
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2017

A hybrid approach for selecting and optimizing
graph traversal strategy for analyzing big code
Ramanathan Ramu
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Ramu, Ramanathan, "A hybrid approach for selecting and optimizing graph traversal strategy for analyzing big code" (2017). Graduate
Theses and Dissertations. 16202.
https://lib.dr.iastate.edu/etd/16202

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F16202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/16202?utm_source=lib.dr.iastate.edu%2Fetd%2F16202&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

A hybrid approach for selecting and optimizing graph traversal strategy for

analyzing big code

by

Ramanathan Ramu

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Hridesh Rajan, Major Professor

Andrew Miner
Wei Le

The student author, whose presentation of the scholarship herein was approved by the program of
study committee, is solely responsible for the content of this thesis. The Graduate College will

ensure this thesis is globally accessible and will not permit alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2017

Copyright c© Ramanathan Ramu, 2017. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGEMENTS . vii

ABSTRACT . viii

CHAPTER 1. INTRODUCTION . 1

CHAPTER 2. CONTRIBUTIONS . 7

2.1 Traversal declaration and traverse expression . 7

2.2 Data-flow and loop sensitivity analyses for traversals 7

2.3 Graph cyclicity . 8

2.4 Decision tree for traversal strategy selection . 8

2.5 Evaluation contribution . 8

CHAPTER 3. BACKGROUND . 10

3.1 Graph . 10

3.2 Graph traversal . 10

3.3 Graph traversal strategies . 11

3.3.1 Depth-first search . 11

3.3.2 Breadth-first search . 11

3.4 Program analysis . 12

3.5 Control-flow and data-flow analysis . 12

3.6 Graph traversal for program analysis . 13

iii

3.6.1 Random order . 13

3.6.2 Postorder . 13

3.6.3 Reverse postorder . 13

CHAPTER 4. HYBRID TRAVERSAL SELECTION FOR EFFICIENT SOURCE CODE

ANALYSIS . 14

4.1 A system for expressing source code analysis as traversals 15

4.2 Static and runtime properties . 21

4.2.1 Data-flow sensitivity . 21

4.2.2 Computing data-flow sensitivity . 22

4.2.3 Loop sensitivity . 23

4.2.4 Computing loop sensitivity . 26

4.2.5 Graph cyclicity . 27

4.3 Traversal strategies - candidates . 28

4.4 Decision tree for traversal strategy selection . 30

4.4.1 An example . 32

4.5 Optimizing the selected traversal strategy . 34

CHAPTER 5. IMPLEMENTATION ON BOA FRAMEWORK 38

5.1 Boa language and infrastructure . 38

5.2 Source code analysis using traversal construct . 38

5.2.1 Traversal type and traverse statement . 39

5.2.2 Implementation of traversal without fixpoint 40

5.2.3 Post-dominator analysis using traversal construct 41

5.2.4 Implementation of traversal with fixpoint . 42

5.3 Putting it all together . 44

CHAPTER 6. EMPIRICAL EVALUATION . 47

6.1 Analyses, datasets and experiment setting . 47

6.1.1 Analyses. 47

iv

6.1.2 Datasets. 48

6.1.3 Setting. 49

CHAPTER 7. RUNNING TIME AND TIME REDUCTION 51

7.1 Running time . 51

7.2 Time reduction . 52

7.3 Time reduction against hand optimized analysis . 53

CHAPTER 8. CORRECTNESS OF ANALYSIS RESULTS 56

CHAPTER 9. TRAVERSAL STRATEGY SELECTION PRECISION 57

CHAPTER 10. ANALYSIS ON THE DECISION TREE DISTRIBUTION 61

CHAPTER 11. ANALYSIS ON TRAVERSAL OPTIMIZATION 64

CHAPTER 12. CASE STUDIES . 66

12.1 API Precondition Mining (APM). 66

12.2 API Usage Mining (AUM). 67

CHAPTER 13. THREATS TO VALIDITY . 69

CHAPTER 14. RELATED WORK . 70

14.1 Mixing static and dynamic information. 70

14.2 Optimizing program analysis. 70

14.3 Ultra-large-scale source code mining. 71

14.4 Graph traversal optimization. 72

CHAPTER 15. CONCLUSION AND FUTURE WORK . 73

15.1 Conclusion . 73

15.2 Future work . 74

BIBLIOGRAPHY . 76

APPENDIX A. SOURCE CODE LISTINGS FOR ANALYSES 1 - 10 83

APPENDIX B. SOURCE CODE LISTINGS FOR ANALYSES 11 - 21 107

v

LIST OF TABLES

Table 4.1 List of constructs and their syntax. 17

Table 4.2 Operations on collections. 18

Table 6.1 List of source code analyses and their properties. 48

Table 6.2 Statistics of the generated control flow graphs from two datasets. . . . 48

Table 6.3 Time contribution of each phase . 49

Table 9.1 Traversal strategy prediction precision. 57

vi

LIST OF FIGURES

Figure 1.1 Running time of the three analyses. 2

Figure 1.2 Running time of the three analyses on a large codebase. 4

Figure 4.1 Overview of the Hybrid approach. 14

Figure 4.2 Running example of applying the post dominator analysis. 20

Figure 4.3 Traversal strategy selection decision tree. 29

Figure 4.4 Paths taken for initT traversal and domT traversal. 33

Figure 4.5 Iterations needed to compute post dominator without optimization. . 36

Figure 4.6 Iterations needed to compute post dominator with optimization. . . 37

Figure 7.1 Reduction in running time. 52

Figure 7.2 Reduction in running time against hand optimized analysis. 54

Figure 9.1 Scatter charts for analyses that have loop sensitive traversals. 57

Figure 9.2 Hybrid approach’s performance for mis-predicted graphs. 59

Figure 10.1 Distribution of decisions - GitHub dataset. 62

Figure 10.2 Distribution of decisions - DaCapo dataset. 62

Figure 11.1 Reduction in execution time due to optimization. 64

Figure 12.1 Running time of the case studies on GitHub data. 66

Figure 12.2 Most mined pre-conditions for the methods in String Java API. . . . 67

Figure 12.3 Top 10 API Usage pattern for java.util API. 67

vii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with various

aspects of conducting research and the writing of this thesis. I would like to thank Dr. Hridesh

Rajan, Dr. Hoan A Nguyen, and Ganesha Upadhaya for their guidance, patience and support

throughout this research and the writing of this thesis. Thanks are due to the US National Science

Foundation for financially supporting this project. I would like to thank my committee members Dr.

Wei Le and Dr. Andrew Miner for their efforts and contributions to this work. Also, I would like to

thank the reviewers of ECOOP 2017 and OOPSLA 2017 conference for their insightful feedback. I

would like to extend my thanks to all the members of Laboratory of Software Design for offering

constructive criticism and timely suggestions during research.

I am very grateful to my parents Ramu and Meenal and my friends for their moral support and

encouragement throughout the duration of my studies.

viii

ABSTRACT

Our newfound ability to analyze source code in massive software repositories such as GitHub

has led to an uptick in data-driven solutions to software engineering problems. Source code analysis

is often realized as traversals over source code artifacts represented as graphs. Since the number of

artifacts that are analyzed is huge, in millions, the efficiency of the source code analysis technique is

very important. The performance of source code analysis techniques heavily depends on the order of

nodes visited during the traversals: the traversal strategy. For instance, selecting the best traversal

strategy and optimizing it for a software engineering task, that infers the temporal specification

between pairs of API method calls, could reduce the running time on a large codebase from 64% to

96%. While, there exists several choices for traversal strategy, like depth-first, post-order, reverse

post-order, etc., there exists no technique to choose the most time-efficient strategy for traversals.

In this paper, we show that a single traversal strategy does not fit all source code analysis scenarios.

Somewhat more surprisingly, we demonstrate that given the source code expressing the analysis

task (in a declarative form) one can compute static characteristics of the task, which together with

the runtime characteristics of the input, can help predict the most time-efficient traversal strategy

for that (analysis task, input) pair. We also demonstrate that these strategies can be realized in a

manner that is effective in accelerating ultra-large-scale source code analysis. Our evaluation shows

that our technique successfully selected the most time-efficient traversal strategy for 99.99%-100%

of the time and using the selected traversal strategy and optimizing it, the running times of a

representative collection of source code analysis in our evaluation were considerably reduced by

1%-28% (13 minutes to 72 minutes in absolute time) when compared against the best performing

traversal strategy. The overhead imposed by collecting additional information for our approach

is less than 0.2% of the total running time for a large dataset that contains 287K Control Flow

Graphs (CFGs) and less than 0.01% for an ultra-large dataset that contains 162M CFGs.

1

CHAPTER 1. INTRODUCTION

The availability of open source repositories like GitHub is driving data-driven solutions to software

engineering problems, e.g. specification inference by Nguyen et al. [28], discovering programming

patterns by Thummalapenta and Xie [32], suggesting bug fixes by Livshits and Zimmermann [26]

and Li et al. [25], etc. These software engineering tasks analyze different source code representations,

such as text, abstract syntax trees (ASTs), control flow graphs (CFGs), at massive scale. The

performance of source code analysis over graphs heavily depends on the order of the nodes visited

during the traversals: the traversal strategy. While graph traversal is a well-studied problem, and

various traversal strategies exists; e.g., depth-first, post-order, reverse post-order, etc, no single

strategy works best for different kinds of analyses and different kinds of graphs. Our contribution

is hybrid traversal selection, a novel source code analysis optimization technique for source code

analyses expressed as graph traversals. This work was done collaboratively with Dr. Hridesh Rajan,

Dr. Hoan A Nguyen, and Ganesha Upadhaya. Consequently, Chapters 1, 2, 4, and 6 - 14 in this

thesis are based on that collaborative work.

Motivation and Key Observations. To motivate, consider a software engineering task that

infers the temporal specifications between pairs of API method calls, i.e., a call to a must be followed

by a call to b [16, 30, 35, 36]. A data-driven approach for inference is to look for pairs of API calls

that frequently go in pairs in the same order at API call sites in the client methods’ code. Such

an approach contains (at least) three source code analyses on the control flow graph (CFG) of

each client method: 1) identifying references of the API classes and call sites of the API methods

which can be done using reaching definition analysis [29]; 2) identifying the pairs of API calls (a, b)

where b follows a in the client code which can be done using post-dominator analysis [1]; and 3)

2

0

1

2

3

4

5

RD

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

DFS PO RPO WPO WRPO ANY

(a) Reaching definition analysis.

0

1

2

3

PDOM

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

DFS PO RPO WPO WRPO ANY

(b) Post-dominator analysis.

0

0.05

0.1

0.15

COL

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

DFS PO RPO WPO WRPO ANY

(c) Collector analysis.

Figure 1.1: Running time (ms) of the three analyses on graph A using different traversal strategies.

collecting pairs of temporal API calls by traversing all nodes in the CFG–let us call this collector

analysis. These analyses need to be run on a large number of client methods to produce temporal

specifications with high confidence.

Implementing each of these analyses involves traversing the CFG of each client method. The

traversal strategy could be chosen from a set of standard strategies e.g depth-first search (DFS),

post-order (PO), reverse post-order (RPO), worklist with post-ordering (WPO), worklist with

reverse post-ordering (WRPO) and any order (ANY). In ANY order traversal strategy, nodes can

be visited in any order. In post-order traversal, the successors of any node are visited before visiting

the node, while in reverse post-order traversal, the predecessors of any node are visited before

visiting the node. In Worklist with Post-Order and Worklist with reverse post-order, the nodes are

visited in the order they appear in the worklist. A worklist is a data structure used to keep track of

3

nodes to be visited. In WPO, worklist is initialized with post-ordering of nodes, while in WRPO,

The worklist is initialized with nodes in the reverse post-order.

Figure 1.1 shows the performance of each of these three analyses when using standard traversal

strategies. These runs are analyzing the CFG of a method in the DaCapo benchmark [5]. Actual

implementation of this method is not important, but it suffices to know that the CFG, which we

shall refer to as Graph A, has 50 nodes and has branches but no loops. Figure 1.1 shows that, for

graph A, the WRPO performs better than other strategies for the reaching definition analysis while

the WPO outperforms the others for the post-dominator analysis and the ANY traversal works best

for the collector analysis.

No Traversal Strategy Fits All. The performance results are somewhat expected, but

require understanding the subtleties of the analyses. Reaching definition analysis is a forward

data-flow analysis where the output at each node in the graph is dependent on the outputs of their

predecessor nodes. So, DFS, RPO and WRPO by nature are the most suitable. However, worklist is

the most efficient strategy here because it visits only the nodes that are yet to reach fixpoint unlike

other strategies that also visit notes that have already reached fixpoint. Post-dominator analysis,

on the other hand, is a backward analysis meaning that the output at each node in the graph is

dependent on the outputs of their successor nodes. Therefore, the worklist with post-ordering is

the most efficient traversal. For the collector analysis, any order traversal works better than other

traversal strategies for graph A. This is because for this analysis the output at each node is not

dependent on the output of any other nodes and hence it is independent of the order of nodes

visited. The any order traversal strategy does not have the overhead of visiting the nodes in any

particular order like DFS, PO, RPO nor the overhead to maintain the worklist. Therefore any order

traversal performs better than other traversal strategies.

Properties of Input Graph Determine Strategy. For the illustrative example discussed

above, DFS and RPO were worse than WRPO for the reaching definition analysis and PO was worse

than WPO for post-dominator because they require one extra iteration of analysis to be performed

and realize that fixpoint has been reached. However, since graph A does not have any loops, if

4

70

215

577

104 115

397

25

0

100

200

300

400

500

600

DFS PO RPO WPO WRPO ANY Best

R
u

n
n

in
g

ti
m

e
(s

ec
o

n
d

s)

Figure 1.2: Running time of the three analyses using different traversal strategies on a large codebase.

the graph A’s nodes are visited in such a way that each node is visited after its predecessors for

reaching definition analysis and after its successors for post-dominator analysis, then the additional

iteration is actually redundant. Given that graph A has no loops, one could optimize RPS or PO to

bypass the extra iteration and fixpoint checking. Thus, the optimized RPS or PO would run the

same number of iterations as the respective worklist-based ones and finish faster than them because

the overhead of maintaining the list is eliminated.

The potential gains of selecting a suitable traversal strategy can be significant. To illustrate,

consider Figure 1.2 that shows the performance of our entire illustrative example (inferring temporal

specifications) on a large corpus of 287,000 CFGs extracted from the DaCapo benchmark dataset [5].

Figure 1.2 shows the bar chart for the total running times of the three analyses. The Best strategy

is an ideal one where we can always choose the most efficient with all necessary optimizations. The

bar chart confirms that fixing a traversal strategies for running different analyses on different types

of graphs is not efficient. Selecting and optimizing traversal strategy for each analysis on each graph

is desirable. Such a strategy could reduce the running time on a large dataset from 64% (against

DFS) to 96% (against RPO).

Our approach relies on our observations that a suitable traversal strategy is dependent on both

the source code analyses and input graphs’ properties. The former are static properties and the

latter are runtime properties. More importantly, depending on the properties of analyses and

5

graphs, existing traversals could be optimized to improve their performance. We have evaluated

our technique using a set of 21 source code analysis that includes control and data-flow analysis,

and analysis to find bugs. The evaluation is performed on two datasets: a dataset containing well-

maintained projects from DaCapo benchmark (contains a total of 287K graphs), and a ultra-large

dataset containing more than 380K projects from GitHub (contains a total of 162M graphs). Our

evaluation shows that our technique successfully selected the most time-efficient traversal strategy

for 99.99%–100% of the time and using the selected traversal strategy and optimizing it, the running

times of a representative collection of source code analysis in our evaluation were considerably

reduced by 1%-28% (13 minutes to 72 minutes in absolute time) when compared against the best

performing traversal strategy. The overhead imposed by our approach is negligible (less than 0.2%

of the total running time for a large dataset and less than 0.01% for an ultra-large dataset).

The rest of the thesis is organized as follows. Chapter 2 lists the contributions of our work.

Chapter 3 gives a brief background on topics that are important for the understanding of this work,

such as Graph and its traversal, various traversal strategies, Program analysis, Control and Data

flow analysis. Section 4.1 describes our system For expressing source code analysis as traversals,

while Section 4.2 presents the factors that influence the selection of the optimal traversal strategy for

any given traversal. Section 4.3 lists all the candidate traversal strategies while Section 4.4 describes

our decision tree to select traversal strategy and also presents an example analysis and graph and

walks through the decision tree. Chapter 5 gives the implementation detail on how we extended

Boa language to have hybrid capability. Chapter 6 presents our experimental setup and the dataset

used. Chapter 7 provides the evaluation and the analysis that we did on running time comparison

between hybrid and various other strategies. Chapter 8 presents the correctness of analysis using

Hybrid approach. Chapter 9 presents the Hybrid’s traversal strategy prediction precision. Chapter

10 analyses our decision tree’s distribution while Chapter 11 analyses the importance of our traversal

optimization. Chapter 12 discusses the two case studies that we implemented using our formalism

for source code analysis and their results. Chapter 13 discusses about the threat to validity while

6

Chapter 14 discusses related work. Chapter 15 concludes and gives some possible ideas for future

work.

7

CHAPTER 2. CONTRIBUTIONS

In this work, we develop hybrid traversal selection, a novel program analysis optimization

technique for BigCode analyses expressed as graph traversals. Our approach relies on our observations

that a suitable traversal strategy is dependent on both the program analyses and input graphs’

properties. The former are static properties and the latter are dynamic properties. More importantly,

depending on the properties of analyses and graphs, existing traversals could be optimized to improve

their performance. Hybrid traversal selection relies on several technical underpinnings:

2.1 Traversal declaration and traverse expression

Programmers can declare their program analyses as one or more traversal declarations and run

them using traverse expression. The runtime implementation of the traverse expression selects a

suitable traversal strategy based on the traversal declaration and the input graph. Main benefit of

these linguistic abstractions is that they abstract away traversal related code so that the traversal

strategy can be replaced as needed by the analysis runtime. We extended the Boa language and

infrastructure [12] to support control flow graphs, graph traversal and program analysis as graph

traversal.

2.2 Data-flow and loop sensitivity analyses for traversals

We show that traversal strategy selection depends on three critical properties of the traversal:

data-flow sensitivity, loop sensitivity, and traversal direction. We propose algorithms for computing

these properties. Our analysis system implements these algorithms. These properties are computed

statically and their values are stored as metadata to be utilized by the traversal selection at runtime.

8

2.3 Graph cyclicity

We have observed that the traversal strategy selection depends on one dynamic property of

the input which is graph cyclicity. This property partitions the set of graphs into three categories:

those that are sequential, those with branches but no cycles, and those with cycles. Our system

computes this property at graph construction time and stores it as an attribute in the runtime

graph representation.

2.4 Decision tree for traversal strategy selection

We have devised a decision tree for traversal strategy selection that given data-flow sensitivity,

loop sensitivity, and traversal direction properties of the analysis and the cyclicity property of the

input graph produces a selection for traversal strategy. While the tree is utilized by our automated

system, it could also be used by a programmer for manual traversal selection.

Hybrid traversal selection has two direct benefits. First, it improves the efficiency of BigCode

analysis thus speeding up data-driven science in this important area. Second, it frees up programmers

from having to write traversal related code and then optimizing it based on the analysis and the

graph at hand.

2.5 Evaluation contribution

We have evaluated our technique using a set of 21 source code analysis that includes control

and data-flow analysis, and analysis to find bugs. The evaluation is performed on two datasets: a

dataset containing well-maintained projects from DaCapo benchmark (contains a total of 287K

graphs), and an ultra-large dataset containing more than 380K projects from GitHub (contains

a total of 162M graphs). Our evaluation shows that our technique successfully selected the most

time-efficient traversal strategy for 99.99%–100% of the time and using the selected traversal strategy

and optimizing it, the running times of a representative collection of source code analysis in our

evaluation were considerably reduced by 1%-28% (13 minutes to 72 minutes in absolute time) when

9

compared against the best performing traversal strategy. The case studies show that hybrid traversal

reduces 80–175 minutes in running times for two software engineering tasks. The overhead imposed

by our approach is negligible (less than 0.2% of the total running time for a large dataset and less

than 0.01% for an ultra-large dataset).

In summary, this paper makes the following contributions:

• It describes a system for expressing source code analysis as traversals. The constructs and

operations in the system allows different source code analysis to be expressed in a manner

that allows automatic selection of the best traversal strategies.

• It defines a set of novel properties about the traversal expressed in our system. It also describes

algorithms for analysing traversals for inferring these properties.

• It describes a novel decision tree for selecting the most suitable traversal strategy. The static

and runtime properties also allows certain optimizations to be performed on the selected

traversal strategy to further improve the performance.

• It demonstrates the potentially broad range of applications of hybrid traversal selection for

optimizing source code analysis such as available expressions, local may alias, live variable,

nullness analysis, post dominator, reaching definitions, resource status, very busy expression,

etc.

10

CHAPTER 3. BACKGROUND

This chapter gives a brief background on topics that are important for the understanding of this

work.

3.1 Graph

A graph is a structure amounting to a set of objects in which some pairs of the objects are in

some sense “related”. The objects correspond to mathematical abstractions called vertices (also

called nodes) and each of the related pairs of vertices is called an edge. The edges of graphs may

also be imbued with directedness. A normal graph in which edges are undirected is said to be

undirected. Otherwise, if arrows may be placed on one or both endpoints of the edges of a graph to

indicate directedness, the graph is said to be directed. One can formally define an undirected graph

as G=(N, E) consisting of the set N of nodes and the set E of edges, which are unordered pairs of

elements of N. The formal definition of a directed graph is similar, the only difference is that the set

E contains ordered pairs of elements of N.

3.2 Graph traversal

In computer science, graph traversal refers to the process of visiting each vertex in a graph. Such

traversals are classified by the order in which the vertices are visited. Graph traversal may require

that some vertices be visited more than once, since it is not necessarily known before transitioning

to a vertex that it has already been explored. As graphs become more dense, this redundancy

becomes more prevalent, causing computation time to increase; as graphs become more sparse,

the opposite holds true. Thus, it is usually necessary to remember which vertices have already

11

been explored by the algorithm, so that the vertices are revisited as infrequently as possible. This

may be accomplished by associating each vertex of the graph with a “visitation” state during the

traversal, which is then checked and updated as the algorithm visits each vertex. If the vertex has

already been visited, it is ignored and the path is pursued no further; otherwise, the algorithm

checks/updates the vertex and continues down its current path.

3.3 Graph traversal strategies

The two most common traversal patterns are breadth-first traversal and depth-first traversal.

3.3.1 Depth-first search

A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child

vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path

before exploring its breadth. A stack is generally used when implementing the algorithm. The

algorithm begins with a chosen “root” vertex; it then iteratively transitions from the current vertex

to an adjacent, unvisited vertex, until it can no longer find an unexplored vertex to transition to

from its current location. The algorithm then backtracks along previously visited vertices, until it

finds a vertex connected to yet more uncharted territory. It will then proceed down the new path as

it had before, backtracking as it encounters dead-ends, and ending only when the algorithm has

backtracked past the original “root” vertex from the very first step.

3.3.2 Breadth-first search

A breadth-first search (BFS) is another technique for traversing a finite graph. BFS visits the

neighbor vertices before visiting the child vertices, and a queue is used in the search process. This

algorithm is often used to find the shortest path from one vertex to another

12

3.4 Program analysis

In computer science, program analysis is the process of automatically analyzing the behavior

of computer programs regarding a property such as correctness, robustness, safety and liveness.

Program analysis focuses on two major areas: program optimization and program correctness. The

former focuses on improving the program’s performance while reducing the resource usage while the

latter focuses on ensuring that the program does what it is supposed to do. Program analysis can

be performed without executing the program (static program analysis) or during runtime (dynamic

program analysis) or in a combination of both.

3.5 Control-flow and data-flow analysis

The purpose of control-flow analysis is to obtain information about which functions can be

called at various points during the execution of a program. The collected information is represented

by a Control Flow Graph (CFG) where the nodes are instructions of the program and the edges

represent the flow of control. By identifying code blocks and loops, CFG becomes a starting point

for compiler optimizations.

Data-flow analysis is a technique designed to gather information about the values at each point of

the program and how they change over time. This technique is often used by compilers to optimize

the code. One of the most known examples of data-flow analysis is taint checking which considers all

variables containing user supplied data that are considered “tainted”, i.e. insecure and preventing

those variables from being used until they have been sanitized. This technique is often used to

prevent SQL injection attacks.

