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ABSTRACT 

 

Human factors have been increasingly recognized as one of the major driving forces 

of requirement changes. We believe that the requirements elicitation (RE) process should 

largely embrace human-centered perspectives, and this work focuses on changing human 

intentions and desires over time. To support software evolution due to requirement changes, 

Situ framework has been proposed to model and detect human intentions by inferring their 

desires through monitoring environmental contexts and human behavioral contexts prior to or 

after system deployment. Earlier work on Situ reported that the technique is able to infer 

users’ desires with a certain degree of accuracy using the Conditional Random Fields 

method. However, new intention identification and new requirements elicitation still 

primarily depends on manual analysis.  

This work attempts to find a computable way to identify users’ new intentions with 

limited help from human oracle. We discuss the feasibility of implementing the concept of 

Data-Information-Knowledge-Wisdom (DIKW) to bridge the gap between requirements and 

data pertaining to user behaviors and environmental contexts, and propose a situation-centric, 

knowledge-driven requirements elicitation approach using the Multi-strategy, Task-adaptive 

Learning (MTL) method and the Strategic Rationale (SR) model. A case study shows that the 

proposed approach is able to identify users’ new intentions, and is especially effective to 

capture alternatives of low-level tasks. We also demonstrate how these newly identified 

intentions can be fused to the existing domain knowledge network using the SR model, and 

harvest high-level wisdom, in terms of new requirements and design insights. 



viii 

 

 

Keywords – contexts, DIKW, human intention, requirements, situation, SR model, the MTL 

method, user behaviors  
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CHAPTER I 

INTRODUCTION 

 

Requirements elicitation (RE) is an essential phase in system development because the 

quality of the elicitation results will be directly reflected in the final product. In order to properly 

manage this phase, various methods have been studied and practiced [1]. However, system 

specification still cannot describe the system-to-be completely and correctly. One major problem 

is how to handle changes in user’s needs and environmental contexts. Unfortunately, most of the 

traditional RE techniques fall short in handling changes in terms of effectiveness and efficiency 

[2]. In recent years, along with the outburst of the development and application of different data 

analytic techniques, requirements engineering researchers started looking into the possibility of 

acquiring requirements and subsequent changes from different data sources, such as historical 

multi-modal user behaviors, system log information, error reports, etc. Although some promising 

results have been shown, attempts to systematically solve the problem have not been successful. 

To handle changes, the strategy shared by many traditional methods [2] is to wait until 

feedback or new business needs emerge from users, and then manually analyze them. However, 

software nowadays evolves at a rather fast pace [3], and manual strategies cannot keep up. To 

address this problem, new requirements elicitation approaches have been proposed, but most of 

them focus on observing historical system defects [4], [5], or analyzing users’ delayed feedbacks 

[6], [7]. A more prompt way to gather information that can lead to new requirements is much 

needed.  

Furthermore, we believe that one major driving force for software evolution is human 

intention. A frontier work of human-intention-driven software evolution, Situ [8], was proposed 
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to support rapid and iterative requirements analysis as a general framework. Based on our review 

of requirements elicitation techniques, the main research focus in RE techniques is now shifting 

from the previous system-centered perspective towards to a human-centered one. During this 

transition, data, more specifically user behavioral and environmental context data, has become 

more important and valuable as the means of expressing human goals and context attributes. 

However, there is a huge gap between data and requirements, as commonly agreed in the fields 

of information system research [9], [10]. Hence, we propose to apply the Data-Information-

Knowledge-Wisdom (DIKW) Hierarchy [9] to bridge such gap and present a divide-and-conquer 

approach to partition the huge gap into multiple smaller ones, so that each of them can be 

handled separately with existing methods and techniques. In other words, we will implement the 

concept of DIKW in a computable way to elicit requirements from data.  

There are 3 research objectives for this work: 

Objective 1: To investigate and evaluate the feasibility of applying DIKW for 

requirements elicitation, and the feasibility of using situation as the key linkage to connect 

different layers of DIKW. 

Objective 2: To propose a general situation-centric, knowledge driven requirements 

elicitation approach on the basis of the result of Objective 1, by applying existing data analytic 

techniques, machine learning methods, and requirements modeling techniques. 

Objective 3: To carry out case studies and demonstrate and evaluate the approach 

proposed in Objective 2 on functional requirements elicitation. We also seek to further fine-tune 

the approach to improve elicitation results. 

The proposed research will yield a general approach to take historical user behavioral and 

environmental context data as input, and produce a set of potential new requirements for 
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evolving the system. Furthermore, we hope that the proposed approach can be extended to the 

applications on runtime system decision making, when the corresponding knowledge base is 

available. Although in this work the notion of wisdom is embodied as requirements, it can also 

be interpreted as design rationales and beliefs, or other high-level software engineering 

intellectual artifacts. In essence, the proposed approach can be considered as one way to 

incrementally accumulate the body of knowledge of the specific system and user domain through 

data analysis. And we expect it intersects with the fields of software engineering, data analytics, 

and knowledge engineering [41], and eventually becomes a general architecture to utilize 

techniques across the above-mentioned fields. 

The rest of this dissertation is organized as follows: Chapter 2 briefly introduces the 

DIKW Hierarchy and presents an overview of related work cutting across the area of 

requirements elicitation and goal model, human intention modeling, and the Multi-strategy, 

Task-adaptive, learning (MTL) method. Chapter 3 discusses some fundamental issues about the 

research problem and proposes a situation-centric approach to identifying new user intentions 

from user behavioral and environmental context data using the MTL method. Chapter 4 presents 

a case study of an online library system on new intention identification using our proposed 

method. Chapter 5 illustrates how to use a strategic rationale model to transform the newly 

identified intentions into the form of a strategic model, and how to fuse them with the existing 

knowledge network to harvest new design insights. Chapter 6 discusses threats to validity and 

conclude this work. 
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CHAPTER II 

BACKGROUND & RELATED WORKS  

 

2.1 Requirements Elicitation and Goal Models 

The traditional requirements elicitation process can be considered an interactive mutual 

learning process between the requirements engineer and the customer [11]. The knowledge of 

users’ requirements can be obtained from interview [12], feedback [2] or observation of 

customers’ activities at their workplace [13]. As users’ requirements are usually implicit and 

unpredictable [14], this process mainly depends on requirements engineers’ subjective analysis 

and judgment, so it is usually time-consuming and results in inaccurate requirements. 

Oftentimes, a cycle of elicitation, modification, development, and deployment takes a long time 

to complete, usually several months [1]. Researchers are now facing the steep challenge of 

shortening such undesirably long evolution cycles to build timely patches and updates required 

by modern-day users. New technologies that can enable automatic or semi-automatic 

requirements elicitation and analysis are needed in order to realize rapid software evolution. 

Goal models ([12], [15], [16], [33]) have been found to be effective in precisely and 

accurately capturing large numbers of alternative sets of low-level tasks, operations, and 

configurations that can fulfill high-level stakeholder goals. The characterization of a large space 

of such alternatives has been shown to be useful for evaluating alternative designs during the 

analysis process [17], for customizing designs to fit individual user characteristics [18], or even 

for coping with the large space of configurations of common desktop applications [19]. In this 

work, goal model will not be used directly. Instead, the concept of “goal” is embedded within the 
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Situ framework, and it is still an essential element to establish linkage from data to information, 

and further to knowledge.  

 

2.2 The DIKW Hierarchy 

The DIKW Hierarchy, also known variously as the "DIKW Pyramid", the "Wisdom 

Hierarchy", the "Knowledge Hierarchy", the "Information Hierarchy", and the "Knowledge 

Pyramid", refers loosely to a class of models for representing structural and/or functional 

relationships between data, information, knowledge, and wisdom. The implicit assumption is that 

data can be used to create information; information can be used to create knowledge; and 

knowledge can be used to create wisdom. As Ackoff [9] explains, each of the higher types in the 

hierarchy includes the categories that fall below it (see Figure 1). 

Wisdom

Knowledge

Information

Data
 

Figure 1. DIKW Hierarchy 

The definitional role of the DIKW Hierarchy positions it as a central model of 

information management, information systems and knowledge management. It sets the stage for 

disambiguating data from knowledge and sets definitional boundaries for what data, information 

and knowledge are. However, there has been significant debate over the years on the nature and 
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definition of information, both before and since Ackoff’s paper, e.g. [20–23]. The main reason 

for the existence of such a debate is due to the difficulty in reaching a uniform distinction 

between the definitions of information and knowledge at general theoretical and philosophical 

levels. But, when dealing with a specific domain, such definitional confusion can be overcome 

by providing domain-specific definitions for each concept. In our work, this strategy has been 

adopted. With this approach, the DIKW Hierarchy provides an intuitive way to divide and 

conquer the problem of knowledge acquisition and application when each concept (in DIKW) is 

carefully and clearly defined in the domain. Also, what is equally important is that the transitions 

from each lower layer to a higher layer within the DIKW Hierarchy can help us interpret the 

nature of each sub-learning-problem. 

 

2.3 Human Intention Modeling 

In the fields of Philosophy, Cognitive Science [24], and Artificial Intelligence [25], [26], 

the definition of human intention has been well studied. However, the concept of human 

intention has not been rigorously investigated through a computational perspective until just a 

decade ago. Situ [8] is a general approach proposed for human-intention-driven service evolution 

in context-aware service environments. Situ as a computational framework allows people to 

model and detect human intentions by inferring human desires, as they are often largely hidden, 

and capturing the corresponding context values through observations. In the early phase of Situ 

research, Hidden Markov Model (HMM) [27] was adopted for desire inference and intention 

detection. However, it was recently recognized that HMM is not able to provide the optimal 

inference accuracy due to its model limitations [38], [39].  
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Recently, the Conditional Random Field (CRF) method [36] was proposed for automatic 

desire inference, and its capability has been demonstrated for better inference accuracy compared 

to HMM. Figure 2 shows the latest development of the Situ framework, in which the relations 

between desire, actions, and environmental context variables have been further investigated, and 

domain knowledge and characters has been converted into mathematical models as feature 

functions in CRF.  

The current Situ framework remains incomplete in terms of computation ability, as it still 

relies on manual analysis to identify new human intentions from the inferred desires. Our work 

using the MTL method seeks to extend Situ’s ability to automatically detect new intentions from 

inferred desires with limited help from human oracle.  

 

Situation-theoretic Intention-driven Framework for Service Evolution 

Goal

Atomic Desire

Behavioral 

Context

Environmental 

Context

New requirement (new goal)

Intention

Situation

gk+1

d1 d2 d3 dn...

A1 A2 A3 An...

E1 E2 E3 En...

