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ABSTRACT

We introduce a new query primitive called Function Query (FQ). An FQ operates on a set

of math functions and retrieves the functions whose output with a given input satisfies a query

condition (e.g., being among top-k, within a given range). While FQ finds its natural uses in

querying a database of math functions, it can also be applied on a database of discrete values.

We show that by interpreting the database as a set of user-defined functions, FQ can retrieve the

information like existing analytic queries such as top-k query and scalar product query and even

more. Our research addresses the challenges of FQ execution and authentication. The former is

how to minimize the computation and storage costs in processing an FQ, whereas the latter, how

to verify that the result of an FQ returned by a potentially untrustworthy server is indeed correct.

Our solutions are inspired from the observations that 1) the intersections of a set of continuous

functions partition their domain into a number of subdomains, and 2) in each of these subdomains,

the functions can be sorted based on their output. We prove the correctness of the proposed

techniques and evaluate their performance through analysis, prototyping, and experiments using

both synthetic and real-world data. In all settings, our techniques exhibit excellent performance.

In addition to FQ, our research has developed another query primitive called Improvement Query,

which we also include in this dissertation.
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CHAPTER 1. OVERVIEW

We introduce a new query primitive called Function Query (FQ). An FQ operates on a set of

continuous functions with a same set of variables and retrieves the functions whose output under a

given input satisfies a certain condition. Let F = {f1(X), f2(X), · · · , fn(X)} be a set of n functions,

where X = {x1, x2, · · · , xm} is a set of input variables. We are interested in three kinds of FQs,

which are different in output conditions:

• A top-k FQ returns the functions whose output with a given input is among the top k.

• A range FQ returns the functions whose output with a given input is within a certain range.

• A kNN FQ returns the k functions whose output with a given input is nearest to some value.

Math functions are often the most compact and intuitive way to represent continuous data

such as the trajectory of a moving object and temperature observed over time. Indeed, in many

scientific, financial, and sensor network applications, the data they store are naturally a set of

functions (Sistla et al. (1997); Thiagarajan and Madden (2008)). Our FQ finds its natural use in

these applications. Consider a database where each record is a function tempi(t) that outputs the

temperature at time t at location i. FQs let users retrieve information such as the k hottest/coldest

locations at noon time, or all locations where the temperature at noon time is in between 10 to 20

C0, or the 3 hottest locations at 10am. Another way of using FQs, which we believe is inspiring,

is to apply them on a discrete database for analysis-based data retrieval. Here each record in the

database is originally a set of discrete values, but interpreted as a continuous function.

As an example, consider Table 1.1. Each record ri in the table describes a rental property, but

can be interpreted as a function CashFlowi(d , r ,n) = Income − Expense −Price ·(1−d)· r(1+r)n

(1+r)n−1 ,

where Price, Income and Expense are the values of the record’s corresponding attributes. The

function computes the cash flow of investing the property, based on an investor’s down payment
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Table 1.1: Rental Properties for Sale

PID Address Price Income Expense CashF low(d, r, n) = Income− Expense− Price · (1 − d) · r(1+r)n

(1+r)n−1

1 ... 99000 8000 1450 CashF low1(d, r, n) = 8000 − 1450 − 99000 · (1 − d) · r(1+r)n

(1+r)n−1

2 ... 145000 12000 2000 CashF low2(d, r, n) = 12000 − 2000 − 145000 · (1 − d) · r(1+r)n

(1+r)n−1

3 ... 138000 11500 1200 CashF low3(d, r, n) = 11500 − 1200 − 138000 · (1 − d) · r(1+r)n

(1+r)n−1

4 ... 258000 29000 4450 CashF low4(d, r, n) = 29000 − 4450 − 258000 · (1 − d) · r(1+r)n

(1+r)n−1

percentage d and mortgage over a term of n months at a monthly interest rate r. Various FQs can

then be performed on these functions. For example, an investor can issue a range FQ to retrieve the

properties whose cash flow is no less than $1000 per month with input (d = 0.15, r = 0.005, n = 180).

We will call CashFlow(d , r ,n) = Income − Expense −Price ·(1−d)· r(1+r)n

(1+r)n−1 a function defini-

tion, which serves as a template to interpret each record in a database as a function. For application

needs, a same database can be interpreted as different sets of functions. For example, each record

ri in Table 1.1 may also be seen as a function ROI i(d, r, n) = (Income − Expense − Price · (1− d)·
r(1+r)n

(1+r)n−1) /(Price · d), which computes the Return on Investment (ROI) for the property.

To our knowledge, the problem of querying a collection of functions has not been studied in

literature. Our work is different from the track of research (e.g., Thiagarajan and Madden (2008);

Guo et al. (2013); Katsis et al. (2015); Anagnostopoulos and Triantafillou (2017)) which is aimed at

finding a model (e.g., a function) to represent some continuous physical phenomena and then using

the model to answer queries over the phenomena. Take FunctionDB (Thiagarajan and Madden

(2008)) as an example. Given the temperatures observed at different times for a location, the

proposed system constructs a function temp(t) to model the temperature at time t. Users can

then write a query like SELECT AV G(temp) WHERE 9am < t < 10pm to compute the average

temperature in a time period. Such queries are different from our FQs. In our case, we are given a

set of functions and we want to allow users to perform queries over these functions. The output of a

FQ is a subset of the functions, instead of a data point represented by a function or the aggregated

result of the data represented by the function.
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Nevertheless, when applied on a discrete database for analysis-based data retrieval, FQs are

closely related to existing analytic queries such as top-k query (Chauduri and Gravano (1999);

Chang et al. (2000); Hristidis et al. (2001); Das et al. (2006); Zou and Chen (2008)) and scalar

product query (Khan et al. (2014)). Analytic queries allow users to apply a scoring function on a

database to retrieve those records whose score satisfies certain condition. These queries are special

cases of our FQ. For example, top-k query and scalar product query are equivalent to our top-k

FQ and range FQ, respectively. Existing research investigates analytic queries separately. Different

queries require different techniques and allow only primitive types of scoring functions (e.g., weight-

based linear function) and output conditions (e.g., either among top k or no greater than a given

threshold, but not both). FQ does not have these limitations. Users can interpret a database

as a set of functions of virtually arbitrary types and query the database with a variety of output

conditions (e.g., top k, range, and kNN), with a single unified solution.

In this dissertation, we propose making FQs a new query primitive. We are mainly interested

in two research problems. The first one is execution. A straightforward way to processing an

FQ is to compute each function based on the user-supplied function input and then check the

result against the output condition. This approach is simple to implement, but it requires to

compute all functions in the database. To materialize the potentials of FQ, it is crucial to minimize

the computation and storage costs in query processing. The second problem is authentication.

Having a cloud server to process FQs can be cost-effective to many data owners. However, the

server, which is managed by a third-party, may or may not be trustworthy in query processing.

This calls for a solution that allows users to verify that the query results they receive from the

server are indeed correct. The work of this dissertation is to address these problems. Our key

insight is, the intersections of a set of functions partition their input domain into a number of

subdomains, and in each of these subdomains, the functions are sortable. In light of these facts, we

develop a suite of novel solutions. For efficient processing of FQ, we propose a new data structure

called Intersection-tree (I-tree). The I-tree indexes the subdomains partitioned by the intersections

without computing their boundaries and can be used to sort the functions for a subdomain by simply
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traversing the tree from the root to the subdomain. For users to authenticate query results, we

propose to sort the functions in each subdomain and digitally sign the functions to create a signature

mesh. We prove the correctness of the proposed techniques and evaluate their performance through

analysis, prototyping, and experiments using both synthetic and real-world data. In all settings, our

techniques exhibit excellent performance. In addition to FQ, our research has developed another

query primitive called Improvement Query, which we also include in this dissertation.
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CHAPTER 2. REVIEW OF LITERATURE

To the best of our knowledge, the notion of FQ has not been investigated in the literature. In

this chapter, we discuss some closely related works.

2.1 Analytic Queries

Analytic queries are common in having a utility function in data retrieval, but they are actually

vastly different in nature. Existing research has studied them separately. Each query type has its

own set of processing techniques, and each technique has a unique indexing structure. In particular,

most techniques support only weight-based utility functions. We discuss them as follows.

Top-k Query: A top-k query (also called preference query in some literature) retrieves the k

records with the highest rank under a user-defined utility function, where users assign weights

(i.e., their preferences) on different attributes and aggregate the weighted sum. The techniques

developed for efficient processing of top-k query can be classified into several categories. Sorted

lists-based techniques (e.g., Fagin et al. (2003); Nepal and Ramakrishna (1999); Balke and Kießling

(2000)) sort the objects in each attribute and find their ranks by scanning each list in parallel until

the top-k results are found. View-based techniques (e.g., Hristidis et al. (2001); Das et al. (2006))

employs materialized views to retrieve top-k, where a view is generated on the fly for each query.

Layer-based technique (e.g., Chang et al. (2000)) plots data points in high-dimensional space and

then computes the convex hulls of the data points. To faciliate query processing, these convex hulls

are organized and indexed by layers because objects on the outer layers are more likely to be in

top-k compared with those on the inner layers. To process a top-k query, data points on the convex

hulls are scanned one by one starting from the out-most layer unitl the top-k results are found.

Dominant group technique (Zou and Chen (2008)). The technique in the last category explore the

dominant relationship between objects. A object Oi is said to dominate another object Oj if there
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exists no set of weights that Oi can be ranked lower than Oj . In this case, there is no way for Oj

to be included in a query result unless Oi is included first. As such, the objects can be organized

into groups based on their dominant relationship to facilitate efficient query processing.

The above techniques require the utility function to be weight-based. The work by Zhang et al.

(Zhang et al. (2006)) addressed this problem with a variant of top-k query called k-constrained op-

timization query. The proposed technique supports non-linear utility functions through state-space

indexing. Specifically, the objects are indexed with a quad-tree, where each tree node corresponds

to a subspace in the object value space. A node in the quad-tree stores the objects that fall in

the corresponding subspace, along with the range of each attribute value of these objects. Given

a utility function and a user input, it computes which nodes on the quad-tree are most likely to

contain objects with the top-k highest score. This is done by constructing the landscape of the

utility function with respect to each user input, which shows peaks and valleys of the function out-

put. However, constructing the landscape is time consuming for complex and/or high-dimensional

functions. Another variant of top-k query is k-hit query, which supports a probabilistic utility

function. By specifying the distribution of the weights in the utility function, users can retrieve

the k objects with the highest probability to be ranked among top-k. In order to efficiently answer

such queries, the authors proposed the concept of convex cones, which generalizes convex hulls to

the probabilistic space. By constructing convex cones of data points, the proposed technique can

efficiently estimate the maximal probability that a data point will be in top-k.

Reverse Top-k Query: (Vlachou et al. (2010, 2011)) Given a set of objects and a set of top-k

queries, a bichromatic reverse top-k query retrieves the top-k queries whose result contains an object

of interest. A monochromatic reverse top-k query, on the other hand, finds all weight combinations

that can rank an object of interest among top-k under a linear utility function. An indexing

structure is proposed in (Vlachou et al. (2010)) to efficiently process bichromatic reverse top-k

queries. Their technique partitions the weight space evenly into grids, such that every top-k query

can be seen as a point located in some grid. Then, whether a top-k query will rank an object top-k

can be determined by checking the boundary of the gird that contains the query. As such, it is
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possible to eliminate some top-k queries without having to process them. An interesting variant of

reverse top-k query is reverse k-ranks query (Zhang et al. (2014b)). Given a set of top-k queries Q

and an object of interest p, such a query finds a set of m top-k queries which give p the highest

rank among all queries in Q. A tree-based pruning algorithm was proposed for reverse k-ranks

query. The algorithm uses an R-tree to index the query points in the weight space. Then, the same

dominating relationship between objects can be found between different nodes on the R-tree, i.e.,

a tree node that locates closely to a hyperplane that represents an object may dominate a nodes

that are far away from it, meaning that queries in the closer node must rank the object higher.

Using this dominating relationship, the pruning algorithm attempts to eliminate the queries that

are less likely to given p a high rank.

Other Top-k Related Queries: The work by Zhang el al. (Zhang et al. (2014a)) supplies a top-k

query with a global immutable region (GIR). The GIR for a top-k query includes all possible weight

settings for which the query result remains unchanged. The technique proposed for GIR treats

objects as an arrangement of hyperplanes in the weight space. It constructs a GIR’s boundaries by

finding the largest subspace in the weight space portioned by the hyperplanes in which the result

of a given query remains unchanged. A maximum rank query (Mouratidis et al. (2015)) computes

the highest possible rank an object of interest can achieve for any weight setting in a weight-based

utility function. The basic idea to find the maximal rank of an object is to search the weight-space

and follow the paths that can increase the ranking of the object. In order to construct such paths,

the objects are also treated as an arrangement of hyperplanes which partition the weight spaces

into several half-spaces. These half-spaces are then indexed using a Quad-tree to facilitate the

path-finding process.

Scalar Product Query: In a scalar product query, proposed in (Khan et al. (2014)), the utility

function is in the form of the scalar product between some database attributes and a set of parame-

ters whose value is provided by a user. The query condition, unlike top-k queries, is that the utility

function output of an object satisfies an open ended inequality (i.e., object whose scalar product

is no greater than a given threshold b). The authors shown that this type of utility functions can
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also support a special kind of top-k nearest neighbour query (i.e., finding the top-k objects whose

scalar product is no greater than b and also minimal). Each scalar product query can be seen as

a hyperplane in the object value space. Based on this observation, a planner-index technique is

proposed to accelerate scalar product query process. The basic idea is to pre-process a set of scalar

product queries with a wide range of query parameters. The results of these queries are stored in

advance. Then, when a new query comes, the proposed technique attempts to identify which part

of the result of the new query must be the same with one of the stored queries. Then, this part of

result can be reused and only the different part needs to be computed for the new query. Scalar

product query extends range query over single attribute of relational database, but the proposed

technique is limited to scalar product functions and cannot support top-k or k Nearest Neighbour

(kNN) retrieval over the computation results.

It is worth mentioning that some DBMS (e.g., DB2 10.5 and PostgreSQL 9.4) have recently

supported expression-based indexes over numeric attributes. Nevertheless, they do not allow queries

with parameters whose values are unknown in advance, thus are less related to our work.

2.2 Query Authentication

There are three parties involved in data outsourcing: data owner, cloud server, and data user.

The data owner gives a database to the cloud server, and users send their queries to the cloud

server and receive query results. The server is administered by a third party that may or may not

be trustworthy. As such, data users, who submit queries, want to verify the query results they

receive from the server are indeed correct. A query result is said to be correct if it is sound (i.e.,

every data item received comes from the original database and satisfies the query condition) and

complete (i.e., all data items in the original database that satisfy the query condition are received).

The work by Devanbu et al. (Devanbu et al. (2003)) was among the first to study the problem

of query authentication. In this work, the outsourced data is a list of data items and the query is a

range query q(l, u), i.e., retrieving the data items whose values are in the range of l and u. In the

proposed solution, the data owner first sorts the data items and computes the hash value for each
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data item using a one-way hash function. A Merkle Hash tree (MH-tree) (Merkle (1990)) is then

built on top of these hash values, where each internal node is a hash result of the concatenation of

two children nodes. Figure 2.1 shows 4 data items, r1 ≤ r2 ≤ r3 ≤ r4, and a corresponding MH-

tree, where H(·) denotes the hash function and “|” the concatenation of two nodes. The root node

is signed with the data owner’s private key and then made known to all users. When processing a

query q, the server returns not only the query result, but also a verification object V O(q), which

contains the data items immediately beyond the left and right query boundaries and some other

tree nodes for the user to reconstruct the root digest. For example, if the query result R(q) is

{r3}, then V O(q) includes r2, r4, N1, and the signed root digest. With these data, the user can

reconstruct the root digest and compare it with the root digest published by the data owner. If the

two digests match, the user can be assured that r2, r3, and r4 are not tempered and their order is

continuous in the original list, i.e., the query result is sound and complete.
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Figure 2.1: Merkle hash tree.

In a different work (Pang et al. (2005)), the authors proposed building a signature chain

for authentication. The idea is to sort the data items and then create a signature for each

record in the database. The signature for a record ri is computed based on the digest of it-

self and the digests of its two immediate left and right neighbors, ri−1 and ri+1 , i.e., Sig(ri) =

Sig(H(H(ri−1)|H(ri)|H(ri+1))). Figure 2.2 shows a signature chain example. A query result R(q)
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is accompanied with a V O(q) that contains the signatures of all data in R(q). This chain serves as

the proof that for any two consecutive data ri and ri+1 in R(q), no data rx exists in the original

database such that ri < rx < ri+1. The chain also allows the user to verify if all data in the query

range is returned by checking the two boundary records.
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Figure 2.2: Signature chain.

The two techniques have their own advantages and disadvantages. With MH-tree, only the root

node is signed, so the computation cost is low. However, V O(q) needs to contain the entire search

paths to all data in R(q), so the size is larger, resulting in higher communication cost. Moreover, it

is difficult to handle dynamic data. When a data is changed, the whole tree may need to be rebuilt.

On the other hand, using signature chain incurs more computation cost to both the data owner and

query issuers, but has a smaller V O(q) and thus less communication overhead. It is more flexible

to data update and in particular, allows a user to perform boundary checking without having to

expose the user the two records that are immediate left and right to the sorted data in R(q).

The two techniques have since inspired a series of research on query authentication. The work

(Cheng et al. (2006)) considers multi-dimensional queries. The proposed technique maps the whole

region into a spatial data structure (KD-tree or R-tree). The technique proposed in (Yang et al.

(2008)) and (Yang et al. (2009)) combines R*-tree and MH-tree to deal with spatial data. Some

other works (Li et al. (2006), Pang et al. (2009), Tang et al. (2013), and Tang et al. (2014)) consider

the problem of data freshness, where the outsourced data may keep changing. A few more recent
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works (Hu et al. (2012)) and (Chen et al. (2013)) study the problem of privacy preservation in

during the authentication process. All these techniques consider only simple queries over discrete

data, where the raw data can be compared directly against the query condition. Complex queries

such as top-k aggregation query and moving top-k spatial keyword query were considered in (Wu

et al. (2015)) and (Choi et al. (2012)).

To our knowledge, authentication of function queries has not been studied in literature. In our

case, the outsourced data is essentially a set of math functions. A query is associated not only a

query condition, but also a function input. This input is specified by query issuers, which is not

known to the data owner when uploading the data to the server.
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CHAPTER 3. EFFICIENT EXECUTION OF FUNCTION QUERIES

3.1 Basic Idea

Consider a database, where each record ri represents a function fi. When causing no ambiguity,

we will simply refer to the database as a set of functions F = {f1, f2, · · · , fn}. Given an FQ with

an input value X and an output condition C (i.e., range, top-k, or kNN), one can compute every

function in F with X as input and check if its output satisfies C. This simple solution requires to

compute every function.

Our research has developed a more efficient solution. To facilitate our presentation, we first

introduce some geometric terms. We say two functions fi and fj intersect on X ∈ X if fi(X) =

fj(X), where X is the function domain. We call the input X an intersection point of fi and fj .

The set of all intersection points, referred to as the intersection of fi and fj , forms a hyperplane

in the domain space. Given a set of functions, their intersections together partition X into a set

of subdomains, each being a subspace in X bounded by the boundaries of X and/or intersection

points.
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We now present an important observation: In each of the subdomains partitioned by the func-

tion intersections, the functions can be sorted based on their output. Figure 3.1-(a) shows the

intersections of three univariate linear functions f1, f2, and f3. Here each intersection is a point

on X-axis, and the three intersections x1, x2, and x3 partition the domain into four subdomains,

(−∞, x1), [x1, x2), [x2, x3), and [x3,+∞). In each of these subdomains, the functions are sortable,

e.g., f1(x) ≤ f3(x) ≤ f2(x) ∀x in [x2, x3). Complex functions may intersect in a more complicated

way (as illustrated in Figure 3.1-(b) and (c)), but it remains true that they are sortable in each of

the subdomains. Formally, we have the following theorem:

Theorem 1 Let F be a set of functions defined on domain D. Let S = {S1, S2, ..., Sm} be the set

of subdomains partitioned by the intersections of the functions in F , where ∪mi=1Si = D and ∀i 6=

j, Si ∩ Sj = ∅. For any subdomain Si ∈ S and ∀fi, fj ∈ F , if ∃X0 ∈ Si such that fi(X0) ≤ fj(X0),

we have ∀X ∈ Si, fi(X) ≤ fj(X).

