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ABSTRACT 

In the era of Internet of Things (IoT), it is vital for smart environments to be able 

to efficiently provide effective predictions of users’ situations and take actions in a 

proactive manner to achieve the highest performance. However, there are two main 

challenges. First, the sensor environment is equipped with a heterogeneous set of data 

sources including hardware and software sensors, and oftentimes complex humans as 

sensors, too. These sensors generate a huge amount of raw data. In order to extract 

knowledge and do predictive analysis, it is necessary that the raw sensor data be cleaned, 

understood, analyzed, and interpreted. The second challenge refers to predictive 

modeling. Traditional predictive models predict situations that are likely to happen in the 

near future by keeping and analyzing the history of past users’ situations. Traditional 

predictive analysis approaches have become less effective because of the massive amount 

of data that both affects data processing efficiency and complicates the data semantics. In 

this study, we propose a data-driven, situation-aware framework for predictive analysis in 

smart environments that addresses the above challenges. 
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CHAPTER 1.    INTRODUCTION 

The term ‘Internet of Things’ (IoT) was first used by the author in [1]. He stated “The 

Internet of Things has the potential to change the world, just as the Internet did. Maybe even 

more so”. IoT will comprise billions of sensors, actuators and the data processors. These 

computational resources enable sensing, capturing, cleaning, organizing and processing of 

real time data from a vast array of devices serving many different applications including 

environmental monitoring, industrial applications, business and human-centric pervasive 

applications [2], [3]. In IoT environment, the user has access to different services at any time 

and any place. In fact, the devices and network services coordinate with each other to help 

the user accomplish her tasks without much interference. There are many definitions for IoT. 

[4] defines IoT as the growing and largely invisible web of interconnected smart objects that 

promises to transform the way we interact with everyday things. Definition provided by [5] 

covers broader aspects of IoT, “The Internet of Things allows people and things to be 

connected Anytime, Anyplace, with Anything and Anyone, ideally using Any path/network 

and Any service”. We apply the definition in [5] due to its broader scope. 

Due to recent developments in technologies such as sensors, smart devices, 

cloud/edge/fog computing, and large-scale deployment, the storage and processing power 

increase and the cost decreases rapidly. As a result, many sources (sensors, humans, 

applications) start generating big data. Also, organizations tend to store a large amount of 

data for a long time due to inexpensive storage and processing capabilities. The significant 

amount of data generated allows IoT applications to make data-driven decisions [6] in a 

timely manner where money can be saved and operations can be optimized. However, the 

generated big data may not be of practical values unless it be understood, analyzed, 
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interpreted in order to extract knowledge. Predictive analysis is expected to do the job. The 

traditional modeling and reasoning approaches to tackle data have become infeasible because 

this huge amount of data affects data processing efficiency. Power consumption in such IoT 

applications is also a key concern. Context-aware computing can play a significant role in 

addressing such challenges in the IoT paradigm [2], [7]. 

According to [7], context-awareness is an essential component in loT systems. The 

term “context-aware” was coined by Schilit and Theimer [8]. The study on context-aware 

computing has started from desktop applications and has continued to web applications, 

mobile computing, ubiquitous computing and IoT over the last two decades. There are many 

definitions for context but in this research, we accept a broader definition provided in [9]. 

The authors in [9] defined context as “any information that can be used to characterize the 

situation of an entity. An entity is a person, place, or an object that is considered relevant to 

the interaction between a user and an application, including the user and applications 

themselves”.  However, context-aware systems are capable of interpreting raw sensor data, 

they do not continuously consider human intention that is a core factor in triggering a new 

behavior[10]. Some studies [11], [10] have proposed human-intention-centric models in 

context-aware environment. The authors in [11] propose a framework called Situ in order to 

model and predict the user intention which is a vital component of predictive analysis [12]. 

Situ defines a new concept called “situation” as a time-stamped triplet that includes user’s 

desire, behavioral contexts and environmental context values. This definition adds an upper 

layer to context-aware computing in order to enable situation-aware computing. In order to 

have an effective mechanism to understand and interpret sensor data, it is important to take 

into account the factors that have an impact on user’s behavior. Human intention, 
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environmental context values and behavioral context values are tightly interrelated. For 

example, context values related to previous situation of the user may influence the user’s 

current desire, and the following actions and context values may be determined by the 

current desire. A change in human’s desire usually depends on current context values that 

may be quite dynamic [11], [10]. 

In situation-aware computing, the situation data add more meaning and value to 

sensor data. However, it also increases the storage requirements by many folds. For example, 

for each sensor log, the meta information such as what properties are measured, which 

sensors are available, where they are located, what the user’s desire is, and what actions 

taken will be stored.  

In this research, we propose a data-driven situation-aware framework for predictive 

analysis of big situation data in smart environments. We generate situation data using a smart 

home simulation tool called OpenSHS [13][14]. The collected sensor data has two features 

that may cause problems in further processing: first, high dimensionality and second, not all 

of the data is useful for predictive analysis. We take advantage of Scalable Situ Ranking [14] 

technique to address high dimensionality by filtering out the unimportant situations [12] and 

utilize only the high value ones in predictive analysis. After preprocessing the data and 

extracting the knowledge, we build a predictive model using locality sensitive hashing 

technique. Instead of computing exact similarity between any two situation sessions, we find 

near neighbors of user’s current session in a more efficient way compared to the traditional 

machine learning techniques. We introduce a new concept called Situ-Morphism that does 

the task of mapping the Situ space to vector space where nearest neighbor search approaches 
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are defined preserving situation properties. More specifically, the contributions of this study 

are: 

• Proposing a novel data-driven situation-aware predictive framework for predicting 

user’s future situations in a smart environment 

• Proposing a scalable ranking technique to rank situations using MapReduce 

• Proposing a new concept called Situ-Morphism, a structure-preserving function that 

maps from situation data to vector data in order to apply LSH technique to numeric 

vector space using existing methods 

• Introducing new similarity metrics in situ-space that measure similarity of situation 

sessions  

• Applying locality sensitive hashing technique to return near neighbors of a given 

situation session in linear time and efficient space complexity 

Although the proposed framework is applicable to any smart environment, we verify 

our framework on a dataset generated from simulating a smart home using OpenSHS. Smart 

homes have always been considered as a key part of the ubiquitous computing. Also, we 

design a small smart home scenario and use it throughout the research to facilitate the 

understanding of the concepts defined in this study.  
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CHAPTER 2.    RELATED WORK 

Aware Computing 

We have entered the “aware computing” era [14]. We will first make a distinction 

between context-aware computing and situation-aware computing. 

Context-aware Computing 

In the IoT paradigm, there are many sensors that sense and produce low-level context 

information. It is predicted that the number of smart devices will be over 50 billion by 2020 

[15]. The amount of data that will be collected by these sensors is expected to be huge. In 

order to extract hidden knowledge from big sensor data, IoT systems need to understand and 

interpret the raw sensor data [16]. Context-awareness helps with interpreting and analyzing 

data. There are two types of context-awareness: passive and active. In passive context-

awareness, system constantly tracks the environment and it helps the user doing her activities 

by offering the appropriate supports. For example, when a user wants to watch a movie, the 

mobile phone alerts the user with a list of new movies. However, in active context-

awareness, the system continuously and independently observes the user’s context and takes 

an appropriate action. For example, if the smoke detectors and temperature sensors detect a 

fire in a kitchen in a smart home, the system will automatically make a phone call to inform 

the resident of the house [7]. 

Situation-aware Computing 

In the IoT era, more deployment of different types of sensors lead to a rise to different 

genres of contexts, for example, location, traffic flow, temperature, air quality, etc. What is 

missing is a mechanism to capture and integrate diverse contextual data collected from 

various sensors, including humans [17], for enhanced computational intelligence in software 
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development, maintenance and evolution. This missing mechanism is called “situation”. One 

of the early studies on situations is the situation calculus which is a form of logic created to 

represent and reason about dynamic domains. Situation calculus is first introduced by John 

McCarthy in 1969 [18] but the main version that is commonly used today is introduced by 

Ray Reiter in 1991 [19]. The concept of situation is given plentiful meanings in several 

situation models [20]. John McCarthy proposes that a situation is the complete state of the 

universe at a time instant, while Ray Reiter gives situation a new definition that represents a 

history of action occurrences. According to Ray Reiter’s work, a dynamic world is modeled 

as progressing through a series of situations as a result of various actions performed within 

the world. And situation is defined as a set of contexts in a system over a period of time that 

has an impact on future behavior of system in specific domains, while context refers to any 

noticeable property of the environment, the system, or the users in a time instance. In 

situation theory proposed by Keith Devlin [21], situation refers to parts of the world 

consisting of objects, their properties and relations to one another, that can be distinguished 

in common sense. In the IoT era, where humans can be considered as sensors, it is imperative 

to consider human’s mental state, such as human’s desire or emotion, as another type of 

context which is usually hidden. As such, we consider situation-aware computing as different 

from the commonly studied context-aware computing that the human’s mental context 

becomes an integral part of the underlying computational model. Situ [11] defines situation 

as a triplet of user’s desire, behavioral context and environmental context values at a time 

instant. This definition is rich in semantics and it helps with modeling and reasoning human 

mental state. The advantages of this definition are: first, context values give meaning to the 

user’s actions. Second, user’s intention to reach a certain goal can be inferred based on 
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observing behavioral and environmental context values. Third, the changes in user’s 

intention can be detected through monitoring sequences of situations for achieving a certain 

goal. We adopt the definition provided in Situ [11] since it combines user’s desire with other 

commonly used context parameters to add an upper layer to context-aware computing. Situ is 

the first computational framework that is capable of modeling and reasoning human 

intentions by extracting user’s hidden desires [10]. The user’s behavior is an observable 

variable that is affected by user’s mental state which is an unobservable variable.  User’s 

desire can be inferred as reported in [10] where CRF is used. 

 

Smart Home and its Applications 

IoT has the potential to make the development of a wide range of applications 

possible, however only a very small part is currently available to our society. Many of these 

applications would likely improve the quality of our life: at home, while traveling, when sick, 

at work, when jogging and at the gym, etc. These environments are currently equipped with 

objects with only basic intelligence, and mostly without any communication capabilities. 

Giving these objects the capability of communicating with other objects to enrich the 

information perceived from the surroundings would enhance the smartness of environments 

where a very large array of IoT applications can be deployed [22]. 

The advances of sensor technology together with the increase in power of 

computation has resulted in rapid emergence of smart environments such as smart homes 

[23]. Smart homes first described by Weiser [24] on a small scale, are “improved living 

spaces equipped with distributed sensors and effectors hidden from the view of the 

residents”. Smart homes are designed to enhance the quality of life of residents by 

automating daily tasks and optimizing power consumption. In addition to enhancing quality 
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of life, smart home technology provides a mechanism to assist the residents in their daily life 

activities [25]. To achieve that goal however, many challenges such as activity recognition, 

emotion recognition, abnormal behavior detection and predicting the diseases before they 

happen need to be addressed [26]. Activity recognition is an old and well-studied problem. 

There are mainly two approaches for activity recognition: knowledge driven and data driven. 

Probabilistic and logic based activity recognition algorithms are considered as knowledge 

driven approaches. The main limitation of knowledge driven approaches is that it is assumed 

that the knowledge of the observing agent regarding the human participant mainly to be 

complete and correct. This knowledge is usually encoded in a complex formalism such as 

first order logic that requires a significant computer science expertise. Data-driven 

approaches have emerged to overcome the limitations related to the knowledge library 

required by the knowledge driven approaches. Data-driven approaches are suited very well 

for this study to tackle the emerging big data aspect of smart homes [25]. 

Context-awareness is often considered as complementary component to activity 

recognition since it helps with sensing and understanding of the activity and location. 

Therefore, it is desirable for smart homes to be characterized as a context-aware application 

[25]. Different types of sensors such as motion sensors, door entry-point sensors, taps, cooker 

sensors, pressure sensors, kettles, etc. capture different context values that would help to 

identify patterns of user’s behavior and eventually detect and categorize user’s behavior. 

