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ABSTRACT

Recent years have seen advances in graph databases and graph database management sys-

tems (GDBMS). In a typical graph data model, a node represents an entity and an edge

represents a relationship between two nodes. Nodes and edges typically have associated prop-

erties (attributes) and are assigned types for fast query response times. In the application

domains where relationships are of importance, GDBMS increasingly gains popularity since

the relationships can be explicitly modeled and easily visualized in a graph data model. To

measure performance of GDBMS, a number of graph database benchmarks have been proposed.

Nonetheless, these benchmarks are not yet as rigorous as those of relational database manage-

ment systems (RDBMS). Inspired by Wisconsin Benchmark, we propose Cyclone Benchmark

for measuring performance of graph databases in several aspects of which some have not been

investigated in the literature. Our benchmark comes with (1) two data graph models: a simple

model with all nodes of the same node type and a complex model with multiple node types,

(2) data graph generation programs, and (3) Create, Read, Update, and Delete (CRUD) oper-

ations. The data graph generation programs create a graph structure and annotate values of

node and edge attributes in the graph to allow for a study of the impact of attribute selectivity

factors as well as a correlation between attributes. The programs generate a predefined graph

structure, a random graph, or a Kronecker graph that has been shown to model real-world

networks well. The read operations include several graph structure queries.

We measured the average execution times of the proposed CRUD operations on several

synthetic graphs generated by the benchmark with a varying number of nodes from 1,000 to

1,000,000 nodes. The graphs were stored as graphs in Neo4j, a popular native GDBMS, and

as relations in MySQL, a popular RDBMS. For most CRUD operations including the graph

structure queries in our benchmark, MySQL was significantly faster than Neo4j.
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CHAPTER 1. OVERVIEW

Relational databases have been widely used for over 30 years because of the excellent per-

formance in managing large amounts of data. In relational databases, real-world entities and

relationships are stored in relations or tables of predefined schemas. Each table contains one

or more attributes in columns. Each row contains a unique instance of data identified by a

non-empty set of attributes (a key). Users are able to retrieve the data in different ways.

Commonly used relational database management systems (RDBMS) are Oracle Database(1),

Microsoft SQL Server (2), MySQL(3), and IBM DB2(4).

Recently, the increase in data complexity becomes one of the most important issues. A

graph is an adaptive and natural way to explicitly represent connectivity among entities mod-

eled as nodes. An edge between nodes models a relationship between the corresponding entities.

Graph data models for real-world networks such as social networks, transportation networks,

protein-interaction, web mining, semantic webs, and even business networks have been gaining

attention. In data graphs or property graphs, queries about relationships and patterns of rela-

tionships are important and prevelant. In relational data models, relationships are represented

in tables that are implicitly linked together via foreign and primary keys, making it more diffi-

cult to express graph queries such as finding a shortest path between two nodes and finding a

k−hop neighbors of a given node. The limitations of the relational data model have led to the

development of a graph data model and graph database management systems (GDBMS).

A graph data model consists of nodes, edges, and attributes representing properties as-

sociated with the nodes or the edges. A typical node represents one entity. A typical edge

represents a binary relationship between two entities. A more complex graph model allows

for a hyper node and a hyper edge. A hyper node represents a set of nodes whereas a hyper

edge represents relationships among multiple nodes. Example GDBMS are AllegroGraph (6),
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InfiniteGraph (7), IBM System G Graph Databases(8), Hyper- GraphDB (9), Neo4j (10), and

Titan (11). Distributed graph processing libraries such as Apache GraphX(12) and Googles

Pregel(13) have been introduced.

1.1 Graph Database Benchmarks

Even if graph databases are designed to persistently store graph data and manage them,

debates are still on-going whether GDBMS using a native graph storage engine such as Neo4j or

RDBMS as a storage engine is more efficient to support graph queries (14), (15),(16),(17),(18),(20).

Comparison of GDBMS and several GDBMS benchmarks have been proposed (21), (22), (23),

(24), (25), (26), (27), (29), (30). Despite these attempts, to the best of our knowledge, there

are no graph database benchmarks that allow for a scalability study of query performance with

different selectivity factors. A selectivity factor of a query in RDBMS is the ratio of the number

of output rows as a result of the query to the number of input rows. The same concept can

be extended to GDBMS where a node selectivity factor is the ratio of the number of output

nodes as a result of the query to the total number of input nodes. An edge selectivity factor is

the ratio of the number of output edges to the total number of input edges.

1.2 Contributions

Our contributions are as follows.

• We propose Cyclone Benchmark with three key features. First, the benchmark has two

graph data models. A simple model has only one node type for all the nodes. The

attributes and the attribute domains (a set of all possible values for the attribute) are

designed to easily compute the corresponding selectivity factor in order to evaluate the

performance impact. Some attributes have indexes built on them to study the impact

of indexing. The other model has seven node types, which enables a study involving

the connectivity pattern between different node types. Some attributes are correlated to

allow for a study of the impact of correlation between attributes. Second, the benchmark

comes with a program to generate synthetic data graphs. The program performs two
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functionalities as follows. Given input parameters, it generates a graph structure such

as a random graph, a Kronecker graph, or a pre-defined graph structure. Second, its

data generator assigns attribute values to nodes and edges of the graph. Third, the

benchmark has several major types of common Create, Read, Update, and Delete (CRUD)

operations on graph databases. They are bulk insertion, bulk update, bulk deletion, bulk

selection with a desired selectivity factor, bulk selection with multiple edge types, and

graph structure queries including queries focusing on the connectivity pattern of different

node types.

• We compare the performance of Neo4j and MySQL as the storage engine for two graph

datasets of random graphs and Kronecker graphs. In evaluating our graph benchmark,

we chose Neo4j and MySQL for performance evaluation because of the following. Neo4j

is a popular GDBMS whereas MySQL is a popular RDBMS. Neo4j has more important

data management features compared to other GDBMS. Furthermore, it has been used in

practice in several domains in matchmaking, network management, software analytics,

scientific research and organizational project management. Neo4j supports a declara-

tive query language called Cypher as well as Java API for faster graph processing. It

uses native graph query and storage engines and supports indexing, cost-based query

optimization, and transactions.

1.3 Organization

The remainder of the thesis is organized as follows. In Chapter 2, we discuss relatated works

on RDBMS and GDBMS benchmarks. Chapter 3 presents the proposed graph models and

CRUD operations in Cyclone Benchmark. Chapter 4 provides the details of the implementation

and Chapter 5 provides the experimental result of the benchmark on Neo4j and MySQL.

Chapter 6 presents the conclusion and the description of the future work.
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CHAPTER 2. REVIEW OF LITERATURE

In this chapter, we review some well-known benchmarks for relational databases, especially

Wisconsin Benchmark, which inspired our initial design of our benchmark and benchmarks for

graph databases.

2.1 Benchmarks for RDBMS

Wisconsin benchmark (31) was the first successful RDBMS benchmark. It consists of query

suites and relation schemas that allow for studying of different selection and join selectivity

factors. As shown in Figure 2.1, a typical relation in Wisconsin benchmark consists of a number

of columns of either integer type or string type. The domain for each column is defined. For

instance, the attribute “unique1” has the attribute values ranging from 0 to the number of

tuples - 1 and ensures that each value is unique. The values of‘ the attribute ‘two” are either 0

or 1; the values of the attribute “four” range from 0 to 3; these values are randomly assigned

to tuples. To issue a query with a certain selectivity factor, it is easily done by using different

attribute values. For instance, the predicate ”four = 3” returns 25% of the tuples regardless of

the cardinality of the relation. This benchmark was popular for evaluating early commercial

RDBMS and parallel RDBMS.

Later, Transaction Processing Performance Council’s TPC-C benchmark (32) standard was

developed. It supports concurrent transactions that were not supported in the Wisconsin bench-

mark. TPC-C involves a mix of five concurrent transactions of different types and complexity

either executed immediately or queued for deferred execution. The database is comprised of

nine types of relations with a wide range of record and population sizes. It simulates a complete

computing environment where a population of users executes transactions against the database
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Figure 2.1 Attribute specifications of Wisconsin benchmark(31)

being benchmarked. The benchmark is centered around the principal activities (transaction-

s) of an order-entry environment. These transactions include entering and delivering orders,

recording payments, checking the status of orders, and monitoring the level of stocks at the

warehouses. While the benchmark portrays the activity of a wholesale supplier, TPC-C is not

limited to the activity of any particular business segment, but rather represents any industry

that must manage, sell, or distribute a product or service. TPC-C provides a performance

measurement in a single unit, transactions per minute (tpmC), making it easy to compare

various RDBMS products.