A simple way to perform data-flow analysis of programs is to set up data-flow equations for each

node of the control flow graph and solve them by repeatedly calculating the output from the input

locally at each node until the whole system stabilizes, i.e., it reaches a fixpoint.

13

3.6 Graph traversal for program analysis

The efficiency of performing program analysis on graphs is influenced by the order at which

the nodes are visited. A few different iteration orders for solving data-flow equations are discussed

below.

3.6.1 Random order

This iteration order does not know whether the data-flow equations solve a forward or backward

data-flow problem. Therefore, the performance is relatively poor compared to specialized iteration

orders.

3.6.2 Postorder

This is a typical iteration order for backward data-flow problems. In postorder iteration, a

node is visited after all its successor nodes have been visited. Typically, the postorder iteration is

implemented with the depth-first strategy.

3.6.3 Reverse postorder

This is a typical iteration order for forward data-flow problems. In reverse-postorder iteration,

a node is visited before any of its successor nodes has been visited, except when the successor is

reached by a back edge.

14

CHAPTER 4. HYBRID TRAVERSAL SELECTION FOR EFFICIENT

SOURCE CODE ANALYSIS

In this chapter, we first provide a brief overview of our technique, followed by an overview of the

constructs used for expressing source code analyses. We then describe the properties, analyses, and

a decision tree that are the technical underpinnings of our selection technique.

Figure 4.1: Overview of the Hybrid approach for selecting and optimizing graph traversal strategy.

Figure 4.1 provides an overview of our approach and its key components. Inputs to our approach

are source code analysis that contains one or more traversals (Section 4.1), and a graph. Output

of our technique is an optimal traversal strategy for every traversal in the analysis. For selecting

an optimal traversal strategy for a traversal, our technique computes a set of static properties of

the analysis (Section 4.2), such as data-flow sensitivity, loop sensitivity, and extracts a runtime

property about the graph that defines the cyclicity in the graph (sequential/branch/loop). Upon

computing the static and runtime properties, our approach selects a traversal strategy from a set

of candidate strategies (Section 4.3) for each traversal in the analysis (Section 4.4) and optimizes

15

it (Section 4.5). The static properties of the traversals are computed only once for each analysis,

whereas graph cyclicity is determined for every input graph.

4.1 A system for expressing source code analysis as traversals

A source code analysis is performed on various source code artifacts such as source code text,

intermediate representations like abstract syntax trees (ASTs), graph-based representations like

control flow graphs (CFGs) and call graphs (CGs), etc. In our system, source code analysis such as

control- and data-flow analysis are expressed as traversals over CFGs.

Definition 1 A control flow graph (CFG) is a directed graph G = (N,E, nstart, Nend) with a set

of nodes N representing the program statements and a set of edges E ⊆ N ×N representing the

control flow relation between the program statements. A CFG has a single start node, nstart, and a

set of end nodes, Nend.

For any node n ∈ N , n.preds is a set of immediate predecessors, n.succs is a set of immediate

successors, n.stmt provides the program statement at the node, and n.id is a unique identifier of

the node. Here on, we use graph to refer to CFG.

A source code analysis over a graph visits nodes in the graph in certain order and collects

information at nodes (aka, analysis facts or outputs). For instance, the reaching definition analysis

over a CFG, visits every node in the CFG and collects the variable definitions at nodes as analysis

facts. An analysis may require multiple traversals over a graph and each traversal may visit nodes

multiple times (for fixpoint). For instance, the reaching definition analysis requires two traversal of

the CFG: an initialization traversal for collecting the variable definitions at nodes as analysis facts,

and a propagation traversal for propagating the analysis facts along the graph. The initialization

traversal visits every node exactly once, whereas the propagation traversal may visit the nodes

multiple times until a fixpoint is reached and the analysis facts at nodes does not change further.

In our system, a source code analysis over a graph is expressed by defining and invoking one or

more traversals. A traversal is defined using a special traversal block:

16

t := traversal(n : Node) : T { tbody }

In this traversal block definition, t is the name of the traversal that takes a single parameter n

representing the graph node that is being visited. A traversal may define a return type T representing

the output type. The output type can be a primitive or a collection data type. A block of code that

generates the traversal output at a graph node is given by tbody. The tbody may contain common

statements and expressions, such as variable declarations, assignments, conditional statements, loop

statements, and method calls, along with some special expressions discussed in this chapter.

A traversal can be invoked using a special traverse expression:

traverse(g, t, d, df, ls, fp)

A traverse expression takes six parameters: g is the graph to be traversed, t is the traversal to

be invoked, d is the traversal direction and df, ls, fp are optional parameters. df is of boolean type

which indicates whether the analysis is data flow sensitive or not. ls is also an boolean variable,

indicating whether the analysis is loop sensitive or not. If df is not provided, Algorithm 1 in Section

3.2.1 will be used to compute this property. Similarly, if ls is not provided, Algorithm 2 in Section

3.2.3 will be used to compute this property. fp is a variable name of the user defined fixpoint

function. A traversal direction is a value from the set {FORWARD, BACKWARD, ITERATIVE}, where FORWARD

is used to represent a forward analysis (predecessors of a node are processed before the node),

BACKWARD is used to represent a backward analysis (successors of a node are processed before the

node), and ITERATIVE is used to represent a sequential analysis (visits nodes as they appear in the

nodes collection). A user defined fixpoint function can be defined using the fixp block:

fp := fixp (...) : bool { fbody }

In this fixp block, fixp is a keyword for defining a fixpoint function. A fixpoint function can

take any number of parameters, and it must always return a boolean. The body of the fixpoint

function is defined in the fbody block. A fixpoint function can be assigned a name, which can be

passed in the traverse expression.

Accessing Facts of Other Nodes. We also provide a special expression output(n, t) for

querying the traversal output associated with a graph node n, in the traversal t.

17

Table 4.1: List of constructs and their syntax.

Construct Syntax Description
Traversal t := traversal(

n : Node): T {

tbody }

t is the name of the traversal that takes a single parameter n

representing the graph node that is being visited. A traversal
may define a return type T representing the output type. A
block of code that generates the traversal output at a graph
node is given by tbody.

Traverse traverse(g, t,

d, df, ls, fp)

g is the graph to be traversed, t is the traversal to be invoked, d
is the traversal direction and df, ls, fp are optional parameters.
df is of boolean type which indicates whether the analysis
is data flow sensitive or not. ls is also an boolean variable,
indicating whether the analysis is loop sensitive or not. fp is a
variable name of the user defined fixpoint function. A traversal
direction is a value from the set {FORWARD, BACKWARD, ITERATIVE}

Fixpoint fp := fixp(...)

: bool { fbody

}

fixp is a keyword for defining a fixpoint function. A fixpoint
function can take any number of parameters, and it must always
return a boolean. The body of the fixpoint function is defined
in the fbody block.

Output output(n, t) output is used for querying the traversal output associated with
a graph node n, in the traversal t

Data Types and Collections. Our system for expressing source code analysis as traversals

provides primitive and collection data types. Primitive types include: bool, int, string and collection

types include: Set and Seq, where Set is a collection with distinct and unordered elements, whereas,

Seq is a collection with distinct and ordered elements. A set of operations that can be performed on

collection types is described in Table 4.2.

To summarize, we described a system for expressing source code analysis as traversals over

graphs using two special constructs: traversal for defining a traversal, and traverse for invoking

a defined traversal. A traversal may visit graph nodes multiple times (in case of fixpoint) and it

can be invoked using several parameters specifying the direction of the traversal, a user defined

fixpoint function, etc. A traversal output associated with graph nodes can be queried using a

special expression output(). To be able to express a variety of source code analysis, our system

provides primitive and collection datatypes with well-defined operations. Later in this chapter we

demonstrate how the constructs and operations of the system enables determining properties of

the source code analysis expressed in our system, such that optimal traversal strategies can be

automatically selected.

18

Table 4.2: Operations on collections.

Operation Description
add(C, e) Adding an element e to collection C
addAll(C1, C2) Adding all elements from collection C2 to collection C1
remove(C, e) Removing an element e from collection C
removeAll(C1, C2) Removing all elements from collection C1 that are also present in

collection C2
get(C, i) Element at index i from collection C is accessed
has(C, e) Checking if collection C has element e
equals(C1, C2) Checking if collection C1 and collection C2 has the same elements
C1 = C2 Assigning collection C2 to collection C1
union(C1, C2) Returns the union of the elements in collection C1 and collection

C2
intersection(C1, C2) Returns the intersection of the elements in collection C1 and

collection C2

An Example: Post dominator analysis. We now describe how to use our system to express

source code analysis as traversals using an example source code analysis. Post dominator analysis is

a backward control flow analysis that collects node ids of all nodes that post dominates every node

in the CFG [1]. This analysis can be expressed using our system as shown in Listing 4.1.

Listing 4.1: Post dominator analysis: an example source code analysis expressed using our system.

1 allNodes: Set <int >;

2 initT := traversal(n: Node) {

3 add(allNodes , n.id);

4 }

5 domT := traversal(n: Node): Set <int > {

6 Set <int > dom;

7 if (output(n, domT) != null) {

8 dom = output(n, domT);

9 } else {

10 if (node.id == exitNodeId) {

11 dom = {};

12 } else {

13 dom = allNodes;

14 }

15 }

19

16 foreach (s : n.succs)

17 dom = intersection(dom , output(s, domT))

18 add(dom , n.id);

19 return dom;

20 }

21 fp := fixp(Set <int > curr , Set <int > prev): bool {

22 if(equals(curr , prev))

23 return true;

24 return false;

25 }

26 traverse(g, initT , ITERATIVE);

27 traverse(g, domT , BACKWARD , fp);

Listing 4.1 mainly defines two traversals initT (lines 2-4) and domT (lines 5-20), and invokes them

using traverse expressions (lines 26 and 27). Line 21-25 defines a fixpoint function using fixp block,

which is used in the traverse expression in line 27. Line 1 defines a variable allNodes of collection

type Set, where Set<int> defines a collection type Set with elements of type int. Line 3 uses an

operation add (defined in Table 4.2) on collection allNodes. The common statements and expressions

used in the language to express the analysis are not described in our system, however all standard

statements and expressions are allowed. For instance, if-else statements are used in lines 7-15,

foreach iteration is used in lines 16-17, and so on. Lines 26 and 27 provides two flavors of invoking

traversals using traverse expressions: one without a fixpoint and other with a user-defined fixpoint

function. A usage of special expression output(n, domT) can be seen in line 8. The traversal initT

does not define any output for CFG nodes, whereas, the traversal domT defines an output of type

Set<int> for every node in the CFG. For managing the analysis output of nodes, domT traversal

maintains an internal map that contains analysis output for every node, which can be queried using

output(n, domT). A pre-defined variable g that represents the CFG is used in the traverse expressions

in lines 26 and 27.

Figure 4.2 takes an example graph, and shows the results of initT and domT traversals. Our

example graph is a CFG containing seven nodes with a branch and a loop. The initT traversal

20

Figure 4.2: Running example of applying the post dominator analysis on an input graph containing
branch and loop.

visits nodes sequentially and adds node id to the collection allNodes. The domT traversal visits nodes

in the post-order1 and computes a set of nodes that post dominate every visited node (as indicated

by the set of node ids). For instance, node 7 is post dominated by itself, hence the output at node 7

is {7}. In Figure 4.2, under domT traversal, for each node visited, we show the key intermediate steps

indicated by @ line number. These line numbers correspond to the line numbers shown in Listing

4.1. We will explain the intermediate results while visiting node 2. In the domT traversal, at line

13, the output set dom is initialized using allNodes, hence dom = {0, 1, 2, 3, 4, 5, 6, 7}. At line 16,

node 2 has two successors: {3, 4}. At line 17, the set dom is updated by performing an intersection

operation using the outputs of successors 3 and 4. The output of 3 and 4 are {1, 3, 5, 6, 7} and {1,

1The traversal strategies chosen for initT and domT traversals is explained in Section 4.4.1.

21

4, 5, 6, 7} respectively. By performing the intersection of these two sets, the dom set becomes {1, 5,

6, 7}. At line 18, the id of the visited node is added to the dom set and it becomes {1, 2, 5, 6, 7}.

Hence, the post dominator set for node 2 is {1, 2, 5, 6, 7}. Similarly, the post dominator set for

other nodes can be calculated.

4.2 Static and runtime properties

While it is known in the literature that choosing a right traversal strategy for the source code

analysis can significantly improve the performance. For example, Atkinson and Griswold [2] have

developed a hybridized iterative-worklist algorithm that processes fewer blocks than the traditional

algorithm. Despite these advances, how to choose a right traversal strategy, what factors influence

the selection of the right traversal strategy, what properties of the analysis and graph are important,

and how to determine them, were not known.

In this section, we describe the factors that influence the selection of the optimal traversal

strategy for any given traversal. These factors include: the static properties of the analysis and the

runtime properties of the graph. We also describe how the challenge of computing these properties

is solved with the help of the constructs and operations proposed in our system of expressing source

code analysis as traversals Section (4.1).

4.2.1 Data-flow sensitivity

The data-flow sensitivity property of a traversal models the dependence of the traversal outputs

of nodes in the input graph. A traversal is data-flow sensitive if the output of a node is computed

using the outputs of other nodes. For instance, in the reaching definition data-flow analysis, the

outputs of nodes are computed using the outputs of predecessors and in live variable data-flow

analysis, the outputs of nodes are computed using the outputs of successors. Hence, both reaching

definition and live variable analysis are data-flow sensitive. The term data-flow sensitive is different

from the traditional term flow-sensitive, that is used in the literature [8]. In literature, a problem is

22

“flow-sensitive” if information about control internal to subroutines is used to compute the final set

of data flow facts, while our definition of data-flow sensitive is given below.

Definition 2 PDataF low (Data-flow sensitivity). Given a traversal t with body tbody, a map O

that collects and maintains the traversal output of nodes (O is indexed using node ids), and F , a

function representing the computation of O[.] in the traversal body tbody, if for any node n, its

output O[n] is computed by applying F over one or more of O[n′], where n′ 6= n, then t is data-flow

sensitive. That is PDataF low is true otherwise false.

Algorithm 1: Algorithm to detect data-flow sensitivity

Input: t := traversal(n : Node): T { tbody }

Output: true/false

1 A ← getAliases(tbody, n);

2 foreach stmt ∈ tbody do

3 if stmt = output(n’, t’) then

4 if t’ == t and n’ /∈ A then

5 return true;

6 return false;

4.2.2 Computing data-flow sensitivity

To determine the data-flow sensitivity property of a traversal, the operations performed in the

traversal needs to be analyzed to check if the output of a node is computed using the outputs of

other nodes. In our system of expressing analysis as traversals, the only way to access the output

of a node is via output() expression, hence given a traversal t := traversal(n : Node) : T { tbody }

as input, Algorithm 1 parses the statements in the traversal body tbody to identify method calls

of the form output(n’, t’) that fetches the output of a node n’ in the traversal t’. If such method

calls exists, they are further investigated to determine if n’ does not point to n and t’ points to t.

If such method calls exists, it means that the traversal output for the current node n is computed

using the traversal outputs of other nodes (n’) and hence the traversal is data-flow sensitive. For

performing the points to check, Algorithm 1 assumes that an alias environment is computed by

23

using must alias analysis [22]. Algorithm 1 requires that the must alias analysis computes all names

in the tbody that must alias each other at any program point. The must alias information ensures

that Algorithm 1 never classifies a data-flow sensitive traversal as data-flow insensitive. A tbody

may contain more than one output() statement, however Algorithm 1 requires only one output()

statement that fetches the output of other nodes than the current node, to classify the traversal

as data-flow sensitive. The control and loop statements in the tbody do not have any impact on

Algorithm 1 for computing the data-flow sensitivity property.

Worked out example . For instance, consider the domT traversal shown in Listing 4.1. Lets

apply Algorithm 1 to determine if domT traversal is data-flow sensitive or not. Here domT is the t. We

first compute the aliases of n in domT traversal. Only n is an alias of n (every variable is an alias of

itself) in domT traversal. Then for each statement in domT traversal, we apply line 3-5 in Algorithm 1.

Consider the line 17 of the domT traversal. Here, there is a statement output (s, domT) which if of

the form output (n’, t’). Here domT which is t’, is equal to t and s which is n’ is not an alias of n.

Hence we return true, indicating domT is data-flow sensitive.

Intuitively, in line 16 and 17, a variable dom holds the traversal output of a node n and it is

computed by applying an intersection operation on the traversal outputs of successors of n. Here,

the function F is intersection over the outputs of all successors of a node and hence it is dependent

on output of other nodes.

4.2.3 Loop sensitivity

The loop sensitivity property models the effect of the loops in the input graph. If an input

graph contains loops and if the traversal is affected by the loop, the traversal may require multiple

iterations to compute the output of nodes. In the multiple iterations, the traversal outputs of nodes

either shrinks or expands to reach a fixpoint. Hence, we define a traversal as loop sensitive, if the

traversal output of nodes in subsequent iterations shrinks or expands. The term loop-sensitive is

different from the iteration dependences, that is used in the literature [6]. In literature, Iteration

24

dependences arise when two different iterations access the same memory location and one or both

accesses are a memory write, while our definition of loop-sensitive is given below.

Definition 3 PLoop (Loop sensitivity). Given a traversal t, a map O that collects and maintains

the traversal output of nodes (O is indexed using node ids), and Oi[n] represents the output of node

n in the ith iteration, if Oi+1[n] ≪ Oi[n] or Oi+1[n] ≫ Oi[n], then t is loop sensitive, i.e. PLoop

is true otherwise false. The relation ≪ represents shrink and it is given by, Oi+1[n] ≪ Oi[n], if

|Oi+1[n]| < |Oi[n]|, and the relation ≫ represents expand and it is given by, Oi+1[n] ≫ Oi[n], if

|Oi+1[n]| > |Oi[n]|, where |C| is the cardinality of the output collection C.

Since the loop sensitivity property is defined only for data-flow sensitive traversals, we know

that the traversal output of nodes in each iteration is computed using the traversal output of other

nodes (possible neighbors), we have Oi[n] = F (Oi[n′]) and Oi+1[n] = F (Oi+1[n′]), where n, n′ are

any two nodes such that n′ 6= n. By substituting these in the shrink relation Oi+1[n] ≪ Oi[n], we

get, F (Oi+1[n′]) ≪ F (Oi[n′]). For this relation to be true, 1) the output of any node n′ in any

two subsequent iterations i and i + 1 must shrink and 2) the function F has the shrink property.

Similarly, for expand relation, 3) the output of any node n′ in any two iterations i and i + 1 must

expand and 4) the function F has the expand property. As we know F represents the function in

the traversal body that computes the outputs of nodes, if F has the property of shrink or expand,

then the traversal can be classified as loop sensitive.

To give an example, consider the domT traversal shown in Listing 4.1. Since domT is data-flow

sensitive, we can check the loop sensitivity property. There are two functions that contributes to

the traversal output of any node n in domT traversal body. These are intersection (line 16) and add

(line 17). For domT to be loop sensitive, we require that both intersection and add have either shrink

or expand property. However, intersection has the shrink property and add has the expand property,

hence we cannot classify domT to be loop sensitive.

25

Algorithm 2: Algorithm to detect loop sensitivity

Input: t := traversal(n: Node): T { tbody }

Output: true/false

1 V ← {} // set of output variables related to n;

2 V ′ ← {} // set of output variables not related to n;

3 expand ← false;

4 shrink ← false;

5 gen ← false;

6 kill ← false;

7 A ← getAliases(n);

8 foreach stmt ∈ tbody do

9 if stmt is v = output(n′, t′) then

10 if t′ == t then

11 if n′ ∈ A then

12 V ← V ∪ v;

13 else

14 V ′ ← V ′ ∪ v;

15 foreach stmt ∈ tbody do

16 if stmt = union(c1, c2) then

17 if (c1 ∈ V and c2 ∈ V ′) || (c1 ∈ V ′ and c2 ∈ V) then

18 expand ← true;

19 if stmt = intersection(c1, c2) then

20 if (c1 ∈ V and c2 ∈ V ′) || (c1 ∈ V ′ and c2 ∈ V) then

21 shrink ← true;

22 if stmt = add(c1, e) || addAll(c1, c2) then

23 if c1 ∈ V then

24 gen ← true;

25 if stmt = remove(c1, e) || removeAll(c1, c2) then

26 if c1 ∈ V then

27 kill ← true;

28 if (expand and gen) || (shrink and kill) then

29 return true;

30 else

31 return false;

26

4.2.4 Computing loop sensitivity

In general, computing the loop sensitivity property statically is challenging in the absence of an

input graph, however the constructs and operations of our system enables static inference of this

property.

A traversal is loop sensitive, if the output of any node in any two subsequent iterations either

shrinks or expands. To determine if the traversal output expands or shrinks in the subsequent

iterations, the operations performed in the traversal needs to be analyzed. Table 4.2 provides several

operations that can be performed on the traversal outputs. The operations add, addAll, and union

always expands the output and the operations remove, removeAll, and intersection always shrinks

the output.

Given a traversal t := traversal(n : Node) : T { tbody }, Algorithm 2 determines the loop

sensitivity of t. Algorithm 2 investigates the statements in the tbody to determine if the traversal

outputs of nodes in multiple iterations either expands or shrinks. For doing that, first it parses the

statements to collect all output variables related and not related to input node n using the must

alias information as in Algorithm 1. This is determined in lines 8-14, where all output variables are

collected (output variables are variables that gets assigned by the output operation) and added to

two sets V (a set of output variables related to n) and V ′ (a set of output variables not related to

n). Upon collecting all output variables, Algorithm 2 makes another pass over all statements in

the tbody to identify six kinds of operations: union, intersection, add, addAll, remove, and removeAll.

These operations are defined in Table 4.22. In lines 16-18, the algorithm looks for union operation,

where one of the variables involved is an output variables related to n and the other variable involved

is not related to n. These conditions are simply the true conditions for the data-flow sensitivity,

where the output of the current node is computed using the outputs of other nodes (neighbors).

Similarly, in lines 19-21, the algorithm looks for intersection operation. The lines 22-27 identifies

add and remove operations that adds or removes elements from the output related to node n. Finally,

if there exists union and add operations, the output of a node always expands, and if there exists

2The operations not listed here do not expand or shrink the output.

27

intersection and remove operations, the output of a node always shrinks. For a data-flow traversal

to be loop sensitive, the output of nodes must either expand or shrink, not both (lines 28-29).

Worked Out Example. Consider the domT traversal shown in Listing 4.1. Lets apply Algo-

rithm 2 to determine if domT traversal is loop-sensitive or not. Here domT is the t. We first compute

the aliases of n. Only n is an alias of n (every variable is an alias of itself) in domT traversal. Then

for each statement in domT traversal, we apply line 9-14 in Algorithm 2 to compute V and V’. There

is only one statement of form v = output(n’, t’) in Listing 4.1 (line 8). Here dom maps to v, domT

maps to t’ and n maps to n. Since domT is also t, line 12 in Algorithm 2 gets executed. At the end

of line 14, V contains dom and V’ is empty. We once again analyze every statement in domT traversal

to search for union, intersection, add, addAll, remove, removeAll statement (line 15-27). We have

intersection (line 17) and add (line 18) statement in domT traversal, which sets variable shrink and

gen to true. Line 28 in Algorithm 2 checks if either both expand and kill are true or shrink and kill

are true. Since both these conditions are not met, the algorithm return domT as loop-insensitive.

4.2.5 Graph cyclicity

So far we have described the two static properties of the analysis that influences the traversal

strategy selection. A property of the input graph also influences the selection. This property is the

cyclicity in the graph. Based on the cyclicity, we classify graphs into four categories: {sequential,

branch only, loop w/o branch, loop w/ branch}. In case of sequential graphs, all nodes in the graph

have no more than one successor and predecessor. In case of graphs with branches, nodes may have

more than one successor and predecessor. In case of graphs with loops, there exists cycles in the

graph. The graph cyclicity is determined during the construction of the graph.

In a source code analysis, traversal output of nodes may depend on each other. For instance,

in forward data-flow analysis, output of a node is computed using the outputs of its predecessors.

Similarly, in the backward data-flow analysis, output of the successors is required. Graph cyclicity

plays an important role in the selection of the appropriate traversal strategy. In case of graphs with

branches and loops, the outputs of all dependent nodes of a node (predecessors or successors) may

28

not be available at the time of visiting the node, hence a traversal strategy must be selected that

guarantees that the outputs of all dependent nodes of a node are available prior to computing the

node’s output.

