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ABSTRACT 

In software development, testing often takes more than half the total development 

time (Pan 1999). Test case design and execution of test procedures consume most of the 

testing time. Thus, automatically generating test cases and automatically detecting errors in 

test procedures prior to execution is highly advantageous. This thesis proposes a new 

approach to further automate test case design and the test procedure development process. 

Several open-source products exist to automate test case design, but they have 

limitations including test cases that do not trace back to models; test cases that are not 

reusable for libraries; and limiting test cases to generation on their own test environment. 

This limits their support for the important, new avionics standard, DO-178C (RTCA 2012).  

The first contribution of the thesis is a technique for test code generation that, 

compared to existing products, is faster, provides improved traceability to models, and 

supports reusable test procedures that can be generated on any testing environment.  To 

address the current limitations, the new approach utilizes the Simulink Design Verifier and 

an open-source constraint solver to generate test cases. The technique allows each test case to 

be traced back to an expression and to the original model.  

Detecting errors in manually written test procedures before testing starts is also 

critical to efficient verification. It can save hours or even days if errors are detected in the 

early test procedure design stage.  However, analysis done here of a set of open source code 

analysis tools shows that they cannot detect type and attribute errors effectively.  

The second contribution of the thesis is to develop a static code analyzer for Python 

code that detects bugs that could cause automated test procedures to crash. The analyzer 

converts a Python code to an abstract syntax tree and detects all type and attribute errors by 
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performing a type-flow analysis. This approach provides improved accuracy over existing 

products.  

 Together, these two contributions, a test code generator with improved traceability 

and reusability, and a static code analyzer capable of handling more error types, can improve 

test process compatibility with DO-178C.
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CHAPTER 1.  GENERAL INTRODUCTION 

The motivation for the work described here is to provide better support for the 

testing process required by a new certification standard for aerospace. In a software 

development life cycle, software testing takes more than 50% of the time (Pan 1999). 

Test case design and execution of test procedures consume most of the time in testing. 

Thus, generating test cases and detecting errors in test procedures automatically are 

highly required. In our thesis, we purpose a new approach to further automate test case 

design and the test procedure development process in order to improve test process 

compatibility with the new DO-178C standard. 

The document Software Considerations in Airborne Systems and Equipment 

Certification, also known as DO-178C (RTCA 2012), is a software development and 

verification standard from RTCA (Radio Technical Commission for Aeronautics) and is a 

joint work with EUROCAE (European Organisation for Civil Aviation Equipment). This 

document replaces the previous standard DO-178B and has become the primary 

document used by certification authorities such as the FAA (Federal Aviation 

Administration), the EASA (European Aviation Safety Agency), and Transport Canada 

for approval of all commercial aerospace software systems. DO-178C was completed in 

November, 2011 and approved by the RTCA in December, 2011. It is free for 

downloading by all RTCA members and non-members and can be downloaded by 

anyone for a fee. Certification companies require avionic companies to submit evidence 

that they comply with DO-178C approach before releasing their products to market. 
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Software verification is a crucial part of DO-178C. DO-178C requires normal 

range test cases, robustness test cases, requirement-based test coverage analysis, and 

structural coverage analysis. Existing coverage-based technology does not satisfy the 

needs of the DO-178C standard.  

On the commercial market, there are two main approaches in products for 

generating test cases. One is heuristic based products, such as TestWeaver and Reactis 

system (TestWeaver 2015) (Reactis 2015). They use heuristic-based algorithms to 

generate test cases in order to cover more program branches. This time-consuming 

process not only generates many redundant test cases. In addition, the test cases are not 

traceable to the model in a human-readable format. 

The other type of approach in a commercial product is iterative based product 

such as Simulink Design Verifier (SDV). Simulink Design Verifier iterates every block 

in a Simulink Model and generates test cases. SDV is faster than heuristic based products. 