Other RDBMS benchmarks include Bristlecone (33), or Open Source Development Lab

Data Base Test Suite (OSDL-DBTS) (34). These benchmarks focus on business applications

suitable for RDBMS.

2.2 Benchmarks for GDBMS

With growing interests in GDBMS, several GDBMS benchmarks were proposed. LinkBench-

mark (29) contains traces from the production database of Facebook’s social graph data. The

benchmark covers standard insert, update and deletion operations as well as key lookup, range

and count queries. However, it missed a important aspect of queries which was related to graph
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structure queries such as shortest paths and centrality. This weakness made this benchmark

vulnerable to other benchmarks which covered queries related to graph structures.

The Linked Data Benchmark Council (LDBC) (35) proposes Social Networks Benchmark

(SNB) with three categories of workloads: interactive workload, business intelligence workload,

and graph analytic workload. Only the interactive workload and business intelligence workload

were completed. The remaining graph analytics workload is still under development. The SNB

benchmark provides a data generator that generates a synthetic data set of a social network

akin to Facebook. The main entities in this data set are person, forum, posts, comments, tags,

universities and companies, cities, countries and continents. The relationships could be between

different types of entities or among the same type of entities. For instance, person could be a

friend with another person or a person could publish a forum, a post, or a comment. A forum, a

post, or a comment should have an associated tag. The benchmark only uses read-only queries.

Bulk insertion, deletion and update queries are absent.

HPC Scalable Graph Analysis Benchmark (36) consists of four operations on a weighted

directed graph with node degrees that follow a power-law distribution. The data generator

of this benchmark generates nodes and edges with a positive weight value. The benchmark

supports four types of operations: bulk insertions, retrieval of edges with the largest weight,

extraction of a k-hop path from a given edge in an edge set, and extraction of a set of edges

with the highest betweenness centrality metric that identifies vertices of key importance along

shortest paths of the graph. The benchmark does not include many other graph operations

such as updates. As the nodes do not contain attributes and the edges have only one attribute:

weight, this benchmark does not have queries which focus on selection of node and edge at-

tributes, which is important for GDBMS. The graph generated is a Recursive MATrix (R-MAT)

power-law graph and is scalable by the adjusting input parameters.

McColl et al. (24) evaluated eleven open-source GDBMS (Neo4j, Titan, OrientDB, Info-

Grid, FlockDB, ArangoDB, InfiniteGraph, AllegroGraph, Dex, Graphbase, and HyperGraphD-

B) using a single-source shortest path algorithm implemented as a level-synchronous parallel

breadth-first graph traversal, Shiloach-Vishkin connected components algorithm, PageRank al-

gorithm, parallel edge insertions and deletions (24). Four data sets (1K node, 8K edges), (32K
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nodes, 256K edges), (1M node with 8M edges) and (16M nodes, 256M edges) were generated

using the R-MAT generator (37). The data generator of the benchmark does not generate

attributes of node or edges. Therefore, the benchmark does not have queries on node or edge

attributes.

XGDBench (25) is an extension of the Yahoo Cloud Serving Benchmark for graphs stored

on a cloud. The data generator of this benchmark generates a synthetic undirected graph with

a node degree distribution following the power-law distribution and with node attributes of

binary values. The generated graph does not have edge attributes. The queries are centered

around a vertex such as reading a vertex and its attributes, inserting a vertex, updating all

attributes of a vertex, deleting a vertex, scaning neighbors of a vertex, and a breadth-first

traversal given a vertex.

Waterloo Graph Benchmark (WGB) (26) consists of a data generator that generates a graph

with the power-law node degree distribution. The benchmark assumes that a shortest path

between any two nodes in the graph is already calculated. WGB workload consists of read-only

queries (i.e., find matching nodes or edges, find k-hop neighbors using the known shortest path,

reachability between any two nodes, reachability graph pattern matching), update operations

that change the graph structure and node or edge attributes, and iterative queries involving

computation over multiple passes of data. Two iterative queries PageRank and Clustering

are included. WGB benchmark does not explicitly focus on characteristics of edge or node

attributes to obtain a desired selectivity factor, but does indicate that it could be extended to

support such a study.

Vicknair et al.(18) used a directed acyclic graph (DAG) as the data set. They only com-

pared graph structure queries. M. Miller et al. (28) compared performance between Neo4j

and PostgreSQL on the shortest path algorithm on the OpenStreetMap road network. Jindal

compared PageRank and Shortest Paths performance of Neo4j—a native GDBMS, MySQL—a

row oriented RDBMS, Vertica—a column-oriented RDBMS, and VolotDB—a main-memory

RDBMS (16).

Sotirios et al.(19) compared the performance of several GDBMS on the problem of com-

munity detection, which applied a well-known community detection algorithm for modularity
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optimization, the Louvain method, as well as three other supplementary workloads such as

the creation and traversal of the graph. They compared Titan, OrientDB and Neo4j on both

synthetic and real networks.

Table 2.1 shows a comparison of popular benchmarks for graph databases. We compare

those benchmark from both queries they have and data set they use, as well as the workload

type.

Table 2.1 Comparison of Graph Database Benchmarks

Fields LDBC HPC McColl XGDBench WGB Sotirios

Bulk Insertion/Deletion × × ! × × !

Single Insertion/Deletion ! × × ! ! !

Bulk Selection/Update × × × × × ×

Single Seletion/Update ! × × × ! ×

q
u

er
ie

s

Shortest Path × × ! × × !

BFS/DFS × ! ! × × ×

Multiple Node Types ! × × × × ×

Centrality/Component ! ! ! × ! !

K-hop Neighbours × × × × ! ×

Scalable ! ! ! × ! ×

Synthesized ! ! ! × ! !

d
at

a

Directed ! ! × × × ×

Weighted × ! × × × ×

Transaction × × × ! × ×
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CHAPTER 3. PROPOSED WORK: CYCLONE BENCHMARK

In this chapter, we present the design of the Cyclone Benchmark for graph databases. The

benchmark consists of two graph models, the data graph generator program, and a workload

of common CRUD operations.

We chose to have our benchmark generate a synthetic data graph to be able to control

the sizes of the data sets to enable a study of the scalability of the DBMS being evaluated.

Furthermore, we could model characteristics of the real-world data and common operations on

the data so that the results from the benchmark can be generalized to real-world problems that

possess the same characteristics. Lastly, we could investigate other aspects that are important

to the DBMS performance that may not be present in a particular real-world data set.

The first graph data model contains only one node type and five edge types as shown in

Figure 3.1. We aim for the design of the attributes of nodes and edges of the generated data

graph to enable studies of the impact on the DBMS performance given different selectivity

factors of nodes and edge attributes, indexing versus no-indexing, and different data types. For

this model, the benchmark can generate two graph structures: random graphs and Kronecker

graphs that simulates the power-law distribution of node degrees in real networks. The workload

for this model consists of seven major types of common CRUD operations on graph databases.

They are bulk insertion, bulk update, bulk deletion, bulk selection with a desired selectivity

factor, bulk selection with multiple edge types, and graph structure queries.

The second graph data model has seven node types and ten edge types as shown in Figure

3.2. The distribution of number of nodes for each node type and the distribution of edges in

each edge type follows a Zipf distribution with a tunable parameter, which we will discuss in

detail later. A pre-defined graph structure is used to connect different node types. We designed

a query suite that focuses on the connectivity patterns among these node types.
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Figure 3.1 Single node type graph model with five different edge types; each edge type has

the same attributes

3.1 Graph Model with Single Node Type

Our graph model (schema) is shown in Figure 3.1. The model consists of one type of

nodes and five types of edges. We name the edge types “relation” to model different types of

relationships between nodes commonly seen in real-life networks.