4.3 Traversal strategies - candidates

We have picked seven traversal strategies as candidates for choosing an optimal traversal strategy

for given a traversal and an input graph. The selected candidate strategies were arrived at by

carefully reviewing compilers textbooks, implementations, and source code analysis frameworks. We

also made sure that the selected candidate strategies are applicable to any graphs and analysis. We

did not consider strategies like chaotic iteration based on Weak Topological Ordering because they

are effective only for computing fixed points of continuous function over lattices of infinite height

[7]. The selected traversal strategies are describe below:

• Any order (ANY): In this traversal strategy, nodes can be visited in any order. In our

implementation, we visit the nodes in the order they appear in the nodes list N (Definition 1).

• Increasing order of node ids (INC): In this traversal strategy, the nodes are visited in

the increasing order of their node ids. The node ids are assigned during the construction of

the graph. For instance, while constructing a CFG, the node ids are assigned in the control

flow order.

• Decreasing order of node ids (DEC): In this traversal strategy, the nodes are visited in

the reverse order of their node ids (decreasing order of node ids).

• Post-Order (PO): In this traversal, the successors of any node are visited before visiting

the node.

• Reverse Post-Order (RPO): In this traversal, the predecessors of any node are visited

before visiting the node.

29

• Worklist with Post-Order (WPO): In this traversal, the nodes are visited in the order

they appear in the worklist. A worklist is a data structure used to keep track of nodes to be

visited. In WPO, worklist is initialized with post-ordering of nodes. The worklist is maintained

as follows: whenever a node from the worklist is removed and visited, all its successors (for

forward traversals) or predecessors (for backward traversals) are added to the worklist [2].

• Worklist with Reverse Post-Order (WRPO): In this traversal, the nodes are visited in

the order they appear in the worklist. The worklist is initialized with nodes in the reverse

post-order.

Figure 4.3: Traversal strategy selection decision tree.

30

4.4 Decision tree for traversal strategy selection

At this point, we know the factors that influence the traversal strategy selection: the static

properties of the analysis, and the runtime property of the graph. Our goal is to check these

properties in certain order to quickly decide the best traversal strategy for a given analysis and a

graph, such that only relevant properties are checked and the overhead of static/runtime check is

minimized3. To that end, we carefully devised a decision tree as shown in Figure 4.3 for traversal

strategy selection.

The leaf nodes of the tree are one of the seven traversal strategies and non-leaf nodes are

static/runtime checks. The decision tree has eleven paths marked P1 through P11. Given a traversal

and an input graph, one of the eleven paths will be taken to decide the best traversal strategy. The

longest paths P5, P6, P7, and P8 requires five checks and the shortest path P11 requires only one

check. The static checks are marked green and the runtime checks are marked red. The static

properties that are checked are: data-flow sensitivity (PDataF low), loop sensitivity (PLoop), and

traversal direction. The runtime property that is checked is the graph cyclicity: sequential, branch,

loop w/ branch, and loop w/o branch. We now provide rationale for arranging the decision tree as

shown in Figure 4.3.

The first property that is checked is the data-flow sensitivity of the traversal. This is a static

property determined by analyzing the traversal that indicates whether the traversal output of any

node is dependent on the traversal output of its neighbors (successors or predecessors). This property

is defined in Definition 2 and an algorithm to compute this property is given in Algorithm 1. The

rationale for checking this property first is that, if a traversal is data-flow insensitive (PDataF low is

false), irrespective of the type of the input graph, the traversal can finish in a single iteration (no

fixpoint computation is necessary). In such cases, visiting nodes in any order will be efficient, hence

we assign any order (ANY) traversal strategy (path P11).

3Our evaluation shows that the overhead is less than 0.2% of the total running time for a large dataset and less
than 0.01% for an ultra-large dataset.

31

For traversals that are data-flow sensitive (PDataF low is true), further checks are performed to

determine the best traversal strategy. Next property that is checked is the input graph cyclicity.

This is because the loop sensitive property is applicable to only graphs with loops.

• Sequential Graphs (paths P1 and P2): In this type of graphs, no branches or loops exists, and

all nodes have a single successor and predecessor. At this point, we know that the traversal

is data-flow sensitive and it requires output of the neighbors to compute the output for any

node. As sequential graphs have only one neighbor (successor or predecessor), a traversal

strategy that visits the neighbor prior to visiting any node is sufficient to produce an optimal

traversal order. To determine which neighbor (successor or predecessor), we check the traversal

direction property. For FORWARD traversal direction, predecessor of the node must be visited

before the node and for BACKWARD traversal direction, successor of the node must be visited

before the node. These two traversal orders are provided by our INC and DEC traversal

strategies. The corresponding paths in the decision tree are: P1 and P2.

• Graphs with branches (paths P3 and P4): In this type of graphs, branches exists, however

loops don’t exists, which means that a node may have more than one successor or predecessor.

At this point, we know that our traversal is data-flow sensitive and it requires output of

all neighbors (successors or predecessors) to compute the output for any node, we need a

traversal order that ensures that all successors and predecessors are visited prior to visiting

any node. This traversal order is given by the post-order (PO) and reverse post-order (RPO)

traversal strategies. To pick between PO and RPO, we check the traversal direction. For

FORWARD traversal direction, we need to visit all predecessors of any node prior to visiting the

node, hence we pick the RPO traversal strategy. For BACKWARD traversal direction, we need

to visit all successors of any node prior to visiting the node, hence we pick the PO traversal

strategy.

• Graphs with loops (paths P5 to P10): In this type of graphs, loops exists and in addition

branches may also exists. We first need to check if the traversal is sensitive to the loop (the

32

loop sensitive property). At this point, we know that our analysis is data-flow sensitive and

the input graph has loop based control flow.

– Loop sensitive (paths P9 and P10): When the traversal is loop sensitive, for correctly

propagating the output, the traversal visits nodes multiple times until a fixpoint condition

is satisfied (user may provide a fixpoint function). No iterative traversal strategy can

guarantee that fixpoint will be reached in a single traversal of the nodes, hence we adopt a

worklist based traversal strategy that visits only required nodes (property of the worklist

strategy). The worklist traversal strategy requires that the worklist (a data structure) is

initialized with nodes. For picking the best order of nodes for initialization, we further

investigate the traversal direction. We know that, for FORWARD traversal direction, RPO

traversal strategy gives the best order of nodes and for BACKWARD traversal direction, PO

traversal strategy gives the best order of nodes, we pick worklist strategy with reverse

post-order WRPO for FORWARD and worklist strategy with post-order WPO for BACKWARD

traversal directions.

– Loop insensitive (paths P5 to P8): When the traversal is loop insensitive, the selection

problem reduces to the sequential and branch case that is discussed previously, because

for loop insensitive traversal, the loops in the input graph is irrelevant and what remains

relevant is the existence of the branches.

4.4.1 An example

In this section, we explain the decision tree using an example source code analysis and a graph.

The example analysis that we choose is the Post Dominator Analysis shown in Listing 4.1 and the

graph that we choose is shown in Figure 4.2. The Post Dominator Analysis contains two traversals:

initT and domT. The initT traversal is data-flow insensitive (PDataF low is false) and loop insensitive

(PLoop is false). The domT traversal is data-flow sensitive (PDataF low is true) and loop insensitive

(PLoop is false). The traversal directions of initT and domT are ITERATIVE and BACKWARD respectively.

33

Figure 4.4: Paths taken for initT traversal and domT traversal.

Our example graph shown in Figure 4.2 has branches and loops, meaning the graph has nodes with

more than one successor or predecessor and has cycles.

For selecting the best traversal strategies for initT and the graph with loops and branches, we

check the data-flow sensitivity property of the traversal. As initT is data-flow insensitive, ANY

traversal strategy is picked as shown by the path P11 in Figure 4.3 and no further checks are required.

The traversal strategy ANY represents nodes visited in any order. Figure 4.4 shows the path taken

for initT traversal.

For selecting the best traversal strategies for domT and the graph with branch and loop, we

check the data-flow sensitivity property of the traversal. As domT is data-flow sensitive, the next

property to be checked is the graph cyclicity. As our input graph has loops, the next property to be

checked is whether domT is loop sensitive ie., sensitive to the loops present in the graph. Since domT

is loop-insensitive, we ignore the loops present in the graph and investigate the rest of the graph

34

structure. As our graph contains branches, the next property to be checked is the traversal direction.

The traversal direction for domT is BACKWARD, we pick PO traversal strategy for domT traversal, as shown

by the path P6 in Figure 4.3. The traversal strategy post-order (PO) visits all successors of a node

before visiting that node. This is most suitable for backward analysis like domT, because backward

analysis analyzes successors of a node prior to analyzing the node. Figure 4.4 shows the path taken

for domT traversal.

4.5 Optimizing the selected traversal strategy

Checking the static and dynamic properties not only determines the best traversal strategies,

it also helps to perform several optimizations to the selected traversal strategies. In the traversal

based program analysis with a fixpoint function, in addition to the analysis traversal, two additional

traversals of all nodes are required: one traversal to re-compute the analysis results at graph nodes,

and another traversal to perform the fixpoint check to ensure that results at nodes have stabilized.

The fixpoint check traversal compares the outputs of two traversals of each nodes. The two additional

traversals can be eliminated and we formulate them as two optimizations, as described below:

• Opt1 : Eliminating the result re-computation traversal: A traversal that re-computes the

results at graph nodes for enabling a fixpoint traversal to compare the two results (the analysis

traversal result and the re-computation result) can be eliminated, if it is known that results

have stabilized and not going to change.

• Opt2 : Eliminating the fixpoint check traversal: A fixpoint check traversal that checks the

results of the two traversals at graph nodes can be eliminated, if it is known that results are

stabilized and not going to change.

The same static and dynamic checks that are performed to determine a traversal strategies also

helps to determine if the optimizations can be performed. For instance, consider path P1 in our

decision tree shown in Figure 4.3. This path selects INC traversal strategy that visits nodes in the

increasing order of the node ids. While selecting this strategy, we came to know that the analysis is

35

data-flow sensitive (which means the analysis output of neighbors (predecessors or successors) is

required for computing the output of a node), the graph is sequential, (which means there is only

one successor or predecessor), and the analysis is a forward analysis (which means the output of the

predecessor is required to compute the output of a node). Together, we know that if a traversal

strategy ensures that the predecessor is visited before visiting any node, the analysis output can be

computed in one traversal and no fixpoint check is necessary. The traversal strategy selected for this

path is INC and it ensures this property. Hence, both Opt1 and Opt2 can be applied to the selected

traversal strategy to further improve the performance. As we show in our evaluation (Chapter 11),

upto 60% of the analysis time can be saved by performing these optimizations. In our decision tree

shown in Figure 4.3, all paths from P1 to P8 are eligible for both the optimizations. The paths P9

and P10 uses a worklist-based traversal strategy that visits only relevant nodes (relevant nodes are

the nodes whose outputs have changed from the last visit) and must perform a fixpoint check every

time a node is visited, hence the optimizations cannot be performed. Finally, for path P11, the

optimizations are not applicable, because data-flow insensitive traversals requires only one traversal

to compute the results and no fixpoint check is performed.

Figure 4.5 shows the iterations made over the graph (both domT and fixpoint) to get the post

dominator of each node without optimization. “Before domT traversal” shows the initial post

dominator set of each node ie., the initial output of each node before analysis started. “1st iteration

of domT traversal” shows the post dominator set of each node after iterating the graph once and

applying the domT analysis. “2nd iteration of domT traversal” shows the post dominator set of

each node after iterating the graph once more and applying the domT analysis. The number of

iterations that has to be made is decided by the fixpoint function. Fixpoint basically compares

each node’s current pdom with previous iterations pdom. In the “1st Fixpoint traversal”, fixpoint

function compared pdom of “Before domT traversal” and “1st iteration of domT traversal”. All nodes

returned False as no pdom matched. Hence domT required one more traversal. In the “2nd Fixpoint

traversal”, fixpoint function compared pdom of “1st iteration of domT traversal” and “2nd iteration

of domT traversal”. Here all nodes returned True as all pdom matched. Therefore no more iteration of

36

Figure 4.5: Iterations needed to compute post dominator without optimization.

37

Figure 4.6: Iterations needed to compute post dominator with optimization.

domT was needed. One point to note is that, post dominator was actually correctly computed in the

“1st iteration of domT traversal”. But since the fixpoint function returned False, we performed one

more iteration of domT traversal which returned the same post dominator set and fixpoint reached.

Since our approach has chosen a traversal strategy such that the post dominator will be reached

in the “1st iteration of domT traversal”, it does not perform the “2nd iteration of domT traversal”

even though the fixpoint returns False. This is [Opt1].

Since the post dominator will be reached in the “1st iteration of domT traversal”, we do not

need to perform the fixpoint check to ensure that. This is [Opt2]. Figure 4.6 shows the iterations

made over the graph to get the post dominator of each node with optimization.

38

CHAPTER 5. IMPLEMENTATION ON BOA FRAMEWORK

5.1 Boa language and infrastructure

Boa [12, 14, 15] is a domain-specific language and infrastructure that eases mining software

repositories. Boa’s infrastructure leverages distributed computing techniques to execute queries

against hundreds of thousands of software projects very efficiently. Boa provide users a domain-

specific language tailored for software repository mining and allows them to submit queries via

their web-based interface. These queries are then automatically parallelized and executed on a

cluster, analyzing a dataset containing almost 700,000 projects, history information from millions of

revisions, millions of Java source files, and billions of AST nodes. The language also provides an

easy to comprehend visitor syntax to ease writing source code mining queries [13]. The underlying

infrastructure contains several optimizations, including query optimizations to make single queries

faster as well as a fusion optimization to group queries from multiple users into a single query.

In the upcoming sections, we will see how we extended the Boa language and infrastructure to

support control flow graphs, graph traversal and program analysis as graph traversal and describe

our proposed syntax for writing source code analysis.

5.2 Source code analysis using traversal construct

Users must also be able to easily express source code analysis tasks. For users who are intimately

familiar with compilers and interpreters, the visitor pattern is well understood. Our traversal pattern

is quite similar to it, except that our traversal pattern is for graphs. Without traversal pattern, it

generally requires writing a significant amount of boiler-plate code whose length is proportional

to the complexity of the source code analysis being written. In this section, we describe how we

39

Listing 5.1: Example traversal construct that traverses a CFG and collects each nodes id in a global
variable

1 allnodeIds := traversal(node: CFGNode) : string {

2 add(cfgnode_ids , string(node.id));

3 return string(node.id);

4 };

extended Boa language to support control flow graphs, graph traversal and program analysis as

graph traversal and describe our proposed syntax for writing source code analysis.

5.2.1 Traversal type and traverse statement

The new traversal syntax is shown in Listing 5.1. This syntax is exactly in line with what we

described in Section 4.1. The top-level syntax for a analysis task is a traversal type. During traversal

of the graph, the body of the traversal is executed when visiting a node of the graph type. The

result of this code is a collection of all node IDs in a global variable.

To begin a analysis task, users write a traverse statement

1 traverse(cfg , TraversalDirection.BACKWARD , TraversalKind.DFS , allnodeIds);

that has four parts: the graph to traverse, the traversal direction, the traversal strategy type

and a traversal. When this statement executes, a traversal starts at the start node of the CFG

using traversal allnodeIds.

Listing 5.2: Implementation code of traversal without fixpoint.

1 public final void dfsBackward(final CFGNode node , java.util.HashMap <Integer ,String >

nodeVisitStatus) throws Exception {

2 outputMap.put(node.id, allnodeIds(node));

3 nodeVisitStatus.put(node.getId () ,"visited ");

4 for (CFGNode pred : node.getPredecessorsList ()) {

5 if (nodeVisitStatus.get(pred.getId ()).equals (" unvisited "))

6 dfsBackward(pred , nodeVisitStatus);

7 }

8 }

9

10 public final void traverse(final boa.graphs.cfg.CFG cfg , final Traversal.TraversalDirection

direction , final Traversal.TraversalKind kind) throws Exception {

40

Listing 5.3: Continued from Listing 5.2.

11 try {

12 if (preTraverse(cfg)) {

13 java.util.HashMap <Integer ,String > nodeVisitStatus=new java.util.HashMap <Integer ,String >();

14 CFGNode [] nl = cfg.nodes();

15 for(int i=0;i<nl.length;i++) {

16 nodeVisitStatus.put(nl[i]. getId() ,"unvisited ");

17 }

18 switch(kind) {

19 case TraversalKind.DFS:

20 switch(direction) {

21 case TraversalDirection.BACKWARD :

22 dfsBackward(cfg.getExitNode (), nodeVisitStatus);

23 break;

24 case TraversalDirection.FORWARD :

25

26 }

27 break;

28 default:break;

29 }

30 }

31 } catch(Exception e) {return ;}

32 }

5.2.2 Implementation of traversal without fixpoint

Listing 5.2 and 5.3 shows the implementation code that shows how the traverse calls each node

of the CFG using the specified traversal strategy and stores the output of each node. Lines 13 - 17

initializes the visit status for all the nodes in the given CFG. Lines 18 - 28 applies the specified

traversal strategy. At line 2, we can see the variable outputMap, which is a map that maintains the

output of each node after applying the allNodeIds traversal.

41

5.2.3 Post-dominator analysis using traversal construct

The traversal can also take a user defined fixpoint function as another parameter and the

traversal of the CFG will continue till all its node attain the fixpoint.

Listing 5.4: Traverse call with fixpoint function.

1 traverse(cfg , TraversalDirection.BACKWARD , TraversalKind.POSTORDER , cfgPdom , fixp1);

Listing 5.5: Example traversal construct that computes post dominator.

1 cfgPdom := traversal(node: CFGNode): T {

2 cur_value : T;

3 if(node.id== exitId) {

4 self_dom:set of string;

5 cur_value = self_dom;

6 }

7 else

8 cur_value = cfgnode_ids;

9

10 if(def(getvalue(node))) {

11 cur_value = getvalue(node);

12 }

13

14 preds:=node.successors;

15 foreach(i:int;def(preds[i])) {

16 pred_value := getvalue(preds[i]);

17 if(def(pred_value)) {

18 cur_value = intersect(cur_value ,pred_value);

19 }

20 }

21

22 gen_kill := getvalue(node , allnodeIds);

23 if(def(gen_kill)) {

24 add(cur_value , gen_kill);

25 }

26

27 return cur_value;

28 };

42

Listing 5.5 shows a traversal that computes post-dominators of a node. This traversal requires a

fixpoint and hence the traverse that calls this traversal contains a user defined fixpoint function

fixp1 as shown in Listing 5.4.

Listing 5.6 shows the user defined fixpoint function.

Listing 5.6: User defined fixpoint function.

1 fixp1 := fixp(curr , prev: T) : bool {

2 if (len(difference(curr , prev)) == 0)

3 return true;

4 return false;

5 };

5.2.4 Implementation of traversal with fixpoint

Listing 5.7: Implementation code of traversal with fixpoint.

1 public abstract class BoaAbstractTraversal <T1 > {

2 public java.util.HashMap <Integer ,T1> outputMapObj;

3 public java.util.HashMap <Integer ,T1> prevOutputMapObj;

4

5 public T1 getValue(final CFGNode node) throws Exception {

6 return (T1)outputMapObj.get(node.getId());

7 }

8

9 public final void postorderBackward(final CFGNode node , java.util.HashMap <Integer ,String

> nodeVisitStatus) throws Exception {

10 nodeVisitStatus.put(node.getId () ,"visited ");

11 for (CFGNode succ : node.getSuccessorsList ()) {

12 if (nodeVisitStatus.get(succ.getId ()).equals (" unvisited "))

13 postorderBackward(succ , nodeVisitStatus);

14 }

15 outputMapObj.put(node.id, cfgPdom(node));

16 }

17

18 public final void traverse(final boa.graphs.cfg.CFG cfg , final Traversal.

TraversalDirection direction , final Traversal.TraversalKind kind , final

BoaAbstractFixP fixp) {

43

Listing 5.8: Continued from Listing 5.7.

19 switch(kind.getNumber ()) {

20 case 12 :

21 boolean fixp_flag;

22 do {

23 prevOutputMapObj = new java.util.HashMap <Integer ,T1 >(outputMapObj);

24 java.util.HashMap <Integer ,String > nodeVisitStatus=new java.util.HashMap <Integer ,String >();

25 CFGNode [] nl = cfg.nodes();

26 for(int i=0;i<nl.length;i++) {

27 nodeVisitStatus.put(nl[i]. getId() ,"unvisited ");

28 }

29 postorderBackward(cfg.getEntryNode (), nodeVisitStatus);

30 fixp_flag=true;

31 for(CFGNode node : nl) {

32 boolean curFlag=outputMapObj.containsKey(node.getId());

33 boolean prevFlag=prevOutputMapObj.containsKey(node.getId());

34 if(curFlag) {

35 if(outputMapObj.containsKey(node.getId()) && prevOutputMapObj.containsKey(node.getId ())) {

36 fixp_flag=fixp_flag && fixp.invoke ((T1)outputMapObj.get(node.getId()),(T1)prevOutputMapObj.

get(node.getId()));

37 } else {

38 fixp_flag = false; break;

39 }

40 }

41 }

42 }while(! fixp_flag);

43 break;

44 default : break;

45 }

46 }

Listing 5.7 and 5.8 lists the implementation code that shows how the traverse calls each node

of the CFG using the specified traversal strategy and how the traversal continues till the fixpoint

is reached. Line 2-3 shows two variables, outputMapObj and prevOutputMapObj. outputMapObj maintains

the current output of the nodes ie., output of the nodes in the current traversal iteration while

prevOutputMapObj maintains the previous output of the nodes ie., output of the nodes in the previous

44

traversal iteration. At line 23, we can see that prevOutputMapObj is initialized with the values of

outputMapObj. At this point of time, where the traversal have not yet started, both outputMapObj

and prevOutputMapObj have the same values. Then at line 29, the traversal starts and at line 15,

outputMapObj gets updated with the current traversal iteration’s output. After a iteration of a

traversal is completed, line 31-41 applies the user defined fixpoint, which basically checks if both

outputMapObj and prevOutputMapObj have the same values for every node. If not, line 22-41 repeats

till the fixpoint is reached. Line 5-7 shows the getValue function that returns the current traversal

output of the specified node. This function is used in line 11 in Listing 5.5.

5.3 Putting it all together

Listing 5.9: Code to compute post-dominator using Boa language.

1 p: Project = input;

2 cfgnode_ids:set of string;

3 type T = set of string;

4 exitId : int;

5 cfg: CFG;

6

7 clone := function(data: T) : T {

8 s: set of string;

9 s = union(s, data);

10 return s;

11 };

12 allnodeIds := traversal(node: CFGNode) : string {

13 add(cfgnode_ids , string(node.id));

14 return string(node.id);

15 };

16 cfgPdom := traversal(node: CFGNode): T {

17 cur_value : T;

18 if(node.id== exitId) {

19 self_dom:set of string;

20 cur_value = self_dom;

21 }

22 else

23 cur_value = cfgnode_ids;

45

Listing 5.10: Continued from Listing 5.9.

24 if(def(getvalue(node))) {

25 cur_val1 := getvalue(node);

26 cur_value = clone(cur_val1);

27 }

28

29 preds:=node.successors;

30 foreach(i:int;def(preds[i])) {

31 pred_value := getvalue(preds[i]);

32 if(def(pred_value))

33 cur_value = intersect(cur_value ,pred_value);

34 }

35 gen_kill := getvalue(node , allnodeIds);

36 if(def(gen_kill))

37 add(cur_value , gen_kill);

38

39 return cur_value;

40 };

41 fixp1 := fixp(curr , prev: T) : bool {

42 if (len(difference(curr , prev)) == 0)

43 return true;

44 return false;

45 };

46 controlDependenceVisitor := visitor {

47 before node: Method -> {

48 cfg = getcfg(node);

49 exitId = len(cfg.nodes) - 1;

50 clear(cfgPdom); clear(cfgnode_ids); clear(allnodeIds);

51 traverse(cfg , TraversalDirection.BACKWARD , TraversalKind.Hybrid , allnodeIds);

52 traverse(cfg , TraversalDirection.BACKWARD , TraversalKind.Hybrid , cfgPdom , fixp1);

53 }

54 };

55 visit(p, controlDependenceVisitor);

Listing 5.9 and 5.10 lists the complete code for post dominator analysis. Lines 12-15 contains the

allNodeIds traversal that collects all CFG node IDs. Lines 16 - 40 contains the cfgPdom traversal

that computes the post-dominator. Lines 41-45 contains the user defined fixpoint function fixp1.

