
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2016

Usage and refactoring studies of python regular
expressions
Carl Allen Chapman
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Chapman, Carl Allen, "Usage and refactoring studies of python regular expressions" (2016). Graduate Theses and Dissertations. 15139.
https://lib.dr.iastate.edu/etd/15139

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F15139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/15139?utm_source=lib.dr.iastate.edu%2Fetd%2F15139&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Usage and refactoring studies of python regular expressions

by

Carl Allen Chapman

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:

Kathryn Stolee, Major Professor

Samik Basu

Tien Nguyen

Iowa State University

Ames, Iowa

2016

Copyright c© Carl Allen Chapman, 2016. All rights reserved.

ii

DEDICATION

I would like to dedicate this thesis to the friends and family who have supported me.

iii

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . viii

ACKNOWLEDGEMENTS . x

CHAPTER 1. OVERVIEW . 1

1.1 Introduction . 1

1.1.1 Research questions . 1

1.2 Contributions . 3

1.3 Outline . 4

1.3.1 Sections of this thesis . 4

CHAPTER 2. BACKGROUND . 5

2.1 Formatting and Feature Acronyms . 5

2.2 Terminology . 6

2.2.1 Matching strings defined . 6

2.2.2 Regex support in language differs 6

CHAPTER 3. RELATED WORK . 8

3.1 Milestones in Regular Expression History 8

3.1.1 Kleene’s theory of regular events 8

3.1.2 First regex compiler . 8

3.1.3 Early regular expressions in Unix 9

3.1.4 Maturity of standards . 10

iv

3.2 Applications of Regex . 10

3.2.1 End user applications . 10

3.2.2 Research and industry applications 11

3.2.3 Regex composition and analysis tools 12

3.3 Similar Research . 13

3.3.1 Mining for language feature analysis 13

3.3.2 Refactoring and smells . 14

CHAPTER 4. STUDIES . 15

4.1 Usage and Support of Regex Features . 15

4.1.1 Utilizations of the re module . 16

4.1.2 Building the corpus . 21

4.1.3 Analyzing the corpus of regexes 22

4.1.4 Frequency of feature usages . 24

4.1.5 Feature support . 26

4.1.6 Discussion of feature analysis results 32

4.2 Categories of Regex Usage Tasks . 34

4.2.1 Clustering design . 34

4.2.2 Clustering implementation . 37

4.2.3 Categorization of behavioral clusters 38

4.2.4 Discussion of cluster categories 42

4.3 Regex Refactorings Based on Community Standards 44

4.3.1 Counting representations in nodes 47

4.3.2 Node counting results . 48

4.3.3 Discussion of refactorings . 49

4.3.4 Threats to validity . 55

v

4.4 Regex Refactorings Based on Comprehension 56

4.4.1 Metrics . 56

4.4.2 Implementation . 58

4.4.3 Population characteristics . 61

4.4.4 Matching and composition comprehension results 62

4.4.5 Discussion of comprehension results 65

CHAPTER 5. DISCUSSION . 67

5.1 Implications for Programmers . 67

5.1.1 Refactoring recommendations for programmers 68

5.2 Implications for Regex Language Researchers 69

CHAPTER 6. FUTURE WORK . 72

6.1 Refactoring Regexes . 72

6.1.1 Equivalence models . 72

6.1.2 Identifying Preferred Representations 74

6.1.3 Applications for regex refactoring 75

6.2 Semantic Search . 75

6.2.1 Finding a filter set. 76

6.2.2 Automated regex repair . 77

6.3 More Regex Research Opportunities . 78

6.3.1 Comparison opportunities . 78

6.3.2 Extending feature analysis . 78

6.3.3 Taxonomy and formal language studies 80

CHAPTER 7. CONCLUSION . 81

APPENDIX A. FEATURE STUDY ARTIFACTS 83

APPENDIX B. CLUSTERING STUDY ARTIFACTS 110

APPENDIX C. EQUIVALENCE CLASS ARTIFACTS 117

vi

APPENDIX D. COMPREHENSION STUDY ARTIFACTS 123

BIBLIOGRAPHY . 137

vii

LIST OF FIGURES

4.1 Example of one regex utilization 17

4.2 Which behavioral flags are used? 20

4.3 Which behavioral flags are used? 20

4.4 Two patterns parsed into feature vectors 22

4.5 A similarity matrix created by counting strings matched 35

4.6 Creating a similarity graph from a similarity matrix 35

4.7 Equivalence classes with various representations of semantically

equivalent representations within each class. DBB = Double-

Bounded, SNG = Single Bounded, LWB = Lower Bounded, CCC

= Custom Character Class and LIT = Literal 45

4.8 Example of one HIT Question 57

D.1 The qualification test taken to participate in the regex under-

standability study. Four out of five questions must be answered

correctly. 131

D.2 Template for one HIT(page 1 of 4). Red values like ${ST1 regex}

are populated with regexes, and black values like ${ST1A} are

populated with matching strings. 132

D.3 Template for one HIT (page 2 of 4). Red values like ${ST1 regex}

are populated with regexes, and black values like ${ST1A} are

populated with matching strings. 133

viii

D.4 Template for one HIT (page 3 of 4).. Red values like ${ST1 regex}

are populated with regexes, and black values like ${ST1A} are

populated with matching strings. 134

D.5 Template for one HIT (page 4 of 4).. Red values like ${ST1 regex}

are populated with regexes, and black values like ${ST1A} are

populated with matching strings. 135

D.6 IRB Approval page for the Mechanical Turk Participants 136

ix

LIST OF TABLES

4.1 How saturated are projects with utilizations? 19

4.2 Codes, descriptions and examples of select Python Regular Ex-

pression features . 23

4.3 Frequency of feature appearance in Projects, Files and Patterns,

with number of tokens observed and the maximum number of

tokens observed in a single pattern. 25

4.4 Top 17 programming languages containing support for regexes, ranked

according to popularity by tiobe.com, with the regular expression li-

braries built into them and the variants that they support. 26

4.5 What regular expression languages support features studied in

this thesis? . 28

4.6 What features, not studied in this thesis, are supported in various

languages? . 30

4.7 What features are supported by regular expression analysis tools? 31

4.8 An example cluster containing 12 regexes, with at least one regex

present in 31 different projects. In this cluster, every regex re-

quires ‘:’. 38

4.9 Cluster categories and sizes, ordered by number of projects con-

taining at least one pattern in the category. 39

4.10 How frequently is each alternative expression style used? 49

4.11 Matching metric example . 56

x

4.12 Participant Profiles, n = 180 . 61

4.13 Averaged Info About Edges (sorted by lowest of either p-value) . 63

4.14 Equivalent regexes with a significant difference in understandabil-

ity, α = 0.1 . 64

4.15 Additional equivalent regexes for which some preference in un-

derstandability is suggested . 64

D.1 Average Unsure Responses Per Pattern By Node (fewer unsures

are lower) . 127

xi

ACKNOWLEDGEMENTS

I’d like to acknowledge Dr. Tien Nguyen for his encouragement of my early exper-

iments with data mining and his jovial focus on the big picture. I also must sincerely

thank Dr. Samik Basu for providing a light-hearted and meaningful perspective - a

steadying hand throughout the undergraduate and graduate experiences. Last but not

least, I would like to thank and acknowledge Dr. Kathryn Stolee for convincing me to

pursue graduate research, and for her many and substantial contributions to this work.

Her indomitable positivity, extraordinary enthusiasm for research, and generous spirit

have nurtured me as a researcher, and taught me that it’s better to get the whole thing

done than to get a few parts of it perfect.

1

CHAPTER 1. OVERVIEW

1.1 Introduction

Though regular expressions provide a powerful search technique that is baked into

every major language, is incorporated into a myriad of essential tools, and has been

a fundamental aspect of Computer Science since the 1960’s, no one has ever formally

studied how they are used in practice, or how to apply refactoring principals to improve

understandability and conformance to community standards. This thesis presents the

original work of studying a sample of regexes taken from Python projects mined from

GitHub, determining what features are used most often, defining some categories that

illuminate common use cases, and identifying areas of significance for language and tool

designers. Furthermore, this thesis defines an equivalence class model used to explore

comprehension of regexes, identifying the most common and most understandable repre-

sentations of semantically identical regexes, suggesting several refactorings and preferred

representations. Opportunities for future work include the novel and rich field of regex

refactoring, semantic search of regexes, and further fundamental research into regex usage

and understandability.

1.1.1 Research questions

Although regex have provided an essential search functionality for software develop-

ment for half a century, are essential to parsing, compiling, security, database queries and

user input validation, and are incorporated into all but the most low-level programming

2

languages, no fundamental research has been published investigating use cases, measur-

ing feature usage or determining optimal representations for understandability. Faced

with an open field, these four questions were formulated to begin the work of filling this

fundamental knowledge gap. The following section articulates the motivations behind

the questions explored in this thesis.

1.1.1.1 RQ1: How are regex used in practice, especially what features

are most commonly used?

The features that allow regex users to compactly represent sets of strings are what

power regular expressions. Gathering fundamental statistics about what features are

used can inform many other issues in regular expression research, such as language and

tool design.

1.1.1.2 RQ2: What behavioral categories can be observed in regex?

If a well-fitting categorization scheme for regex behavior can be devised, these cat-

egories can provide insight into what users are really doing with regexes and in turn,

what behaviors are most important for future regex technologies.

1.1.1.3 RQ3: Within five equivalence classes, what representations are

most frequently observed?

There are many ways to represent the same functional regex, that is, the user has

choices to make about how to compose a regex for any given task. Assuming that

regex composers will tend to choose the best representation most of the time, what

representations are chosen?

3

1.1.1.4 RQ4: Within five equivalence classes, what representations are

more comprehensible?

Regexes in source code must be understood in order to be properly maintained, but

regexes can be hard to understand. If the most understandable representation for a

particular class of regular expressions can be determined, then the understandability of

regexes can be increased through refactoring, easing the burden on maintainers.

1.2 Contributions

The contributions of this work are:

• An empirical analysis of regex feature usage in 13,597 regexes extracted from 1,645

open-source Python projects (Section 4.1.4),

• A comparison of supported features across eight regular expression languages, as

well as a comparison of features supported by four regular expression analysis tools

(Section 4.1.5),

• An approach for measuring behavioral similarity of regular expressions,

(Section 4.2.1.2), and qualitative analysis of clusters formed using that behavioral

similarity measure (Section 4.2.3.2),

• Identification of equivalence classes for regular expressions with possible transfor-

mations within each class (Section 4.3),

• An empirical study of how frequently regexes are represented within equivalence

classes, identifying refactoring opportunities based on these frequency measure-

ments (Section 4.3.2),

• An empirical study with 180 participants evaluating the understandability of rep-

resentations within equivalence classes, identifying refactoring opportunities based

on these understandability measurements (Section 4.4.4),

4

• An evidence-based discussion of opportunities for future work in supporting pro-

grammers who use regular expressions, including refactoring regexes based on a

variety of metrics, providing regex search functionality, migration support between

languages, and fundamental research extending the techniques pioneered in this

work (Section 6).

Parsing source code, parsing balanced brackets, and searching for special delimiting

sequences are three categories of regex behavior identified by behaviorally clustering

regexes.Collections of characters can be expressed as an OR or using a custom character

class - one of them is significantly more understandable, while the other occurs much

more often. Between octal and hex representations of characters, hex is significantly

more understandable and occurs more often.

1.3 Outline

1.3.1 Sections of this thesis

This thesis begins with a background section on the formatting standards and ter-

minology used in this thesis to aide in understanding (Chapter 2). Next is related

work (Chapter 3), touching on historical milestones and applications of regular expres-

sions, as well as work on mining repositories and refactoring that has similarities to this

work. Next, the four studies conducted to explore the four research questions are each

presented with their own separate discussion section that focuses on the results that

particular study in Chapter 4. Then a final discussion highlights the most important

implications from each study in Chapter 5, also presenting any implications gathered

from the combination of results from multiple studies. Opportunities for future work are

presented next in Chapter 6, followed by a conclusion in Chapter 7, and an appendix of

artifacts in Appendices A, B, C and D and a bibliography.

5

CHAPTER 2. BACKGROUND

2.1 Formatting and Feature Acronyms

To reduce confusion due to typesetting issues, and to avoid repeatedly qualifying

quoted text with phrases like ‘the string’ or ‘the regex’, strings will be surrounded by

double quotes like "example string", characters will be surrounded in single quotes

like ‘c’, and regexes will be presented within a grey box without any quotes like

a+b*(c|d)e\1f . Pattern fragments used to represent feature tokens (usually to pro-

vide an example of what an acronym means), appear in parenthesis with a light grey

background, like ([^...]).

All strings in this thesis are ‘raw’ strings. This means that a string presented in this

thesis like "a\dc" would actually be "a\\dc" in source code, and a single slash in a regex

appears as \\ where the pattern in source code is "\\\\". Invisible characters such as

newline will be represented within strings in gray, like "first line.\nsecond line.".

This thesis discusses the features used by regular expressions in depth. To facilitate

this discussion, every feature is assigned an acronym composed of two to four capitol

letters. For example, the Kleene star feature, (*), representing zero or more of some

element, is referred to using the acronym ‘KLE’. A concise presentation of the 34 features

this thesis focuses on is presented in Table 4.2. A detailed description of all these features

is provided in Appendix A. All other features mentioned in this thesis, but not studied

in detail are briefly described in Appendix A.

6

2.2 Terminology

2.2.1 Matching strings defined

In this thesis it is often necessary to describe the outcome of searching a particular

string using a particular regex. The terminology used is that a regex matches a string

if that string contains some substring that is equal to a string specified by the regex.

For example, the regex abc matches the entire string "abc" but also matches part of

"XabcY", and so the regex matches both strings. This regex does not match "ab" because

no ‘c’ is present. When considering if a regex matches a string, it is assumed that no

flags are modifying the behavior of the engine unless specified in the regex itself. For

ease of expression, a string is said to match a regex if that regex matches the string.

This choice of terminology results in the most natural flow of words when discussing

the behavior of regexes, but conflicts with the terminology used by several engines.

For example, Java’s java.util.regex.Matcher.matches() function requires the entire

string to match in order to return true. Also, Python’s re.match() function requires the

beginning of the string to match in order to return a MatchObject. Instead, the defini-

tion of match used in this thesis is closer to Java’s java.util.regex.Matcher.find()

function and Python’s re.search() function. The definition of match used in this the-

sis is useful because, in general, it is a necessary condition (but not always a sufficient

condition) for a regex to match a string in order for any function provided by any engine

to take action based on that match.

2.2.2 Regex support in language differs

It is typical for a pattern using common features to compile to a regex with identical

behavior in multiple variants. The extent of feature overlap among variations is explored

in Section 4.1.5, especially Table 4.5 and Table 4.6. A particular pattern can specify

different regexes in different variants. For example, the pattern "a\{2\}" specifies the

7

regex a{2} in BRE Regular Expressions (which matches the string "aa"), but in Python

Regular Expressions the same pattern compiles to the regex a\{2\} which matches the

string "a{2}". It is also possible for a pattern to be valid and compile to a regex in

one variant, but be invalid in another. For example the pattern "^X(?R)?O$" compiles

to a valid regex in Perl 5.10 that uses recursion to require one or more ‘X’ characters

followed by exactly the same number of ‘O’ characters, so that the string "XXOO" will

match, but "XXO" will not match. Trying to compile this pattern in Python will cause

an error.

The difference between regexes and patterns is important primarily when considering

portability. Not all of the patterns used to compile the Python regexes studied in this

thesis will necessarily compile to regexes in other languages. A discussion of what features

are supported by different languages is provided in Section 4.1.5.

8

CHAPTER 3. RELATED WORK

3.1 Milestones in Regular Expression History

3.1.1 Kleene’s theory of regular events

In 1943, a new model for how nets of nerves might ‘reason’ to react to patterns of

stimulus was proposed [McCulloch and Pitts (1943)]. In 1951, Kleene further developed

this model with the idea of ’regular events’ [Kleene (1951)]. In his terminology, ‘events’

are all inputs on a set of neurons in discrete time, a definite event is some explicit sequence

of events, and a regular event is defined using three operators: 1. logical OR (|), 2.

concatenation and 3. KLE (*) repetition which represents zero or more of some definite

event. Kleene showed that ‘all and only regular events can be represented by nerve nets

or finite automata’, and went on to show that operations on regular events are closed,

and to define an algebra for simplifying regular events. The formulas used to describe

regular events were named ‘regular expressions’ in Kleene’s 1956 refined paper [Kleene

(1956)].

3.1.2 First regex compiler

Many additional formalisms were built on Kleene’s set of three operators, and then in

1967 Ken Thompson filed a patent at Bell Labs (1971) and published a paper [Thompson

(1968)] for his implementation of the first regular expression compiler. This compiler was

written in IBM 7090 assembly for a version of ‘qed’1 (quick editor) at Bell labs. Existing

1https://www.bell-labs.com/usr/dmr/www/qed.html

https://www.bell-labs.com/usr/dmr/www/qed.html

9

editors were only able to search and replace using whole words. Thompson’s compiler

enabled qed to search and replace using regular expressions. As described in his paper,

Thompson’s compiler accepted Kleene Regular Expressions and ordinary characters as

input. Later versions of this compiler eventually supported the new features STR (^),

END ($), ANY (.), CCC ([...]), RNG ([a-z]) and NCCC ([^...]). Although

these features provided a useful shorthand, and could be considered a new language,

whatever could be expressed using these features could also be expressed using only

Kleene Regular Expressions features [Hopcroft et al. (2006)].

3.1.3 Early regular expressions in Unix

Thompson went on to create Unix in 1974 with Dennis M. Ritchie [Ritchie and

Thompson (1974)]. Early Unix relied on ‘ed’ - an editor with regular expression search

and replace capabilities based on qed. Unix tools grep (1973), sed (1974) and awk (1977)

also leveraged regular expression concepts [McIlroy (1987)]. The feature set of regular ex-

pressions evolved over time, and although it is outside the scope of this thesis to capture

all details of this evolutionary process, a major milestone was the creation of egrep by Al-

fred Aho in 1975 which effectively defined Extended Regular Expressions [Hume (1988)].

This new language added the features CG ((...)), SNG (a{1}), DBB (a{1,3}),

LWB (a{1,}), QST (a?), ADD (a+) as well as 12 default character classes similar to

DEC (\d), but using syntax like ([:digit:]). This new language also introduced the

‘backreference’ BKR ((a.b)\1) feature. This feature, which goes ‘back’ and ‘references’

the content of a capture group, is noteworthy in that it is the first feature to extend the

set of languages expressible by regular expressions beyond the regular languages described

by Kleene Regular Expressions [Hopcroft et al. (2006)]. Aho also wrote fgrep, which is

optimized for efficiency instead of expressiveness using the AhoCorasick algorithm [Aho

and Corasick (1975)].

10

3.1.4 Maturity of standards

In 1979, Hopcroft and Ullman published the ‘Cindarella’ textbook covering automata

and theory supporting the syntax of grep (excluding back-references) [Hopcroft and

Ullman (1979)]. Perl 2 was released in 1988 with some regular expression support [per

(2015)], and included shorthand for default character classes like (\d) for DEC. The Perl

community significantly boosted the popularity and user base of regular expressions [per

(2001)].

In 1994, IEEE released the POSIX.2 standard [IEE (1994)], detailing specifications

for shells and utilities, formally specifying the Basic Regular Expressions (BRE) and

Extended Regular Expressions (ERE) languages. In 1997, the O’Reilly book ‘Mastering

Regular Expressions’ [Friedl (2006)] was first published, providing tutorials on regular

expression usage in plain language. In 1999, Henry Spencer released POSIX.2-compliant

regcomp [spe (2015)], which is a regular expression library for C, as part of 4.4BSD Unix.

By the time Perl 5.10 was released in 2007 [per (2016)], many advanced features had

been introduced like recursion, conditionals and subroutines.

3.2 Applications of Regex

A variety of applications for regular expressions is explored in this section.

3.2.1 End user applications

Find and replace utility. The task for which regular expressions were first im-

plemented is finding and replacing strings in blocks of text. This remains a central

application for regular expressions, which programmers can use to save effort. Utilities

provided by text editors such as Emacs, Notepad++, Sublime Text and Eclipse include:

incremental find and replace within a single file, batch find and replace within a single

file or group of files, highlighting matched text and counting the number of matching

11

strings. Emacs also provides utilities that delete all lines or retain all lines containing a

match, and aligning columns by a regex-defined delimiter.

System administration. System administrators and power users rely on command-

line utilities to accomplish complex computing tasks, often dealing with file names and

the contents of configuration files. The output of one utility can be used as the input

for another utility using pipes, and the mini-programs written using piped commands

often rely on regular expressions to filter or transform strings in one step or another. For

example, grep [gre (2015)] allows users to find strings that match a regex, and sed [sed

(2004)] provides a replace functionality. The find [fin (2016)] utility searches filenames

based on a regex, and tools like git [git (2015)] and cron [cro (2016)] use regexes written

in configuration files (‘.gitignore’ and ‘crontab’, respectively) to specify sets of files or

sets of dates and times.

Searching fields in relational databases. The popular SQL query language

[Chamberlin and Boyce (1974)] uses the ‘LIKE’ operator and an exotic regular expression

syntax ((%) for zero or more of any character, equivalent to .* , (_) to match any

character, equivalent to . , and typical character classes using brackets) to search fields

for strings. Modern relational database systems have expanded this syntax considerably

with functions such as REGEXP LIKE in Oracle [Ora (2003)], REGEXP in MySQL [MyS

(2016)], $regex in MongoDB [Mon (2016)] and regexp replace in PostrgreSQL [Pos

(2016)].

3.2.2 Research and industry applications

Meta-programming. Regular expressions are central to YACC and Lex, which are

critical compiler tools for generating parsers used in the compilation process and lexing

source files, respectively. In the case of YACC, regex are used as a meta-programming

12

language specifying the behavior of a parser [Johnson (2006)]. Similarly in Lex, regexes

are used to specify the behavior of a source code lexer [Lesk (2006)].

Regular expressions have also been used for test case generation [Ghosh et al. (2013);

Galler and Aichernig (2014); Anand et al. (2013); Tillmann et al. (2014)], and as spec-

ifications for string constraint solvers [Trinh et al. (2014); Kiezun et al. (2013)]. Some

data mining frameworks use regular expressions as queries (e.g., [Begel et al. (2010)]).

Network administration and security. Regular expressions are used to encode

forwarding paths in software-defined networks in ‘Merlin’ [Soulé et al. (2014)], and are

used in network intrusion detection [network (2015); Sommer and Paxson (2003)] and

deep packet inspection [Kumar et al. (2006); Yu et al. (2006)].

Regexes are employed in MySQL injection prevention [Yeole and Meshram (2011)]

and in more diverse applications like DNA sequencing alignment [Arslan (2005)] or query-

ing RDF data [Lee et al. (2010); Alkhateeb et al. (2009)]. Efforts have also been made to

expedite the processing of regular expressions on large bodies of text [Baeza-Yates and

Gonnet (1996)].

3.2.3 Regex composition and analysis tools

Composition tools. Until this work (Chapter 4.4), regular expression understand-

ability has not been studied directly, though prior work has suggested that regexes are

hard to read and understand since there are tens of thousands of bug reports related

to regular expressions [Spishak et al. (2012)]. Due in part to their common use across

programming languages and how susceptible regexes are to error, many researchers and

practitioners have developed tools to support more robust regex creation [Spishak et al.

(2012)] or to allow visual debugging [Beck et al. (2014)]. Other tools allow users to

compose regular expressions using natural language2.

2https://github.com/VerbalExpressions/PHPVerbalExpressions

https://github.com/VerbalExpressions/PHPVerbalExpressions

13

Tools have also been developed to make regexes easier to understand, and many are

available online. Some tools will, for example, highlight parts of regexes that match

parts of strings as a tool to aid in comprehension.3 Building on the perspective that

regexes are difficult to create, other research has focused on removing the human from

the creation process by learning regular expressions from text [Babbar and Singh (2010);

Li et al. (2008)].

Analysis tools. Research tools like Hampi [Kiezun et al. (2013)], and Rex [Veanes

et al. (2010)], and commercial tools like brics [Møller (2010)] all support the analysis of

regular expressions in various ways. Hampi was developed in academia and uses regular

expressions as a specification language for a constraint solver. Rex was developed by

Microsoft Research and generates strings for regular expressions that can be used in ap-

plications such as test case generation [Anand et al. (2013); Tillmann et al. (2014)]. Brics

is an open-source package that creates automata from regular expressions for manipula-

tion and evaluation. Automata.Z34 is one of a suite of tools developed by Microsoft to

analyze regular expressions.

3.3 Similar Research

3.3.1 Mining for language feature analysis

Mining properties of open source repositories is a well-studied topic, focusing, for

example, on API usage patterns [Linares-Vásquez et al. (2014)] and bug characteriza-

tions [Chen et al. (2014)]. Exploring language feature usage by mining source code has

been studied extensively for Smalltalk [Callaú et al. (2011, 2013)], JavaScript [Richards

et al. (2010)], and Java [Dyer et al. (2014); Grechanik et al. (2010); Parnin et al. (2013);

Livshits et al. (2005)], and more specifically, Java generics [Parnin et al. (2013)] and Java

3https://regex101.com/
4https://github.com/AutomataDotNet/Automata

https://regex101.com/
https://github.com/AutomataDotNet/Automata

14

reflection [Livshits et al. (2005)]. To the author’s knowledge, this is the first work to

mine and evaluate regular expression usages from existing software repositories.

3.3.2 Refactoring and smells

Regular expression refactoring has also not been studied directly, though refactor-

ing literature abounds [Mens and Tourwé (2004); Opdyke (1992); Griswold and Notkin

(1993)]. The closest to regex refactoring comes from research toward expediting the pro-

cessing of regular expressions on large bodies of text [Baeza-Yates and Gonnet (1996)],

which could be thought of as refactoring for performance.

In software, code smells have been found to hinder understandability of source code

[Abbes et al. (2011); Du Bois et al. (2006); Hermans (2016)]. Once removed through

refactoring, the code becomes more understandable, easing the burden on the program-

mer. In regular expressions, such code smells have not yet been defined, perhaps in part

because it is not clear what makes a regex smelly.

Code smells in object-oriented languages were introduced by Fowler [Fowler (1999)].

Researchers have studied the impact of code smells on program comprehension [Abbes

et al. (2011); Du Bois et al. (2006)], finding that the more smells in the code, the harder

the comprehension. This is similar to the work in this thesis, except we aim to identify

which regex representations can be considered smelly. Code smells have been extended

to other language paradigms including end-user programming languages [Hermans et al.

(2012, 2014); Stolee and Elbaum (2011, 2013)]. The code smells identified in this work

are representations that are not common or not well understood by developers. This

concept of using community standards to define smells has been used in other refactoring

literature for end-user programmers [Stolee and Elbaum (2011, 2013)].

15

CHAPTER 4. STUDIES

4.1 Usage and Support of Regex Features

The primary goal of this experiment was to answer the question, ‘How are regex used

in practice, especially what features are most commonly used?’. Python was chosen

because its regular expression feature set seemed to contain a good balance between

having some advanced features, and not having too many rare features (this assumption

was confirmed, as discussed in Section 4.1.5.2.).

A pattern is a string that is parsed according to the feature syntax of a regular

expression variant (like Python Regular Expressions) into units of meaning called feature

tokens. For example the pattern "a*" is parsed into the (a) ordinary character token,

and the (*) KLE token. In order to obtain data about feature usage frequency, a large

number of patterns used to create regexes were required. Source code calling the re

module contains patterns - this is where the patterns used in this study were obtained.

One call to the re module found in source code (not running live) is referred to as a

utilization. Utilizations are explained in further detail in Section 4.1.1

With these needs in mind, a tool was implemented that does the following:

• finds projects containing Python on GitHub

• clones the repositories containing these projects

• builds the AST of source code using files from these projects

• populates a database with information about utilizations found

16

Implementation details of this tool, and some of the challenges faced are discussed

in Appendix A. Once the data about utilizations was collected, some questions about

the utilizations themselves were explored. This exploration can be read about in Sec-

tion 4.1.1.

The knowledge of how frequently each feature is used can provide context when

comparing the sets of features supported by various regular expression analysis tools and

language variants besides Python Regular Expressions. An exploration of 68 features

(34 ranked by this study, and 34 other unranked features) is in Section 4.1.5. Finally a

discussion of the impact of this study and threats to validity is in Section 4.1.6.

4.1.1 Utilizations of the re module

Utilization: A utilization occurs whenever a regex is used in source code. We detect

utilizations by statically analyzing source code and recording calls to the re module in

Python.

4.1.1.1 Utilization defined

Within a Python source code file, a utilization of the re module is composed of a func-

tion, a pattern, and 0 or more flags. Figure 4.1 presents an example of one utilization,

with key components labeled. The function call is re.compile, "(0|-?[1-9][0-9]*)$"

is the pattern, and re.MULTILINE is an (optional) flag. When executed, this utiliza-

tion will compile a regex into the variable r1 from the pattern "(0|-?[1-9][0-9]*)$".

The resulting regex (0|-?[1-9][0-9]*)$ is composed of two regex fragments: 0 and

-?[1-9][0-9]* operated on by the OR |, and contained in a CG () so that the fol-

lowing the END feature ($) applies regardless of which fragment is matched. Because

of the re.MULTILINE flag used, the END specifies a position at the end of every line

(instead of only the end of the last line).

17

r1 = re.compile(’(0|-?[1-9][0-9]*)$’, re.MULTILINE)

function pattern �ags

Figure 4.1 Example of one regex utilization

The regex fragment 0 matches "0", and the fragment on the right of the OR,

-?[1-9][0-9]* , matches all positive or negative integers (not starting with 0) like

"123", "9", "-10000" or "-8". When combined the full regex (0|-?[1-9][0-9]*)$

matches all positive and negative integers at the end of lines. For example the multi-line

string: "line 1: xyz 85\nline2: -2\nlast line\n" will match at the end of the first

two lines. Expressing zero or one dash characters using the regex fragment -? is useful

so that the sign of the integer will be part of the capture, (e.g., from "A: -9\n", "-9"

is captured, not just "9").