Proof: : For contradiction, assume ∃Xc ∈ Si such that fi(Xc) > fj(Xc). Let X0Xc denote any path

from X0 to Xc. Due to continuity, there must be a point Xi on X0Xc such that fi(Xi) = fj(Xi).

Hence Xi is an intersection point of fi and fj . Due to the property of intersections, the order

of fi and fj must be different on the two sides of Xi on X0Xc. Let ε > 0 denote an arbitrarily

small value. Let X+
i and X−i be two points on the two sides of Xi on X0Xc, and the distance

between X+
i and X−i is smaller than ε. Then fi(X

−
i ) ≤ fj(X

−
i ) indicates fi(X

+
i ) > fj(X

+
i ), and

vice versa. The total number of intersection points on X0Xc must be an odd number, because

otherwise the order of fi and fj should be the same at X0 and Xc. Recall that any intersection

point must locate on the boundary of some subdomain. Since moving from X0 to Xc requires to

cross subdomain boundaries for an odd number of times with any path, X0 to Xc must locate in

different subdomains, which contradicts the assumption that Xc ∈ Si.�

The theorem allows us to come up the following approach to support efficient FQ processing:

• Find all subdomains created by the intersections of the functions in F ;

• Sort the functions by their output in each subdomain and store the sorted function lists.
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To process an FQ with input X and output condition C, we can 1) locate the subdomain

that contains X, 2) retrieve the function list sorted for the subdomain, and 3) perform a binary

search on the list for the functions whose output satisfies C. Implementing this solution, however,

remains challenging. First, the number of the subdomains can be very large. A set of n k-variable

linear functions can have up to m = n ∗ (n − 1) intersections, which together can partition the

domain space into Bm
k = O(mk) subdomains (Schläfli (1901)). Second, computing the boundary

of each subdomain is computation-intensive when the number of functions is large. Moreover,

finding the subdomain that contains a given input X is not trivial, since the subdomains are k-

dimension polygons. Finally, sorting the functions and storing them for each subdomain will result

in significant computation and storage overhead for large-scale datasets.

Our research addresses all these challenges. We first consider the case when the functions in F

are linear. We propose a novel indexing structure, termed Intersection-Tree (I-tree), for efficient

indexing of a large number of subdomains, without having to compute their boundaries. It supports

not only efficient searching of the subdomain that contains a given input, but also efficient sorting of

the functions for the subdomain. As one traverses from the tree root to a subdomain, the functions

are sorted on the fly. Thus we can achieve a query processing time that is logarithmic of the number

of functions. Built on top of this basic solution, we address the challenges of supporting FQs on

more complex functions and enabling one to interpret one database as different sets of functions.

3.2 Proposed Solution

We first consider F = {f1, f2, · · · , fn} being a set of k-variable linear functions. Let A1, A2, · · · ,

and Al be numerical attributes for a database. A function definition that interprets each record in

the database as a k-variable linear function has the following general form:

F (x1, x2, · · · , xk) = C1x1 + C2x2 + · · ·+ Ckxk, (3.1)

where coefficient Ci (1 ≤ i ≤ k) can be any computation defined on the numerical attributes.

For example, given a definition F (x1, x2) = A1x1 + A2/(A3 + A4)x2, we have C1 = A1 and C2 =

A2/(A3 +A4).
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3.2.1 Structure of I-tree

The intersection of two k-variable linear functions is a k-dimensional hyperplane {X|fi(X) −

fj(X) = 0}. This hyperplane partitions the input domain into two subdomains, namely above and

below. The above consists of all inputs X such that fi(X)− fj(X) ≥ 0, whereas below, all inputs X

such that fi(X)− fj(X) < 0. As such, a set of n k-variable linear functions have up to m = O(n2)

intersections and these intersections together partition the domain into O(mk) subdomains. The

data structure of our I-tree, explained as follows, is designed to capture the essence of this binary

space partitioning (Winder (1966)).
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An internal node in an I-tree has a form of (fi, fj , a, l, b) and is called an intersection node. It

records the fact that two functions fi and fj ∈ F intersect in some domain X. We do not need

to know X, except for the root node, whose corresponding X is the entire domain specified by

users. The intersection of fi and fj , denoted as Ii,j , partitions X into two subdomains above and

below, which are represented by two pointers a and b, respectively. If above is further partitioned

by another intersection Ip,q, then a links to the intersection node representing Ip,q. Otherwise,

above is a subdomain where the functions can be strictly sorted according to their output. In this

case, a links to a subdomain node. A subdomain node is a tuple of (Si, Li), where Si refers to a

subdomain and Li the list of functions sorted for Si. The same rule applies to subdomain below:

If it is further partitioned, b links to another intersection node; Otherwise it links to a subdomain

node. All subdomain nodes are leaf nodes. Finally, l in an internal node is a list that stores a set

of function pairs. If a pair of functions fp and fq appears in l, it indicates that their intersection

Ip,q within X falls entirely above Ii,j . The list is used for efficient function sorting, which we will

explain shortly.

Figure 3.2 shows an I-tree that indexes a domain of [0, xmax
1 ] × [0, xmax

2 ] partitioned by six

2-variable linear functions. The root note N1,2 represents I1,2, the intersection of f1 and f2. The

two subdomains created by this intersection are represented by two subtrees linked by N1,2.a and

N1,2.b, respectively. The subdomain above I1,2 is then partitioned by intersection I3,4, while the

subdomain below I1,2 is partitioned by I2,3. This information is recorded by the two nodes at layer

2 (i.e., N3,4 linked by N1,2.a and N2,3 linked by N1,2.b). Among the four subdomains created by

the three intersections, one of them is not further partitioned, so the corresponding pointer (i.e.,

N3,4.a) links to a subdomain node (i.e., representing subdomain S0). The remaining three are

further partitioned by other intersections and therefore each of their corresponding pointers links

to an internal node. These four nodes form layer 3. All nodes in layer 4 are subdomain nodes, each

representing a subdomain where the functions are sortable. For simplicity, Figure 3.2 illustrates

the subdomain nodes (except the leftmost one) with a subdomain ID only.
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Note that each intersection node has an l pointer that links to a list of function pairs. A function

pair (fp, fq) in the list linked by Ni,j .l means their intersection hyperplane falls completely in the

above subdomain created by the intersection of fi and fj . The list is null if no such function pair

exists. If there are multiple function pairs in the list (e.g., for root node in Figure 2), they are

sorted in top-down order: the pair of (fu, fv) is positioned higher than that of (fp, fq) if and only

if hyperplane fu(X)− fv(X) = 0 falls entirely above fp(X)− fq(X) = 0. If two hyperplanes in the

list intersect, their orders do not matter.

3.2.2 Search Operation

Searching on I-tree is straightforward. Let X be the function input in an FQ. To locate the

subdomain node (Si, Li) where X ∈ Si, we start by setting the current node N to be the tree root.

If N is an intersection node (fi, fj , a, l, b), compute fi(X) − fj(X). If fi(X) − fj(X) ≥ 0, set N

to N.a, because the subdomain containing X must fall above Ii,j . Otherwise, we set N to be N.b.

This process is repeated until N becomes a subdomain node, which is then returned.

3.2.3 I-tree Construction

To build an I-tree, we first find each pair of functions that intersect. Two functions fi and fj

intersect if fi(X) − fj(X) = 0 has a (real) root in the given domain. Without checking each pair

of functions in F , we use PlaneSweep algorithm (Nievergelt and Preparata (1982)) to find function

intersections. Given two functions fi and fj that intersect, we insert their intersection Ii,j into the

I-tree as follows. If the tree is empty, create a new intersection node (fi, fj , a, l, b) as root Nroot,

where Nroot.a and Nroot.b link to two new subdomain nodes and Nroot.l is initialized as an empty

list. The corresponding sorted function list for each subdomain node will be generated later. If the

tree is not empty, create a queue with the root node as its first element and then process each node

N in the queue according to its type. If N is an intersection node (fp, fq, a, l, b), we check if there

exists X such that fp(X)−fq(X) ≥ 0 and fi(X)−fj(X) = 0. Checking this condition is equivalent

to finding a real root of fi(X) − fj(X) = 0 in the closed haldspace define by fp(X) − fq(X) ≥ 0,



18

which can be done with standard root searching algorithms (Brent (2013)). If such an X exists,

it indicates Ii,j falls (partially or entirely) above hyperplane fu(X) − fv(X) = 0. In this case, we

put N.a in the queue. Likewise, we put N.b in the queue if there exists an input X such that

fp(X) − fq(X) < 0 AND fi(X) − fj(X) = 0. If N is a subdomain node, we replace N with a

new intersection node N ′ = (fi, fj , a, l, b), where N ′.a and N ′.b link to two new subdomain nodes,

respectively, and N ′.l is an empty list. The above process is repeated until the queue is empty. A

more formal description is given in Algorithm 1. As a binary search tree, an I-tree can be balanced

using standard tree rotation algorithms (e.g., Stout and Warren (1986)) and we will not elaborate.

Algorithm 1 Insert(Nroot, Ii,j)

1: if Nroot == ∅ then

2: Nroot ← MakeNode(Ii,j)

3: else

4: Queue Q← Nroot

5: end if

6: while Q is not empty do

7: N ← Q.dequeue()

8: if N is a subdomain node then

9: N ← MakeNode(Ii,j)

10: return

11: end if

12: if ∃X fi(X)− fj(X) ≥ 0 AND fu(X)− fv(X) = 0 then

13: Q← N.a

14: end if

15: if ∃X fi(X)− fj(X) < 0 AND fu(X)− fv(X) = 0 then

16: Q← N.b

17: end if

18: end while

3.2.4 Function Sorting

Each subdomain node is a tuple of (Si, Li), where Si represents a subdomain and Li is the

list of functions sorted for Si. We now discuss how to generate Li efficiently. We first sort the

functions for subdomain S0, the topmost subdomain that is above any other subdomain. This

is done by selecting any input in S0, computing each function with the input, and sorting the
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functions based on their output. We then use this sorted function list, referred to as the root list

L0, to construct the lists for other subdomains. Given a subdomain Si, we initialize Li as a copy of

L0 and adjust the order of functions in Li while traversing from the root node to (Si, Li) as follows.

Let N = (fi, fj , a, l, b) denote the current node, which is initially the root node. If (Si, Li) is in N ’s

left subtree, set N to be N.a. Otherwise, we switch the order of fi and fj in Li, and for each pair

of functions fp and fq in N.l, we switch their order in Li one by one from the topmost ones. After

switching, we set N to be N.b. This process is repeated until (Si, Li) is reached. The resulted Li

is the list of functions sorted for Si. We give a more formal description of this sorting procedure in

Algorithm 2 and an illustrative example in Figure 3.3. The correctness of this algorithm is proved

as follows.

Algorithm 2 SortSubdomain(N,Si, Li)

1: Li ← L0

2: if Si == S0 then

3: RETURN Li

4: end if

5: if isInSubtree(N.a,Si) then

6: SortSubdomain(N.a, Si, Li), RETURN

7: else

8: switchOrder(fi,fj ,Li)

9: for Each function pair {fp, fq} in N.l do

10: switchOrder(fp,fq,Li)

11: end for

12: SortSubdomain(N.b, Si, Li)

13: end if

14: RETURN Li

Theorem 2 The above function switching algorithm generates Li for Si in the correct order.

Proof: Let (fi, fj) be a pair of functions with intersection Ii,j . If S0 and Si are separated only by

Ii,j , we can switch the order of fi and fj in L0 to get Li. The function switching process generalizes

this idea. We show briefly that for any function pair (fi, fj), their order will switch if and only

if Ii,j falls between S0 and Si. The searching path from the root node to Si partitions the I-tree

into three disjoint parts: 1) Path, which contains all nodes on the searching path, 2) Left, which
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Figure 3.3: Sort F for Si using the I-tree

contains all nodes in the left of the path, and 3) Right, which contains all nodes in the right side of

the path. Let N be the intersection node representing Ii,j . We argue that N cannot be in Right.

This is due to the fact that if the node appears in Right, then both S0 and Si must be above Ii,j ,

which is a contradiction. So we consider two cases:

1) N appears in Path. First, N must appear exactly once on the path due to the fact that

intersection Ii,j cannot appear in above or below subdomain partitioned by itself. Second, the path

must visit N.b. Otherwise, Si will be on the same side with S0, i.e., both being above Ii,j , which is

a contradiction. Thus the order of fi and fj must be switched when visiting node N.b.

2) N appears in Left, but not in Path. We can always find another intersection Ip,q that falls

between Ii,j and Si, such that a node M that represents Ip,q is in Path; The traversing path must
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visit M.b for the same reason of case 1). We also know that fi, fj must appear in the list M.l,

otherwise N should also be in Path which is the same as case 1). As a result, fi and fj must switch

their order in visiting M.b.�

3.2.5 Database Updating

Adding a new function fi may create new intersections with existing functions and further

partition some subdomains. It will also affect existing sorted function lists. As such, we need to

update the I-tree with new intersections and the root list L0 (and invalidate other stored sorted

lists, if any). The procedure for inserting a new intersection is given in Algorithm 1. To insert fi

into L0, it computes fi(X0), where X0 is the input used to sort L0 and then inserts fi to L0 via

binary search.

To delete a function fi ∈ F , we need to update the I-tree and the root list. Let Ii,j denote fi

and fj that intersect. We merge the subdomains separated by hyperplane {X|fi(X)− fj(X) = 0}.

For every node N that represents intersection Ii,j , without loss of generality, assume subtree N.a

is larger than N.b. We first remove subtree N.b and replace N by N.a. Then for each subdomain

node M in N.b, we check if there exists a subdomain node in N.a that has the same traversing

path as M (which means that they are separated only by Ii,j). If such a subdomain node exists, we

remove M . Otherwise, we insert M (and all its parents, if missing in N.a) into the same position of

N.a since these positions are not occupied. The pseudocode of this process is given in Algorithm 3.

3.2.6 Query Processing

There are two steps in processing an FQ. Let X be its function input. The first step, which is

the same for all types of FQ, is to search the I-tree for the subdomain node (Si, Li) where X ∈ Si.

We have explained this step in Chapter 3.2.2. The second step is to search Li to find the functions

that satisfy the query condition under input X. For a top-k FQ, we simply return the first k

functions in Li. For range and kNN FQs, we retrieve such functions by performing a binary search

on Li. These algorithms are classic and we will not elaborate.
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Algorithm 3 Delete(N)

1: Ntmp ← N.b

2: N ← N.a

3: for each leaf Nl in N.tmp do

4: new Queue Path

5: Path ← all nodes on path Ntmp → Nl

6: Ncur ← N

7: for each node M in Path do

8: if M.Next == M.a then

9: if Ncur.a == ∅ then

10: Ncur.a←M.a

11: else if Ncur.b == ∅ then

12: Ncur.b←M.b

13: end if

14: end if

15: end for

16: end for

3.2.7 Performance Improvement Strategies

The performance of I-tree can be improved significantly with some advanced strategies.

Sorting functions on the fly: Instead of proactively building Li for each subdomain node

(Si, Li), we can leave Li empty during the tree construction but generate it on the fly when

processing an FQ with an input X ∈ Si. The process of generating Li can be performed in parallel

when searching for Si. This approach significantly reduces the space needed for the I-tree, especially

when only a few subdomains are visited frequently.

Sorting functions virtually: A constructed Li can be used not only for FQs with input X ∈ Si,

but also for those whose input X falls in nearby subdomains. When a subdomain Sj is close to Si,

most functions in Lj have the same order as they appear in Li. In the case Sj and Si are adjacent,

only a few, usually two, functions will switch their orders (see Figure 3.1 (a)). As such, instead of

storing Lj , we can simply store a pointer to Li and a function switch table that records the pairs

of functions whose order need to be switched for Lj , thus creating a virtually sorted function list

for Lj . The solution is attractive when Sj is not frequently visited (e.g., there are but only a few

FQs with input X ∈ Sj).
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Reducing I-tree size: To reduce the tree size, we can explicitly limit the number of subdomain

nodes (leaves) by merging adjacent subdomains. Let Si and Sj be two adjacent subdomains sep-

arated by intersection Ip,q. Instead of using two subdomain nodes, we can index Si and Sj with

only one node Ni,j . In the list Ni,j .l, we sort all functions except for fp and fq. The order of fp

and fq is determined dynamically when Ni,j is searched during query processing. Merging nodes

on the lowest level can reduce the tree height by one and therefore reduce nearly half of the tree

size. We can repeat to merge subdomain nodes level by level until the storage overhead is reached

at the desired threshold.

3.3 Extensions

The techniques presented in Chapter 3.2 can be applied directly for more complex functions.

This is due to the fact that, regardless of their complexity, the functions in F are sortable in each

of the subdomains partitioned by their intersections. Our concern is, for some complex functions,

the number of subdomains can be very large and become costly to handle. Consider the case of

high-degree polynomials. The intersection of two k-variable d-degree polynomials defined on Rk

formulates a k-dimensional surface with order up to d. A set of n functions have O(n2) intersections.

In the worst case, these intersections partitions the domain space into 2n
2

subdomains (a subdomain

may not be continuous).

To address the above problem, we propose to convert complex functions into linear functions

and then apply the proposed indexing technique. Recall the number of subdomains partitioned

by n k-variable linear functions is bounded by O(n2k), which is substantially smaller than O(2dn
2
)

and can be handled efficiently using I-tree. For large-scale datasets, where n is much larger than

k, the improvement can be especially significant. We discuss how function conversion can be used

to support FQs over 1) a single set of complex functions, and 2) multiple sets of functions which

are interpreted from a same database through different function definitions.
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3.3.1 Handling Complex Functions

To start with, consider a polynomial F in Equation 3.2. For each term Cix
di
i , we can replace

xdii with an intermediate variable yi and rewrite F as Equation 3.3.

F (x1, x2, · · · , xk) = C1x
d1
1 + C2x

d2
2 · · ·+ Ckx

dk
k (3.2)

F ∗(y1, y2, · · · , yk) = C1y1 + C2y2 · · ·+ Ckyk (3.3)

This variable substitution allows us to convert a complex function into a linear once, and index only

the linear functions using I-tree, which has been discussed in the previous chapter. Note that even

if we only index functions in the form of Equation 3.3, a user can still query the complex functions

in the original form (i.e., Equation 3.2). This is done by introducing an simple intermediate step

in the query processing phase.

When processing an FQ, we evaluate each intermediate variable yi using the original inputs, and

then query the converted functions. For example, a condition L ≤ F (x1, x2, · · · , xk) ≤ U can be

rewritten as L ≤ F ∗(y1, y2, · · · , yk) ≤ U , where yi = xdii . This strategy introduces some extra costs,

including: 1) function conversion, which is one time for each function definition, and 2) computing

intermediate variables, which is one time for each query. There is also an extra cost resulted from

the increased number of variables. Nevertheless, these extra costs are negligible comparing with

the time and space saved from the reduction of the number of subdomains. The implementation of

function conversion is made transparent to users.

Function conversion works for all functions that can be written in the general form:

F (X) = C1H1(X) + C2H2(X) + · · ·+ ClHl(X) (3.4)

where X = {x1, x2, · · · , xk} is the set of variables, Ci is the i-th coefficient, and Hi(X) is any

computation on X as long as it does not involve any database attribute. We can replace Hi(X) in

each term with an intermediate variable yi as showed in the above example. Note that we do not

require the intermediate variables to be independent, i.e., Hi(X) and Hj(X) in F (X) may relay on

the same set of input variables to compute. This has no impact on the function conversion process

since we only need to be able to compute the value of each intermediate variable yi given X.
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The above general form covers all polynomials, which is trivial to see, but also a rich family of

non-polynomial functions. For example,

F (x1, x2) = A1

√
x21 + x22 + (A2 + x1x2)

2, (3.5)

which is non-polynomial, can be converted as

F ∗(y1, y2, y3) = A1y1 +A2
2 +A2y2 + y3 (3.6)

where y1 =
√
x21 + x22, y2 = 2x1x2, and y3 = (x1x2)

2. Note that all the intermediate variables

depend on both x1 and x2, but since none of them contains database attributes, they can be

handled by the function conversion technique.