However, as a proprietary product, the test cases can only be simulated in MATLAB and 

cannot be read by other programs. This is a problem in the avionic industry because the 

DO-178C standard requires running test cases on target platform.  

To better meet the testing criteria in DO-178C, in Chapter 2 we describe software 

we have developed that utilizes both Simulink Design Verifier and a graph-based 

algorithm to generate test cases. We convert a Simulink Model to a dependency graph 

and from such graphs generate an algebraic expression for each output. By utilizing an 

open source constraint solver, test cases are generated by solving the algebraic 

expression. Such test cases are then combined with test cases generated by a Simulink 

Design Verifier and stored as a table (CSV) file format. By reading the CSV file, our 
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program also generates reusable automatic test procedures (ATP) to be simulated on the 

target platform. 

Compared to existing products, our solution has the following advantages: 

• It is faster than existing heuristic based products 

• Compared to SDV, an iterative based product, our software can export test cases 

to CSV file format and simulate them on any test environment. 

• Test cases for library models can be reused in multiple ATPs and test cases can be 

traced to Simulink models. 

Another major challenge in verifying airborne software systems is writing an 

ATP. ATPs are usually written in Python and then executed on specific testing systems. 

Potential bugs in an ATP could cause a system to crash, and discovering bugs before 

running the ATP remains a big challenge in avionics. 

In Python, a dynamic language with variable types is determined by the program 

run-time point. Very few rules have been developed for dealing with variable types. The 

aim of this thesis is to propose a solution for detecting bugs that could lead to ATP 

crashes. Inferring the types in a static language is relatively easy since languages like 

C/C++ have strict rules, but nearly all dynamic languages are dynamically-typed. A 

language like Python is bounded by very few rules, and a test developer, therefore, may 

have great freedom in writing the test script; using this type of freedom may also be 

dangerous. 

In Chapter 3, we analyze a set of widely used, open source static analysis products 

and discuss errors they can detect. However, those products cannot catch type errors and 

attribute errors effectively. These errors are the main reason for ATP to crash. We thus 
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provide a solution combining the power of an abstract syntax tree and type-flow analysis 

to detect fatal bugs in an ATP. The result produced by our tool PyDetector is a list of 

fatal errors including line numbers from the source code.  The purpose of this tool is to 

detect errors that could lead to ATP crashes, thereby reducing the time-consuming load 

on ATPs.  

In Chapter 4, we offer conclusions and describe future work. 
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CHAPTER 2.  MODEL-BASED TEST CASE GENERATION 

2.1 Motivation 

Model-based software development has become widely used during the past two 

decades in the avionics and automobile industries. Unlike directly using C / Ada code, 

models usually specify software designs, and executable code (C/C++) code can be 

generated from models. Models are written in a specific modeling language featuring 

very high-level abstraction that is convenient for domain engineers. In this thesis, the 

modeling language used will be Simulink from MathWorks. In Chapter 2, we will design 

an automated tool to generate test cases from a Simulink Model. 

2.2 Related works 

Simulink was originally designed for simulation purposes. DO-178C requires 

automated test generation to identify errors (crashing, software defects) within model 

implementation and model design issues (requirement / design mismatch, conflict 

requirements). Many publications have discussed how to generate test data to test a 

Simulink model. However, not many have focused on a Simulink model for verification 

and validation. 

Zhan (Zhan 2005) proposed a mutation-based approach to cover program 

branches in Simulink Model. He only considered three types of mutation operators as 

inputs, but did not cover all operators in the model. Our approach overcomes this 

limitation by traversing the graph generated from the Simulink Model. 

Reactive Tester (R. Systems 2012) is a guided simulation and heuristics test-case 

generator. It first allows a user to specify some coverage criteria and testing properties, 

following which it will use heuristic-based test case generation to cover as much test 
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criteria as possible. However, a heuristic-based algorithm may take a very long time to 

cover all test criteria. This approach is limited with respect to model complexity and size, 

and may require excessive time to generate input signals and achieve adequate model 

accuracy with respect to the actual software. Our approach overcomes these limitations 

and will also work for complex models. 

