
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2015

Model of distributed software development using
system dynamics
Sourajit Ghosh Dastidar
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Ghosh Dastidar, Sourajit, "Model of distributed software development using system dynamics" (2015). Graduate Theses and
Dissertations. 14549.
https://lib.dr.iastate.edu/etd/14549

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14549&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14549&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F14549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/14549?utm_source=lib.dr.iastate.edu%2Fetd%2F14549&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


 

 

           Model of distributed software development using system dynamics 
 

by 
 

Sourajit Ghosh Dastidar  
 
 
 
 

A thesis submitted to the graduate faculty 
 

in partial fulfillment of the requirements for the degree of 
 

MASTER OF SCIENCE 
 
 
 
 

Major: Computer Science 
 

Program of Study Committee: 
David Weiss, Major Professor  

Wallapak Tavanapong 
Shashi Gadia 

 
 
 
 
 

 
 
 
 

 
Iowa State University 

 
Ames, Iowa 

 
2015 

 
 
 

Copyright ©Sourajit Ghosh Dastidar, 2015. All rights reserved. 
 
 
 
 
 
 
 

   



ii 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ............................................................................................................... iii 

ABSTRACT ......................................................................................................................................... iv 

CHAPTER 1. INTRODUCTION ...................................................................................................... 1 

1.1 Distributed Software Development .............................................................................. 1 

1.2 Organization ........................................................................................................................... 2 

CHAPTER 2. SYSTEM DYNAMICS BASICS ............................................................................... 4 

2.1 Causal Links ............................................................................................................................ 5 

2.2 Stock Flow Diagram (SFD) ................................................................................................ 6 

2.3 Equations ................................................................................................................................. 8 

2.4 Simulation ............................................................................................................................... 9 

CHAPTER 3. RELATED WORK.................................................................................................. 10 

3.1 Introduction to Case Study ............................................................................................ 10 

3.2 Deliverables and Tools .................................................................................................... 12 

CHAPTER 4. DATA COLLECTION ............................................................................................ 16 

4.1 Method................................................................................................................................... 16 

4.2 Source of Data ..................................................................................................................... 18 

4.3 Validation ............................................................................................................................. 18 

CHAPTER 5. SYSTEM DYNAMICS MODEL OF DISTRIBUTED SOFTWARE 

DEVELOPMENT ............................................................................................................................. 20 

5.1 Introduction to System Variables ............................................................................... 20 

5.2 Causal Loop Diagram (CLD) of Distributed Software Development ............. 25 

5.3 Stock Flow Diagram of Distributed Software Development ............................. 30 

5.4 Relationships among Variables ................................................................................... 31 

CHAPTER 6. RESULTS, ANALYSIS AND CHALLENGES ................................................... 39 

6.1 Results ................................................................................................................................... 39 

6.2 Analysis & Alternative Variables ................................................................................. 44 

6.3 Challenges ............................................................................................................................ 46 

CHAPTER 7. CONCLUSION & FUTURE WORK ................................................................... 47 

REFERENCES .................................................................................................................................. 49 

 



iii 
 

  

ACKNOWLEDGEMENTS 

My utmost gratitude go to those who have helped me with various aspects of 

my research and writing my thesis. Firstly, I thank my adviser Dr. David Weiss for 

his guidance, patience and support throughout my time at Iowa State University, 

conducting research and writing my thesis. I thank my research partner Ya Chen 

who has helped with data collection and provided valuable insights. I also thank 

my committee members for their efforts and contribution to this work: Dr. Shashi 

Gadia and Dr. Wallapak Tavanapong. I thank my friends Rui Ding and Manisha 

Rayanchu for helping and supporting me in all stages of my graduate career.  

 Thanks to the departmental staff of Computer Science at Iowa State 

University for being so helpful, approachable and supportive. 

Finally, I am eternally grateful to my brother Shankhajit Ghosh, my parents 

Indrajit Ghosh-Dastidar and Namita Ghosh-Dastidar for their blessings, help, 

patience, support and advice throughout my life. I also know that my late 

grandmother Swarnomoyee Choudhury is watching over me and is always with 

me. 

 

 

 

 

 



iv 
 

  

ABSTRACT 

 Distributed Software Development today is one of the most widely used and 

implemented software development strategies in the industry [1]. Some of the 

major advantages of this methodology are 24 hour work-cycle [2], increased 

diversity of resources, reduced labor costs, decreased time of iteration cycle and 

diverse skillset of the workforce [3]. Although it has proven to be quite efficient 

and practical, there are ample reasons from previous research [4][5] in this field 

that show that this development approach is uncertain in terms of quality of 

product developed, speed and expenses. Factors such as presence of multiple 

stakeholders, lack of effective communication among sites, cultural differences 

among the workforce and presence of a diverse range of system variables brings 

a level of uncertainty into the system. A method is required to simulate iterations 

of the software development lifecycle and understand the effect of changes in 

system variables/stakeholders involved. This would help project managers, 

business analysts and other parties involved from different sites to examine the 

effect of changes in one variable at any point to the other variables and inspect 

its short and long term consequence on the project plan and deliverables. 

Problems leading to faulty product development, failure in conforming to all the 

lifecycle requirements, decreased customer satisfaction, unforeseen expenses 

and inability to meet deadlines can be avoided by predicting changes using those 

predictions to make better decisions. 

 In this thesis, I have created a simulated model of Distributed Software 

Development using the concept of System Dynamics [6]. My main purpose is to 



v 
 

  

define the different variables, and stakeholders involved in this methodology. 

Furthermore, I aim to define relationships among them, analyze and draw 

sufficient conclusions that would help understand and decrease uncertainty. As 

an example, the results of the simulation show prediction of change of the 

number of customers, features released with time for the given product as other 

variables in the system change. This can help project directors, managers and 

leads to make better informed decisions about the steps they can take to 

maximize their product growth in the market. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

  

 

CHAPTER 1. INTRODUCTION 

1.1 Distributed Software Development 

Distributed Software Development (DSD) is a development process and 

associated environment where the development is structured in such a way that 

it allows individual components/modules to be designed and implemented at 

different sites. These sites are often situated across different countries separated 

by multiple time zones and cultures. The main difference between DSD and 

traditional methods of software development is that different sites have to 

collaborate across large distances. Thus it takes a considerable effort to make 

sure that everyone is apprised of what the interacting sites are doing and that 

they are synchronizing. Extra effort is taken in making sure that the problems 

occurring from lack of proper communication resulting from cultural and 

linguistic barriers are resolved early. Since the sites are separated by various 

boundaries such as contextual, organizational, temporal, geographical and 

political, new unknown problems arise in managing such a project. Despite these 

problems, DSD has emerged as the most widely used model of development in 

the modern world [1]. Reasons include ability to work beyond regular hours [2], 

lower software development costs at offshore centers situated in emerging 

economies, the diverse capability and skillset of human resources in other 

regions and ability to reach markets well beyond national boundaries. Some 

countries in parts of the world might have regulations that only allow products 



2 
 

  