After learning the user’s behavioral patterns, it becomes feasible to detect any abnormal 

behavior. 

There exist many other studies on smart homes with a variety of applications such as 

monitoring systems for elderly independent living, accident and fall detection, etc. [27], [28], 
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[29]. Many other studies focus on addressing the issues of independent living in a broader 

sense [30], [31], [32], [33]. There are also researchers who study identifying and modeling 

progression of specific diseases such as dementia of the Alzheimer’s type by monitoring 

performance in the execution of daily tasks [26], [34].  

Several methods including neural networks [26], [35], [36], [37], [38], [39], 

knowledge driven [40], [41], fuzzy logic [27], [28], [29], time series analysis [42], heuristic 

and machine learning techniques [43], [44], [45], [40], [37] are utilized to predict user’s 

behavior by observing daily activities and capturing the behavioral patterns. Some studies 

[12], [46], [47] take advantage of probabilistic and statistical analysis techniques since sensor 

data are noisy and human activities are performed in a complex nondeterministic mode. The 

issue with these methods is that they usually require large training data set in order to create 

an acceptable reasoning model. Also, there is no guarantee for detecting an abnormality 

condition. However, some studies [12] have partially addressed some of the issues related to 

these techniques such as high computational complexity of probabilistic and statistical 

models. 

Therefore, in the context of smart homes, there is a demand to have a scalable 

intelligent mechanism to monitor user’s daily activities, infer the user’s mental state, extract 

the behavioral patterns and create the predictive model to provide predictions and 

recommendations with respect to user’s current desire. 

 

Scalable Situ Ranking: Filtering Situations 

PageRank 

PageRank [48] is the most popular link analysis algorithm, and it is mostly used for 

assigning numerical weights (i.e., ranks) to web documents in a web graph. Rank of a node is 
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correlated with the importance of that node, as it is defined based on the number and the 

importance of the nodes linking to it. More specifically, the PageRank of a web page is 

defined as the probability of the random surfer being at some particular time step k > K at 

this web page. Nodes with high in-degrees are more likely to have higher ranks, so are nodes 

that are linked to by other high ranked nodes. This probability is more likely to remain same 

for a large enough K. There are many studies using PageRank in its original form (i.e. 

jumping to a random node with equal probabilities) or personalized form (i.e. favoring 

certain nodes) [49], [50], [51], [52], [53]. Formally, the PageRank of a page n is defined as 

follows: 

PR(n) = (1-α) ( !
|#|

) + α $(&)	
|)*+ & |&∈-.(.)   (1) 

Where |G| is the total number of nodes in the graph, α is the damping factor which 

usually takes 0.85 as its value. In(n) is the set of nodes linking to node n, and |Out(m)| is the 

out degree of node m.  

PageRank infers the importance of a node only based on graph structure. In smart 

environments, situation graphs can be large with millions of situation nodes with a large 

amount of information that is accumulated on the graphs. The information includes user 

behavior data and rich metadata associated with the graphs. Similar to the premises assumed 

by PageRank, in situation-aware smart environments, the history of user’s behavior has an 

important impact in user’s future behavior. 

MapReduce and its Applications  

In the era of big data, parallel processing is vital for processing of data in a timely 

manner. MapReduce is one of the most recent computing models for large data processing 

over distributed systems [54]. The main idea of the MapReduce model is to hide details of 
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parallel execution and let users design data processing strategies [55]. MapReduce was 

originally studied by Google [56] and has its roots in functional programming with two 

higher order functions map and reduce. In the first stage a user-specified computation (i.e. 

map task) is applied over a large number of records in a parallel mode to generate the 

intermediate results. Then, the results are aggregated by another user-specified computation 

(reduce task). Mapper and Reducer have the following signatures: 

map: (k1, v1) → [(k2, v2)] 

reduce: (k2, [v2]1) → [(k3, v3)] 

The basic data structures are in the form of (key, value) pairs. The “mapper” is 

applied to every input key/value pair to produce an arbitrary number of intermediate 

key/value pairs. The “reducer” is applied to all intermediate pairs associated with the same 

key to generate output key/value pairs [57]. Figure 2.1 illustrates the MapReduce framework. 

 

 

 

 

 

 

MapReduce has been applied in many areas such as machine learning [58], [59], [60], 

text processing [61], [62], [63], [64], bioinformatics [65], [66] and graph-based computations 

[67],[57],[68] in order to tackle large-data problems with high efficiency.  In [68], the authors 

proposed a scalable Label Propagation algorithm for semi-supervised classification and graph 

                                                
1 The convention [..] refers to a list 

 

Figure 2.1 MapReduce framework [58] 
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ranking using MapReduce. They showed how Label Propagation can be utilized for node 

ranking in graphs. They utilized MapReduce to convert the representation of the graph from 

an edge format to their desired format. Also, they applied MapReduce for implementing 

Label Propagation in an iterative manner. The authors in [67] proposed a semi-supervised 

learning framework for ranking on large-scale graphs called Semi-Supervised PageRank 

(SSP) using MapReduce. SSP considers meta-information on graphs and supervision 

information from humans besides the graph structure in graph ranking. They divided the 

large-scale computation in SSP into two parts: matrix-vector multiplication and Kronecker 

product of vectors. Then they applied MapReduce to handle the corresponding computations. 

In [57], the authors focus on general graph algorithms in MapReduce. Graph algorithms that 

can be applied to solve real world problems include graph search and path planning, graph 

clustering, minimum spanning trees, bipartite graph matching, maximum flow and 

identifying “special” nodes. A common property of all these problems is the large-scale 

datasets, where algorithms that run on a single machine are not scalable. They apply 

MapReduce to address these challenges. More specifically, the usage of MapReduce 

algorithms for single-source shortest path, breadth-first search and PageRank are discussed in 

[57]. There are plenty of other applications that utilize MapReduce to parallelize the 

computing such as web search, building inverted indexes and IoT [69]. In IoT, MapReduce is 

useful for processing sensor data in real time. In this study, we utilize MapReduce in order to 

implement the proposed Scalable Situ ranking technique in a parallel mode.  
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Predictive Analysis 

The general idea of predictive analysis is to make predications based on observations 

by matching the current observation with a data set and find the closest pattern to the current 

one and provide predictions.  

Probabilistic Graphical Models 

Over the past decade, many researchers have explored probabilistic graphical models 

to detect and predict user activities. Markov models [70] have been used for studying and 

understanding stochastic processes and shown to be well suited for modeling and predicting a 

user’s next action on a graph-based model of user’s sequential behavior. In these problems, 

the input usually is the sequence of observations and the goal is to build Markov models in 

order to predict the next state of the system. For example, in the problem of web surfing, the 

input is sequence of web pages accessed by a user, and the output is the web page which is 

most likely to be accessed by the user next. The authors in [44] use Hierarchical Hidden 

Semi-Markov Models (HHSMMs) to predict the inhabitant activity. In [43], Hidden Markov 

Models (HMMs) have been employed to model the residents’ behavior in order to detect 

abnormal activities. Furthermore, in [71], the authors present an activity prediction model 

based on Markov models and partial matching in the context of smart homes. The authors in 

[72][72][73] propose an approach based on Markov Logic Networks for decision making in 

smart homes. They assume that the user interacts with the system through voice and 

explicitly express her demand. In the context of smart environments, the next situation of a 

user relies not only on the current situation but also on the history of her milestone activities 

in the past. Therefore, a predictive probabilistic graphical model which keeps the history of 

user’s activities and support randomness and uncertainty is needed. Higher-order Markov 

models have been widely used in predicting user’s behavior since lower-order models do not 
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look far into the past in order to predict user’s next step. By taking into account the sequence 

of user behavior, the model would be able to correctly recognize differences between 

observed patterns and make the most accurate prediction [74][75]. In these studies, the initial 

probabilities of nodes have a uniform distribution leading to a less accurate prediction results. 

To address this issue, some other studies [76][77][[74][78][79] [80] have defined different 

priors in Markov models. For instance, in [76] the authors used a revised version of 

PageRank algorithm and in [77][80] the authors utilized link and citation analysis to assign 

prior probabilities to nodes based on their importance in the graph to obtain more objective 

predictions. Furthermore, some studies have proposed methods to improve the accuracy or 

reduce state complexity of Markov models in the context of predicting the system’s next state 

[77][81][79]. However, the authors in these studies presented methods to address the problem 

of m-path prediction (i.e. prediction of user behavior in m steps), and such methods have 

high computational cost [78][82] and the number of parameters need to estimate grows 

exponentially with the order. 

The Nearest Neighbor Search Problem 

Many of existing detection problems such as activity detection, fall detection, 

abnormal activity detection, emotion detection, are based on approximate pattern matching. 

The common problem of finding an object from a search database that is nearest to a query 

object is called with different names such as similarity search, nearest neighbor search, 

proximity search, or close object search. The object that is closest to a query object with 

respect to a similarity metric is called nearest neighbor [83].  

Exact nearest neighbor search 

Given a query q, nearest neighbor of q shown as NN(q), is chosen from a set of items 

I = {i!, i0,…, i1} so that NN(q) = argmin7∈-	dist(q, i), where dist(q, i) is the “distance” 
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between q and i. A generalization of nearest neighbor problem is a K-NN search, where the 

goal is to find K-nearest neighbors of given query q (KNN(q)). K-nearest neighbor search 

indicates the top k nearest neighbors to the query. This is a common technique in predictive 

analytics to estimate or classify an item based on the majority votes of its neighbors. In R-

near neighbor (fixed-radius near neighbor) problem, a revised version of nearest neighbor 

search, the goal is to find the set of items i that are within the distance C of q, R = {x| dist(q, 

i) ≤C, i∈I} [84]. These concepts depend on the notion of the distance function.  Researchers 

have formulated several notions of distance, such as Euclidean distance, cosine distance, 

hamming distance etc., for various application scenarios. In this work, we use (adaptations 

of) some of the well-studied distance measures. 

Approximate nearest neighbor search  

Finding exact nearest neighbor and R-near neighbor become infeasible in the large-

scale high-dimensional cases because computing exact similarity between two objects is 

computationally expensive when the size of the data set is massive. Therefore, many recent 

studies proposed approximate nearest neighbor search, and it is shown that this approach 

works well for many practical similarity search problems in large datasets. The (1 + ϵ)-

approximate nearest neighbor search problem, ϵ > 0, is defined as: Given a query q, the goal 

is to find an item i that dist(q, i) ≤ 1	 + 	ϵ dist(q, i∗) , where i∗ is the true nearest neighbor 

[85].   

The randomized nearest neighbor search problem reports the approximate nearest (or 

near) neighbors with a probability. There are two widely known randomized search 

problems: randomized c-approximate R-near neighbor search and randomized R-near 

neighbor search. In randomized c-approximate R-near neighbor, given a query q, the goal is 



16 

to find some cR-near neighbor of the query q with probability 1 − δ, where 0 < δ < 1. In 

randomized R-near neighbor search the goal is given a query q, to find some R-near neighbor 

of the query q with probability 1 – δ [84].  

A successful approach for approximate similarity search is via Hashing. The basic 

idea of hashing is to map the data items into a low dimensional subspace (i.e. short code of a 

sequence of bits). The hashing approach maps the query items to the target items of low 

dimensionality therefore approximate nearest neighbor search can be efficiently and 

accurately performed using found target items, since their dimensionality is low the target 

items are called hash codes. Formally, the hash function is defined as y = h(i) in which y is 

the hash code and h is the hash function. For a data item i, its low dimensional representation 

is calculated by applying multiple hash functions on i. For example, if h!, h0, … , hC are the 

hash functions, then i is mapped to an M-dimensional vector V7= [h!(i)	h0(i) 	 ·	·	· hC(i)]	H 

[85]. Now, to find the distance between two original object i and j, we instead look at V7 and 

VI. To make the nearest neighbor search fast, the vectors V7  and VI are stored in a hash table 

such that if V7 and VI are close to each other, then they are placed into the same bucket. 

