensing

to pick up 3D deformable objects at rest. Human hands are experienced at handling

deformable objects in daily life. To pick up a soft object resting on the table, for instance,

human hand usually squeezes it using two or more fingers to achieve a firm grasp, using



2

the table’s support to maintain stability. After that, while considering the object’s mass

and contact friction, the hand begins to lift the object up at some point. During the lift

as an increasing portion of the weight is felt, the hand may apply extra squeeze to prevent

slips. Inspired by human hand grasping, our strategy for robot hands is to squeeze the

object and after every extra amount of squeeze, a quick liftability test is performed to

check if the object is able to be lifted. Once the test is passed, the fingers stop squeezing

and pick up the object via upward translation. Through out the process, the object is

fully constrained by the grasping fingers, with or without the supporting plane.

The second part of this thesis introduces an n-body impulse-based collision model that

works in both frictionless and frictional cases. The model can be applied to determine

the motions after impact of any number of objects involved in the collision. We will focus

on the case where the objects’ centers of mass engaged in the collision are coplanar.

Adopting the analysis from (21), which focused on three-body impact only, we set up

a system for frictionless collisions of n balls. During one collision process, impulses and

energies at the contacts are tracked via numerical integration based on their differential

relationships to the dominant impulse, which switches from one period to another. To

initialize the impulse derivatives, instead of using wave propagation (29) and (30), we set

up a system of equations and solve it numerically using Newton’s method. This avoids

a tedious analysis that enumerates all possible topologies of active contacts during the

collision. An energetic coefficient of restitution (54) is employed for tracking the energy

loss.

Taking advantage of the impact model proposed, we next investigate how to batting a

moving object to a target destination. Impact planning in both 2D and 3D cases with and

without friction is studied. In 2D frictionless case, reachable region, which is the feasible

region that can be reached by the object given pre-planned configuration via varying

impact normal and pre-impact velocity of the manipulator, is presented. In the 2D

frictional case considering tangential impulse, multiple solutions exist with an additional
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degree of freedom (tangential velocity of the manipulator). The kinetic energy of the

manipulator is introduced as a metric to characterize the effort of batting. Numerical

methods are applied to search for the optimal pre-impact motion of the manipulator. In

the 3D case without friction, solutions end up with a one-dimensional 3D curve. The

optimal planning is also achieved by minimizing the kinetic energy of the manipulator.

When friction is introduced, hitting normal is fixed to reduce degrees of freedom. The

problem is then converted into a root-finding problem which is solved using Newton’s

method.

The thesis uses meter for length, kilogram for mass, Pascal for pressure, Newton for

force, and Joule for work and energy. The units are omitted from now on.

The rest of the manuscript is organized as follows. Chapter 2 surveys related work

in robot grasping on rigid body and deformable objects, collision modeling, and impact

planning. Chapter 3 will briefly review the foundation of squeezing, and then construct

grasps that perform minimum work to resist a disturbing finger, progressing from the

cases of fixed point and segment contacts to that of frictional segment contacts. In

Chapter 4, we propose a simple strategy for a robot hand to grasp and lift a deformable

3D object sitting on a table. In Chapter 5, a multi-body impact model is introduced

which is applicable with or without friction. Chapter 6 investigates the task of batting an

flying object to a target by impact planning. Finally, Chapter 7 summarizes the thesis.
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CHAPTER 2. RELATED WORK

In this chapter, we will survey some related work on grasping and impact.

2.1 Rigid Body and Deformable Grasping

Rigid body grasping is a widely studied area rich with theoretical analyses, simula-

tions, and experiments with robotic hands (2). First-order form closure (46) is regarded

as equivalent to force closure without friction. Mishra (38) offered upper bounds on the

numbers of contact points sufficient and/or necessary for form closure. Later tighter

bounds for 2D and 3D objects with piecewise smooth boundaries were derived (32). Al-

gorithms were developed to compute all form closure grasps of polygonal parts (5; 53).

There was also some work (45; 47) focusing on caging an object with frictionless contacts

so that it could move inside freely but never escape.

Two-finger force-closure grasps of planar objects are shown to be efficiently com-

putable for both polygons (40) and piecewise smooth curved shapes (43). Ponce (42)

also developed algorithms for grasping 3D objects. Trinkle (57) formulated the force-

closure test as a linear program with an objective function characterizing the quality as

the distance from losing the closure.

The introduction of task ellipsoid (28) proposed the idea that the choice of a grasp

should be based on the capacity to generate wrenches that were relevant to the task.

Grasp quality measures for multi-finger hands were introduced to consider selection of

internal grasping forces that were furthest from violating any closure, friction, or mechan-
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ical constraints (24), or were directly derived from the grasp matrix which characterized

the wrench space of a grasp (28). Grasp metrics for polygons and polyhedra usually

aimed to maximize the worst-case external force that could be resisted by a unit grasp-

ing force (33; 37; 22). A summary on various grasp metrics was given by Mishra (36),

addressing the trade-offs among grasp quality, the number of fingers, object geometry,

and the efficiency for grasp synthesis. Some recent work (6; 4) applied semidefinite pro-

gramming techniques to minimize the maximum magnitude of the contact force at any

frictional contact of a grasp to maintain equilibrium to resist a known external wrench .

There was little work when it comes to deformable grasping, a difficult problem that

needs to handle with changing local contact geometry as well as the global object geome-

try caused by the deformation. The notion of bounded force-closure (60) was introduced

for this type of grasps. Hirai (16) controlled the motion of a grasped deformable object

using visual and tactile information. The deformation-space approach (14) characterized

the optimal grasp of a deformable part as the one from which the potential energy needed

for a release is equal to the amount at the object’s elastic limit.

In contrast, manipulation of flexible linear objects such as wires or ropes has been

an extensively studied area, with work on static modeling (59), knotting and unknotting

(49; 35; 26; 58), pickup (44), and path planning (39). However, these operations can be

implemented without the requirement for deformable modeling.

Moreover, Sinha and Abel (52) proposed a model for deformation of the contact

regions under a grasp, which predicts normal and tangential contact forces without con-

cerning global deformation or grasp computation. Luo and Xiao (31) showed that simula-

tion accuracy and efficiency could be improved based on the derived geometric properties

at a contact. Tian and Jia (56) investigated deformable modeling of shell-like objects

that were already grasped by point contacts.

More thorough investigations on the elastic contact problem were conducted by the

mechanics community regarding the contact area between two deformable bodies under
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a known external load. The gradual physical process implies iterative updates of the

increasing contact region(s). Francavilla and Zienkiewicz (11) offered an FEM-based

solution for 2D elastic contact problems under frictionless contacts. It was then ex-

tended to incorporate Coulomb friction by Okamoto and Nakazawa (41) and Sachdeva

and Ramakrishnan (48) via iterative updates of the contact area and the contact modes

of nodes. In each iteration, FEM computed the deformed shape according to position

and friction constraints derived from the contact modes under Coulomb friction. This

event-driven approach was extended by Chandrasekaran et al. (7) to deal with geomet-

ric nonlinearities and node-edge contacts to solve for the exact loading condition from

designated displacements.

Guo(15) investigated squeeze grasping of deformable 2D objects. One of the ideas

reflecting a key difference from rigid body grasping, was to specify the finger movements

instead of finger forces. The reason is that force and torque equilibrium are guaranteed

over a deformable body which is fully constrained, following (8), (3). Another idea was

to obtain the constraints needed to update the deformed shape from the contact sets

with the fingers, which are maintained by an event-driven way during the deformation.

2.2 Impact Modeling and Planning

Collisions happen in daily life are usually plastic, which do not conserve kinetic

energy. Solution of a collision problem requires determining the post-impact velocities

of the impact objects from their pre-impact configurations and velocities. The problem

is under-constrained by momentum conservation alone. Impact laws need to be imposed

accordingly. There are three widely used laws: Newton’s law, Poisson’s hypothesis, and

the energy hypothesis, which specify the ratios between the velocities before and after the

impact. The impulse increases during different impact phases, and the strain energies

stored and released during those phases. (20) presents a progressive overview of the
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research in impact mechanics based on these laws.

In (29) Liu et al. introduced a framework for frictionless multiple impacts in a

multi-body system. Numerical integration is performed over the impulse at the contact

currently having the maximum potential energy. Energetic coefficients of restitution

are applied to individual impacts, each of which may go through multiple compression-

restitution phase transitions. Their sequel paper (30) developed a numerical algorithm

and presented simulation results for several benchmark problems including Newton’s

cradle, the Bernoulli problem, etc. It did not analyze the impact behavior during the

accumulation of impulses, and did not provide a proof for termination of the algorithm.

Around the same time, Jia et al. (21) proposed a simultaneous impact model that

keeps track of contact strain energy. The main difference from the framework of (29) is

that this model formulates the physical process as a state transition diagram, where each

state represents a different combination of active contacts. A state transition happens

when either an active impact finishes impact phase or an inactive impact gets reactivated.

Every impact instance yields a sequence of states with proven termination.

Impact planning determines the hitting velocity of the manipulator and a point on

an object to strike at. Also, it needs to take into account trajectory planning since after

impact the object acts as a free motion. Not much work exists on impact planning, but

noticeable work for impulsive manipulation includes (23), (18), (55), (17) and (62).

Batting an object is much easier to perform than to analyze in terms of mechanics.

(9) focused on the swing trajectory and the force/torque required to generate it, applying

Newton’ s law of impact (25). Senoo et al. proposed a hybrid trajectory generator as a

motion plan for a high-speed robot system to bat the baseball (51). They then extend

the algorithm to control the direction of the ball motion after impact (50), though there

was no control over the ball’s post-impact trajectory.
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CHAPTER 3. ROBUSTNESS OF DEFORMABLE 2D

GRASP

This chapter begins with a review of plane linear elasticity, and then introduces the

notions of pure and stable squeezes of an deformable object by specifying movements of

a subset of boundary points. Finally, we will consider adversary finger resistance.

In this chapter we assume that the entire operation causes by small deformations of

the object which can be described within the scope of linear elasticity. In the classical

elasticity theory, deformation happens instantaneously. Here we will sometimes consider

deformation as a continuous process which happens in an infinitesimal amount of time,

in order to capture the varying contact area between the object and the fingers and the

changing contact modes of nodes.

For 2D grasping, we make the following assumptions:

1. The object is isotropic, and either planar or thin 2-1
2
D.

2. Gravity is ignored.

3. The fingers are rigid and coplanar with the object and make frictional contact

with it.

And also the fingers are with semicircular tips in 2D grasping and with hemispherical

tips in 3D case.
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S hx

z

y

Figure 3.1 Thin flat object.

3.1 Linear Plane Elasticity

Consider a thin flat object shown in Figure 3.1 with thickness h significantly less than

its two other dimensions. Essentially, the object is a generalized cylinder which results

from translating the region S bounded by a closed simple curve in the xy-plane along

the z-direction upward and downward each by h/2. The origin is placed at the centroid

of S.

In this part, we consider plane stress (12) parallel to the xy-plane which means

zero normal stress along the z-axis and zero shear stresses in the xz- and yz-planes.

Under a displacement field δ = (u(x, y), v(x, y))T , every point (x, y)T inside S moves to

(x + u, y + v)T . The same displacement applies to the points of the object that are

vertically above or below the point (x, y)T . The normal strains εx and εy along the x-

and y-axes, respectively, and the shearing strain γxy are given below:

εx =
∂u

∂x
,

εy =
∂v

∂y
,

γxy =
∂u

∂y
+
∂v

∂x
.

(3.1)

Under Hooke’s law, the following stress-strain relationships hold:

εx =
σx − νσy

E
,

εy =
σy − νσx

E
,

γxy =
τxy
G

=
2(1 + ν)

E
τxy,

(3.2)
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where E and ν are Young’s modulus and Poisson’s ratio of the material, respectively, σx

and σy are the normal stress components in the x- and y-directions, respectively, and τxy

is the shear stress in the x-y plane. The strain energy of the object (8) is

U =
h

2

∫∫
S

(
E

1− ν2
(ε2x + 2νεxεy + ε2y) +

E

2(1 + ν)
γxy)dxdy. (3.3)

Suppose δ is the displacement vector caused by external forces applied in the plane at

some boundary points, which forms a set Γ. Denote by f(x, y) the force exerts at point

(x, y)T ∈ Γ. The total potential of the applied forces is

W = −
∑

(x,y)T∈Γ

δ(x, y)Tf(x, y). (3.4)

The total potential energy of the system is

Π = U +W. (3.5)

The principle of minimum potential energy states that δ minimizes Π.

3.2 Foundation of Squeezing

This section goes through a quick review of (15) on squeeze grasp with two fingers in

2D grasping. The cross section of the object is discretized into small uniform triangular

elements with n vertices. Minimization of the potential energy yields the familiar con-

stitutive equation: Kδ = f , where K is the object’s stiffness matrix that is symmetric

and positive semi-definite with rank 2n − 3, δ is the displacement vector, and f is the

external force vector.

The matrix assumes a spectral decomposition that

K = V ΛV T , (3.6)

where V = (vij) = (v1,v2, ...,v2n) and Λ = diag(λ1, ..., λ2n−3, 0, 0, 0). The null space

of K is spanned by the following three vectors which represent translations and pure
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rotation:

v2n−2 =
(1, 0, ..., 1, 0)T√

n
,v2n−1 =

(0, 1, ..., 0, 1)T√
n

, and v2n =
r

‖r‖ , (3.7)

where r is the component of (−y1, x1, ...,−yn, xn)T that is orthogonal to v2n−2 and v2n−1.

The grasp strategy is to specify the displacements δt of m boundary contact nodes

pt, t ∈ I. Denote by v̄l, 1 ≤ l ≤ 2m, the 2m-vector that aggregates v2t−1,l and v2t,l, for

all t ∈ I, in the increasing index order. Introduce the matrix

M =

 A B

BT 0

 , (3.8)

where A =
∑2n−3

l−1
1
λl
v̄lv̄

T
l and B = (v̄2n−2, v̄2n−1, v̄2n). It was shown in (15) that the

(2m+ 3)× (2m+ 3) matrix M has an inverse when m ≥ 2:

M−1 =

 C E

ET −ETAE

 , (3.9)

where C is symmetric and of dimension 2m× 2m.

Deformation is uniquely determined for m ≥ 2 under specified δt, t ∈ I, and f l = 0,

l 6∈ I. Apply the same bar notation to select entries with indices i ∈ I from the force

vector f and the displacement field δ. We have

f̄ = Cδ̄ and δ = Hδ̄, (3.10)

for some 2n × 2m matrix H. The submatrix C is referred to as the reduced stiffness

matrix. The strain energy of the object is

U =
1

2
δ̄
T
Cδ̄. (3.11)

3.3 Stable Squeeze

Denoted by G(pi, pj) the placement of two fingers F1 and F2 at the nodes pi and pj.

For clarity of description, in this section we assume that F1 and F2 are point fingers,
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and pi and pj will always stay as the only contact points during a grasp operation by

the fingers as if it is glued with the object.

Theorem 3.3.1. Suppose m ≥ 2. The following statements hold for the submatrices of

M and M−1.

(1) rank(B) = 3.

(2) C is symmetric and positive semi-definite such that null(C) = col(B). This

implies that the 2m-dimensional space is a direct sum of the column spaces of C and B:

R2m = col(C)⊕ col(B). (3.12)

(3) rank(AC) = 2m− 3 and AC has only one eigenvalue 1 (of multiplicity 2m− 3).

(4) R2m = col(AC)⊕ col(E).

For stability reason we want to determine the direction under the same amount of

squeeze that minimizes the potential energy

Π = U − δTf = U − δ̄T f̄ = −1

2
δ̄
T
Cδ̄. (3.13)

by equations (3.10) and (3.11). Because m = 2, rank(C) = 4−rank(B) = 1 following

Theorem 3.3.1. It is clear that Π is minimized by a unit vector orthogonal to col(B).

We can easily show that

û =
1√

2‖pi − pj‖

 pj − pi
pi − pj

 (3.14)

is such a unit vector. Indeed, it is the only one corresponding to a grasp because −û

pulls at the contacts.