When a function cannot be converted to the general form, the idea of function conversion may

still work. Consider a point-of-interest (POI) table of (P,A1, A2), where P is a POI’s ID and A1

and A2 are the POI’s x and y coordinates, respectively. Consider the following functions defined

on the dataset:

F (x, y) =
√

(x−A1)2 + (y −A2)2 (3.7)

by which users can issue a range FQ F (x0, y0) ≤ y to retrieve all POIs whose distance from a

certain coordinate (x0, y0) is no greater than y miles. This function cannot be converted to the

general form directly, but we can replace the function as F ∗(x, y) = (x−A1)
2 + (y −A2)

2 and the

query condition as F ∗(x0, y0) ≤ d2. Since it can be converted into the general form, our techniques

can then be applied. Nevertheless, finding the general conversion rule for arbitrary non-polynomial

functions can be challenging and we leave it as a future work.

3.3.2 Handling Multiple Function Definitions

As discussed early, the same database can be interpreted as different sets of functions for

application needs, through different function definitions. Here, a function definition servers as

a “template” that tells the query process engine how to interpret each record as a function. For

example, CashFlow(d , r ,n) and ROI (d, r, n) are two functions defined on the same database showed
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in Table 1.1. A simple way to support multiple function definitions is to treat them independently

by building one I-tree for each definition. This approach is inefficient, but can be addressed through

function conversion.

Let F1(X) and F2(Y ) be two function definitions on D. We define a new function F12(X,Y ) =

F1(X)+F2(Y ) as the Super Function of F1(X) and F2(Y ). F1(X) or F2(Y ) can be seen as a special

case of F12(X,Y ) by setting the variables to a special value (e.g., 0). For example, a range query

L ≤ F1(X) ≤ U can be converted to L − C ≤ F12(X, 0) ≤ U − C, where C = F2(0). As such, we

need to deal with only the super function. The super function, however, has O(|X|+ |Y |) variables.

Fortunately, this problem can be alleviated by merging the terms with the same coefficient and

then converting the super function into a simpler function via variable replacement. Consider two

functions defined on a dataset with three numerical attributes (A1, A2, A3), F1(x1, x2) = A1x
d1
1 +

A2x2 and F2(x1, x2) = A1x
d2
1 + A3x2. We first generate a super function (some variables are

renamed to avoid ambiguity):

F12(x1, x2, x3, x4) (3.8)

= F1(x1, x2) + F2(x3, x4) (3.9)

= A1x
d1
1 +A2x2 +A1x

d2
3 +A3x4 (3.10)

= A1(x
d1
1 + xd22 ) +A2x3 +A3x4 (3.11)

Since term A1x
d1
1 in F1 and term A1x

d2
1 in F2 share the same coefficient A1, we merge them

into one term in the super function and then convert the function into its linear version by variable

replacement:

F ∗12(y1, y2, y3) = A1y1 +A2y2 +A3y3, (3.12)

where y1 = xd11 + xd22 , y2 = x3, and y3 = x4. The extra step of computing y1, y2, and y3 has been

discussed previously (e.g., a query L ≤ F1(a, b) ≤ U is converted into L ≤ F ∗12(c, d, 0) ≤ U , where

c = ad1 and d = b) and this process can also be made transparent to users.
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3.4 Performance Analysis

3.4.1 I-tree Construction Cost

Let F be a set of n linear functions, each having k variables. Our technique first finds all

function pairs that intersect. This can be done in O((n+m) log n) with the Plane-Sweep algorithm

(Nievergelt and Preparata (1982)), where m is the number of function pairs that intersect. When

the input domain is Rk, m can be up to n(n − 1). But in reality, the allowed domain is usually

limited and therefore m can be much smaller. For example, the input domain of top-k query is

usually normalized to [0, 1]k (Chang et al. (2000); Hristidis et al. (2001); Tao et al. (2007); Zou and

Chen (2008)). To construct an I-tree for m intersections, we insert the intersections into the tree

one by one. In the worst case, the i-th intersection will create O(Bk
i ) new subdomains (Schläfli

(1901)). So the total cost is
∑m

i=1B
k
i , which is bounded to O(mk). The time complexity of sorting

the root list L0 is O(n log n).

The storage overhead is determined by the size of I-tree and L0, assuming other sorted lists are

constructed on the fly. It may appear that this size can be O(2m) (since it could have up to m

levels, but as discussed before, the total number of subdomains is bounded by O(mk) even in the

worst case (i.e., each newly inserted intersection cuts as many existing subdomains as possible).

Therefore, the storage overhead of the I-tree is also O(mk). The cost for storing L0 is O(n).

3.4.2 Function Conversion Cost

High-degree polynomials and non-polynomials are converted into linear functions and then

indexed using I-tree. The conversion can be done by scanning each term of the function definition

and replacing each complex term with an intermediate variable. The number of terms in a function

definition is bounded to O(kd), where k is the number of variables and d the maximal degree. In

the worst case, each term needs an intermediate variable. Thus, the time cost of conversion is

O(kd). As for storage, we only record the replaced variables in order to make the same conversion

in query processing phase. This will, in the worst case, create O(kd) extra information for each

function definition on D. The above cost is negligible as it is a one-time cost per function definition
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regardless of the size of the database. In terms of running time, this cost is responsible for less

than 1% of the total indexing time in our experiments.

3.4.3 Query Processing Cost

Since tree balancing algorithm is discussed in Chapter 3.2.3, here we assume the I-tree is bal-

anced. There are three steps in processing an FQ. The first step is computing the intermediate

variables. This is needed when querying complex functions. The cost incurred in this step is also

O(kd). The second step is searching the I-tree for the subdomain node (Si, Li) where X ∈ Si. Let

m = O(n2) be the number of intersections, where n is the number of functions. The expected time

complexity is O(k logmk) = O(k2 log n). Here O(logmk) is the expected tree height. O(k) is the

time of determining which subtree to visit, i.e., computing a k-variable linear function. Since k

is usually much smaller than n (the number of functions), I-tree is much more efficient in query

processing when compared to the linear searching, the cost of which is O(kn), even in the rare worst

case when m = (n− 1) · n. Again, m in real-world applications is usually much smaller because of

domain space limitation. The last step in query processing is retrieving the query result from Li.

Since Li is sorted, the time complexity is O(log n+ r), where r is the number of the functions that

satisfy the query condition.

3.4.4 Database Updating Cost

Insertion and deletion require to update the I-tree and the root list L0. The latter is trivial and

takes O(log n) (e.g., on a binary search tree), while the former needs to traverse the tree to update

the affected subdomain nodes. A subdomain node is affected if it needs to be further partitioned

or merged with another subdomain node. For insertion, the time complexity is O(l logmk), where

l is the number of newly created subdomains. A newly created intersection partitions all existing

subdomains. This is the worst case, but is unlikely to happen. The cost of deletion is the same.

We notice that the cost of inserting/deleting an object is relatively high due to the cost of tree

traversing, so the proposed I-tree is more suitable for indexing the data sets that are collected and



29

stored in batch, but may not be very efficient for dynamic databases where data items are changing

frequently. Nevertheless, since different part of I-tree does not interdependent on each other, store

and update I-tree in a distributed manner can mitigate its relatively higher updating cost.

3.5 Implementation and Evaluation

3.5.1 Language Extension

To integrate FQ as a query primitive into a database management system (DBMS), we ex-

tend SQL for users to define functions on a database and issue FQs. We give the syntax of the

commands and their usage examples as follows. Let D be a database with numerical attributes

{A1, A2, · · · , Am}. We extend SQL’s CREATE statement for users to specify how to interpret the

database as a set of functions.

CREATE Functions F (x1, x2, · · · , xm)

AS A1 · x1 +A2 · x2 + · · ·+Am · xm

FROM D

ON [xmin
1 , xmax

1 ],[xmin
2 , xmax

2 ], · · · ,[xmin
m , xmax

m ]

The statement specifies a function definition F , by which the system interprets each record ri

in D as a function Fi(x1, x2, · · · , xm) = ri.A1 · x1 + ri.A2 · x2 + · · ·+ ri. · xi + · · ·+ ri.Am · xm. The

ON clause denotes the domain on which the functions are defined, where xmin
i and xmax

i are the

allowed range of variable xi (1 ≤ i ≤ m). As an example, the following statement lets the system

interpret each property in Table 1.1 as a CashFlow function, where the allowed function input d is

set from 0 to 1, r from 0 to 1, and n from 0 to 1000.
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CREATE Functions CashFlow(d, r, n)

AS Income − Expense − Price · (1 − d) · r(1+r)n

(1+r)n−1

FROM RentalProperties

ON [0, 1], [0, 1], [0, 1000]

After the CREATE statement, users can then perform FQs over the database. A range FQ

Qrange = (F ,X ,L,U ) consists of four parameters: F is the name of a function definition, X =

(x1, x2, · · · , xm) the function input, L the lower bound, and U the upper bound of the query range.

We extend SQL’s SELECT statement to specify a range FQ:

SELECT · · · FROM D

WHERE L ≤ F (X ) ≤ U

As an example, the following statement retrieves the rentals which generate a cash flow in be-

tween $1000 and $3000 with a down payment of 15% of their prices and a 15-year mortgage at

0.5% monthly interest rate:

SELECT PID FROM RentalProperties

WHERE 1000 ≤ CashFlow(0 .15 , 0 .005 , 180 ) ≤ 3000

The statement for a top-k FQ Qtop k = (F ,X ,K ) has three parameters: F is the name of a

function definition, X = (x1, x2, · · · , xm) the function input, and K the number of records to re-

turn, is as follows.

SELECT TOP K · · · FROM D

ORDER BY F (X) ASC|DESC
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As an example, the following statement retrieves the rental properties which generate the high-

est cash flow with input (d = 0.15, r = 0.005, n = 180):

SELECT TOP 1 PID FROM RentalProperties

ORDER BY CashFlow(0 .15 , 0 .005 , 180 ) DESC

Finally, a kNN FQ QkNN = (F ,X ,K ,V ) has an additional parameter V , a user-supplied value

(query point). The following statement retrieves the 2 properties whose cash flow is closest to $2000

with input (d = 0.15, r = 0.005, n = 180):

SELECT NEAREST 2 PID FROM RentalProperties

WHERE CashFlow(0 .15 , 0 .005 , 180 ) = 2000

3.5.2 Experimental Settings

We implement three versions of the proposed technique:

1) StandardFQ: The sorted function list in each subdomain node is computed and stored when

building the I-tree. There is no limitation on the maximum leaf number.

2) AdvancedFQ: Only the root list L0 is stored. Others are computed on the fly when an FQ

with an input in the corresponding subdomain arrives. A sorted function list is then cached for

future use. The cache size is set to 512MB and the list with the least access is discarded first. The

maximal leaf number is also limited to be n/2, where n is the total number of functions.

3) SuperFQ: A single I-tree is used to support multiple function definitions on a same database.

In contrast, one I-tree is built for each function definition in the above two schemes.

We use C++ to implement the I-tree index and query processor, and C# to implement user

interfaces and query parser. Our system runs on a Windows server with an Intel Xeon 64-bit 8-core

2.93GHz CPU and 32GB RAM. FQs can be applied on a database of continuous functions, and a



32

database where each record is originally discrete values but interpreted as a function. Accordingly,

we evaluate the performance of FQs on two different types of databases.

3.5.3 Querying a Database of Functions

There is little work on querying a database that stores a set of functions. So we compare

our technique with LinearSearch. Given an FQ, this scheme computes each function with the

user-supplied input to identify those satisfying the output condition. We use synthetical data in

this study. To generate a dataset, we first generate a function definition, which has input variables

X = {x1, x2, ..., xm} in the form of F (X) =
∑m

i=0 ci × gi(x
di
i ). Here gi(·) is some computation

applied on xdii , which we randomly select from the following univariant functions: gi(x) = x,

gi(x) = sin(x), gi(x) = cos(x), gi(x) = 1/x. Recall that FQ can support such complex computations

through function conversion. For each term, the degree di of xi is uniformly generated in [1, dmax],

where dmax is the max degree allowed. With the function definition in place, we then generate the

coefficients for each function, where each coefficient ci is uniformly randomly selected in a range.

The ranges of the parameters and their default values are given in Table 3.1.

Table 3.1: Experiment Settings

Parameters Range Default

Number of functions 105 - 106 5x105

Coefficient (ci) [−10, 10] N/A

Number of variables (m) 1 - 10 5

Degree of variables (di) 1 - 5 3

Variable domain [−1, 1] - [−20, 20] [−10, 10]

Since each dataset is originally continuous functions, we focus on three techniques, i.e., Lin-

earSearch, StandardFQ, and AdvancedFQ. We are mainly interested in how the performance of

these techniques in terms of their actual query processing time is impacted by the number of func-

tions, number of variables, and domain sizes. Regardless of its type, processing an FQ takes two

main steps: 1) traversing the I-tree to the subdomain node whose subdomain contains the function
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input, and 2) retrieving the query results from the corresponding sorted functions. For the second

step, since the functions are sorted, we can perform a binary search to locate the first function that

satisfies the output condition and then sequentially retrieve the following functions until reaching a

function that is not in the query result. So the time of performing the second step is largely deter-

mined by the number of functions in a query result. To help us focus on the performance of I-tree,

we choose to perform only top-1 FQs. Specifically, for each simulation run, we issue 1000 top-1

FQs with a randomly selected input X. The results are plotted in Figure 3.4. In general, the query

processing time of both StandardFQ and AdvancedFQ grows logarithmically w.r.t. the number of

functions, the number of variables, as well as the domain size. In contrast, the cost of LinearSearch

increases linearly as expected. These results demonstrate that the proposed techniques have good

scalability especially when dealing with large datasets. Since the query processing time is the actual

running time, which is dynamic and different for different machines, we also report the percentage

of the functions accessed in query processing, which is reported in Figure 3.4-(d). Note that for

LinearSearch, processing a top-1 query requires to compute all functions. As such, its performance

curve is flat.
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Figure 3.4: Query processing cost of Top-1 FQ

3.5.4 Querying Discrete Database as Functions

By interpreting a database of discrete values as a set of functions, FQs support analysis-based

data retrieval. In this scenario, top-k FQ and range FQ are equivalent to existing top-k query and

scalar product query, respectively, in terms of their functionality. For comparison, we implement

two state-of-the-art techniques:
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1) DominantGraph (Zou and Chen (2008)): This is the most efficient technique for top-k

query. It allows a weight-based Utility Function f(w1, w2, ..., wm) = w1 · a1 +w2 · a2 + ...+wm · am,

where wi is a user-defined weight applied on attribute ai (1 ≤ i ≤ m). The domain of each variable

must be normalized to [0, 1] and their sum equal to 1. DominantGraph facilitates efficient query

processing by identifying the dominating relationships among records and then partitioning the

dataset into different layers such that the records in a higher layer dominate those in a lower layer

for any weight assignment. A record ri is said to dominate another record rj if there exists no set

of weights that ri ranks lower than rj . Thus rj cannot be included in a query result unless ri is

included. DominantGraph supports the output condition of top k, but not range.

2) ScalarProduct (Khan et al. (2014)): This technique supports scalar product query. The

query receives its name “scalar product” as the function in the query must be in the form of a scalar

product between a set of user-defined variables and some attributes of a dataset. The proposed

technique indexes query hyperplanes for efficient query processing. It supports the inequality output

condition (i.e., greater or smaller than a threshold), but not top k.

3.5.4.1 Query processing Cost

For this experiment, we use two real-world discrete datasets HOUSE and PHYSICS. HOUSE

is extracted from (Ruggles et al. (2015)), including 100,000 records with 12 numerical attributes

such as house value, household income, and monthly mortgage payment. PHYSICS is the KDD

cup quantum physics dataset (KDD (2004)), which contains 100,000 records with 78 numerical

attributes.

We first compare our techniques with DominantGraph. For DominantGraph to work, we use

only weight-based function definition on the datasets and normalize the parameters. For each sim-

ulation run, we issue 1000 top-k FQs (equivalent to top-k query in this setting) and calculate their

average query processing time and the percentage of records accessed during query processing. The

k value (number of records to retrieve) of each query is randomly chosen from [10, 500]. Figure 3.5

shows the results. StandardFQ and AdvancedFQ have similar performance in query processing
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Figure 3.5: Top-k FQ vs. DominantGraph

time. Recall AdvancedFQ sorts the functions on the fly while searching for the subdomain that

contains a given function input. This study indicates that the cost of such on-the-fly sorting is

negligible. On both datasets, our technique outperforms DominantGraph.

Then, we compare our techniques with ScalarProduct. We use randomly generated polynomials

in the form of scalar product as function definitions, and issue 1000 such queries over the datasets

for each experiment run. The ranges in the queries are randomly selected with a selection ratio

between 1/10000 to 1/1000. Figure 3.6 shows the comparison result. Given a range query with

input X, our techniques follow the I-tree to locate the subdomain that contains X and then do

a binary search on the sorted function list for the functions whose output falls in between the

given range. The overall cost of these two-step processing is close to that of the planar indexing in

ScalarProduct. Nevertheless, our techniques are more versatile, because the latter does not support

output conditions such as top-k or kNN.
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Figure 3.6: Range FQ vs. ScalarProduct
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3.5.4.2 Indexing Cost

We build an I-tree to support efficient processing of FQs. Similarly, DominantGraph and

ScalarProduct need to build their own indexing structure. In this study, we compare the cost of

building these indexes. We choose the time of building an index and the size of the index (in

terms of the percentage of the original dataset size) as performance metrics. Figure 3.7-(a) and (b)

show the impact of the number of data records. As the number of records increases, all techniques

require more time in index building and result in larger index sizes (yet the percentage to the

data size remains stable). StandardFQ is the worst performer. This is not surprising because

this scheme pre-sorts functions for each of the subdomains partitioned by the functions and stores

the sorted function lists for query processing. AdvancedFQ addresses this problem and achieves a

performance similar to ScalarProduct. It is worth mentioning that this performance improvement

is not achieved at the expense of query processing time. As discussed previously, AdvancedFQ and

StandardFQ perform similarly in query processing (see 3.4). While AdvancedFQ and ScalarProduct

incur similar indexing time, the former constantly outperforms the latter in terms of index size.

Figure 3.7-(c) and (d) show the impact of variable number. The results are similar to the impact

of record numbers. This study demonstrates the advantages of our solution: It supports more

query types than other techniques combined, and it is more efficient in query processing, at similar

indexing costs.
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Figure 3.7: Indexing cost
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Figure 3.8: Handling multiple function definitions

3.5.4.3 Handling Multiple Function Definitions

Our solution also features supporting multiple function definitions over a same discrete database.

We implement this super function technique, namely SuperFQ, and compare it with AdvancedFQ.

We use synthetic datasets in this study for the sake of flexibility. We generate 50,000 data records,

where each record has 10 numerical attributes and a unique ID. The value of each numerical

attribute of a record is randomly selected in the range of [−1, 1]. Since complex functions can be

converted, we focus on linear functions. We use the approach described in Chapter 3.5.3 to generate

function definitions, but make gi(x) = x always. The number of functions definitions ranges from

1 to 20, so each record can be interpreted as up to 20 different multivariate linear functions.

For each simulation run, we issue 300 top-1 FQs. We choose not to perform other types of queries

for the same reason explained in Chapter 3.5.3. Figure 3.8 show the average query processing time

under the two techniques. AdvancedFQ incurs slightly less query process time. Since it builds

one independent I-tree for each function definition, less nodes need to be traversed in locating the

subdomain that contains the input for a given query. The minor gains, however, comes at a major

cost – the time of building the I-trees and their aggregate size increase sharply as the number of

function definitions increases.