developed using in-house facilities to be marketed. Distributed development is 

particularly useful in such cases. Previous papers and research work have 

addressed the need for a standardized practice methodology, proper 

modularization of system architecture, presence of consistent/effective ways to 

define module interface specification, regular communication among sites, 

frameworks to decrease errors occurring because of lack of communication, 

multiple communication media and presence of liaisons [7]. What remains to be 

confronted is the lack of ways of predicting effects of changes in system variables 

and stakeholders where development is distributed among multiple sites. This 

brings uncertainty into the system that might hinder progress in project plans, 

leading to poor quality of the features developed, ultimately leading to more 

defects in the developed product than originally predicted and inability to meet 

design requirements/specifications resulting in loss of customers and other 

resources. This problem can be addressed using System Dynamics [6] which can 

be used to create simulated models. The main purpose of my research is to create 

a simulation involving relevant system variables and stakeholders, define 

relationships among them. This would help anticipate impacts, thereby allowing 

stakeholders/participants to take actions to deal with these problems without 

changing the originally envisioned deliverables and their deadlines. 

1.2 Organization 

The rest of the thesis is organized as follows: Chapter 2 starts with a brief 

introduction of the system dynamics modelling approach and its applications. In 



3 
 

  

Chapter 3, I start by introducing the case study. Chapter 4 talks about the data 

collection method and technique we applied to inspect the case study and obtain 

information. Chapter 5 introduces the system dynamics model of distributed 

development by talking about the System Variables, Causal Loop Diagram, Stock 

Flow Diagram and Equations. Chapter 6 presents the results, analyzes the model 

that we have created and talk about the challenges faced. Finally in Chapter 7, I 

conclude my research work and discuss ideas about how the model can be 

improved further in the future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

  

 

CHAPTER 2. SYSTEM DYNAMICS BASICS 

System Dynamics has been extensively used to model complex feedback 

systems in various domains including population, ecological, economic and 

education systems [9] [15] [16] [17]. It has only been used a few times to model 

software development methodologies or systems [8] [14].  

 In System Dynamics, we start by defining a system that is a collection of 

variables or subsystems that interact in such a way that the whole system has 

properties that are not evident from analyzing the parts themselves [8]. When an 

event occurs that influences behavior of a variable or a set of variables, it also 

impacts other variables that are related to it along with itself in the future. 

Identifying and analyzing such a situation is done using feedback loops or causal 

loops. System Dynamics also looks at the whole system as an interaction of 

various subparts and assumes that the behavior cannot be explained in only 

terms of dynamics of the sub parts. It uses computer simulation to understand, 

analyze complex systems and effects of impromptu events on the future of the 

whole system. Using System Dynamics, emergent properties such as productivity 

and performance of product in the market that can only be evaluated or 

calculated after the structure of the whole system has been identified, and the 

interactions among its parts are known. 

 



5 
 

  

 

 

2.1 Causal Links 

A causal loop diagram is a group of nodes representing the variables that are 

connected through cause and effect relationships. The relationships among 

variables are indicated by arrows (called causal links). An arrow from variable A 

to variable B means that any change in A would lead to changes in B either 

instantaneously or after a certain period of time. Depending on the relationship 

between the cause and effect, arrows are labeled as either positive or negative. 

 A positive causal link (represented by a + sign on the link) indicates that if 

a variable increases, the variable on the positive enforcement side also 

increases and if the variable decreases then the other also decreases. In 

the example given in figure 2.1, if the quality of modularization during the 

design and architecture phase of a product development affects the 

quality of the module interface specifications. Better modularization leads 

to better interface specifications. 

 

 

Figure 2.1 Positive Causal Link 

 A negative causal link (represented by a – sign on the link) indicates that if 

a variable increases, the variable on the negative enforcement side 



6 
 

  

decreases and if the variable decreases then the other increases. In figure 

2.2, increasing schedule pressure during an iteration leads to stricter 

deadlines and thus decreases the percentage of requirements that can be 

fulfilled. 

 

Figure 2.2 Negative Causal Link 

 

2.2 Stock Flow Diagram (SFD) 

A stock flow diagram shows dependencies among different variables that 

have a potential to change over time. An SFD consist of four types of elements: 

stock variables, auxiliary variables, flows and information. 

Stock variable is an entity (boxed variable) whose value increases over time 

from inflows and decreases from outflows. Stocks are changed only by flows into 

the system and out of the system. Stocks normally have a certain value at each 

moment of time. In figure 2.3, the number of customers using a certain product 

at any given time is represented by the stock variable Customers. 

 

 

Figure 2.3 Customer Stock Variable 



7 
 

  

 

 

An auxiliary variable is represented by a point or named constant in the 

system. It is the subsystems/resources/deliverables present in the environment 

that assists in accumulation or depletion of stock as well as other auxiliary 

variables. In figure 2.4, the Number of Distributed Sites is an auxiliary variable 

whose increase leads to an increase in the communication problem rate thus 

increasing the Communication Overhead stock variable. Cultural Similarity 

among sites is also an auxiliary variable whose increase leads to an increase in 

Resolution Rate of Communication Problems and thus decreases the stock 

variable Communication Overhead. 

 

Figure 2.4 Communication Overhead stock variable along with different Auxiliary variables 

 A Flow changes a stock variable over time. Inflows add to the stock and 

outflows subtract from or deplete the stock variable. Flows are typically 

measured over a certain period of time. In figure 2.4, Communication Problem 

Rate is an inflow into Communication Overhead stock variable. Communication 

Problem Rate determines the number of problems occurring because of a lapse 

in communication among teams over a week or a month. Resolution Rate of 



8 
 

  

Communication Problems is a number representing resolution rate of problems 

caused by miscommunication over a unit of time. 

  

 Finally, Link between Extent of Requirements being Fulfilled and 

Schedule pressure is shown by a curved arrow in figure 2.5 and means that in 

some way, information about the value of one variable changes the value of 

another variable.  

 

Figure 2.5 Link between two variables 

 

2.3 Equations 

 Stock flow diagrams are used to represent graphically relationships of a 

system, and its variables to give proper insights about the different processes and 

interactions in the system. We need to determine how subsystems react with 

each other with respect to their dependencies. In order to analyze and determine 

the behavior of a system, we quantify each variable and also create relationships 

among them. These relationships are defined using equations. A Stock Flow 

Diagram enables formulation of these links among variables using differential 

and integral equations over a certain period of time. It quickly becomes 

impractical to solve such equations by hand as the values of the variables 

increases and the relationships among them become more complicated over time. 

For example, the number of communication problems at any instant of time t is 

equal to the initial number of Communication Problems plus the number of 

Communication Problems that were added minus the number of Communication 

problems that were solved. If inflow and outflow is measured in problems per 

unit time and their values are Inflow and Outflow respectively. 