Theorem 3.3.2. û is orthogonal to null(C). Moreover,

C =
1

ûTAû
ûûT . (3.15)
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We refer to a movement of F1 and F2 specified by δ̄ = ρû, ρ > 0, as a stable

squeeze, so called because it minimizes the system’s potential energy among all squeezes

of magnitude ρ. Substituting δ̂ = ρû and (3.15) into (3.11), we obtain the strain energy

Us = ρ2/(2ûTAû). (3.16)

3.4 Pure Squeeze

A stable squeeze is good since it minimize the potential energy. However, it does not

guarantee that the resulting displacement field has no rigid body motion component.

Since linear elasticity cannot describe large rotation, sometimes we would like to avoid

rotation. That is why we introduce pure squeeze which yields no rigid body motion. This

is equivalent to ET δ̄ = 0 as we can establish using (3.10). By Theorem 3.3.1, the set

col(AC) includes all pure squeezes. Since AC = AûûT/(ûTAû) following Theorem 3.3.2,

we can infer that col(AC) is spanned by Aû. Let v̂ = Aû/‖Aû‖. The squeeze v̂ can

be viewed as what is left from the squeeze û after stripping off its component that is

responsible for rigid body movement. For a pure squeeze specified by ρv̂, ρ > 0, we

derive the resulting strain energy

Up = ρ2ûTAû/(2ûTAAû). (3.17)

While a stable squeeze makes sure that the movements of the two fingers do not

contain any rigid body motion, a pure squeeze makes sure that the object deforms without

rigid body motion component. Figure 3.2 compares the effects of the unit stable squeeze

û and the unit pure squeeze v̂ on an object. While under û the fingers drive the two

contact points toward each other, under v̂ they bend the object to prevent any Euclidean

motion, in a “smart” way by exerting smaller contact forces.

Since translating two fingers F1 and F2 by δi and δj, respectively, is equivalent

to fixing one finger, say F1, while translating F2 by δj − δi the two resulting config-

urations are identical except for a translation by δi. Thus, we consider a squeeze as
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pi

û

f i
f i

f j

v̂

pj
f j

Figure 3.2 Comparison between unit stable and pure squeezes: (a) original shape
shown with a stable squeeze û = (0.65923, 0.25577,−0.65923,−0.25577)T

in brown and a pure squeeze v̂ = (0.79644,−0.49167,−0.20702,−0.28477)T

in green; (b) deformed shape under û with resulting contact forces
fi = (0.90772, 0.35218)T and fj = (0.90772, 0.35218)T ; (c) deformed shape
under v̂ with fi = (0.55243, 0.21433)T and fj = (−0.55243,−0.21433)T .

stable(respectively, pure) if it is the same as ρû(respectively, ρv̂) up to translation and

rotation.

3.5 Resisting an Adversary Finger

Consider a finger placement G(pi, pj) on a deformable object. Now that an adversary

finger A comes in, makes contact with the object at pk, and tries to break the grasp via

a translation a. To resist A, the two grasping fingers F1 and F2 translate by d1 and d2

accordingly, respectively. We would like to find d1 and d2 that result in the minimum

total effort by F1 and F2 in such resistance. The effort of resistance is best characterized

as the total work performed by the two grasping fingers.

The general scenario is depicted in Figure 3.3, in which the finger contacts have

evolved from the nodes pi, pj, pk into segments as F1, F2, A translate. Every contact

segment is uniquely represented by a set of nodes on it. Suppose that at one moment

during the process, F1 makes contact with the set of nodes {pt | t ∈ I}, F2 with

{pt | t ∈ J}, and A with {pt | t ∈ K}. Some nodes (solid dots in the figure) are sticking

on the fingertips, while others (hollow dots) are sliding. We can divide the scenario into
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pi

d2

A

F2

F1

a

d1

pk

pj

Figure 3.3 Grasp resistance to a translating adversary finger A.

small periods, such that within each period the contact index sets I,J,K do not change.

We will approach this optimization problem in three steps. In Section 4.1, we will look

at fixed point contacts (i.e., |I| = |J| = |K| = 1 and the three sets never change) during

the resistance. In Section 4.2, we will generalize the result to fixed segment contacts

(|I| = |J| = |K| ≥ 1 and the sets do not vary). Based on this we will tackle the general

situation with varying I, J, K and changing contact modes at individual nodes during

the resistance under Coulomb friction in Section 4.3.

3.5.1 Fixed Point Contacts

The nodes pi, pj, and pk will stay as the only contact points with the fingers F1, F2,

and A, respectively (as if the fingers and the object were glued together). Deformation

of the object is due to their displacements

δ̄ =


δi

δj

δk

 =


di

dj

a

 . (3.18)
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By (3.10) the work done by F1 and F2 is

WF =
1

2


d1

d2

0


T

f̄ =
1

2


d1

d2

0


T

C


d1

d2

a

 . (3.19)

Similarly, for the three point fingers we call δ̄ a stable resistance if δ̄ ∈ col(C), and

a pure resistance if δ̄ ∈ col(AC). Since m = 3, both col(C) and col(AC) have three

dimensions by Theorem 3.3.1.

3.5.1.1 Optimal Stable Resistance

Consider all d1 and d2 such that δ̄ ∈ col(C), or equivalently, δ̄ ⊥ col(B), which is

spanned by (1, 0, 1, 0, 1, 0)T , (0, 1, 0, 1, 0, 1)T , and (−yi, xi,−yj, xj,−yk, xk)T . Equiva-

lently, we require

d1 + d2 + a = 0, (3.20)

pi × d1 + pj × d2 + pk × a = 0, (3.21)

Substitute (3.20) into (3.19) for d2, and rewrite WF as a quadratic form in terms of d1:

WF =
1

2
dT1Hd1 + cTd1 + ω, (3.22)

where H, c, and ω are constant matrix and vectors depending on a and C. It is easy to

show that H is positive semi-definite.

Denote by t̂ the unit vector in the direction of pi − pj, and n̂ the unit vector such

that t̂ · n̂ = 0 and t̂× n̂ = 1. Write d1 = τ t̂+ ηn̂. Substituting it and (3.20) into (3.21),

we obtain

η = d · n̂ = (pj − pk)× a/‖pi − pj‖. (3.23)

Now, plug d1 = τ t̂+ ηn̂ into (3.21). After a few steps, we have a new form for the work:

WF =
1

2
b2τ

2 + b1τ + b0, (3.24)



17

δj

δi

f k

f i

f j

a

p̃i

p̃j
pj

pk p̃k

pi

Figure 3.4 A grasp G(pi, pj) resisting an adversary finger at pk = (0.05900, 0.00502)T

under translation δk = a = (−0.01, 0)T , where pi = (−0.03537,−0.04685)T

and pj = (−0.01256, 0.05212)T : (a) undeformed shape marked with optimal
displacements: δi = (0.00475, 0.00006)T and δj = (0.00525,−0.00006)T ;
and (b) deformed shape marked with the corresponding nodal
forces: f i = (2.5031, 0.3105)T , f j = (2.8792,−0.4901)T , and
fk = (−5.3823, 0.1796)T .

where b0 = ω+ η(1
2
ηn̂TH + cT ), b1 = (ηn̂TH + cT )t̂, and b2 = t̂

T
H t̂. The positive semi-

definiteness of H implies that b2 > 0. Therefore, WF is a parabola with the minimum

value W ∗
F = b0− b21

2b2
achieved at τ = −b1/b2. Note that b0 scales with ‖a‖2 and b1 scales

with ‖a‖, while b2 is constant. The minimum work W ∗
F scales quadratically with ‖a‖.

Figure 3.4 shows a resistance scenario. The minimum work is W ∗
F = 0.01031. The

average rotation per node is δ · v2n = 0.0035418.

3.5.1.2 Optimal Pure Resistance

In this section we find a pure resistance that minimizes WF , considering only d1 and

d2 such that δ̄ ∈ col(AC). Represent δ̄ = τ1û1 + τ2û2 + τ3û3, where û1, û2, û3 are the

orthogonal unit vectors that span col(AC). From these two equivalent representations

of δ̄, we infer that

a = Q


τ1

τ2

τ3

 , (3.25)

where the 2× 3 matrix Q = (0, I2)(û1, û2, û3).
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If Q is not of full rank and a is not in its column space, then we infer that δ̄ ∈

col(AC) and the adversary finger cannot be resisted.

In the general case rank(Q) = 2, τ2 and τ3 are linear in τ1, yielding WF as a

quadratic function of τ1. The optimal grasping finger displacements can be obtained

from dWF/dτ1 = 0. This solution also works for rank(Q) = 1 and a ∈ col(Q), after

proper permutation of τ1, τ2, τ3 to set the latter two to zero.

3.5.2 Fixed Segment Contacts

In this section, the contact index sets I, J, K may have sizes greater than one, but

still they will not change during the resistance. In other words, no existing contacts will

break and no new contacts will come in. All the nodes in contact with the same finger

undergo the same displacement. More specifically, a contact node pt is displaced by

δt =


d1, if t ∈ I;

d2, if t ∈ J;

a, if t ∈ K.

(3.26)

Rearrange the rows and columns of the reduced stiffness matrix in the same index order

as in δ̄.

Again, we first consider stable resistances, for which the following generalizations of

(3.20) and (3.21) hold:

∑
t∈I∪J∪K

δt = 0 and
∑

t∈I∪J∪K
pt × δt = 0. (3.27)

The first condition above yields d2 in terms of d1 and a. Substitute it into the second

condition to yield

|I|(p̆− q̆)× d1 + |K|(r̆ − q̆)× a = 0, (3.28)

where p̆ = 1
|I|
∑

t∈I pt, q̆ = 1
|J|
∑

t∈J pt, and r̆ = 1
|K|
∑

t∈K pt are referred to as the contact

centroids of the fingers F1, F2, A, respectively.
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F1 and F2 into the form of (3.22), where H, c, and ω assume new expressions.

Minimization parallels that in Section 4.1 with a decomposition of d1 along the direction

t̂ of p̆− q̆, and its orthogonal direction n̂.

The case of a pure resistance with fixed segment contacts also generalizes that of

fixed point contacts in Section 4.1. We will end up with a very similar optimization

problem. Aside from a different form of WF and different variables τ ′1, τ ′2, τ ′3, over which

the constraint is a = (0, I2)(û′1, û
′
2, û

′
3)(τ ′1, τ

′
2, τ
′
3)T .

3.5.3 Frictional Segment Contacts

We are now ready to consider optimal resistance with varying segment contacts under

friction. The two grasping fingers and the adversary finger have semicircular fingertips

with possibly different radii. In a realistic scenario, the grasping fingers F1 and F2 first

perform a squeeze on the object by translating toward each other via s(pj − pi) and

s(pi − pj), for some s > 0, which is called the pre-grasp. Then the adversary finger A

makes contact at the node pk and exerts a translation a to try to break the grasp. The

system configuration right before this disturbance, including the object’s deformed shape

and the contact index sets I and J for F1 and F2, can be determined by the event-driven

squeeze grasping algorithm from (15).

The translation distance by the adversary finger A will be sequenced into a0 = 0 <

a1 < · · · < al < · · · < |a| such that at every al , one of the four contact events A, B, C,

and D described in (15) takes place.

Consider the moment when A has translated by the distance al. For a contact node

pt we use δ
(l)
t , f

(l)
t , and θ

(l)
t to refer to its displacement, contact force, and polar angle

with respect to the center of its contacting fingertip.

Next, A will continue moving by an extra distance ξ in the direction of a. Suppose

that ξ is small enough such that all contacts and their modes will not change. We

determine the extra translations d′1 of F1 and d′2 of F2 to resist this extra movement by
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A, via minimizing the extra work performed by these two fingers:

W ′
F =

∑
t∈I∪J

δ′tf
(l)
t +

1

2

∑
t∈I∪J

δ′tf
′
t (3.29)

In the above, for t ∈ I ∪ J, δ′t is the change in the displacement of the contact node pt

from δ
(l)
t , and f ′t the change in its contact force from f

(l)
t .

During this extra translation period, if a node pt, t ∈ I ∪ J, sticks, then δ′t = d′1

or d′2. If it slides, then δ′t will be the sum of d′1 or d′2 and the node’s movement

r

 cos θt − cos θ
(l)
t

sin θt − sin θ
(l)
t

 , on the tip of F1 or F2 that it is in contact with. Minimiza-

tion of W ′
F would be over δ′1 and δ′2, and the polar angle θt of every sliding contact pt.

It could get too inefficient.

We stipulate that the work performed on pt, t ∈ I ∪ J, due to its sliding, by the

contacting finger F1 or F2 will be significantly less than the amount due to its translation

with the finger. Instead of minimizing W ′
F , we minimize its approximation W̃ ′

F by

treating every sliding node in contact with F1, F2, or A as if it would be sticking during

the period of the extra resistance period.

In short, whether a contact node pt sticks or slips, its extra displacement δ′t will be

set as follows:

δt =


d′1, if t ∈ I;

d′2, if t ∈ J;

ξâ, if t ∈ K.

(3.30)

Then d′1 = ξψ1 and d′2 = ξψ2, where ψ1 and ψ2 are determined like d1 and d2 in Section

4.2 with â replacing a.

We determine the extra distance ξ by which A translates until the next contact event

happens, by using the event-driven algorithm proposed in (15). Once an event occurs,

the overall translation distance for A is updated as al+1 = al + ξ. In addition to the

index sets I, J, K, update the set P of sliding contacts and the set T of sticking contacts.

If the adversary finger A begins to slip after an event, it has been successfully resisted. If
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either F1 or F2 starts to slide, the grasp fails to resist A. If none of the above two cases

happens, A will complete its translation a while being resisted. Algorithm 1 summarizes

how F1 and F2 resist A.

Algorithm 1 Resisting a Translating Adversary Finger under Frictional Segment Con-

tact
Input: contact index sets I, J, K for F1, F2, A, translation a of F2

1: a← 0

2: let I, J, K contain the indices of the initial point contacts with F1, F2, A, respectively

3: initialize T and P

4: while a < ‖a‖ and no finger slips do do

5: construct the form of W̃ ′
F based on (3.29), (3.30), and I, J, K

6: minimize W̃ ′
F to obtain ψ1 and ψ2 as the translations of F1 and F1 in response

to a (hypothesized) unit translation a/‖a‖ by A

7: execute the event-driven algorithm in (15) along the displacement directions com-

puted in step 6 until the next contact event occurs

8: compute the actual work W ′
F

9: WF ← WF +W ′
F

10: update I, J, K, T, P according to the contact event

11: update the contact force f t,∀ t ∈ I ∪ J ∪K

12: end while

13: if a < ‖a‖ and (F1 or F2 slips) then

14: return failure

15: else

16: return WF

17: end if
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Table 3.1 Forces exerted and work performed by the the two grasping fingers in Fig-
ure 3.5 under translations d1, d2, and a.

F1 F2

force(start) 2.098 -2.566
force(end) 8.136 -1.23

work 0.0101 -0.0015

3.5.4 Simulation and Experiment on Grasp Resistance

Figure 3.5(a) shows an object with convex shape grasped under a stable squeeze by

F1 (translating via (0.00068, 0.002)T from pi to pj) and F2 (motionless). Then, an ad-

versary finger A starts pushing the object through translation a = (0.0024, 0.0044)T , as

shown in (b). All three fingertips have radius 0.02. Algorithm 1 generates two trajec-

tories for F1 and F2 for a stable squeeze shown in (c). They have total displacements

d1 = (−0.0008,−0.0019)T and d2 = (−0.0007,−0.0005)T . Table 3.1 displays the com-

ponents of the finger forces exerted along the translation directions, at the start and

the end of resistance, and the work performed by the fingers. A negative force reading

on F2 indicates that the contact force influenced by friction was pulling away from the

translation direction of the finger. Contact events A, B, C, D occurred 7, 0, 3, and 2

times, respectively, during the resistance. The coefficient of contact friction is 0.4.