Pattern: A pattern is extracted from a utilization, as shown in Figure 4.1. As described

in Section 4.1, a pattern specifies a series of regular expression language feature tokens

which can be compiled by an engine into a regex. A regex compiled from the pattern in

Figure 4.1 .

Note that because the vast majority of regular expression features are shared across

most general programming languages (e.g., Java, C, C#, or Ruby), a Python pattern

will (almost always) behave the same when used in other languages as mentioned in

Section 2.2.2, whereas a utilization is not universal in the same way (i.e., it is very

unlikely to compile in other languages because of variations in programming language

syntax and the names of functions).

4.1.1.2 Omission of calls to compiled regexes

Every utilization recorded using the technique described in Appendix A is an invoca-

tion directly using the re library, like re.compile(...) or re.search(...). However,

this technique does not record calls on compiled objects. For example the regex described

in Section 4.1.1.1 is stored in the variable r1, and a function call on that variable like

18

r1.search("-45") is not recorded. However, this omission only impacts the interpreta-

tion of Figure 4.3, which describes which function calls were observed (calls to compiled

objects are excluded). This issue does not impact the coverage of patterns, because every

compiled regex like r1 comes from a call to re.compile(...), which is captured by the

technique used in this study.

4.1.1.3 Selecting projects to mine for utilizations

The goal of this experiment was to collect regexes from a variety of projects to rep-

resent the breadth of how developers use the language features. In order to obtain

utilizations from a pseudo-random, broad selection of projects, 3,898 projects contain-

ing Python code were mined for utilizations as described in Appendix A. This section

describes how these projects were selected.

Every time a new repository is created on GitHub, a new unique identifier (strictly

greater than existing identifiers) is generated and assigned to that repository. This

work refers to these identifiers using the shorthand: repoID. At the time the mining for

utilizations used in this study was performed, the largest repoID was between 32 million

and 33 million. Dividing these repoIDs into four groups each of size 223 = 8, 388, 608

(with the fourth group being a little larger than that), the second group, which spans

the range 8,388,608 - 16,777,215 was split into 32 sections so that starting indices were

262,144 repoIDs apart. The original intention was to mine the entire second 1/4 of the

first 32 million repo IDs, but due to the challenges described in Appendix A, only the

first 100 or so projects from each of the 32 starting points was mined. Instead of spending

the majority of available time on perfecting a mining technique, the determination was

made to analyze the data that had already been gathered.

19

Table 4.1 How saturated are projects with utilizations?

Source Q1 Avg Med Q3 Max

utilizations per project 2 32 5 19 1,427

files per project 2 53 6 21 5,963

utilizing files per project 1 11 2 6 541

utilizations per file 1 2 1 3 207

4.1.1.4 Observed utilizations of the re module

Saturation of artifacts with regexes. Out of the 3,898 projects scanned, 42.2%

(1,645) contained at least one utilization. Within a project, a duplicate utilization was

marked when two versions of the same file have the same function, pattern and flags.

In total, 53,894 non-duplicate utilizations were observed. To illustrate how saturated

projects are with regexes, measurements are made for the number of utilizations per

project, number of files scanned per project, number of files containing utilizations, and

number of utilizations per file, as shown in Table 4.1.

Of projects containing at least one utilization, the average utilizations per project was

32 and the maximum was 1,427. The project with the most utilizations is a C# project1

that maintains a collection of source code for 20 Python libraries, including larger libraries

like pip, celery and ipython. These larger Python libraries contain many utilizations.

From Table 4.1, it can also be seen that each project had an average of 11 files containing

any utilization, and each of these files had an average of 2 utilizations.

Flags and functions. As shown in figure 4.2, of all behavioral flags used, ig-

norecase (43.8%) and multiline (25.8%) were the most frequently used. It is also worth

noting that although multiple flags can be combined using a bitwise or, this was never

1https://github.com/Ouroboros/Arianrhod

https://github.com/Ouroboros/Arianrhod

20

multiple flags 0 (0%)
VERBOSE 943 (13.8%)
UNICODE 397 (5.8%)
DOTALL 711 (10.4%)
MULTILINE 1,764 (25.8%)
LOCALE 24 (0.4%)
IGNORECASE 2,996 (43.8%)

0

1000

2000

3000

4000

5000

6000

7000

Figure 4.2 Which behavioral flags are used?

re.subn 77 (0.1%)
re.sub 6,826 (12.7%)
re.finditer 124 (0.2%)
re.findall 1,825 (3.4%)
re.split 1,084 (2%)
re.match 5,788 (10.7%)
re.search 7,116 (13.2%)
re.compile 31,054 (57.6%)0

10000

20000

30000

40000

50000

60000

Figure 4.3 Which behavioral flags are used?

observed. When considering flag use, non-behavioral flags (default and debug) were

excluded, which are present in 87.3% of all utilizations.

As seen in Figure 4.3 The ‘compile’ function encompasses 57.6% of all utilizations.

Regexes may be compiled in an attempt to improve performance (only compile once) or

to abstract the regex from the rest of the code. Compiled regexes are often observed at

the top of a file, listed along with other highly-scoped variables maintained separately

from blocks of code. Using the other re module functions in-line may be less preferred

by developers because of the ‘magic strings’ which could be refactored to a variable.

21

4.1.2 Building the corpus

Patterns with behavioral flags and variables are excluded. To guarantee

that the behavior of regexes used for analysis depended only on the pattern extracted

from a utilization, the 12.7% of utilizations using behavioral flags (default and debug

do not affect engine behavior) were excluded from further analysis. An additional 6.5%

of utilizations contained patterns that could not be compiled because the pattern was

non-static (e.g., used some runtime variable).

Normalizing patterns. All distinct patterns from the remaining 80.8% (43,525) of

utilizations were pre-processed by removing Python quotes (‘\\W’ becomes \\W), and un-

escaping escaped characters (\\W becomes \W). After these filtering steps, 13,711 distinct

patterns remained.

4.1.2.1 Using a PCRE parser to recognize Python features

All studied features are recognizable. The collection of distinct patterns formed

by this process was parsed into tokens using an ANTLR-based, open source PCRE

parser2. A comparison of the features supported by this parser (Perl features) and

Python is provided in Table 4.5, and indicates that all but the ENDZ feature have iden-

tical syntax and meaning. Fortunately, the syntax of the ENDZ feature (e.g., R\Z)

matches the syntax of the LNLZ feature (e.g., R\Z) so that in practice, the parser used

can correctly identify all studied features. To clarify the difference, if a newline is the

last character in a string, ENDZ will match after that newline, and LNLZ will match

before that newline.

Excluded patterns. This parser was unable to support 0.53% (73) of the patterns

due to unsupported Unicode characters. Another 0.12% (17) of the patterns used PCRE

2https://github.com/bkiers/pcre-parser

https://github.com/bkiers/pcre-parser

22

features not valid in Python. Two additional patterns used the commenting feature,

ECOM, which is valid in Python but is excluded to keep the analysis more succinct.

An additional 0.16% (22) of the patterns were excluded because they were empty or

otherwise malformed so as to cause a parsing error. In total, these excluded patterns

represent 0.83% (114) of the 13,711 distinct patterns obtained. Excluded patterns are

listed in Appendix A.

Corpus defined. The 13,597 distinct pattern strings that remain were each as-

signed a weight value equal to the number of distinct projects the pattern appeared in.

We refer to this set of weighted, distinct pattern strings as the corpus.

4.1.3 Analyzing the corpus of regexes

4.1.3.1 Parsing feature tokens

For each escaped pattern, the PCRE-parser produces a tree of feature tokens, which

is converted to a vector by counting the number of each token in the tree. For a simple

example, consider the patterns in Figure 4.4. The pattern "^m+(f(z)*)+" contains four

different types of tokens. It has the KLE operator (*), the ADD operator (+), two CG

elements ((...)), and the STR position (^).

(ab*c|yz*)$

OR KLE ADD CG STR END

1 2 0 1 0 1

0 1 2 2 1 0^m+(f(z)*)+

Figure 4.4 Two patterns parsed into feature vectors

Once all patterns were transformed into vectors, each feature was examined indepen-

dently for all patterns, tracking the number of patterns, files and projects that the each

feature appears in at least once.

23

Table 4.2 Codes, descriptions and examples of select Python Regular Expression fea-
tures

Code Description Example Code Description Example

Elements Operators

VWSP matches U+000B \v ADD one-or-more repetition z+

CCC custom character class [aeiou] KLE zero-or-more repetition .*

NCCC negated CCC [^qwxf] QST zero-or-one repetition z?

RNG chars within a range [a-z] SNG exactly n repetition z{8}

ANY any non-newline char . DBB n ≤ x ≤ m repetition z{3,8}

DEC any of: 0123456789 \d LWB at least n repetition z{15,}

NDEC any non-decimal \D LZY as few reps as possible z+?

WRD [a-zA-Z0-9] \w OR logical or a|b

NWRD non-word chars \W Positions

WSP \t \n \r \v \f or space \s STR start-of-line ^

NWSP any non-whitespace \S END end-of-line $

CG a capture group (caught) ENDZ absolute end of string \Z

BKR match the ith CG \1 WNW word/non-word boundary \b

PNG named capture group (?P<name>x) NWNW negated WNW \B

BKRN references PNG (P?=name) LKA matching sequence follows a(?=bc)

NCG group without capturing a(?:b)c LKB matching sequence precedes (?<=a)bc

Options NLKA sequence doesn’t follow a(?!yz)

OPT options wrapper (?i)CasE NLKB sequence doesn’t precede (?<!x)yz

4.1.3.2 Studied feature set

This thesis will focus on the features and syntax described in Table 4.2 (detailed

descriptions in Appendix A). Every regex in the corpus only uses features from this

feature set. The features of Python Regular Expressions analyzed fall into four categories:

1. Elements are individual characters, character classes and logical groups. Elements

can be operated on by operators.

2. Options fundamentally modify the behavior of the engine.

3. Repetition modifiers, implicit concatenation and logical OR are operators. The

order of operations is described in Appendix A.

4. Positions refer to a position between characters. They make assertions about the

string on one or both sides of their position.

24

4.1.4 Frequency of feature usages

Table 4.3 displays feature usage from the corpus in terms of the number of patterns,

files and projects, as well as in terms of tokens used.

The first column, Rank, lists the rank of a feature (relative to other features) in terms

of the number of projects in which it appears. The next column, Code, gives a succinct

reference string for the feature (all features are described in Appendix A). The Example

column provides a short example of how the feature can be used. The next six columns

contain usage statistics providing a variety of perspectives on how frequently the features

are used in the observed population.

The % Projects column contains the percentage of projects using a feature out of the

1,645 projects scanned that contain at least one pattern in the corpus. The NProjects

column provides the number of projects that contain at least one usage of a feature.

Assuming that one project generally corresponds to some high-level goal of a programmer

or a team of programmers, these values provide a sense of how frequently a feature is

part of a software solution in even the slightest way. Because of the generality of this

measure and the goal of this study to gauge how features of regular expressions are used

in general, these values are used to determine the rank of a feature.

The NFiles column specifies the number of files that contain at least one observed

usage of the feature. For reference, recall that a total of 18,547 files were scanned

that contain at least one feature usage. Assuming that programmers organize code into

separate files based on what the code needs to do, this number can provide insight into

the variety of different conceptually separate task categories a feature is used for.

The NPatterns column contains the number of patterns in which a feature was ob-

served. Each regex is compiled from a particular pattern and performs at least one

function desired by a programmer. Therefore the number of patterns composed using a

feature can provide insight into the number of specific tasks a feature is used for.

25

Table 4.3 Frequency of feature appearance in Projects, Files and Patterns, with number
of tokens observed and the maximum number of tokens observed in a single
pattern.

Rank Code Example % Projects NProjects NFiles NPatterns NTokens MaxTokens

1 ADD z+ 73.2 1,204 9,165 6,003 11,136 30

2 CG (caught) 72.6 1,194 9,559 7,130 12,707 17

3 KLE .* 66.8 1,099 8,163 6,017 11,620 50

4 CCC [aeiou] 62.4 1,026 7,648 4,468 8,179 42

5 ANY . 61.1 1,005 6,277 4,657 7,119 60

6 RNG [a-z] 51.6 848 5,092 2,631 8,043 50

7 STR ^ 51.4 846 5,458 3,563 3,661 12

8 END $ 50.3 827 5,393 3,169 3,276 12

9 NCCC [^qwxf] 47.2 776 3,947 1,935 2,718 15

10 WSP \s 46.3 762 4,704 2,846 6,128 32

11 OR a|b 43 708 3,926 2,102 2,606 15

12 DEC \d 42.1 692 4,198 2,297 4,868 24

13 WRD \w 39.5 650 2,952 1,430 2,037 13

14 QST z? 39.2 645 3,707 1,871 3,290 35

15 LZY z+? 36.8 605 2,221 1,300 1,761 12

16 NCG a(?:b)c 24.6 404 1,709 791 1,453 28

17 PNG (?P<name>x) 21.5 354 1,475 915 2,399 16

18 SNG z{8} 20.7 340 1,267 581 1,159 17

19 NWSP \S 16.4 270 776 484 676 10

20 DBB z{3,8} 14.5 238 647 367 573 11

21 NLKA a(?!yz) 11.1 183 489 131 148 3

22 WNW \b 10.1 166 438 248 408 36

23 NWRD \W 10 165 305 94 149 6

24 LWB z{15,} 9.6 158 281 91 107 3

25 LKA a(?=bc) 9.6 158 358 112 133 4

26 OPT (?i)CasE 9.4 154 377 231 238 2

27 NLKB (?<!x)yz 8.3 137 296 94 117 4

28 LKB (?<=a)bc 7.3 120 255 80 99 4

29 ENDZ \Z 5.5 90 149 89 89 1

30 BKR \1 5.1 84 129 60 73 4

31 NDEC \D 3.5 58 92 36 51 6

32 BKRN (P?=name) 1.7 28 44 17 19 2

33 VWSP \v 0.9 15 16 13 14 2

34 NWNW \B 0.7 11 11 4 5 2

26

Table 4.4 Top 17 programming languages containing support for regexes, ranked according

to popularity by tiobe.com, with the regular expression libraries built into them

and the variants that they support.
Rank Language Library Variants Provided By Library

1 Java java.util.regex Java Regular Expressions

3 C++ std::regex POSIX BRE & ERE & Awk, ECMAScript

4 C# System.Text.RegularExpressions .Net Regular Expressions

5 Python re module Python Regular Expressions

6 PHP PCRE core extension PCRE

7 Visual Basic .NET System.Text.RegularExpressions .Net Regular Expressions

8 JavaScript RegExp object (built-in) ECMAScript

9 Perl perlre core library PCRE

10 Ruby Regexp class (built-in) Ruby Regular Expressions

11 Delpi RegularExpressions unit PCRE

14 Swift NSRegularExpression NS Regular Expressions

15 Objective-C NSRegularExpression NS Regular Expressions

16 R grep (built-in) TRE, PCRE

17 Groovy java.util.regex Java Regular Expressions

18 MATLAB regexp function (built-in) MathWorks Regular Expressions

19 PL/SQL LIKE operator (built-in) SQL Regular Expressions

20 D std.regex D Regular Expressions

The NTokens column, gives the total number of tokens observed for a feature, com-

bining the token counts of all patterns in the corpus. This value provides a sense of how

often the language feature is used for any task.

The last column, MaxTokens, gives the maximum number of times that a feature

appears in a single regex. Assuming that a feature that a programmer finds convenient

is used more frequently in a given regex, this value provides a sense of convenience

provided by the feature.

4.1.5 Feature support

One issue that has persisted as a major pain point in the study of regular expressions

is the lack of a concise summary comparing what features are supported in different

regular expression language variants. This section provides such a summary, and goes on

to investigate what features are supported in reasoning tools for regular expressions. In

27

the tables presented in this section the filled circle () means that a feature is supported,

and the empty circle () means that a feature is not supported (cavats about comparing

features are described in Appendix A).

4.1.5.1 Libraries providing regular expression functionality

For most popular programming languages, various regular expression functions are

provided using standard libraries or are built into the language. Table 4.4, with columns

Rank, Language, Library and Variants Provided By Library describes the standard reg-

ular expression libraries or built-ins provided as a core language feature for all but three

of the top 20 most popular languages ordered according to the TIOBE3 index. The C,

Visual Basic and Assembly Language languages (ranks 2, 12 and 13, respectively) do not

provide built-in regular expression support and so are not shown. Alternative libraries

are discussed in Appendix A.

4.1.5.2 Ranked feature support

Table 4.5 compares support for the 34 features studied in this thesis amongst Perl,

Python, Ruby, .Net, JavaScript, RE2, Java and POSIX ERE (i.e., grep, sed, etc.).

Languages were chosen to optimize ease of testing and coverage of the languages in

Table 4.4. The rationale for selecting these languages is discussed in Appendix A.

No languages share the functionality of Python’s ENDZ feature (preferring the LNLZ

feature for that syntax). Only RE2 and Perl support Python-style named capture groups,

and only Perl supports Python-style named back-references. JavaScript does not sup-

port options (OPT) or positive or negative look-backs (LKB, NLKB respectively). RE2

does not support any look-arounds (LKB, NLKB, LKA and NLKA) or back-references.

POSIX ERE only supports 15 of the 34 studied features and Ruby does not support

vertical whitespace (VWSP), but all remaining features are supported by all the other

3http://www.tiobe.com/tiobe_index

http://www.tiobe.com/tiobe_index

28

Table 4.5 What regular expression languages support features studied in this thesis?
Rank Code Example Python Perl .Net Ruby Java RE2 JavaScript POSIX ERE

1 ADD z+

2 CG (caught)

3 KLE .*

4 CCC [aeiou]

5 ANY .

6 RNG [a-z]

7 STR ^

8 END $

9 NCCC [^qwxf]

10 WSP \s

11 OR a|b

12 DEC \d

13 WRD \w

14 QST z?

15 LZY z+?

16 NCG a(?:b)c

17 PNG (?P<name>x)

18 SNG z{8}

19 NWSP \S

20 DBB z{3,8}

21 NLKA a(?!yz)

22 WNW \b

23 NWRD \W

24 LWB z{15,}

25 LKA a(?=bc)

26 OPT (?i)CasE

27 NLKB (?<!x)yz

28 LKB (?<=a)bc

29 ENDZ \Z

30 BKR \1

31 NDEC \D

32 BKRN (P?=name)

33 VWSP \v

34 NWNW \B

29

variants. The top nine features by rank are supported in all eight variants. Feature

membership was determined through consulting documentation and performing experi-

ments. More details about the techniques used to decide if a feature is supported by a

language or not are discussed in Appendix A.

The studied feature set is representative. These results support the relevance

of the feature set selected for detailed study in this thesis, and the selection of Python

for this investigation. The implication here is that patterns written for one engine using

this feature set are very likely to be interpreted the same way by most other engines,

for most features, which is good for portability. Exceptions include porting lookarounds

(LKA, LKB, NLKA, NLKB) or options (OPT) to JavaScript, and porting named groups

from Python, Perl or RE2 to other variants.

4.1.5.3 Unranked feature support

Table 4.6 describes feature support for a selection of 34 unranked features (not in

the studied feature set) chosen from the eight languages being investigated. A reference

code and small example are provided to aid in understanding. Several of these features

actually represent an entire family of up to 12 features, like PXCC (e.g., [:alpha:]),

EREQ (e.g., [[=o=]]), JAVM (e.g., \p{javaMirrored}), UNI and NUNI (e.g., \pL

and \PM), but only one feature from such a family is presented for space considerations.

Perl is notable for supporting the most features overall, and POSIX ERE is notable for

supporting the smallest number of features. A brief explanation of the functionality of

these features is available in Appendix A

4.1.5.4 Feature support in regex analysis tools

Tools for analyzing and reasoning about regular expressions are useful for language

researchers who would like to prove an assertion for all strings, and may have industry

30

Table 4.6 What features, not studied in this thesis, are supported in various languages?

Code Example Python Perl .Net Ruby Java RE2 JavaScript POSIX ERE

RCUN (?n)

RCUZ (?R)

GPLS \g{+1}

GBRK \g{name}

GSUB \g<name>

KBRK \k<name>

IFC (?(cond)X)

IFEC (?(cnd)X|else)

ECOD (?{code})

ECOM (?#comment)

PRV \G

LHX \uFFFF

POSS a?+

NNCG (?<name>X)

MOD (?i)z(?-i)z

ATOM (?>X)

CCCI [a-z&&[^f]]

STRA \A

LNLZ \Z

FINL \z

QUOT \Q...\E

JAVM \p{javaMirrored}

UNI \pL

NUNI \PS

OPTG (?flags:re)

EREQ [[=o=]]

PXCC [:alpha:]

TRIV [^]

CCSB [a-f-[c]]

VLKB (?<=ab.+)

BAL (?<close-open>)

NCND (?(<n>)X|else)

BRES (?|(A)|(B))

QNG (?’name’re)

31

Table 4.7 What features are supported by regular expression analysis tools?
Rank Code Example Brics Hampi Rex Automata.Z3

1 ADD z+

2 CG (caught)

3 KLE .*

4 CCC [aeiou]

5 ANY .

6 RNG [a-z]

7 STR ^

8 END $

9 NCCC [^qwxf]

10 WSP \s

11 OR a|b

12 DEC \d

13 WRD \w

14 QST z?

15 LZY z+?

16 NCG a(?:b)c

17 PNG (?P<name>x)

18 SNG z{8}

19 NWSP \S

20 DBB z{3,8}

21 NLKA a(?!yz)

22 WNW \b

23 NWRD \W

24 LWB z{15,}

25 LKA a(?=bc)

26 OPT (?i)CasE

27 NLKB (?<!x)yz

28 LKB (?<=a)bc

29 ENDZ \Z

30 BKR \1

31 NDEC \D

32 BKRN \g<name>

33 VWSP \v

34 NWNW \B

32

applications for critical systems. The more features supported by an analysis tool, the

more regexes it can analyze. On the other hand, the more features that developers of

an analysis tool attempt to support, the more complex the implementation of the tool

becomes.

At some point developers of an analysis tool will need to choose a feature set to

support. In Table 4.7, the features supported by brics, hampi, Rex and Automata.Z3

are compared, with feature support determined by consulting documentation, and ex-

perimentation with Rex. More details about how feature support was determined are

provided in Appendix A. Hampi supports the most features (25 features), followed by Rex

(21 features), Automata.Z3 (14 features) and brics (12 features). Rex and hampi sup-

port the 14 most commonly used features, whereas Automata.Z3 supports 11 of these

features and bricks supports nine. No projects support the four look-around features

LKA, NLKA, LKB and NLKB. Hampi supports named back-references, and no other

back-reference support is available in any other tool. Hampi supports the LZY, NCG,

PNG and OPT features, whereas brics, Automata.Z3 and Rex do not. The implications

of this difference are that users of these tools are limited in what regular expressions

they can test and reason about using them. For example, if a user wants to reason about

^abb*$, then they can do so in hampi, which supports the STR and END features, but

they cannot use Brics, which does not support these features. Hampi may not have the

functionality of Brics, and so the user may not be able to perform the analysis that they

want to perform.

4.1.6 Discussion of feature analysis results

4.1.6.1 General Implications

These results have implications for programmers requiring portability, language and

tool designers, and specifically, developers of the re module.

33

Defining a set of regex features that generalizes. As shown in Table 4.5,

the feature set used in this study (except for PNG, NBKR and ENDZ) generalizes well

across all feature-rich modern variants. A portable set of features is useful when de-

veloping regex coding standards that enable portability, and for software development

where minimizing vendor lock-in, or planning for possible migration across languages is

important.

Providing a reference for language and tool designers. The largest implica-

tion for language and tool designers is that now, if they need to know what features are

supported, or how frequently a feature is used, such information is available in a concise

format.

For developers of the re module. Specific details about utilizations of the

re module, such as function and flag usage frequency, and saturation within GitHub

projects, has implications for the developers of the re module. In many cases, the ob-

served practice diverges from the intended design. Namely, the near-irrelevance of the

‘locale’ flag, the general trend toward compiling objects (presumably avoiding magic

strings), and the apparent misconception that only one flag can be used at a time (the

documentation clearly states that a bitwise-or of flags is effective4, but this was never

observed in over 50,000 utilizations).

4.1.6.2 Threats to validity

Compared to the overall number of Python projects in existence, the number of

projects used in this study is small. It may not be representative of Python projects on

a whole. This is mitigated by the pseudo-random nature of selecting projects based on

an arbitrary unit of division, several hundred thousand repository creation events apart

(Section 4.1.1.3).

4https://docs.python.org/2/library/re.html

https://docs.python.org/2/library/re.html

34

As discussed thoroughly in Section 2.2.2, patterns are not regexes, and there is always

a risk that the patterns used to build the corpus would not port to other languages,

making this analysis limited in application to only Python programmers. This risk is

mitigated by Table 4.5, which proves a high level of portability for all regexes studied,

and therefore some guarantee of applicability across languages.

Human error may have invalidated some feature presence/absence entries in Table 4.5.

This is mitigated by the choice of languages, selected to make initial testing relatively

fast, and re-testing by outside parties also relatively fast.

4.2 Categories of Regex Usage Tasks

The goal of this study is to answer the question, ‘What behavioral categories can be

observed in regex?’ so that designers of regular expression languages and end-user tools

can better support what is most useful to programmers.

4.2.1 Clustering design

Regular expression languages are infinite and exhibit substantial variety, but pro-

grammers are likely to use them for a limited number of purposes. In this study, a

regex similarity measurement technique was devised and used to group regex with simi-

lar behavior into clusters. The clusters representing the most projects were then in turn

manually grouped into general categories of behavior.

4.2.1.1 Determining behavioral similarity

An ideal analysis of regex behavioral similarity would use subsumption or containment

analysis. However, a tool that could facilitate such an analysis of the corpus could not

be found. For this reason, a new technique using string matching was developed that

can create a similarity score between two regexes with existing technology.

35

A B

A

B 1.00.5

0.91.0Pattern B matches 90/100 of A’s strings

Pattern A matches 50/100 of B’s strings

Pattern A matches 100/100 of A’s strings

Pattern B matches 100/100 of B’s strings

Figure 4.5 A similarity matrix created by counting strings matched

A B

A

B

C

C

D

D

0.8 0.71.00.2

0.9 0.00.01.0

1.0 0.20.80.6

0.1 1.00.60.0

A B

A

B

C

C

D

D

1.00.1

1.0

1.00.80.75

0.15 1.00.650.0

Figure 4.6 Creating a similarity graph from a similarity matrix

4.2.1.2 Building a similarity matrix

The similarity analysis used in this study clusters regular expressions by their behav-

ioral similarity on matched strings. Consider two unspecified regexes A and B . Now

consider a set of 100 strings that match A , named A100m. If B matches 90 strings in

A100m, then If B is 90% similar to A . Similarly, consider a set of 100 strings that match

B , named B100m. If A matches 50 strings in B100m, then If A is 50% similar to If B .

Notice that by this definition, each regex is 100% similar to itself. Similarity scores are

used to create a similarity matrix as shown in Figure 4.5.

Once the similarity matrix is built, the values of cells reflected across the diagonal

of the matrix are averaged to create a half-matrix of undirected similarity edges, as

illustrated in Figure 4.6. This facilitates clustering using the Markov Clustering (MCL)

algorithm5. MCL was chosen because it offers a fast and tunable way to cluster items

by similarity and it is particularly useful when the number of clusters is not known a

priori.

In the implementation, strings are generated for each regex using Rex [Veanes et al.

(2010)] version 1.0.0.0. Rex generates matching strings by representing the regular ex-

5http://micans.org/mcl/

http://micans.org/mcl/

36

pression as an automaton, and then passing that automation to a constraint solver that

generates members for it6. If the regex matches a finite set of strings smaller than 400,

Rex will produce a list of all possible strings. In this study, the goal is to generate 400

strings for each regex to balance the runtime of the similarity analysis with the precision

of the similarity calculations.

For clustering, the similarity matrix is pruned to retain all similarity values greater

than or equal to 0.75, setting the rest to zero, and then using MCL to actually find

the clusters. This threshold (0.75) was selected based on recommendations in the MCL

manual [van Dongen (2012)]. The impact of lowering the threshold would likely result

in either the same number of more diverse clusters, or a larger number of clusters, but is

unlikely to markedly change the largest clusters or their summaries. We also note that

MCL can also be tuned using many parameters, including inflation and filtering out all

but the top-k edges for each node [van Dongen (2012)]. After exploring the quality of the

clusters using various tuning parameter combinations, the best clusters (by inspection)

were found using an inflation value of 1.8 and k=83. The top 100 clusters are categorized

by inspection into six categories of behavior.

The end result is clusters and categories of highly behaviorally similar regular ex-

pressions, though this approach has a tendency to over-approximate the similarity of

two regexes. Similarity is measured based on a finite set of generated strings, but some

regexes match an infinite set (e.g., ab*c), so measuring similarity based on the first 400

strings may lead to an artificially high similarity value. To mitigate this threat, a large

number of generated strings was used for each regex, but future work includes exploring

other approaches to computing regex similarity.

6http://research.microsoft.com/en-us/projects/rex/

http://research.microsoft.com/en-us/projects/rex/

37

4.2.2 Clustering implementation

4.2.2.1 Selecting regexes to include

Regexes appearing in only one project were not included in the final behavioral anal-

ysis, because these regexes have already appealed to more than one project maintainer,

and so are more likely to be of interest when determining common behaviors, which

aligns with the goal of this study. So of the 13,597 regexes of the corpus, 10,015 (74%)

regexes that were not found in multiple projects were not included. An additional 711

(5%) regexes were excluded that contain features not supported by Rex. The remaining

2,871 (21%) regexes were used in the similarity analysis technique described here.

The impact is that 923 (53%) projects were excluded from the data set for the sim-

ilarity analysis. The remaining 730 (47%) projects touched by some cluster remained

relevant to the analysis. Omitted features are indicated in Table 4.7 for Rex. Further

details about similarity matrix creation are available in Appendix B.