Gadkari, et al., (Gadkari, et al. 2007) translate a Simulink model into Lustre, a 

formal language, then use a model-checking tool Lesar to generate a test case. Meng Li 

and Ratnesh Kumar converts Simulink model into an Input/Output Extended Finite 

Automata (Li and Kumar 2012), a formal model of a reactive untimed infinite-state 

system.  Our approach will also translate the model into an intermediate representation 

but, rather than using a formal language, we will use a graph to represent the model. 

Whalen, et al, (Whalen, et al. 2013) reveal that OMC/DC can discover more bugs 

than MC/DC (Hayhurst, et al. 2001), but OMC/DC is more difficult to use due to the 

following issues:  

• OMC/DC has no definitive pattern for test suite size. 

• OMC/DC obligation is more likely to be uncoverable.  

• OMC/DC is sensitive to program path  

In DO-178C, test cases must be written purely based on requirements. It is thus 

impossible to write test cases after only looking through program paths. DO-178C also 

requires 100% coverage unless reasonable justification for not doing so is provided. 

Using an uncoverable coverage-testing method is obviously not wise, so choosing 

MC/DC instead of OMC/DC is more suitable in safety-critical systems to be certified 

with DO-178C. 
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Panesar-Walawege, Kaur, Sabetzardeh and Briand (Panesar-Walawege, et al. 

2013) proposed a safety-standards-compliant approach for verifying model-based 

systems. They created a conceptual model from a safety standard followed by a UML 

profile relating all safety standards to system development artifacts. Their example was 

applicable only during the development stage where no test case is needed, and they also 

did not specify whether their approach was compliant with DO-178C (they mentioned 

only IEC61508 with respect to compliance). Our work focuses on the verification stage 

that requires test cases and uses either automatic or non-automatic test procedures; our 

work will be compliant with the DO-178C standard. 

2.3 Background 

2.3.1 Basics of testing 

Software testing aims to find defects in software products and such testing is 

considered to be the most effective and important means for reducing defects and 

increasing robustness in software systems. The testing process involves writing a set of 

test cases and observing whether the software product behaves as expected. It can be 

subdivided into software verification and validation processes. 

Software Verification answers the question “Are we building the project right?”  

(Leveson 1995) By performing software verification, we attempt to make sure that the 

software behaves in the manner we want it to. 

Software Validation answers the question “Are we building the right product?” 

(Leveson 1995) The software validation process will check whether there have been any 

mistakes leading the software developer to develop a product that does not do what the 
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customer asked for. Software validation usually compares either the model or the actual 

code against requirements. 

2.3.2 Test types 

In this section, we will discuss several types of testing using the descriptions in 

Chauhan’s book (Chauhan 2010). 

Black-box testing: We test the software without knowing how its implementation 

details.  We will write test cases based on requirements to test each functional software 

component. The disadvantage of black-box testing is we might be unable to effectively 

test all pieces of code without looking at the code. 

White-Box Testing: White-box testing deals with the code’s internal structure; 

test cases are developed by looking at the actual code. Using this method, the tester needs 

to understand the logic of the code. It also requires the tester to look deeply into the code 

and determine exactly which code component may be malfunctioning. 

The advantages of white-box testing are that it helps detect unused code and helps 

optimize the software. Also, by understanding just how the software behaves, test cases 

can be written more thoroughly and accurately. 

Testing can also be subdivided into static and dynamic testing (Chauhan 2010) 

based on whether a code is executed. Dynamic testing tests the code by executing it, 

while static testing is performed without executing the code. 