46

Lines 46-54 is the Boa visitor. Line 47 - 53 contains a set of operation that is done before visiting

each method in the input dataset. At line 48, getcfg method is used which returns the control flow

graph of the given method. Line 55 contains the traverse call to allNodeIds with CFG, traversal

direction and traversal strategy. Line 58 contains the traverse call to cfgPdom with an additional

fixpoint parameter.

Listing 5.11: Code to query post-dominator set of a node.

1 result := traversal(node: CFGNode) {

2 cur_val := getvalue(node , cfgPdom);

3 if(def(cur_val))

4 m[string(node.id)] << string(cur_val);

5 };

After these two traversal are complete, the cfgPdom contains the post-dominator set for each

node. We can query it using getvalue function by supplying cfgPdom and the node we want to get

the post-dominator set. Listing 5.11 shows the code snippet to get each node’s output of cfgPdom

traversal.

47

CHAPTER 6. EMPIRICAL EVALUATION

We conducted an empirical evaluation on a set of 21 basic source code analyses and 2 public

massive code datasets to evaluate several factors about our hybrid approach for selecting and

optimizing traversal strategies. First, we show the benefit of using our optimized selected traversal

over standard ones by evaluating the reduction in running times of our hybrid approach over the

standards ones (Chapter 7). Then, we evaluate the correctness of the analysis results using our

hybrid approach to show that the decision analyses and optimizations in our approach does not

affect the correctness of the source code analyses (Chapter 8). We also evaluate the precision of

our selection algorithm by measuring how often the hybrid approach selects the most time-efficient

traversal (Chapter 9). Finally, we evaluate how the different components in the approach and

different kinds of static and runtime properties impact the overall performance? This is done in

Chapter 10 and Chapter 11, and via various insight analysis of our results.

6.1 Analyses, datasets and experiment setting

6.1.1 Analyses.

We collected source code analyses that traverse control flow graphs from textbooks and source

code analysis tools. We also made sure that the analyses list covers all the static properties discussed

in Section 4.2, i.e., data-flow sensitivity, loop sensitivity and traversal direction. We ended up with

21 source code analyses as shown in Table 6.1. They include 10 basic ones (analyses 1, 2, 8, 9, 10,

11, 12, 14, 15 and 19) from textbooks [1, 29] and 11 tothers for detecting source code bugs, and

code smells from the Soot framework [34] (analyses 3, 4, 5, 13, 17 and 18), and FindBugs tool [3]

(analyses 6, 7, 16, 20 and 21). Table 6.1 also shows the number of traversals each analysis contains

48

Table 6.1: List of source code analyses and the properties of their involved traversals.

Analysis Ts t1 t2 t3

Flw Lp Dir Flw Lp Dir Flw Lp Dir

1 Copy propagation (CP) 3 7 7 — 3 3 → 7 7 —
2 Common sub-expression detection (CSD) 3 7 7 — 3 3 → 7 7 —
3 Dead code (DC) 3 7 7 — 3 3 ← 7 7 —
4 Loop invariant code (LIC) 3 7 7 — 3 3 → 7 7 —
5 Upsafety analysis (USA) 3 7 7 — 3 3 → 7 7 —
6 Valid FileReader (VFR) 3 7 7 — 3 3 → 7 7 —
7 Mismatched wait/notify (MWN) 3 7 7 — 3 3 → 7 7 —
8 Available expression (AE) 2 7 7 — 3 3 →
9 Dominator (DOM) 2 7 7 — 3 7 →

10 Local may alias (LMA) 2 7 7 — 3 3 →
11 Local must not alias (LMNA) 2 7 7 — 3 3 →
12 Live variable (LV) 2 7 7 — 3 3 ←
13 Nullness analysis (NA) 2 7 7 — 3 3 →
14 Post dominator (PDOM) 2 7 7 — 3 7 ←
15 Reaching definition (RD) 2 7 7 — 3 3 →
16 Resource status (RS) 2 7 7 — 3 3 →
17 Very busy expression (VBE) 2 7 7 — 3 3 ←
18 Safe Synchronization (SS) 2 7 7 — 3 3 →
19 Used and defined variable (UDV) 1 7 7 —
20 Useless increment in return (UIR) 1 7 7 —
21 Wait not in loop (WNIL) 1 7 7 —

Table 6.2: Statistics of the generated control flow graphs from two datasets.

Dataset All graphs Sequential Branches Loops

All graphs Branches No branches

DaCapo 287K 186K (65%) 73K (25%) 28K (10%) 21K (7%) 7K (2%)
GitHub 161,523K 111,583K (69%) 33,324K (21%) 16,617K (10%) 11,674K (7%) 4,943K (3%)

and their static properties as described in Section 4.2. The sets of traversals cover all types of static

properties for flow-sensitivity, loop-sensitivity and direction (forward, backward and iterative). All

analyses are intra-procedural. We implemented all twenty one of these analysis using Boa language

[12]. The source code of these analyses are provided in the appendix. In Table 6.1, Ts denotes total

number of traversals, ti denotes properties of traversal i-th, Flw denotes data-flow sensitive, Lp

denotes loop sensitive, Dir denotes traversal direction where —, → and ← mean iterative, forward

and backward, respectively.

6.1.2 Datasets.

We ran the analyses on two datasets: DaCapo 9.12 benchmark [5], DaCapo for short, and a

ultra-large-scale dataset containing projects from GitHub from Boa. DaCapo dataset contains the

49

Table 6.3: Time contribution of each phase (in miliseconds).

Analysis Avg. Time Static Runtime

DaCapo GitHub DaCapo GitHub

Avg. Total Avg. Total

CP 0.21 0.008 53 0.21 62,469 0.008 1359K
CSD 0.19 0.012 60 0.19 56,840 0.012 1991K
DC 0.19 0.010 45 0.19 54,822 0.010 1663K
LIC 0.21 0.006 69 0.20 60,223 0.006 992K
USA 0.19 0.006 90 0.19 54,268 0.009 1444K
VFR 0.18 0.007 42 0.18 52,483 0.007 1142K
MWN 0.18 0.006 36 0.18 52,165 0.006 1109K
AE 0.18 0.007 43 0.18 53,290 0.007 1169K
DOM 0.21 0.008 35 0.21 62,416 0.008 1307K
LMA 0.18 0.008 76 0.18 52,483 0.008 1346K
LMNA 0.18 0.008 80 0.18 53,182 0.008 1407K
LV 0.17 0.007 32 0.17 49,231 0.007 1273K
NA 0.16 0.008 64 0.16 46,589 0.008 1398K
PDOM 0.20 0.012 34 0.20 57,203 0.012 2040K
RD 0.20 0.007 48 0.20 57,359 0.007 1155K
RS 0.16 0.006 28 0.16 46,367 0.006 996K
VBE 0.17 0.006 44 0.17 49,138 0.006 1062K
SS 0.17 0.006 32 0.17 48,990 0.006 1009K
UDV 0.14 0.005 10 0.14 41,617 0.005 928K
UIR 0.14 0.006 14 0.14 41,146 0.006 1020K
WNIL 0.14 0.007 15 0.14 41,808 0.007 1210K

source code of 10 open source Java projects: Apache Batik, Apache FOP, Apache Aurora, Apache

Tomcat, Jython, Xalan-Java, PMD, H2 database, Sunflow and Daytrader. GitHub dataset contains

the source code of more than 380K Java projects collected from GitHub.com. Each method in the

datasets was used to generate a control flow graph (CFG) on which the analyses would be run. The

statistics of the two datasets are shown in Table 6.2. DaCapo dataset contains 287K non-empty

CFGs while GitHub dataset contains more than 162M. Both have similar distributions of CFGs

over graph cyclicity. Most CFGs are sequential and only 10% have loops.

6.1.3 Setting.

We compared our hybrid approach against the six standard traversal strategies in Section 4.3 :

DFS, PO, RPO, WPO, WRPO and ANY. The running time for each analysis is measured from

the start to the end of the analysis which includes constructing CFGs and traversing CFGs. The

running time for our hybrid approach also includes the time for computing the static and runtime

properties, making the traversal strategy decision, optimizing it and then using the optimized

50

traversal strategy to traverse the CFG and run the analysis. The analyses on DaCapo dataset were

run on a single machine with 24 GB of memory and 24-cores, running on Linux 3.5.6-1.fc17 kernel.

Running analyses on GitHub dataset on a single machine would take weeks to finish, so analyses

were executed on a Hadoop [Apache Software Foundation 2015a] install with 1 name node, 1 job

tracker node, and 10 compute nodes. The compute nodes have a total of 148 CPU cores and 2 GB

memory per core. All machines run Ubuntu 12.04LTS. The cluster has been tuned for performance,

including setting the maximum number of map tasks for each compute node equal to the number of

cores on that node, increasing the VM heap size to 1 GB per task, and enabling short-circuit local

reads in the distributed filesystem.

51

CHAPTER 7. RUNNING TIME AND TIME REDUCTION

We first report the running times and then study the achieved reductions against standard

traversal strategies.

7.1 Running time

Table 6.3 shows the running times for 21 analyses on the two datasets. On average (column

Avg. Time), each analysis took 0.14–0.21 ms and 0.005–0.012 ms to analyze a graph in Dacapo

and GitHub datasets, respectively. The variation in the average analysis time is mainly due to the

difference in the machines used to run the analysis for DaCapo and GitHub datasets, as described in

Section 4.1. Also, the average sizes of graphs in DaCapo are much larger than the average sizes of

the graphs in the GitHub. Columns Static and Runtime show the time contributions for different

components of the hybrid approach: the time for determining the static properties of each analysis

which is done once for each analysis, and the time for constructing the CFG of each method and

traversing the CFG which is done once for every constructed CFG. We can see that the time for

collecting static information is negligible, less than 0.2% for DaCapo dataset and less than 0.01% for

GitHub dataset, when compared to the total runtime information collection time, as it is performed

only once per traversal. When compared to the average runtime information collection time, the

static time is quite significant. However, the overhead introduced by static information collection

phase diminishes as the number of CFGs increases and becomes insignificant when running on

those two large datasets. This result shows the benefit of our hybrid approach when applying on

ultra-large-scale analysis.

52

Analysis DaCapo GitHub

DFS PO RPO WPO WRPO ANY DFS PO RPO WPO WRPO ANY

CP 17% 83% 9% 66% 11% 72% 17% 88% 12% 80% 5% 82%
CSD 41% 93% 39% 74% 4% 89% 31% – 24% – 12% –
DC 41% 30% 89% 7% 64% 81% 25% 22% – 7% – –
LIC 17% 84% 8% 67% 7% 73% 19% 89% 15% 81% 19% 88%
USA 36% 92% 34% 72% 9% 87% 22% – 17% – 9% –
VFR 20% 41% 18% 51% 15% 62% 15% 40% 10% 44% 9% 53%
MWN 21% 35% 16% 35% 22% 49% 17% 31% 12% 33% 11% 46%
AE 40% 14% 39% 73% 14% 87% 16% – 16% – 11% –
DOM 54% 97% 48% 70% 6% 95% 27% – 32% – 6% –
LMA 35% 46% 28% 74% 6% 46% 22% – 13% – 6% –
LMNA 29% 39% 22% 68% 9% 41% 21% – 15% – 7% –
LV 38% 30% 84% 11% 56% 75% 25% 21% 68% 11% 69% 80%
NA 26% 88% 30% 50% 10% 80% 13% 87% 12% 71% 10% 85%
PDOM 51% 41% 95% 10% 72% 95% 24% 20% – 24% – –
RD 15% 80% 7% 62% 9% 68% 19% 91% 10% 79% 5% 86%
RS 31% 31% 30% 31% 28% 30% 16% 40% 9% 31% 7% 49%
VBE 40% 36% 88% 13% 76% 81% 28% 24% – 10% – –
SS 26% 39% 22% 37% 25% 57% 20% 35% 13% 34% 10% 50%
UDV 6% 5% 6% 10% 9% 3% 3% 4% 2% 7% 6% 0%
UIR 2% 2% 1% 3% 3% 0% 2% 5% 4% 7% 7% 0%
WNIL 3% 4% 5% 6% 8% 2% 3% 6% 5% 5% 6% 0%

Overall 31% 83% 70% 55% 35% 81% – – – – – –

(a) Time reduction for each analysis.

Property DaCapo

DFS PO RPO WPO WRPO ANY

Data-flow 32% 84% 72% 57% 36% 83%
¬Data-flow 4% 4% 4% 6% 6% 2%

(b) Overall reduction over analysis properties.

Property DaCapo

DFS PO RPO WPO WRPO ANY

Sequential 20% 74% 63% 55% 28% 72%
Branch 31% 81% 66% 58% 40% 92%
Loop 53% 88% 75% 62% 37% 95%

(c) Overall reduction over graph properties.

Figure 7.1: Reduction in running time.

7.2 Time reduction

To evaluate the efficiency in running time of the hybrid approach over other traversal strategies,

we ran the 21 analyses on DaCapo and GitHub datasets using hybrid approach and other candidate

traversals. When comparing the hybrid approach to a standard strategy S, we computed the

reduction rate R = (TS − TH)/TS where TS and TH are the running times using the standard and

the hybrid strategy, respectively. Some analyses have some worst case traversal strategies which

might not be feasible to run on dataset at the scale of 162 million graphs as in GitHub dataset. For

example, using post-order for forward data-flow analysis will visit the CFG in the direction which

is opposite to the natural direction of the analysis and hence takes a lot of time to complete the

53

analysis. For such combinations of analyses and traversal strategies, the map and the reducer tasks

time out in the cluster setting and, thus, we did not provide the running times. The corresponding

cells in Figure 7.1a are denoted with symbol –.

The result in Figure 7.1a shows that the hybrid approach helps reduce the running times in almost

all cases. The values indicates the reduction in running time by adopting hybrid approach compared

against the standard strategies. Most of positive reductions are from 10% (light yellow cells) or

even from 50% (light green cells). More importantly, the most time-efficient and the worst traversal

strategies vary across the analyses which supports the need of our hybrid traversal strategy. Over

all analyses, the reduction was highest against any order and post-order (PO and WPO) strategies.

The reduction was lowest against the strategy using depth-first search (DFS) and worklist with

reverse post-ordering (WRPO). When compared with the next best performing traversal strategy

for each analysis, hybrid approach reduces the overall execution time by about 13 minutes to 72

minutes on GitHub dataset. We do not report the overall numbers for GitHub dataset due to the

presence of failed runs.

Figure 7.1b shows time reductions for different types of analyses. For data-flow sensitive ones,

the reduction rates are high ranging from 32% to 84%. The running time was not improved much

for non data-flow sensitive traversals, which correspond to the last three rows in Figure 7.1a with

mostly one digit reductions (light orange cells). We actually perform almost as same as Any order

traversal strategy for analyses in this category. This is because Any order traversal strategy is the

best strategy for all the CFGs in these analyses. Hybrid approach also chooses any order traversal

strategy and hence there is no scope for performance gain.

Figure 7.1c shows time reduction for different cyclicity types of input graphs. We can see that

reductions over graphs with loops is highest and those over any graphs is lowest.

7.3 Time reduction against hand optimized analysis

Another way to extract more performance is to hand optimize the analysis. Figure 7.2 compares

Hybrid approach against hand optimized analysis. Hand optimized analysis has single best optimized

54

Analysis DaCapo GitHub

CP 9% 5%
CSD 4% 12%
DC 7% 7%
LIC 7% 19%
USA 9% 9%
VFR 15% 9%
MWN 15% 9%
AE 14% 11%
DOM 6% 6%
LMA 6% 6%
LMNA 9% 7%
LV 11% 11%
NA 10% 10%
PDOM 10% 24%
RD 9% 5%
RS 28% 7%
VBE 13% 10%
SS 22% 10%
UDV 3% 0%
UIR 0% 0%
WNIL 2% 0%

Figure 7.2: Reduction in running time against hand optimized analysis.

traversal strategy applied for each analysis. For data-flow analysis, hand optimized analysis uses

WPO/WRPO guideline while for non data flow analysis, it uses ANY traversal strategy, as it is

the best traversal strategy for non data-flow analysis. WPO/WRPO guideline suggests that if

the direction of the traversal is backward, use WPO else use WRPO. This guideline simplifies the

hybrid approach, where the decision is based on only traversal direction while Hybrid approach

uses the decision tree in Figure 4.3. Figure 7.2 shows the comparison of hybrid approach against

hand optimized analysis. We can see that for about half of the data-flow analysis, we gain at least

10% reduction. For analysis like RS, SS, VFR and MWN, the gain is much higher since these

analyses are selective in terms of the program statements that they analyze. WPO and WRPO

would not work for these analyses since in case of both WPO and WRPO, there exists a fixed cost

of creating and maintaining a worklist of size equals to the number of CFG nodes. When analyses

selectively analyzes a small subset of all nodes in the CFGs, this overhead becomes substantial.

Our hybrid strategy is not only able to select an alternative strategy instead of WPO/WRPO for

such selective analyses, whenever possible (when the input graphs do not contain loops), but also

optimize WPO/WRPO (in case of input graphs with loops), such that the overheads are minimized.

For non-data flow analysis, there is no gain against hand optimized analysis since ANY is the best

55

traversal strategy for such analysis and both Hybrid approach and hand optimized analysis applied

ANY traversal strategy for all the graphs for non-data flow analysis.

56

CHAPTER 8. CORRECTNESS OF ANALYSIS RESULTS

To evaluate the correctness of analysis results, we first chose worklist as standard strategy to

run analyses on DaCapo dataset to create the groundtruth of the results. We then ran analyses

using our hybrid approach and compared the results with the groundtruth. In all analyses on all

input graphs from the dataset, the results from our hybrid approach always exactly matched the

corresponding ones in the groundtruth.

57

CHAPTER 9. TRAVERSAL STRATEGY SELECTION PRECISION

(a) CP (b) CSD (c) DC (d) LIC

(e) USA (f) VFR (g) MWN (h) AE

(i) LMA (j) LMNA (k) LV (l) NA

(m) RD (n) RS (o) VBE (p) SS

Figure 9.1: Scatter charts for analyses that have loop sensitive traversals.

In this experiment, we evaluated how well the hybrid approach picks the most time-efficient

strategy. We ran the 21 analyses on the DaCapo dataset using all the candidate traversals and

the one selected by the hybrid approach. One selection is counted for each pair of a traversal and

an input graph where the hybrid approach selects a traversal strategy based on the properties of

the analysis and input graph. A selection is considered correct if its running time is at least as

Table 9.1: Traversal strategy prediction precision.

Analysis Precision

DOM, PDOM, WNIL, UDV, UIR 100.00%
CP, CSD, DC, LIC, USA, VFR, MWN, AE, LMA, LMNA, LV, NA, RD, RS, VBE, SS 99.99%

58

good as the running time of the fastest among all candidates. The precision is computed as the

ratio between the number of correct selections over the total number of all selections. As shown in

Table 9.1, the selection precision is 100% for all analyses that are not loop sensitive. For analyses

that involve loop sensitive traversals, the prediction precision is 99.99%.

We further analyzed the result to see what contributed to these mispredictions. Let us break

the CFGs in the DaCapo dataset by the graph cyclicity: sequential CFGs, CFGs with branches and

no loops, and CFGs with loops, and discuss the selection precision.

For sequential CFGs & CFGs with branches and no loops, the selection precision is

100%—the hybrid approach always picks the most time-efficient traversal strategy.

For CFGs with loops, the selection precision is 100% for loop insensitive traversals. The

mispredictions occur with loop sensitive traversals on CFGs with loops. Figure 9.1 shows scatter

charts for the traversal selection results for 16 analyses that are loop sensitive. In the chart, 1

indicates a correct selection and 0 indicates a misprediction. CFGs are organized along the x- axis

in the increasing order of their sizes measured as the numbers of nodes. The scatter charts show

that the mispredictions tend to happen with larger CFGs. The reason is that, for loop sensitive

traversals, the hybrid approach picks worklist as the best strategy. The worklist approach was picked

because it visits only as many nodes as needed when compared to other traversal strategies which

visit redundant nodes. However using worklist imposes an overhead of creating and maintaining

a worklist containing all nodes in the CFG. This overhead is negligible for small CFGs. However,

when running analyses on large CFGs, this overhead could become higher than the cost for visiting

redundant nodes. Therefore, selecting worklist for loop sensitive traversals on large CFGs might not

always result in the best running times.

Figure 9.2 shows the Hybrid approach’s performance against the best traversal strategies for

mis-predicted graphs for 16 analyses that has loop sensitive traversals. We can see that for majority

of the mis-predicted graphs, Hybrid approach’s performance is comparable to the best approaches.

For analyses like CP, CSD, LIC, USA, DC, LMA, AE, LMNA, VBE and RD, Hybrid running time

are almost similar to the Best traversal strategy for smaller graphs. For graphs of size greater than

59

0

200

400

600

800

1000

1200

1400

9

4
5

5
2

5
7

6
4

7
2

7
9

8
4

8
6

1
0

0

1
0

5

1
1

4

1
2

1

1
2

5

1
2

7

1
2

8

1
4

1

1
6

0

1
6

7

1
8

3

1
9

3

2
3

9

3
6

2

4
3

3

6
1

0

7
6

5

R
u

n
ti

m
e

(m
s)

Node size

CP

Best Hybrid

0

2

4

6

8

10

12

10 19 21 24 28 34 43 44 56 97

R
u

n
ti

m
e

(m
s)

Node size

CSD

Best Hybrid

0

5

10

15

20

25

30

35

10 49 63 70 83 117 387

R
u

n
ti

m
e

(m
s)

Node size

DC

Best Hybrid

0

500

1000

1500

2000

2500

16 50 57 61 72 80 86 99 107 121 126 129 152 179 191 242 433 636

R
u

n
ti

m
e

(m
s)

Node size

LIC

Best Hybrid

0

2

4

6

8

10

12

7 12 15 21 26 30 35 43 44 44 51 69 84 136

R
u

n
ti

m
e

(m
s)

Node size

USA

Best Hybrid

0

2

4

6

8

10

12

14

11 36 53 66 75 92 120 128 170 216 306 636

R
u

n
ti

m
e

(m
s)

Node size

VFR

Best Hybrid

0

2

4

6

8

10

12

14

11 23 51 67 85 114 128 160 191 216 242 486 611 878

R
u

n
ti

m
e

(m
s)

Node size

MWN

Best Hybrid

0

2

4

6

8

10

1
5

1
6

1
7

1
9

2
5

2
6

3
4

3
5

3
7

3
8

3
9

4
0

4
4

4
4

4
4

4
4

4
8

4
8

5
7

5
8

7
8

1
0

3
1

0
3

1
0

3
1

2
2

1
7

5
1

9
3

2
2

5

R
u

n
ti

m
e

(m
s)

Node size

AE

Best Hybrid

0

100

200

300

400

500

600

700

800

900

12 59 71 84 93 104 120 127 134 166 191 212 433 765

R
u

n
ti

m
e

(m
s)

Node size

LMA

Best Hybrid

0

20

40

60

80

100

120

140

160

180

1
2

3
8

4
3

4
9

5
4

5
7

6
2

6
4

6
8

7
2

7
6

7
9

8
2

8
5

8
8

9
2

9
6

1
0

3
1

0
4

1
0

8
1

1
8

1
2

4
1

2
7

1
2

9
1

4
1

1
5

5
1

6
8

1
9

0
2

0
7

2
6

0
4

7
7

R
u

n
ti

m
e

(m
s)

Node size

LMNA

Best Hybrid

0

1

2

3

4

5

6

7

8

9

24 69 83 153

R
u

n
ti

m
e

(m
s)

Node size

LV

Best Hybrid

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

14 25 47 61 67 76 104 148 260

R
u

n
ti

m
e

(m
s)

Node size

NA

Best Hybrid

0

200

400

600

800

1000

1200

27 49 62 71 79 86 100 109 123 128 130 156 179 218 387 636

R
u

n
ti

m
e

(m
s)

Node size

RD

Best Hybrid

0

2

4

6

8

10

12

14

8 29 69 152 236 486

R
u

n
ti

m
e

(m
s)

Node size

RS

Best Hybrid

0

5

10

15

20

25

30

27 48 66 76 84 99 878

R
u

n
ti

m
e

(m
s)

Node size

VBE

Best Hybrid

0

2

4

6

8

10

12

14

11 92 193 242 636

R
u

n
ti

m
e

(m
s)

Node size

SS

Best Hybrid

Figure 9.2: Hybrid approach’s performance against best approaches for mis-predicted graphs.