4.2.2.2 Markov clustering details

The Markov Clustering Algorithm (MCL) is based on the principal that when taking

a random walk within a graph, a random walker is more likely to stay within a cluster

than to cross to another cluster [van Dongen (2012)]. A graph can be represented as

a matrix of edge weights (the similarity matrix). One step of a random walk can be

simulated by multiplying this matrix by itself (i.e., the matrix after one step has cells

ci,j containing the sum of multiplying column i of M with row j of M .). This is known

as expansion [van Dongen (2012)]. With MCL, the natural tendency of clusters to be

emphasized using random walks is exacerbated by raising each matrix element to a power

and then re-normalizing the matrix (so that random walks may continue). This is known

as inflation [van Dongen (2012)]. Inflation effectively lowers smaller numbers more than

large ones. Edges between nodes in a cluster tend to remain intact (they were not

38

Table 4.8 An example cluster containing 12 regexes, with at least one regex present in
31 different projects. In this cluster, every regex requires ‘:’.

Index Pattern NProjects Index Pattern NProjects

1 \s*([^:]*)\s*:(.*) 9 7 [:] 6

2 :+ 8 8 ([^:]+):(.*) 6

3 (:) 8 9 \s*:\s* 4

4 (:+) 8 10 \: 2

5 (:)(:*) 8 11 ^([^:]*):[^:]*$ 2

6 ^([^:]*): *(.*) 8 12 ^[^:]*:([^:]*)$ 2

lowered so much during the random walk) while all other edges are effectively pruned.

The algorithm works by alternating between n expansion steps followed by inflation to

the power i. These steps are repeated until the matrix converges to a fixed point [van

Dongen (2012)]. More detail about how MCL was tuned are available in Appendix B.

4.2.3 Categorization of behavioral clusters

From 2,871 distinct regexes, MCL clustering identified 186 clusters with 2 or more

regexes, and 2,042 clusters of size 1. The average size of clusters larger than size one was

4.5. Each regex belongs to exactly one cluster.

4.2.3.1 Representing a cluster with the shortest regex

Table 4.8 provides an example of a behavioral cluster containing 12 regexes. At least

one regex from this cluster is present in 31 different projects. All regexes in this cluster

share the literal : character. The smallest regex, :+ , matches one or more colons.

Another regex from this cluster, ([^:]+):(.*) , requires at least one non-colon

character to occur before a colon character. The behavioral similarity score between

these two regexes was below the minimum of 0.75 because Rex generated many strings

39

Table 4.9 Cluster categories and sizes, ordered by number of projects containing at
least one pattern in the category.

Category Clusters Patterns Projects % Projects

Multi Matches 21 237 295 40%

Specific Char 17 103 184 25%

Anchored Patterns 20 85 141 19%

Two or More Chars 16 40 120 16%

Content of Parens 10 46 111 15%

Code Search 15 27 92 13%

for :+ that start with one or more colons. However the overall similarity between the

regex requiring a non-colon and other regexes in this cluster caused it to be clustered

with this group.

The smallest regex in a cluster provides insight about key characteristic that all the

regexes in the cluster have in common. A shorter regex will tend to have less extraneous

behavior because it is specifying less behavior, yet, in order for the smallest regex to be

clustered, it had to match most of the strings created by Rex from many other regexes

within the cluster, and so one minor discovery about clusters of regexes is that the

smallest regex is useful as a representative of the cluster. In this thesis, clusters will

be represented using a shorthand composed of the shortest regex in the cluster followed

by the number projects (and number of patterns in angle brackets). For Example, the

cluster in Table 4.8 will be represented as :+ (31 <12>).

The top 100 largest clusters based on the number of projects were manually sorted

into 6 behavioral categories (determined by inspection). The largest cluster was left out,

as it was composed of patterns that trivially matched almost any string, like b* and ^ .

The remaining 99 clusters were all categorized. These clusters are briefly summarized in

Table 4.9, showing the name of the category and the number of clusters it represents,

40

patterns in those clusters, and projects. The most common category is Multi Matches,

which contains clusters that have alternate behaviors (e.g., matching a comma or a

semicolon, as in ,|; (18 <5>). Each of the aforementioned 99 clusters was mapped to

exactly one category. Five example clusters are available in Appendix B.

4.2.3.2 Six categories of behaviorally similar clusters

Multiple Matching Alternatives. The patterns in these clusters match under a

variety of conditions by using the CCC or OR feature. For example: (\W) (88 <36>)

matches any alphanumeric character, (\s) (97 <33>) matches any whitespace charac-

ter, \d (58 <23>) matches any numeric character, and ,|; (18 <5>) matches a comma

or semicolon. Most of these clusters are represented by patterns that use default charac-

ter classes, as opposed to custom character classes. This category contains 21 clusters,

each appearing in an average of 33 projects.

Specific Character Must Match. Each cluster in this category requires one spe-

cific character to match, for example: \n\s* (43 <16>) matches only if a newline is

found, :+ (31 <12>) matches only if a colon is found, % (22 <6>), matches only if

a percent sign is found and } (14 <4>) matches only if a right curly brace is found.

This category contains 17 clusters, each appearing in an average of 17.1 projects. These

clusters have a combined total of 103 patterns, with at least one pattern present in 184

projects.

Anchored Patterns. Each of the clusters uses at least one endpoint anchor to

require matches to be absolutely positioned, for example: (\w+)$ (35 <8>) captures

the word characters at the end of the input, ^\s (16 <4>) matches a whitespace at

the beginning of the input, and ^-?\d+$ (17 <2>) requires that the entire input is an

(optionally negative) integer. These anchors are the only way in regexes to guarantee

that a character does (or does not) appear at a particular location by specifying what

41

is allowed. As an example, ^[-_A-Za-z0-9]+$ says that from beginning to end, only

[-_A-Za-z0-9] characters are allowed, so it will fail to match if undesirable characters,

such as ‘?’, appear anywhere in the string. This category contains 20 clusters, each

appearing in an average of 15.4 projects. These clusters have a combined total of 85

patterns, with at least one pattern present in 141 projects.

Two or More Characters in Sequence. These clusters require several characters

in a row to match some pattern, for example: \d+\.\d+ (30 <7>) requires one or

more digits followed by a period character, followed by one or more digits. The cluster

(17 <4>) requires two spaces in a row, ([A-Z][a-z]+[A-Z][^]+) (11 <2>), and

@[a-z]+ (9 <1>) requires the at symbol followed by two or more lowercase characters,

as in a twitter handle. This category contains 16 clusters, each appearing in an average

of 13 projects. These clusters have a combined total of 40 patterns, with at least one

pattern present in 120 projects.

Content of Brackets and Parenthesis. The clusters in this category center

around finding a pair of characters that surround content, often also capturing that

content. For example, \(.*\) (27 <7>) matches when content is surrounded by paren-

theses and ".*" (26 <6>) matches when content is surrounded by double quotes. The

cluster <(.+)> (23 <4>) matches and captures content surrounded by angled brackets,

and \[.*\] (22 <7>) matches when content is surrounded by square brackets. This cat-

egory contains 10 clusters, each appearing in an average of 18.4 projects. These clusters

have a combined total of 46 patterns, with at least one pattern present in 111 projects.

Code Search and Variable Capturing. These clusters show a recognizable effort

to parse source code or URLs. For example, ^https?:// (13 <3>) matches a web

address, and (.+)=(.+) (9 <2>) matches an assignment statement, capturing both the

variable name and value. The cluster \$\{([\w\-]+)\} (11 <2>) matches an evaluated

42

string interpolation and captures the code to evaluate. This category contains 15 clusters,

each appearing in an average of 11.7 projects. These clusters have a combined total of

27 patterns, with at least one pattern present in 92 projects.

4.2.4 Discussion of cluster categories

When tool designers are considering what features to include, data about usage in

practice is valuable. Behavioral similarity clustering helps to discern these behaviors by

looking beyond the structural details of specific patterns and seeing trends in matching

behavior. Many clusters are defined by the presence of particular tokens, such as the

colon for the cluster in Table 4.8.

4.2.4.1 Implications

Supporting source code parsing. One of the six common cluster categories,

Code Search and Variable Capturing, has a very specific purpose of parsing source code

files. This shows a very specific use of regular expressions in practice, occurring in 13%

of all projects containing some clustered regex. Further study is needed into how users

employ regular expressions to parse source code.

Possible bracket parsing bugs. The Content of Brackets and Parenthesis cluster

revolves around parsing balanced delimiters, like parenthesis, quotation marks and angle

brackets. Regexes belonging to this category occur in 15% of all projects containing

some clustered regex. In some cases, parsing balanced delimiters using regexes is known

to cause problems for programmers7, because (most) regular expressions cannot fully

describe balanced delimiter rules. More study is needed into how angle bracket parsing

using regex effects source code.

7http://stackoverflow.com/questions/1732348

http://stackoverflow.com/questions/1732348

43

Anchors have a strong behavioral effect. Anchors were the only features that

had enough of an effect on behavior that clusters formed based on their presence. Other

regexes did not cluster around features, but more instead clustered around characters

and character classes. This implies that certain behaviors can only be specified using

anchors. Of the four regex analysis tools listed in Table 4.7, only two support the END

anchor. This implies that tool designers should work to better support anchors.

Finding specific content using delimiters. Two categorical clusters, Specific

Characters Must Match and Two or More Characters in Sequence, deal with identifying

the presence of specific character(s). While multiple character matching subsumes single

character matching, the overarching theme is that these regexes are looking for the pres-

ence of very specific content. More study is needed into what content is most frequently

searched for, but this cluster analysis indicates that version numbers, twitter or user

handles, hex values, decimal numbers, capitalized words, and particular combinations of

whitespace, slashes and other delimiters were discernible targets.

4.2.4.2 Threats to validity

The following threats impact these results and conclusions:

Measures. The similarity measure between regexes used in the cluster algorithm is

computed empirically rather than analytically, and the more Rex-generated strings used

to compute the similarity measure, the more likely it is to be accurate. Our experiments

used 400 strings to balance performance and precision, but a higher number could lead

to more cohesive clusters. Additionally, regex patters that use any feature not supported

by Rex were omitted from the cluster analysis. Last, the threshold of 0.75 was chosen

based on the MCL recommendation, but it may not create optimal clusters.

44

Instrumentation. Regular expression patterns were clustered using strings gen-

erated by the Rex tool. We assume that the strings generated by Rex are reasonably

diverse to help characterize the regex behavior. To mitigate this threat, Rex generated

400 strings per regex and we inspected strings randomly to ensure diversity.

4.3 Regex Refactorings Based on Community Standards

This chapter introduces possible refactorings in regular expressions by identifying

equivalence classes of Python Regular Expressions, identifying what representations are

possible in each equivalence class, and also identifying what transformations between

representations are possible. As with source code, in regular expressions there are often

multiple ways to express the same semantic concept. This topic will be explored by

answering the research question, ‘Within five equivalence classes, what representations

are most frequently observed?’ For example, AAA* matches two ‘A’s followed by zero

or more ‘A’s. This matching behavior is identical to the behavior of the syntactically

different regex AA+ , which matches two or more ‘A’s. What is not clear is which

representation, AAA* or AA+ , is preferred. This investigation focuses on preferences

in terms of community standards, established by which representation appears most

frequently in source code.

Figure 4.7 displays five equivalence classes in grey boxes. This work will often use the

term group as shorthand for ‘equivalence class’. These equivalence classes were chosen

by considering what alternatives are possible between the most commonly used features

from Section 4.1.4. Three classes focus on representations of repetition (SNG, DBB

and LWB), CCC focuses on representations of character classes, and LIT focuses on

how characters are represented. Additional classes of behaviorally identical regexes are

discussed in Section 6.1.1.

45

LIT GROUP

using the concrete pattern `\a\$>’

and assuming an ASCII charset

\a\$>

T1

\007\036\062

T4

\x07\x24\x3E

T2

\a[$]>

T3

SNG GROUP

using the abstract `S{3}’

 where S is any pattern

SSS

S2

S{3,3}

S3

S{3}

S1

LWB GROUP

using the abstract `A{2,}’

where A is any pattern

AA+

L3

AAA*

L2

A{2,}

L1

DBB GROUP

using the abstract `pB{1,3}s’ where B is any pattern,

 p and s are any (possibly empty) pre!x, su"x

pBB?B?s

D2

pB{1,3}s

D1

pBs|pBBs|pBBBs

D3

CCC GROUP

using the concrete patern `[0-9a]’ and assuming an ASCII charset

[0-9a]

C1

[\da]

C4

[0123456789a]

C2

[^\x00-/:-`b-\177]

C3

(\d|a)

(0|1|2|3|4|5|6|7|8|9|a)

([0-9]|a)

C5

Figure 4.7 Equivalence classes with various representations of semantically equivalent
representations within each class. DBB = Double-Bounded, SNG = Single
Bounded, LWB = Lower Bounded, CCC = Custom Character Class and
LIT = Literal

Each equivalence class has multiple nodes which each represent different ways to

express or represent the behavior of a particular regex. Examples of various semantically

equivalent representations of a regex are shown in white boxes. A representation is a

particular regex that expresses matching behavior using the style of a particular node.

As an example of one equivalence class, consider the LWB group. Each node in the

LWB group has a lower bound on repetitions. Regexes A{2,} , AAA* and AA+ are

semantically equivalent regexes belonging to the nodes L1, L2 and L3, respectively. The

undirected edges between nodes define possible refactorings.

Figure 4.7 uses specific examples to more clearly illustrate the characteristics of each

node. However, the ‘A’s in the LWB group abstractly represent any element, and the

number of elements is free to vary. The lower bound repetition threshold of 2 provides a

useful illustration, but is not meant to describe a requirement for the equivalence class.

46

The analysis performed for this study uses a lower bound of 1. Further study is needed

on how specific lower bounds, and other variables, may affect preferences among nodes.

4.3.0.1 Summary of node membership criteria

Criteria for node membership is summarized in this section. For a more detailed

description, see Appendix C.

C1: Any regex using the RNG feature in a CCC like [a-f] belongs to C1.

C2: Any regex that contains at least one CCC without any RNG or defaults like

[aeiou] belongs to the C2 node.

C3: Any regex using the NCCC feature like [^x] belongs to the C3 node.

C4: Any regex using a default character class in a CCC like [\d] or [\W] belongs to

the C4 node.

C5: Any regex containing an OR of length-one sequences (including defaults or other

CCCs) like (a|\d|x) belongs to the C5 node.

D1: Any regex that uses the DBB feature, such as pB{1,3}s , belongs to the D1 node.

D2: Any regex that uses the QST feature like xyz? belongs to D2.

D3: Any regex that uses OR to express repetition with different upper and lower bound-

aries like pBs|pBBs|pBBBs belongs to D3..

T1: Patterns using ordinary literal characters, and not belonging to other nodes in the

LIT group, like a belong to the T1 node.

T2: Any regex using hex tokens, such as \x07+ , belongs to the T2 node.

T3: Any ordinary character wrapped in square brackets so that it becomes a CCC

containing exactly one character, like [x][y][z] belongs to T3.

T4: Any regex using octal tokens, such as \007 , belongs to the T4 node.

47

L1: Any regex using the LWB feature like A{3,} belongs to the L1 node.

L2: Any regex using the KLE feature like X* belongs to the L2 node.

L3: Any regex using the ADD feature like T+ belongs to the L3 node.

S1: Any regex using the SNG feature like S{3} belongs to the S1 node.

S2: Any regex that is explicitly repeated two or more times, and could use repetition

operators, like (ab)(ab) or ggg belongs to the S2 node.

S3: Any regex with a double-bound in which the lower and upper bounds are same

belongs, like Z{3,3} to S3.

4.3.0.2 Example regex

Regexes will often belong to many representations in the equivalence classes described

here, and often multiple representations within an equivalence class. Using an example

from a Python project, the regex [^]*\.[A-Z]{3} is a member of S1, L2, C1, C3,

and T1. This is because [^] maps it to C3, [^]* maps it to L2, [A-Z] maps it

to C1, \. maps it to T1, and [A-Z]{3} maps it to S1. As examples of refactorings,

moving from S1 to S2 would be possible by replacing [A-Z]{3} with [A-Z][A-Z][A-Z] .

Moving from L2 to L1 would mean replacing [^]* with [^]{0,} , resulting in a

refactored regex of: [^]{0,}\.[A-Z][A-Z][A-Z] .

4.3.1 Counting representations in nodes

This work finds defines a community standard for each equivalence class by counting

the number of regexes in each node. A program was implemented that iterates through

the corpus once for each of the 18 nodes, adding regexes to sets that represent nodes

based on the definitions in Section 4.3. A regex is a candidate for membership in a node

if it is possible for that regex belong to a node. For six nodes, the presence of a feature

is enough to determine membership without ambiguity. For four nodes, the presence

48

of a feature and a search of the regex’s pattern is enough to determine candidacy for

membership. The remaining eight nodes require more advanced filters to determine

candidacy for membership.

To verify accuracy and obtain a final node count, all sets were dumped to text files and

reviewed manually. Regexes that had been erroneously added to a node were removed.

The regexes that had not been added to any node in a given equivalence class were also

dumped to a file, and manually searched for regexes that belonged to some node but had

been erroneously filtered out. This process was iterated on several times to refine the

filters used in the implementation. Even after many iterations, manual verification was

still required for D3. The final outcome of this node counting process is summarized in

Table 4.10. The source code used to perform the node counting process is available on

GitHub8.

4.3.2 Node counting results

For each node, Table 4.10 presents the number of regexes belonging to that node,

and the number of projects containing at least one such regex belonging to that node.

The Node column references the node labels (like ‘T1’) in Figure 4.7. The Description

column briefly describes the rules for node membership, followed by an Example regex

from the corpus. The NReg. column counts the regexes that belong to a given node,

followed by the percent of regexes out of 13,597 (the total number of regexes in the

corpus). The NProj. column counts the projects that contain a regex belonging to the

node, followed by the percentage of projects out of 1,544 (the total number of projects

scanned that contain at least one regex from the corpus). Recall that the regexes of the

corpus are all unique and could appear in multiple projects, hence the project support

is used to show how pervasive the node is across the whole community. For example,

2,479 of the regexes belong to the C1 representation, representing 18.2% of regexes in

8https://github.com/softwarekitty/regex_readability_study

https://github.com/softwarekitty/regex_readability_study

49

Table 4.10 How frequently is each alternative expression style used?
Node Description Example NReg. % Reg. NProj. % Proj.

C1 CCC using RNG ^[1-9][0-9]*$ 2,479 18.2% 810 52.5%
C2 CCC listing all chars [aeiouy] 1,903 14.0% 715 46.3%
C3 any NCCC [^A-Za-z0-9.]+ 1,935 14.2% 776 50.3%
C4 CCC using defaults [-+\d.] 840 6.2% 414 26.8%
C5 CCC as an OR (@|<|>|-|!) 245 1.8% 239 15.5%

D1 repetition like {M,N} ^x{1,4}$ 346 2.5% 234 15.2%
D2 zero-or-one repetition ^http(s)?:// 1,871 13.8% 646 41.8%
D3 repetition using OR ^(Q|QQ)\<(.+)\>$ 10 .1% 27 1.7%

T1 not in T2, T3 or T4 get_tag 12,482 91.8% 1,485 96.2%
T2 has HEX like \xF5 [\x80-\xff] 479 3.5% 243 15.7%
T3 wrapped chars like [$] ([*]|[:]) 307 2.3% 268 17.4%
T4 has OCT like \0177 [\041-\176]+:$ 14 .1% 37 2.4%

L1 repetition like {M,} (DN)[0-9]{4,} 91 .7% 166 10.8%
L2 kleene star repetition \s*(#.*)?$ 6,017 44.3% 1,097 71.0%
L3 additional repetition [A-Z][a-z]+ 6,003 44.1% 1,207 78.2%

S1 repetition like {M} ^[a-f0-9]{40}$ 581 4.3% 340 22.0%
S2 sequential repetition ff:ff:ff:ff:ff:ff 3,378 24.8% 861 55.8%
S3 repetition like {M,M} U[\dA-F]{5,5} 27 .2% 32 2.1%

the corpus. These appear in 810 projects, representing 52.5%. Regexes belonging to D1

appear in 346 (2.5%) of the regexes in the corpus, but only 234 (15.2%) of the projects.

In contrast, 39 fewer regexes are in node T3, but 34 more projects use regexes from T3,

indicating that D1 is more concentrated in a few projects and T3 is more widespread

across projects.

4.3.3 Discussion of refactorings

Using the count of regexes in each node provided in Table 4.10, the most preferred

nodes for each group are C1, D2, T1, L2, and S2. In this section the practical issues

of refactorings strongly indicated by between nodes are explored and several preferences

between nodes are identified.

50

4.3.3.1 Community based CCC refactoring

C1 may be preferred overall because ranges are shorter. Within the CCC

group, C1 has the most regexes (2,479), suggesting that there may be a preference to

write a regex with a range whenever possible. This makes sense, since a range shortens

the regex, and programmers are often trying to make their code as short and efficient as

possible.

These three regexes from the corpus belong to C2: i[3456]86 , [Hh][123456] and

-py([123]\.[0-9])$. The community preference for regexes to use C1 suggests refac-

torings to i[3-6]86 , [Hh][1-6] and -py([1-3]\.[0-9])$ respectively.

C2 contains few sequential character sets, so it is hard to refactor out

of. On inspection, most regexes in C2 do not express ranges of characters, but instead

express non-continuous sets. The following regexes (or regex fragments) extracted from

the corpus illustrate this point: [?/:|]+ , coding[:=] , ([\\"]|[^\ -~]) and

\?|[-+]?[.\w]+$. None of these regexes contain ranges, and so they are not candidates

for refactoring to C1.

Refactoring out of C3 is generally awkward. On inspection, most regexes in

C3 seem to be negating just one or two characters like [^:]*: and ^([^/:]+): , and

in these cases refactoring out of C3 would result in a strange-looking regex. Refactoring

these to C1 exposes an awareness of the charset and uses ranges that often start or end

with invisible characters. For example these two regexes when refactored to C1 (assuming

ASCII) would be [\x00-9;-\x7F]*: and ^([\x00-.0-9;-\x7F]+): . Based on logical

reasoning about how to express the negation of a character set without using NCCC, the

most notable candidate for refactorings going out of C3 is from C3 to C4, because many

NCCC simply represent the negated version of some default character class. However,

according to community standards the preferred representation may be in C3, not C4.

51

The NCCC [^a-zA-Z0-9_] , for example, appears in 8 regexes belonging to C3, and

could be refactored to [\W] which belongs to C4.

Refactoring out of C4 may be recommended. Refactorings going from C4 to

C1 are possible for the DEC and WRD default character classes, (i.e., [\d] to [0-9]

and [\w] to [0-9a-zA-Z_]) and may be recommendable based on the standards of

the community observable in Table 4.10. Similarly refactorings from C4 to C3 are pos-

sible for the negative default character classes (i.e., [\D] to [^0-9] and [\W] to

[^0-9a-zA-Z_]). Refactorings from C4 to C2 might make sense regarding the WSP

default character class (i.e., [\s] to [\t\r\n\v\f]), but on inspection most regexes

in C2 that are close to this new regex typically omit the ‘\v’ and ‘\f’ characters, with

‘\r’ and ‘\n’ also omitted at times. These are probably not accidental omissions, but

likely stem from a familiarity with the problem space being dealt with by the regex (e.g.,

newlines are not expected, so they are not included in the CCC).

Refactoring from C5 to C2 is always recommended. Regexes belonging to

C5 are the most proportionally widespread compared to other members of the CCC

group, with about as many regexes (245) as there are projects that they appear in (239).

One interpretation of this is that these regexes are not pulled from other projects, but

are original compositions in each project. All of the regexes belonging to C5 could be

refactored to C2, which offers a more preferred representation style according to the com-

munity. Three such possible refactorings from the corpus are: (a|b)*?c to [ab]*?c ,

:|*|\?|"|<|>|\\| to [:*?"<>\\"] and ^(?:!|&|*)$ to ^(?:[!&*])$, respec-

tively.

4.3.3.2 Community based DBB refactoring

D1 to D2 is recommended for small upper bounds. There are about six

times as many regexes in D2 (1,871) than there are in D1 (346). D3 has only 10 regexes

52

and appears in only 27 projects, so it is not recommended according to community

standards. Refactoring from D1 to D2 is always possible, and always recommended

by the community standard. For example the regex ^[\n\r]{0,1} from the corpus

belonging to D1 becomes ^[\n\r]? . This is a simple change in syntax because the

upper bound is low. Similarly the corpus regex (\d{2,3}) becomes (\d\d\d?) when

transformed from D1 to D2.

In contrast the corpus regex ^.{3,20}$ belongs to D1, and can be converted to the

equivalent representation in D2: ^....?.?.?.?.?.?.?.?.?.?.?.?.?.?.?.?.?$. This

new regex is not as compact and seems ridiculous. Intuitively, it does not make any sense

to recommend a refactoring that explodes a small regex into a huge one. One reason

that D2 may have more community support is that the use case of specifying zero-or-one

of something is a very natural idea, and may occur more frequently than the need to

specify a particular range using DBB.

4.3.3.3 Community based LIT refactoring

T3 to T1 is always recommended. It is not surprising that most regex belong

to the T1 node, since ordinary characters are necessary for most string specifications.

Regex like [$][{]\d+:([^}]+)[}] belong to T3 and seem to be trying to avoid escaping

special characters by wrapping them in a CCC. This regex can be refactored to T1

yielding \$\{\d+:([^}]+)\} , which is recommended due to overwhelming community

support of T1.

T2 and T4 may be special cases. The regex from T4 appearing in the most

projects (13) is: [\041-\176]+:$. The character class defined in this regex represents

the printable ASCII characters. This could be refactored to the equivalent [!-~]$ in

T1, but the original regex may offer more intuition about the size of the range being

specified.

53

Similarly, the most popular regex from T3 [\x80-\xff] appears in 81 projects and

refers to a range of characters above ASCII. This representation may offer some useful

intuition about the range being specified, so a refactoring to T1 is not recommended

at this time. More study is needed into the readability of this type of range and the

alternative using T1.

T4 to T2 is always recommended. It is not always possible to use a literal

character to specify a character. For characters that cannot be represented directly, a

refactoring from T4 to T2 is always recommended. T2 has more than 34 times as many

regexes (479) as T4 (14) and so based on community standards, all of these should be

refactored.

4.3.3.4 Community based LWB refactoring

L2 to L3 may be recommended. L2 has 6,017 regexes while L3 has 6,003 and

so they are very closely tied in terms of number of regexes. In terms of projects, L3 has

a slight advantage with 1,207 compared to the 1,097 containing some L2 regex. This

indicates a slight preference for L3 over L2, but is not a strong indicator. Furthermore a

refactoring from L2 to L3 requires an additional repeated element in the sequence to be

present before the element to which KLE is applied. For example the regex belonging

to L2 kk* has this extra ‘k’ that can be used to transform this regex into a regex

belonging to L3: k+ . However the regex k* does not have another ‘k’, so no transfor-

mation is possible. Patterns of the 6,017 regexes belonging to L3 were searched using the

regex ([^\\)\]])\1* , locating 38 patterns where their corresponding regexes could

be transformed this way. The most popular example (8 projects) was the regex (?::*)

which would become (?:+) .

L1 to L3 is recommended for lower bounds. L1 has only 91 regexes or almost

67 times fewer than L3, so the community supports a refactoring to L3. The most popular

54

regex in L1 (32 projects) is \n{2,} which can be transformed to \n\n+ belonging to

L3. The regex in L1 with the largest lower bound is [1-9A-HJ-NP-Za-km-z]{26,}\\Z

which when transformed to a regex in L3 would become too long to typeset in this thesis,

and that refactoring cannot be recommended. However only 3 regexes had a lower bound

greater than 6 and only 10 had a lower bound greater than 4, so most regexes in L1 are

good candidates for refactoring to L3.

4.3.3.5 Community based SNG refactoring

Refactoring to S2 may be recommended for small repetitions. Inspecting

the contents of S2 reveals that most of these regexes belong to S2 because they contain

normal words like "session" or "https" that happen to have a repetition of charac-

ters. Considering how common english words with double letters are, including regexes

with double letter words as part of S2, as is done in this analysis, over-estimates the

real number of semantically equivalent regexes for which a refactoring is reasonable.

Transforming regexes using S1 on ordinary characters, like lit{2}le fo{2}t to dou-

ble letters like little foot can be recommended from the data. However, for other

types of refactoring, a side-effect of including double letters in S2 is an over-estimation

of the community support for refactoring into S2 for regexes that are not dealing with

repeating letters in words. For example, consider the most popular (32 projects) regex

from S1: ^[a-f0-9]{40}$. Expanding this out so that it uses sequential repetition

would create a very long regex and cannot be recommended. However transforming

the regex ^(-?\d+)(\d{3}) from S1 yields the regex ^(-?\d+)(\d\d\d) which may

be recommended by the community standards, but more investigation is needed. One

suggestion is to create a separate equivalence class dealing with S2-type repetition of

ordinary characters, dealing with other elements separately.

55

Refactoring out of S3 is recommended. S3 only has 27 regexes, and all of them

seem to be abusing the DBB feature by making the upper and lower bounds identical.

Perhaps these regexes started off with different bounds and were fixed as time went on

to have identical bounds. Due to the large segment of S2 based on double letters in

words, it is not clear whether to recommend a refactoring to S1 or S2. Perhaps the best

recommendation is to refactor low numbers of repetitions of small elements to S2, and

all others to S1.

4.3.4 Threats to validity

The technique of determining the number of regexes in each node includes manual

verification, so it may overcount or undercount node membership. This does not repre-

sent a serious threat, however, because a small number of errors would not significantly

change the main results of the work. The rules used to define the nodes of equivalence

classes were very simple, and may not have been sophisticated enough to consider all

the nuances of real usage. For example, additional rules could have been applied to

split the SNG equivalence class into one class dealing with SNG-type repetition applied

exclusively to ordinary characters, and one class not dealing with ordinary characters.