Shown in Figure 3.6(a) is an experiment to validate the results in Table 3.1 from the

instance in Figure 3.5. The object with exactly the same shape in Figure 3.5 was placed

on a raised platform. The grasping fingertips F1 and F2 were respectively controlled

by an Adept Cobra 600 manipulator and the Barrett Hand. As shown in (b), F1 was

attached to a force meter from Ametek Hunter Spring, which was connected to the

Adept’s open end via an adapter. The manipulator has an accuracy of 0.02mm in

any horizontal direction. Since none of the three fingers of the Barrett Hand could be

controlled to perform straight line motions, we let its middle finger push fingertip F2
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via a linear mechanism, which is shown in (c) in both top-down and side views. The

mechanism was an aluminum cylindrical stick constrained by ball bearings embedded

inside two boxes. At its one end was a disk to be pushed by the finger of the Barrett

Hand or human hand. Near its other end, a force meter was attached underneath. The

tip F2 was mounted at the front of the force meter, which would be able to measure the

force exerted by the tip once it made contact with the object.

The human hand pushed the adversary fingertip A via another linear mechanism

identical to the one driving F2. No force meter was attached to this pusher. A ruler was

mounted on the tops of the two ball bearing boxes to measure the travel distance by A.

The translations by F1 and F2, meanwhile, were precisely controlled by the Adept and

the Barrett Hand. The fingers F1 and F2 first made contact with a foam object. To

repeat the simulation instance in the above, F2 stayed still and F1 squeezed the object

via a translation (−0.00068, 0.002)T along the line through their initial contact points

with the object. The configuration after the squeeze is shown in Figure 3.7(a). After-

ward, the human hand pushed A via the linear mechanism to complete a translation

a = (0.0024, 0.0044)T . Algorithm 1 generated two trajectories shown in Figure 3.5(c)

respectively for F1 and F2 based on stable squeezes. For ease of control, each trajectory

was straightened by connecting its starting location to its final location, yielding trans-

lations d1 = (−0.0008,−0.0019)T and d2 = (−0.0007,−0.0005)T (see the dashed lines in

Figure 3.5(c)). The human hand executed the push a, which was simultaneously being

resisted by the Adept arm and the Barrett hand via translations d1 and d2, respectively.

We refer to the resistance specified by d1 and d2 as the “optimal” resistance. The

work done by F1 or F2 was estimated as half the product of the translation distance with

the summation of the initial and final force readings for each finger. Columns 2 and 3 in

Table 3.2 displayed the force readings on these two grasping fingers at the start and the

end of the resistance, and the work they performed. We can see that small discrepancies



24

Table 3.2 Forces exerted and work performed by F1 and F2 in Figure 3.7 under d1 and
d2 computed by the resistance algorithm (columns 23) or arbitrarily chosen
(columns 45).

“optimal” resist. “arbitrary” resist.
F1 F2 F1 F2

force(start) 2.22 -2.67 7.05 4.20
force(end) 8.06 -1.45 14.86 13.93

work 0.0107 -0.0017 0.0463 0.0328

exist compared to Table 3.1. They were mainly due to the trajectory straightening and

measurement errors in the experiment. For comparison, we also tested an “arbitrary”

resistance strategy against the same adversary finger disturbance. We arbitrarily chose a

translation direction d2/‖d2‖ = (0.447,−0.894)T for F2. Then d1 = (−0.004,−0.0012)T

and d2 = (0.0016,−0.0032)T were determined from the condition (dT1 ,d
T
2 ,a

T )T ⊥ col(B)

for a stable squeeze. The experimental result was included in Table 3.2. It can be seen

that much less work was carried out by F1 and F2 under the optimal resistance strategy.
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(a) (b)

d1

δ2

a

d2

(c)

Figure 3.5 Resisting an adversary semicircular fingertip under friction: (a) A convex
shape grasped via a stable squeeze. (b) Successful resistance to an adversary
finger A. (c) Trajectories of the three fingers during the resistance, with
their starting points translated to coincide with the origin, which, for display
purpose, is also made the ending point of the trajectory δ1 of F1 in achieving
an initial grasp before the resistance.
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Figure 3.6 Experimental setup for resisting an adversary fingertip A: (a) grasping fin-
gertips F1 and F2 driven by an Adept Cobra 600 manipulator and a finger
of the Barrett hand, respectively, and A by the human hand; (b) F1 at-
tached to a force meter rigidly connected to the Adept’s open end via an
adapter; (c) F2 attached to another force meter rigidly connected to a linear
mechanism to be pushed by the Barrett finger.
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Figure 3.7 Experiment for resisting an adversary finger: (a) Grasp of a convex object
and (b) its resistance to an adversary finger A. The translation δ1 of F1

in (a), and the translations d1, d2, and a of F1,F2 and A are drawn in
Figure 3.5.
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CHAPTER 4. PICKING UP SOFT 3D OBJECTS

This chapter will start with a brief review of linear elasticity for 3D solids, and the

characterization of all displacement fields that represent rigid body movements. It will

then describe an FEM formulation of deformation under gravity. We will move on to offer

a solution of the deformed shape of a solid object from specified contact displacements.

Finally we will propose a strategy to pick up a deformable 3D object with two fingers

under resting.

4.1 Linear Elasticity

Consider a 3D object under a displacement field (u(x, y, z), v(x, y, z), w(x, y, z))T .

Every point (x, y, z)T inside the object moves to (x + u, y + v, z + w)T . Denote by εx,

εy, εz the normal strains along the x-, y-, and z-directions, respectively, and γxy, γxz, γyz

the shear strains in the xy-, xz-, and yz-planes, respectively. They are given below:

εx =
∂u

∂x
,

εy =
∂v

∂y
,

εz =
∂w

∂z
,

γxy =
∂u

∂y
+
∂v

∂x
.

γxz =
∂u

∂z
+
∂w

∂x
.

γyz =
∂w

∂y
+
∂v

∂z
.

(4.1)
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The strain energy of the object can be derived:

U =
E

2(1 + ν)

∫
V

((ε2x + ε2y + ε2z) +
ν

(1− 2ν)
(εx + εy + εz)

2 +
1

2
(γ2
xy + γ2

xz + γ2
yz))dV. (4.2)

where E and ν are Young’s modulus and Poisson’s ratio of the material, respectively,

with E > 0 and −1 < ν < 1
2

for most materials including those considered in our

grasping task.

Theorem 4.1.1. Under linear elasticity, any displacement field (u, v, w)T that yields

zero strain energy is linearly spanned by the following six fields:
1

0

0

 ,


0

1

0

 ,


0

0

1

 ,


0

−z

y

 ,


z

0

−x

 ,


−y

x

0

 .

The first three displacement fields in the theorem represent unit translations in the

x-, y-, and z-directions, respectively. The next three fields represent rotations along the

x-, y-, and z-axes, respectively.

4.2 The Finite Element Method with Gravity

We represent a solid as a tetrahedral mesh with n vertices p1, ..., pn, where pi =

(xi, yi, zi)
T , for 1 ≤ i ≤ n.

Similar as in the planar case, we infer from Theorem 4.1.1 that the stiffness matrix

has a null space spanned by the following six 3n-vectors:

tx = (1, 0, 0, 1, 0, ..., 0)T ,

ty = (0, 1, 0, 0, 1, ..., 0)T ,

tz = (0, 0, 1, 0, 0, ..., 1)T ,

rx = (0,−z1, y1, 0,−z2, ..., yn)T ,

ry = (z1, 0, x1, z2, 0, ...,−xn)T ,

rz = (−y1, x1, 0,−y2, x2, ..., 0)T .

(4.3)
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On 3D grasping, the gravitational force can rarely be ignored since it plays an im-

portant role during the deformation. Assume that the mass is uniformly distributed

inside the body. Thus every element has mass proportional to its volume. We assign the

element’s mass evenly to its four vertices. Thus the total gravitational force exerted on

a vertex pi, 1 ≤ i ≤ n, sums up a quarter of the gravitational force on each tetrahedron

it is incident on. Write all nodal gravitation forces into a vector G. It is straightforward

to verify that G is orthogonal to all the six vectors spanning the null space except tz,

with which it has a dot product −mg, where m is the object’s mass and g = 9.8 is the

gravitational acceleraton.

The potential energy of the system can be represented as

Π =
1

2
∆TK∆−∆T (F +G). (4.4)

At equilibrium, it reaches its minimum value, implying

K∆T = F +G. (4.5)

The stiffness matrix K is symmetric and thus diagonalizable. With 3n independent

eigenvectors, it is also known to be positive semi-definite. Given its six-dimensional null

space, K has 3n− 6 positive eigenvalues λ1, ..., λ3n−6 corresponding to unit eigenvectors

v1, ..., v3n−6. Let v3n−5, v3n−4, v3n−3 be normalized over tx, ty, tz, respectively. And

let v3n−2, v3n−1, v3n be orthogonalized over rx, ry, rz using Gram-Schmidt procedure.

Thus, G · v3n−3 = −mg/√n while G · vj = 0, 3n − 5 ≤ j ≤ 3n and j 6= 3n − 3.

The matrix has a spectral decomposition K = V ΛV T , where V = (v1, ...,v3n) and

Λ = diag(λ1, ..., λ3n−6, 0, ..., 0).

Because of the singularity of K, boundary conditions are required for solution of

(4.5). They will come from the displacements of the contact nodes as they move with

the squeezing fingers or stay with the supporting plane.



31

4.3 Deformation from Specified Contact Displacements

The set of contact nodes will not vary during a very small period of squeeze on

the solid by the fingers. First we need to compute the deformation of the 3D object

from specified displacements δi1, ..., δim of some boundary nodes pi1, ..., pim, which are

supposed to be in contact with a grasping finger or the supporting plane. We refer to

the set C = {i1, ..., im} as the contact index set. Zero external forces are applied at the

non-contact nodes, that is, fk = 0, for k = 1, ..., n and k 6∈ C.

Denote ∆̄ = (δTi1, ..., δ
T
im)T as before. We can solve for the contact force vector F̄ and

the displacement field ∆ from ∆̄ by performing a procedure similar to the one in (15).

Substitute K = V ΛV T into (4.5), and left multiply both sides of the resulting equation

with V T . This yields

∆ =
3n−6∑
k=1

1

λk
(vTk (F +G))vk + (v3n−5, ...,v3n)b

=
3n−6∑
k=1

1

λk
(v̄Tk F̄ )vk + (v3n−5, ...,v3n)b+D,

(4.6)

where D =
∑3n−6

k=1
1
λk

(vTkG)vk is a constant vector. The 3m equations for δi1, ..., δim are

extracted from (4.6), and combined with the six equations vTk (F +G) = 0, k = 3n− 5,

..., 3n. This sets up a linear equation in F̄ and b:

M

 F̄

b

 =

 ∆̄− D̄

(0, 0,mg/
√
n, 0, 0, 0)T

 , (4.7)

where

M =

 A B

BT 0

 , (4.8)

with the 3m× 3m matrix A =
∑3n−6

k=1
1
λk
v̄kv̄

T
k and the 6× 6 matrix B = (v̄3n−5, ..., v̄3n).

Theorem 4.3.1. The matrix M is non-singular if and only if the m contact points are

not collinear.
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Under the above theorem, when the contacts are not collinear, the system (4.7) has

a unique solution, in other words, the deformation is uniquely determined. To solve the

system, we invert the matrix M to obtain

M−1 =

 C E

ET H

 , (4.9)

where C, E, and H are matrices of dimensions 3m×3m, 3m×6, and 6×6, respectively.

Left multiplication of M−1 with both sides of (4.7) yields

F̄ = C(∆̄− D̄)− E(0, 0,mg/
√
n, 0, 0, 0)T

= C(∆̄− D̄)− mg√
n
e3,

(4.10)

where e3 is the third column of E. The equation relates the contact forces to the specified

contact displacements. With F and D determined, the displacement vector follows from

(4.7).

4.4 Grasping to Pick up a Solid

Having studied deformation under contacts, we move on to consider the task of using

two fingers to pick up a deformable 3D solid on a horizontal plane P . The two fingertips

F1 and F2 make initial point contacts with the object at the nodes pi and pj, respectively.

The fingers have identical hemispherical tips F1 and F2 for simplicity. The strategy is

described in Algorithm 2.

In the current phase of our work, the fingers are assumed to be translating during the

squeeze in constant directions, denoted by unit vectors d̂1 and d̂2, respectively. Without

loss of generality, let F1 be the moving fingertip. For every unit distance F1 translates

in d̂1, F2 translates in d̂2 by s ≥ 0. Thus, the squeeze action can be represented by

ρ(d̂1, sd̂2), where ρ ≥ 0 is referred to as the squeeze depth.
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Algorithm 2 Two-finger pickup of a 3D solid

Input: values of physical parameters, shape geometry, contacts K0 ∪ {i, j},
squeeze (d̂1, sd̂2)
Output: liftoff outcome

1: if pi and pj are not force closure with the plane contact then
2: return failure
3: end if
4: while not yet ”liftable” or not enough squeeze do
5: increment the squeeze depth ρ
6: update the contact configuration (Subroutine 3 in Section 4.4.1)
7: if a fingertip slips then
8: return failure
9: end if
10: update the liftable weight w(ρ) (Subroutine 4 in Section 4.4.2)
11: end while
12: if w(ρ) ≥ w0 then
13: lift the object off P
14: if a fingertip slips then
15: return failure
16: else
17: return success
18: end if
19: else
20: return failure
21: end if

The while loop of lines 4–11 performs the squeeze until upward forces can balance

the gravity of the object. As the squeeze depth ρ increases, the finger contacts will grow

from points into regions. The contact region with the plane will also change.

The movements of all the sliding nodes are tracked. Their indices form a set P. The

indices of all the sticking nodes also form a set T. Together they make up the contact

index set C = P ∪ T. Denote by I, J,K the sets of the indices of the object’s surface

nodes that are in contact with F1,F2,P , respectively. They also change as the squeeze

continues. Clearly, C = I ∪ J ∪K.

We extend the three-finger squeeze-grasp algorithm from (20) on grasping deformable

2D objects. The squeeze depth ρ will be sequenced such that at every depth in the

sequence some event happens.
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The squeeze continues until the object becomes liftable, or the amount of squeeze

becomes so large that a pickup is deemed impossible under the initial finger placement

and the squeezing directions. In the former case, the fingers translate upward to lift the

objects. If during the squeeze or pickup all the contacts with one finger are sliding, then

the finger slips and the operation fails. This situation is checked on lines 7–9 and 14–15.

Otherwise, the object is successfully picked up.

Line 5 of Algorithm 2 applies an extra squeeze in the current iteration. Line 6 updates

on the nodes that are in contact with either fingertip or the plane. It also determines

their contact modes and displacements. This update will be described in Section 4.4.1.

After the extra of squeeze, virtual lifting is performed to determine whether the fingers

have made enough contact with the object to pick it up. The liftability test, carried out

on line 10, will be introduced in Section 4.4.2.

4.4.1 Updating Shape and Contact Configuration

As in 2D deformable grasping (20), we know that during the deformation four events

may happen between the object, the supporting plane, and the two fingertips: contact

establishment (A), contact break (B), stick-to-slip (C), and slip-to-stick (D). Event A is

detected when a node is about to penetrate into F1, F2, or P . Event B takes place when

the contact force at a node is pointing out of the object. Event C happens when the

contact force at a node is going out of its friction cone. Event D occurs when the change

rate of the sliding distance of a node with respect to the squeeze depth ρ becomes zero.

This section describes how line 6 in Algorithm 2 updates the contact configuration.

From now on, we will use a prime to denote the change in a physical quantity due to the

extra squeeze. For example, F̄
′

and ∆′ respectively represent the change in the contact

force vector and the displacement vector that have happened under the extra squeeze.

It follows from (4.10) that

F̄
′
= C∆̄

′
. (4.11)
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Subroutine 3 Contact and deformation update

Input: ∆, I, J,K,T,P at ρ(l)

Output: their values at ρ(l+1)

1: solve for F̄
′
and ∆′ based on the contact state just before the extra squeeze in line 5

of Algorithm 2
2: if a contact event happens then
3: update the index sets I, J,K of finger contacts
4: update the index sets T and P of sticking and sliding contacts
5: end if
6: solve for contact slips and modify F̄

′
and ∆′ again based on updated contact state

Figure 4.1 Sliding of a node on the plane.