3.6 Discussion

The need to support functions, which are often the best in represent continuous data, has been

well recognized by both academia and industry. Various techniques (e.g., Thiagarajan and Madden
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(2008); Guo et al. (2013); Katsis et al. (2015); Anagnostopoulos and Triantafillou (2017)) are now

available to support function as a primitive datatype in a DBMS and allow users to query the data

represented by a function. Commercial DBMS such as DB2 10.5 and PostgreSQL 9.4 have also

recently supported expression-based indexes over numeric attributes. Our work extends this track

of research by enabling users to retrieve the functions whose output under a user-supplied input

satisfies a certain condition.

Our research also complements existing work on analytic queries (e.g., Vlachou et al. (2011);

Zhang et al. (2014a,b); Mouratidis et al. (2015); Cheema et al. (2014); Das et al. (2007); Gao

et al. (2015); He and Lo (2014); Peng and Wong (2015); Tang et al. (2017); Yang and Cai (2017))

developed for analysis-based data retrieval on discrete databases. For efficient query processing,

a range of techniques have been proposed. These techniques, which are vastly different, share a

common characteristic, i.e, they all index their data as discrete values. Our research demonstrates a

new strategy, which is to interpret and index a database of discrete values as a set of functions. We

show that a single indexing structure (i.e., the proposed I-tree) can support both top-k query and

scalar product query, and do so more efficiently when compared to their corresponding the state-

of-the-art techniques. In addition to top-k query and scalar product query, our techniques have the

potential to support other queries all together. In the following, we discuss three representative

queries, without giving detailed analysis due to limited space.

Reverse top-k query (Vlachou et al. (2011)): Given a set of records and a set of top-k

queries, a reverse top-k query retrieves all top-k queries whose result contains a selected record. A

query here is a weight vector that assigns a weight to each attribute. As such, we can treat the

top-k queries as a set of FQs which are different in their inputs. On an I-tree, all queries whose

inputs belong to the same subdomain will rank the functions in exactly the same order and do not

need to be evaluated separately. Therefore, these queries can processed efficiently as follows: For

each query, we find the subdomain that contains its input, and for each of the subdomains that

contain a query’s input, we locate its sorted function list. If the top k functions in the list contains

a selected record, then we return all queries whose inputs fall in the subdomain.
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Maximum rank query (Mouratidis et al. (2015)): Such a query computes the highest

possible rank that a record can achieve for any linear scoring function. We can slightly modify

the first-cut algorithm (FCA) proposed in (Mouratidis et al. (2015)) to process the maximum rank

query with the support of I-tree. FCA is also based on examining function intersections. Recall

that when two functions intersect, their ranks switch. As such, the maximal rank of a function fi

can only be achieved when fi switches order with another function fj , whose rank was higher than

that of fi. On our I-tree, the rank-switching takes place when a search path leaves an intersection

node of fi and fj . Thus we can examine all such nodes involving fi, and traverse all paths from the

root node to these intersection nodes. The highest rank that fi can achieve is equal to the highest

rank that fi achieves on any of these paths.

Global immutable region (Zhang et al. (2014a)): Given a top-k query, its global immutable

region (GIR) consists of all inputs under which the query result remains unchanged. On the I-tree,

GIR is the union of all subdomains in which the result of a given query point q remains the same.

To find these subdomains, we first locate the subdomain that contains the query using the I-tree,

and retrieve the query result (top-k records) R. Then we can construct the GIR by finding its

boundaries. A function intersection is the boundary of a GIR if and only if moving q across the

boundary will cause the query result to change. Thus, only intersections involving functions in R

could be a GIR boundary. It is fairly easy to locate such intersections with the I-tree, since it stores

all intersections.

3.7 Summary of the Chapter

The notion of Function Query (FQ) is a powerful extension to existing database query languages.

It can be applied on a database that is originally a set of functions, e.g., representing some data

that is continuous in nature. While this is obvious, FQ can also be applied, which we believe is

less apparent but inspiring, on a database of discrete values. By interpreting each record as a

function, FQ supports analysis-based information retrieval like existing top-k and scalar-product
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queries. However, unlike these existing queries, FQ supports more complex functions and a variety

of output conditions.

We have addressed the challenges of enabling efficient FQ execution. Our key observation is,

a set of functions can be sorted based on their outputs in the input subdomains partitioned by

the intersections of these functions. This observation alone, however, is not sufficient to develop

a good solution. Finding the exact boundaries and sorting the functions in each subdomain can

be computation-intensive. The problem is even more complicate when having to deal with a very

large number of subdomains, which happens when the functions involve non-linear terms or are non-

polynomial. To circumvent these problems, we proposed a novel data structure called Intersection-

tree (I-tree). I-tree indexes the subdomains created by function intersections and allows one to sort

the functions for each subdomain, without having to computing subdomain boundaries. With I-tree

in place, we proposed to convert complex functions into multivariate linear polynomial functions

through variable replacement. We show that this strategy works for all polynomial functions and

non-polynomial functions that conform certain form. Moreover, it becomes possible to handle

multiple functions definitions on the same database with a single I-tree. While I-tree is mainly

developed for FQs, we show that it can also be used to support the execution of some other well-

known analytic queries, including reverse top-k query, maximum rank query and global immutable

region.

In addition to algorithms and data structures, we have integrated FQs into a database system

as a query primitive. We evaluated the proposed techniques through prototyping and experiments

over synthetic data and real-world data, and our techniques exhibit excellent performance in our

extensive evaluation.
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CHAPTER 4. AUTHENTICATION OF FUNCTION QUERIES

4.1 Motivation

The proliferation of digital technologies has created data explosion in every segment of our soci-

ety. To many data owners, managing their data is a big challenge, both technically and financially.

This is especially true for certain big data applications where the data is so large and complex that

cannot be handled by standard database management tools.

Processing function queries over large datasets is particularly challenging given the complexity

of the queries. Instead of managing the data and processing queries by their own, an alternative

approach is to outsource these duties to a third-party cloud services such as Amazon and IBM.

By releasing data owners from day-to-day responsibility of software and hardware management,

outsourcing has the potential to save them significant operation cost. Data owners, however, are

facing with difficulties in fully trusting such services. Ultimately, the data is in the hand of a third

party that is beyond their own administrative domain. Today’s computing and networking systems

are inherently insecure and vulnerable to attacks. The third party may also intentionally deliver

incomplete results or even manipulate the data for its own benefits.

The above problem has motivated significant research effort on query authentication(e.g., De-

vanbu et al. (2003); Pang et al. (2005)), i.e., enabling users to verify the query results they receive

are indeed correct. A query result is deemed correct if it is both sound and complete. The former

requires that every data item in the query result appears in the original database, whereas the

latter, every data item in the original database that satisfies the query condition is included in the

query result. Existing authentication techniques, which we discussed in Chapter 2, are developed

for simple queries over discrete data. They cannot be applied directly for FQ authentication. In

their case, the raw data is compared directly against a query condition. The data owner can sort

and digitally sign the raw data before releasing to the service provider. In contrast, an FQ retrieves
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the functions whose outputs under a given function input satisfy certain condition (e.g., within

a certain range). When processing an FQ, the server needs to compute the functions based on

user-supplied arguments. The computation results, not the raw data, are then checked against the

query condition. The data owner cannot sort and sign the computation results because the input

parameters to the functions are supplied by query issuers and not known when the database is out-

sourced to the service provider. It may first appear that one can compute the continuous functions

with a series of discrete parameter values. The computation results can then be sorted and digitally

signed with existing authentication techniques. This approach can provide only approximate query

results, where the accuracy is determined by the interval used in parameter discretization. A large

interval provides very coarse results, while a fine interval will generate an overwhelming amount of

data for the data owner to sign, which will in turn dramatically increase the cost of outsourcing.

In this chapter, we present our techniques for authenticating FQs. Again, our research leverages

the fact that the intersections of a set of functions partition the input domain into a number of

subdomains, and in each of these subdomains, the functions can be sorted. We consider various

kinds of math functions, starting from the simplest univariate linear functions, to multivariate linear

functions, and finally multivariate functions with higher degree. The performance of the proposed

techniques is evaluated though theoretical analysis, simulation and empirical study.

4.2 Problem Formulation

4.2.1 System Model

The outsourcing model consists of three parties (Figure 4.1), data owner, third-party server,

and data user. Let D be a database. The data owner uploads D along with a function definition to

the server, which manages the data and answers all user queries. The function definition serves as a

template for the server to interpret each record in D as a function. Since we are mainly concerned

of authenticating the queries over the functions, we will simply refer to the outsourced data as a

set of functions and denote this set as F = {f1, f, · · · , fn}, where fi is the function represented by

record ri in D under a given function definition.
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Figure 4.1: The three-party outsourcing model

In this research, we consider the polynomial functions where each term has at most one variable.

Such functions are generic enough for many applications, including all those mentioned in the

introduction. Let k be the maximum number of variables and d the highest degree of each term.

We have the following general form for each function:

f(x1, x2, ..., xk) = c0+

c11x1 + c12x
2
1 + · · ·+ c1dx

d
1+

c21x2 + c22x
2
2 + · · ·+ c2dx

d
2+

· · ·

ck1xk + ck2x
2
k + · · ·+ ckdx

d
k

(4.1)

Here X = (x1, x2, ..., xk) is a set of variables and cij the coefficient for term xji , where 1 ≤ i ≤ k

and 1 ≤ j ≤ d.

4.2.2 Adversary Model and Security Goal

To query the functions in F , a user provides an input X = (x1, x2, ..., xk) and a query condition.

We consider the three types of FQs introduced in the previous chapter, including range, top-k, and

kNN. In response to an FQ, the server returns a set of functions (and their corresponding data
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records) whose outputs under the given input satisfy the query condition. Users are concerned if

the query results they receive are correct. The server may return wrong results on purpose (e.g., to

save computation and communication costs) or unknowingly (e.g., compromised by hackers). Let

q = (X, l, u) be a range FQ submitted by a user, R(q) the query result received by the user, fi(·)

the function corresponding to record ri. We say R(q) is correct if the following two requirements

are satisfied:

• Soundness: ∀ri ∈ R(q) appears in the original database, and l ≤ fi(X) ≤ u;

• Completeness: ∀ri in the original database D, if l ≤ fi(X) ≤ u, we have ri ∈ R(q).

For top-k and kNN FQs, soundness and completeness of their results can be defined similarly.

Our research is to develop an approach that allows users to verify if the query results they receive

are indeed correct.

4.3 Proposed Solution

We start from the simplest case, univariate linear function, where variable number k = 1 and

degree d = 1. Let F be a set of n univariate linear functions, each in the form of fi(x) = aix+bi. As

pointed out in the overview of Intersection-tree, the functions in F are sortable in each subdomain

created by their intersections. In this case, each intersection of two functions is a single point

on the x-axle and hence each intersection is an interval. For example, in Figure 3.1-(a), we have

f1(·) ≤ f3(·) ≤ f2(·) for any input in [x1, x2).

This observation allows us to create an authentication structure for verifying FQ results. That

is, the data owner can digitally sign the sorted functions in each subdomain and create a corre-

sponding signature chain for the subdomain. To authenticated an FQ, the server needs to locate

the subdomain that contains the user-specified function input, and then constructs a VO using

the corresponding signature chain created for that subdomain. Unfortunately, the potentially huge

number of subdomains indicates the data owner will have to create O(2n) signature chains, each

contains n data records. This process can be very expensive especially when the number of functions
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is large. To address this challenge, we present a highly efficient authentication structure namely

Signature Mesh.

4.3.1 Signature Mesh Construction

Given a set of n univariate linear functions F to be outsourced, the data owner computes and

sorts the set of intersection points of F , say I = {x1, x2, · · · , xm}, where x1 < x2 < · · · < xm.

For each interval [xi, xi+1), the data owner sorts the list of functions according to their outputs.

Let {f1(·), f2(·), · · · , fn(·)} be the sorted list of functions for interval [xi, xi+1). Assuming non-

decreasing order, we have f1(·) ≤ f2(·) ≤ · · · ≤ fn(·) for any input x in [xi, xi+1). On this sorted

list, the data owner builds a digital chain as follows. For each pair of contiguous functions fj(·)

and fj+1(·) in the sorted list, it creates a signature using the digest of their corresponding records:

Sig[xi,xi+1)(rj |rj+1) = Sig(H(H(rj)|H(rj+1)|xi|xi+1))) (4.2)

Here rj and rj+1 are the corresponding records of function fj(·) and fj+1(·). H(·) can be a collision

resistant one-way hash function (e.g., SHA1 (Burrows (1995))) or other digest functions such as the

one proposed in (Pang et al. (2005)). Note that in addition to the digests of rj and rj+1, the two

intersection points xi and xi+1 are included in the signature. This is to allow a user to verify if the

signature indeed belongs to the signature chain built for the interval [xi, xi+1). By examining this

signature, a user can be assured that there exists no function f ∈ F whose output is in between the

outputs of fj(x) and fj+1(x) for any x in [xi, xi+1). In other words, fj(·) and fj+1(·) are contiguous

in the original sorted list.

In the above approach, the data owner creates a signature chain for each interval and each

chain has n−1 signatures. The total number of signatures need to be created for the entire domain

can actually be significantly reduced. Given two univariate linear functions, they can intersect at

most one time (unless they have the same coefficients, which we will discuss later in this chapter).

This means that two functions can remain contiguous in a number of consecutive intervals. In

this case, only one signature needs to be created for this pair of functions to cover the whole

range. For example, if fj(·) is immediate before fj+1(·) from intersection point xp to intersection
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point xq (where they swap their order), then we can create one signature Sig(xp,xq)(rj |rj+1) for

the two functions from xp to xq, instead of creating q − p signatures, Sig[xp,xp+1)(rj |rj+1), ...,

Sig[xq−1,xq)(rj |rj+1), one for each interval within the whole range from xp to xq. Algorithm 4

describes the process of constructing the signatures.

Algorithm 4 ConstructMesh(F = {f1, f2, ...fn})
1: Compute all intersection points of F

2: I ← {x1, x2, ...xm}
3: Sort F in (−∞, x1)
4: Create signature chain for F in (−∞, x1)
5: For i = 0 to m, do:

6: If fa and fb intersect on xi ∈ I
7: Swap fi and fj in F

8: For j = 1 to n, do:

9: If Sig(rj |rj+1) exists in previous interval, then

10: Extend the range of Sig(rj |rj+1) to cover [xi, xi+1)

11: Else create Sig(rj |rj+1) for [xi, xi+1)

Figure 4.2 illustrates the signatures created for a set of six functions. We refer to the whole

set of signatures created by the data owner as a Signature Mesh. This mesh is given to the service

provider together with the original database to be outsourced.

4.3.2 Query Result Verification

We first show how to verify correctness of range FQ results using the above scheme. Upon

receiving a range query q = (X, l, u), the server retrieves all functions whose computation results

with the user-defined input x is within the specified range l and u. We assume some efficient

techniques are used for the server to find the functions that satisfy the query conditions and will

not concern ourselves with their implementation details. Our focus is on the verification of the

query result.

Let R(q) = {ra, ra+1, · · · , rb−1, rb} be the sorted query result, ra−1 the record immediately

before ra and rb+1 the record immediately after rb. Let fi(·) be the function in record ri, where

a − 1 ≤ i ≤ b + 1. We have fa−1(·) < l ≤ fa(·) < · · · < fb(·) < fb+1(·) for the given input x.
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The server generates the corresponding verification object V O(q) as follows. For each record ri

(a−1 ≤ i ≤ b) in {ra−1}∪R(q), the server finds Sig[xp,xq)(ri|ri+1) in the signature mesh, where the

interval [xp, xq) must contain x. This signature and the corresponding interval [xp, xq) are added

to V O(q). Moreover, the two boundary records ra−1 and rb+1 are included in V O(q). Algorithm 5

describes the process of creating the verifiable object for a query. An example of verification object

is showed in Figure 4.3.

R(q)

VO(q)

ra ra+1 ra+2 rb-1 rb
… ...

ra-1 rb+1

Sig(  a-1|   a) … ...r r Sig(  a|   a+1)r r Sig(  a+1|   a+2)r r Sig(  b|   b+1)r r

Figure 4.3: Verification object for R(q) = {ra, ra+1, · · · , rb−1, rb}.

Algorithm 5 ConstructVO(q =< x, l, u >,
R(q) = {ra, ra+1, ...rb})

1: V O(q)← {ra−1, rb+1}
2: For i = a− 1 to b, do:

3: Locate the interval [xi, xi+1) that contains x.

4: Find Sig[xp,xq)(ri|ri+1) such that [xi, xi+1) ⊆ [xp, xq)

5: Add Sig[xp,xq)(ri|ri+1) into V O(q)

6: Return V O(q)

The server sends both R(q) and V O(q) to the user, which verifies the query result as follows.

For each pair of consecutive records ri and ri+1, where a− 1 ≤ i ≤ b, the user finds the signature

Sig[xp,xq)(ri|ri+1) and the corresponding interval [xp, xq) in V O(q). If x does not belong to the

interval, the user rejects R(q). Otherwise, it computes the following digest, using the data owner’s
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public key:

Sig−1(Sig[xp,xq)(ri|ri+1)) = H(H(ri)|H(ri+1)|xp|xq) (4.3)

This digest is compared with the corresponding digest included in V O(q). If the two digests

do not match, the user rejects R(q). Otherwise, it means ri and ri+1 are in the original order and

there is no record in between which satisfies the query condition, and the user proceeds to check

the correctness of boundary records by verifying if the following boundary conditions hold:

fa−1(x) < l ≤ fa(x) ≤ fb(x) ≤ u < fb+1(x) (4.4)

One special case is when the query result contains the very first and/or last record in the sorted

list of functions. In this case, there is no boundary function for a user to verify. This problem can

be circumvented by inserting two dummy functions, f0(·) = −∞ and fn+1(·) = +∞, to the sorted

list and creating corresponding signatures to add them to the signature chain. The two functions

serve as the virtual boundaries for any query result that contains the first and/or the last record.

A more formal description of the above verification process is given in Algorithm 6. The dummy

functions also provide us a way to verify a top-k FQ, which retrieves the functions whose outputs

are among the K smallest with user specified input. For a top-k FQ, V O(q) includes the K records

and the dummy function f0(·) = −∞. Obviously, if their signature indicates that the K+1 records

are contiguous, the result must be correct.

The process of authenticating top-k and kNN FQs is similar. Specifically, for a top-k FQ

q = (x,K), V O(q) contains Sig[xp,xq)(r0|r1), Sig[xp,xq)(r1|r2), ..., Sig[xp,xq)(rK |rK+1), where r0 is

the dummy record corresponding to f0(·) = −∞, and r1, r2, ..., and rK are the top-k records in

interval [xp, xq). It is easy to see r0, r1, r2, ..., and rK must be contiguous in the sorted list and this

can be verified by examining the signature chain. Similarly, for a kNN FQ q = (x,K, y0), V O(q)

contain the signatures of the K contiguous records, along with two extra boundary records, whose

function outputs are among the K nearest neighbour of y0 in a interval [xp, xq) that contains x.

Note that only verifying if the records are contiguous in R(q) is not sufficient for a kNN FQ, since
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Algorithm 6 Verify(q = (x, l, u), R(q), V O(q))

1: For each Sig[xp,xq)(rj |rj+1) in V O(q), do

2: If x is not in [xp, xq), then

Reject R(q)

3: Else if

Sig−1(Sig[xp,xq)(rj |rj+1)) 6= H(H(rj)|H(rj+1)|xp|xq),
then Reject R(q).

4: If l ≤ fa(x) AND fb(x) ≤ u AND fa−1(x) < l

AND u < fb+1, then

Accept R(q).

5: Else, Reject R(q).

the server may return a list of contiguous records on the signature chain that are not the K nearest

neighbours to the query point. To solve this problem, the user first checks if there exists a record

ra in R(q) such that the distance between fa(X) and y0 is the smaller than the distance between

ra−1 and y0 and the distance between ra+1 and y0. If this is true, ra must be the neighbour nearest

to y0. The user then checks if the function outputs of the two boundary records have the largest

distance to y0 comparing with all the other records in the query result. This condition guarantees

that there exists no other record whose function output is closer to y0 than any record in the query

result.