Hypothetically, opposite refactorings could be preferred in these two groups. By merging

them, the refactoring preferences would interfere and no preference would be detected.

As the first work on regular expression refactoring, this outcome is not unexpected.

Other equivalence classes are considered in Section 6.1.1.

Since the corpus is randomly selected from GitHub the projects it references may be

biased towards homeworks and small pet projects, or frequently cloned projects like the

linux kernel. This threat is not of significant concern.

56

4.4 Regex Refactorings Based on Comprehension

The goal of this study is to answer the question, ‘Within five equivalence classes,

what representations are more comprehensible?’ by presenting programmers with one

of several representations of semantically equivalent regexes and asking comprehension

questions. By comparing the understandability of semantically equivalent regexes that

have different representations, it is possible to infer which representations are more desir-

able. This study was implemented on Amazon’s Mechanical Turk with 180 participants.

Each regex was evaluated by 30 participants. The regexes used were designed to belong

to various nodes of the equivalence class graphs depicted in Figure 4.7. Because this

study involves human participants, IRB approval was obtained before work began (the

approval letter is in Appendix D).

Table 4.11 Matching metric example

String ‘RR*’ Oracle P1 P2 P3 P4

1 “ARROW”
2 “qRs” 5 5 ?
3 “R0R” ? -
4 “qrs” 5 5 -
5 “98” 5 5 5 5 -

Score 1.00 0.80 0.80 0.50 1.00

= match, 5= not a match, ? = unsure, – = left blank

4.4.1 Metrics

The understandability of regexes was measured using two complementary metrics,

matching and composition.

Matching: Given a regex and a set of strings, a participant determines which strings

will be matched by the regex. There are four possible responses for each string, matches,

not a match, unsure, or blank. An example from the study is shown in Figure 4.8. The

57

Figure 4.8 Example of one HIT Question

use of the term ‘matches’ in this chapter is consistent with the meaning described in

Section 2.2.1 - if any substring of a target string belongs to the set of strings specified

by a particular regex, then that regex is said to match that target string.

The percentage of correct responses, disregarding blanks and unsure responses, is the

matching score. For example, consider regex RR* and five strings shown in Table 4.11,

and the responses from four participants in the P1, P2, P3 and P4 columns. The oracle

has the first three strings matching since they each contain at least one ‘R’ character.

P1 answers correctly for the first three strings but incorrectly thinks the fourth string

matches, so the matching score is 4/5 = 0.80. P2 incorrectly thinks that the second

string is not a match, so they also score 4/5 = 0.80. P3 marks ‘unsure’ for the third

string and so the total number of attempted matching questions is 4 instead of 5. P3

is incorrect about the second and fourth string, so they score 2/4 = 0.50. For P4, we

only have data for the first and second strings, since the other three are blank. P4

marks ‘unsure’ for the second matching question so only one matching question has been

attempted, and it was answered correctly so the matching score is 1/1 = 1.00.

Blanks were incorporated into the metric because questions were occasionally left

blank in the study. Unsure responses were provided as an option so not to bias the

results when participants were honestly unsure of the answer. These situations did not

58

occur very frequently. Only 1.1% of the responses were left blank and only 3.8% of the

responses were marked as unsure. An investigation into the potential meaning of unsure

results is in Appendix D. A matching problem with all blank or unsure responses is

referred to as an ‘NA’. Out of 1800 questions, 1.8%(32) were NA’s (never more than 4

out of 30 per regex).

Composition: Given a regex, a participant composes a string they think it matches.

If the participant is accurate and the string indeed is matched by the regex, then a com-

position score of 1 is assigned, otherwise 0. For example, given the regex (q4fab|ab)

from the study, the string "xyzq4fab" matches and would get a score of 1, and the string

"fac" is not matched and would get a score of 0.

To determine a match, each regex was compiled using the java.util.regex library. A

java.util.regex.Matcher m object was created for each composed string using the compiled

regex. If m.find() returned true, then that composed string was given a score of 1,

otherwise it was given a score of 0.

4.4.2 Implementation

This study was implemented on Amazon’s Mechanical Turk (MTurk), a crowdsourc-

ing platform in which requesters can create human intelligence tasks (HITs) for comple-

tion by workers. Each HIT is designed to be completed in a fixed amount of time and

workers are compensated with money if their work is satisfactory. Requesters can screen

workers by requiring each to complete a qualification test prior to completing any HITs.

The IRB approval for this work is in Appendix D.

Worker Qualification. Workers qualified to participate in the study by answering

questions regarding some basics of regex knowledge. These questions were multiple-

choice and asked the worker to describe what the following regexes mean: a+ , (r|z) ,

59

\d , q* , and [p-s] . To pass the qualification, workers had to answer four of the five

questions correctly. The qualification is available in Appendix D.

Selecting pairwise comparisons. Using the regexes in the corpus as a guide,

ten metagroups were created for this study. The first six metagroups (re-numbered for

simplicity) each contain three pairs of regexes. The last four metagroups contain two sets

of three equivalent regexes. A list of the specific regexes selected for these metagroups

is available in Appendix D.

M1 S1 vs S2

M2 C1 vs C4, focusing on DEC

M3 C1 vs C4, focusing on WRD

M4 C4 vs (C3 or C2)

M5 L2 vs L3

M6 T1 vs T3

M7 D1 vs D2 vs D3

M8 C1 vs C2 vs C5

M9 C2/T1 vs C5/T1 vs C2/T4

M10 C1/T2 vs C1/T4 vs C2/T1

Each of these 10 metagroups contains 6 regexes, resulting in a total of 60 regexes.

These regexes are logically partitioned into 26 semantic equivalence groups (18 from

pairs, 8 from triples).

Although this design provides 42 pairwise comparisons (18 from pairs, 24 from

triples), seven total comparisons had to be dropped due to design flaws. For six of the

comparisons, the regexes performed transformations from multiple equivalence classes,

making it impossible to tell which edge to attribute the results to. For example

([\072\073]) is in C2 and T4. This regex was paired with (:|;) in C5, T1, so it was

not possible to attribute results purely to C2 and C5, or to T4 and T1. However, the

third member of the group, ([:;]) , could be compared with both, since it is a member

of T1 and C2, so comparing it to ([\072\073]) evaluates the transformation between

T1 and T4, and comparing to (:|;) evaluates the transformation between C2 and C5.

The seventh pair: \..* and \.+ between L2 and L3, had to be dropped because these

60

two regexes are not equivalent. The first regex was meant to be \.\.* . Data gathered

for all seven of these flawed pairings was ignored.

An example of a correct pairwise comparison from a pair used in this study is a group

with regexes ([0-9]+)\.([0-9]+) and (\d+)\.(\d+) , which is intended to evaluate

the edge between C1 and C4. An example of pairwise comparisons from a triple is a

semantic group with regexes ((q4f){0,1}ab) , ((q4f)?ab) , and (q4fab|ab) which

is intended to explore the edges among D1, D2, and D3.

The end result is 35 pairwise comparisons across 14 edges from Figure 4.7.

Composing Tasks. For each of the 26 groups of regexes, five strings were created,

where at least one matched and at least one did not match. These strings were used

to compute the matching metric. A list of the specific strings created is available in

Appendix D.

Once all the regexes and matching strings were collected, tasks for the MTurk partic-

ipants were created as follows: randomly select a regex from each of the 10 metagroups.

Randomize the order of these 10 regexes, as well as the order of the matching strings for

each regex. The randomly selected regexes and shuffled matchings strings populate fields

in an HTML template (Appendix D). This template also includes a request for partici-

pants to compose a string that matches each of the 10 regexes. Each populated template

created one HIT. This process was completed until each of the 60 regexes appeared in

30 HITs, resulting in a total of 180 total unique HITs.

Worker statistics. Workers were paid $3.00 for successfully completing a HIT, and

were only allowed to complete one HIT. The average completion time for accepted HITs

was 682 seconds (11 mins, 22 secs). A total of 55 HITs were rejected, and of those, 48

were rushed through by one person leaving many answers blank, 4 other HITs were also

rejected because a worker had submitted more than one HIT. All worker composition

answers were inspected to make sure that the composition answer was composed in a

61

good-faith effort to match the regex before accepting the HIT (the field was not empty,

and the content seemed like it had required some thought). One worker was rejected for

not answering composition sections, and one was rejected because it was missing data

for 3 questions. Rejected HITs were returned to MTurk to be completed by others.

4.4.3 Population characteristics

1.

What is your gender? n %

Male 149 83%
Female 27 15%
Prefer not to say 4 2%

2. What is your age?
µ = 31, σ = 9.3

3.

Education Level? n %

High School 5 3%
Some college, no degree 46 26%
Associates degree 14 8%
Bachelors degree 78 43%
Graduate degree 37 21%

4.

Familiarity with regexes? n %

Not familiar at all 5 3%
Somewhat not familiar 16 9%
Not sure 2 1%
Somewhat familiar 121 67%
Very familiar 36 20%

5. How many regexes do you compose each year?
µ = 67, σ = 173

6. How many regexes (not written by you) do you read each year?
µ = 116, σ = 275

Table 4.12 Participant Profiles, n = 180

In total, there were 180 participants in the study. A majority were male (83%) with

an average age of 31. Most had at least an Associates degree (72%) and most were

at least somewhat familiar with regexes prior to the study (87%). On average, partic-

ipants compose 67 regexes per year with a range of 0 to 1000. Participants read more

62

regexes than they write with an average of 116 and a range from 0 to 2000. Figure 4.12

summarizes the self-reported participant characteristics from the qualification survey.

4.4.4 Matching and composition comprehension results

For each of the 180 HITs, a matching and composition score was computed for each

of the 10 regexes, using the metrics described in Section 4.4.1. Since 30 separate par-

ticipants responded to five string matching problems and one composition problem for

each of the 60 regexes, there were 30 independent understandability evaluations for each

representation. An average of 0.53 out of 30 of these responses were NAs per regex, with

the maximum number of NAs being four. These 26-30 independent matching scores for

each regex were used to determine if an understandability preference exists for each of

the 35 pairwise comparisons.

The regexes ((q4f)?ab) and (q4fab|ab) , represent a transformation between D2

and D3. The former have an average matching score of 79% and the latter have an

average matching score of 85%. The average composition score for the former is 83%

and 97% for the latter. Thus, the community found (q4fab|ab) from D3 more un-

derstandable. The other pairwise comparison performed between D2 and D3 uses the

pair (deedo(do)?) and (deedo|deedodo) . Considering both of these regex pairs, the

overall matching score for the regexes belonging to D2 is 78% and the overall matching

score for D3 is 87%. The overall composition score for D2 is 88%, with 97% for D3. Thus,

the community found D3 to be more understandable than D2, from the perspective of

both understandability metrics, suggesting a refactoring from D2 to D3. These measure-

ments comparing overall representation understandability are presented in summary in

Table 4.13, with this specific example appearing in the E2 row. The pairs of regexes

used to determine the values for each edge are listed in Appendix D. The Index column

enumerates all the pairwise comparisons evaluated in this experiment, Nodes lists the

two representations, Pairs shows how many comparisons were performed, Match1 gives

63

Table 4.13 Averaged Info About Edges (sorted by lowest of either p-value)
Index Nodes Pairs Match1 Match2 Hmatch

0 Compose1 Compose2 Hcomp
0

E1 T1 – T4 2 80% 60% 0.001 87% 37% <0.001
E2 D2 – D3 2 78% 87% 0.011 88% 97% 0.085
E3 C2 – C5 4 85% 86% 0.602 88% 95% 0.063
E4 C2 – C4 1 83% 92% 0.075 60% 67% 0.601

E5 L2 – L3 2 86% 91% 0.118 97% 100% 0.159
E6 D1 – D2 2 84% 78% 0.120 93% 88% 0.347
E7 C1 – C2 2 94% 90% 0.121 93% 90% 0.514
E8 T2 – T4 2 84% 81% 0.498 65% 52% 0.141
E9 C1 – C5 2 94% 90% 0.287 93% 93% 1.000
E10 T1 – T3 3 88% 86% 0.320 72% 76% 0.613
E11 D1 – D3 2 84% 87% 0.349 93% 97% 0.408
E12 C1 – C4 6 87% 84% 0.352 86% 83% 0.465
E13 C3 – C4 2 61% 67% 0.593 75% 82% 0.379
E14 S1 – S2 3 85% 86% 0.776 88% 90% 0.638

the overall matching score for the first representation listed and Match2 gives the overall

matching score for the second representation listed. Hmatch
0 shows the results of using the

Mann-Whitney test of means to compare the matching scores, testing the null hypothesis

H0: that µmatch1 = µmatch2. The p-values from these tests are presented in this column.

The last three columns display the average composition scores for the representations

and the relevant p-value, also using the Mann-Whitney test of means.

In Table 4.13, a thin horizontal line separates the top four edges from the bottom

10. In these four edges, there is a statistically significant difference between the rep-

resentations for at least one of the metrics considering α = 0.10. These represent the

strongest evidence for suggesting the directions of refactoring based on the understand-

ability metrics defined in this study. Specifically,
−−−→
T4T1,

−−−→
D2D3,

−−−→
C2C5 and

−−−→
C2C4 are

likely to improve understandability. The specific nodes, regexes, matching scores and

compositions scores that led to these refactoring suggestions are shown in Table 4.14

In addition to the edges with a significant difference in understandability, edges E5

through E8 exhibit noteworthy trends in understandability. The regexes and matching

scores for these nodes are shown in Table 4.15. For edges E7 and E8, the potential

64

Table 4.14 Equivalent regexes with a significant difference in understandability, α = 0.1
Code Regex Match Comp. Ref. Node Regex Match Comp.

T4 ([\072\073]) 66% 50% −−−→
T4T1

T1 ([:;]) 81% 87%

T4 ([\0175\0173]) 54% 23% T1 ([}{]) 79% 87%

D2 ((q4f)?ab) 79% 83% −−−−→
D2D3

D3 (q4fab|ab) 85% 97%

D2 (deedo(do)?) 77% 93% D3 (deedo|deedodo) 90% 97%

C2 ([:;]) 81% 87%

−−−→
C2C5

C5 (:|;) 94% 100%

C2 no[wxyz]5 87% 90% C5 no(w|x|y|z)5 94% 97%

C2 ([}{]) 79% 87% C5 (\{|\}) 70% 93%

C2 tri[abcdef]3 93% 90% C5 tri(a|b|c|d|e|f)3 86% 90%

C2 [\t\r\f\n] 83% 60%
−−−→
C2C4 C4 [\s] 92% 67%

refactorings
−−−→
C2C1 and

−−−→
T4T2 are also suggested by the community standards determined

in Section 4.3.2. E5 is also notable because in both matching and composition, all scores

consistently indicate a small preference for L3 over L2 (5% in overall matching and 3%

in overall composing). More work is needed to determine if a significant difference in

understandability exists between these nodes.

Table 4.15 Additional equivalent regexes for which some preference in understandabil-
ity is suggested

Node Regex Match Comp. Ref. Node Regex Match Comp.

L2 zaa* 87% 97% −−−→
L2L3

L3 za+ 91% 100%

L2 RR* 86% 97% L3 R+ 92% 100%

D2 ((q4f)?ab) 79% 83% −−−−→
D2D1

D1 ((q4f){0,1}ab) 83% 97%

D2 (deedo(do)?) 77% 93% D1 (dee(do){1,2}) 85% 90%

C2 tri[abcdef]3 93% 90% −−−→
C2C1

C1 tri[a-f]3 94% 97%

C2 no[wxyz]5 87% 90% C1 no[w-z]5 93% 90%

T4 xyz[\0133-\0140] 71% 33% −−−→
T4T2

T2 xyz[\x5b-\x5f] 79% 60%

T4 t[\072-\073]+p 90% 70% T2 t[\x3a-\x3b]+p 89% 70%

65

4.4.5 Discussion of comprehension results

4.4.5.1 Implications

Four statistically significant refactorings for understandability:
−−−→
T4T1,

−−−→
D2D3,

−−−→
C2C5

and
−−−→
C2C4 were identified by the results presented in Table 4.13. A detailed view of the

results for these refactorings is presented in Table 4.14. The refactoring
−−−→
T4T1 is also

indicated by the analysis of community support in Section 4.3.2.

Four additional trends in understandability results were found that are not statis-

tically significant with α = 0.1, but show potential for the refactorings,
−−−→
L2L3,

−−−→
D2D3,

−−−→
C2C1 and

−−−→
T4T2. Two of these,

−−−→
D2D3 and

−−−→
T4T2, are refactorings also indicated by the

analysis of community support in Section 4.3.2.

T4 to T1 is always recommended. The first refactoring,
−−−→
T4T1, makes sense

because the octal syntax is far more exotic and difficult to understand than plain charac-

ters. Composition improves notably from 23% for ([\0175\0173]) to 87% for ([}{]) .

This results seems likely to generalize, as there is no reason to think that participants

were less familiar with octal than programmers in general.

D2 to D3 is recommended for small repetitions. The second refactoring

−−−→
D2D3, reduces confusion caused by the QST feature, by expanding the entire set of

strings specified by the regex into an OR. The OR feature is fundamental to regular ex-

pressions, and so the regexes in D3 are very straightforward - essentially lists of strings,

whereas the QST repetition may take a little thought. This result seems likely to gener-

alize for very simple examples like the one that was tested, using only one QST operator.

This refactoring is not likely to scale, however, because a slightly more complicated

regex like a?b*(cd)?e? would expand to an OR of eight strings:

ab*cde|b*cde|ab*e|b*e|ab*cd|b*cd|ab*|b* which introduces the new challenge of

visually parsing and remembering these eight strings.

66

Refactoring out of C2 needs more study. Refactorings out of C2 to (C1, C4

and C5) all displayed a strong trend for improving understandability. More study is

needed into determining which node to choose when refactoring out of C2.

4.4.5.2 Threats to validity

Mechanical Turk may not be an ideal source for regex comprehension study partic-

ipants. This threat was mitigated by requiring workers to pass a pre-qualification test,

and by checking the composed regexes for potential validity before accepting any HIT,

as mentioned in Section 4.4.2.

Design flaws have reduced the coverage of equivalence classes, so that not all refac-

toring possibilities are fully explored. Several improvements to the experiment design

are possible and with the benefit of experiences gained during the course of this study,

a superior experiment could be executed. However, with the rigorous treatment of ex-

cluding all data that was obtained under misconceptions, and making due with a partial

result, this experiment retains valid results.

67

CHAPTER 5. DISCUSSION

In this section, the implications of this work are discussed

5.1 Implications for Programmers

Portability. Transferring code written in one language to another language is com-

plicated by potential differences in the regular expression features supported. This work

provides Table 4.5 and Table 4.6, which concisely describe the feature sets of eight regular

expression language variants. Programmers can use this table to develop code standards

that enable portability, or to pinpoint the issues that will arise when performing such a

transfer.

Bracket parsing detected. In the behavioral similarity clustering study

(Section 4.2.3.2), balanced delimiter parsing by regexes was detected in 15% of all

projects for which clusters were formed. This type of regex is prone to causing bugs1

because regular expressions do not express the rules of balanced delimiters well. The

results of this study provide an indication of the pervasiveness of this problem, which

helps programmers to know what to expect when considering potential bugs in code they

maintain.

1http://stackoverflow.com/questions/1732348

http://stackoverflow.com/questions/1732348

68

5.1.1 Refactoring recommendations for programmers

In this section, the recommended refactorings for understandability and conformance

to a community standard determined by this work are presented with programmers in

mind. Shorthand for representation styles used in this section, like T1 or C5, refers to

the labeled nodes of the graph in Figure 4.7.

For representing characters. For understandability, use ordinary characters (T1)

whenever possible. This is the most frequently used representation (in Table 4.10) and

by far the most understandable (E1 in Table 4.13). When invisible characters need to

be represented (T1 is not possible), use T2, not T4. This will conform to community

standards (Table 4.10) and is suggested by a (non-statistically-significant) trend in un-

derstandability scores (E8 in Table 4.13). Characters wrapped in their own CCC, like

[(] which wraps the ‘(’, are not recommended by community standards, which in-

stead recommend using the unwrapped version (Table 4.10), but this refactoring does

not show a significant difference in understandability (E10 in Table 4.13).

For representing character classes. Use a range (C1) whenever possible to con-

form to the community standards in Table 4.10. Using a short OR of single characters

(C5) is sometimes more understandable than a CCC of single characters (C2) (E4 in

Table 4.13) but a CCC of single characters is more commonly observed in the commu-

nity, so choose between them depending on your goals. When a CCC can be represented

using defaults (C4) or ranges (C1), the community standards suggest using a range (in

Table 4.10), although no understandability difference was detected in this study (E12

Table 4.13).

For a single QST repetition. When using a single zero-or-one repetition using

QST (D2), for understandability, transform this to an OR of the fully expanded String

(D3). This study shows that short expanded ORs are more understandable than the

69

same regex functionality using QST (in Table 4.13). When concerned about community

standards, use QST, which is much more common (Table 4.10).

For single-value repetition. Do not use DBB with the bounds equal like a{2,2}

(S3) - this does not conform to the community standards in Table 4.10. Which alternative

to use has not been determined.

5.2 Implications for Regex Language Researchers

This section provides implications which are expected to be of interest to researchers

studying regular expressions.

Behavioral clustering. With the intuition that shared use cases should lead to

shared behavior, this work clustered regexes using a string matching technique that mea-

sures the behavioral similarity between regexes. Six categories of clusters were observed

grouping on: specific characters, anchors, two or more chars in sequence, parsing brackets

and code search. The observed groups may prove useful to researchers seeking to un-

derstand how programmers use regular expressions. The behavioral clustering technique

may be used again to study a different body of regexes.

Anchors need support. One of the six behavioral categories observed in the clus-

tering experiment grouped on the anchor features, indicating that anchors have strong

behavioral effects. The STR and END features appear in 51.4% and 50.3% of projects

containing regexes (Table 4.3), and yet analysis tools ‘brics’ and ‘Automata.Z3’ both

do not support analysis of regexes using END, and ‘brics’ does not support analysis of

regexes using STR (Table 4.7). The feature usage frequency results and the behavioral

clustering results can inform tool designers when deciding what features their tool should

support.

70

This work identified many potential refactorings. Codes like T1 or C5 refer to the

labeled nodes of the graph in Figure 4.7.

These refactorings were unambiguous:

1.
−−−→
T4T1 by community standard, and significance α = 0.05 understandability

2.
−−−→
T3T1 by community standard

3.
−−−→
T2T1 by community standard

4.
−−−→
T2T4 by community standard, and supported by trends in understandability

5.
−−−→
L1L3 by community standard (for small lower bounds)

6.
−−−→
C2C1 by community standard (for sequences)

7.
−−−→
C4C1 by community standard (for (\d), (\w))

8.
−−−→
C5C1 by community standard (for sequences)

9.
−−−→
D2D1 supported by trends in understandability

Note that strictly speaking,
−−−→
C3C1 is also recommended by the community standard, but

in practice this refactoring is not recommended because transforming an NCCC (C3) to a

CCC using a range (C1) leads to very strange regexes. Other potential community-based

refactorings were disregarded for similar nuanced reasons (Section 4.3.3).

Some of the refactorings indicated by one technique conflicted with refactorings indi-

cated by another technique. In these cases, the suggested refactoring direction depends

on if the goal of refactoring is to increase understandability, or to conform to community

standards.

The direction of these refactorings depends on user goals:

1. •
−−−→
D2D3 significance α = 0.05 understandability

•
−−−→
D3D2 by community standard

71

2. •
−−−→
L2L3 supported by trends in understandability

•
−−−→
L3L2 by community standard

3. •
−−−→
C2C4 significance α = 0.10 understandability

•
−−−→
C4C2 by community standard

4. •
−−−→
C2C5 significance α = 0.10 understandability

•
−−−→
C5C2 by community standard

A starting point for regex refactoring. An oversimplified equivalence model can

accidentally combine several refactorings that depend on finer details. The model used

to decide community support and understandability was based on features, but would

have been improved by using more conditions, like the number of repetitions, the length

of the repeated element, and the length of the regex. Additionally an equivalence model

should, by design, block refactorings that are very likely to lead to an undesirable regex,

like most refactorings out of C3, and should take into account nuances like the trivial

repetition of words with double letters. The work done in this thesis offers a starting

point for designing equivalence classes for regex refactoring, which can be iterated on to

improve equivalence class design.

72

CHAPTER 6. FUTURE WORK

6.1 Refactoring Regexes

Much work remains to be done in the new field of regex refactoring. The techniques

described in this study for identifying refactorings based on community standards and

understandability can be applied to many other data sets, and can be refined or extended

to include new strategies for identifying preferred representations.

6.1.1 Equivalence models

The refactoring studies in this work used five equivalence classes, each with three

to five nodes to reason about possible refactorings. These equivalence classes are very

inclusive of regexes with very different behavior, and are defined by the features and

syntax a regex uses (detailed definitions are in Appendix C). This is not the only way to

reason about refactoring regexes. Other possible approaches are discussed in this section.

Other known feature-based equivalences. Due to the functional variety and

significant number of features to consider, this work does not provide a list of all possible

feature-based refactoring groups. However the following 5 additional equivalence classes

are examples of other possible groups:

Single line option ’’’(.|\n)+’’’ ≡ (?s)’’’(.)+’’’

Multi line option (?m)G\n ≡ (?m)G$

Multi line option (?i)[a-z] ≡ [A-Za-z]

73

Backreferences (X)q\1 ≡ (?P<name>X)q(?P:<name>)

Word Boundaries \bZ ≡ ((?<=\w)(?=\W)|(?<=\W)(?=\w))Z

Community-based equivalence classes. More narrowly defined equivalence mod-

els, specific to particular behaviors of the most frequently observed regexes in a com-

munity, would enable discover of which of these most frequently observed regexes is

preferred. For example a node could require the presence of a very specific CCC like

[a-zA-Z0-9_-] (which can alternatively be represented as [\w-]) that is frequently

observed in a particular community. The results of a preference evaluation would neces-

sarily be impactful because the node was designed to apply to that community.

Combining categorization, clustering and formal tools. Using formal rea-

soning tools like Microsoft’s Automata.Z3, every regex (using supported features) can

belong to a single cluster of exactly equivalent regexes. Because no regex is excluded

from analysis by not belonging to a cluster, an entire body of regexes can be covered

by an understandability study. Computational limits (when determining equivalence)

may present a challenge in a thorough analysis of this type, but using the categories of

regex usage defined in Section 4.2.3.2, the number of pairwise comparisons can be greatly

reduced to only comparisons within a category. Future work is needed to determine the

feasibility of this approach.

Approximating equivalence. In existing refactoring work, code after a refactor-

ing cannot behave differently than it did before it was refactored. However, it is likely

that for many common use cases, like parsing dates or emails, two non-equivalent regexes

that have nearly identical behavior, where the differences never apply in practice, could

be considered approximately equivalent. Future work is needed into how approximate

equivalences could be useful in the genre of regex refactoring.

74

6.1.2 Identifying Preferred Representations

Refactoring to prevent catastrophic backtracking. Regexes like (a+)*b 1

represent an avenue for attack on shared systems [Kirrage et al. (2013a)]. This regex

is not describing a complicated set of strings, but suffers from catastrophic backtracking

because of a common engine implementation choice. This regex can be refactored to

a*b , which matches the same set of strings, and will not catastrophically backtrack.

The ability to cause catastrophic backtracking provides malicious users an opportunity

to perform an algorithmic complexity attack [Kirrage et al. (2013b)], crippling shared

machines that allow users to execute arbitrary regular expressions. So this refactoring,

applied before regexes are executed, renders bad actors harmless, providing non-malicious

users with greater freedoms on shared systems.

Refactoring for performance. The representation of regexes may have a strong

impact on the runtime performance of a chosen regex engine. Prior work has sought

to expedite the processing of regexes over large bodies of text [Baeza-Yates and Gonnet

(1996)]. Refactoring regexes for performance would complement those efforts. Further

study is needed to determine which representations are most efficient in general, and for

each engine specifically.

Refactoring for compatibility. As discussed in Section 4.1.5, different language

variants have different feature sets. In the case of transforming code in one language

to code in another language [Nguyen et al. (2015)], regexes also must be refactored so

that regexes in the transformed code use only features supported by the target language,

and must maintain expected behavior. Besides transforming code, an organization may

want to enforce standards for compatibility with a regex analysis tool like Automata.Z3,

Hampi, Brics or REX.

1http://www.rexegg.com/regex-explosive-quantifiers.html

http://www.rexegg.com/regex-explosive-quantifiers.html

75

6.1.3 Applications for regex refactoring

Regex migration libraries. This work identified opportunities to improve the

understandability of regexes in existing code bases by looking for some of the less under-

standable regex representations, which can be thought of as antipatterns, and refactoring

to the more common or understandable representations. Building migration libraries to

accomplish these refactorings and other yet-undiscovered regex refactorings, is a promis-

ing direction of future work to ease the manual burden of this process, similar in spirit

to prior work on class library migration [Balaban et al. (2005)].

Regex Programming Standards. Many organizations enforce coding standards

in their repositories to ease understandability. Using an equivalence class model and the

node counting technique described in this chapter could help to objectively develop reg-

ular expression standards for a given development community like Mozilla or OpenBSD.

6.2 Semantic Search

Given a large set of regexes, and a set of strings specified to either not-match or

match, the problem of semantic search is to find the regexes that meet the matching

and non-matching specifications. This would be useful if, for example, a programmer

wants to find a regex to perform some complex, already-solved task and would rather

re-use an existing correct regex, than re-invent the wheel. Building a regex to match

the specification is likely to suffer from over-fitting: it will not infer the rules intended

by the specification but will simply match those strings. To find an existing regex that

does match, the brute-force approach will work, checking every regex against every string

to determine if a match exists, and returning the regexes that meet the specification.

However, in order to be viable the technique must scale to accommodate a very large

number of regexes, or the searched set would be unlikely to contain a useful regex.

76

Ideally, a relatively small number of regexes could be used to navigate the set of

regexes, finding the regexes that do match the specifications without performing very

many evaluations. By dividing the space of many regexes into regions that are repre-

sented by just a few regexes, the desired navigation may be possible. One solution is

described in the following section.