The data graph generator can create an Erdos-Renyi random graph (40). It also accepts

Kronecker graphs and graphs with the power-law distribution of node degrees as input. We

will discuss the detail of the implementation in Chapter 4. These two latter graphs were shown

to model real-world networks well. The data graph generator creates attributes of nodes and

edges, which allows for studying the impact of different selectivity factors explicitly. This

distinguishes our benchmark from all the other existing graph benchmarks.
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Table 3.1 Attributes of Nodes

Attribute Name Type Range of Values Characteristics Comment

uniqueIdx Integer 0 ∼ |V | − 1 Unique Primary key, Index

uniqueNdx Integer 0 ∼ |V | − 1 Unique Candidate key, No Index

Ten Integer 0 ∼ 9 Randomly assigned No Index

StringIdx String “aaaa” ∼ “jjjj” Randomly assigned Index

StringNdx String “aaaa” ∼ “jjjj” Randomly assigned No Index

The workload consists of bulk selection, insertion, deletion, and update with different se-

lectivity factors, bulk selection with multiple edge types, and graph structure queries.

3.1.1 Data Generator for Attributes of Nodes and Edges

Given the underlying graph G = {V,E} where V is a set of nodes and E is a set of edges,

we assign all nodes in the graph to the same node type. |V | and |E| denote the number of

nodes and edges in the graph, respectively. All edges in the graph are divided evenly among

the five edge types. Therefore, the number of edges with each edge type is 20% of the total

number of edges in the graph. It is easy to expand the model to include more edge types. As

a real-fie example, the nodes in the graph model could represent different cities and different

edge types could represent the different ways for traveling from one city to another. Traveling

by plane, by train, by car, by bicycle and on foot could be five different edge types.

To generate actual values of node attributes and edge attributes, we adapted the idea from

the Wisconsin benchmark to generate the attribute values where different selectivity factors can

be easily specified. Table 3.1 summarizes the attributes and the domains of these attributes.

For each node, the values of attributes uniqueIdx and uniqueNdx are unique integers

between 0 and |V |−1 in the graph. We use two different attributes to enable exploration of the

impact of indexing on node attributes. We set uniqueIdx to have an associated index whereas

uniqueNdx is not associated with any index. Since the values of uniqueIdx and uniqueNdx

are unique, we can study a very fine grained selectivity factor such as 1/|V | or 2/|V |, and so

on.
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Table 3.2 Attributes of Edges

Attribute Name Type Range of Values Characteristics Comment

Ten Integer 0 ∼ 9 Randomly assigned No Index

StringIdx String “aaaa” ∼ “jjjj” Randomly assigned Index

StringNdx String “aaaa” ∼ “jjjj” Randomly assigned No Index

The attribute ten is an integer randomly chosen from [0,9]. This is to study the impact of

performance given coarse selectivity factors on node attributes. For instance, to have a 10%

node selectivity factor, we choose any one of the attribute values. For a 20% node selectivity

factor, we choose any two of the attribute values, for instance, ten = 0 or ten = 1. The attribute

stringNdx is a string randomly chosen from “aaaa” to “jjjj,” inclusive. The attribute stringIdx

has values similar to the attribute stringNdx, but has an index associated with it. The integer

and string data types are two most common types of attributes in graph databases. We want

to see whether the underlying DBMS performs differently for integers and strings or not.

Each edge has three attributes (ten, stringNdx, and stringIdx) as shown in Table 3.2 to

control different edge selectivity factors. The attribute ten is an integer randomly chosen from

[0,9]. similar to the attribute ten of a node. For example, the query choosing edges in relation1

with the edge attribute ten = 0 returns 10% of the edges in that relation. A query with the

edge attribute ten < 2 returns 20% of the edges in that relation.

3.1.2 Workload

The workload currently consists of eleven queries categorized into six major categories: bulk

selection, insertion, deletion, update with selectivity factor, bulk selection with multiple edge

types, and structure queries.

3.1.2.1 BI:Bulk Insertion

We insert new nodes and edges that are not duplicates of existing nodes and edges in the

graph. The numbers of new nodes and new edges are specified in terms of the percentage of

number of existing edges and nodes, respectively before bulk insertion begins.
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3.1.2.2 BU:Bulk Update

This operation includes updates of node attributes and edge attributes. The update opera-

tion changes the value of the attribute ten for nodes and edges. By using a different expression

ten < x or ten > x where x is a certain value, this operation could touch different numbers of

nodes or edges, resulting in a different selectivity factor. For instance, the expression ten < 2

results in 20% of the nodes or edges being updated.

3.1.2.3 BD:Bulk Deletion

This operation deletes all the new edges and new nodes added by the BI operation. There-

fore, it should be performed after BI.

3.1.2.4 BS-S:Bulk Selection with Selectivity Factor

This category consists of bulk selection of nodes and bulk selection of edges in relation1

based on attribute values for different selectivity factors.

To study GDBMS indexing performance on an integer attribute, we use a condition on

the attribute uniqueIdx to get different selectivity factors ranging from 0% to 100%. For the

evaluation without indexing on integer, we use a condition on the attribute uniqueNdx to

indicate a different selectivity factor.

Similarly, for evaluation involving strings without any index, we use stringNdx. Because

the values of the strings are one of “aaaa” to “jjjj”, we can query with different selectivity

factors in multiple of 10. For instance, a query with 10% selectivity factor is done by specifying

the condition stringNdx=“aaaa’.’ To get a higher selectivity factor, choose more values to

include in the conjunctive condition.

3.1.2.5 BS-M: Bulk Selection involving Multiple Relations

• Two relation bulk selection (BS −M : 2R): Given edge types x and y, find all nodes

with both out-going edge type x and edge type y. A real-life example for this query is to

find all people who play sports and attend a college.
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• Find orphan nodes (BS −M : Orphan):We have five queries involving finding different

classes of orphan nodes. They are orphan nodes not having incoming edges of “relation1”

type, orphan nodes not having incoming edges of “relation1” and “relation2”, orphan

nodes not having incoming edges of “relation1”, “relation2”, and “relation3”, orphan

nodes not having incoming edges of “relations 1 to 4”, and orphan nodes without any

incoming edges. A real-life example is to find all the cities that cannot be reached by

plane or all the cities that cannot be reached by train or by plane.

3.1.2.6 SQ: Graph Structure Queries

We use a capital variable such as V to denote a node type and E for an edge type. We use

a variable v to denote a particular node and e to denote a particular edge.

• Find k-hop neighbors of a given node (SQ : k −Hop)

Given a start node v and an edge type E, find all the nodes at a distance of k edges in

an out-going edge type E from the start node v. For instance, find a friend of friend of

friend of a given person.

• Rank of neighbors (SQ : Ranking)

Given a start node v and two edge types Ei and Ej , return k neighbors of v with the

edge type Ei with the highest number of out-going edges of edge type Ej .

For instance, list k friends of a given person ranked by the number of sports each friend

plays.

• Find a shortest path among a given pair of nodes (CN : SP )

Given a start node vi and an end node vj , find a shortest path from vi to vj and return

the length of the path.

• Compute a degree centrality of a given edge type (CN : Central).

Return a single node with the highest number of incoming edges of a given edge type.

For instance, find an article that most number of people cites.
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Figure 3.2 The complex graph model with seven different node types and ten different edge

types

• Find all nodes with k out-going degree of a given edge type (CN : degree) For example,

it can be used to find people who have the same number of friends.

3.2 Graph Model with Multiple Node Types

The graph model with a single node type is suitable for queries with selectivity factors.

However, it cannot model complex relationship types in reality. For example, a common social

network usually contains several types of entities such as persons, tags, messages and photos,

which are connected by multiple relation types between different entity types. Therefore, a

good benchmark should also support queries involving multiple node and relationship types.

3.2.1 Graph Model

The multiple node type graph model contains seven different node types and ten different

edge types. Each node type and edge type has the same attribute types for scalability study

in Figure 3.2.

The design guideline for the complex graph model is to make the graph structure with

connections among different node types. For instance, Node5 has three different outgoing edge
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types. It could represent a kind of entity which has three different relationships with other

entities. The long link in our graph model from Node5->Node3->Node2->Node1->Node4

could enable us to study the connectivity path which involves as many as five node types. We

believe it is enough for most cases in real world networks (35).

In order to make the graph model flexible, we apply a Zipf distribution to compute the

number of nodes for each node type. The Zipf distribution can be used to account for the

relative popularity of a few members of a population and the relative obscurity of other members

of a population. Examples include the following. The world population lives in several large

cities, a greater number of medium-sized cities, and a vast number of small towns. Another

example is that a few websites get lots of hits; a greater number of websites gets a moderate

number of hits. A vast number of websites hardly get any hits at all. When the Zipf factor

is zero, all node types get the same number of nodes. If the Zipf factor is one, the number of

nodes for each node type skews significantly, leaving many more number of nodes for one node

type while the rest have few number of nodes. Given the Zipf factor and the total number

of nodes as parameters, the benchmark determines the number of nodes for each node type

according to the Zipf distribution.