9 
 

  

 

Number of Communication Overhead Problems = 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑠 +   ∫ (𝐼𝑛𝑓𝑙𝑜𝑤 − 𝑂𝑢𝑡𝑓𝑙𝑜𝑤)𝑑𝑡
𝑇

𝑂
 

 

2.4 Simulation 

 We start by creating a stock and flow diagram for the DSD environment 

using one of the many commercial software packages available such as VenSim, 

Stella, PowerSim etc. We then insert initial values that we have procured from 

past and current distributed software projects for various stocks into the model 

and also for the equations of the flows/links. Thereafter, the software package 

solves the relationships determined by the equations. The result is a time history 

for each of the variables in the model provided that there are no errors in the 

equations or relationships identified. The time history can either be shown in a 

graphical or tabular form. Users can run their “what if” policies to test real world 

scenarios thus providing them with clearer understanding of changes over time. 

This helps analyze the behavior of the system and determine alternative policies 

and their impacts [9]  

  For our model we have used the VenSim PLE simulation package [10] 

since it is easy to use and also has all the tools required for simulating a 

distributed environment. 



10 
 

  

CHAPTER 3. RELATED WORK 

3.1 Introduction to Case Study 

In this chapter, we introduce the case study and the data set that was used in 

order to understand distributed software development methodology. We also 

discuss the different components, stakeholders, advantages and potential 

problems involved. Iowa State University currently has a course project 

conducted over a period of four months, offered each year in the fall semester. 

The project is a collaborative effort among students and faculties from Iowa State 

University (ISU-Ames, United States), Ji Lin University (JLU-Chang Chun, China), 

King Mongkut’s University of Technology (KMUTT-Bangkok, Thailand) and 

National University of Columbia (UNAL-Bogota, Columbia) (Participating 

universities changed from year to year but were the same in the period of this 

study). The course was offered independently by each university. The students 

developed a software application by working collaboratively over different 

geographic locations, time zones, cultures, and languages. Various teams were 

observed and data were collected over a two year interval (the Fall 2013, Fall 

2014 instances of the course) under careful inspection. 

The main purpose of the project was to create a Class Room Face Recognition 

System (CFRS) for instructors in a class who would like help in guiding class 

interactions, particularly in issues such as remembering student names, 

associating names with faces and keeping track of attendance. As shown in figure 

3.1 CFRS uses a camera and computer/mobile device to identify students in the 



11 
 

  

classroom and to check and record attendance automatically. A typical client 

application takes a picture using a camera installed in the classroom and sends 

the picture for identification to a remote server. The server refers the class 

picture to its student database and uses the face recognition algorithm from 

Open CV.org/Face.com or others to identify the faces in the picture and respond 

back to the client with student names and other information. The client then 

updates the student attendance table and displays the students present for that 

session. The client application could be used by both students and teachers. The 

teachers use their client application to have a summarized attendance of the 

class, while students can use it to review their own attendance for classes. 

Teachers can also set alarms to remind students if their attendance is low in a 

particular course.  

 



12 
 

  

 

 

Figure 3.1 Context diagram showing Face Recognition System Module Architecture (module 

structure is adapted from [21]) 

3.2 Deliverables and Tools 

Throughout the whole duration of the project each team was independently 

required to produce a strict set of deliverables as in a real world software project. 

Various members in a team had ownership of each deliverable and had to 

produce them following stringent deadlines. This required proper 

synchronization of work among the different teams. Tables 3.1, 3.2 give the list of 

deliverables that the teams at Iowa State University were required to produce in 

the Fall 2014 and Fall 2013 iterations of the project respectively.  

Class Face 
Recognition 
Application  

Class Face 
Recognition 
Application  

External 

Interface 

External 

Interface 

Camera Interface Camera Interface 

Face Recognition 
Module 

Face Recognition 
Module 

Client DB 
Interface 
Client DB 
Interface 

Behavior Hiding Behavior Hiding 

Attendance 
Report Module 

Attendance 
Report Module 

Attendance 
Register Module 

Attendance 
Register Module 

Alarm Module Alarm Module 

Controller 
Module 

Controller 
Module 

Software Design 
Hiding 

Software Design 
Hiding 

User Module User Module 



13 
 

  

Table 3.1 Deliverable, Deadlines and Roles Responsible for project iteration in Fall 2014 

Artifacts Date Due Role 
Responsible 
for Artifact 

   
Team name and role designations (Team 

Composition Form) 

2 Sep 2014 Project 

Manager and 

Liaison  

Requirements: Initial Context diagram 4 Sep 2014 Systems 
Engineer 

Initial Project Plan, including risks, wbs, 
project measures 

9 Sep 2014 Systems 
Engineer 

First Prototype 11 Sep 2014 Systems 
Engineer 

Requirements: Initial Use Cases and Test 
Cases 

11 Sept 2014 Systems 
Engineer 

Configuration management policy (coordinate 
policy with distributed teams, ensure build 
works) 

16 Sept 2014 Systems 
Engineer 

Requirements: Initial Output Specifications 18 Sept 2014 Systems 
Engineer 

Initial Module Structure 22 Sep 2014 Architect 

Initial Uses Structure 22 Sep 2014 Architect 
Initial Process Structure(s), 25 Sep 2014 Architect 
Second Prototype* 2 Oct 2014 Systems 

Engineer 

First Set of Interface Specifications, including 
black-box test cases for each module 

7 Oct 2014 Architect 

Data, e.g. pictures and profile information, to 
be used for first system test cases 

7 Oct 2014 Systems 
Engineer 

Revised Module, Uses, Process Structures 9 Oct 2014 Architect 

Revised project plan, with initial values for, 9 Oct 2014 Project 
and analysis of, measures  Manager and 

Liaison (1) ** Second Set of Interface Specifications, 

including revised first set 

16 Oct 2014 Architect 

First Module Implementations (corresponding 

to first interface specifications) 

16 Oct 2014 Developer *** 

System verification plan (using first data from 

systems engineer) 

16 Oct 2014 Tester & 

Integrator First module and integration test results 23 Oct 2014 Tester & 

Integrator Second Module Implementations 

(corresponding to second interface 

specifications) 

28 Oct 2014 Developer 

Data to be used for final system test cases 30 Oct 2014 Systems 

Engineer Revised Implementations 6 Nov 2014 Developer 

Second module and integration test results 11 Nov 2014 Tester & 

Integrator System test results report 2 Dec 2014 Tester & 

Integrator All-sites meeting for integration testing. 5 Dec 2014  

Retrospective Report 11 Dec 2014 Project 

Manager and 

Liaison (1) ** 

Final project presentation 11 Dec 2014 All 

 



14 
 

  

Table 3.2 Deliverable, Deadlines and Roles Responsible for project iteration in Fall 2013 