60

200, Hybrid starts to perform worse (1.5x - 2x) than the best traversal strategy. But for analyses

like MWN, VFR, LV, NA, RS and SS, Hybrid performs worse even for smaller graphs that were

mis-predicted. This is because of the complexity of the analyses. Since these analyses are lesser

in complexity, even for small graphs that are mis-predicted, hybrid’s performance is worse. This

is because hybrid chooses Worklist for these mis-predicted analyses and in these analyses, time to

maintain the Worklist is much higher than the analyses itself.

61

CHAPTER 10. ANALYSIS ON THE DECISION TREE DISTRIBUTION

Decision tree is the key component in our hybrid approach. Given an analysis traversal and

an input graph, a path along the check points in the tree will be used to determine the traversal

strategy at the corresponding leaf node. There are such 11 paths leading to 11 leaf nodes as shown

in Figure 4.3. In this experiment, we want to study the contribution of each path in determining

strategies for CFGs from the two datasets. Two tables in Figure 10.1 show the result for 21 analyses.

Background colors indicate the ranges of values: 0% , (0%, 1%) , [1%, 10%) and [10%, 100%] .

The result shows a trend which is consistent between two datasets.

Path P11 is visited most often because path P11 leads to ANY traversal strategy. This path

is taken when we encounter data flow insensitive traversal and since atleast once such traversal is

present in every analyses and all graphs irrespective of the cyclicity, take this path, we see about

36% of the graphs takes Path P11.

Path P1 is also visited about 35% of the time. This path P1 is taken by sequential graphs and

forward data flow sensitive traversal. Since we have about 70% sequential graphs in our dataset and

about 14 forward data flow sensitive traversal, Path P1 is taken 35% of the time.

P2 was visited 10% of the time even though there are only 4 backward analyses. This is because

there are about 70% sequential CFGs and that boosts up the number to 10%. P3 is visited much

often that P4, since P3 is for forward analyses and the analysis list have about 14 forward analyses

and P4 is for backward analyses and the analysis list have only 4 backward analyses.

Paths P9 and P10 are less frequently used since only 10% of the CFGs has loops but since there

are about 16 loop sensitive traversal, they were visited 5% and 2% of the times respectively.

62

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

CP 35% 0% 10% 0% 0% 0% 0% 0% 5% 0% 50%
CSD 35% 0% 10% 0% 0% 0% 0% 0% 5% 0% 50%
DC 0% 35% 0% 10% 0% 0% 0% 0% 0% 5% 50%
LIC 35% 0% 10% 0% 0% 0% 0% 0% 5% 0% 50%
USA 35% 0% 10% 0% 0% 0% 0% 0% 5% 0% 50%
VFR 35% 0% 10% 0% 0% 0% 0% 0% 5% 0% 50%
MWN 35% 0% 10% 0% 0% 0% 0% 0% 5% 0% 50%
AE 69% 0% 21% 0% 0% 0% 0% 0% 10% 0% 0%
DOM 69% 0% 21% 0% 7% 0% 3% 0% 0% 0% 0%
LMA 69% 0% 21% 0% 0% 0% 0% 0% 10% 0% 0%
LMNA 69% 0% 21% 0% 0% 0% 0% 0% 10% 0% 0%
LV 0% 69% 0% 21% 0% 0% 0% 0% 0% 10% 0%
NA 69% 0% 21% 0% 0% 0% 0% 0% 10% 0% 0%
PDOM 0% 69% 0% 21% 0% 7% 0% 3% 0% 0% 0%
RD 69% 0% 21% 0% 0% 0% 0% 0% 10% 0% 0%
RS 69% 0% 21% 0% 0% 0% 0% 0% 10% 0% 0%
VBE 0% 69% 0% 21% 0% 0% 0% 0% 0% 10% 0%
SS 69% 0% 21% 0% 0% 0% 0% 0% 10% 0% 0%
UDV 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
UIR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
WNIL 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Overall 34.54% 9.87% 10.32% 2.95% 0.26% 0.26% 0.11% 0.11% 4.78% 1.10% 35.71%

Figure 10.1: Distribution of decisions over the paths of the decision tree.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

CP 32% 0% 13% 0% 0% 0% 0% 0% 5% 0% 50%
CSD 32% 0% 13% 0% 0% 0% 0% 0% 5% 0% 50%
DC 0% 32% 0% 13% 0% 0% 0% 0% 0% 5% 50%
LIC 32% 0% 13% 0% 0% 0% 0% 0% 5% 0% 50%
USA 32% 0% 13% 0% 0% 0% 0% 0% 5% 0% 50%
VFR 32% 0% 13% 0% 0% 0% 0% 0% 5% 0% 50%
MWN 32% 0% 13% 0% 0% 0% 0% 0% 5% 0% 50%
AE 65% 0% 25% 0% 0% 0% 0% 0% 10% 0% 0%
DOM 65% 0% 25% 0% 7% 0% 2% 0% 0% 0% 0%
LMA 65% 0% 25% 0% 0% 0% 0% 0% 10% 0% 0%
LMNA 65% 0% 25% 0% 0% 0% 0% 0% 10% 0% 0%
LV 0% 65% 0% 25% 0% 0% 0% 0% 0% 10% 0%
NA 65% 0% 25% 0% 0% 0% 0% 0% 10% 0% 0%
PDOM 0% 65% 0% 25% 0% 7% 0% 2% 0% 0% 0%
RD 65% 0% 25% 0% 0% 0% 0% 0% 10% 0% 0%
RS 65% 0% 25% 0% 0% 0% 0% 0% 10% 0% 0%
VBE 0% 65% 0% 25% 0% 0% 0% 0% 0% 10% 0%
SS 65% 0% 25% 0% 0% 0% 0% 0% 10% 0% 0%
UDV 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
UIR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
WNIL 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Overall 32.46% 9.27% 12.69% 3.62% 0.26% 0.26% 0.10% 0.10% 4.50% 1.04% 35.70%

Figure 10.2: Distribution of decisions over the paths of the decision tree for the DaCapo Dataset.

63

Paths P5, P6, P7 and P8 were were taken less often than the others because they are only used

for CFGs with loops which are only 10% of the CFGs in the datasets. In addition, these paths

are taken when the traversal is data-flow sensitive and loop insensitive. Only two of our analyses

contains such traversal. It is also worth to note that, from Figure 4.3, those four paths (P5–P8)

are the longest paths in the tree. The fact that these longest paths are rare (less than 1% for both

DaCapo and GitHub datasets) shows that most analyses and graphs are classified by our technique

using fewer dynamic checks.

64

CHAPTER 11. ANALYSIS ON TRAVERSAL OPTIMIZATION

We evaluated the importance of optimizing the chosen traversal strategy by comparing the

hybrid approach with the non-optimized version. We computed the reduction rate on the running

times for the 21 analyses. Figure 11.1 shows the reduction in execution time due to traversal strategy

optimization. For analyses that involve at least one data-flow sensitive traversal, the optimization

helps to reduce at least 60% of running time. This is because optimizations in such traversals

reduce the number of iterations of traversals over the graphs by eliminating the redundant result

re-computation traversal and the unnecessary fixpoint condition checking traversal. Thus in effect,

we are ignoring two traversals per graph. Since about 90% of the dataset contains sequential graph,

we traverse the graph only once on this 90% due to optimization. If not optimized, we would have

traversed the graph thrice and therefore we reduced two-thirds of the running time. This is the

reason why we see about 60% reduction in time due to optimization.

For analyses involving only data-flow insensitive traversal, there is no reduction in execution

time, as hybrid approach does not attempt to optimize. This is because, our approach mainly

optimizes by removing the redundant result re-computation traversal and the unnecessary fixpoint

0
10
20
30
40
50
60
70
80

R
ed

u
ct

io
n

 (
%

)

Figure 11.1: Reduction in execution time of the hybrid approach due to traversal optimization.

65

condition checking traversal. Both these traversals are not present in data-flow insensitive traversal,

and hence our approach cannot optimize it further.

66

CHAPTER 12. CASE STUDIES

We implemented two case studies using our formalism for source code analysis and evaluated

using Hybrid and WRPO traversal. We are comparing against only WRPO since it is the next best

performing traversal.

12.1 API Precondition Mining (APM).

This case study mines a large corpus of API usages to derive potential preconditions for API

methods [28]. The key idea of this work is that API preconditions would be checked frequently in a

corpus with a large number of API usages, while project-specific conditions would be less frequent.

This case study analysis mined the preconditions for all methods of java.lang.String. Boa source

code for this case study can be found in http://boa.cs.iastate.edu/boa/index.php?q=boa/job/61006

.

Result analysis. Figure 12.2 lists the first and second most mined pre-condition for some of

the methods in String Java API. For all the methods, the most mined pre-condition is var!=null,

which is expected, as null condition check is done on the parameters before using these parameters

in the API methods. Methods like equals, startsWith, contains, matches have var!=null && arg

!=null as the second most mined precondition, as these API methods take a parameter and is

applied on a variable. Hence null check is performed on both of these variables. charAt takes an

Case Hybrid WRPO Reduce

APM 1527 1702 10%
AUM 883 963 8%

Figure 12.1: Running time (minutes) of the case studies on GitHub data.

67

API Method First Second

equals var!=null var!=null && arg!=null
startsWith var!=null var!=null && arg!=null
contains var!=null var!=null && arg!=null
matches var!=null var!=null && arg!=null
split var!=null !isEmpty(var)
charAt var!=null arg ¡ var.length
substring var!=null arg!=-1

Figure 12.2: First and second most mined pre-condition for some of the methods in String Java
API.

API Pattern

1 iter=delegates.iterator(); LOOP (iter.hasNext()) { o=iter.next(); IF(o instanceof Object && !iter.hasNext()) {
result=(Object) o IF(result != null) { return result; } } }

2 iter=delegates.iterator(); LOOP (iter.hasNext()) { o=iter.next(); IF(o instanceof Object) { store=(Object) o; }
}

3 return list.size()
4 return iterator.hasNext()
5 CATCH(Exception) { log.error(e.getMessage(),e) }
6 CATCH(Exception) { log.error(e.getMessage(),e); ErrorDialog.open(e) }
7 CATCH(IOException) { log.log(Level.FINE,e.toString(),e) }
8 return this.map.size()
9 this.myArrayList.add(value:Object)
10 TRY { LOG.info(“STARTING ”+getName()) } CATCH(Exception) {}

Figure 12.3: Top 10 API Usage pattern for java.util API.

index as parameter and a check on whether this index is lesser than the variable’s length is made

(arg < var. length). Hence this is the second most mined precondition for charAt method.

12.2 API Usage Mining (AUM).

This case study analyzes API usage code and mines API usage patterns [38]. The mined patterns

help developers understand and write API usages more effectively with less errors. Our analysis

mined usage patterns for java.util APIs. Boa source code for this case study can be found in

http://boa.cs.iastate.edu/boa/?q=boa/job/61007 .

Result analysis. Figure 12.3 lists the top 10 API Usage pattern for java.util API. Top two

usage patterns are looping a collection using an iterator. Returning the size of the list and return a

boolean indicating whether the collection contains any more element are the next most mined usage

68

patterns. The other most mined API usage patterns are related to java.util.log class (logging error,

info, message).

Figure 12.1 shows that hybrid traversal helps reduce running times significantly by 80–175

minutes, which is from 6%–10% relatively.

69

CHAPTER 13. THREATS TO VALIDITY

Our first threat to validity is our selection of source code analysis used in our evaluation. While

there exists no source for a standard set of analyses, we relied mainly on text books and source

code analysis tools to select the analysis. We have selected basic control and data-flow analyses,

and analyses to find bugs or code smells. We made sure to include analysis that covers all the

properties of interest. For instance, our analysis set includes: both forward/backward analysis,

data-flow sensitive and insensitive analysis, loop sensitive and insensitive analysis.

Our next threat to validity is our selection of ultra-large-scale datasets that provide graphs

for running the analyses. The datasets do not contain a balanced distribution of different graph

cyclicity (sequential, branch and loop). Both DaCapo and GitHub datasets contains majority of

sequential graphs (65% and 69%, respectively) and only 10% are graphs with loops. The impact of

this threat can be seen in our evaluation of the importance of paths and decisions in our decision

tree. Paths and decisions along sequential graphs are taken more often. This threat is not easy to

mitigate, as it is hard to find and difficult to expect a real-world code dataset to contain a balanced

distribution of graphs of various types. Nonetheless, our evaluation shows that the selection and

optimization of the best traversal strategy for these 35% of the graphs (graphs with branches and

loops) plays an important role in improving the overall performance of the analysis over a large

dataset of graphs.

70

CHAPTER 14. RELATED WORK

To the best of our knowledge, our proposal to leverage information about the program analysis

code, and the nature of the data on which analysis is applied to select appropriate traversal strategies

has not been explored previously. Below we discuss works that are related to various aspects of our

proposal.

14.1 Mixing static and dynamic information.

The general philosophy of mixing static and dynamic information has a long history [17] in

both the software engineering and the programming languages communities, with examples such

as DSD-Crasher [11], Palus [37], segmented symbolic execution [24], guided dynamic symbolic

execution [9], gradual typing [31] , hybrid type checking [18], intensional polymorphism [20, 10], etc.

While our proposal also mixes static information about program analysis with dynamic information

about the data, none of the previous works have proposed utilizing this information for selecting

appropriate traversal strategies for realizing the program analysis.

14.2 Optimizing program analysis.

Atkinson and Griswold [2] presented techniques that reduce the time and space required to

perform data-flow analysis of large programs. While their techniques proposed modifications to the

underlying data-flow analyses that yield improvement in performance and also proposed reclamation

of the data-flow sets during data-flow analysis that result in saving space, hybrid approach gives

performance gain by analyzing the user written algorithm and the input graph received.

71

Kildall [23] presented an algorithm which, in conjunction with various optimizing functions,

provides global program optimization, Optimizing functions have been described which provide

constant propagation, common sub-expression elimination, and a degree of register optimization.

While their approach provides unified approach to global program optimization, we concentrate

on optimizing the process that does program optimization using the program’s structure and the

algorithm’s characteristics.

14.3 Ultra-large-scale source code mining.

In terms of ultra-large-scale processing, Boa [12, 14, 15] is a language and infrastructure for

analyzing ultra-large-scale software repositories. Boa provides a different kind of performance gain

through its infrastructure and eases testing MSR-related hypotheses, it is not suitable for graph

processing algorithms and does not leverage information from algorithms written in Boa.

Upadhyaya and Rajan [33] also tried to accelerate Ultra large scale score code mining. Their

key idea is to analyze the interaction pattern between the mining task and the artifact to cluster

artifacts such that running the mining task on one candidate artifact from each cluster is sufficient

to produce results for other artifacts in the same cluster. Their artifact clustering criteria go

beyond syntactic, semantic, and functional similarities to mining-task-specific similarity, where the

interaction pattern between the mining task and the artifact is used for clustering. While their

approach does task-specific clustering and extrapolates results, we try to analyze the analysis and

come up with the best way to traverse the graph so that we can finish the analysis by visiting lesser

number of nodes and performing lesser operations.

Dyer et al. [13] developed domain-specific language abstractions for easily writing source code

mining tasks on billions of AST nodes. While their language abstractions were for AST nodes, our

language features were for traversing CFGs. Another important difference is that we can specify a

user defined fixpoint for the traversals and the traversal will run till the fixpoint is reached. We

can also provide the direction of traversal and the traversal can return outputs while the visitor

construct in [13] does not.

72

14.4 Graph traversal optimization.

There have been many works that targeted graph traversal optimization through various ways.

Green-Marl [21] provides performance benefits by using domain specific knowledge in applying

optimizations. It uses high-level algorithmic description written in Green-Marl to exploiting the

exposed data level parallelism. While Green-Marl provides performance benefits by taking the

algorithm written into consideration, hybrid approach takes both algorithm and graph structure

into account. And in ultra large scale dataset, containing millions of graphs with different structures,

the gain that we can incur by taking graph structure into account is significant.

Pregel [27] is a MapReduce like framework that aims to bring distributed processing to graph

algorithms. While Pregel’s performance gain is through parallelism and handles large graphs

processing through vertex centric approach, our approach achieves performance gain by traversing

the graph efficiently suitable to the algorithm.

There have also been few libraries that support parallel or distributed graph analysis: Parallel

BGL [19] is a distributed version of BGL while SNAP [4] is a stand-alone parallel graph analysis

package.

73

CHAPTER 15. CONCLUSION AND FUTURE WORK

15.1 Conclusion

In today’s software-centric world, ultra-large-scale software repositories, such as SourceForge,

GitHub, and Google Code, are the new library of Alexandria. They contain an enormous corpus

of software and related information. Analyzing this data requires knowledge in mining software

repositories and a large amount of infrastructure. Dyer et al. [12] presented Boa, an infrastructure

and a domain-specific language for mining source-code at ultra large scale. Boa substantially

reduced programming efforts, thus lowering the barrier to entry. But improving the performance

of source code analyses that runs on massive code bases is an ongoing challenge. Upadhyaya

and Rajan [33] tried to address this challenge by analyzing the interaction pattern between the

mining task and the artifact to cluster artifacts such that running the mining task on one candidate

artifact from each cluster is sufficient to produce results for other artifacts in the same cluster.

We try to improve the performance of source code analysis expressed as traversals over graphs

like CFGs, by picking the optimal traversal strategy that defines the order of nodes visited. The

selection of the best traversal strategy depends both on the properties of the analysis and the

input graph on which the analysis is run. We proposed a hybrid technique for selecting and

optimizing graph traversal strategies for source code analysis expressed as traversals over graphs.

Our solution includes a system for expressing source code analysis as traversals, a set of static

properties of the analysis and algorithms to compute them, a decision tree that checks static prop-

erties along with graph properties to select the most time-efficient traversal strategy. Our system

for expressing source code analysis as traversals is inspired from the Visitors, a domain-specific

language feature created by Dyer et al. [13] for easily performing mining tasks on source code. Our

74

evaluation shows that the hybrid technique successfully selected the most time-efficient traversal

strategy for 99.99%–100% of the time and using the selected traversal strategy and optimizing

it, the running times of a representative collection of source code analysis in our evaluation were

considerably reduced by 1%-28% (13 minutes to 72 minutes in absolute time) when compared

against the best performing traversal strategy. The case studies show that hybrid traversal reduces

80–175 minutes in running times for two software engineering tasks. One of the software engi-

neering task is a work done by Nguyen et al. [28] to mine preconditions of APIs in large-scale

code corpus. The overhead imposed by collecting additional information for our approach is less

than 0.2% of the total running time for a large dataset and less than 0.01% for an ultra-large dataset.

15.2 Future work

One possible future work is to understand how the complexity of analysis affects the decision

making of traversal strategies for graphs with loops. Right now, we have mis-predictions for graphs

with loops. We have identified that as graph size increases, mis-prediction increases. As part of

future work, we would like to explore other factors that affect the precision and expand the decision

tree to predict correct strategies for large graphs with loops.

Another possible future work will be to build an agent and train it using the decision tree so

that it understands and builds a model that gives much more accurate decision tree with lesser

mis-predictions.

We could also expand our framework to inter-procedural analysis as we support only intra-

procedural analysis right now. Expanding this will be a challenge as we will be dealing with multiple

CFGs and the current algorithm for data flow sensitivity and loop sensitivity should be carefully

revised. It also requires investigating if any new factors play a role in traversal strategy decision

making for inter-procedural analysis.

75

There is another class of analysis whose output changes with the traversal used. They are called

traversal sensitive analyses and we need to come up with a mechanism to handle such analyses and

investigate if there is any way we can recommend a traversal to the user.

Another potential future work is to expand the decision tree to general graphs as we deal with

only CFGs now. It requires investigating the factors that affect the traversal strategy decision for

general graph analysis and investigate if there is any room for improvement.

We could also expand our framework such that after running the check once to select the

optimal traversal, one would not have to rerun this unless the analysis technique under scrutiny has

fundamentally changed. That is, one could store a cache of solutions which could be consulted prior

to searching for the optimal traversal algorithm again.

76

BIBLIOGRAPHY

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2006. ISBN 0321486811.

[2] Darren C. Atkinson and William G. Griswold. Implementation Techniques for Efficient Data-

Flow Analysis of Large Programs. In Proceedings of the IEEE International Conference

on Software Maintenance (ICSM’01), ICSM ’01, pages 52–, Washington, DC, USA, 2001.

IEEE Computer Society. ISBN 0-7695-1189-9. doi: 10.1109/ICSM.2001.972711. URL http:

//dx.doi.org/10.1109/ICSM.2001.972711.

[3] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and YuQian Zhou.

Evaluating Static Analysis Defect Warnings on Production Software. In Proceedings of the 7th

ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,

PASTE ’07, pages 1–8, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-595-3. URL

http://doi.acm.org/10.1145/1251535.1251536.

[4] David A Bader and Kamesh Madduri. Snap, small-world network analysis and partitioning: An

open-source parallel graph framework for the exploration of large-scale networks. In Parallel

and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on, pages 1–12.

IEEE, 2008.

[5] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley,

Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin

Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko

http://dx.doi.org/10.1109/ICSM.2001.972711
http://dx.doi.org/10.1109/ICSM.2001.972711
http://doi.acm.org/10.1145/1251535.1251536

77

Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The DaCapo

Benchmarks: Java Benchmarking Development and Analysis. In Proceedings of the 21st

Annual ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages, and

Applications, OOPSLA ’06, pages 169–190, New York, NY, USA, 2006. ACM. ISBN 1-59593-348-

4. doi: 10.1145/1167473.1167488. URL http://doi.acm.org/10.1145/1167473.1167488.

[6] William Blume, Ramon Doallo, Rudolf Eigenmann, John Grout, Jay Hoeflinger, and Thomas

Lawrence. Parallel programming with Polaris. Computer, 29(12):78–82, 1996.

[7] Franois Bourdoncle. Efficient Chaotic Iteration Strategies With Widenings. In Proceedings of

the International Conference on Formal Methods in Programming and their Applications, pages

128–141. Springer-Verlag, 1993.

[8] Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive interprocedural

computation of pointer-induced aliases and side effects. In Proceedings of the 20th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, pages 232–245. ACM,

1993.

[9] Maria Christakis, Peter Müller, and Valentin Wüstholz. Guiding Dynamic Symbolic Execution

Toward Unverified Program Executions. In Proceedings of the 38th International Conference on

Software Engineering, ICSE ’16, pages 144–155, New York, NY, USA, 2016. ACM. ISBN 978-

1-4503-3900-1. doi: 10.1145/2884781.2884843. URL http://doi.acm.org/10.1145/2884781.

2884843.

[10] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in type-erasure

semantics. Journal of Functional Programming, 12(6):567–600, 2002.

[11] Christoph Csallner, Yannis Smaragdakis, and Tao Xie. DSD-Crasher : A Hybrid Analysis Tool

for Bug Finding. ACM Trans. Softw. Eng. Methodol., 17(2):8:1–8:37, May 2008. ISSN 1049-331X.

doi: 10.1145/1348250.1348254. URL http://doi.acm.org/10.1145/1348250.1348254.

http://doi.acm.org/10.1145/1167473.1167488
http://doi.acm.org/10.1145/2884781.2884843
http://doi.acm.org/10.1145/2884781.2884843
http://doi.acm.org/10.1145/1348250.1348254

78

[12] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. Boa: A Language and

Infrastructure for Analyzing Ultra-large-scale Software Repositories. In Proceedings of the 2013

International Conference on Software Engineering, ICSE ’13, pages 422–431, Piscataway, NJ,

USA, 2013. IEEE Press. ISBN 978-1-4673-3076-3. URL http://dl.acm.org/citation.cfm?

id=2486788.2486844.

[13] Robert Dyer, Hridesh Rajan, and Tien N. Nguyen. Declarative Visitors to Ease Fine-grained

Source Code Mining with Full History on Billions of AST Nodes. In Proceedings of the

12th International Conference on Generative Programming: Concepts & Experiences,

GPCE ’13, pages 23–32, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2373-4. doi:

10.1145/2517208.2517226. URL http://doi.acm.org/10.1145/2517208.2517226.

[14] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N Nguyen. Boa: Ultra-large-scale

software repository and source-code mining. ACM Transactions on Software Engineering and

Methodology (TOSEM), 25(1):7, 2015.

[15] Robert Dyer, Hoan Nguyen, Hridesh Rajan, and Tien Nguyen. Boa: An Enabling Language

and Infrastructure for Ultra-Large-Scale MSR Studies. In The Art and Science of Analyzing

Software Data, pages 593–621. Elsevier, 2016.