Among ten different edge types, “Edge10” is the only one connecting nodes in the same node

type. We use randomness when generating edges of “Edge10” type. For the other edge types,

we also apply a Zipf distribution. Take “Edge8” as an example. We first evenly divide “Node1”

into 100 groups where each group has a different rank. For each “Node2”, we choose a node in

“Node1” and generate an “Edge8” with a probability which follows the Zipf distribution. In

other words, the higher ranked nodes have a higher probability to be and vice versa. It is also

the common case in reality. For example, “Node2” type represents cities and “Node1” type

represents the people. Not all cities have the same population. Some cities have more people

and some cities have fewer people.

3.2.2 Data Generator for Attributes of Nodes and Edges

Besides the application of the Zipf distribution, we also use the same data generator as

discussed in Chapter 3.1.1 to generate the attributes for nodes and edges. Each node has seven
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attributes: UniqueIdx, UniqueNdx, Ten, StringIdx, StringNdx, CorX, and CorY. Each edge

has three properties: Ten, StringIdx and StringNdx. All these attributes follow the same design

as in the simple graph model with a single node type except CorX and CorY. The values of the

two attributes are of “double” type and are generated in pairs. Given a correlation coefficient

which shows how strongly pairs of variables are related, we artifact a set of pair of double

numbers and assign the pair randomly to a node.

3.2.3 Queries

Due to different edge types in this graph model, we design a workload involving a series

of complex queries. These queries touch a significant amount of data, often a two-step hop

in Node1 with Edge10 and a two-step hop in other node types with two different edge types.

These queries typically start at a single point and the query complexity is sublinear to the

data set size. We design 7 different queries in this complex interactive (CI) query suite, which

we believe is sufficient to capture characteristics of most real-world queries. These 7 queries is

labeled from “Q1” to “Q7” respectively.

• Q1: Given a node v with the type “Node1”, find all nodes with the “Node4” type which

are connected with v’s neighbor(s) by edges of “Edge10” type, “Node4.ten” is less than

2, ordered by the values of Node4.ten.

For instance, given a person, find the city (with less than 2 malls) where his/her friends

lives in. In this example, Node1 represents persons and Node4 represents cities. Edge10

represents the friendships.

• Q2: Given a node v of type “Node1”, find the neighbor(s) of v in the relationship of

“Edge10” that are connected with a node of type “Node2” whose the attribute “Ten”

value is less than 5 and greater than 3 and those nodes are also connected with a node

of type “Node3” where “Ten = 0”.

For instance, given a person (Node1 type), find her friends who live in a city which has

less than 5 malls and but more than 2 malls, and the city has a living standard rating of

0.
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• Q3: Given a node v of type “Node1”, find v’s neighbors and v’s neighbors of neighbors

in “Edge10”, who are connected with a node of type “Node2”, ordered by the number of

incoming edges from “Node3” nodes.

For instance, given a person, find her friends who live in a city, ordered by the number

of cars in the city.

• Q4: Given a node v of type “Node1”, in all the nodes with “Node2” type which is

connected with v, find a node of type “Node3” which is order by “Ten” and limit the

returned results to 20.

For instance, edge10 is friendship, given a person, we find the comments he/she made for

those movie he/she watched. Those comments is ordered by the rank she made for the

movie.

• Q5: Given a node v of type “Node1” and a node a of type “Node3” with “Ten = 1”, find

the neighbors of v, which are connected to a through a node of type “Node 2”.

For instance, given a person and a tag, find all the comments made by her friends which

is under the tag.

• Q6: Given a node v of type “Node1”, find all nodes of type “Node6” which are connected

with v’s neighbors in “Node1” through a node of “Node2”, ordered by the number of

outgoing edges to “Node2” nodes. For instance, given a person, find all the post her

friends made, ordered by the number of replies made to the post.

• Q7: Given a node v of type “Node1, find the neighbors of v in “Node1” that are connected

with a node of type “Node7”. For instance, given a person, find all her friends who have

made a comment.
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CHAPTER 4. IMPLEMENTATION

In this chapter, we present the implementation of the benchmark. There are two parts to

the implementation. The first part is a data generator written in Java for generating comma

separated values (CSV) files of data and importing them into Neo4j and MySQL, respectively.

The second part is CRUD statements in Cypher for Neo4j and in SQL for MySQL.

4.1 Graph Model with Single Node Types

4.1.1 Storing Data Graphs using RDBMS

We define six relational schemas as follows.

Node (uniqueIdx: int, uniqueNdx: int, ten: int, stringIdx: String, stringNdx: String)

RelationX (AuniqueIdx: int, BuniqueIdx: int, ten: int, stringIdx: String, stringNdx: String)

where X ∈ {1, 2, 3, 4, 5}.

The Node table is to store nodes and attributes of nodes as aforementioned. The remaining

tables are to store edges for different edge types. The Relation1 table is for the edge type

Relation1. The Relation2 table is for the edge type Relation2 and so on. The primary key

attribute of the Node table is uniqueIdx and has an index associated with it. As we use the

InnoDB storage engine, the only index supported is a B-tree clustered index.

For each of the Relation table, the primary key is composed of the primary key of the start

node and the destination node. Each permutation of two nodes is allowed in the relation table

once.

To avoid broken edges in a graph database, deleting a node without deleting its associated

relations is not allowed. To enforce this rule in RDBMS, we use foreign keys in all the relation

tables with the constraints on delete cascade on update cascade for each table.
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4.1.2 Implementation of Queries in Neo4j and MySQL

4.1.2.1 BI:Bulk Insertion and BD:Bulk Deletion

We use SQL INSERT and DELETE statements in MySQL and Cypher CREATE and

DELETE statements in Neo4j to implement bulk insertion and bulk deletion. Let x be the

desired selectivity factor. In this case, it is the percentage of additional nodes to be inserted to

the total number of existing nodes in the graph. The bulk insertion of nodes includes INSERT

statements for x% additional nodes with the values of the attribute uniqueIdx from N to

bN ∗ 1.xc − 1 and DELETE statements for these nodes.

4.1.2.2 BU:Bulk Update

• Update node attributes: We used the values of attributes uniqueIdx and uniqueNdx to

control selectivity factors when indexing and no indexing were used, respectively. The

updated attribute is ten, and we intentionally updated the value of this attribute to a

value that is outside of the domain of this attribute.

Cypher: MATCH (n) WHERE n.uniqueIdx < 500 SET n.ten = 11

MATCH (n) WHERE n.uniqueNdx < 500 SET n.ten = 11

SQL: UPDATE node SET node.ten = 11 WHERE node.uniqueIdx < 500

UPDATE node SET node.ten = 11 WHERE node.uniqueNdx < 500

• Update edge attributes: We used the attribute ten of the edge type “Relation1” to

control the selectivity factor and update the value to a value outside of the domain

of this attribute. The following examples show the selectivity factor of 10% and 20%,

respectively.
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Cypher: MATCH ()-[r:relation1]->() WHERE r.ten>8 SET r.ten=11

MATCH ()-[r:relation1]->() WHERE r.ten>7 SET r.ten=12

SQL: UPDATE relation1 SET relation1.ten = 11 WHERE relation1.ten > 8

UPDATE relation1 SET relation1.ten = 12 WHERE relation1.ten > 7

4.1.2.3 BS-S:Bulk Selection with Selectivity Factor

• Selection of nodes: We used the value of the attributes uniqueIdx and uniqueNdx to

control selectivity factors when indexing and no indexing were used, respectively. For

instance, in the following statement, the selectivity factor is 500/(N - 1), where N is the

total number of nodes.

Cypher: MATCH (n) WHERE n.uniqueIdx < 500 RETURN n

MATCH (n) WHERE n.uniqueNdx < 500 RETURN n

SQL: SELECT * FROM node WHERE uniqueIdx < 500

SELECT * FROM node WHERE uniqueNdx < 500

• Selection of edges: As shown in the following, when the expression “r.ten < 1” is used,

the selectivity factor is 10%. When the expression “r.ten < 2” is used, the selectivity

factor is 20%.