Role Responsible for 

Artifact 

Artifacts for which the 

role is responsible 

Date Due 

Systems Engineer  Requirements: Initial 

Context diagram  

5 Sep 2013 

 First Prototype 12 Sep 2013 

 Requirements: Initial Use 

Cases 

12 Sept 2013 

 Requirements: Initial 

Output Specifications 

19 Sept 2013 

 Configuration 

management policy 

(coordinate policy with 

distributed teams, ensure 

build works) 

17 Sept 2013 

 Second Prototype* 3 Oct 2013 

 Data, e.g. pictures and 

profile information, to be 

used for first system test 

cases 

8 Oct 2013 

 Data to be used for final 

system test cases 

31 Oct 2013 

Architect  Initial Module Structure 24 Sep 2013 

 Initial Uses Structure  24 Sep 2013 

 Initial Process 

Structure(s), 

26 Sep 2013 

 First Set of Interface 

Specifications 

3 Oct 2013 

 Revised Module, Uses, 

Process Structures 

8 Oct 2013 

 Second Set of Interface 

Specifications, including 

revised first set 

10 Oct 2013 

Developer  First Module 

Implementations 

(corresponding to first 

interface specifications) 

17 Oct 2013 

 Second Module 

Implementations 

(corresponding to second 

interface specifications) 

29 Oct 2013 

 Revised Implementations 7 Nov 2013 

 



15 
 

  

Table 3.2 (continued) 

Tester & Integrator   System generation and 

verification plan (using 

first data from systems 

engineer) 

17 Oct 2013 

 First module and 

integration test results 

24 Oct 2013 

 Second module and 

integration test results 

12 Nov 2013 

 System test results report 19 Nov 2013 

Project Manager and 

Liaison 

 

Team name and role 

designations (Team 

Composition Form) 

3 Sep 2013 

 Initial Project Plan, 

including risks, wbs, 

project measures 

10 Sep 2013 

 Revised project plan, 

with initial values for, and 

analysis of, measures 

10 Oct 2013 

 Retrospective Report 12 Dec 2013 

 Final project 

presentation 

12 Dec 2013 

All the hardware and software tools that would be required in the 

development lifecycle were outlined at the start of the project. Two Panasonic 

BB-HCM and BLC series cameras were used for taking pictures and providing live 

video feed of the classroom during testing. XCode and Netbeans IDE were used 

while implementing the modules. Git was used for source code management 

among various teams along with Assembla which provided repository hosting, 

file management, source code management and bug trafficking. Tools and 

applications such as Assembla Forums, Emails, Internet Chat and Video Calls 

were used by teams to synchronize work with each other, seek clarifications and 

provide support.  



16 
 

  

CHAPTER 4. DATA COLLECTION 

4.1 Method 

Data collection was an important aspect during the whole project. It enabled 

us to understand and get more insights about the distributed nature of the 

project. Although, the participants of the project were students who have lesser 

software development experience compared with many industrial developers, 

the data collection allowed us to understand how this course project emulated 

real world development. The data to be collected were identified using the Goal 

Question Metric approach [11] [12] [13]. This method assumes that in order to 

collect relevant data about the project, an organization must first define goals for 

the project, then trace that to the data that can be used to assess progress 

towards achieving those goals. As defined [11], the measurement model has 

three levels: 

 Conceptual Level or Goal: “A goal is defined at the start of the project with 

reference to objects of measurements that can be Products such as 

artifacts, deliverables and documents, Processes such as specifying, 

designing and testing and Resources such as personnel, hardware, 

software etc.”  

 Operational Level or Question: Operational level is defined as “a set of 

questions that are defined to determine achievement of a specific goal.”  

 Quantitative Level or Metric: Quantitative level is defined as “the set of 

data or metrics that can be objective such as number of versions, number 



17 
 

  

of errors, lines of code and subjective such as readability of text, level of 

user satisfaction associated with every question in order to answer them 

quantitatively.”  

Some examples of the GQM model are given in figures 4.1 and 4.2.  

Goal: To measure effectiveness of 

communication among teams 

Question: How comprehensive were the 

meetings? 

Metric: Number of issues that were covered, 

Number of resulting action items 

Figure 4.1 Goal Question Metric example 

Goal: To measure the cooperation and 

communication among teams 

Question:  How good was the cooperation 

among teams in each phase of 

development? 

Metric:  Number of issues that resulted 

from miscommunication among 

teams, Number of messages 

exchanged per development phase 

to solve existing issues 

(Requirement Analysis, Design, 

Implementation, Testing, 

Integration) 

Figure 4.2 Goal Question Metric example continued 

 



18 
 

  

4.2 Source of Data 

The data originated from the Distributed Software Development coursework 

over a period of 2 iterations of the course (Fall 2013, Fall 2014). Data were 

collected in the Fall 2013 and Fall 2014 course iterations under careful 

inspection. Figure 4.3 shows the composition of the teams in all the participating 

universities. 

    

 2014 Fall 2013 Fall 

Students Teams Students Teams 

ISU 18 3 10 2 

JLU 12 2 3 1 

UNAL 8 2 6 1 

KMUTT 12 2 13 2 

Figure 4.3 Composition of students at different universities 

         

4.3 Validation 

In order to ensure the accuracy of the data that was collected, participants 

were monitored weekly and under close inspection of instructors/professors at 

various sites. Students were required to complete a data collection form each 

week under strict guidelines. The data collection was a required part of the 

course. The major purpose was to educate students in how to collect software 

engineering data by teaching GQM method for measurement. Figure 4.4a, 4.4b 

shows the template of the data collection form that was used for this purpose. 



19 
 

  

Students were monitored and data that was collected was checked for 

consistency. Aberrations in data that were collected were investigated by 

conducting one on one interviews that helped understand and validate the 

reasons behind them. This also helped us understand how the project mirrored a 

real world environment and helped us to analyze the veracity of the information 

received. 

 

 

Figure 4.4a Data Collection Sheet Template Header 

 

 

Figure 4.4b Data Collection Sheet Template Body 

 

 

 

 

 

 

 

 



20 
 

  

 

 

CHAPTER 5. SYSTEM DYNAMICS MODEL OF DISTRIBUTED SOFTWARE 

DEVELOPMENT 

5.1 Introduction to System Variables 

To model Distributed Software Development, we followed the iterative 

approach. First, we identified key variables that determine and change behavior 

in the system and their dependencies through which they affect each other. As an 

example, Quality of Modularization and Quality of Interface Specifications are 

two such variables. Improving the quality of modularization would result in 

improvement in interface specification because more comprehensible 

specifications can be written for modules that have well and clearly defined work 

assignments that do not change over time. 

Furthermore, based on our understanding of the system, we identified 

important feedback loops and relations in the system among different variables 

as shown in the Causal Flow Diagram and then we made the equivalent Stock 

Flow diagram. Our list of variables for the system is given in Table 5.1. The stock 

variables of the system have been indicated in bold in the table. 

Table 5.1 Data Dictionary of System Variables 

Name Description Dimension 

Available Trained 

Resources (Stock 

Variable) 

The total number of 

trained 

resources/employees 

available for the project. 