CRF
Intention ij

transits

si = (di, Ai, Ei)

ii = Seq (s1 , s2 ,  , si )

gk+1= a new pair set of (D, ij)

G  = G U {gk+1}

Targeted Service

A new requirement is defined as a new pair of 

the chosen set of desires and intention.

A minimal intention is a temporal sequence of 

named situations to achieve a goal.

A situation is captured as a 3-tuple of a desire 

state, behavioral contexts (i.e. actions), and 

environmental contexts at a certain time point.

New Intention Detection

Desire Inference

Evolution upon

Intention change

trigger

determines

determines

determines determines

 

Figure 2. Using CRF to infer human desires in Situ 
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2.4 The MTL Method 

With the growing understanding of capabilities and limitations of single-strategy learning 

methods, there has been an increasing interest in multi-strategy learning methods that employ 

two or more inference types and/or computational mechanisms [28], [29]. Multi-strategy 

learning methods have potential for much greater competence, that is, the ability to solve a much 

wider range of learning problems than single-strategy methods, because they take advantage of 

the complementarity of individual learning strategies (see Table 1). 

In this work, we adopt the MTL method [30], because theoretically, it only requires 

incomplete and partially correct knowledge base (KB) with at least one positive example, which 

is suitable for the application scenarios of our work, considering system evolution as the process 

of correcting and perfecting system requirements. Also, this method has been applied to elicit 

requirements for agile development [31], showing some potential for further application with 

other requirements modeling techniques, such as goal models [12], [15], [16], and [33]. In terms 

of learning, the CRF method is essentially a type of analogy & case-based method, while other 

types of learning methods that MTL includes may serve as complementary roles to help discover 

new knowledge, i.e., new intentions. 

 

Table 1. Requirements and results of different types of single-strategy learning method 

Learning Type Application Requirements Type of Result 

Empirical 

induction 

requires many input examples and a 

small amount of background knowledge 

a hypothetical generalization 

of several input examples 

Explanation-

based 

requires one input example and a 

complete background knowledge 

an operational generalization 

of an input example 
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Table 1 continued.  

Learning Type Application Requirements Type of Result 

Analogy & case-

based 

require background knowledge 

analogous with the input 

new knowledge about the 

input 

Abduction requires causal background knowledge 

related to the input 

new background knowledge 
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CHAPTER III 

A SITUATION-CENTRIC APPROACH TO 

IDENTIFYING NEW INTENTIONS USING THE MTL METHOD 

 

In this chapter, we first discuss the feasibility of bridging the gap between user behavioral 

and environmental context data and requirements, with situation as the key linkage to connect 

different layers. Then, an intuitive research idea is informally described. Based on that, in 3.3, 

we discuss the necessary modification to the existing MTL method. In 3.4, a situation-centric 

approach using the MTL method is proposed to identify new user intentions [48].  

 

3.1 Feasibility 

3.1.1 Feasibility of eliciting requirements from data 

Produces

Specification R

Determines

System Users

Interact

Monitoring Mechanism
Respond

Interviews

Traditional Requirements 

Workshop

Requirements 

Engineer
Stakeholders

User Behavioral & 

Contextual Data

GeneratesRelfect?

 

Figure 3. Potential linkage between data and requirement specification 

Figure 3 depicts the potential linkage between data and system requirements in a typical 

software lifecycle. As the starting point of the whole process, a requirements workshop produces 

system specification through stakeholders’ input and requirements engineers’ elicitation efforts, 
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which is later implemented in the system design. After deployment, users interact with the 

system through instrumented operations, and such a process can generate a huge amount of data.  

In our analysis, it is a time-series user behavioral data with corresponding contextual parameters. 

These data show historical operational status within the scope containing system, users, and 

related contextual variables, i.e. historical facts. Assuming that the system has been correctly 

designed and implemented (the system is in compliance with its specification), the interaction 

between the system and its users shall also be consistent with what has been anticipated in the 

requirements, which is what the data can and should reflect. So, theoretically, data can be viewed 

as visible states that gives certain hints on the original requirements specification.  

System Users

Interact

            Monitoring Mechanism

Analyzing Techniques

User Behavioral &

Contextual DataIndicates

Analytical Specification R’

Generates Reflect

Determines

Specification R

Produces

Corrects & Perfects

Respond

Interviews

Traditional Requirements Workshop

Requirements 

Engineer
Stakeholders

 

Figure 4. System evolution based on user behavioral and contextual data analysis 

However, there is a strong yet implicit assumption that the specification must completely 

and accurately capture what the users need. Unfortunately, in many realistic cases, this 

assumption does not hold true. A common cause is that stakeholders may not have a clear and 

concrete idea of their needs, making it difficult for requirements engineer to elicit. Consequently, 

the linkage between data and requirements may be not as straightforward as is shown in Figure 
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3. More realistically, as shown in Figure 4, the imagined system in the requirements elicitation 

phase might not faithfully project the same end users. Such inconsistency can result in changes to 

the system, i.e., new requirements, driving system evolution. Additionally, another side-effect is 

that rational users may get to know that the differences between their comprehensive projection 

of the system and the actual one through their interactions with the system, and may adjust their 

behaviors accordingly to fulfill their needs. Such adjustments can be captured and reflected in 

their behavioral data. Analysis on these data is likely to reveal the character of the users’ actual 

needs, and can help refine the current system specification to eventually evolve the system.  

System Record i

time: 2014-06-23 12:11:20
ip: 129.186.93.215
loginID: guest
action: click(Btn_Login)
page: Page_Login
nextpage: Page_Login
content: [Login ID]Test001 [Password]112233 [Message]Invalid password

Reqj

An error message  Invalid password  shall be 
displayed  after a user inputs a wrong 
Username/password combination.

Instances of 
different data 
elements 
with various 
data 
attributes

Specification with 
information of who does 
what at where and when, 
with a reason why

Huge Gap

 

Figure 5. The huge gap between raw data and system requirements 

Based on the above discussion, the idea of eliciting new requirements from data may 

sound feasible. However, one problem that has been overlooked so far is the huge gap between 

raw data and system requirements (shown in Figure 5). In essence, requirements are the 

abstraction of the “right” system behaviors, while data is the output or side-effect of those system 

behaviors through interaction with users. There are too many variables between the two sides, 

not to mention that there are even more relationships to be analyzed. To overcome such data 

complexity, a common solution is to reduce it by certain learning goals. Also, as discussed in  
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WHY?

HOW?

WHO?
WHAT?
WHICH?
WHEN?
WHERE?

RAW DATA

INFORMATION

KNOWLEDGE

WISDOM

UNDERSTANDING

C
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N
TE

X
T

WHY?

HOW?

WHO?
WHAT?
WHICH?
WHEN?
WHERE?

STAKEHOLDERS  
FEEDBACK

ELICITATION 
PROCESS

REQUIREMENTS

C
O

N
TE

X
T

Part a) Part b)  

Figure 6. Traditional requirements elicitation vs. DIKW structure 

section 2.2, the concept of DIKW Hierarchy can provide a natural workflow to divide and 

conquer the problem.  

Figure 6 presents one possible visualization of the DIKW Hierarchy (Part a)). As the 

understanding of the domain increases, data is processed into information as relations between 

data, information is synthesized into knowledge as information patterns, and knowledge is 

explained in terms of wisdom of principles. Interestingly, the type of questions that can be 

answered in each layer are exactly the key concerns of the RE process [34] (see Part b) of Figure 

6). Note that in both figures, when requirements and wisdom continue to emerge, more context 

factors are explored and involved, which indirectly indicates the possibility of using situation [8] 

as a key linkage within the DIKW Hierarchy. 

 

3.1.2 Feasibility of using situation as linkage within the DIKW Hierarchy 

A classic application of the DIKW Hierarchy is the order history mining problem [35], 

shown in the upper part of Figure 7. In the data layer, many online shopping order records are 
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Wisdom (Principles)

Knowledge (Patterns)

If customers buy 
tablets, they will also 
buy covers.

Information (Relations)

Tablets and Covers 
often occur together.

Data (Raw Facts)

DIKW Hierarchy

Order history

If a hyperlink to cover is 
displayed on tablet page, sales 
profits is likely to be increased.

 
Vs. 

Wisdom (Principles)

If there is a  Download 
all  button, the user 
can download papers 
faster.

Knowledge (Patterns)

If multiple papers 
show up, the user 
may want to 
download all of them

Information (Relations)

Multiple  Download  
usually appear after 
 Go  on Search page.

Data (Situation Sequences)

Situation Analytics

Situation.log

Si:
D1: Search for papers
A1: Click  Go 
E1: on Search page

Si+1:
D1: Search for papers
A1: Click  Download  
on paper No. 1
E1: on Search page

Si+2:
D1: Search for papers
A1: Click  Download  
on paper No. 2
E1: on Search page

Sj:
D1: Search for papers
A1: Click  Go 
E1: on Search page

Sj+1:
D1: Search for papers
A1: Click  Download  
on paper No. 1
E1: on Search page

Sj+2:
D1: Search for papers
A1: Click  Download  
on paper No. 2
E1: on Search page

Sk:
D1: Search for papers
A1: Click  Go 
E1: on Search page

Sk+1:
D1: Search for papers
A1: Click  Download 
all 
E1: on Search page

 ,Si-1, Si(Di, Ai, Ei), Si+1, ...
S – Situation, D – Desire, A – Action, 

E – Environmental Context, [8]

 

Figure 7. An online order history mining problem vs. situation-centric user behavior analysis on 

“paper download” example 
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given. However, it is hard to see any relations between them, since each list contains a random 

list of items. First, these data are processed so that frequently purchased items can be identified; 

the result shows that “Tablets” and “Covers” often occur together. Next, such relationships are 

further synthesized into knowledge, and a practical, more meaningful pattern surfaces: “If there 

are tablets ordered, there will be covers in the same order.” Knowledge represented as this kind 

of pattern can be applied to a future contexts. For example, in a context of pursuing the 

maximum profits, sellers may want to have “Covers” linked on the “Tablet” page, so that 

customers can easily find both items and purchase them together. As such, applying new 

knowledge to an existing knowledge base in order to realize certain goals can be considered 

wisdom. Similarly, the situation-centric user behavior analysis process (shown in Figure 7, lower 

part) can be readily mapped to each phase of the above order history mining example. Using the 

approach discussed above on a “paper download” example (within an online library system), raw 

situation sequences can be processed, and a relation between different situations “multiple 

DOWNLOAD operations usually appear after each SEARCH operation” can be found. Based on 

this information, a situation pattern can be further synthesized as “If multiple papers show up as 

a search result, users may want to download all of them”. When this new knowledge is added 

into the existing knowledge base, and interacts with other design principles, a wisdom can 

emerge as “Adding a new button “DOWNLOAD ALL” to allow users to download papers more 

easily”.1 

In fact, we observed that the concept of DIKW had been applied to the Situ framework to 

some extent, through the process of desire inference using the CRF method [36], [38], [39], [40]. 