6.2.1 Finding a filter set.

One technique for minimizing the number of regexes that need to be evaluated to solve

semantic search is described here as ‘finding a filter set’. This is left as an opportunity

for future work.

The intuition is best demonstrated with an example. The regex :: consists of only

two ‘:’ characters, and the five regexes ::\(.*\) , \s*::\s* , e*d:: , d:{2,6} and

std::regex , also all contain two ‘:’ characters, but describe a more limited set of

strings. Now the first semantic search is performed by user A: find a regex that matches

"abc".

Let ‘::’ be the top filter for the other five regexes, and e*d:: be a second layer

of filter for the last two. The top filter is checked first, and it does not match the string,

so no further evaluations are needed (no result is returned).

Now user B performs another search: match " :: ". This string is matched by

the top filter, so the next three must be evaluated. The regex ::\(.*\) requires a

parenthesis character so it does not match. The regex \s*::\s* does match the string,

and the second layer filter, e*d:: does not match the space characters on either side.

Because the second layer filter does not match, the last two regexes do not need to be

evaluated.

Formally, :: describes a set of strings that subsume, or contain the sets of strings

described by the other five regexes, so it can be used as a filter. However, the regex :

also subsumes these five regexes, but is not as good of a filter, because it is narrower,

77

and therefore blocks fewer unnecessary searches. Furthermore, the regex . has the same

width as : , but blocks even fewer unnecessary searches.

Finding a filter set on one level can be formally described as follows:

Consider a universe R of regexes, and strings s from the set S over alphabet Σ.

Each r ∈ R has matching function r.m(s) returning true if r matches s (using the

definition of matching described in Section 2.2.1), false otherwise.

Now find n filters fi ∈ R, 0 ≤ i < n, where each filter maps to a minimally-

overlapping, roughly equal-sized region of R: Ri.

fi is a filter if ∀s ∈ S, ¬fi.m(s) =⇒ (∀ri ∈ Ri, ¬ri.m(s)).

The best filter is the regex lowest in the subsumption tree to subsume a set. Finding

the best filters for a given set of regexes is likely to be computationally intensive, but

the benefit of the filtering approach is that once good filters are found, the searching

solution remains solved. All additional detail is left as an opportunity for future work.

6.2.2 Automated regex repair

Regular expression errors are common and have produced thousands of bug re-

ports [Spishak et al. (2012)]. This provides an opportunity to introduce automated

repair techniques for regular expressions. Recent approaches to automated program re-

pair rely on mutation operators to make small changes to source code and then re-run the

test suite (e.g., [Weimer et al. (2010); Le Goues et al. (2012)]). In regular expressions,

it is likely that the broken regex is close, semantically, to the desired regex. Syntax

changes through mutation operators could lead to big changes in behavior, but using

transformations within a behaviorally similar cluster (as described in Section 4.2.1) to

identify potential repair candidates could efficiently and effectively converge on a repair

candidate. Automated program repair for C programs has been shown to be effective,

when based on semantic search [Ke et al. (2015)]. A similar approach could apply to

regular expressions, once semantic search for regular expressions is solved.

78

6.3 More Regex Research Opportunities

6.3.1 Comparison opportunities

The analysis techniques developed in this work can be applied to a very wide variety of

data sets to obtain empirical comparisons, such as those listed in this section. Focusing on

a particular community, like web developers writing form validation code using regexes,

can obtain results that are likely to be impactful for that community.

Suggested comparisons. Within one data source (like GitHub) and one program-

ming language (like Python) or one regular expression language (like EMCAScript), dif-

ferent types of projects could be compared to discover differences in usage that can be

attributable to project type. Similarly holding other variables constant and allowing

the 1. data source, 2. programming language or regular expression language variant, 3.

project size, 4. developer maturity level, 5. file-level bug-counts, or 6. file-level time

since creation to vary could reveal details about how usage of regular expressions (in

context of these variables) affects the software development community. Many other

comparisons are likely possible, and this is all left for future work.

Evolution of regexes. When a particular piece of code contains a regex, it is pos-

sible for that regex to be altered over the course of time, and for these alterations (visible

via mining commit logs from version history) to indicate what details are important for

a regex to cover that are often missed in early versions, as well as many possible insights

into preferred representations for refactoring.

6.3.2 Extending feature analysis

Ordinary characters. This work focused mostly on features that provide string

specification capabilities other than how to specify characters (i.e., the KLE and BKR

feature frequencies were counted, but octal, hex and literal representation frequencies

79

were not counted). Yet the comprehension evaluations indicated that the strongest

refactoring opportunity for understandability was
−−−→
T4T1, which is a refactoring of how to

express characters. Furthermore, when comparing feature support of different languages,

one substantial and unexpected difference between variants observed by the author was

the difference in available escaped invisible characters. Yet these escape characters were

not included in this study, with the exception of VWSP (\v). These omissions do not

reduce the impact of the results presented, but provide an opportunity for additional

impactful discoveries to be made in future work.

Feature set comparisons. Additionally, future research is needed into the feature

sets of different variants, extending the work done in this thesis presented in Table 4.5 an

Table 4.6. Several very popular variants are not represented in these tables, including the

NSRegularExpression variant (used by Swift and Objecive-C), the MathWorks variant

(used in MATLAB), the D Regular expressions variant, the TRE variant, VIM Regular

Expressions and several others.

Portability Guides. At the time of this writing, the best resources for users wish-

ing to port patterns from one regular expression language to another are tools like

RegexBuddy (Reg, 2016). More study is needed to fully document the language de-

tails and make it possible for users to transform regular expressions across languages

without accidentally changing the meaning of the regex. For example, in JavaScript and

POSIX ERE, the pattern "a\Z" compiles to a regex matching the string "aZ", because

the pattern fragment \Z has no special significance and the backslash is ignored. In

Python Regular Expressions, this fragment does have significance - a feature matching

the absolute end of the string (after the last newline). However, in Java, Perl, .Net

and many other variants this sequence has a slightly different meaning (absolute end or

before last newline).

80

Ephemeral regex exploration. In some environments, such as the command line

or text editors, regexes do not persist when they are created. Thus, using a repository

analysis for feature usage and community support only illustrates part of how regexes are

used in practice. Exploring how the feature usage differs between environments would

help inform tool developers about how to best support regex usage in context, and is left

for future work.

6.3.3 Taxonomy and formal language studies

Language analysis. The man page for Regex(7) says ‘Having two kinds of REs is

a botch.’ (reg, 2009). As shown in this work, there are certainly more than two kinds

of regular expression languages at this time, and the number of languages is bound to

grow. Documentation on the relationships between these languages, their evolution over

time, and details about their differences is sorely lacking. This presents an opportunity

for language researchers to apply known techniques such as Bayesian phylogenic anal-

ysis (Kitchen et al., 2009) to regular expression languages, and to improve the general

awareness of regular expression languages.

Formal containment. Because many newer regular expression languages draw

their feature sets from previous variants, many feature sets of older languages may be

formal subsets of newer languages. This presents an opportunity for future work in

formally expressing the behavior of variants with the intent of determining where con-

tainment is possible. An engine supporting the features of all languages may not be

possible, but would be a powerful tool, and so more language is needed into the formal

relationship between variants.

81

CHAPTER 7. CONCLUSION

Using over 13,000 regexes mined from Python projects on GitHub, this work provides

new reference materials listing regex feature usage frequency in terms of projects, files,

patterns and tokens for the regex research community. It also provides a comparison

of regex feature sets across the regular expression variants used in 12 of the top 20

programming languages, useful for finding out if regexes can be ported safely across

languages, and also generally useful as a reference for programmers concerned about the

feature support of regular expression language variants for whatever reason.

In the set of mined regexes, this work identifies six broad categories of regex usage

with a novel behavioral similarity analysis and clustering technique, which indicates that

regexes are often used to parse code and balanced angle brackets, and to find specific

delimiting characters or sequences of characters.

Using a simple equivalence class model based on features, where the same regex

behavior may be represented in multiple ways, two studies were performed in an effort

to find the most preferred way to represent a given regex. The first study used an

empirical approach to determine community support of representations by counting how

often each type of representation appeared in the set of mined regexes. This community

support standard identified 11 refactorings such as
−−−→
T3T1. This refactoring transforms

characters wrapped in their own character class into ordinary characters, for example

from [^] to \^

The second study used Mechanical Turk, a crowd-sourcing platform, to conduct com-

prehension tests on participants with some basic knowledge of regular expressions. This

82

data was used to identify seven refactorings such as
−−−→
D2D3. This refactoring transforms

zero-or-one repetition into an OR, for example from ab? to a|ab

The observations obtained in the static analysis of mined regexes and the refactoring

studies can be used by language developers and researchers to further the state-of-the

art of regular expression technologies.

There are many opportunities for future work based on this study, such as applying

the same techniques to new sets of regexes, developing new regex categorizing techniques,

and building more sophisticated equivalence class models and representation preference

measurements, to identify new refactorings. Concepts from regex refactoring research

can be used to build new migration libraries and inform institutional coding standards.

83

APPENDIX A. FEATURE STUDY ARTIFACTS

GitHub Mining Implementation

The GitHub mining tool, named tour de source was written in an object-oriented

style by a programmer with relatively little experience in Python.

Objects used in design

The mining process is conducted using the following four objects:

Scanner provides the scanDirectory() function, which scans a directory, recording

utilizations. This object also tracks the total number of projects scanned and the

frequency of the number of files scanned per project.

Rewinder handle for a particular repository. The getUniqueSourceID() and

getSourceJSON() functions provide metadata about the repository, and the

rewind() function resets a repository to an earlier state in its history.

Sourcer handle for a source of projects. The next() function gets a rewinder for the

next Python project, and the isExhausted() function returns true if there are no

more projects. The sourcer also tracks the total number of projects checked for

Python source code.

Tourist provides the tour() function which controls the mining process.

84

Mining Algorithm

The algorithm used for mining is quite straightforward, but the tour() 1 and scanDi-

rectory() 2 functions are described here for reference (with logging, profiling and excep-

tion handling functionality removed, and some changes for readability).

Algorithm 1 The tour() function

1: while not sourcer.isExhausted() do
2: rewinder = sourcer.next()
3: filePathSet = []
4: uniqueSourceID = rewinder.getUniqueSourceID()
5: sourceJSON = rewinder.getSourceJSON()
6: while rewinder.rewind() do
7: scanner.scanDirectory(uniqueSourceID, sourceJSON, filePathSet)
8: end while
9: nFiles = len(filePathSet)

10: scanner.incrementNFilesFrequencies(nFiles)
11: scanner.incrementNProjectsScanned()
12: end while

Iterating through projects. The tour() function 1 simply iterates through avail-

able sources, using the isExhausted() function on Line 1 to check that another source is

available, and then using the next() function on Line 2 to get the a rewinder object that

handles the current repository. Internally, the next() function pages through all reposi-

tories on GitHub using https://api.github.com/repositories?since=<lastRepoID>

to get a page describing 100 repositories. Each project description contains a url end-

point containing a description of the languages that the project contains. This url is

visited and if it indicates that the project contains Python, then the a rewinder is cre-

ated for that project. Note that the language url is automatically maintained by GitHub

- developers do not have to go through any steps to indicate that a project contains

Python, aside from committing a file written in Python.

85

Creating a rewinder. The name, clone url and other metadata for a repository

containing Python is collected using the GitHub API, and then cloned into a new direc-

tory named using the repoID provided by GitHub to ensure uniqueness. A list of commit

logs is parsed, gathering the date and SHA of all commits. If a project has 20 or fewer

commits, all of them are added to a stack and the rewinder is complete. Otherwise the

most recent commit is added to a stack, and unit spacing is computed by dividing the

number of remaining commits by 19, and 19 more evenly-spaced commits are added to

the stack.

Rewinding through commit history. On Line 6 the rewinder attempts to rewind

the repository through a history of commits. Internally the rewinder uses the git Python

module to perform git reset --hard <SHA>, and will return true unless it has reached

the end of its list of 20 or fewer commit SHAs.

Rationale for using 20 commits. The idea of using 20 commit points is that the

patterns within utilizations may change over time, but with some experimentation this

was determined to not happen very often. The number of commits to use was selected

by trial and error and attempts to balance the time and memory used to build the AST

with the more expensive operation of finding and cloning an entire project for the first

time.

Scanning the project at one point in history. On Line 7 the scanner is called

with metadata about the current project commit and an empty list for tracking file

paths. This scanning function is described in Algorithm 2. In addition to the metadata

and file path list passed to scanner, an empty list of sha strings and another empty list

of citations are created on Line 2 and Line 3, respectively. These lists are used to avoid

re-scanning duplicate files as well as tracking duplicate utilizations and total number of

86

Algorithm 2 The scanDirectory() function

1: uniqueSourceID, sourceJSON, filePathSet passed as arguments
2: shaSet = []
3: citationSet = []
4: pythonAbsPaths = get absolute paths of files in repo directory ending in ‘.py’
5: for fileAbsPath in pythonAbsPaths do
6: fileHash = util.getHash(fileAbsPath)
7: if fileHash not in shaSet then
8: shaSet.append(fileHash)
9: fileRelPath = get relative file path from fileAbsPath

10: if fileRelPath not in filePathSet then
11: filePathSet.append(fileRelPath)
12: end if
13: root = astroid.ast from file(relFilePath)
14: metadata = struct(uniqueSourceID, sourceJSON, fileHash, fileRelPath)
15: extractRegexR(root, metadata, citationSet)
16: end if
17: end for

files scanned. The lists are sets in practice, because no element is added without first

checking if the list contains it.

On Line 4, a list of absolute paths of Python files in the repository is created. Iteration

over this list begins on Line 5. For each of these files a SHA 224 of the file is computed

(on Line 6) using Python’s hashlib module like hashlib.sha224(fileContents) (and

converted to a base 36 string for readability). It is unlikely that two files with different

content will map to the same SHA 224, and impossible for the same content to map to

two different SHA 224 strings. If the fileHash is not already in the shaSet, then it is

assumed this exact file content has not been scanned yet. Unique relative file paths are

added to the filePathSet for tracking on Line 11. The astroid module is used on Line 13

to build an AST of the source code contained in the current Python file, and the root

of the tree is stored in a variable. This root, the metadata about the current project

commit, and the citationSet are passed to the extractRegexR function on Line 15.

87

Extracting utilizations from an AST. The extractRegexR function is tightly

bound to the internal details of the astroid module, which is fairly complex and verbose,

so no Algorithm is shown. Little documentation exists on how to use astroid to extract

utilizations, so the technique used was developed by trial and error on a test project

known to contain every type of utilization of interest. The details of each utilization was

internally treated as a 4-tuple called a ‘citation’, containing:

1. The relative file path.

2. The name of the function of the re module called.

3. The pattern in the utilization.

4. The flags as an integer formed using a bitmask.

If the citationSet already contained a duplicate 4-tuple, the new citation was not added

to the citationSet. Otherwise the citation represented a unique utilization, and so was

recorded in the database along with relevant metadata. Multiple runs on multiple ma-

chines were completed to collect the utilizations used to build the corpus. Each run

produced its own database file, and so after enough data had been collected, the data

from all runs was merged into a single database.

Database schema

Early implementations of tour de source stored project metadata in a separate table.

This led to awkward and verbose queries, and so the final version used only two tables:

RegexCitationMerged and FilesPerProjectMerged. The FilesPerProjectMerged ta-

ble has two columns of integers: nFiles and frequency - these were used to generate

statistics about how many Python files the scanned projects contained. The columns of

the RegexCitationMerged table are described below:

Listing A.1 Example of sourceJSON for one citation

88

{

” data ” :{

” sha ” :” d2d70f f70847b171c23a8e18c7 fdac5e02e15 fca ” ,

”commitS ”:”1260174268”

} ,

”meta ” :{

” c l o n e u r l ” : ” https : // github . com/ ugtar / g i t−co l a . g i t ” ,

” de f au l t b ranch ” :” master ” ,

” repoID ”:”2098485” ,

”name ” :” g i t−co l a ”

} ,

” type ” :” Github”

}

uniqueSourceID An ID generated by tour de source (sequentially) for each source.

repoID The ID of the repository on GitHub.

sourceJSON flexible description of the source. An example is provided in Listing A.

fileHash The SHA 224 hash of the file containing the utilization.

filePath The path of the file containing the utilization (relative to the repository root).

pattern The string compiled into a regex in the utilization.

flags An integer representing the 6 flags as described in Section 4.1.1.4

regexFunction The name of the function called in the utilization.

Challenges in implementation

Python garbage collector ignores integers. It was a surprise to find out that

the memory used by tour de source only grew as mining went on. Every time that

89

astroid built a new AST, memory consumed would climb by many megabytes, with

jumps as large as 350 megabytes observed. The machines running tour de source only

had 16 gigabytes of memory, and so they could only mine utilizations from a few hundred

projects before failing. Every effort was made to profile the system and find a memory

leak, without positive results. The only viable explanation found is that an AST can

have a very large number of nodes, each identified by a unique integer, and none of the

memory used to store these integers is reclaimed after the maps go out of scope.

Rationale behind building the AST. The tool used to mine utilizations from

Python project was written in Python to take advantage of the astroid1 library, which is

a Python AST parser that is actively being maintained in order to support Pylint2. The

decision to use an AST parser instead of, say, trying to extract utilizations using a regex,

was made due to the difficulty of writing a regex that cannot be fooled into capturing the

wrong content. Consider some source code like re.compile("X’\)") which compiles to

X’\) (matching the string "X’)"). A regex like re.compile\((["’][^"’]+["’])\)

would capture the string "X" instead of the actual pattern "X’\)".

Erasing cloned files. Every effort was made to erase a repository once scanning

was complete, but for whatever reason, certain files could not be erased automatically.

Some files seemed to have read-only flags set, and occasionally the file system lock for that

file had been obtained by another process (probably git) but never released. These errors

caused unexpectedly serious problems - when a repository failed to erase completely, a

new repository was not cloned, meaning that no ‘.git’ folder was present in the target

directory. As a result, the ‘.git’ folder of the tour de source project itself was referenced

by calls to git, causing the source code of the mining tool to be rewound by the mining

1https://www.astroid.org/
2https://www.pylint.org/

https://www.astroid.org/
https://www.pylint.org/

90

tool! The solution to this problem was to allow the files to remain and erase them using

the command line later.

GitHub API rate limit and network latency. The mining program was able

to check about one repository ID per second, which was slowed by network latencies,

or, once 5000 API calls had been made in one hour, was throttled by GitHub. The

apparent solution was to create multiple accounts, each providing 5000 API calls per

hour. After contacting GitHub to request help with this issue, they indicated that they

do not want users to create multiple accounts for mining projects because it can put

a strain on their servers, slowing the service for regular users. An alternative strategy

was proposed by GitHub of using ghtorrent3 to find Python projects without using the

API. However, at this point in the project, enough data had been acquired to begin

analysis and a determination was made to stop development of this mining program and

focus on analysis. Future mining efforts are encouraged to obtain repository information

from this database instead of crawling through all projects using the GitHub API, like

tour de source did.

Patterns Excluded From Analysis

This section contains the 114 patterns obtained from Python projects that were

excluded from analysis for various reasons. Extra-long patterns are truncated, with the

number of truncated characters displayed, so 20 truncated characters would be displayed

like ...<20>. These patterns are formatted like regexes to help visualize empty space or

patterns, but may or may not actually be able to compile to valid regexes.

19 Patterns using non-Python or rare features

6: IFC (If conditionals)

3http://ghtorrent.org/

http://ghtorrent.org/

91

• ^(\()?([^()]+)(?(1)\))$

• (?<=[\w)\]"\’]|([]))(===?|!==?|[<>]=?)(?=[\w({\["\’]|(?(1)\b\b|[]))

• (?<=[\w)\]"\’]|([]))(=|[-+*/%^&|]=|<<=|>>>?=)(?=[\w({\["\’] ...<16>

• (?<=[\w)\]"\’]|([]))([-+*/%^]|&&?|\|\|?|<<|>>>?)(?=[\w({\["\’] ...<16>

• ([^()]+?)\s*(\()?(\d{4})(?(2)\))$

• ^((?:https?://)?(?:youtu\\.be/|(?:\\w+\\.)?youtube(?:-nocookie ...<118>

3: IFEC (If-else conditionals)

• ^(?:(a)|c)((?(1)b|d))$

• ^(?:(a)|c)((?(1)|d))$

• (?:(\\[)|\\.|^)((?(1)[^]]*|[^.[]*))(?(1)(?:\\]|$)([^.[]+)?)

5: NCND (Named conditions)

• (?P<g1>a)(?P<g2>b)?((?(g2)c|d))

• (?P<quote>)(?(quote))

• \A(?P<head>.*?)(?P<escape>*)(?P<symbol>\$(?P<brace_open>\{)? ...<51>

• \A(?P<sign>__)?(?P<is_time>T)?(?P<amount>\d+)(?P<unit> ...<26>

• \\$(?P<_bracket_>\{)?((?(_bracket_)(?:\\\}|[^\}])*|(?:\$|[A-Z]+ ...<32>

2: ECOM (Comments)

• (?:http://)?(?:\w+\.)?depositfiles.com/(?:../(?#locale))?files/(.+)

• \n (?:\\W|^) (?# Break or beginning)\n ...<455>

PXCC (Posix character classes) one pattern like "([[:alpha:]]+://)?"

• ([[:alpha:]]+://)?(([[:alnum:]]+)(:[^:@]+)?@)?([^:]+)(:[[:digit ...<13>

LHX (Long hex) two patterns like "\uFF0E"

• (?P<g1>a)(?P<g2>b)?((?(g2)c|d))

• (?P<quote>)(?(quote))

IFC (If conditionals) six patterns like "(?(2)\))"

• ^(\()?([^()]+)(?(1)\))$

• (?<=[\w)\]"\’]|([]))(===?|!==?|[<>]=?)(?=[\w({\["\’]|(?(1)\b\b|[]))

• (?<=[\w)\]"\’]|([]))(=|[-+*/%^&|]=|<<=|>>>?=)(?=[\w({\["\’] ...<16>

• (?<=[\w)\]"\’]|([]))([-+*/%^]|&&?|\|\|?|<<|>>>?)(?=[\w({\["\’] ...<16>

• ([^()]+?)\s*(\()?(\d{4})(?(2)\))$

92

• ^((?:https?://)?(?:youtu\\.be/|(?:\\w+\\.)?youtube(?:-nocookie ...<117>

22 Patterns causing some parsing error

•

• *

• \u

• []

• [\n]*[[]

• --.*[\n\Z]

• \here.(\w*)

• ?(i)reftest

• \$\Id[^$]*\$

• .NET[\/\]VC7

• ?(i)mochitest

• NET 2003[\/\]VC7

• [\ud800-\udfff]

• \citation\{([^\}]+)\}

• [^\t\n\r -~\x85\xa0-\\uD7FF\\uE000-\\uFFFD]

• \n (?P<SN>.*?) # NG(SN) ...<520>

• ^\n\s*((?:-|\w|\&|*)+) # return type\n\s+ ...<166>

• class _EOF ...<27,347> (astroid captured a whole file)

• \n(?P<ret>(-|\\w|\\&|*)+\\s*) # return type\n\\s+ ...<170>

• [\x00-\x08]|[\x0b-\x0c]|[\x0e-\x19]|[\ud800-\udfff]|[\ufffe-\uffff]

• ([\ud800-\udbff](?![\udc00-\udfff])|(?<![\ud800-\udbff])[\udc00-\udfff])

• [\x01-\x08\x0b\x0e-\x1f\x7f-\x9f\ud800-\udfff\ufdd0-\ufdef\ufffe ...<327>

73 Patterns requiring Unicode support to parse

• (?u)([^\w\.\’\-\/,&])

• (?u)[^-\w.]

• (?u)\((CODE|ID)[^\)]*\)

• (?u)\b\w{2,25}\b

• (?u)\w+

• ([-\s]+)(?u)

• (\$+\w*|[^\W\d]\w*)(?u)

• /*.*?*/(?us)

• <(.+?)(\s.*?)?>.*?</.+?>(?uism)

• \s+(?u)

• \s+(?um)

• \w+(?u)

• (?P<fn>[^\u59d3]+)\u59d3?

• (?u)#(x?\d+)

• (?u)%\(.+?\)s

• (?u)&(.+?);

• (?u)\b\w\w+\b

• ([\u2222\u2223])

• ([\x80-\uffff])

• [.\u3002\uff0e\uff61]

• [0-9\uff10-\uff19]{1,2}\u5206

• [0-9\uff10-\uff19]{1,2}\u65e5

93

• [0-9\uff10-\uff19]{1,2}\u6642

• [0-9\uff10-\uff19]{1,2}\u6708

• [0-9\uff10-\uff19]{2}\u5e74

• [0-9\uff10-\uff19]{4}\u5e74

• [\-\u30fc]

• [\\\"\a\b\f\r\v\x80-\uffff]

• [\n \u200b]

• [\n\u2029]

• [\u0430-\u044f]+

• [\u0430-\u044fa-z]+

• [\u0621\u0624\u0626]

• [\u064b-\u0652]

• [\u2014\u2018]

• [\u201c\u201d]

• [^\t\n\r -\ud7ff\ue000-\ufffd]

• \n[^\n\u2029]*$

• \u0432\u0447\u0435\u0440\u0430

• \u2019

• \u6642\u534a

• \u7b7e\u5230(\d+)\u5929

• \u8f6c\u53d1\u5fae\u535a

• ^[\u0622\u0623\u0625]

• [\\\"\a\b\f\r\v\t\n\x80-\uffff]

• [\x00-\x1f\\"\b\f\n\r\t\u2028\u2029]

• \u5348\u5f8c|PM|\uff30\uff2d|pm|PM

• [^\t\n\r -~\x85\xa0-\ud7ff\ue000-\ufffd]

• (?u)^ \t]*==[\t]*(\w)[\t]*==[\t]*\n

• \u0440\u0443\u0441\u0441\u043a\u0438\u0439

• \u0441\u0435\u0433\u043e\u0434\u043d\u044f

• ([\x20\x21\x23-\x5B\x5D-\x7E\xa0-\uffff]+)

• \u5e73\u6210|[Hh][0-9\uff10-\uff19]{2}\u5e74

• <B\s+CLASS="function"\s*>(.*?)\(\)</B\s*>(?uism)

• [\\’"‘\u2018\u2019\u201c\u201d\u2032\u2033\u2034]+

• [0-9\uff10-\uff19]{1,2}[:\uff1a][0-9\uff10-\uff19]{1,2}

• (?u)/\\|\/|\||\:|\?|*|"|<|>|[^\u0000-\u001f\u007f-\u009f]/

• (?u)\.|\\|\/|\||\:|\?|*|"|<|>|[^\u0000-\u001f\u007f-\u009f]

• [0-9\uff10-\uff19]{1,2}[/\uff0f\-\u30fc][0-9\uff10-\uff19]{1,2}

• \u043e\u043f\u0443\u0431\u043b\u0438\u043a\u043e\u0432 ...<38>

• [\x00-,/:-@\[-\^‘\{-\xb6\xb8-\xbf\xd7\xf7\u0132-\u0133 ...<2769>

• [\x00-@\[-\^‘\{-\xbf\xd7\xf7\u0132-\u0133\u013f-\u0140 ...<2013>

• \u0441\u0434\u0430\u0435\u0442\u0441\u044f \u0432 \u0441 ...<86>

• (\u0434\u043e\u043c\u0438\u043a|\u0434\u043e\u043c\u0438\u043a ...<557>

• [0-9\uff10-\uff19]{4}[/\uff0f\-\u30fc][0-9\uff10-\uff19]{1,2} ...<40>

94

• [\t +!#$%&()*\-/<=>?@\[\\\]^_{|}:;,.\u2026\u2012\u2013\u2014 ...<16>

• \u05d4\u05e6\u05e2\u05ea ([^\(,]*)(.*?\((.*?)\))?(.*?\((.*? ...<16>

• ([0-9]+)/([0-9]+)/([0-9]+)[\s\S]\u05d1\u05e9\u05e2\u05d4[\s\S](...<16>

• \u05d4\u05d3\u05d9\u05d5\u05e0\u05d9\u05dd \u05d1\u05ea\u05d0\u ...<16>

• [\s!?,\u3002\uff1b\uff0c\uff1a\u201c \u201d\uff08 \uff09\u3001 ...<24>

• [\s!?,\u3002\uff1b\uff0c\uff1a\u201c \u201d\uff08 \uff09\u3001 ...<25>

• [\s!?,\u3002\uff1b\uff0c\uff1a\u201c \u201d\uff08 \uff09\u3001\uf ...<20>

• [\s!?,\u3002\uff1b\uff0c\uff1a\u201c \u201d\uff08 \uff09\u3001 ...<24>

Description Of Studied Features

Elements

Elements: Ordinary characters

Ordinary characters in regexes specify a literal match of those characters, for example

the regex z matches "z" and "abz". Regexes can be concatenated together to create

a new regex, so that z and q can become zq , which matches "XYzq" but not "z".

Python Regular Expressions4 use the special characters .,^,$,*,+,?,{,},[,],(,),| and \ to

implement the features that allow compact specification of sets of strings. These special

characters can be escaped using the backslash to be treated as ordinary characters, for

example zq\$ matches "zq$".

Elements: Escaped characters and VWSP

Several characters need be written in Python strings using the backslash. These

characters are the backslash:\\, bell:\a, backspace\b, form feed:\f, newline:\n, carriage

return:\r, horizontal tab:\t and vertical whitespace:\v. The vertical tab is rarely used

and was examined on its own as an individual feature with the code VWSP. Every

character can also be expressed in hex or octal form. For example, a regex expressing

4https://github.com/python/cpython/blob/master/Lib/re.py

https://github.com/python/cpython/blob/master/Lib/re.py

95

the newline character \n is equivalent to the same character expressed in hex: \x0A

and octal: \012 . In addition to the characters mentioned, the singlequote ‘’’ and

doublequote ‘"’ often must be escaped, depending on the quotation style used in source

code. This work will not address this issue in further detail.