Cypher: MATCH ()-[r:relation1]->() WHERE r.ten < 1 RETURN r

MATCH ()-[r:relation1]->() WHERE r.ten < 2 RETURN r

SQL: SELECT * FROM relation1 WHERE ten < 1

SELECT * FROM relation1 WHERE ten < 2
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4.1.2.4 BS-M: Bulk Selection involving Multiple Relations

• Two relation bulk selection (BS − M : 2R): We used two different edge types as an

example for the query we wrote.

Cypher: MATCH (n)-[:relation1]->(c),(n)-[:relation2]->(d)

RETURN distinct n.uniqueIdx

SQL: SELECT x.AuniqueIdx FROM relation1 x, relation2 y

WHERE x.AuniqueIdx = y.AuniqueIdx GROUP BY x.AuniqueIdx

• Find orphan nodes (BS −M : Orphan): As examples, we show queries involving two

edge types. In our experiments, we implemented queries involving one edge type, two

edge types, three edge types, four edge types, and five edge types.

Cypher MATCH (n) WHERE NOT (()-[:relation1]->(n)

OR ()-[:relation2]->(n)) RETURN n.uniqueIdx;

SQL SELECT uniqueIdx FROM node WHERE uniqueIdx IN (

SELECT uniqueIdx u1 FROM node WHERE NOT EXISTS

(SELECT 1 FROM relation1 WHERE

node.uniqueIdx = relation1.BuniqueIdx UNION

SELECT 1 FROM relation2 WHERE

node.uniqueIdx = relation2.BuniqueIdx))

4.1.2.5 SQ: Graph Structure Queries

• Find k-hop neighbors of a given node (SQ : k−Hop): In Cypher, we could easily change

the value of “k” in the query for the edge type of interest. In the following examples, we

use “k = 2.”
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Cypher: MATCH (n-{uniqueIdx:0})-[:relation3∗k]->(m)

RETURN DISTINCT m.uniqueIdx

SQL (k = 2): SELECT DISTINCT b.BuniqueIdx FROM relation3 a, relation3 b

WHERE a.bunique2 = b.aunique2 AND a.aunique2 = 0

• Rank of neighbors:

Cypher: MATCH (n)-[:relation1]->(c)-[:relation2]->(b) WHERE n.uniqueIdx = 0

WITH COUNT(b) AS number, c ORDER BY number DESC

RETURN c.uniqueIdx, number LIMIT k

SQL: SELECT AuniqueIdx, COUNT(DISTINCT BuniqueIdx) AS rank FROM

(SELECT r2.AuniqueIdx, r2.BuniqueIdx FROM relation2 r2 WHERE

r2.AuniqueIdx IN

(SELECT r1.BuniqueIdx FROM relation1 r1 WHERE r1.AuniqueIdx = 0)

) AS x GROUP BY AuniqueIdx ORDER BY rank DESC LIMIT k

• Find a shortest path between a given pair of nodes (SQ : SP ): Given a start node v1 and

the end node v2, find the shortest path from v1 to v2 and returns the length of the path.

Neo4j supports this type of query in Cypher. However, there is no support in MySQL.

We implemented the query as a stored procedure so that the computation is done inside

the database server, avoiding unnecessary communication overhead if using a JDBC or

ODBC implementation. The Cypher query that finds a shortest path between the start

node with uniqueIdx = 4 and the end node with uniqueIdx = 70 and returns the length

of the found shortest path is shown below.

Cypher: MATCH (a:node{a.uniqueIdx = 4}), (b:node{b.uniqueIdx = 70})

WHERE p = shortestPath((a)-[∗]- (b)) RETURN length(p)
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• Compute a degree centrality of a given edge type (SQ : Central). We computed the

degree centrality for each of the five different edge types. We take “relaiton1” as an

example query.

Cypher: MATCH p = ()-[:relation1]- >n RETURN n,count(p)

as count ORDER BY count DESC LIMIT 1

SQL (k = 2): SELECT BuniqueIdx, count(BuniqueIdx) as counted

FROM relation1 GROUP BY BuniqueIdx ORDER BY

counted DESC LIMIT 1

• Find all nodes with k out-going degrees of a given edge type (SQ : degree). We used

“relation1” as an example.

Cypher: MATCH (n)-[:relation1]->(c) WITH count(n) as number,

n WHERE number = k RETURN n.uniqueIdx

SQL: SELECT x.uniqueIdx FROM node x, relation1 r1 WHERE

x.uniqueIdx = r1.BuniqueIdx GROUP BY x.uniqueIdx

HAVING COUNT(DISTINCT r1.AuniqueIdx) = k

4.2 Graph Model with Multiple Node Types

4.2.1 Storing Data Graphs using RDBMS

We define 7 tables for 7 node types and 10 tables for 10 different edge types. The schemas

are as follows:

Schemas for 7 different node types: NodeX (where X = 1, 2, 3, 4, 5, 6, 7)

(uniqueIdx: int, uniqueNdx: int, ten: int, stringIdx: String, stringNdx: String, corX: double,

corY: double)
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Schemas for 10 different table types: EdgeX (where X = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

(AuniqueIdx: int, BuniqueIdx: int, ten: int, stringIdx: String, stringNdx: String)

Each NodeX table stores nodes and attributes of nodes of its node type as aforementioned.

The remaining tables are to store edges for different edge types. The primary key of each

NodeX table is uniqueIdx and has an index associated with it. For each EdgeX table, the

primary key is composed of the primary key of the start node and the destination node. Each

permutation of two nodes is allowed in the Edge table once.

To avoid broken edges in the graph database, deleting a node without deleting its associated

relationships is not allowed. To enforce this rule in RDBMS, we use foreign keys in all the

Edge tables with the constraints on delete cascade on update cascade, for each table. Since

the storage of nodes is unsorted, we use a clustered index on the attribute uniqueIdx.

4.2.2 Implementation of Queries in Neo4j and MySQL

• Q1: Given a node n of type “Node1”, find all the nodes of type “Node4” which are

connected with n’s neighbor(s) via “Edge10” type and the values of Node4.ten are less

than 2 and ordered by the values of Node4.ten.

Cypher: MATCH (a:node1 {UniqueIdx : 1}) -[:edge10]-> (n:node1), (n)-[:edge9]->(b:node4)

WHERE b.ten < 2 RETURN n ORDER BY b.ten

SQL : SELECT e3.node4ID, n.uniqueIdx, n.ten

FROM edge10 e1 JOIN edge10 e2 ON e1.BuniqueIdx = e2.AuniqueIdx JOIN edge9 e3

ON e2.BuniqueIdx = e3.AuniqueIdx JOIN node4 n

ON e3.BuniqueIdx = n.uniqueIdx WHERE e1.AuniqueIdx = 1 ORDER BY n.ten;

• Q2: Given a node n of type “Node1”, find the neighbors of n in “Edge10” type that is

connected with a node of type “Node2” whose the value of the attribute ten is between

3 and 5 exclusive and those nodes are also connected to a node of type “Node3”.
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Cypher: MATCH (n2)-[r:edge8]->(n1:node1),

(n:node1{UniqueIdx:1})–>(n1),

(n3:node3)–>(n2: node2)

WHERE n3.ten = 0 and n2.ten <5

and n2.ten > 3 with n1,

COUNT( r) AS number

ORDER BY number RETURN n1;

SQL: SELECT COUNT(e4.BuinqueIdx), e4.BuniqueIdx

FROM edge8 e1 JOIN node2 n2

ON n2.uniqueIdx = e1.AunqiueIdx JOIN node1 n1

ON e1.BuniqueIdx = n1.uniqueIdx JOIN edge4 e3

ON e3.BuniqueIdx = n2.uniqueIdx JOIN node6 n3

ON e3.AuniqueIdx = n3.uniqueIdx JOIN edge10 e4

ON n1.uniqueIdx = e4.AuniqueIdx

WHERE n1.uniqueIdx = 1

AND n2. ten < 5 and n2.ten > 3 and n3.ten = 0

GROUP BY e4.BuniqueIdx

ORDER BY COUNT(e4.BuniqueIdx);

• Q3: Given a node n of type “Node1”, find n’ s neighbors and n’s neighbors of neighbors

in “Edge10” relationship, who are connected with a node of type “Node2”, ordered by

the number of incoming edges from node type “Node3”.
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Cypher: MATCH (post:node3)-[r1:edge7]->(forum:node2)