                                                 
1 A more refined version of this requirement could be “The system shall allow users to be able to select multiple 

papers including a SELECT-All option, and users shall be able to download them all at once.” 
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As shown in Figure 8, the raw data, a set of observation sequences, are filtered based on 

relevance of context variables, i.e., non-relevant context variables are filtered out, and raw 

observations (data) are processed into refined observations, and a set of refined observation 

sequences (information) can be acquired. Then the CRF method can be applied, and map 

different parts of each observation sequence with a pre-defined desire. As a result, each 

observation with the labeled desire together constructs a situation, and those sequences of 

situation with the same desire can form an intention (knowledge), according to the definition of 

“intention” in Situ [8]. In essence, the whole desire inference process can be considered as an 

application of the Map-Reduce scheme, and covers the first three layers in the DIKW Hierarchy. 

Furthermore, to harvest wisdom, it totally depends what the goal is. For example, one may be 

interested in the transition of desires, and would like to know if there is any desire transition 

patterns, so that some potential compound desire can be detected. Or, others may be more 

concerned about the similarity between different situation sequences but labeled with the same 

intention, and may possibly identify alternative ways to fulfill the same intention. Hence, to 

make the leap from knowledge to wisdom, it is necessary to set up a specific goal first, and based 

on that decide a suitable solution. Considering our ultimate goal of this work is to elicit new 

requirements, an immediate next step naturally becomes identifying the new intentions among all 

situations sequences. 
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3.2 An Intuitive Idea 

 As discussed in the previous section, an immediate goal that may be achievable is to infer 

new intentions based on the current desire inference result by using the CRF method, since in the 

current Situ framework, new intentions are still manually identified [38], [39]. Figure 9 presents 

an intuitive idea of the whole workflow powered by an MTL engine. The application scenario is 

to refine the requirements of an existing system or a prototype, which has been set up with a 

monitoring mechanism to capture user behavioral and relevant environmental context data. As 

reported in [38], [39], the CRF method has been applied to the raw data (in form of situations), 

and successfully labeled each situation with an appropriate pre-defined desire. Noise introduced 

by the CRF method (i.e. inaccurate inference results) is allowed. The initial knowledge base is 

generated based on existing knowledge of the current system. To be specific, a set of intention 

decomposition rules are extracted from the specification of the current system. Moreover, known 

positive and negative examples are selected from the training data set used to train the CRF 

model. Note that these known examples must be completely correct and noise-free.  

The MTL EngineSpecification
R

Training
Data

used by
CRF

...

Intention Ix = {S'1,m, S'1,m+1}

Intention Iy = {S'1,m+2, ...}
Defines

Processed
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Known Facts

Positive Examples

Negative Examples

Initial KB

New
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Facts To Be Justified

New Positive Examples

New Negative Examples
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be justified within
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after all examples have been 
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KB been 
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No No
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Those examples that 
introduce changes to 
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New Intentions
as Wisdom

Validated 
by

Filter
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Fed to

 

Figure 9. An intuitive idea of new intentions detection using the MTL method 
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New examples as facts to be justified are acquired from the set of situation sequences with 

inferred labels, grouped by desire type. Then, we feed the initial knowledge base and new 

examples into the MTL engine, and start the learning process. The MTL engine will attempt to 

justify each example within the available KB. If some examples cannot be justified, they will be 

put into a set, and re-fed into the MTL engine after all other examples are processed (either 

justified or not). For those examples that can be justified, check if the KB has been added with 

new rules, i.e., has been updated during the justification process. If not, there are no new 

intentions found. Otherwise, those examples that introduce changes to the KB are the potential 

new intentions, which will be later validated by human oracle, and filtered into real new 

intentions as wisdom.  

Roughly speaking, the above approach appears to be very similar to the classical MTL 

process. However, a major difference is that the MTL method is usually used for concept 

learning, and situation sequences are a quite different “concept”, because of the temporal 

attribute embedded within each sequence. Hence, to carry out new intention learning, the 

classical MTL method needs to be modified in order to handle the temporal factor of situation 

sequence. 

 

3.3 The Meta Model 

To make Situ and MTL work together, situation sequence has to be represented in a form 

that is decomposable. There is an existing first-order language, SiSL [32], to formally describe 

the situation domain. However, in SiSL, situation is defined as a basic entity, which makes it 



20 

 

 

 

 

difficult to further decompose it. Hence, we propose another representation scheme which fits 

the learning needs. 

A set of basic elements are defined as the following: 

OBJECT o. 

DESIRE is represented using a first-order predicate, d(x).  

ACTION is represented using a first-order predicate, a(y). 

CONTEXT is represented using a first-order predicate, c(z). 

SITUATION: s(p) = (d(x), (ai(y), (c1(z1), c2(z2),…,cn(zn))), p is a first-order predicate. a situation 

is satisfied when d, a, C are all satisfied. 

INTENTION: I(q) = {s1, s2,…,si}, in which, d1=d2=…=di, q is a first-order predicate. An 

intention is satisfied when the final situation in the corresponding situation sequence is reached.  

CONSTRAINT is constructed with a number of predicates, to specify certain conditions that must 

be satisfied within the intention, or the condition of intention decomposition. 

AND joint is used when decomposing an intention into a number of sub-intentions, and the 

intention is satisfied if and only if all of the sub-intentions are satisfied. 

OR joint is used when decomposing an intention into a number of alternative intentions, and the 

intention is satisfied when any of the alternative(s) is/are satisfied. 

Time-AND joint is used to decompose an intention into its corresponding situation sequence. 

Each situation is associated with a time-label, to indicate its temporal order within the sequence. 

An intention is satisfied if and only if all its adjacent lower-level situations are satisfied in the 

specified temporal order. 
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Figure 10 shows the meta-model for intention decomposition. In essence, it is a combination of 

KAOS meta-model [47] and Situ [8]. 
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Figure 10. Meta-model for intention decomposition. 

 

3.4 The Approach 

Based on the discussion in Sections 3.1, 3.2 and 3.3, we now can formally propose a 

situation-centric approach to identifying new user intentions. In Section 3.2, the pre-requisite of 

the approach was discussed (as an assumption). The ultimate goal is to identify potential new 

intentions, which will be further exploited as new requirements for future development or 

evolution. In this way, our approach is different from classical concept learning, which is mainly 

based on positive examples. In our case, knowledge about the negative examples are as 

important as that of the positive ones, because new requirements can be found through analysis 

of how things can go wrong. Because of that, it is necessary to learn both positive and negative 

justification rules. Figure 11 is the overview of the proposed approach. 
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Step 1 Initial KB generation 

a) Inference rules including: 

i. a set of rules Tf to infer that an intention is fulfilled. 

ii. a set of rules Tu to infer that an intention is still unfulfilled. 

b) Constraints 

c) Examples 

Step 2 Learning examples generation 

Step 3 Learning the first positive (or negative) example I1 

a) Build a plausible justification tree T of I1 

i. Always try to justify I1 using the strongest inference method available. 

(Deduction > Analogy > Inductive Prediction > Abduction) 

ii. If I1 cannot be justified, add it into the set of unjustifiable examples U 

b) Build the plausible generalization Tf  (or Tu) of T 

c) Generalize the KB so as to entail Tf. (or Tu)  

Step 4 Learning from each new positive (or negative) example Ii 

a) Generalize Tf (or Tu) so as to cover a plausible justification tree of Ii 

b) Generalization of the KB so as to entail the new Tf (or Tu)  

Step 5 Learning from each negative (or positive) example Ij 

a) Specialize Tf (or Tu) so as not to cover any plausible justification tree of Ij 

b) Specialized the KB so as to entail the new Tf (or Tu) without entailing the previous 

Tf (or Tu)  

Step 6 Re-feed U into the updated KB, and repeat Step 3 – 5 until the set remains stable. 

Step 7 Finalize updated KB, identify new intentions. 

Figure 11. Overview of the proposed approach 

With the help of the newly defined meta-model, the whole learning process is quite 

similar to that of a standard MTL concept learning [30], except for Steps 1, 2, and 7, which are 

described as follows. 
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Step 1. Initial KB generation 

The initial knowledge base includes a set of inference rules, a set of positive and/or 

negative examples, and a set of constraints (if necessary). The inference rule set consists of a 

subset of rules Tf to infer that an intention is fulfilled, and a subset of rules Tu to infer that an 

intention is still unfulfilled. Sources to generate the initial KB are all available requirements 

artifacts of the existing system, e.g., specification, and training data set used by the CRF method. 

Step 2. Learning examples generation 

As discussed in Section 3.2, new learning examples (both positive and negative ones) can 

be generated from new data (situation sequences) that have been labeled with pre-defined desires 

by the CRF method. Find out all sequences with the same desires. Certain rules can be defined to 

separate positive examples from negative ones based on system domain characteristics. For 

example, a certain final situation should be reached in all positive examples. To achieve that, the 

situation sequence should contain a minimum number of situations essential for accomplishing 

an intention.  

Step 7. Finalize updated KB and identify new intentions 

Identify examples that introduce changes to the initial KB as potential new intentions. 

Human oracle will manually check and filter out real new intentions based on their domain 

knowledge. For those examples left in U, we will treat them as unjustifiable facts, and will keep 

them for later usage when new learning data is available. 

It must be noted that the learning process of Tf (or Tu) is completely independent of that 

of Tu (or Tf), i.e., they are two separate learning processes. At the end of the learning, consistency 

checking should be formed in order to make sure if there is any conflict between Tf and Tu. 
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CHAPTER IV 

CASE STUDY: NEW INTENTIONS IDENTIFICATION USING THE MTL METHOD 

 

4.1 Data Collection through The CoRE System 

4.1.1 Experiment platform 

The raw data is collected from an online library system, called Cooperative Research 

Environment (CoRE), which has been designed and developed for a research community to share 

their thoughts and views on academic papers. It was modified based on an open-source web 

application, MyReview [37], for managing the process of paper submission and paper review. 

The original system has served many academic conferences, and our modifications still keep its 

basic functionalities. CoRE users can upload research papers, submit comments for papers, and 

view paper information, etc. Figure 12 shows the use case diagram of the CoRE system. Figure 

13 shows the interface of the CoRE system where users can edit a paper.  