Static Testing: Static Testing is basically testing the code without running it. This 

could include review, inspection, or walkthrough to discover issues. An inspection report 

is required under the DO-178C standard. 
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Dynamic Testing: Using dynamic testing, the code under review must be actually 

compiled and run. Dynamic testing is essentially the validation part of Software 

Verification & Validation (V&V). DO-178C requires running dynamic tests on airborne 

software through 5 software levels. Each level has a different dynamic testing 

requirement. Coverage-based testing is required for Level A airborne software. 

Unit Testing: Unit testing is a testing method under which subsystems, related 

units, or software modules are “tested to determine whether they are fit for use” 

(Huizinga and Kolawa 2007). 

Integration Testing:  In contrast to Unit testing, Integration testing combines all 

software and hardware components to evaluate interactions between software units and 

hardware units. Black-box testing and white-box testing are both usually used to confirm 

that all units are working together correctly and safely. Integration testing is very 

important in verifying airborne systems because such systems are usually very large and 

a verification team must break them down and do unit testing from the very beginning. 

However, even if each component individually works correctly it does not necessarily 

mean that all components will perform correctly after everything is assembled together. 

To write integration test cases, test engineers must refer to both high-level and low-level 

design documents. 

2.3.3 Functional and system testing 

Functional testing: Functional testing involves the following tests: 

1. All functionalities specified in the requirement or specification work correctly. 

2. The software has implemented all functionalities listed in the requirement or 

specification. 
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3. The software has no extra functionality not covered by the requirement or 

specification. 

System testing: System testing is usually performed as part of integration testing 

while all systems are running. The following functionalities should be included in the 

system testing (Indian Student Association 2012): 

• Graphical user interface 

• Usability 

• Software performance 

• Exception handling 

• Compatibility 

• Installation 

• Recovery or failover 

2.3.4 Model- Based development 

Model-Based Design or Model-Based Development (MBD) (Schätz, et al. 2002) 

is a modern way to develop complex systems. Instead of directly writing executable code, 

MBD focuses on high-level models of the system to be placed in the field.  

MDB is extensively used in the aerospace and automotive industries. Model-

based design can begin with a well-designed common framework, and throughout the 

design process customized features can easily be added. AUTOSAR (Autosar 2014), for 

example, is available to automobile manufacturers as an open and standardized software 

framework. Model-based design also supports most development cycles (“V” model, 

agile model, spiral models, etc.). Figure 2.1 is an example for the V model. 
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Figure 2.1: V-Model (V model 2015) 

MBD usually consists of the following development steps: 

• Modeling the target system 

• Modeling the target system environment. 

• High-fidelity simulation 

• Software V & V Process 

• Deployment and maintenance 

2.3.5 Mathworks Simulink 

Simulink (MathWorks 2015), developed by MathWorks, is a graphical 

programming language tool for developing embedded systems, now widely used in the 

areas of aerospace, automobile, cell phones, and even TVs. As a result, many standards 

have been developed to guide engineers in design, development, testing, and verification 

of software systems in such applications. Using MBD to design software is an important 

industrial trend. 
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Simulink is used as a standard development tool in avionics and auto design. It 

integrates modeling and simulating dynamic systems. A wide range of library blocks are 

provided in Mathworks, including an aerospace blockset, a Computer Vision system 

toolbox, and a DSP system toolbox, Different industries can purchase different toolboxes 

based on their particular needs. Simulink supports both linear and non-linear systems and 

can simulate software using both fixed-step and variable-step operations in its 

continuous-time or sample-time modeling.  

The Simulink environment supports distributed development of large and 

complex systems and provides a variety of customizable simulation and computational 

blocks suitable for creating embedded systems. Executables can be automatically created 

from these blocks and compilable source codes can also be generated before building 

executables. The Simulink Code Generator supports all kinds of embedded platforms and 

source code generated is Misra-C (MISRA Consortium 2012)-compatible to eliminate 

compatibility problems when migrating to different platforms. The following are some of 

the block libraries: 

• Sources Library: This library provides blocks that generate inputs for input 

signals. 

• Sinks Library: This library provides blocks for displaying values during 

simulation.  