[16] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. Bugs As

Deviant Behavior: A General Approach to Inferring Errors in Systems Code. In Proceedings

of the Eighteenth ACM Symposium on Operating Systems Principles, SOSP ’01, pages 57–72,

New York, NY, USA, 2001. ACM. ISBN 1-58113-389-8. doi: 10.1145/502034.502041. URL

http://doi.acm.org/10.1145/502034.502041.

[17] Michael D Ernst. Static and dynamic analysis: Synergy and duality. In WODA 2003: ICSE

Workshop on Dynamic Analysis, pages 24–27, 2003.

[18] Cormac Flanagan. Hybrid Type Checking. In Conference Record of the 33rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’06, pages 245–256,

http://dl.acm.org/citation.cfm?id=2486788.2486844
http://dl.acm.org/citation.cfm?id=2486788.2486844
http://doi.acm.org/10.1145/2517208.2517226
http://doi.acm.org/10.1145/502034.502041

79

New York, NY, USA, 2006. ACM. ISBN 1-59593-027-2. doi: 10.1145/1111037.1111059. URL

http://doi.acm.org/10.1145/1111037.1111059.

[19] Douglas Gregor and Andrew Lumsdaine. The parallel BGL: A generic library for distributed

graph computations. Parallel Object-Oriented Scientific Computing (POOSC), 2:1–18, 2005.

[20] Robert Harper and Greg Morrisett. Compiling Polymorphism Using Intensional Type Analysis.

In Proceedings of the Symposium on Principles of Programming Languages, POPL ’95, pages

130–141, New York, NY, USA, 1995. ACM. ISBN 0-89791-692-1. doi: 10.1145/199448.199475.

URL http://doi.acm.org/10.1145/199448.199475.

[21] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. Green-Marl: A DSL for

Easy and Efficient Graph Analysis. In Proceedings of the Seventeenth International Conference

on Architectural Support for Programming Languages and Operating Systems, ASPLOS XVII,

pages 349–362, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-0759-8. doi: 10.1145/

2150976.2151013. URL http://doi.acm.org/10.1145/2150976.2151013.

[22] Suresh Jagannathan, Peter Thiemann, Stephen Weeks, and Andrew Wright. Single and Loving

It: Must-alias Analysis for Higher-order Languages. In Proceedings of the 25th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’98, pages 329–341,

New York, NY, USA, 1998. ACM. ISBN 0-89791-979-3. doi: 10.1145/268946.268973. URL

http://doi.acm.org/10.1145/268946.268973.

[23] Gary A. Kildall. A Unified Approach to Global Program Optimization. In Proceedings of the

1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,

POPL ’73, pages 194–206, New York, NY, USA, 1973. ACM. doi: 10.1145/512927.512945.

URL http://doi.acm.org/10.1145/512927.512945.

[24] Wei Le. Segmented Symbolic Analysis. In Proceedings of the 2013 International Conference

on Software Engineering, ICSE ’13, pages 212–221, Piscataway, NJ, USA, 2013. IEEE Press.

ISBN 978-1-4673-3076-3. URL http://dl.acm.org/citation.cfm?id=2486788.2486817.

http://doi.acm.org/10.1145/1111037.1111059
http://doi.acm.org/10.1145/199448.199475
http://doi.acm.org/10.1145/2150976.2151013
http://doi.acm.org/10.1145/268946.268973
http://doi.acm.org/10.1145/512927.512945
http://dl.acm.org/citation.cfm?id=2486788.2486817

80

[25] Zhenmin Li, Shan Lu, and Suvda Myagmar. CP-Miner: Finding Copy-Paste and Related Bugs

in Large-Scale Software Code. IEEE Trans. Softw. Eng., 32(3):176–192, 2006.

[26] Benjamin Livshits and Thomas Zimmermann. DynaMine: finding common error patterns by

mining software revision histories. In ACM SIGSOFT Software Engineering Notes, volume 30,

pages 296–305. ACM, 2005.

[27] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty

Leiser, and Grzegorz Czajkowski. Pregel: A System for Large-scale Graph Processing. In

Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’10, pages 135–146, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0032-2. doi:

10.1145/1807167.1807184. URL http://doi.acm.org/10.1145/1807167.1807184.

[28] Hoan Anh Nguyen, Robert Dyer, Tien N Nguyen, and Hridesh Rajan. Mining Preconditions of

APIs in Large-scale Code Corpus. In Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering, pages 166–177. ACM, 2014.

[29] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Analysis.

Springer Publishing Company, Incorporated, New York City, NY, USA, 2010. ISBN 3642084745,

9783642084744.

[30] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. Path-Sensitive Inference

of Function Precedence Protocols. In Proceedings of the 29th International Conference on

Software Engineering, ICSE ’07, pages 240–250, Washington, DC, USA, 2007. IEEE Computer

Society. ISBN 0-7695-2828-7. doi: 10.1109/ICSE.2007.63. URL http://dx.doi.org/10.1109/

ICSE.2007.63.

[31] Jeremy Siek and Walid Taha. Gradual Typing for Objects. In Proceedings of the 21st European

Conference on Object-Oriented Programming, ECOOP ’07, pages 2–27, Berlin, Heidelberg,

2007. Springer-Verlag. ISBN 978-3-540-73588-5. doi: 10.1007/978-3-540-73589-2 2. URL

http://dx.doi.org/10.1007/978-3-540-73589-2_2.

http://doi.acm.org/10.1145/1807167.1807184
http://dx.doi.org/10.1109/ICSE.2007.63
http://dx.doi.org/10.1109/ICSE.2007.63
http://dx.doi.org/10.1007/978-3-540-73589-2_2

81

[32] Suresh Thummalapenta and Tao Xie. Alattin: Mining alternative patterns for detecting

neglected conditions. In Proceedings of the 2009 IEEE/ACM International Conference on

Automated Software Engineering, pages 283–294. IEEE Computer Society, 2009.

[33] Ganesha Upadhyaya and Hridesh Rajan. On accelerating ultra-large-scale mining. In Proceedings

of the 39th International Conference on Software Engineering: New Ideas and Emerging Results

Track, pages 39–42. IEEE Press, 2017.

[34] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundare-

san. Soot : A Java bytecode optimization framework. In Proceedings of the 1999 conference of

the Centre for Advanced Studies on Collaborative research, page 13. IBM Press, 1999.

[35] Westley Weimer and George C. Necula. Mining Temporal Specifications for Error Detection. In

Proceedings of the 11th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems, TACAS’05, pages 461–476, Berlin, Heidelberg, 2005. Springer-Verlag.

ISBN 3-540-25333-5, 978-3-540-25333-4. doi: 10.1007/978-3-540-31980-1 30. URL http:

//dx.doi.org/10.1007/978-3-540-31980-1_30.

[36] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir Das. Perracotta:

Mining Temporal API Rules from Imperfect Traces. In Proceedings of the 28th International

Conference on Software Engineering, ICSE ’06, pages 282–291, New York, NY, USA, 2006.

ACM. ISBN 1-59593-375-1. doi: 10.1145/1134285.1134325. URL http://doi.acm.org/10.

1145/1134285.1134325.

[37] Sai Zhang, David Saff, Yingyi Bu, and Michael D. Ernst. Combined Static and Dynamic

Automated Test Generation. In Proceedings of the 2011 International Symposium on Software

Testing and Analysis, ISSTA ’11, pages 353–363, New York, NY, USA, 2011. ACM. ISBN 978-

1-4503-0562-4. doi: 10.1145/2001420.2001463. URL http://doi.acm.org/10.1145/2001420.

2001463.

http://dx.doi.org/10.1007/978-3-540-31980-1_30
http://dx.doi.org/10.1007/978-3-540-31980-1_30
http://doi.acm.org/10.1145/1134285.1134325
http://doi.acm.org/10.1145/1134285.1134325
http://doi.acm.org/10.1145/2001420.2001463
http://doi.acm.org/10.1145/2001420.2001463

82

[38] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. MAPO: Mining and recommending

API usage patterns. ECOOP 2009–Object-Oriented Programming, pages 318–343, 2009.

83

APPENDIX A. SOURCE CODE LISTINGS FOR ANALYSES 1 - 10

Listing A.1: Copy propagation

1 p: Project = input;

2 m: output collection[string][int] of string;

3 type T= {in: set of string , out: set of string };

4 type T1= {gen: string , kill: string };

5 cfg: CFG;

6 cur_node_id: int; cur_cfg_node: CFGNode;

7 genset: set of string; vardef: string; killset: set of string;

8
9 cfg_def := traversal(node: CFGNode) : T1 {

10 cur_val : T1 = {"" ,""};

11 if(node.defVariables !="") {

12 cur_val.gen = node.defVariables +"@"+ string(node.id);

13 cur_val.kill = node.defVariables;

14 }

15 return cur_val;

16 };

17 cfg_reach_def := traversal(n: CFGNode): T {

18 preds := n.predecessors;

19 in_set : set of string;

20 out_set : set of string;

21 cur_val : T = {in_set , out_set };

22 if(def(getValue(n))) {

23 cur_val1 := getValue(n);

24 cur_val = clone(cur_val1);

25 }

26 foreach(pred_node:CFGNode=preds) {

27 pred := getValue(pred_node);

28 if(def(pred))

29 cur_val.in = union(cur_val.in, pred.out);

30 }

31 cur_val.out = setClone(cur_val.in);

32 genkill := getValue(n, cfg_def);

33 if(genkill.kill !="") {

34 tmp_out := setClone(cur_val.out);

35 foreach(tmp:string=tmp_out) {

36 tmp1:= stringClone(tmp);

37 str_array := splitall(tmp1 ,"@");

38 if(str_array [0] == genkill.kill) {

39 remove(cur_val.out , tmp1);

40 }

41 }

42 add(cur_val.out , genkill.gen);

84

Listing A.2: Copy propagation

42 add(cur_val.out , genkill.gen);

43 }

44 return cur_val;

45 };

46
47
48 copy_prop := traversal(n: CFGNode) : set of T1 {

49 out1 : set of T1;

50 cur_val := getValue(n, cfg_reach_def);

51 if(def(cur_val)) {

52 foreach(use:string=n.useVariables) {

53 tmp_in := setClone(cur_val.in);

54 foreach(tmp:string=tmp_in) {

55 str_array := splitall(tmp ,"@");

56 if(str_array [0] == use) {

57 val : T1 = {use , tmp};

58 add(out1 , val);

59 }

60 }

61 }

62 }

63 return out1;

64 };

65
66
67
68 fixp1 := fixp(curr , prev: T) : bool {

69 if (difference(curr.out , prev.out) == 0)

70 return true;

71 return false;

72 };

73
74 reach_def := visitor {

75 before node: Method -> {

76 clear(cfg_def);clear(cfg_reach_def);clear(copy_prop);

77
78 cfg = getcfg(node);

79 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , cfg_def);

80 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , cfg_reach_def , fixp1

);

81 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , copy_prop);

82 }

83
84 };

85
86 visit(p, reach_def);

85

Listing A.3: Common subexpression detection

1 m: output collection[string][int] of string;

2 p: Project = input;

3 type T = {gen: set of string , id: int};

4 type T1 = {in: set of set of string , out: set of set of string , id : int};

5
6 allExprset: set of set of string;

7
8 cfg: CFG;

9 pred_id : int;

10
11 str: set of string;

12 str1: set of set of string;

13
14 node_expr := visitor {

15 before node: Expression -> {

16 switch (node.kind) {

17 case ExpressionKind.LT,ExpressionKind.OP_ADD , ExpressionKind.OP_SUB ,

ExpressionKind.OP_INC , ExpressionKind.OP_MULT , ExpressionKind.OP_DIV ,

ExpressionKind.OP_MOD , ExpressionKind.OP_DEC , ExpressionKind.GT,

ExpressionKind.EQ , ExpressionKind.NEQ , ExpressionKind.LTEQ , ExpressionKind.

GTEQ , ExpressionKind.LOGICAL_NOT , ExpressionKind.LOGICAL_AND , ExpressionKind

.LOGICAL_OR , ExpressionKind.BIT_AND , ExpressionKind.BIT_OR , ExpressionKind.

BIT_NOT , ExpressionKind.BIT_XOR , ExpressionKind.BIT_LSHIFT , ExpressionKind.

BIT_RSHIFT , ExpressionKind.BIT_UNSIGNEDRSHIFT:

18 add(str , string(node.kind));

19 foreach(j:int;def(node.expressions[j])) {

20 visit(node.expressions[j]);

21 }

22 break;

23 case ExpressionKind.ASSIGN:

24 foreach(j:int;def(node.expressions[j])) {

25 if(j!=0) {

26 visit(node.expressions[j]);

27 }

28 }

29 break;

30 case ExpressionKind.VARACCESS:

31 add(str , node.variable);

32 break;

33 case ExpressionKind.VARDECL:

34 visit(node.variable_decls [0]. initializer);

35 break;

36 case ExpressionKind.LITERAL:

37 add(str , node.literal);

38 break;

39 case ExpressionKind.METHODCALL:

40 clear(str);

41 stop;

42 default:break;

43 }

86

Listing A.4: Common subexpression detection continued from Listing A.3

44 stop;

45 }

46 };

47
48
49 allExprT := traversal(node: CFGNode): T {

50 cur_val : T;

51 init_set : set of string;

52 str = init_set;

53 cur_val = {str , -1};

54 if(def(node.expr)) {

55 visit(node.expr , node_expr);

56 if(len(str)!=0) {

57 add(allExprset , setClone(str));

58 cur_val = {setClone(str), int(node.id)};

59 }

60 }

61 return cur_val;

62 };

63
64
65 killTraversal := traversal(node: CFGNode): set of set of string {

66 init_set1 : set of set of string;

67 str1 = init_set1;

68 if(def(node.defVariables)) {

69 foreach(aa:set of string=allExprset) {

70 if(contains(aa, node.defVariables)) {

71 add(str1 , aa);

72 }

73 }

74 }

75 return setClone(str1);

76 };

77
78
79 avail_expr := traversal(node: CFGNode): T1 {

80 pred_id = -1;

81 in_set : set of set of string;

82 out_set : set of set of string;

83 cur_value : T1;

84 if(node.id==0) {

85 cur_value = {in_set , out_set , -1};

86 }

87 else

88 cur_value = {setClone(allExprset), setClone(allExprset), -1};

89 if(def(getValue(node))) {

90 cur_val1 := getValue(node);

91 cur_value = clone(cur_val1);

92 }

93 genkill := getValue(node , allExprT);

94 killset := getValue(node , killTraversal);

95
96 preds := node.predecessors;

97 foreach(pred_node:CFGNode=preds) {

87

Listing A.5: Common subexpression detection continued from Listing A.4

98 pred := getValue(pred_node);

99 if(def(pred)) {

100 cur_value.in = intersection1(cur_value.in, pred.out);

101 if(contains(pred.out , genkill.gen)) {

102 pred_id = pred_node.id;

103 }

104 }

105 }

106 cur_value.out = setClone(cur_value.in);

107 removeAll(cur_value.out , killset);

108 if(def(genkill)) {

109 if(contains(cur_value.out , genkill.gen)) {

110 cur_value.id = int(pred_id);

111 }

112 else {

113 add(cur_value.out , genkill.gen);

114 cur_value.id = int(node.id);

115 }

116 }

117 return cur_value;

118 };

119
120
121
122 fixp1 := fixp(curr , prev: T1) : bool {

123 if (difference1(curr.out , prev.out) == 0)

124 return true;

125 return false;

126 };

127
128 def := visitor {

129 before node: Method -> {

130 clear(allExprT);clear(avail_expr);clear(killTraversal);clear(allExprset);

131
132 cfg = getcfg(node);

133 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , allExprT);

134 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , killTraversal);

135 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , avail_expr , fixp1);

136
137 }

138 };

139
140 visit(p, def);

88

Listing A.6: Dead code

1 m: output collection[string][string][int] of int;

2 p: Project = input;

3
4 type T_gen_kill= {gen: set of string , kill: string , dummy : int};

5 type T_inout= {in: set of string , out: set of string };

6
7 cfg: CFG;

8
9

10 cur_cfg_node: CFGNode;

11 dead_nodes : set of int;

12 prev_dead : set of int;

13 genset : set of string;

14 killset : set of string;

15
16 init := traversal(node: CFGNode): T_gen_kill {

17 cur_value : T_gen_kill;

18 cur_value = {node.useVariables , node.defVariables , 0};

19 return cur_value;

20 };

21
22
23 live := traversal(node: CFGNode): T_inout {

24 in_set : set of string;

25 out_set : set of string;

26 cur_val : T_inout = {in_set , out_set };

27 succs := node.successors;

28 if(! contains(dead_nodes , int(node.id))) {

29 if(def(getValue(node))) {

30 cur_val1 := getValue(node);

31 cur_val = clone(cur_val1);

32 }

33 }

34 foreach(succ_node:CFGNode=succs) {

35 succ := getValue(succ_node);

36 if(def(succ)) {

37 cur_val.out = union(cur_val.out ,succ.in);

38 }

39 }

40 cur_val.in = setClone(cur_val.out);

41 if(! contains(dead_nodes , int(node.id))) {

42 gen_kill := getValue(node , init);

43 remove(cur_val.in , gen_kill.kill);

44 cur_val.in = union(gen_kill.gen , cur_val.in);

45 }

46 return cur_val;

47 };

48
49
50 deadTraversal := traversal(node: CFGNode) {

51 if(node.defVariables != "") {

52 cur_val := getValue(node , live);

89

Listing A.7: Dead code continued from Listing A.6

52 cur_val := getValue(node , live);

53 if(def(cur_val)) {

54 if(! contains(cur_val.out , node.defVariables)) {

55 add(dead_nodes , int(node.id));

56 }

57 }

58 }

59 };

60
61
62 fp1 := fixp(curr , prev: T_inout) : bool {

63 if (difference(curr.in, prev.in) == 0)

64 return true;

65 return false;

66 };

67
68 q_all := visitor {

69 before node: Method -> {

70
71 cfg = getcfg(node);

72 clear(init);clear(dead_nodes);clear(live);clear(prev_dead);

73 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , init);

74 do {

75 clear(live);

76 if(cfg.isValid ==0) {

77 traverse(cfg , TraversalDirection.BACKWARD , TraversalKind.HYBRID , live , fp1);

78 }

79 prev_dead = setIntClone(dead_nodes);

80 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , deadTraversal);

81 }while(difference2(dead_nodes ,prev_dead)!=0);

82
83 }

84
85 };

86
87 visit(p, q_all);

90

Listing A.8: Loop invariant code motion

0 p: Project = input;

1 m: output collection[string][int] of string;

2
3 type T= {in: set of string , out: set of string };

4 type T1= {gen: string , kill: string };

5
6 cfg: CFG;

7 type Tloop = {start : int , end : int , use : set of string };

8 type finiteLoop = {start : int , end : int};

9
10 loops : set of Tloop;

11 finiteloops : set of finiteLoop;

12 codemotion : set of int;

13 flag := false;

14
15 cfg_def := traversal(node: CFGNode) : T1 {

16 cur_val : T1 = {"" ,""};

17 if(node.defVariables !="") {

18 cur_val.gen = node.defVariables +"@"+ string(node.id);

19 cur_val.kill = node.defVariables;

20 }

21 return cur_val;

22 };

23
24 cfg_reach_def := traversal(n: CFGNode): T {

25 preds := n.predecessors;

26 in_set : set of string;

27 out_set : set of string;

28 cur_val : T = {in_set , out_set };

29 if(def(getValue(n))) {

30 cur_val1 := getValue(n);

31 cur_val = clone(cur_val1);

32 }

33 foreach(pred_node:CFGNode=preds) {

34 pred := getValue(pred_node);

35 if(def(pred))

36 cur_val.in = union(cur_val.in, pred.out);

37 }

38 cur_val.out = setClone(cur_val.in);

39 genkill := getValue(n, cfg_def);

40 if(genkill.kill !="") {

41 tmp_out := setClone(cur_val.out);

42 foreach(tmp:string=tmp_out) {

43 tmp1:= stringClone(tmp);

44 str_array := splitall(tmp1 ,"@");

45 if(str_array [0] == genkill.kill) {

46 remove(cur_val.out , tmp1);

47 }

48 }

49 add(cur_val.out , genkill.gen);

50 }

51 return cur_val;

91

Listing A.9: Loop invariant code motion continued from Listing A.8

53 };

54
55
56 fixp1 := fixp(curr , prev: T) : bool {

57 if (difference(curr.out , prev.out) == 0)

58 return true;

59 return false;

60 };

61
62
63 init := traversal(node: CFGNode){

64 init_set : set of string;

65 cur_val : Tloop = {-1, -1, init_set };

66 if(node.name == "WHILE" || node.name == "FOR") {

67 succs := node.successors;

68 foreach(succ:CFGNode=succs) {

69 if(succ.id > node.id + 1) {

70 cur_val.start= int(node.id);

71 cur_val.end= int(succ.id);

72 cur_val.use = node.useVariables;

73 add(loops , cur_val);

74 }

75 }

76 }

77 };

78
79
80 loop_invariant := traversal(node: CFGNode) {

81 foreach(temp:Tloop=loops) {

82 flag = false;

83 if(node.id > temp.start && node.id < temp.end) {

84 if(len(node.useVariables)!=0) {

85 cur_val := getValue(node , cfg_reach_def);

86 if(def(cur_val)) {

87 foreach(use_str:string=node.useVariables) {

88 foreach(tmp_str:string=cur_val.out) {

89 str_array := splitall(tmp_str ,"@");

90 if(str_array [0]== use_str) {

91 if(int(str_array [1]) > temp.start) {

92 flag = true;

93 break;

94 }

95 }

96 }

97 }

98 }

99 }

100 if(!flag) {

101 add(codemotion , int(node.id));

102 }

92

Listing A.10: Loop invariant code motion continued from Listing A.9

102 }

103 }

104 }

105 };

106
107 reach_def := visitor {

108 before node: Method -> {

109 clear(cfg_def);clear(cfg_reach_def);clear(init);clear(loops);clear(codemotion);clear

(loop_invariant);

110
111 cfg = getcfg(node);

112 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , cfg_def);

113 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , init);

114 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , cfg_reach_def , fixp1

);

115 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , loop_invariant);

116
117 }

118 };

119
120 visit(p, reach_def);

93

Listing A.11: Upsafety analysis

1 m: output collection[string][int] of string;

2 p: Project = input;

3
4 type T1 = {in: set of set of string , out: set of set of string };

5
6 allExprset: set of set of string;

7
8 cfg: CFG;

9 str: set of string;

10 str1: set of set of string;

11 upsafe : set of int;

12 flag := false;

13
14 node_expr := visitor {

15 before node: Expression -> {

16 switch (node.kind) {

17 case ExpressionKind.LT,ExpressionKind.OP_ADD , ExpressionKind.OP_SUB ,

ExpressionKind.OP_INC , ExpressionKind.OP_MULT , ExpressionKind.OP_DIV ,

ExpressionKind.OP_MOD , ExpressionKind.OP_DEC , ExpressionKind.GT,

ExpressionKind.EQ , ExpressionKind.NEQ , ExpressionKind.LTEQ , ExpressionKind.

GTEQ , ExpressionKind.LOGICAL_NOT , ExpressionKind.LOGICAL_AND , ExpressionKind

.LOGICAL_OR , ExpressionKind.BIT_AND , ExpressionKind.BIT_OR , ExpressionKind.

BIT_NOT , ExpressionKind.BIT_XOR , ExpressionKind.BIT_LSHIFT , ExpressionKind.