To monitor users’ behaviors and capture related context values, an embedded program is 

deployed in CoRE as a sensor. Users’ operations, papers and comments submissions, and the 

contents on the web pages entered by users will be recorded and stored in the database. During 

each experiment session, users report/select their current desires from a dropdown list containing 

a set of expected desires. Examples of desire options are “Upload a paper”, “Submit a 

comment”, “View a paper information”, etc., and “Not in the list” (as a wild card). The users can 

also correct their desire selections in the post-session questionnaire in case that they forgot to 

report desires or reported an incorrect one during the experiment. It is very important to have 

users report their desires because these data will later be used to validate our desire inference 
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result, which is the input to the MTL engine. In fact, as part of our data processing, domain 

experts will need to manually check if users’ reported desires are legit for our validation purpose. 

More detailed information about our experiment on CoRE can be found in [38] [39]. 

User

Upload/Edit
a Paper

Submit/Edit 
a Comment

View/Edit 
a Paper Info

Filter Papers

View/Edit 
Profile

Report Desire

Record Actions
and Context Values

<<include>>

Record Desire

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Log in

<<include>>

 

Figure 12. The use case diagram of the CoRE system. 

 

Figure 13. CoRE system interface – Edit paper 
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Figure 14 a) and b) show the interfaces for uploading a paper in the CoRE system, on which 

there is a dropdown menu in the right-side panel for users to report their desires during the 

experiment. 

 

Figure 14. a) Paper Information page for uploading a paper in CoRE Version I. 
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Figure 14. b) Comment page for uploading a paper in CoRE Version I. 



28 

 

 

 

 

4.1.2 Procedure of an IRB approved experiment 

Due to the nature of our experiment that involves human subjects, and to stay compliant 

with federal regulations set forth by the Department of Health and Human Services and the Food 

and Drug Administration, all of the principal investigators in our experiment have completed the 

National Institutes of Health (NIH) Web-based training course “Protecting Human Research 

Participants”, and they have also received the approval by the ISU Institutional Review Board 

(IRB) for conducting experiments. 

More than 120 people participated in our experiments. Each participant was required to 

study the user manual, and had a chance to do some test operations on the system to get a 

preliminary understanding about it. Participants’ actions, self-reported desires, and relevant 

context values were recorded as the experiment raw data. In order to show our methodology’s 

ability to enable and speed up the evolution process of the CoRE system, the experiment was 

done over two rounds (as two sub-experiments) to emulate one software evolution cycle. The 

whole procedure is described as below: 

1. Deploy the initial system: CoRE Version I. 

2. Run the first-round experiment for 30 days: invite participants, collect data on 

participants’ actions, desires and context values. 

3. Shut down CoRE Version I. Apply our proposed methodology on the raw data captured in 

Round 1, using the CRF method to infer participants’ desires. Then carry out new-

intention-detection case study, analyze and elicit users’ new requirements, and further 

revise the system accordingly. 

4. Deploy the enhanced system: CoRE Version II. 
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5. Run the second-round experiment for 30 days: invite some new participants, collect data 

records of participants’ actions, desires and context values. 

6. Shut down CoRE Version II. Apply our proposed methodology on the raw data captured 

in Round 2, using the CRF method to infer participants’ desires. 

7. Evaluate the effectiveness of our methodology on the evolution of CoRE from Version I 

to II. 

During each sub-experiment, participants could enter CoRE multiple times, and each 

time was recorded as one session. In each session, participants followed the procedure as 

follows: 

1. Visit experiment website and log into experiment. 

2. Answer pre-session questionnaire about their familiarity with the system. 

3. Start a session: Log into CoRE and start operating on the system. Participants were free to 

carry out any operation, but needed to report their desire on each webpage by choosing a 

predefined desire in a dropdown list. 

4. End a session: Participants could end a session at any time. Then they were directed to a 

post-session questionnaire, where they gave some feedback on the system, and also had a 

chance to correct their reported desires if necessary. 

Observation in our experiment was action triggered. During each experiment session, the 

embedded monitoring program in the system took a snapshot of the participant’s action and 

certain system context information when he/she performed an operation on the system. 
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Table 2. Example Raw Data Record 

Record Item Data 

Time 

loginID 

Action 

Page 

Content 

Desire 

2014-06-23 12:11:20 

User020 

click(Btn_Login) 

Page_Login 

[Login ID]Test001 [Password]112233 [Message]Invalid password 

Filter Papers 

 

Each raw data record has the following attributes, with an example shown in Table 2: 

1. Time: the time point when the participant performs an operation. 

2. Participant’s login ID. 

3. Action: including mouse click on a button or a link, or selection on a dropdown menu. 

4. The current webpage where the action occurs. 

5. Contents on the webpage (user’s submitted input, system’s responses to the user’s action 

including exceptions and error messages). 

6. Participant’s self-reported desire. 

 

4.1.3 Data collection and preprocessing 

There are 10,063 raw data records and 585 experiment sessions captured in the first-

round experiment, and 10,524 raw data records and 582 experiment sessions captured in the 

second-round experiment. A raw data record contains all the attributes shown in Table 2. A 

record of an experiment session is the data sequence that starts when the user logs into the 

experiment, and ends when the user logs out. 
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As the accuracy of participants’ self-reported desires is critical for validating the results 

of desire inference, those raw data records with inaccurate self-reported desires are not usable 

and are considered as noise. To remove noise, raw data records were checked and filtered, data 

noise in a unit of sessions were removed based on the following principles: 

1. If most (>50%) self-reported desires are “Not in the list”, which is the default value in the 

desire selection dropdown list. We will assume that in this case the participant forgot to 

report his/her desire at all or most of the time in the experiment. 

2. If the answer is “no” for the question “Did you select the desire every time when you had a 

new desire?” in the post-session questionnaire. 

3. After filtering based on (1) and (2) was done, we had the rest of the data records manually 

checked by domain experts and system designers, and evaluated in the perspective of 

whether the participants’ self-reported desires were reasonable or not. Those obviously 

wrong ones should and have been removed because they cannot be used to validate our 

desire inference results. An example is that a participant might have forgotten to report his 

desire (change) when he accomplished his previous task and started a new one.  

After preprocessing and noise filtering, the final usable data set of the first-round 

experiment had 6880 data records and 369 experiment sessions, and the final data set of the 

second-round experiment had 6931 data records and 361 experiment sessions. 

 

4.1.4 Result of desire inference by the CRF method 

The preprocessed data set in each round was separated into two sets, one training set, 

which is used to train the CRF model, and one testing set. For each record in the testing set, the 



32 

 

 

 

 

trained CRF model was used to infer its corresponding desire. So at the end of the process, each 

data record (situation) has been labeled with a desire from the pre-defined set. Our experience 

shows that the inference accuracy was reliably above 90% in this very limited case study, which 

is more than acceptable. This experiment has also been externally validated by anonymous 

reviewers [39]. 

 

4.2 Case Study on New Intentions Identification 

In this case study, we studied the specification of the CoRE system, and abstracted out a 

set of inference rules. The training data set used to train the CRF model was studied, and 

representative situation sequences were selected as known positive and negative examples. It is 

important to make sure that the inference rules are consistent with the specification, which means 

they should reflect what has been implemented in the current system. However, it does not mean 

that the inference rules must be complete and correct, because it is assumed that the system is not 

a perfect one. On the other hand, the examples must also be consistent with the initial inference 

rules. To ensure the above mentioned qualities, the initial knowledge base has been checked by 

domain experts. Note that for each intention, a corresponding KB will be constructed, meaning 

that the learning is about the unanticipated situation sequence to fulfill a certain intention. Table 

3 shows the initial KB for intention “EditPaper(x)”. Next, a set of new examples are generated 

from the set of situation sequences grouped by the inferred desires. For intention “EditPaper(x)”, 

a set of examples has been filtered out as shown in Table 4. (Note that the user-reported desires 

are not used in this case, because in most of real-world application scenarios, there is no such 
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data available.) Based on the CoRE domain character, a set of filtering rule has been defined as 

follows: 

(1) Minimum situation sequence length for positive examples shall be 2;  

(2) Final situation for positive examples shall be s2(EditPaper(p1), 

clickSubmitEditPaper(p1), Context(PaperFile(p1), “Uploaded”), 

Context(PaperSubmitStatus(p1), “Yes”)) 

 

Table 3. The Initial KB 

Deductive rules: 

 Time-AND{Situation(clickEditPaper&PaperID), 

Situtation(clickSubmitEditPaper&EditPaperGood)} => Intention(EditPaper(x), Fulfilled)  

 {Situation(EditPaper(x), Action(any), Context(PaperFile, “Empty”), 

Context(PaperSubmitStatus, “No”))} => Intention(EditPaper(x), Unfulfilled) 

Examples: 

 Positive example 1: Intention(EditPaper(p1), Fulfilled) = {s1(EditPaper(p1), 

clickEditPaper&PaperInfo(p1), Context(PaperFile(p1), “Empty”), 

Context(PaperSubmitStatus(p1), “No”)), s2(EditPaper(p1), clickSubmitEditPaper(p1), 

Context(PaperFile(p1), “Uploaded”), Context(PaperSubmitStatus(p1), “Yes”))} 

 Positive example 2: Intention(EditPaper(p2), Fulfilled) = {s1(EditPaper(p2), 

clickEditPaper&PaperInfo(p2), Context(PaperFile(p2), “Empty”), 

Context(PaperSubmitStatus(p2), “No”)), s2(EditPaper(p2), clickSubmitEditPaper(p2), 

Context(PaperFile(p2), “Uploaded”), Context(PaperSubmitStatus(p2), “Yes”))} 

 Negative example 1: Intention(EditPaper(p3), Unfulfilled) = {s1(EditPaper(p3), 

clickEditPaper&PaperInfo(p3), Context(PaperFile(p3), “Empty”), 

Context(PaperSubmitStatus(p3), “No”)), s2(EditPaper(p3), 

clickCancelEditPaper&PaperID(p3), Context(PaperFile(p3), “Empty”), 

Context(PaperSubmitStatus(p3), “No”))} 

 Negative example 2: Intention(EditPaper(p4), Unfulfilled) = {s1(EditPaper(p4), 

clickEditPaper&PaperInfo(p4), Context(PaperFile(p4), “Empty”), 

Context(PaperSubmitStatus(p4), “No”)), s2(EditPaper(p4), 

clickCancelEditPaper&PaperID(p4), Context(PaperFile(p4), “Empty”), 

Context(PaperSubmitStatus(p4), “No”))} 
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Table 4. Positive and negative examples of “EditPaper(x)” 

 Positive example 1: Intention(EditPaper(p5), Fulfilled) = {s1(EditPaper(p5), 

clickEditPaper&PaperInfo(p5), Context(PaperFile(p5), “Empty”), 

Context(PaperSubmitStatus(p5), “No”)), s2(EditPaper(p5), clickSubmitEditPaper(p5), 