Elements: Character Classes

CCC: A custom character class uses the special characters [and] to enclose a set of

characters, any of which can match. For example c[ao]t matches the both "cat"

and "cot". The terminology used in this thesis highlights the difference between a

custom character class and a default character class. Default character classes are

built-in to the language and cannot be changed, whereas custom character classes

provide the user of regex with the ability to create their own character classes,

customized to fit whatever is needed. Order does not matter in a CCC, so [ab]

is equivalent to [ba] .

NCCC: A negated custom character class uses the special character ^ as the first charac-

ter within the brackets of a CCC in order to negate the specified set. For example

the regex c[^ao]t would not match "cat" or "cot", but would match "cbt",

"c2t", "c$t" or any string containing a character other than ‘a’ or ‘o’ between

‘c’ and ‘t’. Notice that the exact set of characters specified by a NCCC depends

on what charset is being used. NCCCs in Python’s re module use the Unicode

charset. In this thesis the 128 characters of traditional ASCII are used for a charset

when explaining a concept, because it makes for more compact examples. For in-

stance the NCCC [^ao] excludes 2 characters from a set of 128 characters and

will therefore match the remaining 126 characters.

The caret character can be escaped within a CCC, so that [\^] represents the

set containing only ‘^’. If a caret appears after some other character, it no longer

needs to be escaped, so the CCC [x^] represents the set containing ‘x’ and ‘^’.

96

RNG: A range provides shorthand within a CCC for the set of all characters in the

charset between two characters (including those two characters). So [w-z] is

equivalent to [wxyz] . This feature also works with punctuation or invisible char-

acters, as long as the start of the range occurs before the end of the range. For

example the CCC with range [:-@] is equivalent to the CCC with no range

[:;<=>?@] . Note that order of ranges and other characters do not matter, so

that [w-z:-@] is equivalent to [:-@w-z] . The dash character can be included

in a CCC, for example [a-z-] specifies the lowercase letters and the dash. The

NCCC [^-] represents all characters except the dash.

ANY: The any default character class uses the special character . to specify any char-

acter except the newline character. For example a.b specifies all strings beginning

with an ‘a’ and ending with a ‘b’ with exactly one non-newline character between

the ‘a’ and ‘b’, such as "a2b", "aXb" or "a b". In Python, the meaning of this

character class can be altered by passing the ‘DOTALL’ flag or using the ‘s’ option

so that ANY will also match newlines. When this flag or option is in effect, ANY

will match every character in the charset.

DEC: The decimal default character class uses the special sequence \d to specify digits,

and so \d is equivalent to [0-9] .

NDEC: The negated decimal default character class indicated by the special sequence

\D is simply the negation of the DEC default character class, so \D is equivalent

to either [^0-9] or [^\d] .

WRD: The word default character class uses the special sequence \w to specify digits,

lowercase letters, uppercase letters and the underscore character. Therefore \w is

equivalent to [0-9a-zA-Z_] .

97

NWRD: The negated word default character class indicated by the special sequence

\W is simply the negation of the WRD default character class. Therefore \W is

equivalent to [^0-9a-zA-Z_] or [^\w] .

WSP: The whitespace default character class uses the special sequence \s to specify

whitespace. Many characters may be considered whitespace, but the definition for

this thesis will be the space, tab, newline, carriage return, form feed and vertical

tab. This set is based on the POSIX [:space:] default character class. Therefore

the regexes \s and [\t\n\r\f\v] are considered equivalent.

NWSP: The negated whitespace default character class indicated by the special se-

quence \S is simply the negation of the WSP default character class. Therefore

\S is equivalent to [^ \t\n\r\f\v]] or [^\s] .

Elements: Logical groups

CG: The capture group feature uses the special characters (and) to logically group

some regex. These parenthesis provide the same functionality as seen in algebra -

all operations within the parenthesis are performed first, and the result is treated

as a single element. For example consider A(12|98) , where the regex 12|98 is

treated as one element because it is in a CG. Therefore A(12|98) matches "A12"

or "A98". Without the logical grouping provided by CG, the regex A12|98 will

match "A12" or "98" - the concatenation of A is no longer applied to 98 because

it is no longer logically next to the A .

In addition to grouping, the text matched by the contents of the CG is ‘captured’

and can be referred to later in the regex by a back-reference or extracted by a pro-

gram for any purpose. The captured content is frequently referred to by the number

of the capture group like ‘group 1’ or ‘group 2’. For example when (x*)(y*)z

matches "AxxyyzB", group 1 contains "xx", and group 2 contains "yy". Group 0

contains the entire matched portion of input: "xxyyz".

98

BKR: The back-reference feature uses the special character \ followed by a number ‘n’

to refer to the captured contents of the nth capture group, as defined by the order

of opening parenthesis. For example in (a.b)\1 , the \1 is referring to whatever

was captured by a.b . This regex will match the strings "aXbaXb" and "a2ba2b"

but not "aXba2b" because the character matched by ANY in a.b is ‘X’ not ‘2’.

PNG: A Python-style named capture group uses the syntax (?P<name>X) to name a

capture group. This is known as Python-style because there are other styles of

named capture group such as Microsoft’s .NET style and other variants. Python’s

implementation is noteworthy because it was the first attempt at naming groups.

Names used must be alphanumeric and start with a letter.

BKRN: The back-reference; named feature uses the special syntax (?P=N), and is a

back-reference for content captured by PNG with name ‘N’. For example, the

regex using PNG and BKRN: (P<OldGreg>a.b)(?P=OldGreg) is equivalent to

the regex using CG and BKR: (a.b)\1 .

NCG: The non-capture group uses the special syntax (?:E) to create a NCG containing

element ‘E’. A NCG can be used in place of a CG to perform logical grouping

without affecting capturing logic. So (?:a+)(b+)c\1 will match "abcb" because

(?:a+) is ignored by the BKR, so that the first CG is (b+) , which is what is

back-referenced by \1 . In contrast, (a+)(b+)c\1 would not match "abcb" but

would match "abca" because its first CG is "(a+)"

Options

OPT: The options feature allows the user to modify the engine’s matching behavior

within the regex itself, instead of using flag arguments passed to the regex engine.

For example the regex (?i)[a-z] uses the option (?i) which switches on the

ignore-case flag, so that this regex will match "lower" and "UPPER". Other options

include (?s) for single-line mode making ANY match all characters, (?m) for

99

multiline mode, making STR and END match the beginning and ending of every

line, (?l) may change the meaning of default character classes if a locale has

been set, (?x) ignores whitespace between tokens and (?u) . In Python Regular

Expressions, options can appear anywhere within the regex and will have the same

effect.

Operators

Operators: Repetition modifiers

ADD: Additional repetition uses the special character + to specify one or more of an

element. For example the regex z+ describes the set of strings containing one

or more ‘z’ characters, such as "z", "zz" and "zzzzz". The regex .+ applies

additional repetition to the ANY character class, matching one or more non-newline

characters such as "7a" or "tulip". In (a.b)+ , additional repetition is applied to

the CG (a.b) . By applying additional repetition to this logical group, (a.b)+

specifies strings with one or more sequential strings matching the regex in that

group, such as "a2b", "a2baXba*b" or "a1ba2ba3ba4b".

KLE: Kleene star repetition uses the special character * to specify zero-or-more repe-

tition of an element. For example the regex pt* describes the set of strings that

begin with a ‘p’ followed by zero or more ‘t’ characters, such as "p", "ptt" and

"pttttt".

QST: Questionable repetition specifies zero-or-one repetition of an element. For exam-

ple zz(top)? matches strings "zz" and "zztop".

SNG: Single-bounded repetition uses the special characters { and } containing an integer

‘n’ to specify repetition of some element exactly n times. For example (ab*){3}

will match exactly three sequential occurrences of the regex ab* , such as "aaa"

or "abababb" but not "aa" or "ababb".

100

DBB: Double-bounded repetition uses the special characters { and } containing integers

‘m’ and ‘n’ separated by a comma to specify repetition of some element at least m

times and at most n times. For example (A.X){1,3} will match one, two or three

sequential occurrences of the regex A.X , such as "A7X", "AaXAnX" or "A*XAgXAqX".

LWB: Lower-bounded repetition uses the special characters { and } containing an integer

‘n’ followed by a comma to indicate at least n repetitions of an element. For example

(Qt){2,} will match two or more sequential occurrences of Qt , such as "QtQt"

or "QtQtQtQt" but will not match "Qt".

LZY: The lazy repetition modifier uses the special character ? following another repe-

tition operator to specify lazy repetition. An example of this syntax is (a+?)a*b ,

where QST is applied to the ADD in a+ to yeild a+? , making ADD lazy instead

of greedy. This regex will match "aab", capturing "a" in group 1. Without LZY,

this regex instead is (a+)a*b which will also match "aab" but will capture "aa"

in group 1.

Operators: Logical OR

OR: An or is a disjunction of alternatives, where any of the alternatives is equally

acceptable. This feature is specified by the | special character. Each alternative

can be any regex. A simple example is the regex cat|dog which specifies the two

strings "cat" and "dog", so either of these will match.

Order of operations

The order of operations is:

1. repetition features

2. implicit concatenation of elements

3. logical OR

101

For example, consider the regex A|BC+ . The ADD repetition modifier takes highest

importance, so that this regex is equivalent to A|B(C+) . Then implicit concatenation

joins the two regex B and (C+) into B(C+) , so the regex is equivalent to A|(B(C+)) .

The last operator to be considered is the logical OR, so that this regex is also equivalent

to (A|(B(C+))) .

Positions

Positions: Anchors

STR: The start anchor uses the special character ^ to indicate the position before the

first character of a string, so ^B.* will match every string that starts with ‘B’

such as "Bison" and "Bouncy castle". If the ‘MULTILINE’ flag or ‘m’ option

is passed to the regex engine, then STR will match the position immediately after

every newline. In this case this regex will match in two separate places for the string

"Big\nBicycle" - before the ‘B’ in "Big" and before the ‘B’ in "Bicycle".

END: The end anchor uses the special character $ to indicate either the position be-

tween the last newline and the character before it, or between the end of the string

and the character before it if the string does not end in a newline. For example

R$ will match "abcR" and "xyz\nR\n" but not "R\nxyz\n". The ‘MULTILINE’

flag or ‘m’ option also affects the END anchor so that if activated, the string

"R\nxyz\n" will match because there exists a line where ‘R’ is at the end of a

line.

ENDZ: The absolute end anchor uses the special sequence \Z to indicate the absolute

end of the. For example R\Z will match "abcR" and "xyz\nR" but not "xyzR\n"

or "Rs". The syntax of this feature may cause confusion when porting to another

language like Java, Perl, JavaScript, etc. where the lowercase z: \z has this

102

meaning, but the uppercase Z: \Z would match "R\n" - it matches the end of

string or before the last newline.

Positions: Boundaries

WNW: The word-nonword anchor uses the special sequence \b to indicate the position

between a character belonging to the WRD default character class and belonging

to NWRD (or no character, such as the beginning or ending of the string). It

doesn’t matter if WRD or NWRD comes first, but WNW will only match if the

first character is followed by its opposite. This is useful when trying to isolate

words, for example \btaco\b will match "taco" or "My taco!" because there

is never a word character next to the target word. But the same regex will not

match "catacomb", "_taco" or "tacos". The escaped backspace character ‘\b’

can only be expressed inside a CCC like [\b] because this sequence is treated as

WNW by default.

NWNW: The negated word-nonword anchor uses the special sequence \B to indicate

the position between either two WRD characters or two NWRD characters (or no

character, such as the beginning or ending of the string). The regex \Btaco\B

matches "catacomb" because a word character is found on both sides of wherever

the \B is. The strings "tacos" and "_taco" do not match, though, because in

both cases some part of "taco" is next to the end of the string.

Positions: Lookarounds

LKA: The lookahead feature uses the special syntax (?=R) to check if regex R matches

immediately after the current position. The string matched by R not captured,

and is also excluded from group 0. That is why this feature is sometimes called a

zero-width lookahead. For example ab(?=c) matches "abc" and has "ab" in group

103

0. Note that a regex like ab(?=c)d is valid but does not make sense, because the

lookahead and d can never both match.

LKB: The lookback uses the special syntax (?<=R) to check if regex R matches immedi-

ately before the current position. As with LKA, the content matched by the LKB

is excluded from group 0.

NLKA: A negative lookahead uses the special syntax (?!R) to require that regex R does

not match immediately after the current position. Matched content is excluded

from group 0.

NLKB: The negative lookback uses the special syntax (?<!R) to require that regex

R does not match immediately before the current position. Matched content is

excluded from group 0.

Feature Support Details

Caveats to consider when comparing feature sets

Variation among supported feature sets is not easy to define concisely. Often the

same feature is essentially supported, but nuances exist so that the exact behavior of

the feature still varies enough to have an effect on code that relies on regexes using that

feature. One example of this is the OPT feature (e.g., (?i)cAsE), for which different

engines have different sets of options. Python’s set of 7 options is small compared to Tcl

which has 15 or so. In Table 4.5 if the following 3 core options are supported: (?ism) ,

then the variant will be shown as having that feature. However in all other cases, to

the best knowledge of the author, a strict view is taken when considering if two variants

support the same feature - it should have the exact same syntax and behavior in order for

the feature to be considered the same feature in two variants. Documentation of engines

varies in detail and quality, so that often the particular behavioral details and full feature

set is only known to developers of the engine. In this attempt to document some of the

104

variations in feature support, no attempt is made to address these minor nuances and

tricky details, but instead the focus is on documenting the presence or absence of features

at a high level.

These tables should not be relied upon in life-or-death situations, as some error is

certainly possible. In such applications, a user may want to verify engine behavior using

tests, consulting the documentation and source code as needed.

Availability of alternate libraries is common

Although pure ANSI C does not include a standard regex library or built-in, libraries

providing regex support can be made available such as POSIX, PCRE or re2c. Similarly,

pure Visual Basic has no core regex support but can use the RegExp object provided by

the VBScript library. In fact, for most general-purpose languages, multiple alternative

regular expression libraries can be found which may offer slightly different syntax or

optimizations for speed. Some of these libraries implement a language defined by a

standard (like PCRE or ECMAScript) or offer a choice of languages. For example,

the std::regex library5 implements engines for ECMAScript Regular Expressions (the

default), AWK Regular Expressions, POSIX BRE or POSIX ERE. The following libraries

are alternatives to std::regex: Boost.Regex, Boost.Xpressive, cppre, DEELX, GRETA,

Qt/QRegExp and RE2. These alternative libraries are developed by hobby users and

software giants alike, with RE2 [re2 (2015)] being a recent and notable alternative library

developed by Google.

Choosing languages to compare

Instead of using language popularity alone to determine what languages to include,

these languages were selected to optimize for the intersection of variety of regular ex-

pression languages covered, and ease of testing feature inclusion. For example, Java and

5http://en.cppreference.com/w/cpp/regex/syntax_option_type

http://en.cppreference.com/w/cpp/regex/syntax_option_type

105

RE2 provide excellent and thorough documentation of their feature sets, and provide

two entirely different variants. Although C and C++ are very popular languages, their

regular expression libraries use external standards like ECMA (used by JavaScript) and

POSIX ERE, and do not provide a distinct language of their own. For Python, Perl,

Ruby, JavaScript and Java, testing a for a feature can be quickly accomplished in a

browser or a terminal. For RE2, POSIX ERE and .Net no tests were performed, but

documentation was good enough, and the language variants seem significant enough to

try and include them. Two notably absent regular expression languages are the NSEx-

pressions variant used by Apple in the Swift and Objective-C languages (no acceptably

detailed documentation was found), and the well documented but wildly exotic syntax

of Vim Regular Expressions which are very interesting but would unnecessarily inflate

the size of the tables. So for 12 (70%) of the 17 languages listed in Table 4.4, (i.e.

not MATLAB, Swift, Objective-C, D or SQL), the tables presented here should provide

useful information.

Sources of data

Data sources for ranked features (Table 4.5):

Python mostly documentation6, and Regex1017, and stackoverflow8, also many terminal tests using

version 2.7.10.

Perl very good docs9, and terminal tests, using version 5.18.2.

.Net entirely regexhero10.

Ruby mostly documentation11 and also rubular12

Java mostly documentation13 and also RegexPlanet14.

6https://docs.python.org/2/library/re.html
7https://regex101.com/
8http://stackoverflow.com/questions/3070655/does-regex-differ-from-php-to-python
9http://perldoc.perl.org/perlre.html

10http://regexhero.net/reference/
11http://ruby-doc.org/core-1.9.3/Regexp.html
12http://rubular.com/
13https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
14http://www.regexplanet.com/advanced/java/index.html

https://docs.python.org/2/library/re.html
https://regex101.com/
http://stackoverflow.com/questions/3070655/does-regex-differ-from-php-to-python
http://perldoc.perl.org/perlre.html
http://regexhero.net/reference/
http://ruby-doc.org/core-1.9.3/Regexp.html
http://rubular.com/
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://www.regexplanet.com/advanced/java/index.html

106

RE2 only the excellent documentation15 is needed.

JavaScript mostly documentation16, EMCAScript17docs, and some experiments on regex10118.

POSIX ERE entirely documentation19

and more documentation20

Data sources for unranked features (Table 4.6): Miscellaneous info from [Reg

(2016)], and:

Python experiments on Regex10121, and in the terminal using version 2.7.10.

Perl very good docs22, and terminal tests, using version 5.18.2.

.Net entirely regexhero23.

Ruby experiments on rubular24, and some documentation25.

Java the documentation26 is nearly sufficient, suplimented by RegexPlanet27.

RE2 only the excellent documentation28 is needed.

JavaScript entirely experiments on regex10129.

POSIX ERE entirely documentation30

and more documentation31.

15https://github.com/google/re2/wiki/Syntax
16https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
17http://www.ecma-international.org/ecma-262/5.1/
18https://regex101.com/
19http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
20http://www.regextester.com/eregsyntax.html
21https://regex101.com/
22http://perldoc.perl.org/perlre.html
23http://regexhero.net/reference/
24http://rubular.com/
25http://ruby-doc.org/core-1.9.3/Regexp.html
26https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
27http://www.regexplanet.com/advanced/java/index.html
28https://github.com/google/re2/wiki/Syntax
29https://regex101.com/
30http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
31http://www.regextester.com/eregsyntax.html

https://github.com/google/re2/wiki/Syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
http://www.ecma-international.org/ecma-262/5.1/
https://regex101.com/
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
http://www.regextester.com/eregsyntax.html
https://regex101.com/
http://perldoc.perl.org/perlre.html
http://regexhero.net/reference/
http://rubular.com/
http://ruby-doc.org/core-1.9.3/Regexp.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://www.regexplanet.com/advanced/java/index.html
https://github.com/google/re2/wiki/Syntax
https://regex101.com/
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
http://www.regextester.com/eregsyntax.html

107

Unranked feature descriptions

The following brief descriptions of unranked features set are provided to aide in

understandability of Table 4.6. For a more detailed description, the reader will have to

consult the documentation provided by a supporting variant.

RCUN: example: (?n) description: recursive call to group n

RCUZ: example: (?R) description: recursive call to group 0

GPLS: example: \g{+1} description: relative back-reference

GBRK: example: \g{name} description: named back-reference

GSUB: example: \g<name> description: Ruby-style subroutine call

KBRK: example: \k<name> description: .Net-style named back-reference

IFC: example: (?(cond)X) description: if conditional

IFEC: example: (?(cnd)X|else) description: if else conditional

ECOD: example: (?{code}) description: embedded code

ECOM: example: (?#comment) description: embedded comments

PRV: example: \G description: end of previous match position

LHX: example: \uFFFF description: long hex values

POSS: example: a?+ description: possessive modifiers

NNCG: example: (?<name>X) description: .Net-style named groups

MOD: example: (?i)z(?-i)z description: flag modulation (on and off anywhere)

ATOM: example: (?>X) description: atomic or possessive non-capture group

CCCI: example: [a-z&&[^f]] description: custom character class intersection

STRA: example: \A description: absolute beginning of input

LNLZ: example: \Z" description: end of input, or before last newline

108

FINL: example: \z description: absolute end of input, like ENDZ

QUOT: example: \Q...\E description: quotation

JAVM: example: \p{javaMirrored} description: java defaults

UNI: example: \pL description: Unicode defaults

NUNI: example: \PS description: Unicode negated defaults

OPTG: example: (?flags:re) description: flags just for inside this NCG

EREQ: example: [[=o=]] description: equivalent characters varying only by accent

or case

PXCC: example: [:alpha:] description: POSIX defaults

TRIV: example: [^] description: trivial CCC, matches everything

CCSB: example: [a-f-[c]] description: custom character class subtraction

VLKB: example: (?<=ab.+) description: variable-width look-behinds. harder to im-

plement

BAL: example: (?<close-open>) description: balanced groups (.Net version of re-

cursion)

NCND: example: (?(<n>)X|else) description: named conditionals

BRES: example: (?|(A)|(B)) description: branch numbering reset (A and B capture

into the same group number)

QNG: example: (?‘name’re) description: single-quote named groups

Determining feature support of four analysis tools

What features each tool supports was determined in a variety of ways. For brics,

the set of supported features was collected using the formal grammar32. For hampi, the

set of regexes included in the test suite lib/regex-hampi/sampleRegex file within the

32http://www.brics.dk/automaton/doc/index.html?dk/brics/automaton/RegExp.html

http://www.brics.dk/automaton/doc/index.html?dk/brics/automaton/RegExp.html

109

hampi repository33 were examined to determine which features hampi supports (this may

have been an overestimation, as this included more features than specified by the formal

grammar34). For Rex, the feature set was collected empirically when attempting to use

Rex as described in Section 4.2.2. For Automata.Z3, a file containing sample regexes35

was examined to determine which features it supports. This may be an underestimation,

as the set of patterns provided is small.

33https://code.google.com/p/hampi/downloads/list
34http://people.csail.mit.edu/akiezun/hampi/Grammar.html
35https://github.com/AutomataDotNet/Automata/blob/master/src/Automata.Z3.Tests/

SampleRegexes.cs

https://code.google.com/p/hampi/downloads/list
http://people.csail.mit.edu/akiezun/hampi/Grammar.html
https://github.com/AutomataDotNet/Automata/blob/master/src/Automata.Z3.Tests/SampleRegexes.cs
https://github.com/AutomataDotNet/Automata/blob/master/src/Automata.Z3.Tests/SampleRegexes.cs

110

APPENDIX B. CLUSTERING STUDY ARTIFACTS

Similarity Matrix Creation Details

A free trial of Windows 7 was run within VMware on a macbook pro. The Rex [Veanes

et al. (2010)] executable1 requires .Net 4.5, and the similarity matrix creating program

was written in C# using visual studio 2013. First the patterns for 3,582 Python regexes

appearing in multiple projects were used to try and generate strings using Rex, which

rejected 711 patterns. For the remaining 2,871 patterns that Rex could generate strings

for, the test strings were stored in a distinct file for each regex, and delimited by a large

random string (Rex often needs to generate muti-line test strings).

The filtered corpus of Rex-compatible regexes was written to a file to increase loading

speed in the next step. For each regex in the filtered corpus, the test strings stored for

that regex were loaded and all other regexes attempted to match those strings. Although

regular expression engines usually perform a match quickly, an occasional pathological

combination of regex and test string would cause the entire program to stall. The

Parallel.For(...) functionality of C# was used to allow work to continue, but eventually

the program had to be stopped using an interrupt. This caused incomplete rows of data

which needed to be pruned by a separate program and re-calculated. All rows were

verified in a final step before exporting the similarity matrix.

1http://research.microsoft.com/en-us/downloads/7f1d87be-f6d9-495d-a699-f12599cea030/

http://research.microsoft.com/en-us/downloads/7f1d87be-f6d9-495d-a699-f12599cea030/

111

Markov Clustering Arguments

The mcl tool takes many arguments, with the main value, i, controlling inflation.

A larger value of i will produce more, smaller clusters, and visa versa. A cutoff value

p below which edges are treated as zero, is also provided. A third value k can be

used to customize the number of neighbor nodes to track per computation [van Dongen

(2012)]. The default values for these three are 2, 0.75 and 4 respectively. Extensive

experimentation comparing the contents of clusters using various values for i, p and k led

to the choice of i = 1.8, p = 0.75 and k = 83. Under the advisement of the mcl manual,

the directional edges produced by the similarity determining technique were averaged to

form a symmetric edge weight matrix before clustering [van Dongen (2012)].

Top five complete clusters

This section displays the top five clusters so that a sense of the similarity of regexes

within a cluster created by mcl can be obtained by the reader. Note that cluster 0

is excluded because it contains regexes that trivially match everything like ^ . The

following five lists describe the number of projects that contain a regex, followed by the

regex.

Cluster One

Cluster one has 39 patterns, is present in 95 projects, and the shortest regex is

.. . All regexes in this cluster will match two rather free characters, as exemplified

by .. . Taking another regex as an example, \w+(\.\w+)* will match any two WRD

characters. The KLE modified group, (\.\w+)* does not strictly affect the clustering

behavior because if this matches zero times, it still matches.

09 \w+(\.\w+)* 09 ([a-zA-Z0-9_$%]+)

112

08 (Too long to display)

07 [a-zA-Z]

07 [-a-zA-Z_@.]+

06 ^[\w\-:\$]+

06 [a-zA-Z][-a-zA-Z0-9_:]*

05 (\w+)(.*)

05 [a-zA-Z_]\w*

05 [a-zA-Z_][a-zA-Z0-9_]*

05 [a-zA-Z_$][A-Za-z0-9_$..]*

05 (Too long to display)

04 [a-z]+

04 ([A-Z]+)

04 ((\d|\w|_)+)

04 ([\d\w\-_]+)(.*)

03 (..)

03 [A-Z]+

03 [a-zA-Z]+

03 [a-zA-Z_][a-zA-Z_0-9]*

03 (Too long to display)

03 (Too long to display)

02 ..

02 [a-z_]

02 [\w]+

02 [\w’]+

02 ^.(.*).$

02 [A-Za-z]

02 (\w+\W*)

02 [a-zA-Z0-9_-]+

02 ([_A-Za-z]\w*)

02 ({[^}]+})?(\w+)

02 ([$\\%&@]+)?(\w+)

02 [a-zA-Z][a-zA-Z0-9]*

02 [A-Za-z_][A-Za-z0-9_]*

02 ((,|^)\s*[\w\-\.]+)

02 [A-Za-z0-9][A-Za-z0-9\-_]*

02 (Too long to display)

02 (Too long to display)

Cluster Two

Cluster two has 36 patterns, is present in 89 projects, and the shortest regex is (\W) .

All regexes in this cluster will obtain a match with one NWRD character, or close to

that. For example, [^0-9A-Za-z] will match the ‘_’, which is not a NWRD character,

but behaves the same for the rest of the characters. So since there are so many characters

in the NWRD character class, there will be many opportunities to match and this regex

will match other NWRD-like regexes most of the time.

113

09 (\W+)

08 [^A-Za-z0-9_.-]

08 [\t-\r -/:-@[-‘{-~]

07 [^\w]+

07 [^a-z0-9]+

06 [^-A-Za-z0-9_.]

06 [^a-zA-Z0-9._-]

06 [^A-Za-z0-9_. *()-]!

05 [^\w]

05 [^A-Za-z0-9]

05 [^a-zA-Z0-9_-]

04 [\W]+

04 [^\w\.\-]

04 [^A-Z^a-z^0-9^:]+

04 [^A-Z^a-z^0-9^\/]+

04 (Too long to display)

03 [^\w.-]

03 [^a-z0-9]

03 [^A-Za-z0-9]

03 [^a-zA-Z.0-9]

02 (\W)

02 [\W_]

02 [^_\w]

02 [\W_]+

02 [^\w.-]+

02 [^A-Za-z_]

02 [^\w\d_]

02 [^0-9A-Za-z]

02 [^a-zA-Z0-9.]

02 [^\w\.\-]

02 [^\w\-\.\/]+

02 ^\s*(\S+)\s*$

02 [^A-Za-z0-9_\.\-]

02 [^A-Za-z0-9_.;\-]

02 [^A-Za-z0-9_.:;\-]

02 (Too long to display)

Cluster Three

Cluster 3 has 33 patterns, is present in 89 projects, and the shortest regex is (\s) .

The regexes in this cluster will be satisfied with a match of a single space character, or

close to it. Many of these regexes specify other behavior, like [\s\-]+ , which also will

match a - character, but since the \s character class has several more characters, it is

favored in randomly generated strings.

09 [\t]+ 08 (\s)

114

08 [-./\s]

08 [\-\s]

08 [\s\-]+

08 [\n\r\t\x0b\x0c]

07 ,?\s+

07 \s([^a])

07 ([\t]+)

07 \s([^a]*)

06 [\s,]+

05 [\s]+

05 ((\t)|())(.*)

04 [\t]

04 \s+\S

04 [\t\n]

04 [\s\(\)]+

03 [\s]

03 \[|\]|\n+|\s+

02 \s|,

02 \s.*

02 \S\s

02 [-\s]

02 [,\s]+

02 (+|\n)

02 [\t:]+

02 (\s|,)+

02 ^\S+\s+

02 \s*,\s*|\s+

02 \s+(\S+\s*)$

02 (^package:)|\s

02 (\s*[;,\s]\s*)

02 ([% \t\x80-\xff])

Cluster Four

Cluster four has 27 patterns, is present in 74 projects, and the shortest regex is \S+ .

The regexes in this cluster will be satisfied with a single one of most non-space characters.

For example, [^0-9,] is exclusive of digits, and allows the tab and other whitespace.

But it does match the dozens of other NWSP characters like most punctuation and

letters.

09 ^[^-_.]+

08 ^([a-zA-F0-9_-]*)[\.]?.*$

05 [^a-z]

04 (\S+)\s*(.*)

04 ^[\t]*[^# \t]

03 [^\d]

115

03 [^0-9,]

03 ^([^]+)

03 ^([^:]+)$

03 ^ *(.*) *(*) *$

03 "([^"]+)"|(\S+)

03 ^([^<]*)(/(<.*))?$

03 ^(\s*)()(\S+)(.*$)

03 (([^-/]+)-?([^/]+)?)/?.*

02 \S+

02 ^.+$

02 ^\S

02 (\S+)

02 [^A-Z]

02 [^0-9]+

02 \d*(\S)

02 ^(\S+):?