4.3.3 Discussion

It is possible a same function appears multiple times in a database (due to duplicate records)

but with different IDs. To avoid duplicated functions from creating infinity intersection points, we

merge the records with the same function into one super record that contains multiple IDs but one

common set of coefficients. When the output of the function satisfies the query condition, then all

these IDs/records are returned to the user.

The functions in the database may have different domains, too. For example, the data owner

may specify that a function fi(·) is valid only for domain [xp, xq). When the function input specified

by the client is not within its domain, fi(·) should not be included in the query result. In our

solution, we still consider the domain of the set of functions F as (−∞,+∞), but treat the domain
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boundaries of each function as intersection points too. In the above example, we treat xp and xq as

two intersection points. The augmented set of intersection points is used to partition the domain

of F into intervals as before. If a function is not defined in an interval [xi, xi+1), we simply remove

it from the sorted list for this interval.

4.4 Extension

We now extend the technique for univariate linear functions to support query authentication

over more complex polynomials.

4.4.1 Multivariate Linear Function

The intersection of two univariate linear functions creates a point that divides the x-axis into

two halves. Given two two-variable linear functions, say fa(x, y) and fb(x, y), defined on R2, their

intersection creates a straight line in the 2D plane. Here R denotes the real number set. Given

any point (xi, yi) on this line, we have fa(xi, yi) = fb(xi, yi). In general, two k-variable linear

functions intersect each other on a hyperplane in the k-dimension domain space. Consider a set of

n k-variable linear functions F . Let I = {h1, h2, · · · , hm} denote the set of intersection hyperplanes

of the functions in F . Each hyperplane hi partitions the domain space into two disjoint , denoted

by hi > 0 (the half space above the hyperplane) and hi < 0 (the half space below the hyperplane).

Therefore, the m intersection hyperplanes in I can partition the k-dimension domain space of the

functions in F into O(m2) subspaces in the worst case. It is clear that the functions in F can be

sorted in each subspace. Thus, for each subspace, the data owner can build a signature chain on

the sorted functions for query result authentication.

The process of constructing the signature mesh is similar to that of the univariate linear case.

First, the data owner computes the set of intersection hyperplanes I of F . The second step is to

identify all the subspaces partitioned by I. To facilitate this process, we use a space partitioning

tree similar to kd-tree as showed in Figure 4.4. Each node in the tree corresponds to a hyperplane in

I. The left and right subtrees represent the subspaces above and below the hyperplane respectively.
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Figure 4.4: Subspace partitioning and corresponding space partitioning tree.

Thus, each leaf of the tree represents a subspace partitioned by I. Let {f1(·), f2(·), · · · , fn(·)} be

the sorted list of the functions in F in a subspace Si. Let rj be the record containing fj(·). For

each pair of functions fj(·) and fj+1(·) which are contiguous in the sorted list, we create a signature

using the digest of their records:

Sig<Si>(rj |rj+1) = Sig(H(H(rj)|H(rj+1)|Bi)) (4.5)

where Bi = {ha ≥ 0, ha+1 ≥ 0, · · · , hb ≥ 0} is the set of k-dimension half-spaces that defines the

boundary of a subspace Si. Note that a point is in Si if and only if it is within each half-space

in Bi. For instance, in Figure 4.4, the boundary of subspace S5 consists of three half-spaces (or

half-planes in the 2D case), ha ≤ 0, hb ≥ 0, and hc ≤ 0.

It is possible that the input values specified by the client locate exactly on an intersect hyper-

plane that separates two (or more) adjacent subspaces Si and Si+1. In this case, either the signature
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chain created for Si or that of Si+1 can be used to verify the correctness of the query result. This

is due to the fact that the output of these functions will be the same for the given input, and thus

their relative position in the sorted function list will not affect the verification process and the

correctness of the query result. Therefore, we can set the boundary half-spaces of any subspaces

to be a closed half-space, without affecting the verification process. In verification, the client can

be assured that the signatures returned by the server is originated from the signature chain that

contains its input arguments X = (x1, x2, · · · , xk) by checking X against all the half-spaces in B.

If any of the half-spaces does not contain X, the query result is rejected.

Usually, only a small number of the functions in F will change their order in the sorted list

when crossing an intersection hyperplane. Thus, similar to the univariate linear case, if the order of

two functions fj and fj+1 remains unchanged in a number of consecutive subspaces, the data owner

can create only one signature for this pair of functions covering all these subspaces, instead of one

signature for each subspace. In the following, we show that the l subspaces where a signature are

valid is always a set of consecutive subspaces which can be represented by one larger subspace, and

thus can share one signature. Consider two multivariate linear functions fj(·) and fj+1(·) in the

sorted list of functions in Si. It is easy to see that their corresponding signature Sig<Si>(rj |rj+1)

will remain valid until one of the following three events occurs:

1. fj(·) and fj+1(·) exchange their order in the sorted list.

2. fj−1(·) and fj(·) exchange their order in the sorted list.

3. fj+1(·) and fj+2(·) exchange their order in the sorted list.

Let hi,j denote the hyperplane on which fj(·) and fj+1(·) exchange their order. No matter how

the domain space is partitioned, Sig<Si>(rj |rj+1) will be valid in the subspace defined by three

half-spaces: hj,j+1 ≥ 0, hj−1,j ≥ 0, hj+1,j+2 ≥ 0, which together form a convex hall. An example

of signature mesh for a set of two-variable linear functions in a selected range is illustrated in

Figure 4.5.
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To generate a verifiable object V O(q) for q = (X, l, u), the server first finds the subspace that

contains the query input X = (x1, x2, · · · , xk), then returns the corresponding signatures of each

record in the query result, plus the two boundary records. The set of boundary half-spaces signed

within each signature is also included in V O(q) for the client to compute the digest and verify the

signature. The verification process is basically the same as the univariate case: The client checks

if the returned signatures one by one is contiguous and if its input is within the domain subspace

of each signature, and finally checks if the two boundary records are valid according to (4).

4.4.2 Multivariate High Degree Function

We now consider a database where each record is treated as a multivariate function with degree

up to d > 1, i.e., polynomials that take the general form showed in (1). The functions in the

database may have different degrees, but those with degree lower than d can be considered a

special case of d-degree polynomial where the coefficients of missing terms are zero.

The intersection of two polynomials with degree greater than 1 may take different forms de-

pending on specific functions. As an example, Figure 3.1 in Chapter 3 illustrates three possible

intersection forms of high degree polynomials. Nevertheless, regardless of the value of k and d, this

rule remains the same: The intersection of two functions fi(·) and fj(·) partitions the domain space

into a number of subspaces, and in each subspace, the two functions are sortable. That is, for any

subspace Si, either fi(X) ≥ fj(X) holds for ∀X ∈ Si, or fj(X) ≥ fi(X) holds for ∀X ∈ Si. As

such, we can apply the same strategy: 1) Partition the domain space based on the intersections of

the functions, 2) Sort the functions in each subspace, and 3) Construct a signature chain for each

sorted function list.

The general form of the intersection of two k-variable d-degree functions defined on Rk can be

seen as a surface with order up to d in the k-dimension domain space. Let F be a set of n k-variable

d-degree polynomial functions. We define I = {s1, s2, · · · sm} as the set of intersection surfaces of F .

Again, we use these surfaces to partition the k-dimension domain space into a number of subspaces

and sort F in each subspace. The process of computing I and indexing all the subspaces is the
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same as the previous case. Let {f1(·), f2(·), · · · , fn(·)} be the sorted list of functions corresponding

to subspace Si in which fj(·) denotes the j-th function in the list. For each pair of two consecutive

functions fj(·) and fj+1(·) in the list, we generate a signature:

Sig<Si>(rj |rj+1) = Sig(H(H(rj)|H(rj+1)|Bi)) (4.6)

Here, Bi = {sa ≥ 0, sa+1 ≥ 0, · · · , sb ≥ 0} is the boundary of the subspaces Si, the subspace

surrounded by a set of surfaces {sa, sa+1, · · · , sb+1} with order up to d. For example, the boundary

of S2 in Figure 3.1-(b) is {sa ≥ 0, sb ≤ 0}.

In the linear cases, we showed that only one signature needs to be created for l consecutive

subspaces as long as the signature is valid in all these subspaces. However, in the high degree

case, a signature might be valid in several disconnect subspaces {Sa, Sa+1, · · · , Sb} that cannot

be represented by one large simple connected subspace. Take Figure 3.1-(b) for example. The

signature Sig(r1|r2) is valid in two disconnect subspaces ha and hc. This is due to the fact that

the intersection of two d-degree functions may partition the domain spaces into more than two

subspaces. In order to reuse a signature in multiple disconnected subspaces, we modify the way of

calculating signature to:

Sig(rj |rj+1) = Sig(H(H(rj)|H(rj+1)|Bp|Bp+1| · · · |Bq)) (4.7)

where Bp,Bp+1, Bq represent the boundaries of a set of disconnected subspaces {Sp, Sp+1, · · · , Sq}

that satisfies the following condition: for any Si where p ≤ i ≤ q, fj(·) is the direct predecessor

of fj+1(·) in the sorted list of functions corresponding to Si. In other words, {Sp, Sp+1, · · · , Sq} is

the set of all subspaces where Sig(rj |rj+1) is valid. Therefore, the order of two functions remains

unchanged in several subspaces, still at most one signature is needed.

Once the signature mesh is established, the query processing and verification process is basically

the same as for the other two types of polynomials. The only noticeable difference is how the client

verifies that a signature is valid for its input. For each signature in V O(q) received for query

q = (X, l, u), the client needs to check each of the boundaries in {Bp, Bp+1, · · · , Bq} signed with



57

the signature. Unless at least one of the boundaries, say Bi, contains X, the signature is invalid

and the query result should be rejected.

Note that checking the boundary condition (4) requires the client to perform the computation

of up to four k-variable d-degree polynomial functions fa(X), fb(X), fa−1(X), and fb+1(X) for a

range query. The cost of this computation is O(kd) for range query and slightly larger for top-k and

kNN queries. It is possible to further reduce the computation cost on the client side, for example,

by outsourcing the computation of these polynomials to the server using verifiable computation

techniques (e.g., Benabbas et al. (2011) and Parno et al. (2012))

4.5 Security and Performance Analysis

4.5.1 Security Analysis

We prove that the proposed technique can achieve our security goal for range queries as follows.

We will consider only the case of range FQ. The analysis for top-k and kNN queries are similar

and we will not discuss them separately for space constraint. Let R(q) = {ra, ra+1, · · · , rb} be the

query result for q = (X, l, u), ra−1 and rb+1 the two boundary records. We first discuss the two

cases when R(q) is not complete:

Case 1: At lease one boundary record is forged. There are two ways for the adversary to

do so. One is to create a fake record r′a−1 containing a function f ′a−1(·), where f ′a−1(X) < l. The

adversary then inserts the fake record somewhere between ra and rb, and return R(q) = {ri, · · · , rb}

with forged r′a−1 and rb+1. Here ri can be any record between ra and rb, and all the records from ra

to ri−1 are removed from R(q). In order for the client to accept the manipulated query result, the

adversary must forge a signature Sig(ra−1|ri) using the digest of the fake boundary record. This

is computationally infeasible without knowing the private key of the data owner. The other way

to forge a boundary record is to report a record ri in R(q), where a ≤ i ≤ b, as a boundary record.

The client will detect this flaw when checking the value of fi(X) during the verification process. It

will discover that l ≤ fi(X) ≤ u and know that this is not a boundary record.
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Case 2: Two records are not contiguous in the sorted list of the original database but is

contiguous in R(q). This happens when the adversary removes some record from R(q). Suppose

some record ri (a ≤ i ≤ b) does not appear in R(q). To avoid being detected, the adversary needs

to replace two original contiguous signatures, Sig(ri−1|ri) and Sig(ri|ri+1) with a forged signature,

Sig(ri−1|ri+1). Again this is computationally infeasible without knowing the data owner’s private

key.

There are also two cases when R(q) is not sound:

Case 1: Some record ri in R(q) is forged. This will be detected when a client verifies Sig(ri|ri+1)

or Sig(ri|ri+1), the two signatures created with ri and its immediate neighbours. The mechanisms

used in signature creation basically make it computationally infeasible for one to create a false

record without being detected.

Case 2: Some record ri in R(q) exists in the original database, but does not satisfy the query

condition. The adversary can include such records into the query result by either reporting fake

boundary records or inserting some records between two records that are contiguous in the original

query result. Both of them are proved infeasible in the completeness cases.

4.5.2 Overhead Analysis

We now analyze the overhead introduced by the proposed technique on the data owner, the

server, and the client side, respectively.

4.5.2.1 Data Owner Overhead

There are two costs for the data owner, computation cost incurred in constructing the signature

mesh and communication cost in sending the mesh to the server. The key factor is the size of the

signature mesh. In the next, we first analyze the total number of signatures that need to be created

in the worst case.

Suppose there are n functions and each function has up to k variables with degree up to d. The

total number of intersections of these functions is bounded by O(n2). Since these intersections are
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of order up to d, they can partition the k-dimension domain space of the functions into O(n2d)

subspaces. Recall that our techniques do not create a signature for each distinct subspace. Instead,

only one signature Sig(rj |rj+1) is created for all subspaces where the two functions are adjacent

and do not change their order in the sorted list. As such, for each pair of functions fi(·) and

fj(·), at most two signatures will be created: Sig(ri|rj) and Sig(rj |ri). Even in the worst case

where every two functions intersect with each other at certain point in the domain space, we

will create at most 2 ∗ Cn+2
2 signatures. The size of the final signature mesh can be written as

O(Cn+2
2 ) = O((n + 2)!/2n!) , which is bounded by O(n2) and much smaller than O(n2d). This

result indicates that the upper bound of the overhead is a polynomial of the number of functions,

regardless of the degree of functions and the number of variables. Note that this is the worst case,

where the domain space is partitioned to the maximal possible number of subspaces by a set of

functions, which is rare in real applications. The expected performance of the proposed technique

in real application could be better than the worst case due to the limited function domain. This is

supported by the simulation results and empirical study.

To efficiently find all intersections of a set of n polynomial functions, methods such as the Plane

Sweep algorithm (Nievergelt and Preparata (1982)) can be used, which takes O((n + m) log n)

where m is the actual number of intersections. After finding intersections, the data owner needs to

partition the domain space into subspaces using these intersection surfaces. Constructing the afore-

mentioned space partitioning tree requires O(m2). Assuming the computation cost of calculating a

digital signature and computing a digest function is constant, we have the worst case computation

cost of constructing the signature mesh being bounded by O((n+m) log n+m2). This is a one-time

cost for a data owner to prepare a database to be outsourced.

Since each data record consists of at most kd + 1 coefficients( it may have some other non-

coefficient attributes such as an id), the communication cost of sending the database to the server

is O(kdn). This is a fixed cost when outsourcing the database, with or without any authentication

technique. Assuming that each signature takes a constant storage size (e.g., 512 bits), the total

communication overhead between the data owner and the service provider (i.e., the cost of sending
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the signature mesh) is also subject to O(n2) in the worst case, which is rare. The actual cost is

determined by the number of intersections of functions in the database.

4.5.2.2 Server Overhead

For the server, there is a one-time cost in receiving the original database and corresponding

signature mesh from the data owner. After that, the main cost is constructing verification objects

and sending them to clients. There are different ways to find the signatures corresponding to

the subspace that containing the client-specified input value. Assuming binary search is used in

traversing the space partitioning tree, we have the average cost of constructing V O(q) as O(l logm2)

where m is the number of intersections and l the number of records in R(q) that needs to be returned

to the client.

4.5.2.3 Client Overhead

Each client needs to retrieve the public key from the data owner. This one-time cost is minimal.

There two main overheads, the communication cost of receiving R(q) and V O(q) from the server,

and the computation cost in the verification process. Apparently, the size of the V O(q) grows

linear w.r.t. the size of R(q), since each signature is of constant length. In verifying V O(q), the

client needs to match the digest received from the server and the digest computed by himself using

the records in R(q), and also check the validity of signatures for each pair of contiguous records

included in R(q). In the worst case, a signature could be valid in O(d) disconnected subspaces, and

the client need to go through all these subspaces to decide if the signature is valid for the query.

Let l be the number of records the client received, the process of verifying signatures will then cost

O(ld) time. Additionally, the client also needs to check the boundary conditions by computing up

to four polynomials with k-variables and d-degrees. This can also be done in O(kd) and the actual

cost is negligible in practice. Therefore, the total computation overhead on the client can been seen

as linear to the size of query result.



61

4.6 Performance Evaluation

We study the performance of the proposed techniques through security and overhead analysis,

simulation and empirical evaluation on real world data. Since there is no existing work on function

query authentication, the purpose of our simulation and empirical evaluation is to demonstrate the

feasibility of the proposed signature mesh.

4.6.1 Security Analysis

We prove that the proposed technique can achieve our security goal for range queries as follows.

We will consider only the case of range FQ. The analysis for top-k and kNN queries are similar

and we will not discuss them separately for space constraint. Let R(q) = {ra, ra+1, · · · , rb} be the

query result for q = (X, l, u), ra−1 and rb+1 the two boundary records. We first discuss the two

cases when R(q) is not complete:

Case 1: At lease one boundary record is forged. There are two ways for the adversary to

do so. One is to create a fake record r′a−1 containing a function f ′a−1(·), where f ′a−1(X) < l. The

adversary then inserts the fake record somewhere between ra and rb, and return R(q) = {ri, · · · , rb}

with forged r′a−1 and rb+1. Here ri can be any record between ra and rb, and all the records from

ra to ri−1 are removed from R(q). In order for the user to accept the manipulated query result, the

adversary must forge a signature Sig(ra−1|ri) using the digest of the fake boundary record. This

is computationally infeasible without knowing the private key of the data owner. The other way

to forge a boundary record is to report a record ri in R(q), where a ≤ i ≤ b, as a boundary record.

The user will detect this flaw when checking the value of fi(X) during the verification process. It

will discover that l ≤ fi(X) ≤ u and know that this is not a boundary record.

Case 2: Two records are not contiguous in the sorted list of the original database but is

contiguous in R(q). This happens when the adversary removes some record from R(q). Suppose

some record ri (a ≤ i ≤ b) does not appear in R(q). To avoid being detected, the adversary needs

to replace two original contiguous signatures, Sig(ri−1|ri) and Sig(ri|ri+1) with a forged signature,
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Sig(ri−1|ri+1). Again this is computationally infeasible without knowing the data owner’s private

key.

There are also two cases when R(q) is not sound:

Case 1: Some record ri in R(q) is forged. This will be detected when a user verifies Sig(ri|ri+1)

or Sig(ri|ri+1), the two signatures created with ri and its immediate neighbours. The mechanisms

used in signature creation basically make it computationally infeasible for one to create a false

record without being detected.

Case 2: Some record ri in R(q) exists in the original database, but does not satisfy the query

condition. The adversary can include such records into the query result by either reporting fake

boundary records or inserting some records between two records that are contiguous in the original

query result. Both of them are proved infeasible in the completeness cases.

4.6.2 Overhead Analysis

We now analyze the overhead introduced by the proposed technique on the data owner, the

server, and the user side, respectively.

4.6.2.1 Data Owner Overhead

There are two costs for the data owner, computation cost incurred in constructing the signature

mesh and communication cost in sending the mesh to the server. The key factor is the size of the

signature mesh. In the next, we first analyze the total number of signatures that need to be created

in the worst case.

Suppose there are n functions and each function has up to k variables with degree up to d. The

total number of intersections of these functions is bounded by O(n2). Since these intersections are

of order up to d, they can partition the k-dimension domain space of the functions into O(n2d)

subspaces. Recall that our techniques do not create a signature for each distinct subspace. Instead,

only one signature Sig(rj |rj+1) is created for all subspaces where the two functions are adjacent

and do not change their order in the sorted list. As such, for each pair of functions fi(·) and
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fj(·), at most two signatures will be created: Sig(ri|rj) and Sig(rj |ri). Even in the worst case

where every two functions intersect with each other at certain point in the domain space, we

will create at most 2 ∗ Cn+2
2 signatures. The size of the final signature mesh can be written as

O(Cn+2
2 ) = O((n + 2)!/2n!) , which is bounded by O(n2) and much smaller than O(n2d). This

result indicates that the upper bound of the overhead is a polynomial of the number of functions,

regardless of the degree of functions and the number of variables. Note that this is the worst case,

where the domain space is partitioned to the maximal possible number of subspaces by a set of

functions, which is rare in real applications. The expected performance of the proposed technique

in real application could be better than the worst case due to the limited function domain. This is

supported by the simulation results and empirical study in the following sections.