Here, the purpose of hashing approach using a hash table is to maximize the number 

of collisions of near neighbor items. Given query q, the items in the bucket h(q) are retrieved 

as near neighbors of q. These ideas are known as locality sensitive hashing. 

Locality sensitive hashing 

The term “locality sensitive hashing” (LSH) was first introduced in 1998 [85] as a 

randomized hashing framework for efficient approximate nearest neighbor (ANN) search in 

large scale high dimensional space. Locality sensitive hashing is based on the definition of 

LSH family H, a set of hash functions that map similar items to the same hash code with 
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higher probability than dissimilar items.  In particular, having H as a family of hash functions 

mapping RK (i.e. a d-dimensional space) to some set S and h is a function chosen from H 

uniformly. A family H is called (SM, cSM, p!, p0)-sensitive if for any two points x, y ∈ RK 

these two conditions hold: 

• if Sim(x, y) ≥ SM then PrP(h(x) = h(y)) ≥ p!  

• if Sim(x, y) ≤ cSM then PrP (h(x) = h(y)) ≤ p0  

Then we say x is SM-near neighbor of point y. In order to find approximate nearest 

neighbor, p! > p0 and c <1   should hold. Other parameters SM and δ are none zero positive 

values. The definition of LSH family is tightly correlated with the type of similarity function 

of interest [86]. Given two vectors VQ = {a!, …, aC} and VR = {b!, …, bC}, some of the 

popular similarity/distance measures are as follows: 

Euclidean Distance. The Euclidean distance between vectors VQ and VR is defined as: 

dist VQ, VR = (a! − b!)0 + ⋯+ (a& − b&)0  (2)   

Cosine Similarity. The cosine similarity between VQ and VR measures the angle between two 

vectors which equals to WX.WZ
[\ WX)×	[\(WZ

 (3). Here L0 VQ  is length of vector VQ and equals to 

a!0 + a00 + ⋯a&0. Also, VQ. VR is dot product of VQ and VR and its value obtained by 

a!b! 	+	a0b0 + ⋯+	a&b&. Note that if two vectors are identical, VQ and VR are same thus 

the angle between VQ and VR is zero, thus the cosine similarity is 1. 

Jaccard Similarity. The Jaccard similarity between two vectors VQ and VR is 
WX.WZ

[[\ WX ]\_[[\ WZ ]\`WX.WZ
 (4).   

Jaccard Similarity as Set Similarity. Given two sets Sa and Sb Jaccard similarity of Sa and 

Sb is defined as |aX∩aZ|
|aX∪aZ|

 (5).  
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Researches on locality sensitive hashing mainly focus on three aspects. The first 

aspect is developing various LSH families for various distance or similarity measures. For 

example, p-stable distribution LSH is designed for ℓp distance measure [87], simhash (sign-

random-projection) for angle-based distance [88], minhash for Jaccard similarity [89], [90] 

and many other variants developed based on these basic LSH families [91]. The second 

aspect is to look into search efficiency of LSH framework (both time and space) to find the 

most optimized possible LSH family for certain distances and similarities [87], [92], [93], the 

tight characteristics for a similarity measure to admit an LSH family [88], [94] and so on. 

The third one focuses on improving the search scheme of the LSH methods, to improve 

search efficiency [91], [95]. 

In this study, we utilize LSH in order to find approximate nearest situation sessions to 

the user’s current situation session. However, defining new metrics to measure similarity 

between situation sessions and a LSH framework that be applicable in Situ space remains as 

a challenge. We introduce a novel concept called Situ-Morphism later in this research to do 

this job but before that, we define some concepts used in the rest of this study.  
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CHAPTER 3.    ESSENTIAL CONCEPTS AND ASSUMPTIONS 

In this section, first we introduce some basic concepts that is used in this study. Then 

we review six assumptions proposed for stipulating the scope of application of the 

framework that is a situation-aware data-driven approach for predictive analysis in smart 

environments.  

Essential Concepts 

We give an overview of the basic concepts used in this study as follows:  

Situ space: A Situ space is a collection of objects called situations [14]. All the other 

concepts are defined in Situ space. 

Situation: A situation is an instant status of the environment including environmental context 

values, and user, including user’s behaviors and user’s desire. In particular, a situation can be 

described as a triplet {d, A, E} of user’s desire, actions and all environmental context values 

at a time instant [11].  

Situation Session: A situation session is a sequence of the user’s situations in a 

chronological order during a specific period of time while goal is not achieved [12].   

Initial Situation: The first situation of each situation session is called initial situation. When 

user starts a new desire, the first situation of user is considered as initial situation of that 

session. 

Temporally ordered: The situations in a situation session are temporally ordered. For any 

two consecutive situations in a situation session, the time-point of the latter situation is after 

that of the former situation. 

Situation transition: The transition from a situation to another [12][14].  
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Situ graph: A directed, weighted and strongly connected graph constructed from situations 

and their transitions. Each node represents a situation and each link represents a transition 

from one situation to one other [12]. 

Desire: The condition or status of the environment in the domain that the user would like to 

achieve. The desires drive users to perform actions to achieve certain goals [11]. 

Goal: Set of logical conditions (specific context values) that indicates user’s desire has been 

satisfied [14].  

Milestone situations: The situations that are more likely to be observed to reach the goal g 

w.r.t. desire d [14]. Milestone situations are obtained by Scalable Situ Ranking [14] and have 

higher ranks compared to other situations.  

Milestone transitions: The transitions between milestone situations that are more likely to 

be observed to reach the goal g w.r.t. desire d. Milestone transitions are the ones with higher 

frequencies compared to other transitions w.r.t. desire d [14].  

 

Assumptions 

We make assumptions to delimit the scope of the domains in which the proposed 

framework can be applied. 

Assumption 1: The domain of the proposed framework is a rational single-user domain. 

There is only one user active at a time in the smart environment.  

However, in real-life applications, there may be more than one user. In this study, we make 

assumption 1 to keep the scope of this study manageable. Assumption 1 indicates that the 

desire and actions in one situation belong to the same user. For more than one user, this 

model can be extended by assigning a user id to situations to separate the situations based on 

the user, assuming that technologies permit users to be individually identified. 
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Assumption 2: Any changes in the user’s desire trigger to a new session. By assumption 2, 

our framework is able to recognize the start of a new session. 

Assumption 3: In any situation if the goal is achieved (all the logical conditions w.r.t desire 

d are satisfied), we mark that situation as end of the session. 

By assumption 3, our framework is able to recognize the end of a session. 

Assumption 4: For each situation session, we assume that the goal is satisfied by end of the 

session. 

According assumption 4, the user’s goal is accomplished at the end of each session. This 

assumption makes our framework to be built on valid behavioral patterns for predictive 

analysis. Therefore, abnormal non-complete sessions will be detectable in run time. 

Assumption 5: This approach supports multi-tasking and interleaving tasks while user is 

involved in only one active situation at a time instant. 

Any changes in a desire triggers to the start of a new session. And any situation that indicates 

a goal is achieved marks the end of the latest open session. Any two situations may interleave 

as follows: 

- Session j happens during session i: for example, while cooking (desire = cooking), 

user decides to watch TV too (desire = watching TV). After finishing watching TV 

(goal is achieved), user goes back to kitchen to finish cooking (goal is achieved). 

Here we extract the included session j as a separate session for desire watching TV. But 

for desire cooking, we consider watching TV as part of outer session to capture the 

pattern of multi-tasking w.r.t the starter desire (here cooking). 

- Session j starts in session i but continues even after session i ends or vice versa. For 

example, user starts cooking, while cooking, she decides to chop the potatoes sitting in 
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couch and watching TV. User goes back to the kitchen to finish up cooking quick and go 

back to continue watching TV. Here again, each session including the interleaved 

situations is processed separately.  

Assumption 6: All desires are atomic; that means if there is no relationship between desires, 

they are identical or different. There is no composition nor overlapping relationship among 

desires. 

Working with situations as unique data elements keep the cost of computations reasonable. A 

case with composite situations can be converted to atomic desires with breaking down each 

desire to smaller ones and then utilize them for this study. 
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CHAPTER 4.    SITU MORPHISM 

Morphism 

Morphism is a structure-preserving function that maps from one structure to another. 

Preserving the structure happens in some sense, and this sense has to be specified as part of 

the theory of those particular structures. Examples of structures are measures, algebraic 

structures, topologies and metric structures. For example, in graph theory, graph morphism 

refers to a mapping between two graphs that preserves their structure. In other word, it is a 

function between the vector sets of two graphs that maps adjacent vertices to adjacent 

vertices. Function f is morphism for graph H and G if for all vertices x and y in G, 

condition	if	 x, y ∈ E G ⟹ f x , f y ∈ E H  holds. Or in vector space morphism is 

defined as a function f:	V → W that preserves the vector space structure that are additive 

structure and multiplication from vector space V to another space W. Particularly, f is 

morphism if for any two vectors u, v ∈ V f u + v = f u + f(v) and f av = af v  [96]. 

Situ-Morphism 

Let Ses = {𝑆𝑒𝑠!, 𝑆𝑒𝑠0, …, 𝑆𝑒𝑠s} be a collection of user’s situation sessions observed 

in the past. Given current situation session of user, the goal in predictive analysis is to answer 

questions such as how “similar" two situation sessions 𝑆𝑒𝑠t and 𝑆𝑒𝑠u are? given a session 

𝑆𝑒𝑠t, what are all the situation sessions “similar” to 𝑆𝑒𝑠t? find groups of sessions so that 

sessions within a group are “similar” to each other. In this research, we map the situation 

sessions in Situ space to vectors in vector space while preserving the similarities between any 

two situation sessions in the original space. Formally, function g is Situ-morphism from Situ 

space S to vector space V (𝑔:	𝑆 → 𝑉) if for any two 𝑆𝑒𝑠t and 𝑆𝑒𝑠u in Situ space, if 

𝑠𝑖𝑚 𝑆𝑒𝑠t, 𝑆𝑒𝑠u > 	d	𝑡ℎ𝑒𝑛	𝑠𝑖𝑚	 𝑔 𝑆𝑒𝑠t , 𝑔 𝑆𝑒𝑠u > 	d where 0 ≤ d ≤1. Here 𝑆𝑒𝑠t in 
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original space is a situation session and g(𝑆𝑒𝑠t) is its corresponding vector with milestone 

situations as dimensions. We choose similarity as the main property that needs to be 

preserved in Situ-Morphism because finding closest neighbors involves computing similarity 

among objects.  

Situation session features 

Before defining the notion of “similarity” in Situ space, we explain how we define and 

extract features of a situation session. Then, we use the extracted features of sessions to define 

similarity. We guarantee that Situ-morphism preserves the features of situation sessions. An 

obvious choice for feature is “situation". We assume S = {s!, s0,..., s&} is the set of all situations 

that appear in the session collection Ses and r7I is the rank of situation i in session SesI. For a 

given session Ses7 	 ∈ 	Ses, a binary representation is obtained by defining R���� = <r!, r0,…,r&>  

r7I as 1 if s7 appears in sesI otherwise r7I equals 0. It is reasonable to assume that if two sessions 

are highly similar to each other, then there exists a large set of situations that appear in both 

sessions. However, some situations appear in many sessions and they do not contribute much to 

the similarity of sessions. Such situations are called non-milestone situations. Thus, the non-

milestone situations are not features of any session. As a result, we remove all non-milestone 

situations from every session in our session collection. We define the rank vector as R���� = <r!, 

r0,…,r&> and it is obtained using Scalable Situ Ranking discussed in related work. Each element 

in R���� vector, represents the importance of a situation in the given session.  Non-milestone 

situations are the situations that their rank is less than a specific threshold, most likely because 

they do not contribute to achieving user’s goal. Then, two situation sessions SesQ  and SesR   can 

be considered similar if the two sessions have a large fraction of milestone situations in common. 