02 [^0-9:\.]

02 <[^>]+>|[^\s<]+

02 ^(\S+ \S+ \S+ \S+:)?(.*)$

02 ([\x20\x21\x23-\x5B\x5D-\x7E]+)

02 \s*([^\s\(\)"\\’=,\[\]/\?]+)\s*

Cluster Five

Cluster five has 23 patterns, is present in 58 projects, and the shortest regex is \d .

The regexes in this cluster will tend to match digits, even if they might match other

characters as well like ([0-9]+)([DdHhMm]|[sS]?) , which actually requires a non-digit

to match as well. This regex may have been clustered with the rest of these regexes

because test strings generated to match it must include a digit, and so the pure-digits

will match it 100% of the time.

08 \d

08 ([0-9.]+)(\S*)$

07 [\.0-9]+

04 [0-9]

04 ([0-9.]+)

04 (\d+(\.\d+)*)

03 (\d)

03 ([\d\.]+)

03 [0-9a-fA-F]{2}

03 \s*(\d+)\s*

03 ([0-9]+)([DdHhMm]|[sS]?)

03 (Too long to display)

02 [\d\.]+

02 [+-]?\d+

116

02 [-+]?\d+

02 (\d+)(.*)

02 [1-9][0-9]*

02 [{]*[-+0-9]

02 \d+(\.\d*)?

02 ([+-]?[\d\.]+)(\S+)

02 ([idel])|(\d+):|(-?\d+)

02 ([\-0-9])|([\-0-9]/[0-9])

02 (0x[0-9A-Fa-f]+|0\d*|[1-9]\d*)

117

APPENDIX C. EQUIVALENCE CLASS ARTIFACTS

Complete Node Membership Descriptions

C.0.0.1 CCC Group

The Custom Character Class (CCC) group contains five nodes that each require the

expression of a set of characters, as is typical when using the CCC feature. For example,

the regex b[ea]t will match both "bet" and "bat" because, between the ‘b’ and ‘t’,

the CCC [ae] specifies that either ‘a’ or ‘e’ (but not both) must be present. We

use the term custom to differentiate these classes created by the user from the default

character classes: \d , \D , \w , \W , \s , \S and . provided in Python Regular

Expressions. Next, we provide descriptions of each node in this equivalence class:

C1: Any regex using the RNG feature in a CCC like [a-f] as shorthand for all of the

characters between ‘a’ and ‘f’ (inclusive) belongs to the C1 node. C1 does not

include any regex using the NCCC feature. All regex containing NCCC belong to

the C3 node.

C2: Any regex that contains at least one CCC without any RNG or defaults belongs to

the C2 node. For example, [012] is in C2 because it does not use any RNG or

defaults, but [0-2] is not in C2 because it uses RNG. Similarly, [Q\d] is not

in C2 because it uses the DEC default character class. Membership to C2 only

requires one CCC without RNG or defaults, so [abc][0-9\s] does belong to C2

because it contains [abc] .

118

C3: Any regex using the NCCC feature belongs to the C3 node. For example [^ao]

belongs to C3, and [ao] does not (notice the ‘^’ character after the ‘[’).

For a given charset (e.g., ASCII, UTF-8, etc.), any CCC can be represented as

an NCCC. Consider if the PRE engine was using an ASCII charset containing

only the following 128 characters: \x00-\x7f. Consider that a CCC represent-

ing the lower half: [\x00-\x3f] can be represented by negating the upper half:

[^\x40-\x7f] .

C4: Any regex using a default character class in a CCC like [\d] or [\W] belongs to

the C4 node.

C5: Any regex containing an OR of length-one sequences (including defaults or other

CCCs) belongs to the C5 node. These representations can be transformed into

a CCC syntax by removing the OR operators and adding square brackets. For

example (\d|a) in C5 is equivalent to [\da] in C4.

Because an OR cannot be directly negated, it does not make sense to have an edge

between C3 and C5 in Figure 4.7, though C3 may be able to transition to C1, C2

or C4 first and then to C5.

A regex can belong to multiple nodes of the CCC group. For example, [a-f\d]

belongs to both C1 and C4. The edge between C1 and C4 represents the opportunity to

express the same regex as [a-f0-9] by transforming the default digit character class

into a range. This transformed version would only belong to the C1 node. Not all regexes

in C1 contain a default character class that can be factored out. For example [a-f]

belongs to C1 but cannot be transformed to an equivalent representation belonging to

C4.

119

C.0.0.2 DBB Group

The double-bounded (DBB) group contains all regexes that use some repetition de-

fined by a (non equal) lower and upper boundary. For example the regex pB{1,3}s

requires one ‘p’ followed by one to three sequential ‘B’s, then followed by a single ‘s’.

This regex will match "pBs", "pBBs", and "pBBBs".

D1: Any regex that uses the DBB feature (curly brace repetition with a different lower

and upper bound), such as pB{1,3}s , belongs to the D1 node.

Note that pB{1,3}s can become pBB{0,2}s by pulling the lower bound out of the

curly braces and into the explicit sequence (or visa versa). Nonetheless, it would

still be part of D1, though this within-node refactoring on D1 is not discussed in

this work.

D2: Any regex that uses the QST feature (a question mark indicating zero-or-one rep-

etition) belongs to D2. An example regex belonging to D2 is zz? , which matches

"z" and "zz".

When a regex belonging to D1 has zero as the lower bound, it can be transformed

to a representation belonging to D2 by replacing the DBB feature and the element

it operates on (like the B{0,2} in pBB{0,2}s) with n new regexes composed of

the element operated on by DBB followed by QST, where n is equal to the upper

bound in the DBB. For example B{0,2} has a zero lower bound and an upper

bound of 2, so it can be represented as B?B? . Therefore pBB{0,2}s can become

pBB?B?s .

D3: Any regex that uses OR to express repetition with different upper and lower bound-

aries like pBs|pBBs|pBBBs belongs to D3. The example pB{1,3}s becomes

pBs|pBBs|pBBBs by explicitly stating the entire set of strings matched by the

regex in an OR.

120

Note that a regex can belong to multiple nodes in the DBB group, for example,

(a|aa)X?Y{2,4} belongs to all three nodes: Y{2,4} maps it to D1, X? maps it to

D2, and (a|aa) maps it to D3.

C.0.0.3 LIT Group

All regexes that are not purely default character classes have to use some literal tokens

to specify what characters to match. In Python and most other languages that support

regex libraries, the programmer is able to specify literal tokens in a variety of ways.

Our examples use the ASCII charset, in which all characters can be expressed using hex

codes like \x3A and octal codes like \072. The LIT group defines transformations among

various representations of literals.

T1: Patterns that do not use any hex characters (T2), wrapped characters (T3) or octal

(T4), but use at least one literal character belong to the T1 node. For example a

belongs to T1.

T2: Any regex using hex tokens, such as \x07+ , belongs to the T2 node.

T3: Any ordinary character wrapped in square brackets so that it becomes a CCC

containing exactly one character belongs to T3. An example of a regex belonging

to T3 is [x][y][z] . This style is used most often to avoid using a backslash so

that a special character is treated as an ordinary character like [|] , which must

otherwise be escaped like \| .

T4: Any regex using octal tokens, such as \007 , belongs to the T4 node.

Patterns often fall in several of these representations. For example, abc\007 includes

literal elements a , b , and c , and also the octal element \007 , thus belonging to T1

and T4.

121

C.0.0.4 LWB Group

The LWB group contains all regexes that specify only a lower boundary on the number

of repetitions required for a match.

L1: Any regex using the LWB feature like A{3,} belongs to the L1 node. This regex

will match "AAA", "AAAA", "AAAAA", and any number of A’s greater or equal to 3.

L2: Any regex using the KLE feature like X* belongs to the L2 node. The regex X*

is equivalent to X{0,} because both will match zero or more X elements.

L3: Any regex using the ADD feature like T+ belongs to the L3 node. The regex T+ ,

which means one-or-more ‘T’s is equivalent to T{1,} .

Regexes can belong to multiple nodes in the LWB group. Within A+B* , the A+

maps this regex to L3 and B* maps it to L2. Refactorings from L1 to L3, and L2 to L3

are not possible when the lower bound is zero and the regex is not repeated in sequence.

For example neither A{0,} from L1, nor A* from L2 express behavior that can be

represented using the ADD feature.

C.0.0.5 SNG Group

This equivalence class contains three nodes, each expressing SNG repetition in dif-

ferent ways.

S1: Any regex using the SNG feature like S{3} belongs to the S1 node. This example

regex defines the string "SSS" where three ‘S’ characters appear in a row.

S2: Any regex that is explicitly repeated two or more times and could use repetition

operators belongs to the S2 node. For example coco repeats the smaller regex

co twice and could be represented as (co){2} , so coco belongs to S2. Regex

containing double letters like foot also belong to S2.

122

S3: Any regex with a double-bound in which the lower and upper bounds are same be-

longs to S3. For example, S{3,3} specifies a string where ‘S’ appears a minimum

of 3 and maximum of 3 times, which is the string "SSS".

The important factor distinguishing this group from DBB and LWB is that there

is a single finite number of repetitions, rather than a bounded range on the number of

repetitions (DBB) or a lower bound on the number of repetitions (LWB).

123

APPENDIX D. COMPREHENSION STUDY ARTIFACTS

Regexes and Matching Strings Tested on Mechanical Turk,

Organized by Metagroup

Metagroup 1: testing S1 vs S2

S1 %([0-9A-Fa-f]{2})

S2 %([0-9a-fA-F][0-9a-fA-F])

"g%a9"

"%-F"

"0123abC"

"%0G"

"%8F-1"

S1 &d([aeiou]{2})z

S2 &d([aeiou][aeiou])z

"&deez"

"t&dazz"

"&diez"

"&dazez"

"douz"

S1 fa[lmnop]{3}

S2 fa[lmnop][lmnop][lmnop]

"fall"

"afmon"

"fanopster"

"infalobl"

"famlnk"

Metagroup 2: testing C1 vs C4, focusing on DEC

C1 ([0-9]+)\.([0-9]+)

C4 (\d+)\.(\d+)

"11.3"

"12."

"888"

"0a.2"

".075"

C1 xg1([0-9]{1,3})%

C4 xg1(\d{1,3})%

"1x1g1333%"

"Lxg134%"

"1492%"

"xg13%"

"xg1345%2"

C1 [a-f]([0-9]+)[a-f]

C4 [a-f](\d+)[a-f]

"d912a"

"h12f"

"aff321"

"123af"

"aaa4a"

124

Metagroup 3: testing C1 vs C4, focusing on WRD

C1 &([A-Za-z0-9_]+);

C4 [&(\w+);]

"&&"

"abc_;"

"&&a_9;"

"&aFF;"

"&a-F;"

C1 1q[A-Za-z0-9_][A-Za-z0-9_]

C4 [1q\w\w]

"1q&&"

"1aqabc_"

"1qabc2"

"a1q245"

"1q\w\w"

C1 [tuv[A-Za-z0-9_]]

C4 [tuv\w]

"tuv\w"

"tuv&"

"tuvx"

"amtuv0"

"pqtuv"

Metagroup 4: C4 vs (C3 or C2), covering the other defaults

C3 [^0-9A-Za-z]

C4 [\W_]

"abc"

"."

"*1"

"123"

"}x"

C3 [^0-9]

C4 [\D]

"84732211"

"axb33"

"*1"

"123"

"}x"

C2 [\t\r\f\n]

C4 [\s]

"ggg"

" l"

"el ela"

"tp11"

"0123abC"

Metagroup 5: testing L2 vs L3 (note that the pair \..* and \.+ on the left is not equivalent,

due to an oversight - the first regex was meant to be \.\.*)

L2 \..*

L3 \.+

"99"

"..."

"a dog."

"."

"abc"

L2 zaa*

L3 za+

"qtmnzba"

"qtzaaa"

"za"

"azazaza"

"az"

L2 RR*

L3 R+

"98"

"R0R"

"ARROW"

"qRs"

"qrs"

125

Metagroup 6: testing T1 vs T3

T1 (\$\{)\d+(:[^}]+\})

T3 ([$][{])\d+(:[^}]+[}])

"${881:}"

"{12:-}"

"${09.1::}"

"${31:13}"

"#${1:x22}"

T1 t\.\$+\d+*

T3 t[.][$]+\d+[*]

"t..5*"

"ampty.*$0"

"sit."

"t.$111*"

"qt.$$$41*"

T1 \{\$(\d+\.\d)\}

T3 [{][$](\d+[.]\d)[}]

"{$88.\}"

"{$0.3}"

"$99.2"

"{$31.13}"

"{$112.4}"

Metagroup 7: testing D1 vs D2 vs D3

D1 ((q4f){0,1}ab)

D2 ((q4f)?ab)

D3 (q4fab|ab)

"ab"

"fq4f"

"xyzq4fab"

"zlmab"

"qfa4"

D1 (dee(do){1,2})

D2 (deedo(do)?)

D3 (deedo|deedodo)

"do deedodeedo"

"dodeedee do"

"do deedodo"

"dedoode"

"deedo do"

Metagroup 8: testing C1 vs C2 vs C5

C1 tri[a-f]3

C2 tri[abcdef]3

C5 tri(a|b|c|d|e|f)3

"tri3def"

"triabc3"

"tric3"

"trig3"

"abc3"

C1 no[w-z]5

C2 no[wxyz]5

C5 no(w|x|y|z)5

"nov5"

"noxy5"

"now5"

"ny5"

"noz"

126

Metagroup 9: testing C2/T1 vs C5/T1 vs C2/T4 (provides T1 vs T4 and C2 vs C5)

C2/T1 ([}{])

C5/T1 (\{|\})

C2/T4 ([\072\073])

"{o0ps"

"”—

"{x}"

"([c])"

"pcm}"

C2/T1 ([:;])

C5/T1 (:|;)

C2/T4 ([\0175\0173])

";o0ps"

"”—

":x"

"([c])"

"pcm;:"

Metagroup 10: testing C1/T2 vs C1/T4 vs C2/T1 (provides only T2 vs T4)

C1/T2 xyz[\x5b-\x5f]

C1/T4 xyz[\0133-\0140]

C2/T1 xyz[_\[\]‘\^\\]

"xyz_1"

"yzx’3"

"xyzyx"

"xyz\133"

"xyz139"

C1/T2 t[\x3a-\x3b]+p

C1/T4 t[\072-\073]+p

C2/T1 t[:;]+p

"t;;p"

"t}p"

"t\73p"

"t:;:p"

"t::;:"

127

Table D.1 Average Unsure Responses Per Pattern By Node (fewer unsures are lower)
Node Number of Patterns Unsure Responses Per Pattern

T4 4 8.5
T2 2 5.5
T3 3 2.7
T1 3 2.7
D2 2 2.5
C3 2 2
C5 4 2
D1 2 2
C4 9 1.9
S1 3 1.7
S2 3 1.7
L2 3 1.3
C1 8 1
C2 5 1
D3 2 1
L3 3 0.7

Unsure results

Participants were able to select unsure when they were not sure if a string would be

matched by a regex (Figure 4.8). From a comprehension perspective, this indicates some

level of confusion and is worth exploring.

Unsure results. For each regex, the number of responses containing at least one

unsure was observed, representing confusion when attempting to answer matching ques-

tions for that regex. The regexes were then grouped into their representation nodes and

an average number of unsures was computed per regex. For example, four regexes be-

longed to C5 and the number of unsures for those regexes was: 2,3,3 and 0 so the average

number of unsures for C5 was 2. A higher number of unsures may indicate difficulty in

comprehending a regex from that node. Overall, the highest number of unsure responses

came from T4 and T2, which present octal and hex representations of characters. The

least number of unsure responses were in L3 and D3, which are both shown to be under-

standable by looking at E2 and E3 in Table 4.13. These nodes and their average number

128

of unsure responses are organized in Table D.1. These results strongly corroborate the

refactorings suggested by the understandability analysis for both the LIT group (i.e.,

−−−→
T4T1) and the DBB group (i.e.,

−−−→
D2D3) because both refactorings go from nodes with

more unsures to nodes with fewer unsures (T4 has 8.5 whereas T1 has 2.7, and D2 has

2.5 whereas D3 has 1). The one regex from T4 that had the most unsures of any regex

(i.e., 10 out of 30) was xyz[\0133-\0140] . The regex with the lowest composition

score (7 out of 30) and matching score (0.54) was ([\0175\0173]) , which only had 6

unsures.

Mapping edge indices to regex pairings

The mapping from edge index to pairs of regexes used in computing matching and

composition scores for Table 4.13 is provided here:

E1: T1 – T4

T1 ([}{])

T4 ([\0175\0173])

T1 ([:;])

T4 ([\072\073])

E2: D2 vs D3

D2 ((q4f)?ab)

D3 (q4fab|ab)

D2 (deedo(do)?)

D3 (deedo|deedodo)

E3: C2 – C5

C2 tri[abcdef]3

C2 no[wxyz]5

C2 ([}{])

C2 ([:;])

C5 tri(a|b|c|d|e|f)3

C5 no(w|x|y|z)5

C5 (\{|\})

C5 (:|;)

129

E4: C2 – C4

C2 [\t\r\f\n]

C4 [\s]

E5: L2 – L3

L2 zaa*

L3 za+

L2 RR*

L3 R+

E6: D1 vs D2

D1 ((q4f){0,1}ab)

D2 ((q4f)?ab)

D1 (dee(do){1,2})

D2 (deedo(do)?)

E7: C1 – C2

C1 tri[a-f]3

C2 tri[abcdef]3

C1 no[w-z]5

C2 no[wxyz]5

E8: T2 – T4

T2 xyz[\x5b-\x5f]

T4 xyz[\0133-\0140]

T2 t[\x3a-\x3b]+p

T4 t[\072-\073]+p

E9: C1 – C5

C1 tri[a-f]3

C5 tri(a|b|c|d|e|f)3

C1 no[w-z]5

C5 no(w|x|y|z)5

E10: T1 – T3

130

T1 (\$\{)\d+(:[^}]+\})

T3 ([$][{])\d+(:[^}]+[}])

T1 t\.\$+\d+*

T3 t[.][$]+\d+[*]

T1 \{\$(\d+\.\d)\}

T3 [{][$](\d+[.]\d)[}]

E11: D1 vs D3

D1 ((q4f){0,1}ab)

D3 (q4fab|ab)

D1 (dee(do){1,2})

D3 (deedo|deedodo)

E12: C1 – C4

C1 ([0-9]+)\.([0-9]+)

C1 xg1([0-9]{1,3})%

C1 [a-f]([0-9]+)[a-f]

C1 &([A-Za-z0-9_]+);

C1 1q[A-Za-z0-9_][A-Za-z0-9_]

C1 tuv[A-Za-z0-9_]

C4 (\d+)\.(\d+)

C4 xg1(\d{1,3})%

C4 [a-f](\d+)[a-f]

C4 &(\w+);

C4 1q\w\w

C4 tuv\w

E13: C3 – C4

C3 [^0-9A-Za-z]

C4 [\W_]

C3 [^0-9]

C4 [\D]

E14: S1 – S2

S1 %([0-9A-Fa-f]{2})

S2 %([0-9a-fA-F][0-9a-fA-F])

S1 &d([aeiou]{2})z

S2 &d([aeiou][aeiou])z

S1 fa[lmnop]{3}

S2 fa[lmnop][lmnop][lmnop]

131

Qualifying Test

Figure D.1 The qualification test taken to participate in the regex understandability
study. Four out of five questions must be answered correctly.

132

Template

Demographic Info

What is your gender?

Male

Female

Prefer not to say

What is your age?

Which of the following best describes your highest achieved education level?

- select one -

Do you have programming experience such as work experience or a degree in IT, computer science, or a related field?

Yes

No

Prior to completing this HIT, how familiar are you with regular expressions?

- select one -

How many regular expressions do you compose per year?

How many regular expressions (not written by you) do you read per year?

In what context do you usually read regular expressions?

Instructions

This project has 10 subtasks, each with 6 questions labeled A-F.

For each subtask, you are presented with one regular expression (regex) pattern and 5 strings.
For each of the 5 strings, indicate whether any substring (including the entire string) matches the given pattern. The entire string does not
have to match, for example if you are given the simple regex 'ab+c', the string 'xyzabbc' will match (you should select 'yes') because the
substring 'abbc' matches, even though the given string starts with 'xyz'. But the string 'xyzac' will not match (you should select 'no'),
because no substring can be found that matches the pattern. This is true because the regex 'ab+c' requires at least one 'b' character
between a and c.

If you are unsure, you can select 'Unsure', but make a good-faith effort.

After entering your answer for each string, please compose a string of your own which contains a substring that matches the given regex
pattern (part F). This string must be different from the five provided strings for the regex. Accuracy on this part, or near accuracy, is
required for payment.

Regexes are shown 'raw', that is with backslashes unescaped. For example, in practice, you may need to escape the backslash used in a
regex by writing '\\d', but we will show this as '\d'.

Both regexes and strings are surrounded by single-quotes for clarity. These outermost single quotes are never part of the regex or string

Please do not use any tools or write programs to inform your answers - only use what you know about regexes. Please try to spend no more
than 1 minute on any subtask.

At the end of the project there is a brief survey, which also must be completed for payment.

Subtask 1. Regex Pattern: ${ST1_regex}

1.F Compose your own string that contains a match:

Subtask 2. Regex Pattern: ${ST2_regex}

2.F Compose your own string that contains a match:

Subtask 3. Regex Pattern: ${ST3_regex}

3.F Compose your own string that contains a match:

Subtask 4. Regex Pattern: ${ST4_regex}

4.F Compose your own string that contains a match:

Subtask 5. Regex Pattern: ${ST5_regex}

5.F Compose your own string that contains a match:

Subtask 6. Regex Pattern: ${ST6_regex}

6.F Compose your own string that contains a match:

Subtask 7. Regex Pattern: ${ST7_regex}

7.F Compose your own string that contains a match:

Subtask 8. Regex Pattern: ${ST8_regex}

8.F Compose your own string that contains a match:

Subtask 9. Regex Pattern: ${ST9_regex}

9.F Compose your own string that contains a match:

Subtask 10. Regex Pattern: ${ST10_regex}

10.F Compose your own string that contains a match:

1.A ${ST1A} matches
not a
match

unsure

1.B ${ST1B} matches
not a
match

unsure

1.C ${ST1C} matches
not a
match

unsure

1.D ${ST1D} matches
not a
match

unsure

1.E ${ST1E} matches
not a
match

unsure

2.A ${ST2A} matches
not a
match

unsure

2.B ${ST2B} matches
not a
match

unsure

2.C ${ST2C} matches
not a
match

unsure

2.D ${ST2D} matches
not a
match

unsure

2.E ${ST2E} matches
not a
match

unsure

3.A ${ST3A} matches
not a
match

unsure

3.B ${ST3B} matches
not a
match

unsure

3.C ${ST3C} matches
not a
match

unsure

3.D ${ST3D} matches
not a
match

unsure

3.E ${ST3E} matches
not a
match

unsure

4.A ${ST4A} matches
not a
match

unsure

4.B ${ST4B} matches
not a
match

unsure

4.C ${ST4C} matches
not a
match

unsure

4.D ${ST4D} matches
not a
match

unsure

4.E ${ST4E} matches
not a
match

unsure

5.A ${ST5A} matches
not a
match

unsure

5.B ${ST5B} matches
not a
match

unsure

5.C ${ST5C} matches
not a
match

unsure

5.D ${ST5D} matches
not a
match

unsure

5.E ${ST5E} matches
not a
match

unsure

6.A ${ST6A} matches
not a
match

unsure

6.B ${ST6B} matches
not a
match

unsure

6.C ${ST6C} matches
not a
match

unsure

6.D ${ST6D} matches
not a
match

unsure

6.E ${ST6E} matches
not a
match

unsure

7.A ${ST7A} matches
not a
match

unsure

7.B ${ST7B} matches
not a
match

unsure

7.C ${ST7C} matches
not a
match

unsure

7.D ${ST7D} matches
not a
match

unsure

7.E ${ST7E} matches
not a
match

unsure

8.A ${ST8A} matches
not a
match

unsure

8.B ${ST8B} matches
not a
match

unsure

8.C ${ST8C} matches
not a
match

unsure

8.D ${ST8D} matches
not a
match

unsure

8.E ${ST8E} matches
not a
match

unsure

9.A ${ST9A} matches
not a
match

unsure

9.B ${ST9B} matches
not a
match

unsure

9.C ${ST9C} matches
not a
match

unsure

9.D ${ST9D} matches
not a
match

unsure

9.E ${ST9E} matches
not a
match

unsure

10.A ${ST10A} matches
not a
match

unsure

10.B ${ST10B} matches
not a
match

unsure

10.C ${ST10C} matches
not a
match

unsure

10.D ${ST10D} matches
not a
match

unsure

10.E ${ST10E} matches
not a
match

unsure

Page 1 / 4

Figure D.2 Template for one HIT(page 1 of 4). Red values like ${ST1 regex} are pop-
ulated with regexes, and black values like ${ST1A} are populated with
matching strings.

133

Demographic Info

What is your gender?

Male

Female

Prefer not to say

What is your age?

Which of the following best describes your highest achieved education level?

- select one -

Do you have programming experience such as work experience or a degree in IT, computer science, or a related field?

Yes

No

Prior to completing this HIT, how familiar are you with regular expressions?

- select one -

How many regular expressions do you compose per year?

How many regular expressions (not written by you) do you read per year?

In what context do you usually read regular expressions?

Instructions

This project has 10 subtasks, each with 6 questions labeled A-F.

For each subtask, you are presented with one regular expression (regex) pattern and 5 strings.
For each of the 5 strings, indicate whether any substring (including the entire string) matches the given pattern. The entire string does not
have to match, for example if you are given the simple regex 'ab+c', the string 'xyzabbc' will match (you should select 'yes') because the
substring 'abbc' matches, even though the given string starts with 'xyz'. But the string 'xyzac' will not match (you should select 'no'),
because no substring can be found that matches the pattern. This is true because the regex 'ab+c' requires at least one 'b' character
between a and c.

If you are unsure, you can select 'Unsure', but make a good-faith effort.

After entering your answer for each string, please compose a string of your own which contains a substring that matches the given regex
pattern (part F). This string must be different from the five provided strings for the regex. Accuracy on this part, or near accuracy, is
required for payment.

Regexes are shown 'raw', that is with backslashes unescaped. For example, in practice, you may need to escape the backslash used in a
regex by writing '\\d', but we will show this as '\d'.

Both regexes and strings are surrounded by single-quotes for clarity. These outermost single quotes are never part of the regex or string

Please do not use any tools or write programs to inform your answers - only use what you know about regexes. Please try to spend no more
than 1 minute on any subtask.

At the end of the project there is a brief survey, which also must be completed for payment.

Subtask 1. Regex Pattern: ${ST1_regex}

1.F Compose your own string that contains a match:

Subtask 2. Regex Pattern: ${ST2_regex}

2.F Compose your own string that contains a match:

Subtask 3. Regex Pattern: ${ST3_regex}

3.F Compose your own string that contains a match:

Subtask 4. Regex Pattern: ${ST4_regex}

4.F Compose your own string that contains a match:

Subtask 5. Regex Pattern: ${ST5_regex}

5.F Compose your own string that contains a match:

Subtask 6. Regex Pattern: ${ST6_regex}

6.F Compose your own string that contains a match:

Subtask 7. Regex Pattern: ${ST7_regex}

7.F Compose your own string that contains a match:

Subtask 8. Regex Pattern: ${ST8_regex}

8.F Compose your own string that contains a match:

Subtask 9. Regex Pattern: ${ST9_regex}

9.F Compose your own string that contains a match:

Subtask 10. Regex Pattern: ${ST10_regex}

10.F Compose your own string that contains a match:

1.A ${ST1A} matches
not a
match

unsure

1.B ${ST1B} matches
not a
match

unsure

1.C ${ST1C} matches
not a
match

unsure

1.D ${ST1D} matches
not a
match

unsure

1.E ${ST1E} matches
not a
match

unsure

2.A ${ST2A} matches
not a
match

unsure

2.B ${ST2B} matches
not a
match

unsure

2.C ${ST2C} matches
not a
match

unsure

2.D ${ST2D} matches
not a
match

unsure

2.E ${ST2E} matches
not a
match

unsure

3.A ${ST3A} matches
not a
match

unsure

3.B ${ST3B} matches
not a
match

unsure

3.C ${ST3C} matches
not a
match

unsure

3.D ${ST3D} matches
not a
match

unsure

3.E ${ST3E} matches
not a
match

unsure

4.A ${ST4A} matches
not a
match

unsure

4.B ${ST4B} matches
not a
match

unsure

4.C ${ST4C} matches
not a
match

unsure

4.D ${ST4D} matches
not a
match

unsure

4.E ${ST4E} matches
not a
match

unsure

5.A ${ST5A} matches
not a
match

unsure

5.B ${ST5B} matches
not a
match

unsure

5.C ${ST5C} matches
not a
match

unsure

5.D ${ST5D} matches
not a
match

unsure

5.E ${ST5E} matches
not a
match

unsure

6.A ${ST6A} matches
not a
match

unsure

6.B ${ST6B} matches
not a
match

unsure

6.C ${ST6C} matches
not a
match

unsure

6.D ${ST6D} matches
not a
match

unsure

6.E ${ST6E} matches
not a
match

unsure

7.A ${ST7A} matches
not a
match

unsure

7.B ${ST7B} matches
not a
match

unsure

7.C ${ST7C} matches
not a
match

unsure

7.D ${ST7D} matches
not a
match

unsure

7.E ${ST7E} matches
not a
match

unsure

8.A ${ST8A} matches
not a
match

unsure

8.B ${ST8B} matches
not a
match

unsure

8.C ${ST8C} matches
not a
match

unsure

8.D ${ST8D} matches
not a
match

unsure

8.E ${ST8E} matches
not a
match

unsure

9.A ${ST9A} matches
not a
match

unsure

9.B ${ST9B} matches
not a
match

unsure

9.C ${ST9C} matches
not a
match

unsure

9.D ${ST9D} matches
not a
match

unsure

9.E ${ST9E} matches
not a
match

unsure

10.A ${ST10A} matches
not a
match

unsure

10.B ${ST10B} matches
not a
match

unsure

10.C ${ST10C} matches
not a
match

unsure

10.D ${ST10D} matches
not a
match

unsure

10.E ${ST10E} matches
not a
match

unsure

Page 2 / 4

Figure D.3 Template for one HIT (page 2 of 4). Red values like ${ST1 regex} are
populated with regexes, and black values like ${ST1A} are populated with
matching strings.