To efficiently find all intersections of a set of n polynomial functions, methods such as the Plane

Sweep algorithm Nievergelt and Preparata (1982) can be used, which takes O((n+m) log n) wherem

is the actual number of intersections. After finding intersections, the data owner needs to partition

the domain space into subspaces using these intersection surfaces. Constructing the aforementioned

space partitioning tree requires O(m2). Assuming the computation cost of calculating a digital

signature and computing a digest function is constant, we have the worst case computation cost of

constructing the signature mesh being bounded by O((n+m) log n+m2). This is a one-time cost

for a data owner to prepare a database to be outsourced.

Since each data record consists of at most kd + 1 coefficients( it may have some other non-

coefficient attributes such as an id), the communication cost of sending the database to the server

is O(kdn). This is a fixed cost when outsourcing the database, with or without any authentication

technique. Assuming that each signature takes a constant storage size (e.g., 512 bits), the total

communication overhead between the data owner and the service provider (i.e., the cost of sending

the signature mesh) is also subject to O(n2) in the worst case, which is rare. The actual cost is

determined by the number of intersections of functions in the database.
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4.6.2.2 Server Overhead

For the server, there is a one-time cost in receiving the original database and corresponding

signature mesh from the data owner. After that, the main cost is constructing verification objects

and sending them to users. There are different ways to find the signatures corresponding to the

subspace that containing the user-specified input value. Assuming binary search is used in traversing

the space partitioning tree, we have the average cost of constructing V O(q) as O(l logm2) where

m is the number of intersections and l the number of records in R(q) that needs to be returned to

the user.

4.6.2.3 User Overhead

Each user needs to retrieve the public key from the data owner. This one-time cost is minimal.

There two main overheads, the communication cost of receiving R(q) and V O(q) from the server,

and the computation cost in the verification process. Apparently, the size of the V O(q) grows

linear w.r.t. the size of R(q), since each signature is of constant length. In verifying V O(q), the

client needs to match the digest received from the server and the digest computed by himself using

the records in R(q), and also check the validity of signatures for each pair of contiguous records

included in R(q). In the worst case, a signature could be valid in O(d) disconnected subspaces, and

the client need to go through all these subspaces to decide if the signature is valid for the query.

Let l be the number of records the client received, the process of verifying signatures will then cost

O(ld) time. Additionally, the client also needs to check the boundary conditions by computing up

to four polynomials with k-variables and d-degrees. This can also be done in O(kd) and the actual

cost is negligible in practice. Therefore, the total computation overhead on the client can been seen

as linear to the size of query result.

4.6.3 Simulation

We have implemented a detailed simulator that allows us to evaluate the performance of the

proposed technique in various aspects. Our simulator incorporates a data generator that can be
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configured to generate various kinds of polynomial function randomly. The input to this generator

includes the number of functions n, the maximum number of variables k, and the maximum number

of degree d. When generating the functions, we assign a unique ID and using random real numbers

as its coefficients. The domain of each function is set to [−X,X]k where X is a random integer no

greater than 10. Such a domain is large enough for all the applications mentioned in introduction.

Given the values of k and d, the actual numbers of variables in each multivariate function and

degree in each high degree polynomial function is generated to follow a normal distribution with

standard deviation of k/2 and d/2, respectively, and which are rounded to the nearest integer. We

use SHA-1 for digest function and RSA (256 bits) for digital signature. More detailed settings of

our simulation are given in table 4.1. We are interested in three performance metrics, including

the one-time data owner overhead, server overhead per query, and client overhead per query. Our

simulation platform is a Windows server with Intel Xeon 64-bit 8-core CPU running on 2.93GHz

and 32GB RAM. In the following subsections, we report and explain the performance results in the

following subsections.

Table 4.1: Experiment Settings

Parameter Range Default

Number of data records 10,000 - 100,000 50,000

Average number of variables 1 - 5 3

Average degree of variables 1 - 5 3

Size of query result 0 - 500 250

4.6.3.1 Data Owner Overhead

We first study the effect of the number of functions on the size of signature mesh. We adjust the

number of functions from 10,000 to 100,000 while using the default value for the other parameters.

The actual size of the constructed signature mesh is showed in Figure 4.6, which reflects the one-

time communication overhead between the data owner and the server. The size in general grows

linearly with the number of functions in our experiments. This can be explained by the fact that in
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a limited domain range, it is not likely that every pair of functions will intersect, thus the number

of signatures needed and the number of subspaces partitioned increases much slower than in the

worst case.

Figure 4.6: Communication overhead of signature mesh

The one-time computation cost of constructing the signature mesh is evaluated with respect

to the number of data records, the average number of variables, and the average degree of each

variable. The simulation result, in terms of CPU time (of the data owner), is showed in Figure 4.7.

The construction time is not sensitive to the number of variables for multivariate functions, or the

number of degrees. The number of functions has relatively stronger effect on the construction time

for all the three types of polynomials in general. The result is not surprising, as we have known

through the analysis. Nevertheless, since the construction and transmission of the signature mesh

occur only once when the database is outsourced, it is just a one-time cost and will not adversely

impact the performance of the proposed technique in a long term.

4.6.3.2 Server Overhead

Once the signature mesh is constructed and database outsourced, the major overhead of the

authentication process is the communication and computation cost of generating and sending the

verification object. We adjust the number of records returned to the user (size of R(q) ) from 0 to
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(a) (b) (c)

Figure 4.7: Computation cost of constructing signature mesh

(a) (b) (c)

Figure 4.8: Communication and computation cost of constructing verification object

(a) (b) (c)

Figure 4.9: Computation cost of the verification process
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(a) (b) (c)

Figure 4.10: Performance on Gowalla dataset

1000 and report the corresponding size of V O(q). Note that even when 0 records satisfies the query

condition, a VO still need to be return to the use as proof. The simulation result in Figure 4.8

(a) illustrates that the size of V O(q) increases linearly to the size of R(q) as expected. Note that

the actual size of V O(q) in real applications also depends on what digest function/size of digital

signature is used.

The computation cost of generating V O(q) is determined by the size of query result R(q) as well

as the size of the signature mesh, which is mainly impacted by the total number of data records as

showed in the above simulations. We adjust these two parameters same as before. Figure 4.8-(b)

and (c) shows the average time cost of constructing V O(q) for 100 function queries with random

inputs/query conditions. The figure confirms that the time of constructing V O(q) grows linearly to

the size of R(q), but is less sensitive to the number of data records. This is due to the fact that the

space partitioning tree we use for subspace indexing prevents the server from having to perform a

linear search through all the subspaces.

4.6.3.3 Client Overhead

We now evaluate the computation cost incurred during the verification process in terms of the

following three factors: the size of query result R(q), the average number of variables, and the

average degree of variables. The results are showed in Figure 4.9. Our analysis indicates that the

number of variables and degree has little impact on the verification time, since our technique needs
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to verify only the boundary records. This is confirmed in this study. In general, the cost is linear

to the size of R(q) since the main cost of verification process comes from verifying the signature of

each two contiguous records. Nevertheless, the absolute cost of verification is very small as showed

in the figures since computing simple polynomial functions and verifying digital signatures can all

be performed efficiently( especially on multi-core CPU platforms, since the data dependency is very

low in these tasks).

4.6.4 Empirical Study

We use the Gowalla moving object dataset (Cho et al. (2011)) to evaluate performance of our

technique in real world applications. The dataset contains 196,591 locations where each location

represents a Point of Interest (POI) that a mobile client has checked-in. To demonstrate the

capability of the proposed technique, we treat each record ri as a distance function di(x, y) =

(xi − x)2 + (yi − y)2 where (xi, yi) is the coordinate of ri. The function computes the (square

of) distance between the POI and a user-specified location (x, y). The input domain is set to

x ∈ [53, 54] and y ∈ [−3,−2] which formulates a rectangle area that covers all the POIs. These

functions are then outsourced to a server along with the authentication structure.

We issue function queries over the distance functions using randomly selected query point to find

the POIs among the K nearest neighbour of the query point, which is a realistic example of function

query authentication. We adjust the size of query result and study its impact on computation cost

on server and client side, and the communication overhead in terms of VO size. For each test point

the average cost of 100 queries is reported and the results is plotted in Figure 4.10. In general, the

authentication overhead grows linearly with respect to the number of records returned to users as

expected. In other words, the cost per record is basically a constant since each pair of contiguous

records in the query result is accompanied by a digital signature.
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4.7 Summary of the Chapter

We consider the problem of outsourcing a database where each record is interpreted as a math-

ematical function. A third party manages this database and answers function queries over the

functions. A function query retrieves the set of functions whose outputs with user-supplied func-

tion input satisfy certain query condition (e.g., being the top-k). We are interested in providing

a mechanism that allows users to verify if the query results they receive are sound and complete.

The challenge of enabling such verification comes from the fact that the input to the functions is

known only when a query is issued, so the data owner cannot pre-compute the function outputs

and then apply existing techniques to build a MH-tree or a signature chain on top of these outputs

for authentication.

Two functions have the same output when they intersect. So for any input within a domain

where they do not intersect, the output of one function is always no less than that of the other

function. In light of this, we develop a three-step general solution for efficient verification of function

query results: 1) Partition the input domain into a number of subdomains which are defined by

the intersections of the functions; 2) Sort the functions based on their outputs in each of the

subdomains; 3) Create a signature chain for each sorted function list. We show that this general

solution works for various types of function queries over different kinds of functions, including

univariate linear function, multivariate linear function, and multivariate high degree function. We

prove that without knowing the data owner’s private key, it is computationally infeasible for an

adversary to forge a query result without being detected. Our extensive performance evaluation

shows the proposed techniques are practical and can be used in real-world applications.
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CHAPTER 5. IMPROVEMENT QUERIES

5.1 Motivation

As an analytic query, top-k query is often used in applications like e-commerce for users to find

objects (e.g., products) that best match their preference. Here a user’s preference is computed by a

utility function that gives a “score” for each object, and a top-k query retrieves the k objects with

the highest scores. When an object appears in a query result, we say the object hits the query.

Given a set of objects and a set of top-k queries, adjusting an object’s attribute values could result

in changing the number of queries it hits. We refer to such an adjustment as an improvement

strategy. Our research is interested in finding the improvement strategies for objects of interest

under some cost constraints. We consider two variations of Improvement Query (IQ):

• Min-Cost IQ: Given a cost function, this type of IQ finds the most cost-efficient improve-

ment strategy for an object to hit a given minimum number of top-k queries. Here a cost

function is defined by the query issuer to measure the cost of adjusting attribute values of

objects. The idea of modeling costs as math functions is a common approach (Viner (1932);

Binger et al. (1998)). We allow query issuers to define their own cost functions.

• Max-Hit IQ: Given a cost function and a budget, this type of IQ returns the improvement

strategy for an object to hit the maximal number of top-k queries under the condition that

the total cost does not exceed the budget.

The problem of finding improvement strategies arises from a variety of applications. For ex-

ample, a camera manufacturer may want to improve its product for more market shares. Here an

improvement is a change of the product’s features such as camera’s resolution and price. Likewise,

in a presidential election, it is imperative for the candidates to evaluate their campaign strategies

from time to time, and adjust if needed, in order to appeal themselves to more voters. In these
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examples, there are a set of objects (e.g., products, presidential candidates) and a set of top-k

queries, each representing the preference of a user (e.g., customer, voter), and we want to improve

one or more objects (called targets) to hit as many queries as possible. Existing queries such as

reverse top-k query (Vlachou et al. (2011)), maximal rank query (Mouratidis et al. (2015)), and

reverse k-ranks query (Zhang et al. (2014b)) have been developed to provide information concerning

an object’s competitiveness in top-k selection. These queries, however, do not allow one to identify

an improvement strategy, the focus of this chapter.

The problem of processing IQs can be formulated as constrained optimization problems and

we prove it is NP-hard. As such, finding accurate query results is computation intensive even

for moderate size datasets. We address this problem by proposing a suite of heuristic algorithms.

At the core of the proposed algorithms is a novel indexing technique. In function queries, each

object is interpreted as a function and a top-k query is treated as an input to these functions. The

intersection of two functions formulates a hyperplane in their domain. Given a set of functions,

their intersection hyperplanes partition the domain into a number of subdomains. We observe that

the rank of an object must be the same for all queries that fall in one subdomain. As such, applying

an improvement strategy to an object will cause the boundary of some subdomains to change, but

it will affect the result of a top-k query only if the query falls into a different subdomain. This

observation allows us to develop a highly efficient algorithm for IQ processing. We summarize our

main contributions as follows:

• To our knowledge, this is the first to study the problem of object improvement, defined as

adjusting the attribute values of the objects of interest. We prove the inherent intractability

of the minimal cost/maximal hit improvement strategy searching problem.

• We propose the notion of Improvement Query (IQ), which supplements the existing top-

k query with the key information needed to develop effective improvement strategies. We

propose two types of IQs: Min-Cost IQ and Max-Hit IQ. Given a user-defined cost function,

the former IQ finds the most cost-efficient improvement strategy that achieves desired number

of hits, while the latter one finds the improvement strategy that hits the maximal number of
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top-k queries with a given budget. We design efficient IQ processing algorithms based on a

novel query indexing technique and an important observation.

• We implement the proposed techniques as an analytic tool and integrate it with the Database

Management System (DBMS). The tool is thoroughly evaluated over synthetic and real-world

data. The results show that our techniques demonstrate good performance, and the tool is

scalable for large-scale users and objects.

5.2 Problem Formulation

5.2.1 Definitions

Consider a dataset D with n objects. Each object pi is a point in the d-dimensional space,

where each dimension represents a numerical attribute of the object. We use p
(j)
i to denote its

j-th dimension’s value. Each dimension can be continuous or discrete, finite or infinite. Let

Q = {q1, q2, ..., qm} denote a set of m top-k queries. Each query qi (1 ≤ i ≤ m) specifies a k value

(i.e., the number of object to return) and a utility function which computes a score for each object.

Together they represent a user’s preference. The number of top-k queries hit by pi is denoted by

H(pi). We define improvement strategy as follows:

Definition 1 (Improvement Strategy) An improvement strategy s for an object pi is a d-

dimensional vector s = {s1, s2, ..., sd}, where si ∈ R specifies how the i-th attribute is to be adjusted,

i.e., applying s to pi will replace pi with a new object p′i, where p
′(j)
i = p

(j)
i + sj (1 ≤ j ≤ d).

To illustrate, consider a camera dataset showed in Figure 5.1. Each camera has three discrete

attributes resolution, storage, and price. Together they determine the camera’s rank for a given

top-k query. Let s = {5, 2,−50} be an improvement strategy. Applying s on a camera means to

increase the camera’s resolution by 5 Megapixel, increase its storage by 2 GB, and decrease its price

by $50. For example, applying s on camera p1 will result in a new object p′1 = {15, 4, 200}. Note

that after the improvement, p′1’s rank becomes higher than that of p2 for both queries q1 and q2.
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Cameras

ID resolution (Megapixel) storage (GB) price ($)

p1 10 2 250

p2 12 4 340

· · · · · · · · · · · ·

⇓ Applying s = {5, 2,−50} to p1

ID resolution (Megapixel) storage (GB) price ($)

p′1 15 4 200

p2 12 4 340

· · · · · · · · · · · ·

Top-k queries represent users’ preference for camera

ID Utility function top-k

q1 5.0*resolution + 3.5*storage - 0.05*price k = 1

q2 2.5*resolution + 7.0*storage - 0.08*price k = 1

· · · · · · · · ·

Figure 5.1: Example of improvement strategy for cameras

For ease of presentation, we will simply use p′i = pi + s to denote the improved object p′i that

is derived by applying s on pi. An improvement strategy aims to make a target object appear in

more query results. Given an improvement strategy s, we measure its effectiveness in improving

object pi as the number of top-k queries hit by p′i = pi +s, denoted by H(p′i). A larger H(p′i) means

more effective that s is in improving pi.

Improving an object requires resources such as time and money. We let the query issuer specify

such resource requirements using a cost function Costpi(s), which computes the cost of applying

strategy s to object pi. There is rich literature on how to model product costs using math functions

and interested readers are referred to (Viner (1932); Binger et al. (1998); Anderson (2009)) for

details. Here we simply assume the cost functions are provided by the query issuer. Our research

is aimed at finding two kinds of improvement strategies:
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Definition 2 (Min-Cost Improvement Strategy) Given an improvement goal that is to hit at

least τ ∈ I queries, an improvement strategy s for pi is a minimal cost improvement strategy

w.r.t. some cost function Costpi if H(pi + s) ≥ τ and Costpi(s) is minimized.

Definition 3 (Max-Hit Improvement Strategy) Given a budget β ∈ R, an improvement strat-

egy s for pi is a maximal hit improvement strategy w.r.t. some cost function Costpi if

Costpi(s) ≤ β and H(pi + s) is maximized.

Accordingly, we define two types of Improvement Queries (IQs). A Min-cost IQ let user query

minimal cost improvement strategies for selected objects. Similarly, a Max-Hit IQ returns the

maximal hit improvement strategies. We will show later in Chapter 5.3 that searching for the two

types of improvement strategies are NP-Hard even for one target object, and the problem becomes

more complex when trying to improving multiple target objects. As such, our goal is to develop

highly efficient heuristic algorithms.

5.2.2 Basic Idea

In the proposed function query, each object is interpreted as a function and each top-k query

is treated as a function input. This is different from existing top-k queries where queries are

considered as utility functions and objects as their input. We show that by interpreting objects as

functions, the cost of processing IQs can be significantly reduced. To make it easy to follow,w e

use the most common linear utility functions (e.g., Chaudhuri and Gravano (1999); Chang et al.

(2000); Hristidis et al. (2001); Zou and Chen (2008)) as an example.

For linear utility functions, each query qi ∈ Q is a d-dimensional vector qi = {q(1)i , q
(2)
i , ..., q

(d)
i }

that assigns a weight to each attribute of an object and computes the weighted sum. For simplicity,

we use the same assumption as existing works that all queries are normalized, i.e., q
(j)
i ∈ [0, 1] for

any dimension j. In our solution, we treat each object pi as a linear function fi, where p
(j)
i is the

j-th coefficient. It takes a query q as input and computes the ranking score of pi:

fi(q) =
∑d

j=1 q
(j)p

(j)
i (5.1)
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Note that the ranking score is the same as the weighted sum. The difference is that a query is now

treated as a function parameter while the object attribute values are treated as function coefficients.

As such, the set of objects D is interpreted as a set of functions D = {f1, f2, ..., fn}. When causing

no ambiguity, we will use pi and fi interchangeably to refer to the same object. To evaluate a top-k

query q, we compute f1(q), f2(q), ..., fn(q) and select the k functions with lowest output values.

The intersection of two functions fi and fj creates a hyperplane in the d-dimensional domain

space. The intersection partitions the domain into two subdomains, namely above and below. For

any input q falls in the above subdomain, we have fi(q) ≥ fj(q), and for any input q in the below

subdomain, we have fi(q) < fj(q). The intersections of all functions partition the domain space D

into a number of subdomains, and the functions can be strictly sorted in each of these subdomains.

That is, if there exists a query point q in a subdomain such that fi(q) > fj(q) (or fi(q) < fj(q)),

then for any other query point p in the same subdomain, we have fi(p) > fj(p) (or fi(p) < fj(p)).

As a result, the rank of a function fi remains the same for any two queries qx and qy as long as

they fall in the same subdomain.

Applying an improvement strategy s to pi will cause the intersections involving fi to tilt towards

some direction determined by s. The boundaries of some subdomains will also move. As showed

in Figure 5.2, it may cause some query points to move to a different subdomain (e.g., move from

above to below some intersections). We have two important conclusions.

Fact 1 An improvement strategy s affects the result of a query q if and only if q is moved to a

different subdomain after applying s to pi. Thus, if no query point is moved to a different subdomain,

we have H(pi + s) = H(pi).