4.4.1.1 Extra Displacement of a Node

Subroutine 3 describe the details of line 6 in Algorithm 2. It handles the update of

contact configuration in two rounds.

Line 1 of the subroutine evaluates F̄
′

and ∆′ that would happen with the squeeze

depth increment if the contact state does not change. Every sticking node pk is assumed

to remain sticking during this extra squeeze. A node pk that was sliding at ρ(l) before

the extra squeeze is assumed to continue sliding in the same direction, i.e. , its extra

displacement is

δ′k = 0. (4.12)

Suppose that a node is sliding on the supporting plane in the direction given by the

polar angle αk as shown in Figure 4.1. The extra displacement of the node is then

δ′k = dk(cosαk, sinαk, 0)T , (4.13)
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N̂ k
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qk

p̃k
f k⊥

n̂k

δ′
k

Figure 4.2 Sliding of a node on the plane.

where dk is the sliding distance. And its contact force fk lies on the boundary of the

friction cone is described by the following quadratic equation:

(1 + µ2
P)(fk · ẑ)2 = fk · fk, (4.14)

where µP is the coefficient of friction between the object and the plane.

Now we look at the situation that a node pk slides on a fingertip as illustrated in

Figure 4.2. At ρ(l), pk was at the position p̃k with the normal n̂k pointing out of the

fingertip. Let t̂k be the tangential direction in which it was sliding at the moment. The

node pk will reach some point qk on the great circle co-planar with t̂k and n̂k. The

change in the displacement as a result of this extra squeeze will be

δ′k = qk − p̃k. (4.15)

The unit normal N̂ k to the plane containing this great circle is in the direction of

t̂k × n̂k. Essentially, qk is obtained from rotating p̃k about N̂ k through some angle

θk < 0. We have qk = o+ ck(p̃k − o) + sk(N̂ k × (p̃k − o)), where o is the center of the

fingertip, and ck and sk are the shorthand notations for cos θk and sin θk, respectively.

Under Coulomb’s law, the force fk lying on the friction cone yields a quadratic equation:

(1 + µ2
F)(fk · n̂k)2 = fk · fk, (4.16)
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coupled with

c2
k + s2

k = 1. (4.17)

In the above, µF is the coefficient of friction between the object and the fingertip.

4.4.1.2 Contact Configuration after the Extra Squeeze

From (4.12), (4.13), and (4.15), the additional displacement of a contact node pk can

be summarized as:

δ′k =


0 if k ∈ T,

dk(cosαk, sinαk, 0)T if k ∈ P ∩K,

qk − p̃k if k ∈ P ∩ (I ∪ J).

(4.18)

The change ∆̄
′

in the contact displacement vector is in terms of dk, k ∈ P ∩ K, and

cl = cos θl, sl = sin θl, l ∈ P ∩ (I ∪ J). So is F̄
′

given in (4.11). Add F̄
′

to the value F̄
(l)

of F̄ before the extra squeeze, and plug the result into (4.14), or (4.16) and (4.17). We

end up with a system of quadratic equations in the same number of variables:

(1 + µ2
P)(fk · ẑ)2 = fk · fk, k ∈ P ∩K;

(1 + µ2
F)(f l · n̂l)2 = f l · f l, l ∈ P ∩ (I ∪ J), (4.19)

c2
l + s2

l = 1, l ∈ P ∩ (I ∪ J).

We solve the above system using the homotopy continuation method for dk, k ∈ P∩K,

and cl, sl, l ∈ P ∩ (I ∪ J).

We determine the change ∆′ using (4.6):

∆′ =
3n−6∑
k=1

1

λk
(v̄Tk F̄

′
)vk + (v3n−5, . . . ,v3n)ET∆̄

′
, (4.20)

where the change F̄
′

in the contact force is given in (4.11). Assign ∆← ∆(l) + ∆′ and

F̄ ← F̄
(l)

+ F̄
′
.

Based on the updated ∆ and F̄ , line 2 of Subroutine 3 checks for contact events. If

an event happens, lines 3 and 4 then update the contact index sets I, J,K,T,P.
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4.4.2 Liftability Test

When the squeeze depth ρ is small, the contacts on the fingertips are not able to

create enough friction to lift the object up. As ρ increases, the fingertips F1 and F2 may

stop squeezing when they “feel” that the object is liftable. To check on such “feeling”,

line 10 of Algorithm 2 conducts a virtual liftability test repeatedly as ρ increases. Such a

test, involving no actual physical action, predicts the finger contact forces at the current

squeeze depth if the supporting plane P were to be removed, and then checks if any of

F1 and F2 was slipping.

A straightforward approach might be performed as the following. We let the set C of

contact nodes suddenly reduce from I∪ J∪K to I∪ J as if the supporting plane P were

removed. Next, we recompute the contact force vector in two rounds as in Subroutine 3,

handling sliding nodes if any. If it ends up with F1 or F2 sliding, the squeeze test fails

and the object is not liftable at the current squeeze depth. The issue with the above

test is numerical convergence. The movements of the sliding nodes are solved from the

system (4.19) of quadratic equations, in a manner sensitive to the initial guess. Dramatic

reduction in the contact set C from I ∪ J ∪K to I ∪ J causes a big change to the system

such that the finger contact positions in the configuration I ∪ J ∪ K would serve as a

very bad initial guess in the contact configuration I∪ J. Such change is too dramatic for

tracking the contact positions even using the homotopy continuation method.

We would like to find a quantity that reflects the continual progress made by the two

fingers towards lifting the object up. Its value should change with the squeeze depth ρ,

and can be updated incrementally just like the contact configuration.

This leads us to the notion of “liftable weight”. When ρ = 0, F1 and F2 exert zero

contact force. The object would be liftable only if it had zero weight. At a squeeze

depth ρ, the liftable weight w(ρ) is the maximum hypothetical weight of the object that

would not result in any fingertip sliding if P were removed. The harder the two fingertips

squeeze, the more weight they tend to be able to lift. Physics will ensure the function w
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Subroutine 4 Update of Liftable Weight

Input: Liftable weight w(ρ(l))
Output: Liftable weight w(ρ(l+1))

1: save ∆, I, J,K,T,P, c
2: w ← w(ρ(l))
3: C← I ∪ J
4: while no finger slips do
5: w ← w + h
6: re-evaluate F̄ according to (4.10) with mg replaced by w
7: detect contact events
8: update I, J,T,P
9: determine if I ∩ P = I or J ∩ P = J
10: end while
11: w(ρ(l+1))← w − h
12: restore ∆, I, J, K, T, P, c

to be continuous in ρ. Generally, we expect w to be also monotonically increasing.

The idea is then to track w(ρ) as ρ increases until it equals the real weight w0 of the

object. Consider the lth iteration of the while loop of lines 4–11 in Algorithm 2, when

the squeeze depth increases from, say, ρ(l) to ρ(l+1). Line 10 expands into Subroutine 4,

which obtains w(ρ(l+1)) based on the contact configuration at ρ(l+1) and the liftable weight

w(ρ(l)) at ρ(l). It iterates to test the weights w(ρ(l)) + h, w(ρ(l)) + 2h, . . ., for some small

increment h, until the object is no longer liftable at some w(ρ(l) + kh), k > 0. Then, set

w(ρ(l+1)) = w(ρ(l)) + (k − 1)h.

Line 1 in the subroutine saves the shape and contact configuration at the current

squeeze depth ρ(l+1). They result from the extra squeeze performed in line 5 of Algo-

rithm 2, and are updated in line 6.

In line 3 of Subroutine 4, the contact index set is set to I∪J, to reflect the hypotheti-

cal removal of the supporting plane. The while loop of lines 4–10 determines the liftable

weight at the squeeze depth ρ(l+1) by performing a virtual lift operation. Line 6 recom-

putes the hypothetical finger contact forces F̄ according to (4.10) with mg replaced by

w. Lines 7–8 detect the contact events and, if any, update the contact state accordingly.

Line 9 checks if any of the fingertips slips.
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After line 11 updates the liftable weight over the new squeeze depth ρ(l+1), the real

shape and contact configurations are restored. The execution goes back to line 4 of

Algorithm 2.

Since the squeeze depth ρ undergoes a small increment, small changes occur to the

contact configuration and the liftable weight w(ρ), which makes tracking of w feasible.

Once w reaches or exceeds the actual weight w0 of the object, the liftability test is passed.

Figure 4.3 shows a tomato grasped by two hemispherical plastic fingertips of radius

0.2 mounted on the fingers of a Barrett Hand. As plotted in (a), the ratio w/w0 increases

monotonically with the squeeze depth ρ. The object becomes liftable when ρ = 0.0088.

The moment is shown in (b) with seven contact nodes on each finger and five in the

plane. The object is lifted off the plane as shown in (c).

Once the liftability test is passed, in line 13 of Algorithm 2 the two fingers translate

upward. During the lift, the nodal contacts with the plane P will break one by one,

and some contacts with the fingertips could also break under the gravitational force.

However, Contact modeling is no different from that in squeezing. If a fingertip slips

during the lift, the pickup fails. Otherwise, the pickup is a success once the object leaves

the plane.

4.4.3 Experiment

Experiment was performed with a Barrett Hand mounted with hemispherical finger-

tips of radius 0.02. The fingertips are made of the material acetal. Tetrahedral meshes

for objects used in the experiment were first acquired by a 3D scanner from Next En-

gine, Inc., and then simplified using MeshLab1. Generation of tetrahedral meshes and

transformation of the objects were implemented using the Computational Geometry Al-

gorithm Library (http://www.cgal.org). All computation was performed on a PC with

an Intel Core i7-3770 Processor and 8 GB system RAM.

1http://meshlab.sourceforge.net/



41

(a)

(b) (c)

Figure 4.3 Liftability test for a tomato: (a) Ratio of the liftable weight w to the
tomato’s actual weight w0 = 1.246 increases with the squeeze depth ρ. (b)
Shape and contact configuration at the squeeze depth ρ = 0.0088 when the
tomato becomes liftable. (c) Liftoff of the tomato at the same squeeze depth.
Young’s modulus E = 105, Poisson’s ratio ν = 0.4, and the coefficient of
friction µF = 0.32 for the finger-tomato contacts.

To validate Algorithm 2, we performed the experiments on the tomato in Figure 4.3,

and four other objects listed in Figure 4.4: an orange, an eggplant, a steamed bun, and

a toy football.

Table 4.1 lists the mesh and physical parameter values of the five objects. In the

table, µP and µF are the coefficients of friction between the plane and the object and

between the fingertips and the object, respectively. On all five objects, the two fingertips

applied a squeeze ρ(d̂1, d̂2), where d̂1 = (0, 0.974,−0.227) and d̂2 = (0,−0.974,−0.227).

As soon as the liftability test was passed at the squeeze depth ρ∗, the fingers switched
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Figure 4.4 Objects (a) at rest and (b) in tetrahedral mesh representations.

their action from squeezing to lifting.

The results are shown in Figure 4.5, the first row shows the four objects picked up

by the Barrett Hand, the second row shows the simulation results, at the squeeze depths

listed in the third row, respectively. The fourth row lists the numbers of contact nodes

when the objects are in the air. The fifth row lists the simulation times (in seconds)

of Algorithm 2 before the pickup, which were significantly less than the times spent on

computing the spectral decompositions of the stiffness matrices using the SVD, which

were 53.7, 99.0, 106.3, 130.6, and 299.2, respectively.

We also perform some experiments to check how closely the liftability test capture

the moment when an object becomes liftable. Comparison is done between the minimum

squeeze passing the liftability test and the minimum squeeze for a liftoff. Denote by f ∗

the magnitude of the total squeeze force exerted by the fingers at the squeeze depth ρ∗

passing the liftability test. Meanwhile, denote by ρmin the minimum squeeze depth for a

lift, and fmin the magnitude of the total force exerted by the two fingers at the moment

of the object breaking its contact with the table. ρmin can be computed via bisection over



43

Table 4.1 Parameters with the objects in Figure 4.3 and 4.4.

Tomato Orange Eggplant Bun Football

# Vert. 490 600 612 658 875

# Facets 498 564 616 646 782

# Tetra. 2129 2692 2676 2941 4058

w0 1.246 1.868 3.336 0.467 0.489

E 1.0× 105 1.4× 105 1.1× 105 2× 103 6× 103

ν 0.4 0.4 0.4 0.2 0.3

µF 0.32 0.34 0.5 0.4 0.45

µP 0.35 0.36 0.6 0.42 0.47

[0, ρ∗], since ρ = ρ∗ has resulted in a success and ρ = 0 will lead to a failure. For every

intermediate value of ρ, the corresponding squeeze and the following lift attempt are

simulated by updating the shape and contact configuration as described in Section 4.4.1.

The outcome is a success if no finger slips on the object before the object breaks contact

with the table, and a failure otherwise.

Table 4.2 compares (ρ∗, f ∗) with (ρmin, fmin) over the five objects under the same

finger placements and squeeze directions in the experiment. We see that for every object

ρ∗ and f ∗ are slightly greater than ρmin and fmin, respectively. This suggests that the

liftability test is conservative. In the liftability test the supporting plane is suddenly

removed, while in calculating ρmin the object breaks contact with the table one node

after another. In the latter case, less force needs to be exerted on the object to prevent

the fingertips from sliding, and thus, less squeeze needs to be performed.
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Figure 4.5 Successful pickups of four deformable objects. The liftoff configurations in
experiment (row 1) and simulation (row 2). Row 3 lists the squeeze depths
passing the liftability test at which the action switches to pickup. Rows 4
and 5 display respectively the numbers of contact nodes at liftoff and the
simulation times.

Table 4.2 Comparisons between the squeeze depth ρ∗ predicted by the liftability test
and the minimum squeeze depth ρmin for lift off, and between the correspond-
ing total forces f ∗ and fmin exerted by the two fingers. The results are listed
for the five objects used in the experiment.

Tomato Orange Eggplant Bun Football

ρ∗ 0.01764 0.0247 0.01412 0.01028 0.01058

f ∗ 2.173 3.041 3.881 0.727 0.632

ρmin 0.01587 0.02383 0.01355 0.00982 0.01039

fmin 2.055 2.913 3.74 0.638 0.605
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CHAPTER 5. MODELING OF N-BODY COLLISIONS

This chapter will begin with introducing a frictionless impact model of balls with-

out considering angular velocities. It will then generalize the model to collision under

general motions with friction. Finally, simulation and experiment on Newton’s cradle

is performed to validate the model in the frictionless case, and simulation of nine-ball

break shots is presented.

5.1 Frictionless Collision of Translating Balls

In this section, we investigate a frictionless collision among n translating balls whose

centers of mass are co-planar, and describe an algorithm to compute the collision out-

come. In the next section, the model will be extended to objects with arbitrary geometry,

rotating motions, and contact friction. Later in this section, the model is then applied

to solve the classical problem of Newton’s Cradle.

5.1.1 Impact Dynamics and Contact Kinematics

Suppose that n rigid balls B1, . . . ,Bn are engaged in a collision. Let vi be the velocity

of Bi, I ij the impulse that Bi receives from Bj. By Newton’s third law, I ij = −Iji. For

1 ≤ i ≤ n, denote Ci as the set of subscripts of the objects that are in contact with Bi,

which has initial velocity v
(0)
i . Then the velocity of Bi during the collision changes as

follows:

vi = v
(0)
i +

1

mi

∑
k∈Ci

I ik, i = 1, 2, ..., n. (5.1)
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For every two balls Bi and Bj in contact, we add a virtual spring {i, j} at the contact

point. Without ambiguity, we will also refer to the contact by the same notation {i, j}.

This spring is along the contacting normal which is perpendicular to their common

tangent plane.

Figure 5.1 shows the ball Bi with the contact set Ci = {j1, j2, j3}. Since impulsive

forces on the balls are much larger than the gravitational forces, it is ignored here con-

sequently. Reorient the system such that all the balls lie on a horizontal plane. For the

spring {i, j}, let θij be the angle from the x-axis to the spring direction vector, which

points from Bj to Bi if j > i, and in the opposite direction otherwise. Thus, the unit

normal vector n̂ij = (cos θij, sin θij) always points from the ball with the bigger subscript

to the ball with the smaller one. We let Iij = σij‖I ij‖, where

σij =


1, if i < j,

−1, if i > j.