Number of 

People 



21 
 

  

 

 

 

 

Table 5.1 Data Dictionary of System Variables continued 

Benched Recruits Number of people 

recruited into the 

company/project but 

have not been trained to 

start directly 

contributing to the 

project 

Number of 

People 

Resource Training 

Rate 

Rate at which 

resources from the 

Benched Recruits are 

given training to be 

moved onto Available 

Trained Resources 

Number of 

People per Unit Time 

Resource Relocation 

Rate 

Rate at which 

resources from the 

Available Trained 

Resources pool are 

relocated from the 

project because of 

budget cuts or demands 

elsewhere or fired due to 

lack of productivity. 

Number of 

People per Unit Time 

Number of 

Distributed Sites 

Number of 

Distributed Sites 

participating in the 

whole project. Sites can 

be in the same country 

separated by time zones 

and also in different 

Geographic locations 

having completely 

different work culture. 

Number of Sites 

Communication 

Overhead (Stock 

Variable) 

Total open problems in 

the project that have 

arose because of gaps in 

Communication among 

different sites.  

Number of 

Communication 

Problems 

 



22 
 

  

 

 

 

 

Table 5.1 Data Dictionary of System Variables continued 

Number of 

Communication 

Media 

Number of different 

communication media 

used by the sites to 

communicate with each 

other. (Ex: 

Teleconferencing, Video 

Calling, Email, Forum, 

Online chat) 

Number of Media 

Cultural Similarity 

among Sites 

Similarity among 

the people working in 

different sites in terms of 

language, profession 

work ethic, Hofstede’s 

Cultural Dimensions 

Dimensionless 

(Qualitative variable 

measured on a scale 

of 0-1. 1 states that 

the cultures are 

perfectly at sync with 

one another) 

Communication 

Problem Rate 

Rate at which 

Communication 

problems arise per 

month 

Communication 

Problems per Unit 

Time 

Resolution Rate of 

Communication 

Problems 

Rate at which 

communication 

problems are resolved 

per month 

Number of 

Communication 

Problems per Unit 

Time 

Customers (Stock 

Variable) 

Customers of the 

product when it is 

available in the market 

Number of People 

Customer Acquisition 

Rate 

Rate at which new 

customers are starting to 

use the product after it’s 

release in the market 

Number of People per 

Unit Time 

Customer Loss Rate Rate at which 

customers stop using the 

product after using it for 

sometime 

Number of People per 

Unit Time 

Number of Bugs Number of bugs in 

the code per module 

before Quality Assurance 

and Testing  

Number of Bugs 



23 
 

  

 

 

 

 

Table 5.1 Data Dictionary of System Variables continued 

Number of Escaped 

Bugs 

Number of bugs in 

the code after Quality 

Assurance and Testing. 

These bugs are in the 

released products that 

are being used by the 

customers. 

Number of 

Bugs/Module 

Rework Extra effort required to 

be put in by developers 

to fix errors found 

during Quality 

Assurance and Testing. 

Number of hours 

Productivity The efficiency of the 

team as a whole. It is 

measured as the number 

of logical changes made 

to the code base or the 

number of commits to 

the repository. 

Number of 

Commits/Unit Time 

Quality of 

Modularization 

The quality of design of 

the overall system 

including organizing the 

system into individual 

work assignments. If the 

quality of 

modularization is good 

then no or few changes 

are made to the system 

and module structure 

over time. 

Dimensionless 

(Qualitative variable 

measured on a scale 

of 0-1. 1 indicates 

proper 

modularization) 

 

Quality of Interface 

Specification 

The quality of 

interface specification of 

the application 

programming interfaces 

of the different modules. 

It is used to indicate that 

no/few errors occur 

over time due to 

Dimensionless 

(Qualitative variable 

measured on a scale 

of 0-1. 1 indicates that 

the quality of 

interface specification 

is highest)  



24 
 

  

interfacing and 

integration among 

modules. 

 

 

 

Table 5.1 Data Dictionary of System Variables continued 

Features Under 

Development (Stock 

Variable) 

The total number of 

features which have 

been put into the 

development phase to be 

added to the already 

existing product/new 

product. 

Number of 

Features 

New Feature 

Requests 

New features that 

have been requested to 

be included In the new 

product being developed 

or already existing 

product by domain 

experts, customers and 

market demand. 

Number of 

Features 

Extent of 

Requirements 

Fulfilled 

Percentage of 

original requirements 

(proposed at the start of 

the current development 

cycle) being fulfilled. 

Percent/Fraction 

Schedule Pressure (Actual completion 

Time/Proposed 

Completion Time) 

Proposed Completion 

time is the number of 

days in which the 

current iteration was 

expected to be 

completed at the start of 

the iteration. 

Dimensionless 

Feature Released The total number of 

features in the product 

that have been released 

in the market. 

Number of 

Features. 

Features pushed into 

Development Rate 

Features that are 

pushed into 

Number of 

Features Per Unit 



25 
 

  

development per month. 

These features have 

been requested by the 

customer, domain 

experts or market 

demand. 

Time 

 

 

Table 5.1 Data Dictionary of System Variables continued 

Feature Deletion Rate Features that were 

originally pushed into 

development but have 

been taken off 

development due to 

schedule pressure, 

prevent escalating costs 

or low market demand. 

Number of 

Features per Unit 

Time 

Development 

Completion Rate 

The number of 

completed features after 

development that are 

ready to be released in 

the market. 

 

Number of Features 

per Unit Time 

  

5.2 Causal Loop Diagram (CLD) of Distributed Software Development 

Using the above mentioned variables and their relations with one another, we 

prepared a Causal Loop Diagram (CLD) in 3 steps. We have described the CLD in 

multiple steps in order to simplify the model. 

 Step 1 - Causal Loop Diagram with Features under Development and 

Number of Customers Stock Variables (Fig 5.1, 5.2): We have defined 

the relationship among stock variables Customers and Features under 

Development along with their dependencies on other auxiliary variables 

as the first step. We have also identified the feedback loops and their 

polarities. For example, in figure 5.1 increase in the number of Customers 



26 
 

  

leads to increase in the Number of Bugs (before Quality Assurance and 

Testing). Note that the double line mark in the link between Customers 

and Number of Bugs denotes a delay in the effect. Increase in number of 

bugs leads to increase in the Number of Escaped Bugs (bug/errors in the 

system after Quality Assurance and Testing). Since the Number of Escaped 

Bugs are caught by customers using the product, it leads to lower 

customer satisfaction and decreases the Customer variable. The overall 

loop involving Customer -> Number of Bugs -> Number of Escaped Bugs -> 

Customers is a negative feedback loop since there are an odd number of 

negative causal links. The overall Casual Loop Diagram involving the 

Features under Development and Number of Customers stock variable is 

given in figure 5.2. 

 

 

Figure 5.1 Negative Feedback Loop Example 



27 
 

  

 

Figure 5.2 CLD involving Stock Variables Features under Development & Customers. 