Even though sometimes two sessions contain exact same milestone situations, they are not 
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considered similar sessions. The reason is that besides having common milestone situations, the 

order of milestone situations in a session is important. Therefore, having MS = {ms!, ms0,..., 

ms�} as set of all milestone situations, we improve the vector representation of situation sessions 

to milestone-position vector Pos���� = <pos!, pos0,…,pos�> where pos7I indicates the relative 

position of milestone situation i in session j. Here k is the number of milestone situations in 

sessions collection Ses and k << m.  

Situation session similarity metrics 

We define “similarity” of situation sessions in form of pyramid (      

Figure 4.1) instead of one layer of similarity. With the pyramid structure, the sessions 

with lower degree of similarity, will go to wider and lower layers and then those with higher 

degree of similarity will be narrowed down to restricted upper layers. In other words, each layer 

presents a similarity function that takes any two sessions from lower layer as input and compute 

their similarity. If two sessions are not similar with respect to a pre-defined threshold they are not 

moved to current layer, otherwise they are. There are five similarity functions. The first layer 

includes all sessions and does not represent any function. 

The layered similarity metrics are defined as follow: 

Similarity Type I (Common desire): If two situation sessions Ses7 and SesI in layer zero (all 

situation sessions), have same desire, they are considered as similar sessions type I and go to 

layer 1. In other words, it is more likely that user has same behavioral pattern in sessions with 

same desire. For two given sessions, if desires are different, they don’t go to upper layers, 

otherwise they go to upper layer to be checked for higher degree of similarity.  

Similarity Type II (Common milestone situations): Situation sessions with similarity type I at 

layer 1, are similar type II at layer 2 if they share many milestone situations. In other words, it is 
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more likely that user follows same behavioral pattern in sessions with same desire and shared 

milestone situations. 

Similarity Type III (Common milestone transitions): If two situation sessions Ses7 and SesI in 

layer 2, share milestone transitions, they are considered as similar type III and go to layer 3. In 

other words, it is more likely that user follows same behavioral pattern in sessions with same 

desire and shared milestone situations that have same composition order. 

Similarity Type IV (Common milestone-position): If two similar situation sessions Ses7 and 

SesI type III at layer 3, share milestone situations with approximately same distance from initial 

situation, they are considered as similar sessions type IV at layer 4. In other words, it is more 

likely that user follows same behavioral pattern in sessions with same desire, shared milestone 

situations with same order and distance from initial situation. 

Similarity Type V (Identical): If two similar situation sessions Ses7 and SesI type IV at layer 4, 

become identical after removing non-milestone situations, they are considered as similar sessions 

type V at top level 5. In other words, it is more likely that user follows same behavioral pattern in 

sessions with exactly same composition of milestone situations in terms of number, position and 

order.  

            

Figure 4.1 Similarity metrics in Situ Space 
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Mapping Situ space to vector space 

The morphism function g maps sessions to milestone-position vectors while preserving 

the milestone situations and their relative position in Situ space. In this part, we explain how Situ-

Morphism preserves the similarity between any two situation sessions during mapping process 

from Situ space to vector space. 

 
Similarity Type II to Jaccard similarity 

Jaccard similarity coefficient is a similarity measure that compares the similarity between 

two feature sets. It is defined as intersection of two sets over the size of union of two sets. In situ-

space, two sessions are similar Type II if they have some common milestone situations. In vector 

space, this can be measured with Jaccard similarity. For two sessions with milestone position 

vectors A∗ and C∗ , union is the number of milestone situations with non-zero entry in  A∗ or C∗, 

let’s call this value p. And the intersection is the number of milestone situations with non-zero 

entry in both A∗ and C∗, let’s call this q.  In vector space, Jaccard similarity of A∗ and C∗ is equal 

to SimI A→, B→ = �
�
 .  As the value of this ratio be closer to 1, it means two sessions have more 

milestone situations in common so they are more similar type II in Situ space and similar in 

vector space w.r.t Jaccard similarity.  

 
Similarity Type III to situation-order similarity 

Milestone situations composition plays an important role in understanding of situation 

sessions and user behavior. Basic composing information, such as situation order, can provide 

useful information to distinguish two sessions. Without syntactic information, it is impossible to 

discriminate sessions that share the similar milestones representations. For example, 

“turn	off	the	water → drying	body	with	towel" and "drying	body	with	towel →

turn	off	the	water" will both be classified as similar sessions Type II because they share the 
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same milestone situations. However, their meanings appear to be different. In the second 

scenario, user probably has forgotten to turn off the water after shower. Li et al. [84] defines 

word order similarity measure as the normalized difference of word order between the two 

sentences. We revise the formula to fit it to domain of this study. The formulation for milestone 

situation order similarity is as follows: 

 sim� A→, C→ = 1 −
���

→`���
→

���→_���
→ 		(6)  

 
Where A�and C� are ordered sequences of shared milestone situations in A∗ and C∗. 

Milestone order vector is a feature vector whose feature set comes from shared milestone 

situations that appear in a session pair. We create a milestone situation set called T which is a set 

of all shared milestone situations in A and C. For each shared milestone situation in T, we try to 

find the same milestone situation in A�and fill the entry for this milestone situation in r��→		 with 

the corresponding index number in A�. We repeat the same process for C. The index number is 

simply the order number that the milestone situation appears in the set A� and C�. Therefore, 

using this formula we can map similarity Type III to order metric in vector space to measure the 

similarity of two session vectors in layer 2.  

 
Similarity Type IV to Euclidean distance 

In Situ space, we say two sessions are similar Type IV if their shared milestone situations 

have approximately same distance from initial situations. In vector space model, we can measure 

this using Euclidean distance metric. We define a similarity metric as follows:  

Sim� A→, B→ = 1 − A!→ − B!→ 0 + A0→ − B0→ 0	 + ⋯+ A�→ − B�→ 0     (7).  
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Table 4.1 Situ-Morphism preserves the similarity between situation sessions 

Situ Space Vector Space 
Similarity Type I  Simple comparison of 

desires 
Similarity Type II Jaccard Similarity 

Similarity Type III Situation-Order Similarity 

Similarity Type IV 1-Euclidean distance 

Similarity Type V Simple comparison of two 
sessions 
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CHAPTER 5.    RESEARCH METHODOLOGY 

The problem of predictive analysis in smart environments has two aspects: human aspect 

and technology aspect.  

Human Complexity 

 Humans are complex beings, mentally, psychologically, physically and 

physiologically. It is likely that an end-user may not be able to give well-articulated 

requirements nor can a software engineer accurately elicit user’s requirements. Generally 

speaking, humans evolve as “situations” arise. In other words, human sensory adaptability to 

contextual signals from the environment is mapped into mind adaptability to perceived 

situations. To understand a human and her behavioral pattern, it is necessary to consider 

mental, emotional, motivational and intentional dimensions of human mental states. 

Sometimes the situation may become more complex and unpredictable as humans tend to 

behave differently under different circumstances. For example, in a smart home, to take a 

shower, there is generally a regular sequence of tasks to complete this goal. However, in one 

evening the user may prefer to turn on the radio during her shower or brush her teeth, etc. 

This unusual behavior comes from temporary priorities in user’s mind that change the order 

or type of regular tasks. In order to model user’s behavioral context with all such 

complexities, it is vital to relate the behavioral context to user’s mental state by adding user’s 

desire to the model. More precisely, it is important to monitor the user’s desire at each time 

instance and model user’s behavior w.r.t the current desire and environmental context values 

(i.e. situation). This approach helps with more effective predictions because it considers 

human’s complexity, although continuously monitoring human’s mental state will largely 

increase the volume of data collected from the computational framework. Because of the 



31 

sizable volume of collecting mental-contextual data, in addition to voluminous 

environmental and behavioral-contextual data, technological challenges pertaining to big data 

analytics thus emerge. 

Technology Challenges 

Due to many sensors observing user’s behavior and producing time-stamp events, 

predictive analysis approaches in IoT need to provide solutions to address big data challenge. 

In any smart environment, there are many sensors generating a lot of data. The problem is 

that this big amount of raw data is not useful until it is analyzed and interpreted. The 

interpretation is even more important in human-centered applications because of complexity 

of the human mental state. In this study, by big data challenge we refer to volume and 

velocity and we try to apply big data techniques in order to address this technology-side 

challenge of the problem. But utilizing big data techniques is a challenge itself that needs to 

be addressed first. Big data techniques are usually applied to vector space model. For 

example, for document similarity problem, each document is represented by a vector and 

each dimension shows the presence (binary vector) or the frequency (non-binary vector) of a 

term in the document. Also, there are similarity metrics used in these studies are usually 

designed to be applied to numeric vectors.  

However, the application domain illustrated in this study is different. In this study, we 

have users with complex mental state surrounded by a set of sensors. We utilize Situ-

Morphism to map Situ space to vector space first and then we show that similarity among 

situation sessions is preserved during this mapping.  
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CHAPTER 6.    LEARNING EXAMPLE 

For better understanding the concepts, we adopt a simple smart home scenario designed 

in [12], [14] to illustrate the concepts used in this study. We extend some parts of the scenario 

based on the new definitions provided here. In this scenario, the behavior of an elderly w.r.t 

desire “taking a shower” has been observed for 10 days and results are shown in Table 6.1. 

Table 6.1 A learning example showing situation sessions w.r.t. desire showering for 10 days 

ID:freq Observed Paths  
A:5 grab	towel → turn	on	the	water →

	adjust	the	temperature	of	water → use	soap → rinse	body →
turn	off	the	water → drying	body	with	towel →
put	some	clothes	on  
 

B:1 grab	towel → turn	on	the	water → open	the	fridge → grab	food →
close	the	fridge → Microwave	the	food → open	the	microwave →
close	the	microwave → eat → adjust	the	temperature	of	water	 →
use	soap → rinse	body → 	turn	off	the	water →
drying	body	with	towel → put	some	clothes	on  

C:1 grab	towel → turn	on	the	water → open	the	fridge → grab	food →
close	the	fridge → microwave	the	food → open	the	microwave →
close	the	microwave → eat → brush	teeth → use	restroom →
adjust	the	temperature	of	water → use	soap → rinse	body →
turn	off	the	water → drying	body	with	towel →
put	some	clothes	on  

D:3 grab	towel → turn	on	the	water → use	restroom → brush	teeth →
adjust	the	temperature	of	water → use	soap → rinse	body →
turn	off	the	water → drying	body	with	towel →
put	some	clothes	on  

 

To simplify the representation of situation data, we show a compact version of situation 

from (d, A, E) to only (A). For example, action “Grab the towel” actually refers to the 

situation with environmental context values such as 2010-11-04 00:09:50.209589 M003 ON” 

as date, time and sensor location and status, desire “taking a shower”. Session A with highest 

frequency has eight situations that are temporally ordered. The desire for all situations is same - 

“taking shower”. The arrow in any session shows a situation transition such as: “Grab	towel →

turn	on	the	water”, “adjust	the	temperature	of	water → use	soap” or 

“turn	off	the	water → put	some	clothes	on”. In situation session A, “grab towel” is the initial 

situation and goal can be defined as a set of abstract logical rules “if user puts clothes on, turn off 
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water and leave the room”. The end situation in session A, “put some clothes on” is assumed to 

have the goal (i.e. set of predefined logical rules) satisfied.  

We introduce a ranking technique called Scalable Situ Ranking to rank situations based 

on their importance and filter out the unimportant situations. We first create a Situ graph and then 

rank the situations using Scalable Situ Ranking. Figure 6.1 shows the Situ graph corresponding 

the given learning scenario. 

 

 

 

The results of ranking situations from our example, are shown in Table 6.2. Here we 

consider any situation with rank higher than the average of ranks as milestone situation. Based on 

the application and the domain, the definition of milestone situation may vary. The threshold is 

specified to identify “higher” ranks and it is domain dependent and can be identified from 

different ways. In this thesis, we assume the average value of rank as the threshold to find 

milestone situations. Here, the average rank is 0.0535 that means any situation with rank greater 

Figure 6.1 Situ graph corresponding the given learning example 
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than or equal to 0.0535 is marked as milestone situation. Milestone situations are highlighted in 

the Table 6.2.  