The velocity components of ball Bi during impact can then be written as:vix
viy

 =

v
(0)
ix

v
(0)
iy

+
1

mi

∑
k∈Ci

Iik cos θik

Iik sin θik

 . (5.2)

Denote P as the set of contacts, and ṽij as Bi’s velocity component projected onto

the direction of the spring {i, j}. For every contact {i, j} ∈ P, we thus have

ṽij = vi · n̂ij. (5.3)

Let xij be the change in length of the virtual spring {i, j}, and kij as its stiffness. The

derivative of energy with respect to its impulse follow from (5.1) and (5.3):

dEij
dIij

= −ẋij = ṽji − ṽij

=
(
v

(0)
j − v(0)

i

)
· n̂ij +

1

mj

∑
k∈Cj

Ijk(n̂jk · n̂ij)−
1

mi

∑
k∈Ci

Iik(n̂ik · n̂ij).
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Figure 5.1 Contact modeling with virtual springs.

The potential energy stored in the spring {i, j} is Eij = 1
2
kijx

2
ij, and by Hooke’s law the

formula for the contact force is Fij = kijxij. Suppose the spring {p, q} is the primary

impulse Ipq, which has the largest growth during the period. The expression of dEpq/dIpq

is given by (5.4) after replacing i, j with p, q from (5.4). Then, the differential ratio

between Iij and Ipq can be derived as

ρij =
dIij
dIpq

=
Fij
Fpq

= σijσpq

√
kijEij
kpqEpq

. (5.4)

Integration of (5.4) with initial value I
(0)
ij yields the accumulated change of energy:

∆Eij =
(
v

(0)
j − v(0)

i

)
· n̂ij∆Iij −

1

mi

∑
k∈Ci

∫ ρij(I
(0)
pq +δ)

ρijI
(0)
pq

(n̂ik · n̂ij)∆Iik dIij

+
1

mj

∑
k∈Cj

∫ ρij(I
(0)
pq +δ)

ρijI
(0)
pq

(n̂jk · n̂ij)∆Ijk dIij + αij(e
2
ij − 1)Eijmax, (5.5)

where δ is the increment of the primary impulse Ipq, and eij ∈ [0, 1] is the energy

coefficient of restitution determined by the material properties of the two impacting

objects. After the spring ends compression, it starts to restitute, with the stiffness kij

adjusted to kij/e
2
ij to reflect material hardening as explained in (21). The value of αij is
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set to be 0 during compression and 1 during restitution. At the end of compression, the

spring stores the maximum elastic energy Eijmax, and then immediately loses a portion

of 1− e2
ij. We can work out the integrals in (5.5) below:

∫ ρij(I
(0)
pq +δ)

ρijI
(0)
pq

∆Iik dIij = cρijρik, (5.6)

∫ ρij(I
(0)
pq +δ)

ρijI
(0)
pq

∆Ijk dIij = cρijρjk, (5.7)

where c = (δ2 + 2I
(0)
pq δ)/2. Substituting (5.6), (5.7) into (5.5), and adding initial energy

E
(0)
ij , we get

Eij = E
(0)
ij + δ

(
dEij
dIij

)(0)

ρij − c
(

1

mj

+
1

mi

)
ρ2
ij +

cρij
mj

 ∑
k 6=i,k∈Cj

ρjk(n̂jk · n̂ij)


−cρij
mi

( ∑
k 6=j,k∈Ci

ρik(n̂ik · n̂ij)
)

+ αij(e
2
ij − 1)Eijmax. (5.8)

Squaring both sides of (5.4) and then plugging in (5.8), we get a cubic system of equations:

kpq
kij

ρ2
ijEpq = Eij, {i, j} ∈ P. (5.9)

Newton’s method can be applied to solve this non-linear system, with the initial guesses

of 1 for ρpq, where {p, q} is the contact yielding the primary impulse, and of 0 for ρij,

for any {i, j} 6= {p, q}. In the first round of initialization, if any ρij exceeds 1, set the

primary contact {p, q} to be such {i, j} that has the biggest ρij value. With the updated

primary impulse pair, the system should now be solved again to finish the initialization.

This process ensures the impulse that varies the most stay as the denominator in the

differential relationships, which improves numerical stability.

5.1.2 Numerical Integration

After initialization of ρ
(0)
ij , numerical integration is performed as follows. At the nth

step, increment the primary impulse Ipq by some small amount δ, and make the updates
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Algorithm 5 Frictionless collision for n balls with translation only

Input: Bi with velocities v
(0)
i , 1 ≤ i ≤ n, and contact set P

1: set the active contact set A = P
2: while A 6= ∅ do
3: solve ρij from the system (5.9), update I ij, Eij according to (5.11) and (5.12),

also vi, 1 ≤ i ≤ n according to (5.1)
4: while A does not change do
5: update ρij, I ij, Eij, for all {i, j} ∈ A and vi, 1 ≤ i ≤ n according to (5.10)–

(5.12), and (5.1)
6: for every {i, j} ∈ A do
7: if compression ends then
8: set Eij = e2Eij
9: else if restitution ends then
10: remove the contact {i, j} from A
11: end if
12: end for
13: for every {i, j} ∈ P \ A that vi = vj do
14: add contact {i, j} to A
15: end for
16: end while
17: end while

below:

ρ
(n)
ij = σijσpq

√√√√ kijE
(n−1)
ij

kpqE
(n−1)
pq

, (5.10)

I
(n)
ij = I

(n−1)
ij + δρ

(n)
ij , (5.11)

E
(n)
ij = E

(n−1)
ij + δρ

(n)
ij

(
dEij
dIij

)(n)

, (5.12)

where
(
dEij

dIij

)(n−1)

is evaluated according to (5.4). In the step, the ball velocities are

computed from (5.1). Algorithm 5 summarizes the above procedure.

5.1.3 Example

A Newton’s cradle as Shown in Figure 5.2 consists of five identical balls with mass

m and radius r aligned in a row. Each ball is hanged by a string of length l. Denote by

e the energy coefficient of restitution between two balls. Usually one drags the left end

ball to a certain height and then releases it. Several multi-body collisions will happen
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Figure 5.2 Newton’s cradle.

after the release. Every ball carries out a simple pendulum motion before it collides

with another ball. The angle θ(t) between the perpendicular direction and the string at

time t satisfies a second order ordinary differential equation. When it is small, under the

approximation sin θ ≈ θ, the angle has a solution in the form of

θ(t) = A cos (ωt+ φ),

where ω =
√
g/l, with g as the gravitational acceleration constant. The constants A

and φ can be determined from the initial configuration at time t = t0: the angle θ0 of

the pendulum and the tangential velocity v0 as shown in Figure 5.2. We can obtain

θ(t) =

√
θ2

0 +
v2

0

gl
cos

(√
g

l
t+ β0 −

√
g

l
t0

)
,

v(t) = −
√
θ2

0 +
v2

0

gl

√
gl sin

(√
g

l
t+ β0 −

√
g

l
t0

)
.

where β0 is a constant offset determined by θ0, v0, g, and l.

As time goes by, collisions are detected by checking if several balls are close enough

with non-negligible relative velocities. A ball will switch to a different simple pendulum

motion if collision happens which results in a sudden change of velocity. Algorithm 5

is applied to compute the motion of the balls for each collision. For more accuracy of
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modeling, Hertz contact is used with F = kx3/2. Then (5.4) becomes

ρij =
dIij
dIpq

=
Fij
Fpq

= σijσpq

5/2

√√√√ kijE
3/2
ij

kpqE
3/2
pq

.

Newton’s method can still be applied to solve this quartic polynomial system. Simulation

and experimental results will be shown in Section 5.3.1.

5.2 Collision under General Motions with Friction

In this section, we will extend the impact model by considering friction and angular

velocity of arbitrary shape objects in the system of collision treated in Section 5.1. As

before, the objects involved in the collision are assumed to have their centers of mass

lying on the same plane. Suppose for every pair of objects, the center of masses and the

contact point are in the same line.

5.2.1 Impact Dynamics and Contact Kinematics

Denote by vi and ωi the velocity and angular velocity of the object Bi in the world

frame. At the moment of collision, let rik be the vector from Bi’s center of mass to the

contact point between Bi and Bk. The angular inertia matrix Qi of Bi is diagonal in its

principal frame, which has a rotation described by the matrix Ri from the world frame.

For instance, if Bi is a ball with radius τ , then

Qi =
2

5
miτ

2


1 0 0

0 1 0

0 0 1

 .
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Figure 5.3 Impulse decomposition along normal and tangential directions.

In the world frame, the changes in the velocities and angular velocities of Bi, i = 1, ..., n,

during the impact can be derived from dynamics:

mi∆vi =
∑
k∈Ci

I ik, (5.13)

Qi

(
R−1
i ∆ωi

)
=

∑
k∈Ci

R−1
i (rik × I ik). (5.14)

Compared with the frictionless case studied in Section 5.1, impulse now exists in the

tangent plane at the contact between two objects. Here, let Iik⊥ be the magnitude of

the tangential impulse between Bi and Bk shown in Figure 5.3, which is the projection of

the total impulse I ik, exerted by Bk on Bi, onto the tangential plane. The component of

Iij⊥ in the x-y plane is Iiku, and the vertical component in z-direction is Iikz. Compared

to (5.2), we now havevix
viy

=

v
(0)
ix

v
(0)
iy

+
1

mi

∑
k∈Ci

Iikn cos θik−Iiku sin θik

Iikn sin θik+Iiku cos θik

 .

(5.15)
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The differential relationship between the energy and normal impulse at the contact be-

tween object Bi and Bj is

dEij
dIijn

= n̂ij ·
((
v

(0)
j − v(0)

i

)
+

1

mj

∑
k∈Cj

(Ijknn̂jk + Ijkuûjk)

− 1

mi

∑
k∈Ci

(Iiknn̂ik + Iikuûik)
)
. (5.16)

The variable ρij defined in (5.4) for the frictionless case is now replaced by ρijn, whose

initial value will still be solved from the system of equations using Newton’s method. An

expression for Eij can be derived by integrating (5.16) similarly as in Section 5.1.

During the impact, we need to consider the contact mode (stick or slip) between Bi
and Bj. The contact velocity of Bi relative to that of object Bj at the contact is

∆vij = vi − vj + ωi × rij − ωj × rji.

Project ∆vij onto the tangent plane,

∆vij⊥ = ∆vij −∆vij · n̂ij. (5.17)

After simplification, the right hand side of the above equation can be written as linear

combinations of ∆Iijx, ∆Iijy, and ∆Iijz.

The contacts among the n objects can be either sliding or sticking. We denote the set

of sliding contacts as S, and the set of sticking contacts as T. The elements in each set

are the pairs of indices for objects engaged in the corresponding contact mode. Clearly,

P = S ∪ T.

5.2.2 Contact Modes

A contact node during the impact could be either sticking or sliding. For all the

contacts {i, j} ∈ T, their relative velocities in the tangent plane should be zero, i.e.,

∆vij⊥ = 0, {i, j} ∈ T. (5.18)
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Let |T| be the size of the set T. The above equations form a linear system with 3|T|

equations and 3|T| variables. Each ∆v̄ij has three components along the x-, y- and

z-axes, and also each equation has 3|T| variables ∆Iijx, ∆Iijy, and ∆Iijz, {i, j} ∈ T. The

values for ∆Iijn, ∆Iiju, and ∆Iijz can be computed by:
∆Iijn

∆Iiju

∆Iijz

 = R−1
ik


∆Iijx

∆Iijy

∆Iijz

 . (5.19)

After solving the system, one can check the ratio γij between the tangential impulse and

the normal impulse at the contact {i, j}, that is,

γij = ∆Iij⊥/∆Iijn.

Denote µij as the coefficient of friction between Bi and Bj. If γij < µij, we still have

values of ∆Iiju and ∆Iijz as they are solved from the system, and

∆Iij⊥ = γij∆Iijn. (5.20)

A node is sliding when the following holds:

∆vij⊥ 6= 0, {i, j} ∈ T. (5.21)

Then,

∆Iij⊥ = µij∆Iijn. (5.22)

Variables ∆Iiju and ∆Iijz are determined by

1

‖Iij⊥‖

∆Iiju

∆Iijz

 = −∆vij/‖∆vij‖,

∆I2
iju + ∆I2

ijz = ∆I2
ij⊥. (5.23)
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Algorithm 6 Frictional n-body collision

Input: objects Bi with velocities v
(0)
i and angular velocities ω

(0)
i , 1 ≤ i ≤ n, and contact

set P
1: set the active contact set A = P. Compute the initial relative velocity ∆vij of each
{i, j} ∈ A to set up the initial sliding set S and sticking set T.

2: while A 6= ∅ do
3: solve ρij from the system (5.9) according to

dEij

dIijn
from (5.16), update Iijn, Eij

from (5.11) and (5.12), Iij⊥ from (5.20) or (5.24), also update vi,ωi, 1 ≤ i ≤ n by
(5.13) and (5.14) according to set S or T

4: while A does not change do
5: update ρij, Iijn, Eij and vi,ωi, 1 ≤ i ≤ n from (5.10)–(5.14)
6: check if any of the events happen based on Section 5.2.2. Update the sets S

and T, and values of Iiju and Iijz of each {i, j}∈ A
7: execute lines 6–15 in Algorithm 5
8: end while
9: end while

A transition of the contact mode is detected and computed by the following condi-

tions:

1) sticking to sliding: if γij ≥ µij, then sliding happens between Bi and Bj. According

to Coulomb’s friction law, we set

∆Iij⊥ = µij∆Iijn. (5.24)

The values of ∆Iiju and ∆Iijz are modified to be ∆Iijuµij/γij and ∆Iijzµij/γij. The

sliding direction is opposite to the vector (∆Iijuµij/γij,∆Iijzµij/γij).

2) sliding to sticking: whenever the relative velocity ∆vij vanishes, we move the contact

{i, j} from S to T.

5.2.3 Algorithm

We perform numerical integration to update all the impulses, energies, velocities, and

angular velocities. The computation is described in Algorithm 6. Simulation results of

nine-ball break shots will be presented in Section 5.3.2.

The assumption of the mass centers of the objects being co-planar has been made

in this section. However, the model is easily extendable to a general configuration with
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modifications of equations (5.15) and (5.16) to take into account the z-direction compo-

nents.

5.3 Simulation and Experiment

In this section, we first present simulation of Newton’s cradle to verify the frictionless

model described in Section 5.1, and compare the results with those from an experiment

we performed. Next, we conduct simulation on nine-ball break shots using the model in

Section 5.2.

5.3.1 Newton’s Cradle

To experimentally validate Algorithm 5, a Newton’s Cradle with string length l =

0.129m was placed on a horizontal table. The five identical balls of the cradle have

radius r = 0.011m. The coefficient of restitution between any two balls is e = 0.95, and

the stiffness between them is the same. The leftmost ball was initially raised and held

static with oscillation angle 5π/36 as shown in Figure 5.4. Started at the release, a video

was captured by a Fujifilm FinePix HS10 camera with frame rate 30fps. Hough Circle

Transform algorithm in Matlab was applied to track the contours of five balls during

their motion. Velocities were estimated based on the tracked positions of balls and the

frame rate.

Table 5.1 compares the horizontal velocities vx and ṽx from experiment and simula-

tion, respectively, of the five balls right after they were disengaged from the first collision

in the experiment and the simulation. Interestingly, ball 1 was moving leftward slightly,

and ball 4 was moving rightward with noticeable velocity in both the experiment and

simulation. This phenomenon cannot be explained by a simpler model based on conser-

vation of momentum and energy only.
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Figure 5.4 Initial State of Newton’s cradle. Green circles mark the contours of the five
balls, which are number 1 to 5 from left to right.