 

 Step 2 – Causal Loop Diagram with Available Trained Resources and 

Communication Overhead Stock Variables (Fig 5.3): In the second step, 

we define variables Available Trained Resources and Communication 

Overhead along with other auxiliary variables related to them. Note here 

that variables shown in Fig 5.3 have links/relationships with variables in 

Step 1 (Fig 5.1, Fig 5.2) that will be shown later.  For example, Number of 

Benched Recruits increases the Number of Available Trained Resources 

after their training. Increase in Number of Distributed Sites leads to 

increase in Communication Overhead. Contrary to that, increase in 

Number of Communication Media leads to decrease in Communication 

Overhead and finally Increase in Cultural Similarity among Sites also leads 

to decrease in Communication Overhead. 



28 
 

  

 

Figure 5.3 CLD involving stock variables Available Trained Resources and Communication 

Overhead. 

 

 Step 3 - Overall Causal Loop Diagram involving all variables (Fig 5.4): 

In the final step we are defining relationships among all the stock 

variables and determining any further links among other auxiliary 

variables. 

 

 



29 
 

  

 

Figure 5.4 CLD involving all the environment variables. 

 



30 
 

  

5.3 Stock Flow Diagram of Distributed Software Development 

      

 

 

Figure 5.5 Stock Flow Diagram of Distributed Software Development 

After preparing a Causal Loop Diagram (Fig 5.1, 5.2, 5.3, 5.4) of the 

environment, we produced a Stock Flow Diagram (Fig 5.5) involving the stock 

variables Features Under Development, Customers, Available Trained 

Resources and Communication Overhead. In order to simplify the stock flow 

diagram, some of the links have not been shown. The values of the stock 

variables are influenced by inflows and outflows. Each auxiliary variable that 

influences the inflow also influences the outflow in an opposite way. As an 

example, for the Customers stock variable in Figure 5.5, the inflow (Customer 



31 
 

  

Acquisition Rate) is calculated with respect to Extent of Requirements Fulfilled, 

Rework and Features Released that are positive influences. Number of Escaped 

Bugs positively influences the outflow (Customer Loss Rate), and decreases the 

inflow. Similarly, the outflow variable (Customer Loss Rate) is positively affected 

by Number of Escaped Bugs and negatively affected by Extent of Requirements 

Fulfilled, Rework and Features Released. 

      

5.4 Relationships among Variables 

In this section we define the relationships among the variables in the stock 

flow diagram (Fig 5.5) by defining equations that address their accumulation and 

depletion in Table 5.1.  

Table 5.2 Variables and Equations 

Variable 

Name 

Equation Unit 

Customers 

(Stock 

Variable) 

Initial Number of Customers  + 

 ∫ (𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 −
𝑇

𝑂

𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝐿𝑜𝑠𝑠 𝑅𝑎𝑡𝑒)𝑑𝑡 

Number of 

People 

 

 

 

 

 

 

 

 

 

 



32 
 

  

 

Table 5.2 Variables and Equations continued 

 

Customer 

Acquisition 

Rate (Inflow) 

Extent of Requirements Fulfilled * Features 

Released * (1-Number of Escaped 

Bugs)/Number of Bugs before testing) * 

CONSTANT 

The CONSTANT has a dimension of People 

and is determined by the average number of 

customers who are starting to use the 

product per unit time. 

Number of 

People per 

Unit Time 

Customer Loss 

Rate (Outflow) 

(1-Extent of Requirements Fulfilled) * 

(1-Rework/Development Time)*(Number of 

Escaped Bugs * Significance of Escaped 

Bugs)*Customers 

Number of 

People per 

Unit Time 

Number of 

Bugs 

Quality of Interface Specification * Source 

Code Size * CONSTANT  

The value of the CONSTANT is determined 

by the average number of bugs normally 

found in the product by the quality control 

team per module. The unit is Bugs per 

Module/Number of Commits) 

Bugs per 

Module 

 

 

 



33 
 

  

 

Table 5.2 Variables and Equations continued 

 

Number of 

Escaped Bugs 

Number of Bugs * (1-Test Coverage)  

Test Coverage is a Constant value between 0 

and 1 which has been defined after this 

table. 

Bugs Per 

Module 

Extent of 

Requirements 

Fulfilled 

(New Feature Requests/Features Released) 

* 100 

Percent/Fracti

on 

Rework IF THEN ELSE Variable 

IF (Number of Bugs >2 and Customer Loss 

Rate >10 per unit time) then 

   Rework = Available Fixing Resources * 

Time 

ELSE 

   Rework = 0 

Number of 

Hours 

Productivity Schedule Pressure * Quality of 

Modularization * Number of Commits  

Number of 

Commits/Unit 

Time 

Quality of 

Modularization 

Ranges from 0 to 1 Dimensionless 

 

 

 



34 
 

  

 

 

 

Table 5.2 Variables and Equations continued 

 

Quality of 

Interface 

Specification 

Ranges from 0 to 1 Dimensionless 

Features 

Under 

Development 

(Stock 

Variable) 

∫(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑃𝑢𝑠ℎ𝑒𝑑 𝑖𝑛𝑡𝑜 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒

𝑇

𝑂

− 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒

− 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒)𝑑𝑡 

Number of 

Features 

Features 

Pushed into 

Development 

Rate (Inflow) 

(1-Schedule Pressure) * New Feature 

Requests 

Number of 

Features Per 

Unit Time 

Development 

Completion 

Rate (Outflow) 

Productivity * Number of Features * 

1/Number of Commits 

Number of 

Features Per 

Unit Time 

Feature 

Deletion Rate 

(Outflow) 

Schedule Pressure * Features under 

Development 

Number of 

Features Per 

Unit Time 

 

 

 



35 
 

  

 

 

 

Table 5.2 Variables and Equations continued 

 

New Feature 

Requests 

IF THEN ELSE variable (Depends on 

customer requests and analysis of Domain 

Experts) 

IF (Customers > 100) then 

   New Feature Requests = 5 

ELSE 

   New Feature Requests = 1 

Number of 

Features 

Schedule 

Pressure 

Ranges from 0 to 1 Dimensionless 

Features 

Released 

Development Completion Rate * 

Productivity 

 

Number of 

Features 

Communicati

on Overhead 

(Stock 

Variable) 

 Initial Number of communication 

Problems  + 

 ∫ (𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 𝑅𝑎𝑡𝑒 −
𝑇

𝑂

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑠)𝑑𝑡 

Number of 

Problems 

Communicatio

n Problem 

Rate (Inflow) 

(1-Quality of Interface Specification) * 

Number of Sites * (1-Cultural Similarity 

among Sites) 

Number of 

Problems per 

Unit Time 

 



36 
 

  

 

 

 

Table 5.2 Variables and Equations continued 

 

Resolution 

Rate of 

Communicatio

n Problems 

(Outflow) 

(Quality of Interface Specification) * 

Cultural Similarity b/w Sites * Used Number 

of Communication Media 

Number of 

Problems per 

Unit Time 

Number of 

Distributed 

Sites 

Fixed Variable. Depends on the sites 

participating in a particular project. 