BIT_RSHIFT , ExpressionKind.BIT_UNSIGNEDRSHIFT:

18 add(str , string(node.kind));

19 foreach(j:int;def(node.expressions[j])) {

20 visit(node.expressions[j]);

21 }

22 break;

23 case ExpressionKind.ASSIGN:

24 foreach(j:int;def(node.expressions[j])) {

25 if(j!=0) {

26 visit(node.expressions[j]);

27 }

28 }

29 break;

30 case ExpressionKind.VARACCESS:

31 add(str , node.variable);

32 break;

33 case ExpressionKind.VARDECL:

34 visit(node.variable_decls [0]. initializer);

35 break;

36 case ExpressionKind.LITERAL:

37 add(str , node.literal);

38 break;

39 case ExpressionKind.METHODCALL:

40 clear(str);

41 stop;

42 default:break;

43 }

94

Listing A.12: Upsafety analysis continued from Listing A.11

44 stop;

45 }

46 };

47
48 allExprT := traversal(node: CFGNode): set of string {

49 init_set : set of string;

50 str = init_set;

51 if(def(node.expr)) {

52 visit(node.expr , node_expr);

53 if(len(str)!=0) {

54 add(allExprset , setClone(str));

55 }

56 }

57 return setClone(str);

58 };

59
60 killTraversal := traversal(node: CFGNode): set of set of string {

61 init_set1 : set of set of string;

62 str1 = init_set1;

63 if(def(node.defVariables)) {

64 foreach(aa:set of string=allExprset) {

65 if(contains(aa, node.defVariables)) {

66 add(str1 , aa);

67 }

68 }

69 }

70 return setClone(str1);

71 };

72
73 avail_expr := traversal(node: CFGNode): T1 {

74 in_set : set of set of string;

75 out_set : set of set of string;

76 cur_value : T1;

77 if(node.id==0) {

78 cur_value = {in_set , out_set };

79 }

80 else

81 cur_value = {setClone(allExprset), out_set };

82 if(def(getValue(node))) {

83 cur_val1 := getValue(node);

84 cur_value = clone(cur_val1);

85 }

86 preds := node.predecessors;

87 foreach(pred_node:CFGNode=preds) {

88 pred := getValue(pred_node);

89 if(def(pred))

90 cur_value.in = intersection1(cur_value.in, pred.out);

91 }

92 genkill := getValue(node , allExprT);

93 killset := getValue(node , killTraversal);

94 cur_value.out = setClone(cur_value.in);

95 removeAll(cur_value.out , killset);

95

Listing A.13: Upsafety analysis continued from Listing A.12

95 removeAll(cur_value.out , killset);

96 if(len(genkill)!=0)

97 add(cur_value.out , genkill);

98 return cur_value;

99 };

100
101 upsafety := traversal(node: CFGNode) {

102 genkill := getValue(node , allExprT);

103 if(len(genkill)!=0) {

104 flag = false;

105 preds := node.predecessors;

106 foreach(pred_node:CFGNode=preds) {

107 pred := getValue(pred_node , avail_expr);

108 if(def(pred)) {

109 if(! contains(pred.out , genkill)) {

110 flag = true;

111 }

112 }

113 }

114 if(flag) {

115 add(upsafe , int(node.id));

116 }

117 }

118 };

119
120
121 fixp1 := fixp(curr , prev: T1) : bool {

122 if (difference1(curr.out , prev.out) == 0)

123 return true;

124 return false;

125 };

126
127 def := visitor {

128 before node: Method -> {

129 clear(allExprT);clear(avail_expr);clear(killTraversal);clear(allExprset);clear(

upsafe);clear(upsafety);

130
131 cfg = getcfg(node);

132 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , allExprT);

133 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , killTraversal);

134 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , avail_expr , fixp1);

135 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , upsafety);

136 }

137 };

138
139 visit(p, def);

96

Listing A.14: Valid file reader

1 m: output collection[string][int] of string;

2 p: Project = input;

3 type T= {in: set of string , out : set of string };

4 type T1= {gen: string , kill : string };

5 cfg: CFG;

6
7 cfgnode_ids:set of string;

8
9 genStr : string;

10 killStr : string;

11 obj := "";

12
13 evisitor := visitor {

14 before node:Expression -> {

15 switch(node.kind) {

16 case ExpressionKind.METHODCALL:

17 if(node.method == "open") {

18 if(len(node.expressions) >0) {

19 genStr = node.expressions [0]. variable;

20 }

21 }

22 else if(node.method == "close") {

23 if(len(node.expressions) >0) {

24 killStr = node.expressions [0]. variable;

25 }

26 }

27 break;

28 default: break;

29 }

30 }

31 };

32
33 track := traversal(node: CFGNode) : T1 {

34 cur_val : T1 = {"" ,""};

35 genStr = "";

36 killStr = "";

37 if (def(node.expr)) {

38 visit(node.expr , evisitor);

39 cur_val = {genStr , killStr };

40 }

41 return cur_val;

42 };

43
44 cfg_def := traversal(node: CFGNode) : T {

45 inset : set of string;

46 outset : set of string;

47 cur_val : T = {inset , outset };

48 cur_val = getValue(node);

49 cur_val = {inset , outset };

50 preds := node.predecessors;

51 foreach(pred_node:CFGNode=preds) {

52 pred := getValue(pred_node);

97

Listing A.15: Valid file reader continued from Listing A.14

52 pred := getValue(pred_node);

53 if(def(pred))

54 cur_val.in = union(cur_val.in, pred.out);

55 }

56 track_val := getValue(node , track);

57 addAll(cur_val.out , cur_val.in);

58 if(track_val.gen != "")

59 add(cur_val.out , track_val.gen);

60 if(track_val.kill != "")

61 remove(cur_val.out , track_val.kill);

62 return cur_val;

63 };

64
65 evisitor1 := visitor {

66 before node:Expression -> {

67 switch(node.kind) {

68 case ExpressionKind.METHODCALL:

69 if(node.method == "read" || node.method == "write") {

70 if(len(node.expressions) >0) {

71 obj = node.expressions [0]. variable;

72 }

73 }

74 break;

75 default: break;

76 }

77 }

78 };

79
80 mismatch := traversal(node: CFGNode) : string {

81 if (def(node.expr)) {

82 visit(node.expr , evisitor1);

83 if(obj !="") {

84 cur := getValue(node , cfg_def);

85 if(! contains(cur.in, obj)){

86 return "mismatched ";

87 }

88 }

89 }

90 return "matched ";

91 };

92
93 fixp1 := fixp(curr , prev: T) : bool {

94 if (difference(curr.out , prev.out) == 0)

95 return true;

96 return false;

97 };

98
99 q_all := visitor {

100 before node: Method -> {

101 clear(track);clear(cfg_def);

102
103 cfg = getcfg(node);

104 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , track);

105 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , cfg_def , fixp1);

106 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , mismatch);

107 }

108 };

109
110 visit(p, q_all);

98

Listing A.16: Mismatched wait and notify

1 m: output collection[string][int] of string;

2 p: Project = input;

3
4 type T= {in: set of string , out : set of string };

5 type T1= {gen: string , kill : string };

6
7 cfg: CFG;

8 cfgnode_ids:set of string;

9
10 genStr : string;

11 killStr : string;

12 obj := "";

13
14 evisitor := visitor {

15 before node:Expression -> {

16 switch(node.kind) {

17 case ExpressionKind.METHODCALL:

18 if(node.method == "lock") {

19 if(len(node.expressions) >0) {

20 genStr = node.expressions [0]. variable;

21 }

22 }

23 else if(node.method == "unlock ") {

24 if(len(node.expressions) >0) {

25 killStr = node.expressions [0]. variable;

26 }

27 }

28 break;

29 default: break;

30 }

31 }

32 };

33
34 track := traversal(node: CFGNode) : T1 {

35 cur_val : T1 = {"" ,""};

36 genStr = "";

37 killStr = "";

38 if (def(node.expr)) {

39 visit(node.expr , evisitor);

40 cur_val = {genStr , killStr };

41 }

42 return cur_val;

43 };

44
45 cfg_def := traversal(node: CFGNode) : T {

46 inset : set of string;

47 outset : set of string;

48 cur_val : T = {inset , outset };

49 cur_val = getValue(node);

50 cur_val = {inset , outset };

51 preds := node.predecessors;

52 foreach(pred_node:CFGNode=preds) {

53 pred := getValue(pred_node);

99

Listing A.17: Mismatched wait and notify continued from Listing A.16

54 if(def(pred))

55 cur_val.in = union(cur_val.in, pred.out);

56 }

57 track_val := getValue(node , track);

58 addAll(cur_val.out , cur_val.in);

59 if(track_val.gen != "")

60 add(cur_val.out , track_val.gen);

61 if(track_val.kill != "")

62 remove(cur_val.out , track_val.kill);

63 return cur_val;

64 };

65
66 evisitor1 := visitor {

67 before node:Expression -> {

68 switch(node.kind) {

69 case ExpressionKind.METHODCALL:

70 if(node.method == "wait" || node.method == "notify ") {

71 if(len(node.expressions) >0) {

72 obj = node.expressions [0]. variable;

73 }

74 }

75 break;

76 default: break;

77 }

78 }

79 };

80
81 mismatch := traversal(node: CFGNode) : string {

82 if (def(node.expr)) {

83 visit(node.expr , evisitor1);

84 if(obj !="") {

85 cur := getValue(node , cfg_def);

86 if(! contains(cur.in, obj)){

87 return "mismatched ";

88 }

89 }

90 }

91 return "matched ";

92 };

93
94 fixp1 := fixp(curr , prev: T) : bool {

95 if (difference(curr.out , prev.out) == 0)

96 return true;

97 return false;

98 };

99
100 q_all := visitor {

101 before node: Method -> {

102 clear(track);clear(cfg_def);

103
104 cfg = getcfg(node);

105 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , track);

106 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , cfg_def , fixp1);

107 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , mismatch);

108
109 }

110 };

111
112 visit(p, q_all);

100

Listing A.18: Available expression analysis

1 m: output collection[string][int] of string;

2 p: Project = input;

3
4 type T1 = {in: set of set of string , out: set of set of string };

5 allExprset: set of set of string;

6 cfg: CFG;

7
8 str: set of string;

9 str1: set of set of string;

10
11 node_expr := visitor {

12 before node: Expression -> {

13 switch (node.kind) {

14 case ExpressionKind.LT,ExpressionKind.OP_ADD , ExpressionKind.OP_SUB ,

ExpressionKind.OP_INC , ExpressionKind.OP_MULT , ExpressionKind.OP_DIV ,

ExpressionKind.OP_MOD , ExpressionKind.OP_DEC , ExpressionKind.GT,

ExpressionKind.EQ , ExpressionKind.NEQ , ExpressionKind.LTEQ , ExpressionKind.

GTEQ , ExpressionKind.LOGICAL_NOT , ExpressionKind.LOGICAL_AND , ExpressionKind

.LOGICAL_OR , ExpressionKind.BIT_AND , ExpressionKind.BIT_OR , ExpressionKind.

BIT_NOT , ExpressionKind.BIT_XOR , ExpressionKind.BIT_LSHIFT , ExpressionKind.

BIT_RSHIFT , ExpressionKind.BIT_UNSIGNEDRSHIFT:

15 add(str , string(node.kind));

16 foreach(j:int;def(node.expressions[j])) {

17 visit(node.expressions[j]);

18 }

19 break;

20 case ExpressionKind.ASSIGN:

21 foreach(j:int;def(node.expressions[j])) {

22 if(j!=0) {

23 visit(node.expressions[j]);

24 }

25 }

26 break;

27 case ExpressionKind.VARACCESS:

28 add(str , node.variable);

29 break;

30 case ExpressionKind.VARDECL:

31 visit(node.variable_decls [0]. initializer);

32 break;

33 case ExpressionKind.LITERAL:

34 add(str , node.literal);

35 break;

36 case ExpressionKind.METHODCALL:

37 clear(str);

38 stop;

39 default:break;

40 }

41 stop;

42 }

43 };

101

Listing A.19: Available expression analysis continued from Listing A.18

44
45 allExprT := traversal(node: CFGNode): set of string {

46 init_set : set of string;

47 str = init_set;

48 if(def(node.expr)) {

49 visit(node.expr , node_expr);

50 if(len(str)!=0) {

51 add(allExprset , setClone(str));

52 }

53 }

54 return setClone(str);

55 };

56
57 killTraversal := traversal(node: CFGNode): set of set of string {

58 init_set1 : set of set of string;

59 str1 = init_set1;

60 if(def(node.defVariables)) {

61 foreach(aa:set of string=allExprset) {

62 if(contains(aa, node.defVariables)) {

63 add(str1 , aa);

64 }

65 }

66 }

67 return setClone(str1);

68 };

69
70 avail_expr := traversal(node: CFGNode): T1 {

71 in_set : set of set of string;

72 out_set : set of set of string;

73 cur_value : T1;

74 if(node.id==0) {

75 cur_value = {in_set , out_set };

76 }

77 else

78 cur_value = {setClone(allExprset), out_set };

79 if(def(getValue(node))) {

80 cur_val1 := getValue(node);

81 cur_value = clone(cur_val1);

82 }

83 preds := node.predecessors;

84 foreach(pred_node:CFGNode=preds) {

85 pred := getValue(pred_node);

86 if(def(pred))

87 cur_value.in = intersection1(cur_value.in, pred.out);

88 }

89 genkill := getValue(node , allExprT);

90 killset := getValue(node , killTraversal);

91 cur_value.out = setClone(cur_value.in);

92 removeAll(cur_value.out , killset);

93 if(len(genkill)!=0)

94 add(cur_value.out , genkill);

95 return cur_value;

102

Listing A.20: Available expression analysis continued from Listing A.19

96 };

97
98
99 fixp1 := fixp(curr , prev: T1) : bool {

100 if (difference1(curr.out , prev.out) == 0)

101 return true;

102 return false;

103 };

104
105 def := visitor {

106 before node: Method -> {

107 clear(allExprT);clear(avail_expr);clear(killTraversal);clear(allExprset);

108 cfg = getcfg(node);

109 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , allExprT);

110 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , killTraversal);

111 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , avail_expr , fixp1);

112 }

113 };

114
115 visit(p, def);

103

Listing A.21: Dominator analysis

0 m: output collection[string][int] of string;

1 mt: output collection[int][string] of string;

2 p: Project = input;

3
4 type T= {dom: set of string , dummy : int};

5
6 cfg: CFG;

7 cfgnode_ids:set of string;

8
9 allnode_ids := traversal(node: CFGNode) : string{

10 add(cfgnode_ids , string(node.id));

11 return string(node.id);

12 };

13
14 cfg_dom := traversal(node: CFGNode): T {

15 cur_value : T;

16 if(node.id==0) {

17 self_dom:set of string;

18 cur_value = {self_dom , 0};

19 }

20 else

21 cur_value = {setClone(cfgnode_ids), 0};

22 if(def(getValue(node))) {

23 cur_val1 := getValue(node);

24 cur_value = clone(cur_val1);

25 }

26 preds:=node.predecessors;

27 foreach(i:int;def(preds[i])) {

28 pred_value := getValue(preds[i]);

29 if(def(pred_value)) {

30 cur_value.dom = intersection(cur_value.dom ,pred_value.dom);

31 }

32 }

33 gen_kill := getValue(node , allnode_ids);

34 add(cur_value.dom , gen_kill);

35 return cur_value;

36 };

37
38 fixp1 := fixp(curr , prev: T) : bool {

39 if (difference(curr.dom , prev.dom) == 0)

40 return true;

41 return false;

42 };

43
44 q_all := visitor {

45 before node: CodeRepository -> {

46 snapshot := getsnapshot(node , "SOURCE_JAVA_JLS ");

47 foreach (i: int; def(snapshot[i]))

48 visit(snapshot[i]);

49 stop;

50 }

51 before node: Method -> {

52 clear(allnode_ids);clear(cfgnode_ids);clear(cfg_dom);

104

Listing A.22: Dominator analysis continued from Listing A.21

53 clear(allnode_ids);clear(cfgnode_ids);clear(cfg_dom);

54
55 cfg = getcfg(node);

56 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , allnode_ids);

57 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , cfg_dom , fixp1);

58 }

59 };

60
61 visit(p, q_all);

105

Listing A.23: Local may alias

1 m: output collection[string][int] of string;

2 p: Project = input;

3 type T= {gen : string , kill : string };

4 type T1= {in : set of set of string , out : set of set of string };

5 cfg : CFG;

6
7 initPhase := traversal(node: CFGNode) : T {

8 cur_val : T = {"", ""};

9 if(node.defVariables !="")

10 cur_val.kill = node.defVariables;

11 if(def(node.expr)) {

12 if(node.expr.kind == ExpressionKind.VARDECL || node.expr.kind == ExpressionKind.

ASSIGN) {

13 if(def(node.rhs)) {

14 if(node.rhs.kind == ExpressionKind.VARACCESS) {

15 cur_val.gen = node.rhs.variable;

16 }

17 }

18 }

19 }

20 return cur_val;

21 };

22
23 analysisPhase := traversal(node: CFGNode) : T1 {

24 inset : set of set of string;

25 outset : set of set of string;

26 cur_val : T1 = {inset , outset };

27 if(def(getValue(node))) {

28 cur_val = getValue(node);

29 }

30 preds := node.predecessors;

31 foreach(pred_node:CFGNode=preds) {

32 pred := getValue(pred_node);

33 if(def(pred))

34 cur_val.in = union1(cur_val.in, pred.out);

35 }

36 cur_val.out = setClone(cur_val.in);

37 genkill := getValue(node , initPhase);

38 if(genkill.kill != "") {

39 foreach(tmp:set of string=cur_val.in) {

40 if(contains(tmp , genkill.kill)) {

41 tmp2:= setClone(tmp);

42 remove(cur_val.out , tmp2);

43 remove(tmp2 , genkill.kill);

44 if(len(tmp2)!=0) {

45 add(cur_val.out , tmp2);

46 }

47 }

48 }

49 if(genkill.gen != "") {

50 flag := false;

106

Listing A.24: Local may alias continued from Listing A.23

51 tmpSet := setClone(cur_val.out);

52 foreach(tmp:set of string=tmpSet) {

53 if(contains(tmp , genkill.gen)) {

54 tmp3:= setClone(tmp);

55 flag = true;

56 remove(cur_val.out , tmp3);

57 add(tmp3 , genkill.kill);

58 add(cur_val.out , tmp3);

59 }

60 }

61 if(flag == false) {

62 tmp1 : set of string;

63 add(tmp1 , genkill.gen);add(tmp1 , genkill.kill);

64 add(cur_val.out , setClone(tmp1));

65 }

66 }

67 else {

68 tmp4 : set of string;

69 add(tmp4 , genkill.kill);

70 add(cur_val.out , setClone(tmp4));

71 }

72 }

73 return cur_val;

74 };

75
76 fixp1 := fixp(curr , prev: T1) : bool {

77 if (difference1(curr.out , prev.out) == 0)

78 return true;

79 return false;

80 };

81
82 q_all := visitor {

83 before node: Method -> {

84 clear(initPhase);clear(analysisPhase);

85
86 cfg = getcfg(node);

87 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , initPhase);

88 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , analysisPhase , fixp1

);

89 }

90 };

91
92 visit(p, q_all);

107

APPENDIX B. SOURCE CODE LISTINGS FOR ANALYSES 11 - 21

Listing B.1: Local must not alias

0 m: output collection[string][int] of string;

1 p: Project = input;

2
3 type T= {gen : string , kill : string };

4 type T1= {in : set of string , out : set of string };

5 cfg : CFG;

6 local : set of string;

7
8 init := traversal(node: CFGNode) : T {

9 cur_val : T = {"" ,""};

10 if(def(node.expr)) {

11 if(node.expr.kind == ExpressionKind.VARDECL) {

12 cur_val.kill = node.defVariables;

13 if(def(node.expr.variable_decls [0]. initializer)) {

14 if(node.expr.variable_decls [0]. initializer.kind == ExpressionKind.NEW) {

15 add(local , node.defVariables +"@"+node.expr.variable_decls [0]. initializer

.new_type.qualified_name);

16 cur_val.gen= node.defVariables +"@"+node.expr.variable_decls [0].

initializer.new_type.qualified_name;

17 }

18 else if(node.expr.variable_decls [0]. initializer.kind == ExpressionKind.

VARACCESS) {

19 add(local , node.defVariables +" @var@"+node.expr.variable_decls [0].

initializer.variable);

20 cur_val.gen= node.defVariables +" @var@"+node.expr.variable_decls [0].

initializer.variable;

21 }

22 else {

23 add(local , node.defVariables +" @unknown ");

24 cur_val.gen= node.defVariables +" @unknown ";

25 }

26 }

27 }

28 else if (node.expr.kind == ExpressionKind.ASSIGN) {

29 cur_val.kill = node.defVariables;

30 if(node.expr.expressions [1]. kind == ExpressionKind.NEW) {

31 add(local , node.defVariables +"@"+node.expr.expressions [1]. new_type.

qualified_name);

32 cur_val.gen= node.defVariables +"@"+node.expr.expressions [1]. new_type.

qualified_name;

33 }

34 else if(node.expr.expressions [1]. kind == ExpressionKind.VARACCESS) {

35 add(local , node.defVariables +" @var@"+node.expr.expressions [1]. variable);

36 cur_val.gen= node.defVariables +" @var@"+node.expr.expressions [1]. variable;

37 }

38 else {

108

Listing B.2: Local must not alias continued from Listing B.1

39 else {

40 add(local , node.defVariables +" @unknown ");

41 cur_val.gen= node.defVariables +" @unknown ";

42 }

43 }

44 }

45 return cur_val;

46 };

47
48 alias := traversal(node: CFGNode) : T1 {

49 in_set : set of string;

50 out_set : set of string;

51 cur_val : T1;

52 cur_val = {in_set , out_set };

53 preds := node.predecessors;

54 foreach(pred_node:CFGNode=preds) {

55 pred := getValue(pred_node);

56 if(def(pred))

57 cur_val.in = union(cur_val.in, pred.out);

58 }

59 cur_val.out = setClone(cur_val.in);

60 genkill := getValue(node , init);

61 if(genkill.gen !="") {

62 str_array := splitall(genkill.gen ,"@");

63 if(str_array [1]!=" var")

64 add(cur_val.out , genkill.gen);

65 else {

66 tmp_out := setClone(cur_val.out);

67 foreach(tmp:string=tmp_out) {

68 tmp1:= stringClone(tmp);

69 str_array1 := splitall(tmp1 ,"@");

70 if(str_array1 [0] == str_array [2]) {

71 add(cur_val.out , str_array [0]+"@"+ str_array1 [1]);

72 }

73 }

74 }

75 }

76 addAll(cur_val.out , cur_val.in);

77 return cur_val;

78 };

79
80
81 fixp1 := fixp(curr , prev: T1) : bool {

82 if (difference(curr.out , prev.out) == 0)

83 return true;

84 return false;

85 };

109

Listing B.3: Local must not alias continued from Listing B.2

85 };

86
87 q_all := visitor {

88 before node: Method -> {

89 cfg = getcfg(node);

90 clear(local);

91 if(def(node.arguments)) {

92 foreach(i:int;def(node.arguments[i])) {

93 add(local , node.arguments[i].name+" @argument "+ string(i));

94 }

95 }

96 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , init);

97 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , alias , fixp1);

98 }

99 };

100
101 visit(p, q_all);

110

Listing B.4: Live variable analysis

0 m: output collection[string][string][int] of int;

1 p: Project = input;

2
3 type T_gen_kill= {gen: set of string , kill: string , dummy : int};

4 type T_inout= {in: set of string , out: set of string };

5
6 cfg: CFG;

7 cur_cfg_node: CFGNode;

8
9 genset : set of string;

10 killset : set of string;

11
12 init := traversal(node: CFGNode): T_gen_kill {

13 cur_value : T_gen_kill;

14 cur_value = {node.useVariables , node.defVariables , 0};

15 return cur_value;

16 };

17
18 live := traversal(node: CFGNode): T_inout {

19 succs := node.successors;

20 in_set : set of string;

21 out_set : set of string;

22 cur_val : T_inout = {in_set , out_set };

23 if(def(getValue(node))) {

24 cur_val1 := getValue(node);

25 cur_val = clone(cur_val1);

26 }

27 foreach(succ_node:CFGNode=succs) {

28 succ := getValue(succ_node);

29 if(def(succ)) {

30 cur_val.out = union(cur_val.out ,succ.in);

31 }

32 }

33 gen_kill := getValue(node , init);

34 if(def(gen_kill)) {

35 remove(cur_val.out , gen_kill.kill);

36 cur_val.in = union(gen_kill.gen , cur_val.out);

37 }

38 return cur_val;

39 };

40
41 fixp1 := fixp(curr , prev: T_inout) : bool {

42 if (difference(curr.in, prev.in) == 0)

43 return true;

44 return false;

45 };

46
47 q_all := visitor {

48 before node: Method -> {

49 clear(init);clear(live);

50
51 cfg = getcfg(node);

52 traverse(cfg , TraversalDirection.BACKWARD , TraversalKind.HYBRID , init);

53 traverse(cfg , TraversalDirection.BACKWARD , TraversalKind.HYBRID , live , fixp1);

54 }

55 };

56
57 visit(p, q_all);

111

Listing B.5: Nullness Analysis

1 p: Project = input;

2 m: output collection[string][int] of string;