 
 

Nodes Rank Nodes Rank 
grab towel 0.0194 close the fridge  0.0144 
turn on the 

water 
0.0360 microwave the food  0.0161 

adjust the 
temperature of water  

0.1102 open the microwave 0.0176 
 

use soap 0.1131 close the microwave 0.0188 

rinse body 0.1161 eat  0.0199 

turn off the water 0.1171 brush teeth 0.0280 

drying body with towel 0.1181 use restroom 0.0231 

put on clothes  0.1191   
open the 

fridge 
0.0100   

grab food  0.0124   

 

In this scenario, Scalable Situ Ranking is applied only on a subgraph and the situations 

pointing to initial situation “grab towel” have been discarded. Therefore, the value shown in 

Table 6.2 is lower than its actual Situ rank value since it is computed only based on the weight of 

situation and not the importance of links pointing to this situation.  

After identifying milestone situations, we map Situ space to vector space using Situ-

Morphism. To simplify representing situations, we assign a symbol to each situation. Table 6.3 

shows the symbols defined for each situation. 

 

Situation Symbol Situation Symbol 
Grab	towel 𝑆! adjust	the	temperature	of	water 𝑆!M 
grab	food 𝑆0 eat 𝑆!! 
brush	teeth 𝑆� open	the	fridge 𝑆!0 
use	soap 𝑆� Rinse	body 𝑆!� 

Microwave	the	food 𝑆� open	the	microwave 𝑆!� 
close	the	microwave 𝑆� close	the	fridge 𝑆!� 
drying	body	with	towel 𝑆� put	some	clothes	on 𝑆!� 
turn	on	the	water 𝑆� turn	off	the	water 𝑆!� 
use	restroom 𝑆�   

Table 6.2 Results of Situ ranking on given learning example 

Table 6.3 Situations and their corresponding symbols 
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In the given example, for two sessions A = {S! → S� → S!M → S� → S!� → S!� → S� →

S!�} with size|A|=8 and C={S! → S� → S!0 → S0 → S!� → S� → S!� → S� → S!! → S� →

S� → S!M → S� → S!� → S!� → S� → S!�} with size |C|=17, milestone situations w.r.t. 

desire=“taking a shower” are MS = {S!, 	S�, 	S�, 	S�, S!M, S!�, S!�, S!�}. Milestone-position vector 

representation of situation sessions vectors of A and C can be represented as follows: 

 

Here, each dimension is a milestone situation and the ith entry shows the relative position 

of situation i in the corresponding session. For example, S1 is the first milestone situation 

appearing in A and length of situation A is 8. Therefore, the entry corresponding S1 in A* is 1/8 

=  0.125. 

In this learning example, SimI A→, C→ 	= 1 because all milestone situations appear in 

both sessions. Therefore, sessions A and C are similar Type I. Also, in given learning example, 

A�=“S!S�S!MS�S!�S!�S�S!�”, and C� = “S!S�S!MS�S!�S!�S�S!�”, r��→	and , r¡�→is a milestone 

order vector of sessions A and C, respectively. T = {S!,	S�,	S�, S�, S!M, S!�, S!�, S!�} and r�→ =

	< 0, 3, 6, 1, 2, 4, 7, 5 >, r¡→ =< 0, 3, 6, 1, 2, 4, 7, 5 >. Therefore sim� A→, C→ = 1 −

��→`��→

��→_��→
= 1 − 0

3.872474
= 1 which means A and C are similar Type III with high degree 

(exactly same orders of milestone situations composition). Regarding similarity Type IV, 

Sim� A→, C→ =1- 0.5124=0.487. Depending on the chosen threshold, we can consider A and C 

similar Type IV or not. 
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CHAPTER 7.    PROPOSED FRAMEWORK 

After introducing Situ-Morphism, and showing that situation sessions can be 

compressed, we apply locality sensitive hashing technique sessions to find similar situation 

sessions, find nearest neighbors of a given session query or find groups of similar sessions. 

However, some situations such as “turning on TV" or “opening the fridge" w.r.t. desire 

“Sleeping” are not important enough to contribute much to the similarity of two sessions. 

Such situations are called non-milestone situations w.r.t desire d. Thus, the non-milestone 

situations are not features of any session. Therefore, we will first filter all non-milestone 

situations from every session using the Scalable Situ Ranking method discussed earlier in 

this thesis. We use the information of milestone situations (i.e. the order, position) as features 

of sessions. Then we use newly defined similarity metrics to measure similarity between 

situation sessions. 

Scalable Situ Ranking 

In [12], we introduce a revised version of personalized PageRank called Situ Ranking 

in the context of situation-aware computing. In smart environments, the situation graphs are 

created from user’s situations as nodes and situation transitions as edges. The nodes and 

edges in situation graphs are labeled with meta information including situation elements (i.e. 

behavioral contexts, environmental contexts, user’s desire) and graph structure related 

information such as frequency of situation transitions. Therefore, Situ Ranking considers 

graph structure together with situation related meta information in order to assign higher 

ranks to the situations that matter more to achieve a specific goal. For this purpose, they bias 

the computation by extracting the hidden knowledge acquired from history of user’s 
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situations with respect to user’s current desire. The formula for Situ Ranking is as follows: 

SR� s� 	= ε SR�`!(s�)×
ª«¬«

ª®¯°¯∈±²³(°®)
a®∈´µ(°¶)

+ (1 − ε) ª°¶
ª°·°·∈¸°

 (8) [12] ,[14]. 

Here WS is set of all situation nodes in Situ graph. An edge for Situ graph is 

represented as <id, S�, S�, w��>. Here, id identifies an edge, S� shows the source situation and 

S� indicates the end situation corresponding to the link. w¹¬¹ represents the weight of the 

edge connecting S� to S� and it is equals to the number of times situation S� has happened 

right after situation S�. Here, wa� represents the weight of situation s7. The weight of a 

situation describes the number of times the user has been in that situation (i.e. wa¶= wa��7 ). 

The formula for Situ Ranking biases the PageRank calculation to assign higher ranks to the 

situations that were visited more often by the user in the past. Then, based on the rank of the 

situations, the ones with significantly higher ranks, called milestone situations, will be used 

for predictive analysis. In PageRank, the probability of jumping to another node is uniform 

but in Situ ranking it equals to the relative weight of the node. The weight of a situation 

corresponds to the frequency of the transitions from other situations to the situation. In other 

word, in Situ ranking all meta-information about the situations and situation transitions are 

considered in ranking process together with the graph topology.  

Since situation graph includes all situation data associated with meta information 

about the graph structure, history of user’s situations, implementing Situ ranking is 

computationally expensive in terms of time and space. In [14] we propose a scalable 

implementation of Situ Ranking using Map Reduce technique. Mapper is applied on every 

record of data in the form of (key, value) pairs and generates an arbitrary number of 

intermediate data records in the form of (key, value) pairs. Then reducer aggregates all 

intermediate pairs with same key and returns the output pairs [14]. We apply MapReduce in 
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two separate parts in order to compute the final rank of a situation at step k: computing the 

weight of situations at step k and computing situation ranks at step k.   

Computing Situations Weights at Step k 

The first part of formula for Situ ranking (i.e. (1 − ε) ª°¶
ª°·°·∈¸°

) computes the relative 

weight of situation S�. We define the weight of a situation as the number of transitions 

linking to the situation [12]. In other words, the weight of situation n is defined as w. =

	 w&.&∈-.(.)  where w&. is the frequency of transition from situation m to n. We propose 

the computation of situations’ weight using MapReduce as follows: 

Map: Take graph record <id, S�, S�, w��> as input. Map the input on S� and emit  

<S�, (S�, w��)> such that tuples with same S� are shuffled to the same machine. Such tuples 

are represented as <S�, {S�, w��},	S� 	 ∈ In	(S�)>. 

Reduce: Take <S�, {S�, w��},	S� ∈ In	(S�)> as input and emit <S�, wa¶> as output, 

where wa¶ denotes the weight of situation node S� and its value is obtained by 

w��∀a®∈-.	(a¶) .  

In the mapper phase the data is mapped to the end situation, and the pairs are 

generated with the end situation as key and the start situation together with frequency of 

transition as value. Then all the pairs with same key are shuffled and sent to the reducer. The 

reducer sums up the frequency of transitions corresponding with the same key, and output the 

end situation as key and the weight of the situation as value. Figure 7.1 shows the pseudo 

code for computing situation weights in MapReduce. 
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Computing Situations Ranks at Step k 

In order to calculate Situ rank of a situation at step k, all the in-degree situations pass 

their rank computed at step k-1 to the current situation via outgoing transitions 

(ε SR�`!(s�)×
ª®¶

ª®¯°¯∈±²³(°®)
a®∈´µ(°¶)

). After each iteration, all ranks of situations 

computed at step k-1 linking to the current situation are summed up and the new rank of 

situation at step k is updated. The iterative process stops when the situations’ rank values do 

not change anymore. We propose two levels of MapReduce in order to compute the second 

part of the formula [14]: First level implements w�¼a¯∈)*+(a®)  that indicates the sum of the 

weights of outgoing links from the situation linked to the current situation. In the second 

level, the ranks of in-degree situations are passed to outgoing situations and all the ranks at 

step k get updated. Mapper in level two iterates over the situation nodes, and distributes the 

current rank score (i.e. π�) to its outgoing neighbors by generating pairs including the partial 

value of the rank as value and the id of the outgoing neighbors as key. All the values with 

same key are aggregated by summing up the rank value contributions from all in degree 

transitions and output the updated rank (i.e. π′�) as new value and situation id as key. We 

propose to compute situations ranks using two levels of MapReduce as follows: 

MAPPER 
   Method Map (edgeid i, Situation 𝑆¿, 𝑆À , 𝑤¿À)  

1: Emit (𝑆À , (𝑆¿, 𝑤¿À))   
REDUCER  
   Method Reduce (𝑆À , [𝑤¿!À𝑤¿0À , 𝑤¿�À , . . . ])  
 1:  𝑤¹ ← ∑ 𝑤¿ÃÀÃ   
       2: Emit (𝑆À , 𝑤¹)  

Figure 7.1 Pseudo-code for situation’s weight computation in MapReduce 
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Map I: Take graph record <id, S�, S�, w��	> as input. Map the input on S�	and emit 

<S�, (S�, w��)> such that tuples with same S� are shuffled to the same machine. 

<S�, {S�, w��},	S� ∈ Out	(S�)>. 

Reduce I: Take <S�, {S�, w��},	S� 	 ∈ Out	(S�)> and emit <S�, w)*+®> where w)*+® 

denotes the summation of frequency of all outgoing transitions from situation node S� and its 

value is obtained by w��∀a¶∈)*+	(a®) . 

Map II: Take the record <id, S�, S�, π�, w��, w)*+®> as input. Map the input on S�	and 

emit <S�, (S�, π� ∗
ª®¶
ª±²³®

)> such that tuples with same S� are shuffled to the same machine. 

<S�, {π� ∗
ª®¶
ª±²³®

},		S� 	 ∈ In(S�)>. 

Reduce II: Take <S�, {π� ∗
ª®¶
ª±²³®

},	S� ∈ In	(S�)> and emit <S�, π′�> where π′� = 

π� ∗
ª®¶
ª±²³®

∀a®∈-.	(a¶) . 

Figure 7.2 and Figure 7.3 represent the pseudo code for the map and reduce tasks in 

both levels I and II. 