Fact 2 The rank of two functions fi and fj must be switched in the ranking result of some query

q, if and only if q is moved from above (or below) to below (or above) of the intersection of fi and

fj.

The proofs of the two conclusions are straightforward and we refer readers to De Berg et al.

(2000); Preparata and Shamos (2012) for proof details. These facts suggest an efficient way to
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q3, q4 [f1, f2] [f2, f1]

q5 [f2, f1] [f2, f1]

Figure 5.2: An improvement strategy affects subdomain boundaries and query results

evaluate a given improvement strategy s. First, we apply s to pi and find all the query points that

are moved to a different subdomain. Then, for each query point found, check if pi appears in its

result and update H(pi+s) accordingly. The challenge now is, how to efficiently determine (without

traverse all query points or subdomains) which query points are moved to which subdomains before

and after applying an improvement strategy, and then compute their results.

5.3 Proposed Solution

We first introduce an Efficient Strategy Evaluation (ESE), which group query points by sub-

domains and index them using multidimensional data structures such as R-tree (Guttman (1984))

or X-tree (Berchtold et al. (2001)). We will then discuss how to use ESE as a building block for

efficiently processing of IQs. Here we consider only one target object with linear utility functions.

Nevertheless, our techniques allow users to select multiple objects as targets, use different cost func-
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tions for each object, and query improvement strategies with non-linear utility functions, which we

will discuss later in Chapter 5.4.

5.3.1 Efficient Strategy Evaluation (ESE)

Given an improvement strategy s for pi, we need to compute its effectiveness in improving pi,

i.e., counting the number of top-k queries that include p′i = pi + s in their result. For this purpose,

existing solutions such as Reverse top-k Threshold Algorithm (RTA) (Vlachou et al. (2011)) can be

used. These schemes, however, support only linear utility functions. In particular, they are less

efficient when a less number of queries include the object in their result. When H(pi + s) increases,

their performance will drop significantly. Here we present an approach that works better for our

purpose.

Given the intersection of two functions fi and fl:

∑d
j=1 q

(j)(p
(j)
i − p

(j)
l ) = 0 (5.2)

Equation 5.3 represents the new intersection hyperplane after some improvement strategy s is

applied to pi.

∑d
j=1 q

(j)(p
(j)
i + sj − p(j)l ) = 0 (5.3)

The area bounded between the old and new intersection hyperplanes represented by Equation 5.2

and 5.3 formulates a subspace (e.g., the shadow area showed in Figure 5.2) inside the function

domain space. We define this subspace as the affected subspace of s. It contains all the query

points whose result are affected by applying s to pi. To efficiently retrieve and evaluate such

queries, we group all queries by their subdomains and index them with an R-tree.

Group query points by subdomain: Subdomains are partitioned using intersection hyper-

planes of functions in D. Thus we need first to find the intersections created by the functions. This

can be efficiently done using intersection discovery algorithms such as the plane sweeping algo-

rithm (Nievergelt and Preparata (1982)). We then partition the function domain into subdomains

gradually, by considering function intersections one at a time.
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Algorithm 7 FindSubdomains(I,Q)

1: d← newSubdomain()

2: Subdomains.add(d)

3: for all q ∈ Q do

4: q.subdomain← d

5: end for

6: for all Ii ∈ I do

7: for all Subdomain d ∈ Subdomains such that d overlaps Ii do

8: dabove ← newSubdomain()

9: dabove.boundaries.add(Ii, above)

10: dbelow ← newSubdomain()

11: dbelow.boundaries.add(Ii, below)

12: for all q falls in d do

13: if q falls above Ii then

14: q.subdomain← dabove
15: else

16: q.subdomain← dbelow
17: end if

18: end for

19: if dabove contains query then

20: Subdomains.add(dabove)

21: end if

22: if dbelow contains query then

23: Subdomains.add(dbelow)

24: end if

25: end for

26: end for

27: Return Subdomains
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Let I = {I1, I2, ..., Im} be the set of all function intersections. An intersection hyperplane Ii

partitions the domain space into two subdomains: subdomain above and subdomain below the

intersection. As such, it also partitions the query points Q into two groups, above and below. Note

that queries fall on the intersection hyperplane can be treated as above it with no affect on the

proposed algorithm. Whether a query point q falls above or below Ii is checked as follows. Let Ii be

the intersection of some functions fa and fb. A query q falls above Ii if and only if fa(q)−fb(q) ≤ 0.

Otherwise q is below Ii. These two groups of queries can then be further partitioned by considering

another intersection. We repeat this binary space partitioning process until no group can be further

partitioned. At the end, for each query, we add an attribute Subdomain that contains a unique

subdomain ID, recording the subdomain that contains the query point. If all query points in a

sub-tree have the same Subdomain value, then we can mark this on the root-node of the sub-tree,

instead of storing the same information for each query point. Note that we can also find which

intersection serves as a boundary of a subdomain during this process. Finally, to save space, all

the subdomains that contain no query point are simply discarded. A more formal description of

this process is given in Algorithm 7.

Once the index is in place, computing H(pi + s) is straightforward. We only need to evaluate

(or re-evaluate, if it is already evaluated) all queries falling in the affected subspaces. To check

whether a query point q falls in the affected subspace, it is not necessary to solve the system of

Equation 5.2 and 5.3. It is determined by two boundary conditions:

∑d
j=1 q

(j)(p
(j)
i − p

(j)
l ) ≥ 0 (5.4)∑d

j=1 q
(j)(p

(j)
i + sj − p(j)l ) < 0 (5.5)

which is equivalent to a range query over the R-tree index, where the query range is the affected

subspace (ruled by the boundaries of the function domain, if any). However, evaluating queries in

the affected subspace may still be expensive if the affected subspace is large. Here we propose two

methods to avoid complete re-evaluation of any query.

First, by Fact 2, if q falls in the affected subspace after s is applied, the new ranking result of q

can be generated by simply switching the rank of fi and fl in the original ranking result. If q is not
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in the affected subspace, its result must remain the same. Additionally, if fl was not in the top-k

result of q, it indicates that after applying the improvement strategy, fi cannot be in the top-k of

the q because it only switches order with fl. As such, we can rapidly eliminate unaffected queries.

Second, all query points fall in the same subdomain share exactly the same ranking result. Thus

at most one query needs to be evaluated per subdomain. Recall that we have already grouped query

points by their subdomains in the indexing step, and marked for each query which subdomain

contains it. Let TP (pi) ⊆ Q denote the set of queries hit by pi. The pseudocode of this ESE

approach is given in Algorithm 8.

Algorithm 8 EfficientStrategyEvaluation(pi, s)

1: H(pi + s)← |TP (pi)|
2: for all fl ∈ D intersects fi and fl 6= fi do

3: Find the affected subspace

4: for all q falls in the affected subspace do

5: if q is not evaluated then

6: evaluate q

7: end if

8: Switch the rank of fi and fl;

9: for all qj falls in the same subdomain as q do

10: if qj /∈ TP (pi) and qj ∈ TP (pi + s) then

11: H(pi + v) + +;

12: else if qj ∈ TP (pi) and qj /∈ TP (pi + s) then

13: H(pi + v)−−;

14: end if

15: end for

16: end for

17: end for

18: Return H(pi + s)

We first find all the affected subspace(s) for the given strategy s. This is done by checking all

function intersections involving fi among the intersections found in the indexing stage. For each

query point that falls in an affected subspace of s, we check its query result. If the query has not

been evaluated yet, then evaluate it and cache the result for future use (note that at most one query

result needs to be cached per subdomain). Otherwise, use the aforementioned function-switching

method to rapidly generate its result. For each subdomain, only one query needs to be evaluated,
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and the result can be shared for all other queries. In ESE, each top-k query needs to be evaluated

for at most once, and the result of a large proportion of queries can be generated by re-using the

result of their nearby queries, given that they fall in the same subdomain.

5.3.2 Improvement Strategy Searching

5.3.2.1 Min-Cost Improvement Strategy

Let pi be the object to be improved. Given an improvement strategy s, we have the improved

object p′i = pi + s. We use pj,k to denote the k-th ranked object of query qj . In order for p′i to be

in the result of qj , the following condition must hold:

f ′i(qj) < fj,k(qj) (5.6)

That is, the ranking score of p′i must be less than that of qj,k. Here fj,k is pj,k’s corresponding

function and f ′i that of p′i. We have variable xj = 1 if p′i appears in the result of qj and xj = 0

otherwise. For the min-cost improvement strategy, the goal is to minimize the cost under the

condition that p′i can hit at least τ queries. This problem can be formulated as a constrained

optimization problem:

minimize Costpi(s) (5.7)

subject to

m∑
j=1

xj ≥ τ (5.8)

f ′i(qj) < fj,k(qj) + (1− xj)C ∀j ∈ [1,m] (5.9)

xj ∈ {0, 1} ∀j ∈ [1,m] (5.10)

where C denotes a very large number that exceeds the highest score of all objects. Constraint 5.8

guarantees that the improved object hits at least τ queries, while Constraint 5.9 ensures that

Equation 5.6 is satisfied for each hit query. Note that the improvement strategy must also be

Valid. That is, all attribute values of the improved object must not exceed the allowed range. For

simplicity, here we assume pi is defined on Rd, thus the trivial condition pi + s ∈ Rd is omitted

in the above formulation. Nevertheless, in the case where this certain limitation on the value of
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the i-th attribute, additional constraints on si can be added to reflect such requirements for valid

improvement strategies. For example, if the user does not allow value of the i-th attribute of the

target object to be adjusted at all, we can simply add a constraint si = 0.

The formulated problem is an integer linear programming problem (Wolsey and Nemhauser

(2014)), which has been studied extensively and no efficient algorithm is known. The problem of

searching for the min-cost improvement strategy actually is NP-hard. We prove it with a reduction

from the Minimal Set Cover problem, which is known to be NP-hard.

Definition 4 (Minimal Set Cover) Given a set U = {u1, u2, ..., un} and S = {S1, S2, ..., Sm}

where Si ⊆ U . Find the minimal number of subsets in S whose union is U .

Reduction from Minimal Set Cover to Min-cost Improvement Strategy: An instance of

minimal set cover problem can be converted to an instance of the min-cost improvement strategy

problem as follows: Create a top-1 query qi for each element ui ∈ U with utility function:

ui(p) = wi1 ∗ p(1) + wi2 ∗ p(1) + ...+ wim ∗ p(m) (5.11)

and set weight wij to 1 if ui ∈ Sj , and wij = 0 if otherwise. Suppose the objects are ranked by

their utility scores in non-increasing order. Create two m-dimensional objects p0 and p1, such that

all attributes of p0 are set to 0 and all attributes of p1 are set to 1/(m+ 1). Therefore H(p0) = 0

and H(p1) = n. The goal is to improve p0 such that H(p0) = τ = n. We impose a simple linear

cost function:

Costp0(s) = s1 + s2 + ...+ sm (5.12)

such that the cost of adjusting any attribute of p1 is equally expensive. Additionally, each attribute

of p0 is discrete and can only be 0 or 1. Note that covering an element ui ∈ U is equivalent to hitting

query qi with p0. In order to do so, an improvement strategy must adjust at least one attribute

p(j) of p from 0 to 1 where wij = 1, which indicates that subset Sj should be selected to cover

ui. The total improvement cost is equal to the number of selected subsets. As such, a min-cost
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improvement strategy for the converted instance can be translated into a minimal set cover for the

original instance.�

We now propose a heuristic algorithm (Algorithm 9) which leverages the proposed ESE algo-

rithm to search for the sub-optimal strategy. The algorithm consists of multiple iterations. In each

iteration, it first computes for each query qj ∈ Q, a strategy sj such that p′i = pi + sj can hit it

with the minimal cost. This step generates a set of S of candidate improvement strategies. Then we

apply to pi the strategy s ∈ S with the minimal cost per hit query Costp′i(s)/H(p′i+s). Repeat this

process until p′i hits at least τ queries. In each iteration, we call the ESE algorithm as a subroutine

to compute H(p′i + sj).

Algorithm 9 MinCostIQ(pi, τ, Costpi)

1: p′i ← pi
2: while H(p′i) < τ do

3: S ← ∅
4: for each query qj ∈ Q and /∈ TP (p′i) do

5: sj ← arg minCostp′i(s) such that qj ∈ TP (p′i + s)

6: Compute H(p′i + sj)

7: S.add(sj)

8: end for

9: Find s ∈ S with minimal Costp′i(s)/H(p′i + s)

10: if H(p′i + s) ≤ τ then

11: p′i = p′i + s

12: else

13: Return s ∈ S with minimal Costp′i(s) and H(p′i + s) ≥ τ
14: end if

15: end while

16: Return s = p′i − pi

Note that the algorithm requires to find the minimal cost strategy sj that hits a query qj . It

formulates a single-constraint optimization problem:

minimize Costpi(s) (5.13)

subject to f ′i(qj) < fj,k(qj) (5.14)
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which can be efficiently solved using standard math tools like the ones discussed in (Khachiyan

(1980)). Note that the cost of sj is equivalent to the minimal distance between any intersection

hyperplane of fi and the query point q, where the distance is measured by the cost function.

The proposed algorithm can be considered a greedy one, since it always selects the improvement

strategy with maximal efficiency-cost ratio at each step. The rational behind the algorithm is

based on the following observation: The average cost per hit query is minimized in a min-cost

improvement strategy, comparing with any other improvement strategies that hit the same number

of queries. The proposed algorithm tries to minimize the average cost per hit query at each iteration.

This greedy method reduces size of the searching space to O(m) per iteration, and the number of

iterations is bounded by τ . In comparison, exhaustive search takes at least O(2m) steps.

Similar to other greedy algorithms, our algorithm may terminate with a local optimum. Nev-

ertheless, our experiment shows the algorithm is efficient enough to answer users’ IQs interactively

(i.e., a user hardly feels waiting time) with a regular desktop computer. Although the cost of the

improvement strategy found may be sub-optimal, it greatly outperforms other methods such as

simple greedy search (i.e., always try to hit the query with the least cost, repeat until hit enough

queries) and random search (i.e., return a randomly generated improvement strategy), which we

will discuss later. To sum up, this algorithm offers a good trade-off between improvement cost and

feasibility.

Processing Min-Cost IQs: To issue a min-cost IQ, the query issuer first defines a cost function

Costpi for the selected target pi and specifies a desired τ . The system then uses Algorithm 9 to find

the improvement strategy that satisfies the desired number of hits. For query issuers who indeed

want the optimal strategy, we also provide them with the option of exhaustively strategy searching,

which uses mathematical optimization tools (Khachiyan (1980)) to solve the above optimization

problem. However, due to the intractability of the problem, this algorithm is only feasible for very

small datasets.
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5.3.2.2 Max-Hit Improvement Strategy

Recall that the goal of maximal hit improvement strategy is to maximize the number of queries

hit by the improved object with the constraint that the total cost does not exceed a given budget

β. Similarly, we formulate the following optimization problem.

maximize H(pi + s) (5.15)

subject to Costpi(s) ≤ β (5.16)

f ′i(qj) < fj,k(qj) + (1− xj)C ∀j ∈ [1,m] (5.17)

xj ∈ {0, 1} ∀j ∈ [1,m] (5.18)

The target function computes the hit number of the improved object, while Constraint 5.16 cor-

responds to the limited budget. The meaning of Constraint 5.17 is the same as the minimal cost

improvement strategy problem. It is easy to see that searching for maximal hit improvement

strategy is also NP-Hard, because the minimal cost improvement strategy problem reduce to it.

Reduction from Min-Cost Improvement Strategy to Max-Hit Improvement Strat-

egy: Let MaxHit (pi, β, Costpi) be a subroutine that finds the maximal hit improvement strategy.

We show how to find the minimal cost improvement strategy for pi with desired hit τ by calling

the subroutine. Let xmax be the cost required to hit all top-k queries, which can be treated as a

constant. The minimal cost that we are looking for must fall in [0, xmax], so we can search for the

minimal cost strategy with a binary searching process. We start by setting β to an initial value x

such that xmax ≥ x ≥ 0, and use the subroutine to find s such that pi + s hit the maximal number

of queries. If H(pi + s) ≥ τ , it means the minimal cost required to hit τ queries is no greater

than x. Thus we refine the searching range by setting β to a new value in [0, x] and repeat the

process. Similarly, if H(pi + s) < τ , it indicates the minimal cost required must be larger than x

and thus we set β to a new value in [x, xmax]. Regardless of the initial value, this binary searching

process can find the minimal cost improvement strategy within log xmax attempts (i.e., by calling

MaxHit(pi, β) for at most log xmax times, which is linear).�
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The above proof demonstrates that the two improvement strategies, namely min-cost and max-

hit, are closely related to each other. The two types of improvement strategies share a similar

characteristic: the cost per hit query is minimized for a max-hit improvement strategy, comparing

with any other improvement strategies with the same cost. As such, we modify the greedy searching

Algorithm 9 to process max-hit IQs. The algorithm uses a similar searching method which looks for

the most cost-efficient improvement strategy in each iteration, and the iterations terminate when

all budget is used, or there is not enough budget to cover more queries.

Algorithm 10 MaxHitIQ(pi, β, Costpi)

1: p′i ← pi
2: s∗ ← 0

3: while Cost(pi)(s∗) < β do

4: S ← ∅
5: for each query qj ∈ Q and /∈ TP (p′i) do

6: sj ← arg minCostp′i(s) such that qj ∈ TP (p′i + s)

7: Compute H(p′i + sj); S.add(sj)

8: end for

9: Find s ∈ S with minimal Costp′i(s)/H(p′i + s)

10: if Cost(pi)(s∗) + Cost(pi)(s) ≤ β then

11: s ∗+ = s

12: else

13: for each s ∈ S, sorted by cost do

14: if Cost(pi)(s∗) + Cost(pi)(s) ≤ β then

15: s ∗+ = s

16: end if

17: end for

18: Break

19: end if

20: end while

21: Return s∗

Processing Max-Hit IQs: A max-hit IQ consists of target object(s), corresponding cost func-

tion(s), and a budget β. The improvement strategy that satisfies the budget constraint is then

returned to the user by Algorithm 10. For convenience, we will refer to Algorithms 9 and 10 to-

gether as the Efficient-IQ algorithm. Similarly, we also provide the exhaustive search option in

our implementation.
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5.3.3 Data updating

Add/Remove a query: When a query point is added to or removed from Q, the R-tree needs

to be updated. Adding or removing an indexed point on R-tree is easy. However, when a new

query point is added, we need to find which subdomain contains it. We can use Algorithm 7 but

only on the newly added query point to find its subdomain. This is usually not necessary. We

observe that, if a new query point q falls closely to a group of other query points which are all in

a subdomain d, then it is very likely that q also falls in d. Fortunately, we can quickly check if q

falls in d by verifying the above/below relations between q and the boundary intersections of d as

in Algorithm 7. Based on this observation, we propose to use the subdomain(s) of the k-Nearest

Neighbour of q as candidate subdomain of q, and use Algorithm 7 only if q is not in any of these

candidates.

Add/Remove an object: Adding or removing an object will cause the boundary of subdomains

to change. Thus, similar to applying an improvement strategy, some query points may move to a

different subdomain. We discuss how to update subdomain of affected queries as follows. When a

new object is added, we first find all the newly created intersections and then rerun Algorithm 7

with these intersections to update the queries. Similarly, when an object is removed, we find all

existing intersections that involve the object, and then locate all subdomains whose boundaries

include one of the involved intersections. Then, if the subdomain is above the intersection, we

merge it with the subdomain that is below it, and vice versa. This is to reflect the fact the once the

object is removed, this intersection no longer exists, and the two subdomains that were separated

by it should be merged as one subdomain. To facilitate this process, we implement a bloom filter

to index the subdomains based on their boundaries, allowing us to quickly check if a subdomain

uses an intersection as its boundary.
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5.4 Extensions

5.4.1 Improving Multiple Target Objects

So far we have considered improving a single object. We now show how to extend our proposed

techniques to enable users to query strategies that improve multiple objects. Here a user wants to

select a set of objects Dt ⊆ D as targets, and query the min-cost improvement strategy such that

the total number of hits of the targets is no less than certain threshold τ , while the total improving

cost is minimized. Each target can be associated to a different cost function, or share the same

one. We assume that if one query is hit by two different target objects in Dt, the query is counted

only once. We consider two Combinatorial Object Improvement problems.