3
4 type T= {in: set of string , out: set of string };

5 cfg: CFG;

6
7 cur_node_id: int;

8 cur_cfg_node: CFGNode;

9
10 genset: set of string;

11 vardef: string;

12 killset: set of string;

13 local : set of string;

14
15 allVarT := traversal(node: CFGNode) {

16 if(def(node.expr)) {

17 if(node.expr.kind == ExpressionKind.VARDECL) {

18 add(local , node.defVariables);

19 }

20 }

21 };

22
23 nullness := traversal(node: CFGNode) : T {

24 in_set : set of string;

25 out_set : set of string;

26 cur_val : T;

27 cur_val = getValue(node);

28 if(node.id==0)

29 cur_val = {in_set , out_set };

30 else

31 cur_val = {setClone(local), out_set };

32 preds := node.predecessors;

33 foreach(pred_node:CFGNode=preds) {

34 pred := getValue(pred_node);

35 if(def(pred))

36 cur_val.in = intersection(cur_val.in, pred.out);

37 }

38 addAll(cur_val.out , cur_val.in);

39 if(def(node.expr)) {

40 if(node.expr.kind == ExpressionKind.VARDECL) {

41 if(contains(local , node.defVariables)) {

42 if(node.expr.variable_decls [0]. initializer.kind == ExpressionKind.LITERAL) {

43 if(node.expr.variable_decls [0]. initializer.literal == "null") {

44 remove(cur_val.out , node.defVariables);

45 }

46 else {

47 add(cur_val.out , node.defVariables);

48 }

49 }

112

Listing B.6: Nullness Analysis continued from Listing B.5

50 else if(node.expr.variable_decls [0]. initializer.kind == ExpressionKind.OTHER

) {

51 remove(cur_val.out , node.defVariables);

52 }

53 else {

54 flag := false;

55 foreach(use:string=node.useVariables) {

56 if(contains(local , use)) {

57 if(! contains(cur_val.out , use)) {

58 flag = true;

59 remove(cur_val.out , node.defVariables);

60 break;

61 }

62 }

63 }

64 if(flag == false) {

65 add(cur_val.out , node.defVariables);

66 }

67 }

68 }

69 }

70 if(node.expr.kind == ExpressionKind.ASSIGN) {

71 if(contains(local , node.defVariables)) {

72 if(node.expr.expressions [1]. kind == ExpressionKind.LITERAL) {

73 if(node.expr.expressions [1]. literal == "null") {

74 remove(cur_val.out , node.defVariables);

75 }

76 else {

77 add(cur_val.out , node.defVariables);

78 }

79 }

80 else {

81 flag1 := false;

82 foreach(use:string=node.useVariables) {

83 if(contains(local , use)) {

84 if(! contains(cur_val.out , use)) {

85 flag1 = true;

86 remove(cur_val.out , node.defVariables);

87 break;

88 }

89 }

90 }

91 if(flag1 == false) {

92 add(cur_val.out , node.defVariables);

93 }

94 }

95 }

96 }

97 }

98 return cur_val;

99 };

113

Listing B.7: Nullness Analysis continued from Listing B.6

99 };

100
101 fp1 := fixp(curr , prev: T) : bool {

102 if (difference(curr.out , prev.out) == 0)

103 return true;

104 return false;

105 };

106
107
108 reach_def := visitor {

109 before node: Method -> {

110 clear(allVarT);clear(nullness);clear(local);

111
112 cfg = getcfg(node);

113 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , allVarT);

114 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , nullness , fp1);

115
116 }

117 };

118
119 visit(p, reach_def);

114

Listing B.8: Post Dominator analysis

0 m: output collection[string][int] of string;

1 mt: output collection[int] of string;

2 p: Project = input;

3
4 type T= {dom: set of string , dummy : int};

5
6 cfg: CFG;

7 cfgnode_ids:set of string;

8 exitId : int;

9
10 allnode_ids := traversal(node: CFGNode) : string {

11 add(cfgnode_ids , string(node.id));

12 return string(node.id);

13 };

14
15 cfg_dom := traversal(node: CFGNode): T {

16 cur_value : T;

17 if(node.id== exitId) {

18 self_dom:set of string;

19 cur_value = {self_dom , 0};

20 }

21 else

22 cur_value = {cfgnode_ids , 0};

23 if(def(getValue(node))) {

24 cur_val1 := getValue(node);

25 cur_value = clone(cur_val1);

26 }

27 start_dom:set of string;

28 add(start_dom , string(node.id));

29 preds:=node.successors;

30 foreach(i:int;def(preds[i])) {

31 pred_value := getValue(preds[i]);

32 if(def(pred_value)) {

33 cur_value.dom = intersection(cur_value.dom ,pred_value.dom);

34 }

35 }

36 gen_kill := getValue(node , allnode_ids);

37 if(def(gen_kill)) {

38 add(cur_value.dom , gen_kill);

39 }

40 return cur_value;

41 };

42
43 fp1 := fixp(curr , prev: T) : bool {

44 if (difference(curr.dom , prev.dom) == 0)

45 return true;

46 return false;

47 };

48
49 q_all := visitor {

50 before node: Method -> {

51 clear(allnode_ids);clear(cfgnode_ids);clear(cfg_dom);

115

Listing B.9: Post Dominator analysis continued from Listing B.8

53
54 cfg = getcfg(node);

55 exitId = len(cfg.nodes) - 1;

56 traverse(cfg , TraversalDirection.BACKWARD , TraversalKind.HYBRID , allnode_ids);

57 traverse(cfg , TraversalDirection.BACKWARD , TraversalKind.HYBRID , cfg_dom , fp1);

58
59 }

60 };

61
62 visit(p, q_all);

116

Listing B.10: Reaching definition analysis

1 p: Project = input;

2 m: output collection[string][int] of string;

3
4 type T= {in: set of string , out: set of string };

5 type T1= {gen: string , kill: string };

6
7 cfg: CFG;

8 cur_node_id: int;

9 cur_cfg_node: CFGNode;

10
11 genset: set of string;

12 vardef: string;

13 killset: set of string;

14
15 cfg_def := traversal(node: CFGNode) : T1 {

16 cur_val : T1 = {"" ,""};

17 if(node.defVariables !="") {

18 cur_val.gen = node.defVariables +"@"+ string(node.id);

19 cur_val.kill = node.defVariables;

20 }

21 return cur_val;

22 };

23
24 cfg_reach_def := traversal(n: CFGNode): T {

25 preds := n.predecessors;

26 in_set : set of string;

27 out_set : set of string;

28 cur_val : T = {in_set , out_set };

29 if(def(getValue(n))) {

30 cur_val1 := getValue(n);

31 cur_val = clone(cur_val1);

32 }

33 foreach(pred_node:CFGNode=preds) {

34 pred := getValue(pred_node);

35 if(def(pred))

36 cur_val.in = union(cur_val.in, pred.out);

37 }

38 cur_val.out = setClone(cur_val.in);

39 genkill := getValue(n, cfg_def);

40 if(genkill.kill !="") {

41 tmp_out := setClone(cur_val.out);

42 foreach(tmp:string=tmp_out) {

43 tmp1:= stringClone(tmp);

44 str_array := splitall(tmp1 ,"@");

45 if(str_array [0] == genkill.kill) {

46 remove(cur_val.out , tmp1);

47 }

48 }

49 add(cur_val.out , genkill.gen);

50 }

51 return cur_val;

52 };

117

Listing B.11: Reaching definition analysis continued from Listing B.10

52 };

53
54 fixp1 := fixp(curr , prev: T) : bool {

55 if (difference(curr.out , prev.out) == 0)

56 return true;

57 return false;

58 };

59
60 reach_def := visitor {

61 before node: Method -> {

62 clear(cfg_def);clear(cfg_reach_def);

63 cfg = getcfg(node);

64 if(cfg.isValid ==0) {

65 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.ITERATIVE , cfg_def);

66 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , cfg_reach_def ,

fixp1);

67 }

68 }

69
70 };

71
72 visit(p, reach_def);

118

Listing B.12: Resource status

1 m: output collection[string][int] of string;

2 p: Project = input;

3
4 type T= {in: set of string , out : set of string };

5 type T1= {gen: string , kill : string };

6
7 cfg: CFG;

8 cfgnode_ids:set of string;

9
10 genStr : string;

11 killStr : string;

12
13 evisitor := visitor {

14 before node:Expression -> {

15 switch(node.kind) {

16 case ExpressionKind.METHODCALL:

17 if(node.method == "write" || node.method == "read" || node.method == "open")

{

18 if(len(node.expressions) >0) {

19 genStr = node.expressions [0]. variable;

20 }

21 }

22 else if(node.method == "close") {

23 if(len(node.expressions) >0) {

24 killStr = node.expressions [0]. variable;

25 }

26 }

27 break;

28 default: break;

29 }

30 }

31 };

32
33 track := traversal(node: CFGNode) : T1 {

34 cur_val : T1 = {"" ,""};

35 genStr = "";

36 killStr = "";

37 if (def(node.expr)) {

38 visit(node.expr , evisitor);

39 cur_val = {genStr , killStr };

40 }

41 return cur_val;

42 };

43
44 cfg_def := traversal(node: CFGNode) : T {

45 inset : set of string;

46 outset : set of string;

47 cur_val : T = {inset , outset };

48 cur_val = getValue(node);

49 cur_val = {inset , outset };

119

Listing B.13: Resource status continued from Listing B.12

50 preds := node.predecessors;

51 foreach(pred_node:CFGNode=preds) {

52 pred := getValue(pred_node);

53 if(def(pred))

54 cur_val.in = union(cur_val.in, pred.out);

55 }

56 track_val := getValue(node , track);

57 addAll(cur_val.out , cur_val.in);

58 if(track_val.gen != "")

59 add(cur_val.out , track_val.gen);

60 if(track_val.kill != "")

61 remove(cur_val.out , track_val.kill);

62 return cur_val;

63 };

64
65 fixp1 := fixp(curr , prev: T) : bool {

66 if (difference(curr.out , prev.out) == 0)

67 return true;

68 return false;

69 };

70
71 q_all := visitor {

72 before node: Method -> {

73 clear(track);clear(cfg_def);

74
75 cfg = getcfg(node);

76 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , track);

77 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , cfg_def , fixp1);

78 }

79 };

80
81 visit(p, q_all);

120

Listing B.14: Very busy expression

1 m: output collection[string][int] of string;

2 p: Project = input;

3
4 type T1 = {in: set of set of string , out: set of set of string };

5
6 allExprset: set of set of string;

7
8 cfg: CFG;

9 exitId : int;

10 str: set of string;

11
12 node_expr := visitor {

13 before node: Expression -> {

14 switch (node.kind) {

15 case ExpressionKind.LT,ExpressionKind.OP_ADD , ExpressionKind.OP_SUB ,

ExpressionKind.OP_INC , ExpressionKind.OP_MULT , ExpressionKind.OP_DIV ,

ExpressionKind.OP_MOD , ExpressionKind.OP_DEC , ExpressionKind.GT,

ExpressionKind.EQ , ExpressionKind.NEQ , ExpressionKind.LTEQ , ExpressionKind.

GTEQ , ExpressionKind.LOGICAL_NOT , ExpressionKind.LOGICAL_AND , ExpressionKind

.LOGICAL_OR , ExpressionKind.BIT_AND , ExpressionKind.BIT_OR , ExpressionKind.

BIT_NOT , ExpressionKind.BIT_XOR , ExpressionKind.BIT_LSHIFT , ExpressionKind.

BIT_RSHIFT , ExpressionKind.BIT_UNSIGNEDRSHIFT:

16 add(str , string(node.kind));

17 foreach(j:int;def(node.expressions[j])) {

18 visit(node.expressions[j]);

19 }

20 break;

21 case ExpressionKind.ASSIGN:

22 foreach(j:int;def(node.expressions[j])) {

23 if(j!=0) {

24 visit(node.expressions[j]);

25 }

26 }

27 break;

28 case ExpressionKind.VARACCESS:

29 add(str , node.variable);

30 break;

31 case ExpressionKind.VARDECL:

32 visit(node.variable_decls [0]. initializer);

33 break;

34 case ExpressionKind.LITERAL:

35 add(str , node.literal);

36 break;

37 case ExpressionKind.METHODCALL:

38 clear(str);

39 stop;

40 default:break;

41 }

42 stop;

121

Listing B.15: Very busy expression continued from Listing B.14

43 }

44 };

45
46 allExprT := traversal(node: CFGNode): set of string {

47 init_set : set of string;

48 genset : set of string;

49 str = init_set;

50 if(def(node.expr)) {

51 visit(node.expr , node_expr);

52 if(len(str)!=0) {

53 add(allExprset , setClone(str));

54 genset = setClone(str);

55 }

56 }

57 return genset;

58 };

59
60 collectKillT := traversal(node: CFGNode): set of set of string {

61 init_set : set of set of string;

62 killset : set of set of string;

63 killset = init_set;

64 if(def(node.defVariables)) {

65 foreach(aa:set of string=allExprset) {

66 if(contains(aa,node.defVariables))

67 add(killset , aa);

68 }

69 }

70 return setClone(killset);

71 };

72
73 avail_expr := traversal(node: CFGNode): T1 {

74 in_set : set of set of string;

75 out_set : set of set of string;

76 cur_val : T1;

77 if(node.id == exitId)

78 cur_val = {in_set , out_set };

79 else

80 cur_val = {in_set , setClone(allExprset)};

81
82 if(def(getValue(node))) {

83 cur_val1 := getValue(node);

84 cur_val = clone(cur_val1);

85 }

86 succs := node.successors;

87 cur_gen := getValue(node , allExprT);

88 cur_kill := getValue(node , collectKillT);

89 foreach(succ_node:CFGNode=succs) {

90 succ := getValue(succ_node);

91 if(def(succ))

92 cur_val.out = intersection1(cur_val.out , succ.in);

93 }

94 cur_val.in = setClone(cur_val.out);

95 removeAll(cur_val.in , cur_kill);

122

Listing B.16: Very busy expression continued from Listing B.15

96 if(len(cur_gen)!=0)

97 add(cur_val.in, cur_gen);

98 return cur_val;

99 };

100
101 fixp1 := fixp(curr , prev: T1) : bool {

102 if (difference1(curr.in , prev.in) == 0)

103 return true;

104 return false;

105 };

106
107 def := visitor {

108 before node: Method -> {

109 clear(allExprT);clear(avail_expr);clear(collectKillT);

110 clear(allExprset);

111
112 cfg = getcfg(node);

113 exitId = len(cfg.nodes) - 1;

114 traverse(cfg , TraversalDirection.BACKWARD , TraversalKind.HYBRID , allExprT);

115 traverse(cfg , TraversalDirection.BACKWARD , TraversalKind.HYBRID , collectKillT);

116 traverse(cfg , TraversalDirection.BACKWARD , TraversalKind.HYBRID , avail_expr , fixp1);

117 }

118 };

119
120 visit(p, def);

123

Listing B.17: Safe synchronization

1 m: output collection[string][int] of string;

2 p: Project = input;

3
4 type T= {in: set of string , out : set of string };

5 type T1= {gen: string , kill : string };

6
7 cfg: CFG;

8 cfgnode_ids:set of string;

9
10 genStr : string;

11 killStr : string;

12
13 evisitor := visitor {

14 before node:Expression -> {

15 switch(node.kind) {

16 case ExpressionKind.METHODCALL:

17 if(node.method == "lock") {

18 if(len(node.expressions) >0) {

19 genStr = node.expressions [0]. variable;

20 }

21 }

22 else if(node.method == "unLock ") {

23 if(len(node.expressions) >0) {

24 killStr = node.expressions [0]. variable;

25 }

26 }

27 break;

28 default: break;

29 }

30 }

31 };

32
33 track := traversal(node: CFGNode) : T1 {

34 cur_val : T1 = {"" ,""};

35 genStr = "";

36 killStr = "";

37 if (def(node.expr)) {

38 visit(node.expr , evisitor);

39 cur_val = {genStr , killStr };

40 }

41 return cur_val;

42 };

43
44 cfg_def := traversal(node: CFGNode) : T {

45 inset : set of string;

46 outset : set of string;

47 cur_val : T = {inset , outset };

48 cur_val = getValue(node);

49 cur_val = {inset , outset };

50 preds := node.predecessors;

51 foreach(pred_node:CFGNode=preds) {

52 pred := getValue(pred_node);

124

Listing B.18: Safe synchronization continued from Listing B.17

52 pred := getValue(pred_node);

53 if(def(pred))

54 cur_val.in = union(cur_val.in, pred.out);

55 }

56 track_val := getValue(node , track);

57 addAll(cur_val.out , cur_val.in);

58 if(track_val.gen != "")

59 add(cur_val.out , track_val.gen);

60 if(track_val.kill != "")

61 remove(cur_val.out , track_val.kill);

62 return cur_val;

63 };

64
65 fixp1 := fixp(curr , prev: T) : bool {

66 if (difference(curr.out , prev.out) == 0)

67 return true;

68 return false;

69 };

70
71 q_all := visitor {

72 before node: Method -> {

73 clear(track);clear(cfg_def);

74
75 cfg = getcfg(node);

76 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , track);

77 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , cfg_def , fixp1);

78 }

79 };

80
81 visit(p, q_all);

125

Listing B.19: Used defined variable

0 m: output collection[string][string][int] of int;

1 p: Project = input;

2
3 type T_gen_kill= {gen: set of string , kill: string };

4
5 cfg: CFG;

6 cur_cfg_node: CFGNode;

7
8 genset : set of string;

9 killset : string;

10
11 node_def := visitor {

12 before expr:Expression -> {

13 switch(expr.kind) {

14 case ExpressionKind.VARDECL:

15 var_decls := cur_cfg_node.expr.variable_decls;

16 if(len(var_decls)!=0) {

17 killset = var_decls [0]. name;

18 }

19 break;

20 case ExpressionKind.ASSIGN:

21 exprs := cur_cfg_node.expr.expressions;

22 if(len(exprs)!=0) {

23 killset = exprs [0]. variable;

24 }

25 break;

26 default:

27 break;

28 }

29 }

30 };

31
32 node_use := visitor {

33 before expr:Expression -> {

34 if(def(expr.variable)) {

35 add(genset , expr.variable);

36 }

37 }

38 };

39
40 init := traversal(node: CFGNode): T_gen_kill {

41 cur_value : T_gen_kill;

42 killset = "";

43 init_set1 : set of string;

44 genset = init_set1;

45 cur_cfg_node = node;

46 if(def(node.expr)) {

47 visit(node.expr , node_use);

48 visit(node.expr , node_def);

49 }

50 cur_value = {genset , killset };

51 return cur_value;

126

Listing B.20: Used defined variable continued from Listing B.19

52 return cur_value;

53 };

54
55 q_all := visitor {

56 before node: Method -> {

57 clear(init);

58 cfg = getcfg(node);

59 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , init);

60 }

61 };

62
63 visit(p, q_all);

Listing B.21: Useless increment in return statement

1 m: output collection[string][string][int] of int;

2 p: Project = input;

3
4 cfg: CFG;

5 invalid : set of int;

6
7 init := traversal(node: CFGNode){

8 if(def(node.stmt)) {

9 if(node.stmt.kind == StatementKind.RETURN) {

10 if(def(node.stmt.expression)) {

11 if(node.stmt.expression.kind == ExpressionKind.OP_INC) {

12 add(invalid , int(node.id));

13 }

14 }

15 }

16 }

17 };

18
19 q_all := visitor {

20 before node: Method -> {

21 cfg = getcfg(node);

22 clear(invalid);

23
24 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.HYBRID , init);

25
26 }

27 };

28
29 visit(p, q_all);

127

Listing B.22: Wait not in loop

1 m: output collection[string][string][int] of int;

2 p: Project = input;

3
4 type Tloop = {start : int , end : int , use : set of string };

5
6 cfg: CFG;

7 cur_id : int;

8 flag := false;

9 loops : set of Tloop;

10 waitnotinloop : set of string;

11
12 init := traversal(node: CFGNode){

13 init_set : set of string;

14 cur_val : Tloop = {-1, -1, init_set };

15 if(node.name == "WHILE" || node.name == "FOR") {

16 succs := node.successors;

17 foreach(succ:CFGNode=succs) {

18 if(succ.id > node.id + 1) {

19 cur_val.start= int(node.id);

20 cur_val.end= int(succ.id);

21 cur_val.use = node.useVariables;

22 add(loops , cur_val);

23 }

24 }

25 }

26 };

27
28
29 evisitor := visitor {

30 before node:Expression -> {

31 switch(node.kind) {

32 case ExpressionKind.METHODCALL:

33 if(node.method == "wait") {

34 flag = false;

35 foreach(temp:Tloop=loops) {

36 if(cur_id > temp.start && cur_id < temp.end) {

37 flag = true;

38 break;

39 }

40 }

41 if(!flag) {

42 add(waitnotinloop , string(cur_id));

43 }

44 }

45 break;

46 default: break;

47 }

48 }

49 };

128

Listing B.23: Wait not in loop continued from Listing B.22

51
52 track := traversal(node: CFGNode) {

53 cur_id = node.id;

54 if (def(node.expr)) {

55 visit(node.expr , evisitor);

56 }

57 };

58
59 q_all := visitor {

60 before node: Method -> {

61 clear(loops);clear(waitnotinloop);clear(init);clear(track);

62
63 cfg = getcfg(node);

64 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.DFS , init);

65 traverse(cfg , TraversalDirection.FORWARD , TraversalKind.DFS , track);

66
67
68 }

69 };

70
71 visit(p, q_all);

	2017
	A hybrid approach for selecting and optimizing graph traversal strategy for analyzing big code
	Ramanathan Ramu
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	2. CONTRIBUTIONS
	2.1 Traversal declaration and traverse expression
	2.2 Data-flow and loop sensitivity analyses for traversals
	2.3 Graph cyclicity
	2.4 Decision tree for traversal strategy selection
	2.5 Evaluation contribution

	3. BACKGROUND
	3.1 Graph
	3.2 Graph traversal
	3.3 Graph traversal strategies
	3.3.1 Depth-first search
	3.3.2 Breadth-first search

	3.4 Program analysis
	3.5 Control-flow and data-flow analysis
	3.6 Graph traversal for program analysis
	3.6.1 Random order
	3.6.2 Postorder
	3.6.3 Reverse postorder

	4. HYBRID TRAVERSAL SELECTION FOR EFFICIENT SOURCE CODE ANALYSIS
	4.1 A system for expressing source code analysis as traversals
	4.2 Static and runtime properties
	4.2.1 Data-flow sensitivity
	4.2.2 Computing data-flow sensitivity
	4.2.3 Loop sensitivity
	4.2.4 Computing loop sensitivity
	4.2.5 Graph cyclicity

	4.3 Traversal strategies - candidates
	4.4 Decision tree for traversal strategy selection
	4.4.1 An example

	4.5 Optimizing the selected traversal strategy

	5. IMPLEMENTATION ON BOA FRAMEWORK
	5.1 Boa language and infrastructure
	5.2 Source code analysis using traversal construct
	5.2.1 Traversal type and traverse statement
	5.2.2 Implementation of traversal without fixpoint
	5.2.3 Post-dominator analysis using traversal construct
	5.2.4 Implementation of traversal with fixpoint

	5.3 Putting it all together

	6. EMPIRICAL EVALUATION
	6.1 Analyses, datasets and experiment setting
	6.1.1 Analyses.
	6.1.2 Datasets.
	6.1.3 Setting.

	7. RUNNING TIME AND TIME REDUCTION
	7.1 Running time
	7.2 Time reduction
	7.3 Time reduction against hand optimized analysis

	8. CORRECTNESS OF ANALYSIS RESULTS
	9. TRAVERSAL STRATEGY SELECTION PRECISION
	10. ANALYSIS ON THE DECISION TREE DISTRIBUTION
	11. ANALYSIS ON TRAVERSAL OPTIMIZATION
	12. CASE STUDIES
	12.1 API Precondition Mining (APM).
	12.2 API Usage Mining (AUM).

	13. THREATS TO VALIDITY
	14. RELATED WORK
	14.1 Mixing static and dynamic information.
	14.2 Optimizing program analysis.
	14.3 Ultra-large-scale source code mining.
	14.4 Graph traversal optimization.

	15. CONCLUSION AND FUTURE WORK
	15.1 Conclusion
	15.2 Future work

	BIBLIOGRAPHY
	A. SOURCE CODE LISTINGS FOR ANALYSES 1 - 10
	B. SOURCE CODE LISTINGS FOR ANALYSES 11 - 21