 

 

 

 

 

 

MAPPER I 
   Method Map (id, 𝑆¿, 𝑆À, 𝑤¿À	) 

1: Emit <𝑆¿, (𝑆À, 𝑤¿À)> 
REDUCER I 
   Method Reduce (𝑆¿, [𝑤¿À! , 𝑤¿À0 , . . .])  
      1: for all 𝑤¿ÀÃ∈ [𝑤¿À!, 𝑤¿À0 , . . .] do  

   2: 𝑤ÅÆÇ¬  ← 𝑤ÅÆÇ¬  + 𝑤¿ÀÃ  
      3: Emit (𝑆¿, 𝑤ÅÆÇ¬)  
	

Figure 7.2 Pseudo-code for Situ ranking in MapReduce (I) 
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Figure 7.3 Pseudo-code for situ ranking in MapReduce (II) 

In Figure 7.5 and Figure 7.6, we illustrate running of an iteration of situation ranking 

computation in MapReduce on a sub graph depicted in Figure 7.4. 

 

 

 

 

Figure 7.5 An example of an iteration of situation ranking in MapReduce (I) 

 

MAPPER II 
   Method Map (id, 𝑆¿, 𝑆À, 𝜋¿, 𝑤¿À , 𝑤ÅÆÇ¬)  
 1: 𝜋′À← 𝜋¿ ∗

É¬
ÉÊËÌ¬

 

 2: Emit <𝑆À, (𝑆¿, 𝜋�À)> 
REDUCER II 
   Method Reduce (𝑆À, [𝜋′!À, 𝜋′0À . . .])  
      1: for all	𝜋′ÃÀ  ∈ [𝜋′!À, 𝜋′0À. . .] do  

   2: 𝜋′À  ← 𝜋′À  + 𝜋′ÃÀ   
      3: Emit (𝑆À , 𝜋′À)  
	

Figure 7.4 A small subset of situation graph 
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Figure 7.6 An example of an iteration of situation ranking in MapReduce (II) 

 

Creating Probabilistic Graphical Model  

We build a probabilistic graphical model combined with Situ ranking technique to 

predict the user’s next situation and then we use this as a base model to compare with 

approximate approaches for prediction. We utilize a higher order Markov model in order to 

predict the resident’s future situations and make the right decision accordingly [12]. Higher-

order Markov models provide more effective predictions compared to lower-order Markov 

models.  The reason is that lower-order models do not take the past into account in order to 

predict user’s future. Keeping a sequence of a user’s situations allows the model to correctly 

distinguish the differences between observed patterns and make a reliable prediction 

[12],[14]. We build the predictive model based on milestone situations and milestone 

transitions. After the model is built based on training data, it can be used for predictive 

analysis. The model predicts the resident’s future situations by finding the most similar 

situation path to the partially observed path and makes the right decision accordingly. 
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Approximate Nearest Neighbor Search  

Estimating Similarity Type II  

To estimate similarity type II between two sessions first we assume MS = {1, 2, …, 

m} is the set of milestone situations that appear in union two sessions. Let MSQ be the set of 

milestone situations appearing in session SesQ and let MSR be the set of milestone situations 

that appear in SesR. Using LSH we can estimate this similarity in a more efficient way:  

A permutation on MS is a one-one, onto function from MS to MS. For a random 

permutation II on MS, Pr[min[Π(SesQ)] = min[Π(SesR)]] = Similarity Type II [97][86]. In 

summary, the steps to estimate similarity Type II are shown below: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Using Chernoff bounds it is shown that given k = O( Î
∈\
log(Î

Ï
)), we have: 

Pr |Similarity	Type	II SesQ	, SesR −
l
k | ≤ 	ϵ ≥ 1 − δ		(9). 

Therefore, two vectors MHa	and MHb contain sufficient information to estimate 

similarity Type II of SesQ and SesR. 

In computing exact similarity	Type	II SesQ	, SesR  we use MSQ and MSR, where MSQ 

and MSR are m-dimensional vectors. Compared to that MHa and MHb are k-dimensional 

vectors and k << m. Thus, we have “compressed" the entire situation session A to a bunch of 

k-numbers, and these numbers (along with k permutations) are sufficient to estimate the 

Input: 𝑆𝑒𝑠t , 𝑆𝑒𝑠u  and MS set of all milestone situations in 𝑆𝑒𝑠t ∪ 𝑆𝑒𝑠u  
1. Uniformly at random pick k permutations 𝛱1,…, 𝛱k 

2. Set 𝑀𝐻t = <min[𝛱1(𝑆𝑒𝑠t)] min[𝛱2(𝑆𝑒𝑠t)],..., min[𝛱k(𝑆𝑒𝑠t)]> 

3. Set 𝑀𝐻u = <min[𝛱1(𝑆𝑒𝑠u)] min[𝛱2(𝑆𝑒𝑠u)],..., min[𝛱k(𝑆𝑒𝑠u)]> 
4. Set 𝑙 as the number of items where 𝑀𝐻t  and 𝑀𝐻u match, i.e. 𝑙	 = 

|{i|min[𝜋Ã(𝑆𝑒𝑠u)]= min[𝜋Ã(𝑆𝑒𝑠t)], 1≤ 𝑖 ≤ 𝑘}|  
5. return Ú

Û
 

Figure 7.7 The algorithm to estimate similarity Type II 
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similarity of SesQ and any other sessions. The vector MHa is a signature of the session SesQ. 

Since the technique used to obtain this signature is the minimum value of (one-one) hash 

functions, this is called minhash signature [98][89].  

For collection of situation sessions Ses = {Ses!,...,	Ses1} and milestone situations MS 

= {ms!, . . , ms&} appearing in the collection Ses, we assign the milestone situations to the set 

of integers: {1,…,M}. The milestone situation-session matrix is the following MxN matrix, 

where b7I  equals 1 if the situation mS7 appears in session SesI, otherwise b7I equals 0. 

 
 𝑆𝑒𝑠! …. 𝑆𝑒𝑠s 
𝑚𝑠! 𝑏!! …. 𝑏!s 
𝑚𝑠0 𝑏0! …. 𝑏0s 
. . …. . 
𝑚𝑠Ý 𝑏Ý! …. 𝑏ÝÞ 

 
The MinHash matrix of the above collection is a kxN matrix obtained by randomly 

picking k permutations {π!,…, π�} each permutation is from {1,…,m} to {1,...,m}. 

 𝑆𝑒𝑠! …. 𝑆𝑒𝑠s 
𝜋! min[𝜋!(𝑆𝑒𝑠!)] …. min[𝜋!(𝑆𝑒𝑠s)] 
𝜋0 min[𝜋0(𝑆𝑒𝑠!)] …. min[𝜋0(𝑆𝑒𝑠s)] 
. . …. . 
. . …. . 
𝜋Û min[𝜋Û(𝑆𝑒𝑠!)] …. min[𝜋Û(𝑆𝑒𝑠s)] 

 
In general, the ijth entry of the MinHash matrix is min[p7(SesI)]. The ith column of 

Minhash Matrix shows the MinHash Signature of situation session Ses7: < min[p!(SesI 

(Ses7)],… min[p�(SesI (Ses7)]>. 

We utilize locality sensitive hashing technique in order map similar sessions into the 

same bucket. Let M be the k	×	M MinHash matrix. We partition rows of M into b bands such 

that each band has r rows (thus k = rb). For a session Ses7, its MinHash signature is MH7 =	<

n!, … , n� >. The entries of MHi appear in the ith column of M. We annotate the first entries 

of MH7 with MH7!,  second entries with MH70 and so on. Thus, MH7Î is a r-tuple. Randomly we 
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pick a hash function h from a set of r-tuples to {1,…,T} (where T > N). T1, T2,…,Tb are b 

hash tables. More precisely each Ti is an array of size T and each cell of the array points to a 

list. To identify candidate similar pairs for every i ∈ {1,…, N} we compute h(MH7!), 

h(MH70),…, h(MH7R) and for every  l ∈ {1, … , b} place Ses7 in the list at TÎ[h(MH7Î)]. Suppose 

that two sessions Ses7 and SesI are s-similar, i.e., Similarity Type II (Ses7, SesI) = s. The 

probability that both Ses7  and  SesI are mapped to the same bucket in some hash table is s�.  

Given a hash table TÎ Ses7 and SesI are placed into the same bucket of TÎ if h(MH7Î) equals 

h(MHIÎ). Since Ses7 and SesI are s-similar, the probability that any two corresponding 

milestone situations of MHi and MHj are the same is s. Thus, the probability that MH7Î and 

MHIÎ are same is at least s�. In other words, the probability that Ses7 and SesI are placed in 

different buckets of TÎ is at most		(1 − s�). Similarly, the probability that Ses7 and SesI are 

placed in different buckets of every hash table is at most (1 − s�)	R. And the probability that 

Ses7 and SesI are placed into the same bucket of some hash table is at least 1 − (1 − s�)	R.  

To summarize, below is the algorithm to identify near duplicate sessions in a 

collection of sessions w.r.t similarity Type II: 

Input: Ses = {𝑆𝑒𝑠! ,…,	𝑆𝑒𝑠s}, Set of all situations S = {𝑠!, . . . , 𝑠Ý}, Query session 𝑆𝑒𝑠á  
1. Apply Scalable Situ Ranking to identify milestone situations 
2. Apply Situ-Morphism to map Situ space to vector space 
3. Assigning each milestone situation with an integer so that MS is seen as {1,..,M} 
4. Uniformly at random pick k permutations 𝛱1,…,𝛱k from {1,…,M} to {1,..,M}. 
5. Compute the MinHash Matrix M. 
6. Partition rows of M into b bands with each band having r-rows. 
7. Pick a hash function h and b hash tables T1,…, Tb. 
8. Hash the situation sessions into hash tables T1,..,Tb. 
9. Identify sessions that are mapped into the same bucket as a group of similar sessions. 
10. Return sessions in the bucket that includes query session 𝑆𝑒𝑠á   

Figure 7.8 The algorithm to identify near duplicate sessions in a collection of sessions w.r.t 
similarity Type II 
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Estimating Similarity Type III  

There is no known LSH for this order similarity measure but since the formula for 

similarity Type III includes length of | r�→ − r¡→ | and | r�→ − (−r¡
→) | so we can use the 

same LSH proposed for Euclidean distance to estimate this measure as well.  

Estimating Similarity Type IV 

 
The hash functions here correspond to lines and lines are partitioned into buckets of 

size a. Given a situation session, the hash function maps it to the bucket containing its 

projection onto the line. Therefore, the sessions that are similar w.r.t. similarity Type IV are 

likely to put into same bucket. Formally, if (1- similarity Type IV) >> a, the angle between 

two sessions should be close to 90 degrees for there to be any chance they go to same bucket. 

If (1- similarity Type IV) << a, then the chance the sessions are in same bucket is at least 1- 

(1- similarity Type IV)/a. For any two situation sessions SesQ and SesR, if (1 - similarity 

Type IV(SesQ, SesR) ) ≥ 2a then the angle θ should be between 60 and 90 for there to be a 

chance that these sessions be considered similar Type IV and go to same bucket. However, if 

(1 - similarity Type IV(SesQ, SesR) ) ≤ a/2 then there is at least ½ chance that they be 

considered similar Type IV. And this yields a (a/2, 2a, 1/2, 1/3)-sensitive family of hash 

functions to estimate similarity Type IV of situation sessions [83]. 
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Input: Ses = {𝑆𝑒𝑠! ,…,	𝑆𝑒𝑠s}, Set of all situations S = {𝑠!, … , 𝑠Ý}, Query session 𝑆𝑒𝑠á 
1. Apply Scalable Situ Ranking to identify milestone situations 
2. Apply Situ-Morphism to map Situ space to vector space 
3. Assigning each milestone situation with an integer so that MS is seen as {1,..,M} 
4. Take a random unit vector u∈ 𝑅ä . A unit vector u satisfies that ||u||=1, that is d(u,0) = 1 
5. Project two sessions 𝑆𝑒𝑠t , 𝑆𝑒𝑠u	 onto u:  𝑆𝑒𝑠tÆ =	< 𝑆𝑒𝑠t, 𝑢 >	= 	∑ 𝑎Ã. 𝑢ÃÛ

Ãç!  and this is contractive 
so ||𝑆𝑒𝑠tÆ- 𝑆𝑒𝑠uÆ||<= ||𝑆𝑒𝑠t  - 𝑆𝑒𝑠u || 

6. Create buckets of size a on u (in 𝑅!). The index of bucket 𝑆𝑒𝑠t  falls into h(𝑆𝑒𝑠t).  
7. If ||𝑆𝑒𝑠t  - 𝑆𝑒𝑠u || < a/2 then Pr[h(𝑆𝑒𝑠t)= h(𝑆𝑒𝑠u)]≥ 1/2. 
8. If  ||𝑆𝑒𝑠t  - 𝑆𝑒𝑠u || > 2a then Pr[h(𝑆𝑒𝑠t)= h(𝑆𝑒𝑠u)]< 2/3 

 

Figure 7.9 The algorithm to estimate similarity Type IV of situation sessions 
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CHAPTER 8.    CASE STUDIES 

Dataset Creation 

The cost to create real smart homes and the collection of datasets is expensive and 

sometimes infeasible for many projects because of issues such as finding the optimal location 

to deploy sensors, lack of flexibility, finding participants and privacy and ethical concerns. 