Table 5.1 Comparisons of experimental (second row) and simulation (third row) out-
comes from the first collision of the five balls. Listed are the ball velocities
in the x-direction.

ball 1 2 3 4 5

vx −0.0578 −0.0224 0.0003 0.1322 0.4508

ṽx −0.0568 −0.0380 −0.0002 0.1450 0.4401
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Figure 5.5 Comparison of Newton’s cradle. Time trajectories of the horizontal velocity
of Newton’s cradle: experiment (red line) vs. simulation (blue dashed line).

The experimental and simulation results are also compared along the time axis until

no more impact happened and all the balls swung together. Figure 5.5 compares the

time trajectories of the horizontal velocities of ball 1 observed in the experiment and

predicted by simulation. The two trajectories match very well, except that during each

cycle (shown in the inset) the ball velocity fluctuates slightly more in simulation than

in the experiment. This is mainly due to some sticking effect between the balls in the

experiment that is not modeled by Algorithm 5.

5.3.2 Billiard Break Shots

Nine-ball break shots are a good testbed for Algorithm 6 described in Section 5.2.

There are ten identical balls (including a cue ball) on the pool table with radius r and

mass m. The cue stick shoots the cue ball to generate initial velocity v0 and angular

velocity ω0. The initial configuration is shown in Figure 5.6. The coefficient of friction

between any two balls is the same, and denoted as µbb. Friction between a ball and the

table is ignored during the impact. After the shot, the balls will be moving under sliding
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Figure 5.6 Initial state of nine-ball break shot.

or rolling friction with the table. Let µbt and µ̃bt be the coefficients of sliding and rolling

friction. We applied the technique in (19) to compute the trajectories of the balls with

given velocities and angular velocities in our simulation.

Algorithm 6 is implemented to simulate break shots with parameters listed in Table

5.2. Figure 5.7 compares the final configurations following three different shots at the

cue ball: stop shot, follow shot and draw shot. Immediately after each shot, the cue

ball gains the same initial velocity (1, 0, 0), but angular velocities (0, 0, 0), (0, 20, 0), and

(0,−20, 0), respectively. The results show that compared to a stop shot, the balls tend

to spread out more under a follow shot and less under a draw shot.

Table 5.2 Parameters used for modeling break shots include db: the diameter of the
balls; mb, the mass of the balls; µbb, the ball-ball coefficient of friction; ebb,
the ball coefficient of restitution; µbt, the ball-table coefficient of friction; and
µ̃bt, the ball-table coefficient of rolling resistance.

db (m) mb (kg) µbb ebb µbt µ̃bt

0.06 0.17 0.03 0.96 0.2 0.01
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(a) (b) (c)

Figure 5.7 Resting configurations of ten balls (leftmost one being the cue ball) after
three break shots: (a) stop shot, (b) follow shot, and (c) draw shot.
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CHAPTER 6. BATTING A FLYING OBJECT TO TARGET

In this chapter we will first describe the task of planning the motion of a flying object

using a manipulator to bat it. Then we will move on to study the 2D case of planning

the destination of the flying object using a manipulator with or without friction. Finally,

we extend the motion planning results to 3D.

6.1 Task Description

In this task, a robotic manipulator with mass mb is controlled to hit an object and

alter its trajectory such that it will reach some target destination, say, a container. As

shown in Fig. 6.1, the flying object with mass mo needs to reach the target located at q.

We make the following assumptions:

a) The impact configuration has been pre-planned. In other words, the positions and

orientations of the manipulator and the object at the moment of impact are known.

b) The object’s velocity V −o and angular velocity ω−o just before the impact are

known.

After the impact, the object at velocity V +
o = V −o + ∆V o will perform a free motion

under gravity. Our goal is to plan the pre-impact velocity V −b and angular velocity ω−b

of the manipulator so the object’s trajectory is altered to pass by the destination q.

In this section, the subscripts x, y and z of a letter (not bolded) represent the x-,

y- and z-coordinates (or components) of a point (or vector) named by the same letter

(bolded), respectively. For instance, qx denotes the x-coordinate of a point q, while Vox
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Figure 6.1 Batting an object to a target destination.

the x-component of a velocity V o.

6.2 Two-Dimensional Frictionless Impact Planning

In this section we first consider the planning task in 2D plane and assume that there

is no friction between the manipulator and the object during the impact.

6.2.1 Impact Dynamics and Contact Kinematics

Let I be the impulse exerted by the manipulator onto the object. An opposite impulse

−I is exerted on the manipulator by the object under Newton’s third law. Denote by

V b and V o, the velocities of the manipulator and the object, respectively, and by ωb

and ωo their angular velocities. From (20) we know that the changes in their velocities

during the impact are

∆V o =
1

mo

I, ∆ωo =
1

moρ2
o

ro × I,

∆V b = − 1

mb

I, ∆ωb = − 1

mbρ2
b

rb × I,
(6.1)

where ρb, ρo are the radii of gyration for the manipulator and object, respectively. As in

Fig. 6.1, ri = (rix, riy)
T , i = b, o, are the vectors from the manipulator’s and the object’s

centers of mass to the impact point p. Let ri⊥ = (−riy, rix)T , i = b, o, be the vectors
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perpendicular to ri. Let vb and vo be the velocities of the two points on the manipulator

and the object, respectively, which coincide at the contact. We then have

vb = V b + ωbrb⊥,

vo = V o + ωoro⊥.

Then the contact velocity of the object relative to the manipulator at p is

v = V o + ωoro⊥ − V b − ωbrb⊥.

During the impact, it changes by the amount

∆v = ∆V o + ∆ωoro⊥ −∆V b −∆ωbrb⊥

=
1

mo

I +

(
1

moρ2
o

ro × I
)
ro⊥ +

1

mb

I +

(
1

mbρ2
b

rb × I
)
rb⊥

=

(
1

mo

+
1

mb

)
I +

(
1

moρ2
o

ro⊥ · rTo⊥ +
1

mbρ2
b

rb⊥ · rTb⊥
)
I

=

( 1

mo

+
1

mb

) 1 0

0 1

+
1

moρ2
o

ro⊥ · rTo⊥ +
1

mbρ2
b

rb⊥ · rTb⊥

 I
= SI,

where

S =

(
1

mo

+
1

mb

) 1 0

0 1

+
1

moρ2
o

ro⊥ · rTo⊥ +
1

mbρ2
b

rb⊥ · rTb⊥.

The impact can be divided into two stages (34, p. 212): compression and restitution.

During compression, the kinetic energy is transformed into the potential energy stored

at the contact. When compression ends, the energy reaches its maximum value Emax.

At this moment, the velocity becomes zero. During restitution, the elastic portion of

the stored energy e2Emax is released. Here e, 0 ≤ e ≤ 1, is the energy coefficient of

restitution.
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We apply an explanation from (54) for the energy loss. When compression ends the

virtual spring stiffness suddenly increases by a factor of 1/e2. Under force continuity,

simultaneously the change in length of the spring reduces to a fraction e2 of its previous

value.

Absence of friction means that there is no impulse or energy exchange along the tan-

gent direction. Given the one-to-one correspondence between impulse and time, energy

E can be described as a function of impulse. This function has zero values at the start

and the end of the impact, and its only discontinuity occurs at the end of compression

(due to deformation, heat, etc.). It is differentiable during each impact phase:

dE

dI
= −ẋ

= −v · n̂

= −(v− + ∆v) · n̂

= −v− · n̂− (SI) · n̂

= −v−n − n̂TSn̂I, (6.2)

where v− = V −o + ω−o ro⊥ −V −b − ω−b rb⊥ is the contact velocity before impact, v−n is the

contact velocity along the normal direction before impact, and I = ‖I‖. Note that here

I is along the direction of n̂.

Denote Ic as the impulse at the end of compression, and Ir as the impulse at the end

of restitution, which is the total impulse of the impact. At the end of compression, we

have

dE

dI
= 0. (6.3)

Substitute (6.2) into (6.3),

Ic = − v−n
n̂TSn̂

.

Integrate (6.2) from 0 to Ic:

Emax =
(v−n )2

2n̂TSn̂
. (6.4)
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When compression ends, the energy suddenly decreases from Emax to e2Emax. During

restitution, the energy will decrease to zero. Thus we have

− e2Emax =

∫ Ir

Ic

dE. (6.5)

Solving Ir from (6.4) and (6.5), we obtain

Ir = −(1 + e)(v− · n̂)

n̂TSn̂
= −(1 + e)v−n

n̂TSn̂
. (6.6)

6.2.2 Motion Planning

With the outcome of impact available, we are ready to plan the motion of the flying

object. Without loss of generality, we put the origin at the impact point p, and assume

that the manipulator is batting the object rightward, i.e., nx > 0 in n̂ = (nx, ny)
T . From

(6.1) and (6.6),

∆V o =
Ir
mo

· n̂

= −(1 + e)(v− · n̂)

mon̂
TSn̂

· n̂

= −(1 + e)(v−on − v−bn)

mon̂
TSn̂

· n̂, (6.7)

where v−on = v−o · n̂ and v−bn = v−b · n̂. Notice that other components of vb will not affect

the behavior of the object after impact. Next we consider v−bn as the only variable since

other terms in (6.7) are known. In order for the impact to happen, v−bn ≥ v−on. From

(6.7), the velocity of the object after impact is given by

V +
o = V −o + ∆V o

= V −o −
(1 + e)(v−on − v−bn)

mon̂
TSn̂

· n̂. (6.8)

For the object to pass through q, it needs to satisfy the kinematic equations:

q + ro = V +
o t− (0, 0.5g)T t2, (6.9)
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for some flying time t, where g is the gravitational acceleration. Eliminating t, we obtain

an equation involving the x- and y-components of V +
o , q, and ro,

(V +
ox)2(qy + roy) = V +

oxV
+
oy (qx + rox)− 0.5g(qx + rox)

2. (6.10)

Given a target q and impact normal, we can solve the quadratic equation (6.10) to

obtain the pre-impact velocity of the manipulator.

6.2.3 Reachable Region

To fully understand the problem, given V −o = (V −ox, V
−
oy )T , ω−o , and n̂, we will de-

termine the region of the positions of q = (qx, qy)
T reachable by the object’s center of

mass. The trajectory is determined by the normal velocity v−bn of contact on the manip-

ulator. The point q, if on the monotonic trajectory, has its y-coordinate depending on

its x-coordinate and v−bn. We write qy(v
−
bn, qx).

There are four cases separated by the signs of V −ox and V −o × n̂:

Case 1: V −ox > 0, V −o × n̂ ≥ 0.

Case 2: V −ox > 0, V −o × n̂ < 0.

Case 3: V −ox ≤ 0, V −o × n̂ ≥ 0.

Case 4: V −ox ≤ 0, V −o × n̂ < 0.

Proposition 1. In Case 1,

qy(v
−
on, qx) ≤ qy ≤ qy(+∞, qx),

where

qy(v
−
on, qx) =

V −oxV
−
oy (qx + rox)− 0.5g(qx + rox)

2

V −2
ox

− roy, (6.11)

qy(+∞, qx) =
ny
nx

(qx + rox)− roy. (6.12)
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Proof. From (6.8), differentiate V +
ox with respect to v−bn,

V +′

ox (v−bn) =
dV +

ox

dv−bn
=

(1 + e)nx

mon̂
TSn̂

. (6.13)

It is trivial to show that n̂TSn̂ > 0, which, coupled with nx > 0, implies that V +′
ox (v−bn) >

0. Thus, V +
ox is linear in v−bn and monotonically increasing with v−bn. Since v−bn ≥ v−on, we

have

V +
ox(v−bn) ≥ V +

ox(v−on) = V −ox > 0.

And also, from (6.9),

qx + rox = V +
oxt > 0,

when t > 0 (impact happens at t = 0). Since V +
ox > 0, we obtain (6.12) from (6.10).

Take the partial derivative of qy with respect to v−bn, substituting (6.13) in:

∂qy
∂v−bn

=
1 + e

mon̂
TSn̂

(
(qx + rox)(V

−
o × n̂)

V +2
ox

+
gnx(qx + rox)

2

V +3
ox

)
. (6.14)

The first and second terms on the right-hand side are both greater than 0 for v−bn ≥ v−on,

which means ∂qy/∂v
−
bn > 0. Thus, the lower bound of qy is qy(v

−
on, qx) given in (6.12).

The upper bound is

qy(+∞, qx) = lim
v−bn→+∞

qy

= lim
v−bn→+∞

V +
oxV

+
oy (qx + rox)− 0.5g(qx + rox)

2

V +2
ox

− roy

= lim
v−bn→+∞

ny
nx

(qx + rox)− roy

=
ny
nx

(qx + rox)− roy.

Fig. 6.2(a) shows the reachable region for Case 1.
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Proposition 2. In Case 2, let ρ = −V −ox
(
V −o ×n̂

)
gnx

. The reachable region is
qy(+∞, qx) < qy ≤ qy(v

−
on, qx), if 0 ≤ qx + rox < ρ,

qy(+∞, qx) < qy ≤ qy(v
−∗
bn , qx), if ρ ≤ qx + rox ≤ 2ρ,

qy(v
−
on, qx) ≤ qy ≤ qy(v

−∗
bn , qx), if qx + rox > 2ρ,

(6.15)

where

v−∗bn = v−on −
mon̂

TSn̂

(1 + e)

(
V −ox
nx

+
g(qx + rox)

V −o × n̂

)
. (6.16)

Proof. As in the proof of Proposition 1, V +
ox > 0 and qx > 0 still hold when t > 0.

However, since V −o × n̂ < 0, the first term on the right-hand side of (6.14) is not always

positive for v−bn ≥ v−on, which means that an optimal point exists for the function qy(v
−
bn).

To obtain the optimal point, we solve ∂qy/∂v
−
bn = 0 and get (6.16). To decide whether

v−∗bn is a maximum or minimum point, we look at the second partial derivative of qy:

∂2qy

∂v−bn
2 =

(
1 + e

mon̂
TSn̂

)2(
−2nx(qx + rox)(V

−
o × n̂)

V +3
ox

− 3gn2
x(qx + rox)

2

V +4
ox

)
. (6.17)

And also,

V +
ox(v−∗bn ) = −gnx(qx + rox)

V −o × n̂
. (6.18)

Substitute (6.18) into (6.17),

∂2qy

∂v−bn
2 =

(
1 + e

mon̂
TSn̂

)2
nx(qx + rox)(V

−
o × n̂)

V +3
ox

< 0.

Thus, v−∗bn is a maximum point.

When V −ox/nx + g(qx + rox)/(V
−
o × n̂) > 0, i.e., 0 < qx + rox < ρ, we have v−∗bn < v−on.

Since v−∗bn is a maximum point, it can be inferred that qy is monotonically decreasing for

v−bn > v−on. Thus, the lower bound is (6.12), while the upper bound is (6.12).

When V −ox/nx + g(qx + rox)/(V
−
o × n̂) ≤ 0 we can get v−∗bn ≥ v−on. Since v−∗bn is a

maximum point, the upper bound is

qy(v
−∗
bn , qx) =

ny
nx

(qx + rox) +
(V −o × n̂)2

2gn2
x

− roy.
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And the lower bound is the minimum of (6.12) and (6.12). To find qx of division, let

qy(v
−
on, qx) = qy(+∞, qx), which leads to

q∗x = −2V −ox(V −o × n̂)

gnx
− rox.

It can be easily shown that when qx >= q∗x, qy(v
−
on, qx) ≤ qy(+∞, qx), thus the lower

bound is qy(v
−
on, qx). Otherwise, it is qy(+∞, qx).

To sum up, in Case 2, the reachable region is (6.15).

The reachable region for Case 2 is shown in Fig. 6.2(b).

Proposition 3. In Cases 3 and 4, the reachable regions in these two cases are respectively
qy < qy(+∞, qx), if qx + rox > 0,

qy ≤ qy(v
−
on, qx), if qx + rox ≤ 0,

(6.19)

and 
qy < qy(v

−
on, qx), if qx + rox < ρ,

qy ≤ qy
(
v−∗bn , qx

)
, if qx + rox ≥ ρ.

(6.20)

Proof. For Case 3, we first consider the scenario when qx+rox ≥ 0, which implies V +
ox > 0.