Context(PaperSubmitStatus(p5), “Yes”))} 

 Positive example 2: Intention(EditPaper(p6), Fulfilled) = {s1(EditPaper(p6), 

clickEditPaper&PaperInfo(p6), Context(PaperSubmitStatus(p6), “No”)), s2(EditPaper(p6), 

clickSubmitEditPaper&NoFile(p6), Context(PaperFile(p6), “Empty”), 

Context(PaperSubmitStatus(p6), “No”)), s3(EditPaper(p6), clickSubmitEditPaper(p6), 

Context(PaperFile(p6), “Uploaded”), Context(PaperSubmitStatus(p6), “Yes”))} 

 Positive example 3: Intention(EditPaper(p7), Fulfilled) = {s1(EditPaper(p7), 

clickEditPaper&PaperInfo(p7), Context(PaperSubmitStatus(p7), “No”)), s2(EditPaper(p7), 

clickSubmitEditPaper&NoFile(p7), Context(PaperFile(p7), “Empty”), 

Context(PaperSubmitStatus(p7), “No”)), s3(EditPaper(p7), clickSubmitEditPaper(p7), 

Context(PaperFile(p7), “Uploaded”), Context(PaperSubmitStatus(p7), “Yes”))} 

 Negative example 1: Intention(EditPaper(p8), Unfulfilled) = {s1(EditPaper(p8), 

clickEditPaper&PaperInfo(p8), Context(PaperFile(p8), “Empty”), 

Context(PaperSubmitStatus(p8), “No”)), s2(EditPaper(p8), 

clickSubmitEditPaper&NoFile(p8), Context(PaperFile(p8), “Empty”), Context(PaperFile(p8), 

“Empty”), Context(PaperSubmitStatus(p8), “No”))} 

 Negative example 2: Intention(EditPaper(p9), Unfulfilled) = {s1(EditPaper(p9), 

clickEditPaper&PaperInfo(p9), Context(PaperFile(p9), “Empty”), 

Context(PaperSubmitStatus(p9), “No”)), s2(EditPaper(p9), 

clickCancelEditPaper&PaperID(p9), Context(PaperFile(p9), “Empty”), 

Context(PaperSubmitStatus(p9), “No”))} 

 

So far, Step 1 and 2 (in Figure 11) have been completed. And now we can start learning 

Tf. 

Positive example 1 can be justified by directly applying the deductive rule in KB (see 

Figure 15.) No update to the initial KB has been made, so Positive example 1 is not a new 

intention. 
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EditPaper(p5)

clickEditPaper&PaperID(p5) clickSubmitEditPaper&EditPaperGood(p5)

deduction
Time-AND

 

Figure 15. Justification of positive example 1 

Next, we try to build a plausible justification tree for Positive example 2 within the 

current KB. However, methods of deduction, analogy, and inductive prediction all failed, leaving 

the last option – method of abduction. According to [30], abduction involves two steps: 

generation of explanatory hypotheses and selection of the "best" hypothesis. For intention 

decomposition, we consider the following form of abduction: 

 Hypothesizing an ISA relationship (i.e., d2 isa d1) if  

P(a, d1) is to be explained and P(a, d2) is true, then hypothesize that P(a, d2)  P(a, d1) 

In the case of justifying Positive example 2, represented as P(a, d1), we can use P(a, d2) 

to represent the known Positive example 1 in the initial KB. Because P(a, d2) is true, we can 

hypothesize the following ISA relationship (Table 5) so that P(a, d1) can be true.  

Note that we have to strictly follow the temporal character of a situation sequence during 

the decomposition process, and that is why Time-AND joint is used to decompose the sub-

sequence.  

After Positive example 2 is explained, we need to generalize KB so as to entail the new 

Tf. Figure 16 shows the generalization result, i.e., the updated KB. However, there is an empty 

node in the intention decomposition tree. By removing it, we can get a simplified version as 

shown in Figure 17. Then KB can be generalized to the form shown in Figure 18. 
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Table 5. Hypothesizing a ISA relationship 

{s2(EditPaper(p1), clickSubmitEditPaper(p1), Context(PaperFile(p1), “Uploaded”), 

Context(PaperSubmitStatus(p1), “Yes”))} 

ISA  

Time-AND{s2(EditPaper(p6), clickSubmitEditPaper&NoFile(p6), Context(PaperFile(p6), 

“Empty”), Context(PaperSubmitStatus(p6), “No”)), s3(EditPaper(p6), clickSubmitEditPaper(p6), 

Context(PaperFile(p6), “Uploaded”), Context(PaperSubmitStatus(p6), “Yes”))}  

deduction
Time-AND

EditPaper(p6)

clickEditPaper&PaperID(p6)

clickSubmitEditPaper&EditPaperGood(p6)clickSubmitEditPaper&NoFile(p6)

abduction
Time-AND

clickSubmitEditPaper&EditPaperGood(p6)

abduction
OR

 

Figure 16. Generalization of KB after justifying positive example 2 

abduction
Time-AND

deduction
Time-AND

EditPaper(p6)

clickEditPaper&PaperID(p6) clickSubmitEditPaper&EditPaperGood(p6)

clickSubmitEditPaper&EditPaperGood(p6)clickSubmitEditPaper&NoFile(p6)
 

Figure 17. A simplified KB by removing empty node. 

abduction
Time-AND

deduction
Time-AND

EditPaper(x)

clickEditPaper&PaperID(x) clickSubmitEditPaper&EditPaperGood(x)

clickSubmitEditPaper&EditPaperGood(x)clickSubmitEditPaper&NoFile(x)
 

Figure 18. The Generalized KB 
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For Positive example 3, since it is similar to Positive example 2 which has already been 

added into KB, we can make an inference through inductive prediction, shown in Table 6. 

Consequently, the KB is generalized as Figure 19. 

Table 6. Making an inference through inductive prediction  

Examples from KB: 

 Positive example 2: Intention(EditPaper(p6), Fulfilled) = {s1(EditPaper(p6), 

clickEditPaper&PaperInfo(p6), Context(PaperSubmitStatus(p6), “No”)), s2(EditPaper(p6), 

clickSubmitEditPaper&NoFile(p6), Context(PaperFile(p6), “Empty”), 

Context(PaperSubmitStatus(p6), “No”)), s3(EditPaper(p6), clickSubmitEditPaper(p6), 

Context(PaperFile(p6), “Uploaded”), Context(PaperSubmitStatus(p6), “Yes”))} 

Inductive generalization: 

{s1(EditPaper(x), clickEditPaper&PaperInfo(x), Context(PaperSubmitStatus(x), “No”)), 

s2(EditPaper(x), clickSubmitEditPaper&NoFile(x), Context(PaperFile(x), “Empty”), 

Context(PaperSubmitStatus(x), “No”)), s3(EditPaper(x), clickSubmitEditPaper(x), 

Context(PaperFile(x), “Uploaded”), Context(PaperSubmitStatus(x), “Yes”))}  

Intention(EditPaper(x), Fulfilled)  

Predicted inference: 

{s1(EditPaper(p7), clickEditPaper&PaperInfo(p7), Context(PaperSubmitStatus(p7), “No”)), 

s2(EditPaper(p7), clickSubmitEditPaper&NoFile(p7), Context(PaperFile(p7), “Empty”), 

Context(PaperSubmitStatus(p7), “No”)), s3(EditPaper(p7), clickSubmitEditPaper(p7), 

Context(PaperFile(p7), “Uploaded”), Context(PaperSubmitStatus(p7), “Yes”))}  

Intention(EditPaper(p7), Fulfilled)  

Inductive Prediction
abduction
Time-AND

deduction
Time-AND

EditPaper(x)

clickEditPaper&PaperID(x) clickSubmitEditPaper&EditPaperGood(x)

clickSubmitEditPaper&EditPaperGood(x)clickSubmitEditPaper&NoFile(x)
 

Figure 19. The updated KB after learning form positive example 3 

The two negative examples can be justified through current KB. No unjustifiable 

examples can be found. So the learning process for Tf is finished.  
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To learn Tu, the two negative examples can directly be justified by applying the deductive 

rule:  

{Situation(EditPaper(x), clickCancelEditPaper&PaperID, Context(PaperFile, “Empty”), 

Context(PaperSubmitStatus, “No”))} => Intention(EditPaper(x), Unfulfilled)  

Next, all positive examples can be justified by Tu. and there is no unjustifiable example 

left. So this ends the learning of Tu. The whole learning process is thus finished. The updated KB 

is shown as Figure 19, and the intention that introduced such changes is Positive Example 2 in 

Table 4, i.e., the new intention.  

By examining the “New Data” set acquired from the result of CRF desire inference on 

the first round experiment data, we get a total of 7 new positive examples and 5 new negative 

examples. By feeding all of them into our MTL learning engine, the resulting KB is the same as 

that in Figure 19, with 2 new positive examples identified as new intention, which is essentially 

the same as the new intention found above.  