There are some real smart home datasets available for research. However, oftentimes, they do 

not meet the needs of the conducted research projects. In our case, these open datasets fail to 

support our need to add desire labels to sensor events or an appropriate annotation method 

for the inhabitants’ activities. As open-source data were collected already, there is no way to 

go back and add some sensors, or change the design of the smart home. To overcome the 

drawbacks of generating real datasets we take advantage of smart home dataset simulation 

tools.  

There exist some studies proposing smart home simulation tools. However, not all of 

them are open-source and some of them lack the flexibility to customize the smart home 

design by adding and/or removing sensors and smart devices. There are two approaches to 

generate datasets: model-based approaches and interactive approaches. Model-based 

approaches are capable of generating bigger datasets, but with fewer interactions in real time. 

However, the interactive approaches usually produce the datasets in a longer time but with 

more interactions in real time. 

To generate data for our research, we use the simulator proposed in [13] called 

OpenSHS. OpenSHS is a hybrid, open-source, cross-platform 3D smart home simulator. The 

pleasant feature of this simulator is scalability which means that the sample dataset produced, 

can be extended without affecting the logical order of the events to help with generating big 
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smart home datasets. OpenSHS combines advantages from both interactive and model-based 

approaches with reducing the time and effort required to generate simulated smart home 

datasets while providing an interaction scheme between the simulated smart home and 

simulated participants in real time. OpenSHS tool is based on Blender and Python, which are 

both open-source and it works on multiple platforms.  

In this phase, as shown in Figure 8.1, we build the virtual environment, import the 

smart devices, assign labels to activities and design the contexts. 

 

Figure 8.1 An example of a designed smart home using Blender [13] 

 
Using Blender, we designed the 3D smart home consisting of a bedroom, a bathroom, 

a living room, a kitchen and an office. Each room is equipped with several sensors. There are 

twenty-nine sensors of different types in total. To simplify the case and reduce the amount of 

data generated, the sensors are taken to be binary, and they are either on or off at any given 

time step. Then smart devices such as TV, oven, fridge, etc. are imported into the smart home 

from the smart devices library, offered by OpenSHS. The smart devices library includes 

different types of smart devices and sensors and it is extensible. The sensors that we import 

to our smart home are as follows: pressure sensors placed under carpet, bed and couch, door 

sensors, lock devices, appliance switches such as TV, oven, fridge, and light controllers. 

OpenSHS enables the researchers to define an unlimited number of desires. We identify 10 
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labels, namely, ‘sleeping’, ‘cooking’, ‘bathing’, ‘leaving’, ‘studying’, ‘entering’, ‘eating’, 

‘watching TV’, ‘anomaly’, ‘other’. Figure 8.2 shows the desires appearing on top right of the 

screen so user can choose the desire and start the new session. Also, we can define specific 

time frames as environmental contexts, e.g., morning, afternoon, evening, weekdays, 

weekend afternoon, etc. We define four time frames: weekday morning, weekday evening, 

weekend morning, weekend noon, weekend evening. Each context has a default starting date 

and time, and the researcher can adjust the date and time as she wants to. Every context has 

an initial state for the sensors and the 3D position of the participant (as mentioned earlier, we 

only consider one user for this study). The default sample rate in OpenSHS is one second but 

it can be re-configured to finer grained as required. Another interesting feature of OpenSHS 

is fast-forwarding. It allows the user to control the time span of a certain activity. For 

example, in Figure 8.3 the participant wants to watch TV for a period of time and does not 

want to perform the whole activity in real time, the user can initiate the activity and specify 

how long the activity lasts. The tool will simply copy and repeat the existing state of all 

sensors and devices during the given time period.  

 

 

Figure 8.2 Customized list of desires appearing on screen 
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Figure 8.3 Activity fast-forwarding dialogue during a simulation 

After performing simulation by the user, we aggregate the generated sample activities 

for each time frame, in order to produce the final dataset. In order to generate big data, 

OpenSHS propose a technique to replicate the recorded samples without affecting their 

logical order. During aggregation and generation of the final dataset, the samples of every 

context are grouped by the number of activities in each sample. Then, a random group will be 

chosen, and from that group, a sample will be drawn for each activity. In general, the number 

of uniquely replicated copies for a single context can be calculated by R = Sé�#
éç! . G 

denotes the number of the groups of unique length of activities and Sg denotes the number of 

samples for the group g and A denotes the number of activities within a sample Sg. 

Figure 8.4 shows the Blender interface for context monitoring and Figure 8.5 displays an 

example of interaction between smart home and participant. Using OpenSHS we are able to 

customize the initial state of different contexts. Figure 8.6 shows an example of initial 

context values. Figure 8.7 lists some of the generated datasets for different time frames and 

Figure 8.8 is an example of content of generated data. Starter desire is “leaving” and 

interleaving desire is “bathing”. Each row shows a situation containing three elements of 

user’s starter desire, environmental contexts (here, time and location) and behavioral context 
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(changes in sensor events inferred as an action). We can show the above sensor log as two 

situation sessions: 

1. Open	wardrobe → close	wardrobe → leave	bedroom →

close	bedroom	door → enter	bathroom → turn	on	bathroom	light →

turn	off	bathroom	light → leave	bathroom → unlock	main	door →

open	main	door → close	main	door → lock	main	door 

2. Enter	bathroom → turn	on	bathroom	light → turn	off	bathroom	light →

leave	bathroom 

 

 

 

Figure 8.4 Blender interface for context morning 
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Figure 8.5 An example of interaction between smart home and participant 

 

Figure 8.6 Customizing initial state of different contexts 

 

Figure 8.7 An example of generated datasets for different time frames 
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Figure 8.8 A sample of final dataset output 
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CHAPTER 9.    STUDY RESULTS 

We’ve evaluated different components of the proposed framework separately. First, 

we evaluate Situ ranking on top of a predictive probabilistic graphical model in comparison 

with a base probabilistic graphical model with no ranking. Then we evaluate scalability of 

our work by increasing the data and testing the run time for prediction. Also, we evaluate 

approximate nearest neighbor search on a simulated dataset to compare the memory 

consumption and run time compare to the methods that utilize exact comparisons. The 

implementation used for our evaluation is programmed in Python.  

 

Probabilistic Graphical Model with Situ Ranking 

 To evaluate Situ Ranking, we employed one data set called Aruba [99]. The data set 

includes sensor data collected in a smart home with one resident and three different sensors: 

motion sensors, door closure sensors and temperature sensors. The sensor events are labeled 

with user’s desire that is a desired property of this data set to be used in this study. There are 

eleven desire labels including “meal preparation” with 1606 situation sessions, “relax” with 

2910 situation sessions, “eating” with 257 situation sessions, “work” with 171 situation 

sessions, “sleeping” with 401 situation sessions, “wash dishes” with 65 situation sessions, 

“bed to toilet” with 157 situation sessions, “enter home” with 431 situation sessions, “leave 

home” with 431 situation sessions, “house keeping” with 33 situation sessions, and 

“respiration” with 6 situation sessions. The layout of the sensors embedded in the smart 

home is shown in Figure 9.1. The dark points indicate the sensors. 
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Figure 9.1 The layout of the sensors embedded in the smart home [99]  

Aruba dataset is approximately 61 MB that contains raw sensor events collected in 

2010–2011. The situations are recorded in terms of sensor status (3 types of sensors: motion, 

door, temperature) annotated with the desire of user (11 categories). We evaluated this 

approach in three different setups of the prediction model. The first setup is pure Markov 

model and the second one is Markov model extended with ranking based on PageRank. The 

third setup is the one with Situ ranking. As the reader can observe from Figure 9.2, the 

proposed approach provides an improvement over the other two setups in terms of accuracy 

of prediction2. The reason is that pure Markov model assigns equal prior probabilities to all 

nodes but in the two other setups, Markov model is extended with ranking process which 

uses the ranks as prior probabilities. Between PageRank and Situ ranking, Situ ranking 

provides more objective and accurate predictions. Figure 9.3 depicts the OSim3 similarity for 

the top 3, 5, 8 rankings of Aruba dataset w.r.t. d=” Meal-Preparation”. The top-n rankings 

                                                
2 Precision = 1*&R��	�ê	ë����ë+	���K7ë+7�.�	��+�7�ì�K	 H$

1*&R��	�ê	ë����ë+	���K7ë+7�.�	��+�7�ì�K	 H$ _1*&R��	�ê	ª��.é	���K7ë+7�.�		��+�7�ì�K	(í$)	
 

3 OSim(τ1, τ2) indicates the degree of overlap between the top n situations of two rankings, τ1 and τ2.      
OSim(τ1, τ2)=|	î!∩	î0|

.
  [76]. 
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from Situ ranking are more similar to actual user’s behavior compared to PageRank based 

ranking. Figure 9.4 shows the comparison of three setups in terms of complexity. However, 

the higher order Markov model with Situ ranking utilizes look far into the past in order to 

provide more accurate user’s situation and next path prediction, it only considers milestone 

situations and transitions to compress the model. As a result, as Figure 9.4 shows, the 

predictive model with Situ ranking has lower complexity and prediction time compare to two 

other setups. 

In Table 4.1, we compare proposed predictive model with Situ ranking [14] with 

some other probabilistic graphical model-based approaches [71], [72], [100] in terms of 

prediction accuracy. Please note that the dataset used in [100] was not available and the 

datasets used in [71][72] were not annotated with the user’s desires so they were not 

applicable to this study. Nevertheless, we employed Aruba dataset to evaluate Situ ranking 

component of our research. According to the authors of [100], Aruba is closer to dataset used 

in [100] with same assumptions and features compared to other available smart home 

datasets. Also, Aruba dataset includes user’s activity data collected for two years; however, 

the dataset used in [71], includes user’s activity data for only two months. Considering the 

fact that Aruba has much more data than dataset used in [71], our approach has comparable 

(i.e. against SPEED [71] that was validated for only two-month data) accuracy while keeping 

the complexity low which is an improvement over that of [71], [72], [100]. We speculate the 

reason that predictive model combined with Situ ranking outperforms the other three 

approaches is because it ranks the situations dynamically based on the user’s current desire. 