• Aerospace Library: This library provides libraries for simulation of aerodynamics 

environments and other functionalities. 

• Vehicle Network Library: This library provides blocks to encode/decode Control 

Area Network (CAN) signals and XCP signals. 
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2.4 Generating test sequences for Simulink models 

2.4.1 Framework 

 

Figure 2.2 Tool Framework 

Figure 2.2 shows the tool framework. The broken line in the picture indicates an 

alternative, non-required route. The red rectangle components are the already-existing 

tools. In this thesis, while I am using these tools to do a portion of the work, the oval 

components are the tool we designed. We will introduce all the components in the 

following paragraphs:  

Simulink Design Verifier 

The Simulink Design Verifier (MathWorks 2015) is a Mathworks tool that can 

generate test cases as a MATLAB mat file. Post-processing the mat file will generate an 

intermediate file for further processing. Details of how to use the Simulink Design 

Verifier to generate test cases will be discussed below. 

Simulink Analysis Engine 

The Simulink Analysis Engine is an engine I designed to take a Simulink Model 

as input to generate an intermediate file to feed into the Code Generate Engine.  

The Simulink analysis Engine reads a Simulink Model and converts it to a graph 

structure.  
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Figure 2.3 “Left Turn” Simulink Model 

Figure 2.3 is a Simulink model. As can be seen in the following figure, this model 

can be converted to a directed graph structure in which each node indicates a Simulink 

block. A graph representation is equivalent to a Simulink model. 

The following image is a graph representation of this Simulink model. Details of 

conversion of a Simulink Model to a graph representation will be discussed in Section 

2.4.3. 

 

Figure 2.4 Graph representation of “Left Turn“ Model 

After a graph is constructed, the following algorithm can be used to generate test 

cases: 
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1. Starting from one output signal, use Depth First Search (DFS) to begin traverse 

graph. 

2. Once a node is reached, we perform the following process 

3. Read the type of the node and see if it is supported 

a. If the node is supported, generate a test case for the node. 

b. Otherwise, report an exception and terminate the algorithm. 

4. Terminate the process once it reaches Inport (a Simulink block type). 

Table 2.1 Java class to Simulink block mapping 

Java class Simulink Model blocks 

ATPCodeBlock The base type for all Simulink Blocks 

ATPInPortCodeBlock InPort and OutPort 

ATPLogicalOperatorBlock Logical Operators (AND, XOR, OR) 

ATPReferenceCodeBlock All user created reusable libraries 

ATPRelationalCodeBlock Relational Operators ( >,≥, <,≤, =,≠) 

ATPSwitchCodeBlock Switch Case 

ATPConstant Block Constant 

ATPSubSystemCodeBlock Subsystem 

ATPValueCodeBlock Constants, FromWorkSpace 

 

Theoretically, all nodes should be reached if we have traversed the graph from all 

output nodes; otherwise, the unreachable nodes represent dead code. Because each node 

has a different type with different functionality in Simulink, we will create a java class 
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for each type of Simulink block to customize the test-case generation process. All 

supported Simulink blocks are listed in Table 2.1. 

Test case representation 

All test cases are represented in a CSV file format. The first row states what is on 

the second row. If it is a “Stimulus”, then it is an input signal we are trying to set; if it is 

“Expected”, then it is an output signal we are trying to verify; “Condition” means a 

certain condition must be satisfied before verifying the output signal.  

The following example shows a set of test cases for Turning_Signal_Left model. 