Next, we will briefly show the learning result of a more complicated KB, for intention 

“Upload a Paper”, i.e., UploadPaper(x). Its initial KB is shown in Figure 20. For this intention, 

there are 40 new positive examples and 12 new negative examples to be justified. The learning 

process is the same, so we will not reiterate on the details. Figure 21 shows the updates KB 

structure. However, among 40 new positive examples, 33 of them are identified as new 

intentions. Example of new intentions are given in Figure. 22. The reason why there are so many 

new intentions is that the original KB contains very limited amount of knowledge. We can see 

that the application of OR joint significantly simplify the new KB structure, which may become 

a lot complicated with numerous combination of different types of error users can get. We can 
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also see that the application of abduction & induction methods plays a crucial role in this 

learning process.  

deduction
Time-AND

clickCommentUploadPaper (x)&PaperInfoGood clickSubmitComment(x)&CommentGood

 UploadPaper (x)

 

Figure 20. Figure Initial KB structure of intention “Upload a Paper” 

New Intention 1

clickMenuUploadPaper 30s UploadPaper UploadPaper/0.987714

clickCommentUploadPaper&NoKeywordDOI m UploadPaper UploadPaper/0.979297

clickCommentUploadPaper&PaperInfoGood m UploadPaper UploadPaper/0.943477

clickSubmitComment&NoCategoryShortMethodologyTechnicalMeritsLimitationDiscussion m UploadPaper UploadPaper/0.759959

clickSubmitComment&ShortMethodologyTechnicalMeritsLimitationDiscussion 60s UploadPaper UploadPaper/0.340362

clickSubmitComment&NoCategoryShortMethodologyTechnicalMeritsLimitationDiscussion 20s UploadPaper UploadPaper/0.281002

clickSubmitComment&ShortMethodology 60s UploadPaper UploadPaper/0.434254

clickSubmitComment&NoCategory 20s UploadPaper UploadPaper/0.705801

clickSubmitComment&CommentGood 10s UploadPaper UploadPaper/0.743047

New Intention 2

clickMenuUploadPaper 60s UploadPaper UploadPaper/0.950302

clickCommentUploadPaper&NoKeywordDOIFile m UploadPaper UploadPaper/0.964158

clickCommentUploadPaper&PaperInfoGood m UploadPaper UploadPaper/0.971687

clickSubmitComment&ShortMethodologyTechnicalMeritsLimitation m UploadPaper UploadPaper/0.931654

clickSubmitComment&NoCategory 30s UploadPaper UploadPaper/0.923622

clickSubmitComment&CommentGood 10s UploadPaper UploadPaper/0.942890

clickSubmitComment&CommentGood 10s UploadPaper UploadPaper/0.869341  

Figure 22. Example of New Intentions Identified for “UploadPaper” 
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deduction
Time-AND

clickCommentUploadPaper (x)&PaperInfoGood clickSubmitComment(x)&CommentGood

clickCommentUploadPaper(x)&Errors
clickCommentUploadPaper (x)

&PaperInfoGood

 UploadPaper (x)

Inductive Prediction
abduction

OR

clickCommentUploadPaper (x)
&NoKeyword

clickCommentUploadPaper (x)
&NoTitle

clickCommentUploadPaper (x)
&NoPublisher

clickCommentUploadPaper (x)
&NoAuthor

clickCommentUploadPaper (x)
&NoDOI

clickCommentUploadPaper (x)
&NoFile

clickSubmitComment(x)&Errors clickSubmitComment(x)&CommentGood

clickSubmitComment(y)&
NoCategory

clickSubmitComment(y)&Short
Methodology

clickSubmitComment(y)&Short
TechnicalMerits

clickSubmitComment(y)&Short
ProblemSolved

clickSubmitComment(y)&Short
Discussion

clickSubmitComment(y)&Short
LimitationsInductive Prediction

abduction
OR

Inductive Prediction
abduction
Time AND

Inductive Prediction
abduction
Time AND

 

Figure 21. Updated KB for intention “UploadPaper(x)” 
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Table 7 summarizes the transformation process of DIKW in a quantified view. We can 

see that the number of data points has been significantly reduced through the whole learning 

process. Such trend can be seen as the effect of applying the (MR)2 paradigm proposed in [40].  

Table 7. A quantified view of the reduce process 

Raw Observations 

(Data) 

Refined Observations 

(Information) 

Intentions 

(Knowledge) 

New Intentions 

(Wisdom) 

10,063 records 

585 sessions 

6880 records 

369 sessions 

EditPaper 

12 Intentions 1 New Intention 

UploadPaper 

52 Intentions 33 New Intentions 
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CHAPTER V 

TRANSFORMING NEW INTENTIONS TO NEW REQUIREMENTS 

USING STRATEGIC MODELING i* 

 The ultimate goal of this work is to elicit new system requirements with limited help 

from human experts. So far, we are able to identify new intentions in a mostly computable 

fashion using the MTL method, although human input is still needed to construct the initial 

knowledge base and to validate the end result. However, new intentions are not equivalent to 

new requirements. In fact, most of the newly identified intentions are low-level tasks (in goal 

modeling terms), i.e., they describe how users utilize existing system functions and features to 

fulfill their needs in a different way from what has been anticipated. There is still a huge gap 

between those low-level tasks and system requirements. 

 To solve the above mentioned problem, we may recall the concept of DIKW Hierarchy, 

but with a different perspective. Figure 23 visualizes DIKW in a view of knowledge network. 

When relationships among randomly isolated data points are discovered, a potential information 

cluster is to be formed. In the CRF-DIKW view (Figure 8), this phase corresponds to the 

transformation from raw data to processed observation sequences. Note that at this point, the so-

called “relationships” are still vague, requiring further exploration. By applying the CRF method, 

hidden user desires are inferred, and as a result, intentions are identified. Consequently, the 

“relationships” are now fully revealed, and a local information cluster is constructed. Since 

knowledge can be viewed as a network, linkages from the information cluster to existing 

knowledge network shall be established. In the CRF-DIKW view, new intentions can serve as 

these linkages that connect to existing domain knowledge in form of system requirements. 

However, to implement such linkages, an interface is needed.  
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Figure 23. Four Tiers – a network view of DIKW 

 

5.1 Means, Ends, and Beliefs 

 Before diving into the gap between low-level tasks and system requirements, we can first 

revisit the example in section 3.1.2, and informally discuss how we can make the leap. In the 

online shopping example shown in Figure 7, after the new knowledge is acquired, we have 

already known customers who buy tablets are likely to buy covers together. Such stand-alone 

knowledge doesn’t have much application value, unless it is connected to other relevant 

knowledge within the existing knowledge base. In this case, relevant knowledge include a 

business goal “Maximizing sales profits”, along with two business believes “Selling more 

products can increase sales profits” and “Customers like to buy products that are easily to be 

located”. The underlying logic (shown in Figure 24.) can be described as follows. To maximize 
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profits, more products need to be sold. And it is known that customers have a habit of buying 

tablets and covers together. So it would be wise to add a hyperlink to cover onto the tablet 

webpage, so that customers can easily find covers when they are shopping for tablets, and 

consequently, sales profits will be increased. Putting it in another way, adding a hyperlink to 

cover is our mean to meet the end goal of maximizing sales profits, which is so-called “Means-

Ends Reasoning” in strategic reasoning [16][42] (Figure 25).  

Business Goal 1:

Maximizing sales profits

Business Belief 1:

Selling more products can 

increase sales profits

Business Belief 2: 

Customers like to buy 

products that are easily 

to be located

If customers buy 

tablets, they will also 

buy covers.

Knowledge (Patterns) If a hyperlink to cover 

is displayed on tablet 

page, sales profits is 

likely to be increased.

Wisdom (Principles)

 

Figure 24. Realization of wisdom through business goal and business belief analysis – online 

shopping example 

Wisdom: 

If a hyperlink to cover 

is displayed on tablet 

page, sales profits is 

likely to be increased.

Business Goal: 

Maximizing sales profits

Business Belief 1:

Selling more products can 

increase sales profits

Business Belief 2: 

Customers like to buy 

products that are easily 

to be located

Mean End

Make

Make

 

Figure 25. Means-Ends reasoning (1) 
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Similarly, the situation analytic example (shown in Figure 7) can be perceived in a similar way 

using system goal and design beliefs as shown in Figure 26, as well as a “Means-Ends 

Reasoning” (Figure 27). The underlying design rationale can be described as follows: To pursue 

high usability, the number of repeated operations needs to be reduced. Given the fact that users 

are likely to download all papers that show up in their search result, it is wise to add a compound 

operation “Download All” to reduce the number of repeated operation. Hence, system usability 

can be increased.  

System Goal 1: High usability

Design Belief 1: 

Replacing the same type of operations with a 

compound one can increase system usability

Adding a  Download All  function 

can increase system usability

If there is a  Download 

all  button, the user can 

download papers faster.

Sk:

D1: Search for papers

A1: Click  Go 

E1: on Search page

Sk+1:

D1: Search for papers

A1: Click  Download all 

E1: on Search page

Knowledge (Patterns)
Wisdom (Principles)

 

Figure 26. Realization of wisdom through system goal and design belief analysis – 

Search/Download example 

Wisdom:

Adding a  Download All  function 

can increase system usability

System Goal:

High Usability
Mean End

Design Belief 1: 

Replacing the same type of operations with a 

compound one can increase system usability

Make

 

Figure 27. Means-Ends reasoning (2) 

 After breaking down the above two examples, we can see that a high-level, strategic 

analysis can help us fuse the new knowledge fragment with the existing knowledge network, 

through its interaction with design beliefs and goals. 
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5.2 A Strategic Analysis Framework – i* 

 The i* framework was proposed by Eric Yu [42] for modeling and reasoning about 

organizational environments and their information systems. It aims to model and analyze 

stakeholder interests and how they might be addressed, or compromised, by various system-and-

environment alternatives. The framework builds on a knowledge representation approach to 

information system development [43]. It has also been applied to business process modeling and 

redesign [44] and to software process modeling [45]. In 2008, the i* framework was approved as 

an international standard by International Telecommunication Union (ITU). 

 The central concept in i* is that of the intentional actor [46]. Organizational actors are 

viewed as having intentional properties such as goals, beliefs, abilities, and commitments. Actors 

depend on each other for goals to be achieved, tasks to be performed, and resources to be 

furnished. By depending on others, an actor may be able to achieve goals that are difficult or 

impossible to achieve on its own. On the other hand, an actor becomes vulnerable if the 

depended-on actors do not deliver. Actors are strategic in the sense that they are concerned about 

opportunities and vulnerabilities, and seek rearrangements of their environments that would 

better serve their interests. The i* framework consists of two main modeling components. The 

Strategic Dependency (SD) model is used to describe the dependency relationships among 

various actors in an organizational context. The Strategic Rationale (SR) model is used to 

describe stakeholder interests and concerns, and how they might be addressed by various 

configurations of systems and environments. 

 The reasons why we believe the i* framework is able to help with our knowledge fusion 

problem are as follows. 
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1. It can help answer the question “Why”, which is exactly what needs to be addressed in 

the layer of “Wisdom” in the DIKW Hierarchy in Figure 6. 

2. Strategic Rationale (SR) model includes both low-level tasks and high-level hard goals or 

soft goals. 

3. Implicit design beliefs and rationale can be modeled and incorporated into SR analysis. 

4. Existing tools, such as OME (Open Modeling Environment), which supports graphical 

model representation and automated reasoning, can help facilitate and automate our 

problem solving process. 

 

Figure 28. The SR model of access control and paper managing modules in CoRE 
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Figure 28 shows a fragment of SR model of the CoRE system (for 1st round experiment), 

including all soft goals, hard goals, tasks, and resources that are relevant to the two examples 

discussed in section 4.2. High-level system requirements are modeled through goal 

decomposition. Thus, we consider using this SR model as our existing domain knowledge 

network.  

 

5.3 Knowledge Fusion using i* 

 To establish connection to the existing SR model, we need to transform our new 

knowledge into the form of an SR model. We take the updated KB of intention “EditPaper(x)” as 

an example. To make it easier to understand, we represent the updated KB with Figure 29 using 

an explicit “OR” joint connecting two low-level alternatives. One alternative (Alt 1) is to upload 

paper information together with a paper file, which is the original design of CoRE; the other one 

(Alt 2) is to upload paper information alone without any paper file. These alternatives can be 

modeled as tasks in SR model (see Figure 30).  