From (6.14), we know that ∂qy/∂v
−
bn > 0, in other words, qy is monotonically increasing.

From V +
ox > 0, we can obtain

v−bn > v−∗∗bn > v−on,

where

v−∗∗bn = −mon̂
TSn̂

(1 + e)nx
V −ox + v−on.

Then for v−bn > v−∗∗bn , the lower bound is

qy
(
v−∗∗bn , qx

)
= lim

V +
ox→0

V +
oxV

+
oy (qx + rox)− 0.5g(qx + rox)

2

V +2
ox

− roy

= −∞.
(6.21)

And the upper bound is given in (6.12).
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Next when qx+rox ≤ 0, which leads to V +
ox ≤ 0 and ∂qy/∂v

−
bn <= 0, qy is monotonically

decreasing for v−bn ∈ [v−on, v
−∗∗
bn ]. The lower bound is −∞, while the upper bound is given

in (6.12). Therefore, in Case 3, the reachable region is (6.19).

In Case 4, similar to Case 3, we first consider qx + rox > 0, which implies V +
ox > 0,

and v−bn > v−∗∗bn . However, since ∂qy/∂v
−
bn is no longer positive. From (6.16) we have

v−∗bn > v−∗∗bn , which means that the optimal point of qy will be reached. Also, from (6.17)

we can infer that v−∗bn is a maximum point. Therefore, the upper bound is qy(v
−∗
bn , qx),

and the lower bound is the minimum of (6.21) and (6.12), which is −∞.

When qx + rox < 0, we have V +
ox < 0, and v−on ≤ v−bn ≤ v−∗∗bn . Performing similar

analysis as in Proposition 2, it can be shown that the reachable region is
qy < qy(v

−
on, qx), if qx + rox < ρ,

qy ≤ qy
(
v−∗bn , qx

)
, if ρ ≤ qx + rox < 0.

For the simple case when qx + rox = 0, if t = 0, then it is just the starting point

at the origin. Otherwise, vox = 0. It is trivial to show that the upper bound is (V −o ×

n̂)2/(2gn2
x)− roy, and lower bound is −∞.

Combine the above results, in Case 4 the reachable region is (6.20).

Fig. 6.2(c) and (d) list the reachable regions (gray areas) in Cases 3 and 4, respectively.

6.2.4 Simulation and Experiment

This section presents an experiment with the planning strategy in the absence of

friction described above, and compares the results with simulation.

In the experiment a 21
2
D hexagonal, styrofoam object was thrown in the 2D plane

towards a 4-DOF Barrett Technology WAM arm. Batting was performed using one joint

in the same plane, with a wooden paddle attached as the end effector. A stationary,

circular object was placed 1.5 away from the robot to serve as the target destination.

The object had mass 0.0121 and included two line features in a “T” shape to uniquely
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determine its orientation. It was thrown from 2.4 away at velocity 3.9 and angular veloc-

ity −21. The paddle had velocity 2.4. The energetic coefficient of restitution between the

paddle and the object is 0.95. The sequence was captured at 196fps by a 2.2 megapixel

Ximea xIQ color camera. Images were then processed using the Hough Line Transform

algorithm (10) to fit the line features of the object.

To validate frictionless impact planning, accurate estimates of linear and angular

velocity are required. Because the object had uniform mass distribution, there was

no angular acceleration. Thus, the polar angle of the “T” shape was calculated, and

the angular velocity was approximated by averaging the values across all frames. For

position, when calculating linear velocity with a small time step between frames, noise

grows significantly and produces erroneous values. To counter this, a Kalman filter

was applied to reduce the affect of the noise that accumulated. The filter predicted

the position and velocity at each frame using kinematics, and corrected them using the

values obtained from image processing. Fig. 6.3 shows how the measurement noise from

image processing is reduced over time for the estimate. It results in a smoothed estimate

that accounts for air resistance by fitting the noisy data.

In simulation, we take the average of the velocities before impact and model the

trajectory as a free motion. Fig. 6.4 compares the experimental and simulation results

with the object for each of 8 consecutive frames. In the figure, the pre-impact trajectory

of the object is shown as (a) in experiment, and (b) in simulation, while its post-impact

trajectory is presented in (c) and (d). We can see that the trajectories match pretty

closely. We compare errors in terms of the magnitude of position and orientation of the

object with each frame as shown in Fig. 6.5. The average difference through the whole

process is 0.0154 in position, and 0.0393 in orientation. The error in position was mainly

due to air resistance on the object in the experiment, while the error in orientation was

due to some frames being blurry.
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6.3 Two-Dimensional Frictional Impact Planning

6.3.1 Impact Dynamics and Contact Kinematics

In this section we look at the scenario with friction. Suppose û = (ny,−nx)T is the

unit vector orthogonal to n̂. Also, we represent S =

 S11 S12

S12 S22

 since S12 = S21.

Since friction is taken into account, we need to consider both normal impulse In and

tangential impulse I⊥ during impact. Let µ be the coefficient of friction between the

objects. Equation (6.2) becomes

dE

dIn
= −v− · n̂− (SI) · n̂

= −v− · n̂− n̂TSûI⊥ − n̂TSn̂In,

= −v−n − (χn̂TSû+ n̂TSn̂)In,

= −v−n − S12I⊥ − S22In,

= −v−n − (χS12 + S22)In. (6.22)

where χ = ±µ if the contact is sliding, with the sign decided by the direction of tan-

gential contact velocity. When the contact is sticking, χ is the ratio, denoted χs, of the

derivatives of tangential and normal impulse at the moment.

From (61) for planar two rigid-body impact five contact modes may happen: (1)

sliding, (2) sticking in compression phase (C-sticking), (3) sticking in the restitution

phase (R-sticking), (4) reverse sliding in compression phase (CR-sliding), (5) reverse

sliding in restitution phase (RR-sliding). Denote by Ins the value of normal impulse

when sliding ends, by Inc when compression ends, and by Inr when restitution ends

which is the total impulse for the impact. When sliding stops, the relative contact

velocity along the tangent direction should be zero, i.e. (v− + ∆v) · û = 0. Solve this

equation:
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Table 6.1 Contact modes of impact.

|χs| < µ |χs| > µ

Inc < Inr ≤ Ins sliding sliding

Ins < Inc < Inr C-sticking CR-sliding

Inc ≤ Ins < Inr R-sticking RR-sliding

Ins = − ûTv−

ûTS(−sµû+ n̂)
, (6.23)

where s = v−⊥/|v−⊥| gives the sign of the tangent relative contact velocity. Suppose that

sticking happens right after sliding ends, we have

dv⊥
dIn

= 0. (6.24)

Solve (6.24) to obtain

χs = −û
TSn̂

ûTSû
,

which is a constant. Thus, if |χs| < µ, friction is able to prevent sliding, and the contact

will stick for the rest of the impact. Otherwise, reverse sliding happens, and χ = sµ in

this case. All the contact modes of the impact can be summarized in Table 6.1.

To simplify the derivation and without loss of generality, we re-orient the coordinate

frame such that the y-axis is along the contact normal, i.e. n̂ = ŷ = (0, 1)T . Conse-

quently, û = x̂ = (1, 0)T . In the sliding mode, similar to the frictionless case, it can be

shown that the total normal impulse is

Iyr = − (1 + e)v−y

ŷTS(−sµx̂+ ŷ)
= − (1 + e)v−y
−sµS12 + S22

.

And the total tangent impulse Ixr is

Ixr = −sµIyr =
sµ(1 + e)v−y
−sµS12 + S22

.



74

In the compression-sticking mode, sliding stops before compression ends. Thus, when

Iy ∈ [0, Iys], χ = −sµ in (6.22), while when Iy ∈ [Iys, Iyr],

dE

dIy
= −v− · ŷ − ŷTSx̂Ix − ŷTSŷIy

= −v− · n̂− n̂TS(−sµIns + χs(In − Ins))û− n̂TSn̂In

= −v−y + sµS12Iys − χsS12(Iy − Iys)− S22Iy.

(6.25)

Also, we know that when compression ends, the normal impulse Iyc satisfies dE/dIn = 0,

from which we can obtain

Iyc =
−S11v

−
y + S12v

−
x

−S2
12 + S11S22

. (6.26)

Subsequently,

Emax =

∫ Iys

0

dE +

∫ Iyc

Iys

dE

=
(−S11v

−
y + S12v

−
x )2

2S11(S11S22 − S2
12)

+
S12(v−x )2

2S11(−sµS11 + S12)
.

(6.27)

Substitute (6.27) and (6.25) into (6.5), solving the quadratic equation:

Iyr = (−b−
√
b2 − 4ac)/2a,

where

a = −1

2

(
−S

2
12

S11

+ S22

)
,

b = −v−y + S12

(
sµ− S12

S11

)
Iys,

c =
1

2

(
(1− e2)v−y Iyc − e2S12

S11

v−x Iys − (1− e2)
S12

S11

v−x Iyc

)
.

The total tangent impulse is

Ixr = −sµIys + χs(Iyr − Iys).

Similarly, we can obtain the normal and tangential impulses for the other three con-

tact modes. The normal impulse when sliding ends have the same form given in (6.23).
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And the impulses are according to five combinations of impact phases and contact

modes:

(1) sliding:

Iyc = − v−y
−sµS12 + S22

,

Iyr = − (1 + e)v−y
−sµS12 + S22

,

Ixr = −sµIyr.

(6.28)

(2) compression-sticking:

Iyc =
−S11v

−
y + S12v

−
x

−S2
12 + S11S22

,

a = −1

2

(
−S

2
12

S11

+ S22

)
,

b = −v−y + S12

(
sµ− S12

S11

)
Iys,

c =
1

2

(
(1− e2)v−y Iyc − e2S12

S11

v−x Iys − (1− e2)
S12

S11

v−x Iyc

)
,

Iyr = (−b−
√
b2 − 4ac)/2a,

Ixr = −sµIys + χs(Iyr − Iys).

(6.29)

(3) restitution-sticking:

Iyc =
−v−y

−sµS12 + S22

,

a = −1

2

(
−S

2
12

S11

+ S22

)
,

b = −v−y + S12

(
sµ− S12

S11

)
Iys,

c = −1

2
S12

(
sµ− S12

S11

)
I2
ys −

(1− e2)(v−y )2

2(−sµS12 + S22)
,

Iyr = (−b−
√
b2 − 4ac)/2a,

Ixr = −sµIys + χs(Iyr − Iys).

(6.30)
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(4) compression-reverse sliding:

Iyc = − 1

sµS12 + S22

(
v−y +

2sµS12v
−
x

−sµS11 + S12

)
,

a = −1

2
(sµS12 + S22) ,

b = −v−y + 2sµS12Iys,

c = −(1− e2)

(
(−v−y + 2sµS12Iys)Iyc −

1

2
(sµS12 + S22)I2

yc

)
− e2sµS12I

2
ys,

Iyr = (−b−
√
b2 − 4ac)/2a,

Ixr = −2sµIys + sµIyr.

(6.31)

(5) restitution-reverse sliding:

Iyc =
−v−y

−sµS12 + S22

,

a = −1

2
(sµS12 + S22) ,

b = −v−y + 2sµS12Iys,

c = −sµS12I
2
ys −

(1− e2)(v−y )2

2(−sµS12 + S22)
,

Iyr = (−b−
√
b2 − 4ac)/2a,

Ixr = −2sµIys + sµIyr.

(6.32)

Given the total normal and tangential impulses in all contact modes, we can compute

the post-impact velocity V +
o and angular velocity ω+

o of the object.

6.3.2 Impact planing

In order to perform motion planning for the object to reach the destination q, we

can choose the direction of the manipulator that hits the object. With a fixed hitting

direction, there are two degrees of freedom we can control before impact. They are the

tangent and normal components of the contact velocity of the manipulator, i.e., vector

v−b . Thus, any v−b that generates a post-impact velocity of the object satisfying (6.10)

is a solution.
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Due to physical continuity, the feasible solutions with variables (hitting direction,

normal velocity, and tangential velocity) will constitute a surface in 3D space. Fig. 6.6

presents an example.

Of these solutions we would like to find the optimal motion of the manipulator to

achieve the task. The kinetic energy of the manipulator is introduced to characterize the

effort of the manipulator. It is minimized here. Golden section search is applied to find

the optimal point, marked red in Fig. 6.6. It corresponds to the pre-impact motion of

the manipulator at (0.95, 4.05, 0.12). The hit generates the motion plotted in Fig. 6.7.

6.4 Three-Dimensional Frictionless Impact Planning

In this section, we look at the impact planning of the planning task in 3D. As in 2D

case, we first consider the planning task in the absence of friction.

6.4.1 Impact Dynamics and Contact Kinematics

Since it is in 3D plane, the angular velocities of the manipulator and the object now

becomes a 3D vector, denoted by ωb and ωo, respectively. For i = o, b, ωi is often

described in terms of a fixed frame Fi coincident with its canonical frame at its center

of mass. Under the canonical frame, the angular inertia matrix Qi is diagonalized. Since

the manipulator or the object does not move during the infinitesimal impact period, we

can look at the change in its angular velocity during the impact with respect to the

same fixed frame Fi. The rotation matrix Ri describes the orientation of Fi relative to

the world frame. From (20) we know that the changes in their velocities and angular

velocities during the impact are

∆V o =
1

mo

I, ∆ωo = Q−1
o

(
ro × (R−1

o I)
)
,

∆V b = − 1

mb

I, ∆ωb = −Q−1
b

(
rb × (R−1

b I)
)
,

(6.33)
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During the impact, the contact velocity changes by the amount

∆v = ∆V o +Ro(∆ωo × ro)−∆V b −Rb(∆ωb × rb)

=
1

mo

I +Ro

(
Q−1
o

(
ro × (R−1

o I)
)
× ro

)
+

1

mb

I +Rb

(
Q−1
b

(
rb × (R−1

b I)
)
× rb

)
=

(
1

mo

+
1

mb

)
I −

(
RoPoQ

−1
o PoR

−1
o +RbPbQ

−1
b PbR

−1
b

)
I

=


(

1

mo

+
1

mb

)


1 0 0

0 1 0

0 0 1

−RoPoQ
−1
o PoR

−1
o −RbPbQ

−1
b PbR

−1
b

 I

= AI,

(6.34)

where

A =


(

1

mo

+
1

mb

)


1 0 0

0 1 0

0 0 1

−RoPoQ
−1
o PoR

−1
o −RbPbQ

−1
b PbR

−1
b

 .

From Section 6.2.1 we know that the total impulse when restitution ends is

Ir = −(1 + e)(v− · n̂)

n̂TAn̂
= −(1 + e)v−n

n̂TAn̂
. (6.35)

6.4.2 Motion Planning

With the impact outcome available, we are ready to plan the motion of the flying

object in 3D space. As in 2D case, we still assume that the manipulator is batting the

object rightward, i.e., nx > 0 in n̂ = (nx, ny, nz)
T . From (6.33) and (6.35),

∆V o =
Ir
mo

· n̂

= −(1 + e)(v− · n̂)

mon̂
TAn̂

· n̂

= −(1 + e)(v−on − v−bn)

mon̂
TAn̂

· n̂, (6.36)
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where v−on = v−o · n̂ and v−bn = v−b · n̂. In the absence of friction the other components

of v−b will not affect the behavior of the object after impact, we consider v−bn as the only

variable. From (6.36), the velocity of the object after impact is given by

V +
o = V −o + ∆V o

= V −o −
(1 + e)(v−on − v−bn)

mon̂
TAn̂

· n̂. (6.37)

Given a target destination q = (qx, qy, qz)
T , it needs to satisfy the kinematic equa-

tions:

q + ro = V +
o t− (0, 0, 0.5g)T t2, (6.38)

for some flying time t, where g is the gravitational acceleration.

Suppose we fix an impact normal. Then in the system of (6.38), we have two variables

v−bn and t. This is an overconstrained problem, which means that in most cases we cannot

accomplish the planning task. Therefore, it is necessary to relax the constraint of the

fixed impact normal. The impact normal can be parameterized as

n̂ = (cosφ, sinφ cos θ, sinφ sin θ), φ ∈ [0, π/2], θ ∈ [0, 2π). (6.39)

Varying the impact normal introduces two more degrees of freedom into the system.