Number of 

Sites 

Number of 

Communicatio

n Media 

Fixed Variable. Depends on the 

communication of the project team. 

Typically about 3-4 different 

communication media are used. 

Number of 

Media 

Cultural 

Similarity 

among Sites 

Ranges from 0 to 1 Dimensionless 

Available 

Trained 

Resources 

(Stock 

Initial Number of Trained Resources  + 

 ∫ (𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 −
𝑇

𝑂

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑅𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒)𝑑𝑡 

Number of 

People 



37 
 

  

Variable) 

 

Table 5.2 Variables and Equations continued 

 

Resource 

Training Rate 

(Inflow) 

Benched Recruits * CONSTANT  

Value of the CONSTANT is a fraction and 

depends on the training capability of the 

responsible team. 

Number of 

People per Unit 

Time 

Resource 

Relocation 

Rate (Outflow) 

IF THEN ELSE VARIABLE 

IF (Customer Loss Rate > 10 per unit time) 

then 

  Resource Relocation Rate = 2 

ELSE  

   Resource Relocation Rate = 0 

 

Number of 

People per Unit 

Time 

Benched 

Recruits 

CONSTANT. Depends on the hiring rate of 

the organization 

Number of 

People 

 

In table 5.2, we have used a set of new variables to define equations among 

variables defined the Causal Loop Diagram and the Stock Flow Diagram. They are 

defined as follows: 

 Test Coverage: A qualitative variable representing the number of bugs 

found and the product code paths covered after unit testing, black box 

testing, white box testing, integration testing, regression testing etc. 



38 
 

  

 Source Code Size: The size of the source code base of the whole software 

product. It is measured in Number of Commits.  

 Development Time: The total number of hours put in by human resources 

per cycle. 

 Significance of Escaped Bugs: A qualitative variable that represents the 

importance of the escaped error in the launched software/product and 

the extent to which it affects the customer. It ranges from 0 to 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 
 

  

CHAPTER 6. RESULTS, ANALYSIS AND CHALLENGES 

In this chapter, we will analyze the model that we have proposed, assess the 

results, alternatives that can be included, the challenges we faced during the 

course of our study and how they were addressed. 

6.1 Results 

After the completion of the model we realized that the data we collected 

from our course project was not enough. Our course project was conducted in an 

education environment where the participants were full/per time students and 

we weren’t able to collect all the metrics required to be supplied for the 

environment variables in our model. We analyzed a similar distributed 

development project [17] and took some of the metrics as a base for our 

simulation. The initial values for the variables in our model are given in Table 6.1. 

Table 6.1 Initial Values of Variables 

Variable Name Initial Values Unit 

Customers (Stock 

Variable) 

200 Number of People 

Customer Acquisition Rate 

(Inflow) 

10 Number of People per Unit 

Time 

Customer Loss Rate 

(Outflow) 

5 Number of People per Unit 

Time 

 

 

 



40 
 

  

Table 6.1 Initial Values of Variables continued 

 

Number of Bugs 10 Bugs per Module 

CONSTANT (Used for 

calculating the number of 

bugs in the Equations Table 

5.2) 

10 (Bugs per 

Module)/(Number of 

Commits) 

Number of Escaped Bugs 2 Bugs Per Module 

Extent of Requirements 

Fulfilled 

85% or 85/100 Percent/Fraction 

Rework 400 Number of Hours 

Productivity 75 Number of Commits/Unit 

Time 

Quality of Modularization 0.7 Dimensionless 

Quality of Interface 

Specification 

0.7 Dimensionless 

Features Under 

Development (Stock 

Variable) 

6 Number of Features 

Features Pushed into 

Development Rate (Inflow) 

3 Number of Features Per 

Unit Time 

Development Completion 

Rate (Outflow) 

2 Number of Features Per 

Unit Time 



41 
 

  

 

Table 6.1 Initial Values of Variables continued 

 

Feature Deletion Rate 

(Outflow) 

1 Number of Features Per 

Unit Time 

New Feature Requests 2 Number of Features 

Schedule Pressure 0.8 Dimensionless 

Features Released 5 Number of Features 

Communication 

Overhead (Stock 

Variable) 

11 Number of Problems 

Communication Problem 

Rate (Inflow) 

2 Number of Problems per 

Unit Time 

Resolution Rate of 

Communication Problems 

(Outflow) 

2 Number of Problems per 

Unit Time 

Number of Distributed 

Sites 

5 Number of Sites 

Number of Communication 

Media 

5 Number of Media 

Cultural Similarity among 

Sites 

0.6 Dimensionless 

 

 

 



42 
 

  

 

 

Table 6.1 Initial Values of Variables continued 

 

Available Trained 

Resources (Stock 

Variable) 

50 Number of People 

Resource Training Rate 

(Inflow) 

3 Number of People per Unit 

Time 

Resource Relocation Rate 

(Outflow) 

2 Number of People per Unit 

Time 

Benched Recruits 4 Number of People 

Test Coverage 0.7 Dimensionless 

Source Code Size 300 Number of Commits 

Significance of Escaped Bug 0.5 Dimensionless 

Development Time 8000 Number of Hours 

 

The simulation results for the stock variables Customers, Features under 

Development, Communication Overhead and Available Trained Resources are 

shown in Figures 6.1, 6.2, 6.3, 6.4 respectively. In all the figures, the X axis 

represents a time period of 24 months over which the simulation has been run. 

The Y axis represents the stock variable for the specific graph as defined in Table 

5.2. 



43 
 

  

 

Figure 6.1 Predicted number of Customers 

 

Figure 6.2 Predicted number of Features Under Development 

 

 

 

 

 

 



44 
 

  

 

Figure 6.3 Predicted number of Communication Overheads 

 

 

Figure 6.4 Predicted number of Available Trained Resources 

 

6.2 Analysis & Alternative Variables 

The model presented in the previous chapter was created with reference to a 

globally distributed software development environment that we observed over 

two iterations of the course project (Fall 2013, Fall 2014). We analyzed the 

deliverables, the participants, different problems and solutions in order to 

identify the system variables or components that were best for the domain we 



45 
 

  

described in Chapter 3. The results indicate the values of the stock variables over 

a period of 24 months. We spoke to multiple researchers [18. 19. 20] in the field 

of software development and took their feedback about the variables we had 

identified, the relationships that we had defined among variables and improved 

our model further. Needless to say, an industry standard software development 

environment has a much bigger scale. The number of resources involved, 

deliverables, product cycles and customer base is much larger. Depending on the 

project, a number of other stock variables can be included in similar projects 

such as: 

 Customer Satisfaction 

 Testing & Quality Control 

 Maintenance & Support 

 Capability of Scaling Performances of the Software 

 Efficiency of Each Development Site 

 Revenue of the Organization  

Furthermore, including these stock variables into the model will entail more 

auxiliary variables and dependencies. Various software companies can identify 

their own development processes with the help of domain experts and create 

models for themselves by supplying data from their past projects. After a model 

has been created and simulated, it can detect effects of changes of system 

variables or unforeseen modifications. Finally, various measures can be taken to 

adapt better, earlier and nullify their unwanted impacts to stock variables and 

other stakeholders. 