 

deduction
Time-AND

EditPaper(x)

clickEditPaper&PaperID(x)

clickSubmitEditPaper&EditPaperGood(x)clickSubmitEditPaper&NoFile(x)

abduction
Time-AND

clickSubmitEditPaper&EditPaperGood(x)

abduction
OR

 

Figure 29. Updated KB for intention “EditPaper(x)” 
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Design Belief 1: 

To ensure data completeness, it is required to update both paper 

file and paper information at the same time.

Make

 

 

Design Belief 2: 

With the flexibility to choose what to update, 

system will become more useable.

Make

 

Figure 30. SR models for two alternatives 

 From the above SR models for Alt 1 and 2, we can see that Alt 1 mainly focuses on 

satisfying “Data Completeness”, while Alt 2 emphasized on “Usability”. By merging them 

together in Figure 31, we can see that two alternatives have different impact on these soft goals. 

At this point, the pros and cons for each alternative are presented to a system designer, who can 

make a trade-off decision based on the updated knowledge. In the knowledge fusion perspective, 

new knowledge, in form of design alternative, has been fused with existing knowledge network.  

In a similar way, the updated knowledge base of intention “UploadPaper(x)” can be 

represented with an SR model, and further fused with existing knowledge as shown in Figure 32. 

Consequently, by adding these updated small SR models to the system-level model in Figure 28, 

we can get an updated knowledge network shown as Figure 33. 
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Design Belief 1': 

To ensure data completeness, it is required to update both paper file and paper information 

at the same time, although system will become less flexible

Design Belief 2': 

With the flexibility to choose what to update, system will become more useable. 

However, it is possible to miss some key paper information

Make

Make

MakeMake

 

Figure 31. Merging two alternatives 

 
Figure 32. Alternatives for intention “UploadPaper(x)” 
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Figure 33. The updated system-level SR model (knowledge network) 

One of the advantage of OME is that when prioritizing the satisfaction of certain hard 

goal or soft goal, it can automatically choose appropriate design alternatives using backward or 

forward evaluation function. In our case, for CoRE version II, we want to emphasize our design 

on “Usability”. By prioritizing soft goal “Highly Usable”, OME can generate a view shown in 

Figure 34, with recommended design alternatives checked, and contradictory design elements 

crossed out. Also, as part of the evaluation result, OME is able to show the influence/impact of 

prioritizing certain high-level goals. In this case, when “Usability” is prioritized, a side effect is 

that “Data Completeness” will be undermined. Such contradictory scenario is not uncommon 

when trade-off between different high-level system goals during early design analysis. A 
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decision has to be made on which high-level goal shall be prioritized. In our case study, we 

implemented CoRE version II according to the evaluation result shown in Figure 34.  

 

Figure 34. Evaluation result of “Highly Usable” 

To sum up, new intentions can be transformed into new design wisdom through the 

following steps: 

1.  Elicit design alternatives from updated KB. 

2.  Build a local SR model for each design alternative, and show its contribution to related 

high-level goals. 

3. Add all local SR models into the SR model of the existing system. 

4. Prioritize certain high-level goal(s), then carry out forward/backward evaluation. 
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5. Based on the result of step 4, summarize a design plan for the evolved system. 

 

5.4 Evaluation of New Design Alternatives 

After implementing CoRE Version II based on Figure 34, to evaluate the effect of new 

design alternatives, a second-round experiment was done on the evolved system – Core Version 

II, by following exactly the same process as what we did in the first round. The only difference 

was that we recruited 40 new participants in the second round to make the comparison between 

two versions fair and even. In this section, we will not elaborate the technical execution of our 

methodology steps due to space limitations. Instead, we will mainly focus on evaluating the 

improvement of CoRE version II over its predecessor. 

 The difference between CoRE Version I and II are that users are allowed to edit a paper 

without uploading a file, and to upload a paper with only some key information submitted and 

without submitting comments too. Table 8 shows a comparison of user performance between two 

systems. As we can see, the success rate of two tasks both increased in the CoRE Version II, 

while the time cost and the error occurrence rate, especially the consecutive error occurrence 

rate, significantly decreased.  

Although there is no absolutely right or wrong design, based on statistics shown in Table 

8, we can get a sense on which alternative is in favor of users. We can say that, by fusing the SR 

models of updated knowledge base with that of the existing system (CoRE I), we recognize the 

needs to shift our design principle from Data-Completeness to Usability. And statistics shows 

that it is a wise move.
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Table 8. Comparison of user performance between two rounds  

Task Version # of  

Occurrence 

Avg. Time Spent (s) Successful Errorsa Consecutive Errorsb 

Time Improvement # (rate) Improvement # 

(rate) 

Improvement # 

(rate) 

Improvement 

Upload 

Paper 

I 55 387.87 ↓55% 

(Reduced) 

38 

(69%) 

↑41% 

(Increased) 

28 

(51%) 

↓94% 

(Reduced) 

14 

(25%) 

↓100% 

(Reduced) 

II 32 173.57 31 

(97%) 

1 

(3%) 

0 

Edit  

Paper 

I 16 47.81 ↓1% 8 

(50%) 

↑100% 5 

(31%) 

↓100% 0 – 

II 9 47.33 9 

(100%) 

0 0 

aThe times of at least one error occurs when submitting/editing a paper/comment 
bThe number of occurrences of consecutive errors 
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CHAPTER VI 

DISCUSSION AND CONCLUSION 

6.1 Threats to Validity 

 First of all, this work is based on the desire inference result using the CRF method in 

[39]. Thus, it naturally inherit the potential threats to validity discussed in [39]. In this section, 

we will only discuss the potential threats to the validity of our proposed method in Chapter III 

and V.  

 

6.1.1 Threats to construct validity 

 The theoretical foundation of our work is the DIKW Hierarchy. Due to lack of a uniform 

definition of information and knowledge, it is still hard to set boundaries between information 

and knowledge, or to clearly define what wisdom is. Thus, our work may suffer from naming 

confusion of different layers in a DIKW Hierarchy. However, when dealing with specific 

domain, it is much easier to give a domain-specific definitions for each DIKW layer. Or put it 

another way, our goal is not to define those layers, but to adopt a layered approach to divide the 

big problem into smaller pieces, and to apply a (MR)2 paradigm [40]. Still, one can argue the 

importance to set clear-cut boundaries before further proceeding.  

 Another potential concern is regarding the application of the MTL method, which was 

initially proposed for concept learning. Although we have seen research work using it on 

requirements elicitation [31], further evaluation on large data set is still needed to validate our 

meta-model (section 3.3). Also, it is also desired to test it on other domains, before finalizing the 

definition of the meta-model.  
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6.1.2 Threats to internal validity 

 The preparation of initial KB might involve our subjective understanding of the domain 

and data. Thus, others may create a different initial KB, and may experience a different learning 

process and results. On the other hand, our method only requires partially complete initial KB 

and at least one positive example. So in theory, it should be able to tolerate certain variations on 

initial KB and different inputs. Yet, its threshold has not been tested. 

 The application of SR model also requires analyst’s expertise on strategic modeling and 

proficient understanding of design knowledge. At current stage, it is still very difficult to give 

any quantified evaluation regarding the process of transformation from new knowledge to 

wisdom. 

 

6.1.3 Threats to external validity 

 So far, we have only worked on the domain of CoRE, although we believe that CoRE 

shares many features with other systems. Some example systems are mobile applications for 

wearable devices, home automation system, and the server end of dynamic web-based systems. 

One challenge is that the accuracy of desire inference using the CRF method needs to be further 

validated on other domains, since the quality of the initial KB largely depends on that.  

 

6.2 Conclusion 

In this work, we explored the feasibility of bridging the gap between data and 

requirements using Situ framework [8] as the foundation. The proposed approach is also an 

implementation of the concept of DIKW Hierarchy, in which techniques such as the CRF 
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method, the MTL method, and SR analysis has been applied. Figure 35 summarizes our logical 

workflow of this work. In the case study, we worked through one of the most immediate goals 

that is to identify new intentions. We further researched on using strategic modeling framework 

i* to fuse new knowledge with existing knowledge network. Although we experienced a positive 

outcome, the current result is still primitive since the type of new intentions/requirements that 

can be discovered are mostly low-level design alternatives, i.e. new ways of fulfilling a certain 

anticipated intention. New requirements in the real world are much more diverse. Plus, when a 

large number of alternatives show up in the KB, some may not make much practical sense. Thus, 

learning shall be restricted to certain domain constraints, which is an important part of our future 

work. 

Our ultimate goal is to automate the process of new requirements elicitation as much as 

possible. However, at current stage, human oracle is still needed at the very end of the MTL 

learning process, in order to filter out meaningful newly identified intentions. Based on our 

experience, the level of help needed mostly depends on the quality of the output from MTL 

learning engine, which further depends on several factors including the quality of the initial KB, 

noise level in the input (new positive & negative examples), availability of domain knowledge 

(specified in form of constraint), etc. Also, the knowledge fusion process is still in a semi-

automated stage. Manual modeling is still needed to transform new intentions into SR models. 

This is due to the lack of communicating interface between two frameworks, Situ vs i*. To 

automate this transformation process, one option is to develop a special ontology to map basic 

elements in two frameworks. 
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Figure 35. The logical workflow of applying CRF, MTL, and SR within the DIKW Hierarchy 
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This work can be further extended in the following directions: 

1. Testing our approach on a large data set in a controlled experiment setting. Also, carrying 

out performance evaluation between MTL and other knowledge mining methods.  

2. Extending our approach to improve the elicitation of non-functional requirements, for 

example, usability. We believe that with the help of historical data, fitness criteria could 

be better specified to meet individual users’ needs in each specific situation. 

3. Extending current Situ framework to support non-functional requirements analysis, so 

that new knowledge can be fused with existing knowledge network seamlessly within 

Situ.  



60 

 

 

 

 

REFERENCES 

[1] D. Zowghi and C. Coulin, “Requirements Elicitation: A Survey of Techniques, Approaches, 

and Tools”, Engineering and Managing Software Requirements, pp.19-46, 2005. 

 

[2] S. Robertson and J. Robertson, Mastering the Requirements Process: Getting Requirements 

Right (3rd Edition), Chapter 14: Requirements and Iterative Development, Addison Wesley, 

2012. 

 

[3] App Annie, “Decision-making platform for the entire mobile app economy”, Retrieved from 

https://www.appannie.com. 