Now we have four variables v−bn, φ, θ, and t in three equations (6.38), which ends up with

one-dimensional set of the solution. Let β = (1 + e)/(mon̂
TAn̂). Substitute (6.37) into

(6.38),

qx = V −oxt− βnxV −ont+ βnxV
−
bnt− rox, (6.40)

qy = V −oy t− βnyV −ont+ βnyV
−
bnt− roy, (6.41)

qz = V −oz t− βnzV −ont+ βnzV
−
bnt− roz − 0.5gt2. (6.42)

Solve v−bn, t from (6.40) and (6.41),

v−bn =
(qy + roy)(V

−
ox − βnxV −on)− (qx + rox)(V

−
oy − βnyV −on)

(qx + rox)βny − (qy + roy)βnx
, (6.43)

t =
(qx + rox)ny − (qy + roy)nx

nyV −ox − nxV −oy
. (6.44)
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Substitute (6.43), (6.44), and (6.39) into (6.42), we obtain a curve C(φ, θ) = 0 in

terms of φ and θ. Fig. 6.8 shows an example of the curve.

Among these solutions we would like to achieve the optimal motion of the manipulator

to finish the task. As in Section 6.3, The kinetic energy of the manipulator is introduced

as the metric to characterize the effort. More formally, the problem becomes:

Minimize E =
1

2
mb(v

−
bn)2

s.t. C(φ, θ) = 0.

(6.45)

Fig. 6.9 presents the kinetic energy curve corresponds to the example from Fig. 6.8.

Based on the derivatives with respect to φ and θ we apply golden section search to track

along the curve until the optimal point is reached. The optimal solution is marked red

in Fig. 6.9.

6.5 Three-Dimensional Frictional Impact Planning

In this section, let’s look at the 3D planning task with friction.

6.5.1 Impact Dynamics and Contact Kinematics

Adding contact friction, we need to consider the tangential impulse between the

object and the manipulator during impact. The impulse I can be decomposed along the

normal and tangential directions:

I = I⊥ + Inn̂

= Iuû+ Iwŵ + Inn̂,

where û and ŵ are two orthogonal unit vectors spanning the tangent plane, and In, Iu

and Iw are the magnitudes the normal and the two tangential impulses. From (6.34) the

tangential contact velocity changes by the amount:

∆v⊥ = (1− n̂n̂T )AI.
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Then the tangential contact velocity is

v⊥ = v−⊥ + ∆v⊥

= v−⊥ + (1− n̂n̂T )AI, (6.46)

where v−⊥ is the value right before the impact.

As in 2D frictional case, contact modes transition needs to be considered.

6.5.1.1 Sliding

The contact slides when tangential velocity is non-zero, i.e. v⊥ 6= 0. Under Coulomb’s

law of friction, the tangential contact force F⊥ and the normal contact force F n follows

the relationship:

F⊥ = −µF n = −µFnv̂⊥ = −µFn
v⊥
||v⊥||

.

Take the derivative of I⊥ with respect to In,

I ′⊥ =
dI⊥
dIn

=
F⊥
Fn

= −µ v⊥
||v⊥||

.

From (6.46), we have

I ′u =
dIu
dIn

= ûT
dI⊥
dIn

= − µûT

||v⊥||
(v−⊥ + (1− n̂n̂T )AI)

= − µ

||v⊥||
(v−⊥u + ûT (1− n̂n̂T )AI)

= − µ

||v⊥||
(v−⊥u + ûTAI), (6.47)

I ′w =
dIw
dIn

= − µ

||v⊥||
(v−⊥w + ŵTAI). (6.48)
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6.5.1.2 Sticking

The contact sticks when the tangential contact velocity becomes zero, i.e., v⊥ = 0.

Take the derivative of v⊥ with respect to In,

v′⊥ =
dv⊥
dIn

= (1− n̂n̂T )A
dI

dIn
= (1− n̂n̂T )A(I ′⊥ + n̂).

In order to maintain sticking, v
′

⊥ = 0. Namely,

ûTA(I ′⊥ + n̂) = 0, (6.49)

ŵTA(I ′⊥ + n̂) = 0. (6.50)

Expand the left hand side of (6.50),

ûTA(I ′⊥ + n̂) = ûTA(I ′uû+ I ′wŵ + n̂)

= ûTAI ′uû+ ûTAI ′wŵ + ûTAn̂.

Equation (6.50) becomes:

ûTAûI ′u + ûTAŵI ′w = −ûTAn̂. (6.51)

Similarly, from (6.50) we obtain

ŵTAûI ′u + ŵTAŵI ′w = −ŵTAn̂. (6.52)

Consider the coefficient matrix of equations (6.51) and (6.52):

M =

 ûTAû ûTAŵ

ŵTAû ŵTAŵ

 (6.53)

There are three cases:

a) rank(M) = 2. Solve (6.51) and (6.52) for I ′u and I ′w, which results in constant

values βu and βw, respectively. Thus, we have

I ′⊥ = βuû+ βwŵ.
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If

||F⊥/Fn|| = ||I ′⊥|| =
√
β2
u + β2

w < µ, (6.54)

tangential impulse due to friction will be enough to keep the contact sticking. Let ∆In

be the accumulation of the normal impulse since the beginning of sticking. Then the

tangential impulse accumulation during the same period is

∆I⊥ = (βuû+ βwŵ)∆In. (6.55)

If condition (6.54) does not hold, the contact will not stick and sliding will continue.

b) rank(M) = 1 and (−ûTAn̂,−ŵTAn̂)T ∈ col(M). In this case (6.51) and (6.52)

are multiples of each other. Only one of them needs to be considered, say, equation

(6.51). It defines a line in the I ′u - I ′w plane. Let (βu, βw) be the foot of the perpendicular

from the origin to the line. If its distance
√
β2
u + β2

w < µ, then the contact will stay

in the sticking mode. We can determine ∆I⊥ from (6.55) with the current βu and βw

values. Otherwise, if
√
β2
u + β2

w ≥ µ, the contact will not stick.

c) rank(M) = 1 but (−ûTAn̂,−ŵTAn̂)T 6∈ col(M). No solution satisfies (6.51) and

(6.52). The contact will never stick.

6.5.1.3 Compression and Restitution

Denote by vn the normal component of the contact velocity v. From (6.34), we have

vn = n̂T (v− + ∆v)

= v−n + n̂TAI.

The change rate of the energy throughout the impact is

E ′ = −vn

= −v−n − n̂TAI. (6.56)
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Based on the impact model, compression ends when vn = 0. At this point, maximum

energy Emax is stored at the contact. Immediately, the energy dissipates by a factor of

e2, where e is the energy coefficient of restitution. Restitution ends when E = 0.

We apply numerical integration to solve the impact results as in Chapter 5. The

difference is that here when the sticking mode is reached, there is a closed form for the

change in the impulse so we can stop numerical integration and solve the results directly.

Let the normal impulse In increase from zero. As In reaches certain value, a phase of

impact will end or the contact mode will vary. When the contact is sliding, the change of

the tangential impulse I⊥ is tracked from integrating (6.47) and (6.48), while the energy

change is tracked by integrating (6.56). At the point when sticking is reached before the

impact ends, I ′⊥ will become constant. Thus, the change in the tangential impulse has

a closed from (6.55) in terms of the change in In. So do the changes in I and E. The

condition (6.54), if holds, will hold until the end of the impact. A closed-form analysis

can be performed after sticking to solve the value of I at the end of the impact.

6.5.2 Motion Planning

Since we can compute the outcome of the impact in 3D case with friction, we would

like to plan the motion of the flying object. With known pre-impact configuration,

the velocity of the object after impact, though no closed-form solution exists, can be

represented as a function in terms of the contact normal n̂ = (nx, ny, nz)
T , and the

pre-impact contact velocity of the manipulator v−b = (v−bx, v
−
by, v

−
bz)

T .

To simplify the problem and reduce degrees of freedom for better analysis, we fixed

the impact normal, and check with a given normal, whether we can plan the velocity of

the manipulator in order to hit the flying object to reach the target q. The post-impact

velocity of the object can be represented as V +
o = V +

o (v−bx, v
−
by, v

−
bz) = (V +

ox, V
+
oy , V

+
oz ). The
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kinematic equations (6.38) needs to be satisfied. By eliminating t, we have

V +
ox(qy + roy)− V +

oy (qx + rox) = 0, (6.57)

(V +
ox)2(qz + roz)− V +

oxV
+
oz (qx + rox) +

1

2
g(qx + rox)

2 = 0, (6.58)

which are two constraints with three variables, resulting in one dimensional set of solu-

tion. As in Section 6.4, we apply the kinetic energy of the manipulator to characterize

the effort. Minimizing the kinetic energy E = 1
2
mb

(
(v−bx)

2 + (v−by)
2 + (v−bz)

2
)

is equivalent

to minimize (v−bx)
2 + (v−by)

2 + (v−bz)
2, since 1

2
mb is a constant. Combined with (6.57) and

(6.58), the problem becomes:

Minimize f(v−b ) = (v−bx)
2 + (v−by)

2 + (v−bz)
2

s.t. g1(v−b ) = V +
ox(qy + roy)− V +

oy (qx + rox) = 0

g2(v−b ) = (V +
ox)2(qz + roz)− V +

oxV
+
oz (qx + rox) +

1

2
g(qx + rox)

2 = 0.

(6.59)

To solve this problem, we apply the Lagrange multipliers in numerical optimization.

Introducing Lagrange multipliers λ1 and λ2 for the two constraints, we define the follow-

ing Lagrangian function on 5 variables:

L(v−b , λ1, λ2) = f(v−b ) + λ1g1(v−b ) + λ2g2(v−b ).

The constrained optimization problem can be converted into an unconstrained root-

finding problem. More formally, we would like to find a point (v−b , λ1, λ2) such that

∇L(v−b , λ1, λ2) =


∇f(v−b ) + λ1∇g1(v−b ) + λ2∇g2(v−b )

g1(v−b )

g2(v−b )

 = 0.

Newton’s method is applied to solve this multivariate root-finding problem. We iterate

(v−b , λ1, λ2) as below:

(v−b,n+1, λ1,n+1, λ2,n+1) = (v−b,n, λ1,n, λ2,n)−∇2L(v−b,n, λ1,n, λ2,n)−1∇L(v−b,n, λ1,n, λ2,n),
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Table 6.2 Iterations of Newton’s method.

iteration (v−b , λ1, λ2) f(v−b )

1 (0.2174,-2.1791,1.8988,-7.8101,-0.1714) 8.4015

2 (0.1787,-1.4909,0.9923,0.9744,0.0959) 3.2394

3 (0.1776,-1.2806,-0.2799,-2.4788,-0.2214) 1.7499

4 (0.1776,-1.2538,-0.2192,-1.7836,0.0193) 1.6517

5 (0.1776,-1.2438,-0.2497,-1.1521,0.0124) 1.6408

6 (0.1776,-1.2362,-0.2792,-1.1703,0.0125) 1.6375

7 (0.1776,-1.2319,-0.2953,-1.1777,0.0126) 1.6364

8 (0.1776,-1.2295,-0.3047,-1.1818,0.0127) 1.636

9 (0.1776,-1.228,-0.3103,-1.1841,0.0127) 1.6359

10 (0.1776,-1.2271,-0.3138,-1.1855,0.0127) 1.6358

11 (0.1776,-1.2266,-0.3158,-1.1863,0.0127) 1.6358

in which the Hessian of the Lagrangian is given by the following matrix

∇2L(v−b , λ1, λ2) =


∇2f(v−b ) + λ1∇2g1(v−b ) + λ2∇2g2(v−b ) ∇g1(v−b ) ∇g2(v−b )

∇g2(v−b )T 0 0

∇g1(v−b )T 0 0

 .

Since there is no closed form for V +
o , We use numerical differentiation to approximate

the first and second derivatives. Next we presents an example, in which the object and

the manipulator had mass 1 and 20, respectively. The coefficient of friction µ is 0.2, and

the coefficient of restitution e is 0.95. Put the hitting point at the origin, the target des-

tination is q = (10,−10, 460). The hitting normal is n̂ = (0.952,−0.051, 0.303). Before

impact the velocity and angular velocity of the object are (−1,−1,−1) and (0, π/4, π/4),

respectively. Table 6.2 shows the iterations of the Newton’s method in the example.

During the iterating process ∇L(v−b , λ1, λ2) gradually converges to 0. The optimum is

achieved at v−b = (0.1776,−1.2266,−0.3158).
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(a) (b)

(c) (d)

Figure 6.2 Example of reachable regions (gray area) of the object in the cases: (a)
V −ox > 0, V −o × n̂ ≥ 0; (b) V −ox > 0, V −o × n̂ < 0; (c) V −ox ≤ 0, V −o × n̂ ≥ 0;
(d) V −ox ≤ 0, V −o × n̂ < 0.
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Figure 6.3 Magnitude of linear velocity from image processing (red line), kinematics
(gray dotted line), and the Kalman filter’s estimation (blue line).

(a) (b)

(c) (d)

Figure 6.4 Trajectories of the planning task: pre-impact in (a) experiment and (b)
simulation, post-impact in (c) experiment and (d) simulation.
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(a)

(b)

Figure 6.5 Discrepancies between experiment and simulation along time in (a) position,
and (b) orientation. The red line represents the average error throughout
the process.
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Figure 6.6 Solution surface of the frictional planning example for different hitting nor-
mal, tangential velocity, and normal velocity of the manipulator.

Figure 6.7 Trajectory of the optimal planning result.
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Figure 6.8 Solution curve of the 3D frictionless planning example for different hitting
normal.

Figure 6.9 Kinetic energy curve of the 3D frictionless planning example for different φ
and θ.
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With the root found, we now solve the problem described by (6.59). Given an impact

normal, we check whether the manipulator can hit the object to reach the target. If so,

we obtain the best way which takes the least effort of the manipulator. Otherwise, it

means that the manipulator cannot hit the object to the target with the current given

hitting normal.
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CHAPTER 7. CONCLUSION

In this thesis we first introduce two types of squeezes on a deformable object. A stable

squeeze minimizes the potential energy for the same amount of squeeze. A pure squeeze

makes sure that the grasped object undergoes no rigid body motion during deformation

to avoid unnecessary finger movements. And then we study the best strategy to resist an

adversary finger poking against a grasped object via known translation. Our introduced

metric is the amount of work performed by the grasping fingers, rather than the total

force as usually used in rigid body grasping. Optimal resistance strategies are first

analyzed assuming fixed point and segment contacts. Then, Algorithm 1 is proposed

for area contacts under Coulomb friction, by incorporating the contact event detection

subroutine from (15).

Next, we also propose a simple squeeze-and-lift strategy for grasping 3D deformable

objects. The idea is to model changes in shape and contact geometry during the de-

formation, and repeatedly conduct liftability tests to predict when to switch the action

from squeezing to lifting. To support the modeling, we extended our contact-based finite

element analysis to 3D, with gravity taken into account.

After that a computational efficiently impact model for n-body system is introduced,

in both frictionless and frictional cases. Simulation and experiment on Newton’s cradle

to validate the model in the frictionless case and simulation in the frictional case are

performed, which give realistic outcomes.

Based on the impact model, we investigate the motion planning of batting a flying

object to some target in both frictionless and frictional cases. Experiment was performed
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to validate the planning strategy compared with simulation for 2D frictionless case.

Although 2D analysis is complete and concise, it is not realistic and not easy to verify via

experiments. Thus, analyses are generalized to 3D with or without friction. The result

in the frictionless case is similar to 2D, but with one-dimensional set of solution. For

the frictional case in 3D, the problem is converted into a root-finding one and Newton’s

method is applied to solve the optimal planning.

For future work, experiments with a 4-DOF WAM Arm can be performed to valid the

model and algorithms. And also, in the current analysis tangential compliance during

impact is ignored. Nevertheless, in some situations, like playing ping pong ball, tangential

compliance plays a significant role affecting the impact outcome. Therefore, adding

tangential compliance into the model is necessary for the next step.
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