-[r2:edge8]->(friend:node1)<-[:edge10∗0..2]-(person:node1{uniqueIdx:1})

WITH forum, COUNT(r1)

AS number ORDER BY number DESC

RETURN forum.uniqueIdx, number

SQL: SELECT e7.BuniqueIdx, COUNT(e7.AuniqueIdx) AS number

FROM edge8 e8 JOIN edge7 e7

ON e8.AuniqueIdx = e7.BuniqueIdx JOIN

(SELECT DISTINCT ex.AuniqueIdx

FROM (SELECT DISTINCT e2.BuniqueIdx

FROM edge10 e1 INNER JOIN edge10 e2

ON e1.BuniqueIdx = e2.AuniqueIdx WHERE e1.AuniqueIdx = 1

UNION SELECT DISTINCT e2.BuniqueIdx

FROM edge10 e1 INNER JOIN edge10 e3

ON e1.BuniqueIdx = e3.AuniqueIdx JOIN edge10 e2

ON e3.BuniqueIdx = e2.AuniqueIdx

WHERE e1.AuniqueIdx = 1) newtable JOIN edge8 ex

ON newtable.BuniqueIdx = ex.BuniqueIdx) newnewtable

ON e7.BuniqueIdx = newnewtable.AunqiueIdx

GROUP BY e7.BuniqueIdx ORDER BY number DESC;

• Q4: Given a node n of node type “Node1”, in all the nodes of “Node2” type which are

connected with n, find a node with “Node3” which is order by the value of Ten.
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Cypher: MATCH (n3:node3)-[:edge7]->(n2:node2)-[r:edge8]->(n1:node1{UniqueIdx:1})

RETURN n3.uniqueIdx ORDER BY n3.ten

SQL: SELECT e7.AuniqueIdx FROM node3 n3 JOIN edge7 e7

ON n3.uniqueIdx = e7.AuniqueIdx JOIN node2 n2 ON e7.BuniqueIdx = n2.uniqueIdx

JOIN edge8 e8 ON n2.uniqueIdx = e8.AuniqueIdx WHERE e8.BuniqueIdx = 1

GROUP BY e7.AuniqueIdx ORDER BY n3.ten;

• Q5: Given a node V of node type of “Node1” and a node A of node type of “Node3” with

“Ten = 1”, find the neighbors of V in the relationship of “Edge10”, which are connected

to A through a node of “Node 2”.

Cypher: MATCH (n3:node3)–>(n2:node2)-[r:edge8]->

(n1:node1)<–(n:node1{uniqueIdx:1})WITH n1, COUNT(r) AS number

ORDER BY number DESC RETURN n1 LIMIT 20

SQL: SELECT r2.AuniqueIdx, r2.BuniqueIdx, r2.c FROM (select e8.AuniqueIdx, e.BuniqueIdx,

COUNT(e8.AuniqueIdx) AS c FROM (SELECT f2.BuniqueIdx FROM edge10 f1

INNER JOIN edge10 f2 ON f1.BuniqueIdx = f2.AuniqueIdx

WHERE f1.AuniqueIdx = 1) e JOIN edge8 e8 ON e8.BuniqueIdx = e.BuniqueIdx

GROUP BY BuniqueIdx ORDER BY COUNT(e8.AuniqueIdx))r2

JOIN edge7 e7 ON r2.BuniqueIdx = e7.BuniqueIdx JOIN node3 n3

ON e7.AuniqueIdx = n3.uniqueIdx AND n3.uniqueIdx = 1;

• Q6: Given a node n of type “Node1”, find all nodes of type “Node6” which are connected

with n’s neighbor(s) of type “Node2” through a node of type “Node2”, ordered by the

number of outgoing edges to the nodes of type “Node2”.
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Cypher: MATCH (n3:node3)-[:edge7]->(n2:node2)-[r:edge8]->(n1:node1

{uniqueIdx:1}) RETURN n3 ORDER BY n3.ten

SQL: SELECT e7.AuniqueIdx FROM node3 n3 JOIN edge7 e7

ON n3.uniqueIdx = e7.AuniqueIdx JOIN node2 n2

ON e7.BuniqueIdx = n2.uniqueIdx JOIN edge8 e8

ON n2.uniqueIdx = e8.AuniqueIdx WHERE e8.BuniqueIdx = 1

GROUP BY e7.AuniqueIdx ORDER BY n3.ten;

• Q7: Given a node n of type “Node1, find the neighbors of n of type “Node1” that are

connected with a node of type “Node7”.

Cypher: MATCH (forum:node7)-[r2:edge6]->(friend:node1)

<-[:edge10]-(person:node1{uniqueIdx:1}) RETURN forum

SQL: SELECT e6.AuniqueIdx FROM edge6 e6 JOIN (SELECT DISTINCT e2.BuniqueIdx

FROM edge10 e1 INNER JOIN edge10 e2 ON e1.BuniqueIdx = e2.AuniqueIdx

WHERE e1.AuniqueIdx =1 UNION SELECT DISTINCT e.BuniqueIdx

FROM edge10 e WHERE e.AuniqueIdx = 1)f

ON e6.BuniqueIdx = f.BuniqueIdx;
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CHAPTER 5. EXPERIMENTS AND RESULTS

The experiments were performed on a PC with Intel Core i7-4500U CPU at 1.80GHz and

with 8 Gbytes of memory. MySQL Server version 5.6.22 and Neo4j Community Edition version

2.2.5 were used. We used the default cache model in Neo4j which is the file buffer cache. Even

though the object cache is considered to offer higher performance, it is not available in the

Neo4j Community Edition. We used the default cache sizes for both databases:1 GBytes in

Neo4j and 1 MBytes in MySQL. The InnoDB storage engine was used in MySQL.

In the entire process of running the benchmark, to avoid interference from other programs,

we closed all other user applications except for the MySQL sever and the command line client

when executing the queries in RDBMs and Neo4jShell when executing queries in GDBMs.

The running time was collected as a performance metric. In each query, we noticed that the

execution times were different for the first few runs. We believe it is due to a cache warmup.

To get a reliable result, we executed each query more than 30 times and discarded the first 10

times. We computed the execution time as the average of the last 20 runs.

5.1 Data Generation and Execution Results for Random Graph

5.1.1 Data Generation

In our experiment, we generated two different sparse data sets, one with 5000 nodes, and

the other with 10000 nodes. Table 5.1 shows the number of nodes and edges, respectively. We

also generated a set of new edges which does not exist in the database, which were used in S2

for the bulk insertion operation.

The information about the attributes of the table “Node” with 5000 nodes is shown in

Table 5.2. For the data set with 10000 nodes, all the attributes are the same except that the
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Table 5.1 Sizes of the two data sets

Data Set No. Number of Nodes Number of Edges in Each Relation

1 5000 25000

2 1000 100000

Table 5.2 Attribute Specifications of Table Node

Attribute Name Range of Values Order Comment

uniqueNdx 0∼ N - 1 Unique Candidate key, No Index

uniqueIdx 0∼ N - 1 Unique Primary key, Index

Ten 0∼9 Random Ramdom%10, No Index

StringIdx “aaaa” ∼ “jjjj” Random –

StringNdx “aaaa” ∼ “jjjj” Random –

values of uniqueIdx and uniqueNdx ranging from 0 to 9999. Since the values of the attribute

StringINdx are randomly chosen from ten different strings, the occurrence of each string value

is 10% of the total number of rows in the table. Let N be the number of nodes in the graph.

5.1.2 BI:Bulk Insertion and BD:Bulk Deletion

As shown in Figure 5.1,5.2,5.3,5.4, the execution time of inserting/deleting of nodes/edges

in Neo4j is more than 10 times of that of MySQL. At the same selectivity factor, the execution

times of insertion of nodes in Neo4j increases with a larger database while those in MySQL

are almost the same. However, the execution times of deleting nodes increase for the larger

database at the same selectivity factor.