Definition 5 Given a set of target objects Dt ⊆ D and their corresponding cost functions, the

Combinatorial Min-Cost Improvement Strategy for Dt is a set of improvement strategies

St, where si ∈ St is an improvement strategy for pi ∈ Dt, such that
∑

pi∈Ds
H(pi + si) ≥ τ and∑

pi∈Ds
Costpi(si) is minimized.

Definition 6 Given a set of target objects Dt ⊆ D and their corresponding cost functions, the

Combinatorial Max-Hit Improvement Strategy for Dt is a set of improvement strategies

St, where si ∈ St is an improvement strategy for pi ∈ Dt, such that
∑

pi∈Ds
Costpi(si) ≤ β and∑

pi∈Ds
H(pi + si) is maximized.

The two problems are both NP-hard, since the single-object improvement strategy problems

are their special cases. We can slightly modify the algorithms proposed in Chapter 5.3.2 to handle

the combinatorial improvement strategy searching problems. To search for the combinatorial min-

imal cost improvement strategy, we can modify Algorithm 9 as follows: First finds the min-cost

improvement strategies that can hit each query, and uses them as candidates. The algorithm then

selects the candidate strategy with minimal cost per hit query. This process is repeated until at

least the desired number of queries are hit. A more formal description is given as follows:
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• Step 1: For each query q and each target object pi, find the minimal-cost improvement

strategy that makes pi hits q. All such improvement strategies are used as candidates.

• Step 2: Find and apply the candidate strategy s with minimal cost per hit query. If the total

number of hit queries after applying the strategy is larger than τ , then instead of s, we should

apply the candidate strategy that hits at least τ queries with minimal cost. This is to avoid

over-achieving the desired number of hits, and thus increase the total cost.

• Step 3: If the number of query hit by the improved objects is less than τ , repeat step 1 and

2.

Similarly, for max-hit IQ, we modify Algorithm 10 to make it applicable for multiple target

objects.

• Step 1: For each query q and each target object p, find the minimal-cost improvement strategy

that makes pi hits q. All such improvement strategies are used as candidates.

• Step 2: Filter out the candidate strategies whose cost exceeds the remaining budget. If the

candidate set is not empty, then select the candidate strategy with minimal cost per hit query,

and apply it to the corresponding object. Update the remaining budget accordingly. If the

candidate set is empty, then terminate.

• Step 3: If there is still available budget, repeat step 1 and 2.

5.4.2 Complex Utility Functions

We now discuss how to handle the case when the utility functions used in top-k queries are

non-linear. Regardless of its complexity, a utility function f(pi) can always be seen as a function

fpi(q) for object pi, in which the attribute values of pi are treated as constants of the function,

while the variable q consists of the other parameters of the top-k query (e.g., attribute weights as

in linear utility functions). We explain the idea with a complex utility function example, applied
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on a Car dataset with three attributes (Table 5.1), where w1 and w2 are user-specified weights.

u(Car c) =
√
w1 ∗ c.Price+ w2

c.Capacity

c.MPG
(5.19)

Table 5.1: Example of a dataset with complex untility functions

ID Price MPG Capacity u(w1, w2)

1 15000 30 4
√

15000w1 + w2
4
30

2 20000 28 6
√

20000w1 + w2
6
28

3 8000 35 2
√

8000w1 + w2
2
35

As showed in the table, each car object can be seen as a non-linear function, by treating its

Price, MPG (Mileage Per Gallon gas), and Capacity as constants. The function has input variables

(w1, w2). The intersection of non-linear functions can take a more complex form. Generally, the

intersection of two d-variable functions formulates a surface in the d-dimensional domain space.

Nevertheless, our observation that these functions are sortable in subdomains partitioned by their

intersection is still valid. Thus the proposed Efficient-IQ algorithm works as well over complex

functions. Our concern is, however, for certain complex functions, the number of subdomains

partitioned by intersections can be very large 1, which may result in a high indexing cost.

To mitigate this problem, we propose to convert non-linear functions into linear functions

through variable substitution, i.e., replacing complex components of an equation with one variable

to simplify the equation. After converting non-linear functions into linear ones, we can then apply

the same techniques introduced in Chapter 5.3 for efficient processing of IQs. Consider an example

of top-k queries with polynomial utility function, applied on a 4-dimensional dataset D:

u(p) = w1(p
(1))3 + w2(p

(2) ∗ p(3)) + w3(p
(4))2 (5.20)

which contains three high degree terms. It can be converted into an equivalent linear function:

u∗(p) = w1p
(5) + w2p

(6) + w3p
(7) (5.21)

1For linear functions, the number of such subdomains is bounded by O(nd) where n is the number of objects and
d the number of variables (Schläfli (1901)). While for some high-degree functions, the number can be O(2n).
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where p(5) = (p(1))3, p(6) = p(2) ∗ p(3), and p(7) = (p(4))2 are used to substitute p(1)-p(4). As such,

each object becomes 7-dimensional. Nevertheless, in this example, attributes 1 4 are no longer used

in the converted utility function, thus the dataset can be treated as 3-dimension. The value of each

augmented attributed is computed using the original attribute values of the object, thus they do

not need to be computed and stored in advance. Instead, we simple store the conversion process

as math formulas, and compute their values on the fly to avoid storage redundancy.

Variable substitution can be used to convert other forms of complex functions into linear ones

as well. Consider function:

u(p) =
√

(w1 − p(1))2 + (w2 − p(2))2 (5.22)

which computes the Euclidean distance between a data point and a given location {w1, w2}. We

can make the following conversion:

u∗(p) =(w1 − p(1))2 + (w2 − p(2))2 (5.23)

u∗(p) =(w2
1 + w2

2)− 2w1p
(1) − 2w2p

(2) (5.24)

+ p(3) + p(4) (5.25)

where p(3) = (p(1))2 and p(4) = (p(2))2 are the two augmented attributes. Note that u∗(p) = u(p)2.

Since distance is always positive, the ranking result of the converted function remains the same.

5.4.3 Heterogeneous Utility Functions

Since IQ allows users to apply complex utility functions, it is possible that each user defines a

utility function with a completely different form. For example, to query the Car dataset (Table 5.1),

some users may express their preference as a different utility function:

v(Car c) =
c.MPG

w1 ∗ c.Price
+ w2(c.Capacity)2 (5.26)

In this case, we cannot simply use the value of (w1, w2) to differentiate different top-k queries.

Because even for the same (w1, w2), the two functions 5.19 and 5.26 may compute different values,
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as they represent two evaluation methods over the same dataset. The default way to handle het-

erogeneous utility function is to add another column v(w1, w2) to the Car dataset, and use function

outputs in this column to sort the objects when considering the top-k queries with v(Car c).

However, this will significantly increase the indexing cost, because we need to find subdomains for

two different sets of functions, each has the same size of the object set.

To address this problem, we propose constructing a “generic” function in such a way that all

the user-defined utility functions are special cases of this one function. Let’s continue with the Car

dataset example. Construct the following generic function for functions 5.19 and 5.26 by adding

them up:

G(Car c) =u(Car c) + v(Car c) (5.27)

=
√
w1 ∗ c.Price+ w2

c.Capacity

c.MPG
(5.28)

+
c.MPG

w3 ∗ c.Price
+ w4(c.Capacity)2 (5.29)

Now we can differentiate two queries by the value of (w1, w2, w3, w4) as in the linear case. Our

solution works because if a query uses function 5.19 as utility function, it must set w3, w4 to 0.

While for queries with function 5.26, w1, w2 is 0. As such, we unify the domain of the two functions

into one domain space, and are able to interpret each object as only one function.

5.5 Implementation and Evaluation

5.5.1 System Implementation

We have implemented the proposed techniques as an analytic tool and integrated it with the

Database Management System (DBMS). The tool allows users to issue IQs in an interactive way

via a Graphic User Interface (GUI) showed in Figure 5.3. Users can select target objects manually

from the object dataset or via an SQL select statement. For the target objects, users specify which

attributes can be adjusted and in what range, and also the cost function to be used for each object.

Our system is implemented using C++ and C# on a Windows server with Intel Xeon 64-bit 8-core
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Figure 5.3: Graphic User Interface for Improvement Query

CPU running on 2.93GHz and 32GB RAM. An R-tree is used to index the queries. For comparison

purpose, we implement four IQ processing schemes in our experiments.

• Efficient-IQ: This is the proposed heuristic algorithm, which uses the ESE algorithm for

improvement strategy evaluation.

• RTA-IQ: This implementation uses the RTA algorithm, designed for reversed top-k query,

to evaluate improvement strategies in each iteration, instead of the proposed ESE algorithm.

Note that RTA supports only linear utility functions.

• Greedy: This implementation uses simple greedy algorithm. It always finds the query point

that can be hit by any target object with the minimal cost, then repeats the process until the

desired number of queries are hit (for Min-Cost IQs), or there is no budget left (for Max-Hit

IQs).

• Random: This scheme randomly generates improvement strategies until it finds an improve-

ment strategy that satisfies the improvement goal (i.e., hits the desired number of queries, or

total cost less than the budget), and returns it as the answer to user’s IQ.
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5.5.2 Data Preparation

We test our system over four types of object datasets, namely Independent (IN), Correlated

(CO), Anti-correlated (AC), and Real-world. IN, CO, and AC are synthetic datasets generated with

the method described in (Borzsony et al. (2001)). Specifically, in IN, all attributes of an object

are generated independently with a uniform distribution, while in CO and AC, attribute values of

the an object is correlated or anti-correlated, respectively. Each generated object has 10 numerical

attributes in range [0, 1]. We use two real-world datasets: VEHICLE and HOUSE. VEHICLE

(FuelEconomy.gov (2016)) contains 37051 vehicle models with attributes including year, weight,

horse power, mileage per gallon (MPG), and annual cost. HOUSE is extracted from (Ruggles et al.

(2015)), including 100,000 records with four attributes house value, household income, number of

person, and monthly mortgage payment. We normalize attributes of the real-world datasets to

[0, 1].

We generate two sets of top-k queries, namely UN and CL. Both sets of queries use polynomial

utility functions, while the distribution of function coefficients (weights) are uniform and indepen-

dent in UN but clustered in CL. Details of how to generate such queries are given in (Vlachou et al.

(2011)). The degree of each term in the function is randomly chosen from [1, 5] and the top-k value

is randomly selected from [1, 50]. The default experiment setting is given in table 5.2.

Table 5.2: Experiment Settings

Parameter Default Range

|D| 100,000 50,000 - 200,000

|Q| 10,000 5,000 - 15,000

τ 250 100 - 500

β 50 10 - 100

Dimensionality 3 1 - 5



96

5.5.3 Experiment Results

5.5.3.1 Data Indexing

We first evaluate the indexing cost of the proposed techniques, which involve the cost of building

an R-tree over the query points and grouping them by subdomains. To better understand the scale

of this cost, we compare indexing structure size (showed as percentage to the original dataset) and

the total indexing time of the proposed technique (Efficient-IQ) with two benchmarks: 1) the cost

of building only an R-tree on the query points (R-tree), and 2) the cost of building a Dominant

Graph (DominantGraph) (Zou and Chen (2008)) for the objects, which is the state-of-the-art

indexing technique for top-k query with linear utility functions.

 200

 400

 600

 800

 1000

 50  100  150  200

In
de

xi
ng

 ti
m

e 
(s

ec
)

Number of objects (x10^3)

Efficient-IQ
DominantGraph

(a) Indexing time

10%

20%

30%

 50  100  150  200

In
de

x 
si

ze
 (

pe
rc

en
ta

ge
)

Number of objects (x10^3)

Efficient-IQ
DominantGraph

(b) Index size

 200

 400

 600

 800

 5  10  15

In
de

xi
ng

 ti
m

e 
(s

ec
)

Number of queires (x10^3)

Efficient-IQ
R-tree

(c) Indexing time

10%

20%

30%

 5  10  15

In
de

x 
si

ze
 (

pe
rc

en
ta

ge
)

Number of queires (x10^3)

Efficient-IQ
R-tree

(d) Index size

Figure 5.4: Index Scalability

We adjust the number of objects and report the corresponding indexing time and size of the

proposed technique and DominantGraph (Figure 5.4-(a) and (b)). In order for Dominant Graph

to work, we use only linear utility functions for top-k queries. For each test point, we generate

100 different utility functions and report the average indexing costs. We observe that the indexing

cost on different types of synthetic data is almost the same, thus we report the average cost over

all the types of datasets to save space. The dimension (i.e., number of variables) of the utility

functions is uniformly picked in [1, 5]. The indexing time of DominantGraph is similar to our

technique in general while Efficient-IQ incurs slightly higher storage overhead (less than 5% of the

data size). However, our technique is unique in being able to support efficient processing of IQ. We

also evaluated the indexing cost of the proposed technique on the two real-world datasets and the

results are plotted in Figure 5.5.
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Figure 5.5: Indexing cost on real world datasets

We then adjust the number of queries and compare the proposed technique with building only

an R-tree (Figure 5.4-(c) and (d)). This time we allow non-linear utility functions. For the same set

of queries, the proposed Efficient-IQ requires about 20% - 25% more indexing time comparing with

building only an R-tree. The extra time is used to find subdomains for each query point, in order

to facilitate the ESE algorithm. The final index size, nevertheless, is only about 10% larger than

an R-tree. This is because many adjacent query points fall in the same subdomain and thus we do

not need to store the subdomain information for each of them. In general, the propose technique

shows good scalability, in terms of indexing cost, with respect to both the number of objects and

queries. Experiment over real-world datasets is consistent with that on synthetic data.

5.5.3.2 IQ Processing

For query processing, we are interested in two metrics: 1) Average query processing time, and

2) Quality of the improvement strategy returned to the user. For Min-Cost IQ, the quality of an

improvement query can be measured by its total cost. While for Max-Hit IQ, it’s the total number

of query hit by the improved objects. We use an unified quality measurement for both types of

queries, i.e., the average cost per hit query of an improvement strategy, the lower the better. If

multiple target objects hit the same query, we count them as only one hit. Our experiment shows

that, even for the smallest dataset, exhaustive search takes more than 4 hours to process a query

in average. Thus we compare only the 4 aforementioned schemes. For RTA-IQ to work, we limit

the type of utility functions to linear with attribute weights normalized to 1. We use the following
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Figure 5.6: Query processing time on different sythentic datasets

cost function for all objects:

Cost(s) =
√∑d

i=1 s
2
i (5.30)

We evaluate the scalability of the proposed techniques with regard to the size of D and Q

respectively. The results on different data sets are showed in Figure 5.6-5.8. For each test point, we

issue 100 Min-Cost IQs and 100 Max-Hit IQs, and report the average performance of the compared

schemes. The parameters of these IQs are randomly and uniformly selected from the ranges given

in Table 5.2. For each real-world dataset, we use a randomly generate query set that is one third

of its size.

It is not surprising that Random is the fastest scheme in processing IQs, but it also yields the

worst improvement strategy quality. The simple greedy algorithm has better strategy quality than

Random, but is still very poor when compared with the proposed techniques. The Efficient-IQ

achieves both good running time and high strategy quality. It outperforms RTA-IQ significantly

in querying processing time, while achieving the best improvement strategy quality. (Note that

RTA-IQ uses the same strategy-searching approach as Efficient-IQ, thus the quality of the strategies
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Figure 5.7: Cost per hit query on different sythentic datasets

found by the two schemes is the same). The result shows that the good performance of the proposed

technique is due to the combination of an efficient strategy searching method and a fast evaluation

algorithm used in each searching iteration.

Finally, we evaluate the scalability of the proposed technique with respect to dimensionality of

the functions (i.e., the number of variables in the interpreted functions). Since RTA only works on

linear function, in this experiment we plot only the result of Efficient-IQ. The result (Figure 5.9)
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shows as the number of variables increases, the query processing time increases too, but in a sub-

linear way. That means the query processing time becomes less sensitive to dimensionality as it

increases, which is a desired feature.
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Figure 5.9: Scalability to the number of variables in functions

5.6 Summary of the Chapter

We live in a society that is competitive in nature. Daily we face the challenges of improving

something to make it more competitive against its peers. In this chapter, we consider the problem

of finding improvement strategies. We propose a new type of query called Improvement Query (IQ)

that has two variants. A Min-Cost IQ retrieves the improvement strategy with minimal cost for

some target object to hit a desired number of top-k queries, and a Max-Hit IQ tries to find an

improvement strategy that maximize the number of hit queries with a given budget. Here the cost

of an improvement strategy is modeled by a user-defined cost function. We show that finding the

exact answers to both queries are NP-Hard and propose a suite of heuristic solutions. Our key

idea is to interpret each object as a function and treat each top-k query as as its input. As such,

the set of functions can be strictly sorted by their output in each subdomain partitioned by their

intersections. The geometrical relations among then function intersections can then be leveraged

for efficient processing of IQs. We implement the proposed techniques as an analytic tool and

integrated it with the DBMS. In our extensive evaluation, it demonstrates excellent performance.
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CHAPTER 6. CONCLUDING REMARKS

The notion of Function Query (FQ) is a powerful extension to existing database query languages.

It can be applied on a database that is originally a set of functions, e.g., representing some data

that is continuous in nature. While this is obvious, FQ can also be applied, which we believe is

less apparent but inspiring, on a database of discrete values. By interpreting each record as a

function, FQ supports analysis-based information retrieval like existing top-k and scalar-product

queries. However, unlike these existing queries, FQ supports more complex functions and a variety

of output conditions.

We have addressed the challenges of enabling efficient FQ execution. Our key observation is,

a set of functions can be sorted based on their outputs in the input subdomains partitioned by

the intersections of these functions. This observation alone, however, is not sufficient to develop

a good solution. Finding the exact boundaries and sorting the functions in each subdomain can

be computation-intensive. The problem is even more complicate when having to deal with a very

large number of subdomains, which happens when the functions involve non-linear terms or are non-

polynomial. To circumvent these problems, we proposed a novel data structure called Intersection-

tree (I-tree). I-tree indexes the subdomains created by function intersections and allows one to sort

the functions for each subdomain, without having to computing subdomain boundaries. With I-tree

in place, we proposed to convert complex functions into multivariate linear polynomial functions

through variable replacement. We show that this strategy works for all polynomial functions and

non-polynomial functions that conform certain form. Moreover, it becomes possible to handle

multiple function definitions on the same database with a single I-tree. While I-tree is mainly

developed for FQs, we show that it can also be used to support the execution of some other well-

known analytic queries, including reverse top-k query, maximum rank query and global immutable

region. In our research, we have integrated FQs into a database system as a query primitive. We
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evaluated the proposed techniques through prototyping and experiments over synthetic data and

real-world data, and our techniques exhibit excellent performance in our extensive evaluation.

In addition to FQ execution, we have consider the problem of outsourcing a database where

each record is interpreted as a mathematical function. A third party manages this database and

answers function queries over the functions. A function query retrieves the set of functions whose

outputs with user-supplied function input satisfy certain query condition (e.g., being the top k). We

are interested in providing a mechanism that allows users to verify if the query results they receive

are sound and complete. The challenge of enabling such verification comes from the fact that the

input to the functions is known only when a query is issued, so the data owner cannot pre-compute

the function outputs and then apply existing techniques to build a MH-tree or a signature chain

on top of these outputs for authentication.

Two functions have the same output when they intersect. So for any input within a domain

where they do not intersect, the output of one function is always no less than that of the other

function. In light of this, we develop a three-step general solution for efficient verification of function

query results: 1) Partition the input domain into a number of subdomains which are defined by

the intersections of the functions; 2) Sort the functions based on their outputs in each of the

subdomains; 3) Create a signature chain for each sorted function list. We show that this general

solution works for various types of function queries over different kinds of functions, including

univariate linear function, multivariate linear function, and multivariate high degree function. We

prove that without knowing the data owner’s private key, it is computationally infeasible for an

adversary to forge a query result without being detected. Our extensive performance evaluation

shows the proposed techniques are practical and can be used in real-world applications.
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