 

[4] J. Gorinsek, S. Van Baelen, Y. Berbers, and K. De Vlaminck, “Managing Quality of Service 

during Evolution Using Component Contracts”, Proc. ETAPS 2003 Workshop Unanticipated 

Software Evolution (USE ’03), pp. 57-62, 2003. 

 

[5] O. Saliu and G. Ruhe, “Supporting Software Release Planning Decisions for Evolving 

Systems”, Proc. 29th IEEE/NASA Software Eng. Workshop (SEW-29), pp. 14-26, 2005. 

 

[6] C. Salinesi and A. Etien, “Compliance Gaps: A Requirements Elicitation Approach in the 

Context of System Evolution”, Proc. 9th International Conference on Object-Oriented 

Information Systems (OOIS 2003), pp. 71-82, 2003. 

 

[7] W. Jiang, H. Ruan, L. Zhang, P. Lew, and J. Jiang, “For User-Driven Software Evolution: 

Requirements Elicitation Derived from Mining Online Reviews”, Proc. 18th Pacific-Asia 

Conference on Advances in Knowledge Discovery and Data Mining (PAKDD 2014), pp. 584-

595, 2014. 

 

[8] C. K. Chang, H. Jiang, H. Ming, and K. Oyama, “Situ: A Situation-Theoretic Approach to 

Context-Aware Service Evolution”, IEEE Transactions on Services Computing, 2(3), pp. 261-

275, 2009. 

 

[9] R.L. Ackoff, “From data to wisdom”, Journal of Applied Systems Analysis, 16, pp. 3-9, 

1989. 

 

[10] J. Rowley, “The wisdom hierarchy: representations of the DIKW Hierarchy”, Journal of 

Information Science, 33(2), pp. 163-180, 2007. 

 

[11] S. Liaskos, S. McIlraith and S. Sohrabi, “Representing and reasoning with preference 

requirements using goals”, Technical report, Dept. of Computer Science, University of Toronto, 

2006. 

 

[12] H. Xie, L. Liu, and J. Yang, “i*-Prefer: Optimizing Requirements Elicitation Process Based 

on Actor Preferences”, Proc. 24th ACM Symposium on Applied Computing, pp. 347-354, 2009. 

https://www.appannie.com/
http://jis.sagepub.com/search?author1=Jennifer+E+Rowley&sortspec=date&submit=Submit


61 

 

 

 

 

 

[13] T. Keller, “Contextual Requirements Elicitation - An Overview”, Seminar in Requirements 

Engineering, Department of Informatics, University of Zurich, 2011. 

 

[14] G.E. Kniesel and R.E. Filman, “Unanticipated Software Evolution”, Journal of Software 

Maintenance and Evolution: Research and Practice, 17(5), pp. 307-377, 2005. 

 

[15] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goaldirected requirements acquisition”, 

Science of Computer Programming, 20(1-2), pp. 3-50, 1993. 

 

[16] E. Yu and J. Mylopoulos, “Understanding “why” in software process modelling, analysis, 

and design”, Proc. 16th International Conference on Software Engineering (ICSE’94), pp. 159-

168, 1994,. 

 

[17] J. Mylopoulos, L. Chung, S. Liao, H. Wang, and E. Yu, “Exploring alternatives during 

requirements analysis”, IEEE Software, 18(1), pp. 92-96, 2001. 

 

[18] B. Hui, S. Liaskos, and J. Mylopoulos, “Requirements analysis for customizable software: 

A goals-skills-preferences framework”, Proc. 11th IEEE International Requirements Engineering 

Conference (RE’03), pp. 117-126, 2003,. 

 

[19] S. Liaskos, A. Lapouchnian, Y. Wang, Y. Yu, and S. Easterbrook, “Configuring common 

personal software: a requirements-driven approach”, Proc. 13th IEEE International Conference 

on Requirements Engineering (RE’05), pp. 9-18, 2005. 

 

[20] A. Spink and C. Cole, “A human information behaviour approach to a philosophy of 

information”, Library Trends, 52(3), pp. 617-628, 2004. 

 

[21] K. Herold, “The philosophy of information: introduction”, Library Trends. 52(3), pp. 373-

376, 2004. 

 

[22] L. Floridi, “Open problems in the philosophy of information”, Metaphilosophy, 35(4), pp. 

554-582, 2004. 

 

[23] J. Rowley, “What is information?”, Information Services & Use,  18(4), pp. 243-254, 1998. 

 

[24] M. Tomasello, M. Carpenter, J. Call, T. Behne, and H. Moll, “Understanding and Sharing 

Intentions: The Origins of Cultural Cognition”, Behavioral and Brain Sciences, 28(5), pp. 675-

691, 2005. 

 

[25] P.R. Cohen and H.J. Levesque, “Intention Is Choice with Commitment”, Artificial 

Intelligence, 42(2-3), pp. 213-261, 1990. 

 



62 

 

 

 

 

[26] A.S. Rao and M.P. Georgeff, “Modeling Rational Agents within a BDI-Architecture”, Proc. 

2nd International Conference on Principles of Knowledge Representation and Reasoning (KR), 

pp. 473-484, 1991. 

 

[27] D. Hernando, V. Crespi, and G. Cybenko, “Efficient Computation of the Hidden Markov 

Model Entropy for a Given Observation Sequence”, IEEE Trans. Information Theory, 51(7), pp. 

2681-2685, July 2005. 

 

[28] G. Tecuci and R.S. Michalski, “A method for multistrategy task-adaptive learning based on 

plausible justifications”, Proc. 8th International Workshop on Machine Learning (1991a), pp. 

549-553, 1991. 

 

[29] R.S. Michalski, (1993), “Inferential learning theory as a conceptual basis for multistrategy 

learning”, Machine Learning, 11(2), pp. 111-151, 1993. 

 

[30] G. Tecuci, “Plausible justification trees: A framework for deep and dynamic integration of 

learning strategies”, Machine Learning, 11(2), 237-261, 1993. 

 

[31] R. Ankori, “Automatic requirements elicitation in agile processes”, Proc. the IEEE 

International Conference on Software - Science, Technology & Engineering (SwSTE’05), pp 

101-109, 2005 

 

[32] H. Xie, C. K. Chang, H. Ming, and K. Lu, “The Concepts and Ontology of SiSL: A 

Situation-Centric Specification Language”, Proc. 36th Annual IEEE International Computer 

Software and Applications Conference Workshops (COMPSACW'12), pp. 301-307, 2012. 

 

[33] J. Yang and L. Liu, “Modelling Requirements Patterns with a Goal and PF Integrated 

Analysis Approach”, Proc. 32nd Annual IEEE International Computer Software and 

Applications Conference (COMPSAC 2008), pp 239-246, 2008. 

 

[34] G. Browne and M. Rogich, “An Empirical Investigation of User Requirements Elicitation: 

Comparing the Effectiveness of Prompting Techniques”, Journal of Management Information 

System, 17(4), pp. 223-249, 2001 

 

[35] R. Schumaker, “From Data to Wisdom: The Progression of Computational Learning in Text 

Mining”, Communications of the IIMA, 11(1), pp. 38-48, 2011 

 

[36] C. Sutton and A. McCallum, An Introduction to Conditional Random Fields for Relational 

Learning. MIT Press, 2006. 

 

[37] P. Rigaux, The MyReview System, retrieved from http://myreview.sourceforge.net. 

 

[38] H. Xie and C. K. Chang, “Detection of New Intentions from Users Using the CRF Method 

for Software Service Evolution in Context-Aware Environments”, Proc. 39th Annual IEEE 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jingwei%20Yang.QT.&searchWithin=p_Author_Ids:37934693100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lin%20Liu.QT.&searchWithin=p_Author_Ids:37600218100&newsearch=true
http://www.tandfonline.com/loi/mmis20?open=17#vol_17
http://myreview.sourceforge.net/
http://dblp.uni-trier.de/pers/hd/x/Xie:Haihua
http://dblp.uni-trier.de/pers/hd/c/Chang:Carl_K=


63 

 

 

 

 

International Computer Software and Applications Conference (COMPSAC 2015), pp. 71-76, 

2015. 

 

[39] H. Xie, J. Yang, C. K. Chang, and L. Liu, “A Statistical Analysis Approach to Predict User's 

Changing Requirements for Software Service Evolution”, The Journal of Systems & Software, 

132C, pp. 147-164, 2017. 

 

[40] H. Ming, C. K. Chang, and J. Yang, “Dimensional Situation Analytics: from Data to 

Wisdom”, Proc. 39th Annual IEEE International Computer Software and Applications 

Conference (COMPSAC 2015), pp. 50-59, 2015. 

 

[41] International Conference on Software Engineering & Knowledge Engineering, 

https://ksiresearchorg.ipage.com/seke/seke17.html 

 

[42] E. Yu, “Towards Modeling and Reasoning Support for Early-Phase Requirements 

Engineering”,  Proc. 4th IEEE International Requirements Engineering Conference (RE’97), pp. 

226-235, 1997. 

 

[43] J. Mylopoulos, A. Borgida, M.Jarke, and M.Koubarakis, “Telos: Representing Knowledge 

about Information Systems”, ACM Transactions on Information Systems (TOIS), 8 (4), 1991. 

 

[44] E. Yu and J. Mylopoulos, “From E-R to ‘A-R’ – Modelling Strategic Actor Relationships 

for Business Process Reengineering”, Proc. 13th International Conference on the Entity-

Relationship Approach (ER’94), pp. 548-565, 1994. 

 

[45] E. Yu and J. Mylopoulos, “Understanding ‘Why’ in Software Process Modelling, Analysis, 

and Design”, Proc. 16th International Conference on Software Engineering (ICSE’94), pp. 159-

168, 1994. 

 

[46] E. Yu, “Modelling Organizations for Information Systems Requirements Engineering”, 

Proc. 1st IEEE International Requirements Engineering Conference (RE’93), pp. 34-41, 1993. 

 

[47] A. Dardenne, A. Van Lamsweerde, and S. Fickas, “Goal-directed Requirements 

Acquisition”, Proc. 6th International Workshop on Software Specification and Design (IWSSD 

'93), pp. 3-50, 1993. 

 

[48] J. Yang, C. K. Chang, and H. Ming, “A Situation-Centric Approach to Identifying New 

User Intentions using the MTL Method”, Proc. 41st Annual IEEE International Computer 

Software and Applications Conference (COMPSAC 2017), pp. 347-356, 2017. 


	2017
	A situation-centric, knowledge-driven requirements elicitation approach
	Jingwei Yang
	Recommended Citation


	THE DEVELOPMENT AND IMPROVEMENT OF INSTRUCTIONS