Table 2.2 Test case for Left_Turn Model 

Stimulus Stimulus Condition Expected 

Left_Turn_On Emergency_Stop  Light_On 

TRUE FALSE  TRUE 

TRUE TRUE DELAY:1000 FALSE 

FALSE TRUE DELAY:1000 TRUE 

Code Generation Engine 

The code generation engine generates Python ATP from the CSV file discussed in 

the previous section. This process maps to arrow 4 in Figure 2.2. The Code Generation 

Engine will read the first two rows to obtain the information for each test case. Starting 

from the third row, it will use the following algorithm to generate test cases: 

1. Read the first row to get the stimulus 

2. For each stimulus, perform the following steps: 

a. Read the CSV file. Check whether the signal is a system input or an output 

signal arriving from another model 
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b. If it is a system input, use the SystemInterface.SetSignal function to set a 

stimulus value. 

c. If it is a signal arriving from another model, import the utility file from the 

other model and use the set function in the utility file to set the stimulus value. 

3. Achieve all the conditions (e.g. if the condition is DELAY: 1000, then we will wait 

1000 milliseconds before verifying the output signal) 

Verify whether the output signal is the same as the expected value. 

Static Code analysis Engine 

The Code Static Analysis Engine is a tool for detecting issues inside a Python 

ATP file. Intermediate files and ATP files can be manually edited, so human errors might 

exist in them. Typical ATP errors are type errors and attribute errors, e.g., assigning a 

value to an undefined variable or providing more parameters than needed by a function. 

To ensure that the ATP is free of such errors, we can use this static analysis engine to 

scan it. Details of the Static Code Analysis Engine will be discussed in Chapter 3. This 

process maps to arrow 5 in Figure 2.2. 

2.4.2 Implementation details 

Generating a test case from the Simulink Design Verifier 

We have two ways to generate test cases. Arrow 1 in Figure 2.2 uses Simulink 

Design Verifier. It generates its test cases into a sldvData structure containing the 

following information: 

Table 2.3 sldvData structure 

Entry name Information contained 
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Table 2.3 continued 

ModelInformation It is a structure containing Model Name, version, Author and 

time stamp for the model 

AnalysisInformation It is a structure containing all important information during the 

analysis. The most useful information is the InputPortInfo and 

OutputPortInfo. These two structures contain properties (type, 

default value, etc.) regarding the input signals and output signals 

Model Objects Contains all blocks that will affect out coverage, including 

logical blocks, Relational blocks 

Constraints A set of constraints such as the value range for an input signal 

Objectives Objectives to be met to achieve 100% coverage 

TestCases A structure containing all test cases needed to satisfy all 

objectives 

Version The version of the sldvData structure 

 

The sldvData structure contains multiple test cases and is not in human-readable 

form, so we must write an m-script to extract all test case information from the structure 

and convert it into a human-readable CSV file: 

We use the following m-script to decode the structure and generate a CSV file 

containing all test cases: 

function sldv2tpt(sldvfile) 

% sldv2tpt(sldvfile) converts Simulink Design Verifier test data into a CSV format 

% Input: sldv-file Output data file generated by Simulink Design Verifier 
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% Output: Testcase<n>.mat Files n=1..number of generated test cases. One file for each 

test case 

% 

load(sldvfile); 

fid = fopen('te.csv','w'); 

for j = 1: length(sldvData.AnalysisInformation.InputPortInfo) 

    uname = sldvData.AnalysisInformation.InputPortInfo{j}.SignalLabels; 

    fprintf(fid, '%s,', uname); 

end 

for j = 1: length(sldvData.AnalysisInformation.OutputPortInfo) 

    uname = sldvData.AnalysisInformation.OutputPortInfo{j}.SignalLabels; 

    fprintf(fid, '%s,', uname); 

end   

fprintf(fid, '\r\n'); 

csv = 

cell(length(sldvData.TestCases.dataValues)+length(sldvData.TestCases.expectedOutput), 

length(sldvData.TestCases.dataValues{1})); 

for i= 1: length(sldvData.TestCases) 

    for j = 1: length(sldvData.TestCases.dataValues) 

        val = strsplit(num2str(sldvData.TestCases.dataValues{j}), ' '); 

        for k = 1 : length(sldvData.TestCases.dataValues{j}) 

            csv{k,j} = val{k}; 