Also, it compresses the representation model by identifying milestone situations and 

milestone transitions.  
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Figure 9.2 Comparison of setup1 (pure Markov model), setup2 (Markov model extended with 

ranking) and setup3 (Markov model extended with Situ ranking) in terms of accuracy of prediction 

 

Figure 9.3 Comparison of setup2 (Markov model extended with ranking) and setup3 
(Markov model extended with Situ ranking) in terms of similarity of top-n (n=3, 5, 8) 
rankings to the user’s actual data w.r.t. desire=Meal-Preparation 
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Table 9.1 Comparison of predictive graphical model combined with Situ ranking with some 
other predictive graphical model-based approaches 

Name Method Accuracy 

CRAFFT [100] Dynamic Bayesian Network 74.75% 

[72] Markov Logic Networks 65% 

SPEED [71] Markov models with partial matching 88.3% 

Higher Order Markov 

Model with Situ 

Ranking [14] 

Higher order Markov models extended 

with Situ ranking 

84.84% 

 

Scalable Situ Ranking 

To evaluate scalability of Situ ranking, we did some preprocessing to annotate the raw 

sensor events with situation data and create intermediate files such as a file containing 

situation nodes, a file for situation transitions, one for each desire, etc. All these processing 

extended the size of the whole Aruba dataset to approximately 2 GB. We use the extended 

Aruba dataset to evaluate the scalability of the proposed ranking technique.  All our 

 

Figure 9.4 Comparison of setup1 (pure Markov model), setup2 (Markov model extended 
with ranking) and setup3 (Markov model extended with Situ ranking) in terms of prediction 
time 
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experiments were performed on an experimental cluster of three machines each with 2.5 GHz 

with 1Gb main memory. To test the scalability of the proposed ranking technique, we divide 

the dataset into subsets of 10, 30, 50, 70, 90, and 100 percent of the input data and run the 

algorithm for each subset. Larger datasets collected from a longer period are certainly 

desirable; however, they are in general hard to come by. Note that the WSU4 open datasets 

are among the most popular ones adopted by the smart health community and contain data 

meeting our need. Here, we use the same predictive model combined with Situ ranking in 

previous section. The only difference is that, we implement the Situ ranking using 

MapReduce to make the ranking process scalable. We design an experiment to analyze the 

time complexity of serial [14] and parallel implementation (i.e. proposed MapReduce 

technique) of our situation ranking algorithm. Figure 9.5 demonstrates the experimental 

results of the comparison in terms of run time. The parallel implementation of situation 

ranking algorithm by MapReduce can effectively process large-scale situation-annotated 

sensor data and accelerate the algorithm. The reason is that in serial algorithms, a problem is 

broken into a series of instructions and then the instructions are executed sequentially one 

after another. However, in parallel algorithms, a problem is broken into discrete sub 

problems that can be solved concurrently. Then, each sub problem is broken down to a series 

of instructions that are executed simultaneously on different processors [101]. The results of 

our experiments show that given a dataset the parallel algorithm for Situ ranking is roughly 

three times faster than its serial version. Figure 9.6 shows the scalability of the proposed 

algorithm for ranking situations. As observed in Figure 9.6, the increase in time is almost 

linear in the size of the input data that is a desirable property.  

                                                
4 Washington State University 



61 

  

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

In terms of space scalability, the MapReduce algorithm generates intermediate data in 

order of number of edges. And because situation graph is a sparse graph, the number of edges 

is in order of number of nodes. Therefore, the space will increase linearly when the input size 

increases.  Also, the results of the experiments for accuracy of the predictions show that the 

accuracy remains the same as the one reported in [14] which is approximately 84.84%. 

 

 

Figure 9.5 A comparison between run time of Situ ranking Algorithm in two 
parallel and serial mode with scaling data 

 

Figure 9.6 Run time of Situ ranking for subsets of Aruba dataset 
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Approximate Nearest Neighbor Search with Situ-Morphism 

As probabilistic graphical models are expensive to build and use when the data is 

massive, we utilize approximate pattern matching approach for prediction using the novel 

concept Situ-Morphism. We generate ~7GB data by simulating a smart home using 

OpenSHS in about two weeks in a relatively realistic setting. The data includes about 1 

million sessions (samples) with 30,000 situations (dimensions). After mapping Situ space to 

vector space using Situ-Morphism, the output is a 1,000,000 x 30,000 sparse matrix which 

takes a lot of space. To address this challenge, we apply Scalable Situ Ranking [14], and we 

utilize a revised version of the existing implementation of LSH to find near neighbor sessions 

of test query sessions. We use an AWS Linux instance with 16GB main memory and 4 

vCPUs. We evaluate the performance of our framework in terms of memory consumption, 

accuracy and query speed compared to our benchmark models for predictive analysis: 1) 

Naïve predictive model that uses brute force similarity search with no Situ ranking, 2) 

predictive model that only applies Situ ranking and 3) our proposed predictive model. 

Memory Consumption 

To evaluate memory consumption, we compare three approaches for predictive 

analysis. The first one is the brute force case that considers all situations as dimensions of 

situation vectors and does a pair similarity search to find similar sessions to user’s current 

session and provide predictions accordingly. The second approach is an improved version of 

first approach and it reduces the dimensions to milestone situations but still it uses a naïve 

pair similarity search to find similar sessions and use them for prediction. The third approach 

is the proposed framework in this study. LSH helps with dimension reduction as well. 

Memory consumption for each approach has shown below.  
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Figure 9.7 Memory usage for three different predictive analysis approaches 

As shown in Figure 9.7, the proposed framework uses less space compare to two 

other approaches. The reason is that it reduces the dimensions to a low constant number so 

that the matrix of situations and sessions is smaller in size. In other words, for any two 

situation session vectors with m dimensions, their corresponding MHQ and MHR  vectors 

have k dimensions such that k << m with enough information to estimate similarity between 

sessions. For m be around 10,000, k can be any number from 400 to 1000. Therefore, instead 

of storing a vector with 10000 integers each taking 4 bytes, we can store the minhash 

signature with a 400-1000 integers. As a result, for a minHash signature with 1000 

dimensions, it takes 4KB memory to be stored and 4GB to store one million sessions in 

memory. However, it is not feasible to store actual sessions with 10000 dimensions in 

memory.  

Query Speed 

In this part, we compare the time taken to find similar sessions to query session using 

exact similarity search and approximate similarity search used in this study. For example, to 

estimate similarity Type II the time taken to compute the MinHash matrix of a situation 

session collection is computed by adding the time of creating each column of matrix that is 

MinHash signature of a session. A minhash signature is computed by computing each of 
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min[Π!(Ses7)], …, min[Π�(Ses7)]. We can compute min[ΠÎ(Ses7)] by computing ΠÎ on every 

situation in the session. Therefore, computation of min	(ΠÎ(Ses7)) takes O(number of 

situations in Ses7) time. Thus, the total time taken to compute the MinHash matrix is equal to 

k × (Number of situations in Ses!+ Number of situations in Ses0 +…+ Number of situations 

in Ses1)  and k*m is an upper bound on this value where m is the number of dimensions of 

original situation session vectors. After computing MinHash matrix, we can estimate 

similarity between any two sessions in linear time. The MinHash signature of each session is 

a k-tuple vector where k is number of permutations. And if  MHQ and MHR matches at L 

places then L/k is the estimation of similarity Type II. Therefore, we can estimate similarity 

of two sessions in O(k) because we just need to check k numbers if they match or not with 

another k numbers. The idea of LSH is to focus on pairs that are likely to be similar instead 

of focusing on every pair using locality sensitive hashing that maps “similar items" into the 

same bucket.  

 

Figure 9.8 Run time similarity computation for all session pairs (in approach 1 and 2 exact 
similarity search is used, in proposed approach, the approximate similarity search is used) 

(given π= 600, dimensions = 30000) 

As it is shown from Figure 9.8, time to compute similarity between sessions and find 

close sessions to a query session takes less time when it uses the approximate approach 

compared to the exact-pair similarity computation. The reason is that in naïve approach, we 
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compare the query session with all sessions to find the closes neighbors; however; using 

locality sensitive hashing, it searches among the pairs that are likely to be similar. 

Relevancy Result 

To evaluate the proposed framework in terms of relevancy of returned results to 

actual similar results, we measure precision with counting the number of pairs of sessions in 

which their difference is less than an error parameter. In other words, precision is percentage 

of correctly identified pairs as similar sessions over all pairs. We have tested our model with 

three different number of permutations and error parameters. 

 

 

Figure 9.9 Accuracy of our framework given 100000 sessions, 30000 situations, total number 
of pairs: 4999950000 and error parameter 0.04 

As Figure 9.9 shows, the accuracy of our proposed framework is around 89% by 

choosing appropriate parameters for locality sensitive hashing. 
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CHAPTER 10.    DISCUSSION AND CONCLUSION 

In this thesis, we propose a data-driven situation-aware framework for predictive 

analysis in smart environments. The proposed framework has different components: scalable 

Situ ranking, Situ-Morphism, approximate nearest neighbor search technique. Situation data 

brings the addition of meta-information to raw sensor data that allows us to make more 

reliable decisions for smart environments. However, storing more data will improve the 

decision quality but cause more computation complexity. To address this issue, we propose a 

scalable iterative ranking method based on PageRank to assign a score to situations based on 

their importance and filter out the non-important situations from future predictive purposes.  

We apply MapReduce programming model to implement the proposed technique. The results 

of our experiments on both graphical predictive models and approximate predictive models 

show that using the scalable Situ ranking, we can make effective use of the situation data, 

leverage situation information on the situation graph, and scale up to very-large scale 

situation-aware predictive analysis problems. We evaluate the performance of the proposed 

ranking technique using two different predictive approaches: probabilistic graphical models 

(i.e. higher Markov models) and approximate nearest neighbor search techniques.  In both 

approaches, the experimental results suggest the superior performance of predictive model 

combined with scalable Situ ranking over the other related predictive approaches. The reason 

of outperformance lies in the idea that it employs a ranking process to identify milestone 

situations (i.e. high-ranked) and transitions with respect to the user’s current mental state in 

order to compress the transition matrix while keeping the accuracy high. In order to apply 

approximate nearest neighbor search techniques, we define a new concept called Situ-

Morphism to map Situ space to vector space while preserving the structure of situation 
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sessions (i.e. milestone situations, similarity between sessions, composition of situations and 

their relative position). Using this morphism, we are able to utilize approximate nearest 

neighbor search techniques defined in vector space to find the nearest neighbors of a given 

session. Using locality sensitive hashing, the situation sessions are hashed down to a lower 

dimensional space so that they occupy less space and compare faster. Also, finding similar 

situation sessions to user’s current session helps with predicting the future situations, 

extracting user’s behavioral patterns, detecting anomalies and avoiding any hazard situation 

that may happen in future. We validate our framework on a dataset collected by simulating a 

smart home using OpenSHS tool. The results show that our framework improves the time 

and space for predictive analysis while keeping the relevancy of returned results high enough 

compared to naïve exact search approach or other existing predictive analysis frameworks. 

There are some limitations on this study that can be addressed in future work. In this study, 

we make some assumptions to keep the scope of the framework manageable. However, in 

real world applications, some of these assumptions may not apply. Depending on the users 

and the application, the data may be different and some noises apply. For example, if this 

framework is used for the users with dementia, there is more likely to observe situation 

sessions with no ending or sessions with many changes in desires. Also, sometimes 

identifying change in desire may become complicated because of the noise in data.  The data 

used in this research is collected using a simulation tool considering all assumptions made. 

Another limitation of this work is the fact that we analyze user’s situations with respect to 

desires and the first layer of similarity between two sessions is defined based on same 

desires. In real use cases, studying the patterns and discovering user’s behavior with different 

desires may be valuable. For example, in sessions with respect to desire taking a shower and 



68 

sessions with respect to desire leaving home, the desire is different but the pattern for falling 

might be the same and it is valuable to be discovered.  One other limitation is that the 

labelling of activities is performed by the participant during simulation phase. Barring the 

uses the simulation tool, automatic recognition of activities in real-life smart environments 

would improve the process of data collection in terms of time and accuracy. Another 

improvement would be to add more sensors to capture more situations and dimensions. High 

dimensionality has an unclear meaning sometimes. So, the higher the number of dimensions 

becomes, the better evaluation of model is expected. Another limitation of our work is the 

size of data. Generating big data in the context of smart environment is a challenge since it 

involves constantly interaction with the user and sensors.  However, the data generated for 

this study are not considered big enough compared to data-driven real-world applications, 

suffice it to say that, should real-life big data sets for smart environments enabled by IoT be 

made accessible, we trust that our framework works well for bigger datasets.  
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