For inserting/deleting edges, what is interesting is that the increase amount of the execution

times for the database with 5000 nodes to the database with 10000 nodes at a certain selectivity

factor is different in Neo4j and MySQL. Typically, the increase amount of times taken by Neo4j

is not as large as that of MySQL for the same selectivity factor. It might indicate that Neo4j

would be more efficient when inserting/deleting edges for a larger graph.
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Figure 5.1 Execution time of insertion of nodes with different selectivity factors

5.1.3 BU:Bulk Update

In this workload, we discussed the result on the 5000 node data set as an example. In Figure

5.5, we showed the execution time for this data set with and without index. We updated the

attributes of the nodes with different selectivity factors. The difference between the execution

time with index and without index is tiny. The execution time taken by Neo4j is greatly

larger than that in MySQL. Figure 5.6 shows the execution time of updating edges for the four

different graph databases, two in Neo4j and the others in MySQL. It is noticed that in MySQL,

the execution time for updating edges in a small number of data set does not change significantly

(MySQL5000). It increases with the increase in the selectivity factors (MySQL10000).

5.1.4 BS-S:Bulk Selection with Selectivity Factor

In this workload, we discussed the result on the 5000 node data set as an example in Figure

5.7 and Figure 5.8. The selective factor was controlled by select different values in properties
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Figure 5.2 Execution time of insertion of edges with different selectivity factors

of node. Figure 5.7 applied uniqueIdx and uniqueNdx. Figure 5.8 applied stringIdx and

stringNdx. Both of Figure 5.7 and Figure 5.8 reveal that Neo4j takes twice the time without

index than with index. In MySQL, queries with index and without index give almost the

same execution times. We also found that no matter which data type we chose, the results

were almost the same. Therefore, there is no significant difference between the selection with

Integer type and the selection with String type.

5.1.5 BS-M: Bulk Selection involving Multiple Relations

• Two relation bulk selection (BS −M : 2R). As showed in Table 5.3, Neo4j almost cost

10 times the execution time of MySQL.

• Find orphan nodes (BS −M : Orphan).

Figure 5.10 shows that the execution time to find orphan nodes in MySQL is much longer

than that in Neo4j.
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Figure 5.3 Execution time of deleting nodes with different selectivity factors

Table 5.3 Execution time (ms) of two relation bulk selection

XXXXXXXXXXXXDatabase

# Nodes
5000 10000

Neo4j 2052 8668

MySQL 318 1248

5.1.6 SQ: Graph Structure Queries

• Find k-hop neighbors of a given node (SQ : kHop). Figure 5.11 shows that the execution

time increases greatly with the increasing value of k. Even the execution time in Neo4j is

greatly larger than that in MySQL, the rate of increasing is smaller than that in MySQL.

• Rank of neighbors (SQ : Ranking). Table 5.4 shows that the execution time in Neo4j is

larger than that in MySQL.
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Figure 5.4 Execution time of deleting edges with different selectivity factors

Table 5.4 Execution time (ms) of ranking of neighbors

PPPPPPPPPPPPPP
DBMS

# Nodes
5000 10000

Neo4j 25 56

MySQL 1.5 1.8

• Find a shortest path among a given pair of nodes. For this query, we provided two nodes

(the starting node and the ending node). We made sure that the same two nodes in Neo4j

and MySQL were used. A shortest path was computed by a stored procedure in MySQL

and is the counterpart of “shortestpath“ function in Neo4j. Especially, in this query we

noticed that the cold and hot setup have a critical influence on the performance. See

Figure 5.12. Tests were performed with cold, which we denote it “first time“ and hot

setup to determine the time needed for a database to load data into memory.
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Figure 5.5 Execution time of updating nodes with different selectivity factors

The measured cold time is the time required to finish a given set of queries immediately

after flushing caches or after reboot. In reality this is achieved by rebooting the system.

The hot test run consists of executing the same set of queries as from the cold run, in

the same sequence order. The measured hot time is the time required to finish a given

set of queries immediately after performing the cold run without flushing any cache or

restarting the database. All of the cold tests were executed with cleared disk cache at

operating system level. Figure 5.12 shows that Neo4j is slower than MySQL for the first

time. But after cache warmup, Neo4j is faster than MySQL.

• Compute a degree centrality of a given edge type. We executed the queries for five

different edge types. Figure 5.13 shows that Neo4j takes about twice as much time as

MySQL. The execution times increase with the increase in the database size.

• Find all nodes with k out-going degree of a given edge type. Figure 5.14 shows the result

of “relation1”.
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Figure 5.6 Execution time of updating edges with different selectivity factors

5.1.7 Results with 1 Million Nodes

Besides comparing two data set (5000 nodes and 10000 nodes), we also explore a larger

data set of a random graph with 1,000,000 nodes. We explored whether the volume of a

random graph would have effect on the execution time when executing structure related queris.

Therefore, we showed the results from SQ (Graph Structure Queries).

• Find k-hop neighbors of a given node. Figure 5.15 shows that the execution time in Neo4j

is larger than that in MySQL. However, as the value of k increases, the difference between

the execution time decreases.
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Figure 5.7 Execution time of selecting nodes with different selectivity factors on Integer

with/without index.

Figure 5.15 Execution time of finding k-hop neighbors of a given node

• Rank of neighbors. Table 5.5 shows the execution results of Ranking of Neighbors query.

Again, the execution time of Neo4j is much greater than that of MySQL.
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Figure 5.8 Execution time of selecting nodes with different selectivity factors on String

with/without index.

Table 5.5 Execution Time of Ranking of Neighbors in random graph of 1M nodes

DBMS Neo4j MySQL

Execution Time (ms) 98 5.6

• Find a shortest path among a given pair of nodes 5.16. Similarly in the execution time

in Random graph, the cache-warmup effect is obvious in Neo4j. However, the execution

time of MySQL is greater than the first time execution time in Neo4j, which is different

from the results in Chapter 5.1.6.

• Compute a degree centrality of a given edge type. Figure 5.17 shows that Neo4j takes

much more time than MySQL.

• Find all nodes with k out-going degrees of a given edge type. Figure 5.18 shows that the

execution times in Neo4j is about 20 times of those in MySQL.

5.2 Data generation and Execution Results for Kronecker Graph

We generated a Kronecker graph using the APGL in Python (42). We set the initial graph

with 5 nodes and the number of iteration to 5. A Kronecker graph with 50,000 nodes and
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Figure 5.9 Execution time of selecting edges with different selectivity factors

Table 5.6 Execution Time of Ranking of Neighbors in a Kronecker Graph

DBMS Neo4j MySQL

Execution Time (ms) 10 3.48

322850 edges was generated. We then used the data graph generator to generate attributes

for nodes and edges. We only showed the result of the categories related to graph structure in

the Graph Structure Query workload as the major difference between Kronecker graphs and

Random graphs are their structure.

• Find k-hop neighbors of a given node. Figure 5.19 shows that the execution time in Neo4j

is larger than that in MySQL. We also noticed that there is no definite pattern of time

with the increasing value of k.

• Rank of neighbors. Table 5.6 shows the execution results of ranking of neighbors query

in a Kronecker graph.

• Find a shortest path among a given pair of nodes 5.20. Similarly in the execution time

in Random graph, the cache-warmup effect is obvious in Neo4j.
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Figure 5.10 Execution time of finding orphan nodes in five different edge types.

• Compute a degree centrality of a given edge type. Figure 5.21 shows that Neo4j takes

much more time than MySQL.

• Find all nodes with k out-going degrees of a given edge type. Figure 5.22 shows that the

execution times in Neo4j is about 10 times of those in MySQL.

5.3 Data Generation and Execution Results for Graph Model with

Multiple Node Types

5.3.1 Data Generation

For the interactive query suite in a complex graph model with multiple node types, we

generated there data sets of 10,000, 100,000, 1,000,000 nodes. Table 5.7 shows the summary

about these data sets. We applied the default parameters when generating these data. That

is the Zipf factor for the distribution of the number nodes for each node type is 0.1. For each

edge type, we used the default Zipf factor of 0.8 when generating a specific edge type. The

correlation between the values of the attributes ’CorX’ and ’CorY’ was 0.9. Therefore, we
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Figure 5.11 Execution time of finding k-hop neighbors of a given node

had a total of 6 databases: three in Neo4j and three in MySQL. We named them as “Neo4j-

10K”, “Neo4j-100K”, “Neo4j-1000K”, “MySQL-10K”, “MySQL-100K” and “MySQL-1000K”,

respectively.

Table 5.7 Six database for multiple node type graph model used in benchmark

Database Name Number of Nodes Number of Edges Configuration

Neo4j-10K 10,000 28,900 default

Neo4j-100K 100,000 289,000 default

Neo4j-1000K 1,000,000 2,890,000 default

MySQL-10K 10,000 28,900 default

MySQL-100K 100,000 289,000 default

MySQL-1000K 1,000,000 2,890,000 default
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Figure 5.12 Execution time of the shortest path query

5.3.2 Execution Results for Graph Model with Multiple Node Types

To execute these queries, we provided a starting node first. There were several ways to

provided the starting nodes. We executed these queries in two different ways according the

way we selected the starting node.