134

Demographic Info

What is your gender?

Male

Female

Prefer not to say

What is your age?

Which of the following best describes your highest achieved education level?

- select one -

Do you have programming experience such as work experience or a degree in IT, computer science, or a related field?

Yes

No

Prior to completing this HIT, how familiar are you with regular expressions?

- select one -

How many regular expressions do you compose per year?

How many regular expressions (not written by you) do you read per year?

In what context do you usually read regular expressions?

Instructions

This project has 10 subtasks, each with 6 questions labeled A-F.

For each subtask, you are presented with one regular expression (regex) pattern and 5 strings.
For each of the 5 strings, indicate whether any substring (including the entire string) matches the given pattern. The entire string does not
have to match, for example if you are given the simple regex 'ab+c', the string 'xyzabbc' will match (you should select 'yes') because the
substring 'abbc' matches, even though the given string starts with 'xyz'. But the string 'xyzac' will not match (you should select 'no'),
because no substring can be found that matches the pattern. This is true because the regex 'ab+c' requires at least one 'b' character
between a and c.

If you are unsure, you can select 'Unsure', but make a good-faith effort.

After entering your answer for each string, please compose a string of your own which contains a substring that matches the given regex
pattern (part F). This string must be different from the five provided strings for the regex. Accuracy on this part, or near accuracy, is
required for payment.

Regexes are shown 'raw', that is with backslashes unescaped. For example, in practice, you may need to escape the backslash used in a
regex by writing '\\d', but we will show this as '\d'.

Both regexes and strings are surrounded by single-quotes for clarity. These outermost single quotes are never part of the regex or string

Please do not use any tools or write programs to inform your answers - only use what you know about regexes. Please try to spend no more
than 1 minute on any subtask.

At the end of the project there is a brief survey, which also must be completed for payment.

Subtask 1. Regex Pattern: ${ST1_regex}

1.F Compose your own string that contains a match:

Subtask 2. Regex Pattern: ${ST2_regex}

2.F Compose your own string that contains a match:

Subtask 3. Regex Pattern: ${ST3_regex}

3.F Compose your own string that contains a match:

Subtask 4. Regex Pattern: ${ST4_regex}

4.F Compose your own string that contains a match:

Subtask 5. Regex Pattern: ${ST5_regex}

5.F Compose your own string that contains a match:

Subtask 6. Regex Pattern: ${ST6_regex}

6.F Compose your own string that contains a match:

Subtask 7. Regex Pattern: ${ST7_regex}

7.F Compose your own string that contains a match:

Subtask 8. Regex Pattern: ${ST8_regex}

8.F Compose your own string that contains a match:

Subtask 9. Regex Pattern: ${ST9_regex}

9.F Compose your own string that contains a match:

Subtask 10. Regex Pattern: ${ST10_regex}

10.F Compose your own string that contains a match:

1.A ${ST1A} matches
not a
match

unsure

1.B ${ST1B} matches
not a
match

unsure

1.C ${ST1C} matches
not a
match

unsure

1.D ${ST1D} matches
not a
match

unsure

1.E ${ST1E} matches
not a
match

unsure

2.A ${ST2A} matches
not a
match

unsure

2.B ${ST2B} matches
not a
match

unsure

2.C ${ST2C} matches
not a
match

unsure

2.D ${ST2D} matches
not a
match

unsure

2.E ${ST2E} matches
not a
match

unsure

3.A ${ST3A} matches
not a
match

unsure

3.B ${ST3B} matches
not a
match

unsure

3.C ${ST3C} matches
not a
match

unsure

3.D ${ST3D} matches
not a
match

unsure

3.E ${ST3E} matches
not a
match

unsure

4.A ${ST4A} matches
not a
match

unsure

4.B ${ST4B} matches
not a
match

unsure

4.C ${ST4C} matches
not a
match

unsure

4.D ${ST4D} matches
not a
match

unsure

4.E ${ST4E} matches
not a
match

unsure

5.A ${ST5A} matches
not a
match

unsure

5.B ${ST5B} matches
not a
match

unsure

5.C ${ST5C} matches
not a
match

unsure

5.D ${ST5D} matches
not a
match

unsure

5.E ${ST5E} matches
not a
match

unsure

6.A ${ST6A} matches
not a
match

unsure

6.B ${ST6B} matches
not a
match

unsure

6.C ${ST6C} matches
not a
match

unsure

6.D ${ST6D} matches
not a
match

unsure

6.E ${ST6E} matches
not a
match

unsure

7.A ${ST7A} matches
not a
match

unsure

7.B ${ST7B} matches
not a
match

unsure

7.C ${ST7C} matches
not a
match

unsure

7.D ${ST7D} matches
not a
match

unsure

7.E ${ST7E} matches
not a
match

unsure

8.A ${ST8A} matches
not a
match

unsure

8.B ${ST8B} matches
not a
match

unsure

8.C ${ST8C} matches
not a
match

unsure

8.D ${ST8D} matches
not a
match

unsure

8.E ${ST8E} matches
not a
match

unsure

9.A ${ST9A} matches
not a
match

unsure

9.B ${ST9B} matches
not a
match

unsure

9.C ${ST9C} matches
not a
match

unsure

9.D ${ST9D} matches
not a
match

unsure

9.E ${ST9E} matches
not a
match

unsure

10.A ${ST10A} matches
not a
match

unsure

10.B ${ST10B} matches
not a
match

unsure

10.C ${ST10C} matches
not a
match

unsure

10.D ${ST10D} matches
not a
match

unsure

10.E ${ST10E} matches
not a
match

unsure

Page 3 / 4

Figure D.4 Template for one HIT (page 3 of 4).. Red values like ${ST1 regex} are
populated with regexes, and black values like ${ST1A} are populated with
matching strings.

135

Demographic Info

What is your gender?

Male

Female

Prefer not to say

What is your age?

Which of the following best describes your highest achieved education level?

- select one -

Do you have programming experience such as work experience or a degree in IT, computer science, or a related field?

Yes

No

Prior to completing this HIT, how familiar are you with regular expressions?

- select one -

How many regular expressions do you compose per year?

How many regular expressions (not written by you) do you read per year?

In what context do you usually read regular expressions?

Instructions

This project has 10 subtasks, each with 6 questions labeled A-F.

For each subtask, you are presented with one regular expression (regex) pattern and 5 strings.
For each of the 5 strings, indicate whether any substring (including the entire string) matches the given pattern. The entire string does not
have to match, for example if you are given the simple regex 'ab+c', the string 'xyzabbc' will match (you should select 'yes') because the
substring 'abbc' matches, even though the given string starts with 'xyz'. But the string 'xyzac' will not match (you should select 'no'),
because no substring can be found that matches the pattern. This is true because the regex 'ab+c' requires at least one 'b' character
between a and c.

If you are unsure, you can select 'Unsure', but make a good-faith effort.

After entering your answer for each string, please compose a string of your own which contains a substring that matches the given regex
pattern (part F). This string must be different from the five provided strings for the regex. Accuracy on this part, or near accuracy, is
required for payment.

Regexes are shown 'raw', that is with backslashes unescaped. For example, in practice, you may need to escape the backslash used in a
regex by writing '\\d', but we will show this as '\d'.

Both regexes and strings are surrounded by single-quotes for clarity. These outermost single quotes are never part of the regex or string

Please do not use any tools or write programs to inform your answers - only use what you know about regexes. Please try to spend no more
than 1 minute on any subtask.

At the end of the project there is a brief survey, which also must be completed for payment.

Subtask 1. Regex Pattern: ${ST1_regex}

1.F Compose your own string that contains a match:

Subtask 2. Regex Pattern: ${ST2_regex}

2.F Compose your own string that contains a match:

Subtask 3. Regex Pattern: ${ST3_regex}

3.F Compose your own string that contains a match:

Subtask 4. Regex Pattern: ${ST4_regex}

4.F Compose your own string that contains a match:

Subtask 5. Regex Pattern: ${ST5_regex}

5.F Compose your own string that contains a match:

Subtask 6. Regex Pattern: ${ST6_regex}

6.F Compose your own string that contains a match:

Subtask 7. Regex Pattern: ${ST7_regex}

7.F Compose your own string that contains a match:

Subtask 8. Regex Pattern: ${ST8_regex}

8.F Compose your own string that contains a match:

Subtask 9. Regex Pattern: ${ST9_regex}

9.F Compose your own string that contains a match:

Subtask 10. Regex Pattern: ${ST10_regex}

10.F Compose your own string that contains a match:

1.A ${ST1A} matches
not a
match

unsure

1.B ${ST1B} matches
not a
match

unsure

1.C ${ST1C} matches
not a
match

unsure

1.D ${ST1D} matches
not a
match

unsure

1.E ${ST1E} matches
not a
match

unsure

2.A ${ST2A} matches
not a
match

unsure

2.B ${ST2B} matches
not a
match

unsure

2.C ${ST2C} matches
not a
match

unsure

2.D ${ST2D} matches
not a
match

unsure

2.E ${ST2E} matches
not a
match

unsure

3.A ${ST3A} matches
not a
match

unsure

3.B ${ST3B} matches
not a
match

unsure

3.C ${ST3C} matches
not a
match

unsure

3.D ${ST3D} matches
not a
match

unsure

3.E ${ST3E} matches
not a
match

unsure

4.A ${ST4A} matches
not a
match

unsure

4.B ${ST4B} matches
not a
match

unsure

4.C ${ST4C} matches
not a
match

unsure

4.D ${ST4D} matches
not a
match

unsure

4.E ${ST4E} matches
not a
match

unsure

5.A ${ST5A} matches
not a
match

unsure

5.B ${ST5B} matches
not a
match

unsure

5.C ${ST5C} matches
not a
match

unsure

5.D ${ST5D} matches
not a
match

unsure

5.E ${ST5E} matches
not a
match

unsure

6.A ${ST6A} matches
not a
match

unsure

6.B ${ST6B} matches
not a
match

unsure

6.C ${ST6C} matches
not a
match

unsure

6.D ${ST6D} matches
not a
match

unsure

6.E ${ST6E} matches
not a
match

unsure

7.A ${ST7A} matches
not a
match

unsure

7.B ${ST7B} matches
not a
match

unsure

7.C ${ST7C} matches
not a
match

unsure

7.D ${ST7D} matches
not a
match

unsure

7.E ${ST7E} matches
not a
match

unsure

8.A ${ST8A} matches
not a
match

unsure

8.B ${ST8B} matches
not a
match

unsure

8.C ${ST8C} matches
not a
match

unsure

8.D ${ST8D} matches
not a
match

unsure

8.E ${ST8E} matches
not a
match

unsure

9.A ${ST9A} matches
not a
match

unsure

9.B ${ST9B} matches
not a
match

unsure

9.C ${ST9C} matches
not a
match

unsure

9.D ${ST9D} matches
not a
match

unsure

9.E ${ST9E} matches
not a
match

unsure

10.A ${ST10A} matches
not a
match

unsure

10.B ${ST10B} matches
not a
match

unsure

10.C ${ST10C} matches
not a
match

unsure

10.D ${ST10D} matches
not a
match

unsure

10.E ${ST10E} matches
not a
match

unsure

Page 4 / 4

Figure D.5 Template for one HIT (page 4 of 4).. Red values like ${ST1 regex} are
populated with regexes, and black values like ${ST1A} are populated with
matching strings.

136

IRB Approval Form for Mechanical Turk Participants

Figure D.6 IRB Approval page for the Mechanical Turk Participants

137

BIBLIOGRAPHY

(1994). IEEE Std 1003.2-1992/INT. IEEE.

(2001). Perl timeline.

(2003). Oracle Database SQL Reference. Oracle.

(2004). sed, a stream editor. Free Software Foundation, Inc.

(2009). REGEX(7) Linux Programmer’s Manual. man7.org.

(2015). git(1) Manual Page. kernel.org.

(2015). GNU Grep 2.24 Manual. Free Software Foundation, Inc.

(2015). Perl history.

(2015). regex - henry spencer’s regular expression libraries.

(2016). CRONTAB(5) Manual Page. man7.org.

(2016). FIND(1) Manual Page. man7.org.

(2016). The MongoDB 3.2 Manual. MongoDB, Inc.

(2016). MySQL 5.7 Reference Manual. MySQL.

(2016). Perl 5.10 release notes.

(2016). PostgreSQL 9.5.2 Documentation. The PostgreSQL Global Development Group.

138

(2016). Regexbuddy.

Abbes, M., Khomh, F., Gueheneuc, Y.-G., and Antoniol, G. (2011). An empirical study

of the impact of two antipatterns, blob and spaghetti code, on program comprehension.

In Software Maintenance and Reengineering (CSMR), 2011 15th European Conference

on, pages 181–190. IEEE.

Aho, A. V. and Corasick, M. J. (1975). Efficient string matching: An aid to bibliographic

search. Commun. ACM, 18(6):333–340.

Alkhateeb, F., Baget, J.-F., and Euzenat, J. (2009). Extending sparql with regular

expression patterns (for querying rdf). Web Semant., 7(2):57–73.

Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B., Grieskamp, W., Harman,

M., Harrold, M. J., and Mcminn, P. (2013). An orchestrated survey of methodologies

for automated software test case generation. J. Syst. Softw., 86(8):1978–2001.

Arslan, A. (2005). Multiple sequence alignment containing a sequence of regular expres-

sions. In Computational Intelligence in Bioinformatics and Computational Biology,

2005. CIBCB ’05. Proceedings of the 2005 IEEE Symposium on, pages 1–7.

at Bell Labs, T. K. L. (1971). Text matching algorithm, u. s. patent 3568156. patent.

Babbar, R. and Singh, N. (2010). Clustering based approach to learning regular ex-

pressions over large alphabet for noisy unstructured text. In Proceedings of the Fourth

Workshop on Analytics for Noisy Unstructured Text Data, AND ’10, pages 43–50, New

York, NY, USA. ACM.

Baeza-Yates, R. A. and Gonnet, G. H. (1996). Fast text searching for regular expressions

or automaton searching on tries. J. ACM, 43(6):915–936.

Balaban, I., Tip, F., and Fuhrer, R. (2005). Refactoring support for class library migra-

tion. SIGPLAN Not., 40(10):265–279.

139

Beck, F., Gulan, S., Biegel, B., Baltes, S., and Weiskopf, D. (2014). Regviz: Visual

debugging of regular expressions. In Companion Proceedings of the 36th International

Conference on Software Engineering, ICSE Companion 2014, pages 504–507, New

York, NY, USA. ACM.

Begel, A., Khoo, Y. P., and Zimmermann, T. (2010). Codebook: Discovering and ex-

ploiting relationships in software repositories. In Proceedings of the 32Nd ACM/IEEE

International Conference on Software Engineering - Volume 1, ICSE ’10, pages 125–

134, New York, NY, USA. ACM.

Callaú, O., Robbes, R., Tanter, E., and Röthlisberger, D. (2011). How developers use the

dynamic features of programming languages: The case of smalltalk. In Proceedings of

the 8th Working Conference on Mining Software Repositories, MSR ’11, pages 23–32,

New York, NY, USA. ACM.

Callaú, O., Robbes, R., Tanter, E., and Röthlisberger, D. (2013). How (and why)

developers use the dynamic features of programming languages: The case of smalltalk.

Empirical Software Engineering, 18(6):1156–1194.

Chamberlin, D. D. and Boyce, R. F. (1974). Sequel: A structured english query lan-

guage. In Proceedings of the 1974 ACM SIGFIDET (Now SIGMOD) Workshop on

Data Description, Access and Control, SIGFIDET ’74, pages 249–264, New York, NY,

USA. ACM.

Chen, T.-H., Nagappan, M., Shihab, E., and Hassan, A. E. (2014). An empirical study

of dormant bugs. In Proceedings of the 11th Working Conference on Mining Software

Repositories, MSR 2014, pages 82–91, New York, NY, USA. ACM.

Dattero, R. and Galup, S. D. (2004). Programming languages and gender. Commun.

ACM, 47(1):99–102.

140

Du Bois, B., Demeyer, S., Verelst, J., Mens, T., and Temmerman, M. (2006). Does

god class decomposition affect comprehensibility? In IASTED Conf. on Software

Engineering, pages 346–355.

Dyer, R., Rajan, H., Nguyen, H. A., and Nguyen, T. N. (2014). Mining billions of ast

nodes to study actual and potential usage of java language features. In Proceedings of

the 36th International Conference on Software Engineering, ICSE 2014, pages 779–790,

New York, NY, USA. ACM.

Fowler, M. (1999). Refactoring: improving the design of existing code. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA.

Friedl, J. (2006). Mastering Regular Expressions. O’Reilly Media, Inc.

Galler, S. J. and Aichernig, B. K. (2014). Survey on test data generation tools. Int. J.

Softw. Tools Technol. Transf., 16(6):727–751.

Ghosh, I., Shafiei, N., Li, G., and Chiang, W.-F. (2013). Jst: An automatic test gen-

eration tool for industrial java applications with strings. In Proceedings of the 2013

International Conference on Software Engineering, ICSE ’13, pages 992–1001, Piscat-

away, NJ, USA. IEEE Press.

Grechanik, M., McMillan, C., DeFerrari, L., Comi, M., Crespi, S., Poshyvanyk, D., Fu,

C., Xie, Q., and Ghezzi, C. (2010). An empirical investigation into a large-scale java

open source code repository. In Proceedings of the 2010 ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement, ESEM ’10, pages

11:1–11:10, New York, NY, USA. ACM.

Griswold, W. G. and Notkin, D. (1993). Automated assistance for program restructuring.

ACM Trans. Softw. Eng. Methodol., 2(3):228–269.

141

Hermans, Felienne; Aivaloglou, E. (2016). Do code smells hamper novice programming?

under review, TUD-SERG-2016-006.

Hermans, F., Pinzger, M., and van Deursen, A. (2012). Detecting code smells in spread-

sheet formulas. In Proc. of ICSM ’12, pages 409–418.

Hermans, F., Pinzger, M., and van Deursen, A. (2014). Detecting and refactoring code

smells in spreadsheet formulas. Empirical Software Engineering, pages 1–27.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2006). Introduction to Automata The-

ory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley Publishing Company.

Hume, A. (1988). A tale of two greps. Softw. Pract. Exper., 18(11):1063–1072.

Johnson, S. C. (2006). Yacc: Yet Another Compiler-Compiler. AT&T Bell Laboratories.

Ke, Y., Stolee, K. T., Le Goues, C., and Brun, Y. (2015). Repairing Programs with Se-

mantic Code Search. In Proceedings of the 30th IEEE/ACM International Conference

on Automated Software Engineering (ASE), pages 295–306, Lincoln, NE, USA. DOI:

10.1109/ASE.2015.60.

Kiezun, A., Ganesh, V., Artzi, S., Guo, P. J., Hooimeijer, P., and Ernst, M. D. (2013).

Hampi: A solver for word equations over strings, regular expressions, and context-free

grammars. ACM Trans. Softw. Eng. Methodol., 21(4):25:1–25:28.

Kirrage, J., Rathnayake, A., and Thielecke, H. (2013a). Network and System Security:

7th International Conference, NSS 2013, Madrid, Spain, June 3-4, 2013. Proceedings,

chapter Static Analysis for Regular Expression Denial-of-Service Attacks, pages 135–

148. Springer Berlin Heidelberg, Berlin, Heidelberg.

http://people.cs.umass.edu/brun/pubs/pubs/Ke15ase.pdf
http://people.cs.umass.edu/brun/pubs/pubs/Ke15ase.pdf
http://dx.doi.org/10.1109/ASE.2015.60
http://dx.doi.org/10.1109/ASE.2015.60

142

Kirrage, J., Rathnayake, A., and Thielecke, H. (2013b). Static analysis for regular

expression denial-of-service attacks. CoRR, abs/1301.0849.

Kitchen, A., Ehret, C., Assefa, S., and Mulligan, C. J. (2009). Bayesian phyloge-

netic analysis of semitic languages identifies an early bronze age origin of semitic

in the near east. Proceedings of the Royal Society of London B: Biological Sciences,

276(1668):2703–2710.

Kleene, S. C. (1951). Representation of events in nerve nets and finite automata. Tech-

nical Report RM-704, RAND Corporation, Santa Monica, CA.

Kleene, S. C. (1956). Representation of events in nerve nets and finite automata. Au-

tomata Studies.

Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., and Turner, J. (2006). Algorithms

to accelerate multiple regular expressions matching for deep packet inspection. SIG-

COMM Comput. Commun. Rev., 36(4):339–350.

Le Goues, C., Nguyen, T., Forrest, S., and Weimer, W. (2012). GenProg: A

generic method for automated software repair. Transactions on Software Engineer-

ing, 38(1):54–72.

Lee, J., Pham, M.-D., Lee, J., Han, W.-S., Cho, H., Yu, H., and Lee, J.-H. (2010).

Processing sparql queries with regular expressions in rdf databases. In Proceedings

of the ACM Fourth International Workshop on Data and Text Mining in Biomedical

Informatics, DTMBIO ’10, pages 23–30, New York, NY, USA. ACM.

Lesk, M.E., S. E. (2006). Lex - A Lexical Analyzer Generator.

Li, Y., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., and Jagadish, H. V. (2008).

Regular expression learning for information extraction. In Proceedings of the Confer-

143

ence on Empirical Methods in Natural Language Processing, EMNLP ’08, pages 21–30,

Stroudsburg, PA, USA. Association for Computational Linguistics.

Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Oliveto, R., Di Penta, M., and

Poshyvanyk, D. (2014). Mining energy-greedy api usage patterns in android apps: An

empirical study. In Proceedings of the 11th Working Conference on Mining Software

Repositories, MSR 2014, pages 2–11, New York, NY, USA. ACM.

Livshits, B., Whaley, J., and Lam, M. S. (2005). Reflection analysis for java. In

Proceedings of the Third Asian Conference on Programming Languages and Systems,

APLAS’05, pages 139–160, Berlin, Heidelberg. Springer-Verlag.

McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. Bulletin of Mathematical Biology, 5(4):115–133.

McIlroy, M. D. (1987). A Research UNIX Reader. AT&T Bell Laboratories, Murray Hill,

New Jersey 07974.

Mens, T. and Tourwé, T. (2004). A survey of software refactoring. IEEE Trans. Soft.

Eng., 30(2):126–139.

Meyerovich, L. A. and Rabkin, A. S. (2013). Empirical analysis of programming language

adoption. In Proceedings of the 2013 ACM SIGPLAN International Conference on

Object Oriented Programming Systems Languages & Applications, OOPSLA ’13,

pages 1–18, New York, NY, USA. ACM.

Møller, A. (2010). dk.brics.automaton – finite-state automata and regular expressions

for Java. http://www.brics.dk/automaton/.

network (2015). The Bro Network Security Monitor. https://www.bro.org/.

144

Nguyen, A. T., Nguyen, T. T., and Nguyen, T. N. (2015). Divide-and-conquer approach

for multi-phase statistical migration for source code (t). In Automated Software Engi-

neering (ASE), 2015 30th IEEE/ACM International Conference on, pages 585–596.

Opdyke, W. F. (1992). Refactoring Object-oriented Frameworks. PhD thesis, Champaign,

IL, USA. UMI Order No. GAX93-05645.

Parnin, C., Bird, C., and Murphy-Hill, E. (2013). Adoption and use of java generics.

Empirical Softw. Engg., 18(6):1047–1089.

re2 (2015). RE2. https://github.com/google/re2.

Richards, G., Lebresne, S., Burg, B., and Vitek, J. (2010). An analysis of the dynamic

behavior of javascript programs. SIGPLAN Not., 45(6):1–12.

Ritchie, D. M. and Thompson, K. (1974). The unix time-sharing system. Commun.

ACM, 17(7):365–375.

Sommer, R. and Paxson, V. (2003). Enhancing byte-level network intrusion detection

signatures with context. In Proceedings of the 10th ACM Conference on Computer

and Communications Security, CCS ’03, pages 262–271, New York, NY, USA. ACM.

Soulé, R., Basu, S., Marandi, P. J., Pedone, F., Kleinberg, R., Sirer, E. G., and Foster,

N. (2014). Merlin: A language for provisioning network resources. In Proceedings of

the 10th ACM International on Conference on Emerging Networking Experiments and

Technologies, CoNEXT ’14, pages 213–226, New York, NY, USA. ACM.

Spishak, E., Dietl, W., and Ernst, M. D. (2012). A type system for regular expressions.

In Proceedings of the 14th Workshop on Formal Techniques for Java-like Programs,

FTfJP ’12, pages 20–26, New York, NY, USA. ACM.

Stolee, K. T. and Elbaum, S. (2011). Refactoring pipe-like mashups for end-user pro-

grammers. In International Conference on Software Engineering.

145

Stolee, K. T. and Elbaum, S. (2013). Identification, impact, and refactoring of smells in

pipe-like web mashups. IEEE Trans. Softw. Eng., 39(12):1654–1679.

Thompson, K. (1968). Programming techniques: Regular expression search algorithm.

Commun. ACM, 11(6):419–422.

Tillmann, N., de Halleux, J., and Xie, T. (2014). Transferring an automated test gener-

ation tool to practice: From pex to fakes and code digger. In Proceedings of the 29th

ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,

pages 385–396, New York, NY, USA. ACM.

Trinh, M.-T., Chu, D.-H., and Jaffar, J. (2014). S3: A symbolic string solver for vul-

nerability detection in web applications. In Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security, CCS ’14, pages 1232–1243,

New York, NY, USA. ACM.

van Dongen, S. (2012). MCL manual. micans.org, 12-068 edition.

Veanes, M., Halleux, P. d., and Tillmann, N. (2010). Rex: Symbolic regular expres-

sion explorer. In Proceedings of the 2010 Third International Conference on Software

Testing, Verification and Validation, ICST ’10, pages 498–507, Washington, DC, USA.

IEEE Computer Society.

Weimer, W., Forrest, S., Le Goues, C., and Nguyen, T. (2010). Automatic program repair

with evolutionary computation. Communications of the ACM Research Highlight,

53(5):109–116.

Yeole, A. S. and Meshram, B. B. (2011). Analysis of different technique for detection

of sql injection. In Proceedings of the International Conference & Workshop on

Emerging Trends in Technology, ICWET ’11, pages 963–966, New York, NY, USA.

ACM.

146

Yu, F., Chen, Z., Diao, Y., Lakshman, T. V., and Katz, R. H. (2006). Fast and memory-

efficient regular expression matching for deep packet inspection. In Proceedings of the

2006 ACM/IEEE Symposium on Architecture for Networking and Communications

Systems, ANCS ’06, pages 93–102, New York, NY, USA. ACM.

	2016
	Usage and refactoring studies of python regular expressions
	Carl Allen Chapman
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGEMENTS
	1. OVERVIEW
	1.1 Introduction
	1.1.1 Research questions

	1.2 Contributions
	1.3 Outline
	1.3.1 Sections of this thesis

	2. BACKGROUND
	2.1 Formatting and Feature Acronyms
	2.2 Terminology
	2.2.1 Matching strings defined
	2.2.2 Regex support in language differs

	3. RELATED WORK
	3.1 Milestones in Regular Expression History
	3.1.1 Kleene's theory of regular events
	3.1.2 First regex compiler
	3.1.3 Early regular expressions in Unix
	3.1.4 Maturity of standards

	3.2 Applications of Regex
	3.2.1 End user applications
	3.2.2 Research and industry applications
	3.2.3 Regex composition and analysis tools

	3.3 Similar Research
	3.3.1 Mining for language feature analysis
	3.3.2 Refactoring and smells

	4. STUDIES
	4.1 Usage and Support of Regex Features
	4.1.1 Utilizations of the re module
	4.1.2 Building the corpus
	4.1.3 Analyzing the corpus of regexes
	4.1.4 Frequency of feature usages
	4.1.5 Feature support
	4.1.6 Discussion of feature analysis results

	4.2 Categories of Regex Usage Tasks
	4.2.1 Clustering design
	4.2.2 Clustering implementation
	4.2.3 Categorization of behavioral clusters
	4.2.4 Discussion of cluster categories

	4.3 Regex Refactorings Based on Community Standards
	4.3.1 Counting representations in nodes
	4.3.2 Node counting results
	4.3.3 Discussion of refactorings
	4.3.4 Threats to validity

	4.4 Regex Refactorings Based on Comprehension
	4.4.1 Metrics
	4.4.2 Implementation
	4.4.3 Population characteristics
	4.4.4 Matching and composition comprehension results
	4.4.5 Discussion of comprehension results

	5. DISCUSSION
	5.1 Implications for Programmers
	5.1.1 Refactoring recommendations for programmers

	5.2 Implications for Regex Language Researchers

	6. FUTURE WORK
	6.1 Refactoring Regexes
	6.1.1 Equivalence models
	6.1.2 Identifying Preferred Representations
	6.1.3 Applications for regex refactoring

	6.2 Semantic Search
	6.2.1 Finding a filter set.
	6.2.2 Automated regex repair

	6.3 More Regex Research Opportunities
	6.3.1 Comparison opportunities
	6.3.2 Extending feature analysis
	6.3.3 Taxonomy and formal language studies

	7. CONCLUSION
	A. FEATURE STUDY ARTIFACTS
	B. CLUSTERING STUDY ARTIFACTS
	C. EQUIVALENCE CLASS ARTIFACTS
	D. COMPREHENSION STUDY ARTIFACTS
	BIBLIOGRAPHY