46 
 

  

6.3 Challenges 

During the course of the observation and data collection for this project, 

several problems arose that affected the accuracy of the model. One of the main 

problems that we faced was in the process of data collection. In Fall 2013, the 

manager of each team was responsible to collect data from his team members 

each week. At times, he forgot or some of his teammates weren’t punctual. This 

process was improved in Fall 2014 where a real time service such as Google Docs 

was used which provided instant feedback. Using this, people who were 

submitting data could be tracked and can be contacted directly in the event of a 

delay. Team members were contacted directly in case of aberrations to validate 

what was submitted. 

Another uncertainty that we faced was related to the significance of the 

course project under observation. Although it was distributed in nature, the 

participants in Iowa State University teams were full time students and some in 

the other universities were part time students who have other jobs as well. We 

tried to ensure the precision of the system by providing a deliverable schedule 

that mirrored a real life software development lifecycle, followed standard 

development procedures, faced similar problems and took measures to mitigate 

them. 

 

 

 



47 
 

  

 

CHAPTER 7. CONCLUSION & FUTURE WORK 

In our research, we identified the main system variables, stakeholders and 

issues during two iterations of the Distributed Software Development course that 

took place across four countries. We analyzed the behavior of participants, 

schedule of deliverables, various communication issues and responsible causes. 

This helped us identify the relationships between each component and provide 

numerical equations to represent them. We presented the process of building a 

system dynamics model with the identified variables, presented the results and 

also recommended different alternatives to suit various organizations, work 

processes and their interests. 

One of the foremost problems that we faced during the course of our 

research was the lack of data from industry. Although we got the model reviewed 

and made changes according to recommendations from professors and lead 

software developers in the field, we still didn’t get to draw similarities with our 

model and live data from real life software projects. Our model can be improved 

further in the future by involving other related stock, auxiliary variables and 

collecting data from real software projects involving full time human resources. 

This would help us create more relevant models and simulate the model against 

the backdrop of data supplied from the industry. Finally using simulated models, 

we can detect changes in the system and help managers to take preventive 



48 
 

  

measures to lessen the effects of changes and to make informed decisions to 

improve development methodology, product quality and values of stock variables 

for the system. 

  



49 
 

  

REFERENCES 

[1] J.D Herbsleb and D. Moitra (2001), Global Software Development, IEEE 

Software, March/April, USA, p. 16-20. 

[2] A Gupta and S Seshasai (2007), The Critical Role of Information Resource 

Management in Enabling the 24- Hour Knowledge Factory (September 2, 2007). 

Available at SSRN: http://ssrn.com/abstract=1011417 . 

[3] B. Sengupta, S. Chandra & V. Sinha, A Research for Agenda for Distributed 

Software Development, Proceeings of 28
th

 International Conference on Software 

Engineering, Shanghai, China, 2006. 

[4] J. Herbsleb and A. Mockus, An empirical study of speed and communication in 

globally distributed software development. IEEE Transactions on Software 

Engineering, 29(6):481–94, 2003. 

[5] N Ramasubbu and R.K Balan, Globally Distributed Software Development 

Project Performance: An Empirical Analysis. In Proceedings of the 6
th

 Joint Meeting 

of European Software Engineering Conference and the ACM SIGSOFT Symposium 

on the Foundations of Software Engineering (ESEC-FSE ’07), 125-134. New York: 

ACM. Doi: 10.1145/1287624.1287646. 

[6] J.D Sterman, System Dynamics Modeling for Project Management. MIT Press, 

Cambridge, MA available at:  www.web.mit.edu/jsterman/www/SDG/project.html. 

[7] J.A Espinosa, S Slaughter, J Herbsleb & R Kraut, Team Knowledge and 

Coordination in Geographically Distributed Software Development. International 

Conference on Information Systems (ICIS), 2001, New Orleans. 

http://ssrn.com/abstract=1011417
http://www.web.mit.edu/jsterman/www/SDG/project.html


50 
 

  

[8] H Rahmanad and D Weiss, Dynamics of Concurrent Software Development. 

System Dynamics Review, 25(3) (2009), pp. 224-249. 

[9] S Murthy, R Gujrati and S Iyer, Using System Dynamics to Model and Analyze a 

Distance Education Program. In Proceedings of the International Conference on 

Information Technologies Development, 2010, London, United Kingom. 

[10] http://vensim.com/vensim-personal-learning-edition/ 

[11] V. Basili, G. Caldiera and H.D. Rombach, Goal Question Metric Aproach. 

Encyclopedia of Software Engineering, pp. 469-476, John Wiley & Sons, Inc., 1994. 

[12] V. Basili and D. Weiss, Evaluation of a Software Requirements Document by 

Analysis of Change Data, Proc. 5
th

 International Conference on Software Engineering, 

March 1981. 

[13] V. Basili and D. Weiss, A methodology for Collecting Valid Software 

Engineering Data, IEEE Trans. on Software Engineering, November, 1984. 

[14] B.J. Angerhofer an M.C. Angelides, System Dynamics Modeling in Supply 

Chain Management: Research Review. In Proceedings of the 32
nd

 Conference on 

Winter Simulation, 2000, pp. 342-351. 

[15] G.P. Richardson and P. Otto, Applications of System Dynamics in Marketing: 

Editorial. Journal of Business Research, 2008, vol. 61, issue 11, pp. 1099-1101. 

[16] N Ghaffarzadegan, J. Lyneis and G.P. Richardson, How Small System Dynamics 

Models Can Help the Public Policy Process, 2010, System Dynamics Review, vol 27, 

issue 1, pp. 22-44.  

http://vensim.com/vensim-personal-learning-edition/


51 
 

  

 

[17] R.L. Hackbarth, A. Mockus, J.D. Palframan and D. Weiss, Assessing the State of 

Software in Large Enterprise. Empirical Software Engineering, June 2010, Volume 15, 

Issue 3, pp 219-249. 

[18] D.M. Weiss; Personal Communication, December 2014-April 2015. 

[19] Robert Ward; Email Communication, 26
th

 December, 2014. 

[20] James Houghton; Email Communication, 10
th

 February, 2015. 

[21] D Parnas, P Clements, D Weiss: The Modular Structure of Complex Systems. 

Proceedings of 7
th

 International Conference on Software Engineering, March 1984. 

 

 

 

 

 

 

 

 

 

 

 


	2015
	Model of distributed software development using system dynamics
	Sourajit Ghosh Dastidar
	Recommended Citation


	tmp.1452103208.pdf.sI4El