As shown in Figure 5.23, we defined that the start node of type “Node1” was the one with

ID = 1 in all the queries. We executed the same query continuously for 30 times and computed

the average execution time. As shown in Figure 5.23, the performance of Neo4j is better than

that of MySQL for the same data, except Q3. Q3 requires a “union” operation between n’s

friends and n’s friends of friends, which is an expensive operation in MySQL.

The other execution method was choosing a set of 50 different start nodes of type “Node1”,

for instance, nodes of “Node1” with ID = 1, ID = 2,..., ID = 50. We executed queries with the

set of nodes in a row and measured the total execution time. In this way, we could reduce the

effect of the structure of the start node. As shown in Figure 5.24, Q3 still costs a longer time
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Figure 5.13 Execution time for computing a degree centrality

in MySQL than in Neo4j. And the difference between the execution time in Neo4j and that in

MySQL increases a lot.

5.3.3 Selection with Two Linear Correlated Fields

We generated two correlated sequences which was stored as double-format in two properties

of “Node1”: ‘CorX’ and ‘CorY’, respectively. The values of these two properties was linear

correlated with a correlation parameter of 0.9, as we mentioned in 5.3.1. Mean value of both

‘CorX’ and ‘CorY’ is 0. Standard deviation of ‘CorX’ is 1, while standard deviation of ‘CorY’

is 2.29 (45). To show the effect of two correlated properties on the execution time of selecting

nodes, we selected nodes of “Node1” type by setting a certain range on both properties. As

showed in Figure 5.25, the selection range on X-Axis is that we select Node1 with ‘CorX’ and

‘CorY’ less than the certain value. For example, “-1” means selecting all the nodes whose

‘CorX’ and ‘CorY’ is less than -1, while “-0.8” means selecting all the nodes whose ‘CorX’ and

‘CorY’ is less than -0.8, and so on.
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Figure 5.14 Execution time of finding all nodes with k out-going degree in edge type of “re-

lation1“

Figure 5.25 Execution time for selecting two correlated properties
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Figure 5.16 Execution time of shortest path in a random graph with 1M nodes

5.4 Cache Size and Performance

All the results showed above was under the default cache configuration in both MySQL and

Neo4j. However, tuning the cache size in database could effect the performance of database

management significantly. Therefore, to make database work as efficiently as possible, we also

executed the queries we designed under different cache configurations.

However, the optimal cache size depends a lot on the database volume, database query

types, database traffic and hardware. We have to define the data set we use and the queries

at the beginning of our experiment. In the experiment, we showed the performance tuned by

cache configuration on two data sets. One is the data set with 1M nodes of random graph we

generated in Chapter 5.1.7. For this data set, we investigate the performance tuned by cache

size for the query of shortest path. The reason we chose this query is not only because that it

is the only query that Neo4j performed faster than MySQL did among all the queries we had

studied in our benchmark, but also because that shortest path query itself is of a significant

query for graph data. The other data set is the one with 1M nodes of multiple node types

generated in Chapter 5.3.1. We chose Q3 as the query when tuning cache size because it was
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Figure 5.17 Execution time of Compute a degree centrality of five different edge types in a

random graph with 1M nodes.

the only query of MySQL was slower than Neo4j. The purpose of the tuning cache size is to

find an optimal cache size for these two queries in MySQL, and compare the performance of

MySQL and Neo4j under their optimal cache configuration.

In MySQL, there are three parameters of query cache to tune the performance (3): query cache limit,

query cache min res unit and query cache size. The query cache limit could control the max-

imum size of individual query results that can be cached. The default value is 1MB. The

query cache min res unit could tune parameter to combat cache fragmentation and reduce

prunes if that is an issue. The default value is 4K.

A typical query cache configuration is showed as following:

query cache type = 1

query cache limit = 1M

query cache min res unit = 4K

query cache size = 1M

In our experiments, we kept both of these values to be default. The only parameter we

changed was the value of query cache size. As shown in Figure 5.26 and Figure 5.27, the
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Figure 5.18 Execution time of find all nodes with k out-going degree in “relation1” in a random

graph with 1M nodes

cache size varies from 1M to 1G. In Figure 5.26, the execution time for the shortest path query

decreases significantly as the query cache size increased from 1M to 1G. When cache size reaches

500M, the execution time becomes smaller than that of Neo4j, which is 87 ms as shown in 5.16.

In Figure 5.27, the execution time also decreases as the query cache size increases. When cache

size reaches 100M, the execution time in MySQL becomes smaller than that in Neo4j showed

in Figure 5.23.

Unlike the cache mechanism in MySQL, cache size in Neo4j is configured in a totally different

way. The difference comes from how to store graph data. In Neo4j, there are three different

types of memory to consider: OS memory, page cache and heap space. OS memory is the

memory reserved for all activities that are not Neo4j related. The default value 1G is good

enough for most cases (10). Page cache is used to cache Neo4j data as stored on disk. In our

experiment, the default value is 4GB. Heap sizing is the size of available heap memory, which

is an important aspect to tuning performance. The default value is 1GB. Generally speaking,

it is beneficial to configure a large enough heap space to sustain concurrent operations.

In our experiments, we changed the value of heap size and kept the OS memory and page

cache the default value. The initial heap size is 1GB. The RAM of the system we used is 8GB,
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Figure 5.19 Execution time of finding k-hop neighbors of a given node in a Kronecker graph

the maximum heap size we could achieve was 3GB as we had to set 5GB RAM for the default

setting of OS system and page cache. With the variation of heap size, we also investigated the

shortest path query in 1M random graph and the Q3 in 1M multiple node graph.

As shown in Figure 5.28, for shortest path query, the execution time decreases rapidly as

the heap size increases from 1GB to 2GB. The execution time does not change from 2GB to

3GB. It indicates that 2GB was good enough for shortest path query. Compare to Figure 5.26,

we notice that the execution time in MySQL with a 500MB query cache size still is slower than

that in Neo4j with a 3GB heap size. As showed in Figure 5.29, the change of heap size does not

change the execution time significantly, which indicates that 1GB heap size was good enough

for Q3. We also notice that the execution time in MySQL with the optimal query cache size

is almost the same as that in Neo4j. In summary, we found the optimal cache size for both

MySQL and Neo4j and the execution time in MySQL is greater than that in Neo4j for shortest

path query,while for Q3, both of them perform the same under the optimal cache size.
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Figure 5.20 Execution time of shortest path in a Kronecker graph

Figure 5.21 Execution time of Compute a degree centrality of five different edge types in a

Kronecker graph.
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Figure 5.22 Execution time of find all nodes with k out-going degree in “relation1” in a

Kronecker graph

Figure 5.23 Average execution time of 7 queries in 6 different databases for 30 times
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Figure 5.24 Total execution time of 7 queries in 6 different databases for 50 different starting

nodes

Figure 5.26 Execution time of shortest path under different cache sizes in MySQL
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Figure 5.27 Execution time of q3 under different cache sizes in MySQL

Figure 5.28 Execution time of the shortest path under different heap sizes in Neo4j



54

Figure 5.29 Execution time of the shortest path under different heap sizes in Neo4j
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CHAPTER 6. SUMMARY AND DISCUSSION

We have described our Cyclone benchmark for graph databases. It comes with two different

graph data models: simple and complex models. The simple model has only one node type,

but allows us to study the effect of the graph structure. The complex model has multiple

node types. The unique feature of this benchmark is that it lends itself for detailed studies

of scalability with the ability to specify course grain and fine grain selectivity factors using

node and edge attribute values. The benchmark allows for studies of the impact of indexing

both on an integer attribute and on a string attribute as well as correlation among attribute

values. Given a graph with edges and nodes, our attribute graph generator annotates the

edges and nodes with attributes and attribute values. It is flexible for benchmarking random

graphs, Kronecker graphs, and power-law graphs. The benchmark includes extensive workload

including graph structure queries (e.g., computing a degree centrality and finding a shortest

path between a pair of nodes) and data related operations involving attribute values. Future

work includes support for benchmarking of concurrent users and benchmarking the transaction

capability of the graph database management systems.
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