        end 
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    end; 

end 

for j = 1: length(sldvData.TestCases.expectedOutput) 

    val = strsplit(num2str(sldvData.TestCases.expectedOutput{j}), ' '); 

    for k = 1 : length(sldvData.TestCases.dataValues{j}) 

        csv{k,j + length(sldvData.TestCases.dataValues)} = val{k}; 

    end 

end;     

for i = 1 : length(csv)[1] 

    for j = 1 : length(csv)[2] 

        fprintf(fid, '%s, ',csv{i,j}); 

    end 

    fprintf(fid,'\r\n'); 

end 

fclose(fid); 

   
The CSV file will contain a set of stimuli and a set of expected outputs. The first 

row specifies the number of stimuli, which of the stimuli should be set, and the number 

and identification of signals we must test.  

2.4.3 Generation of a test case from a Simulink graph 

Our method of generating test sequences (arrow 2 in Figure 2.2) converts a 

Simulink Model into an output dependency graph. Output dependency graph is a directed 

graph containing nodes and edges as shown in Figure 2.4. One node in the graph maps to 

one Simulink block in the Simulink model; one edge in the graph maps to one edge in the 
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Simulink Model. An edge in the graph represents transferring a signal from the source 

node to the destination node after performing a math operation between the two 

connected nodes based on their properties. An edge from node A to B signifying that the 

output of node B depends on node A. 

The output dependency graph generation algorithm takes a Simulink model as 

input and generates a graph. It first generates the top level; if any subsystem is found in 

the top-level model, it will be pushed into a queue. Once the top level finishes, it pops the 

next subsystem from the queue and continues construction.  

The following code describes how a Dependency graph is generated: 

Input: a Simulink Model file 

Output: Dependency graph of the Simulink model 

BEGIN: 

Initialize two empty queues, Queue_Model and Queue_Blocks 

Initialize an empty graph 

Push the Simulink model into Queue_Model 

//First, we create an ATPCodeBlock instance for each block 

While Queue_Model is not empty: 

Pop the model 

Extract all blocks from the model 

For each block in the model:  

  If a block is a “subsystem” 

                         Push the block into a queue 

  else  
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          Create an ATPCodeBlock object and add this node to graph 

  Push the Block object into Queue_Blocks 

 End if 

End for 

End while 

//Create the graph by adding links from current block to its adjacent blocks 

While Queue_Blocks is not empty: 

 Pop a block 

 Read all its adjacent blocks 

 Create a link from this block to all its adjacent blocks 

End while 

Export the graph to a dotty file 

END 

Automated testing is a technique for reducing both the time and effort expended 

in the testing process. For constructing an automatic testing tool, coverage criteria is 

required; this can be path coverage, branch coverage, etc. In accordance with such 

criteria, test suites are automatically generated by the tool as input for given software. As 

discussed in section 2.2, we will use MC/DC as the criteria. 

In order to generate MC/DC-compatible test cases from Simulink models 

covering as many paths as possible, we use a concept of hybrid testing combining static 

analysis (to generate test cases) with dynamic analysis (to run tests and generate coverage 

report). 
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Given a Simulink model P as input, the goal is to output a set of test cases 

achieving high MC/DC coverage.  To do so, the model P will be converted into an 

output-dependency graph and paths in the graph will be iterated to generate constraints. 

The Major Components for the systems are: 

● Static Analyzer 

● Test Case Generator 

● Output Dependence Graph (ODG Module) 

● Coverage Module 

Figure 2.5 describes the architecture of the system: 

 

Program Under 
test

Transformed 
Program

Identification of 
input variables

Levelling nested 
conditions

Construction 
ODG

Creating harness 
for Simulink

App Harness 
simulation with 
generated test 

cases

Test case 
geeration

Constraint 
Solver

Coverage Analysis

Static Analyzer

App Harness Simulator

 
Figure 2.5 Static Analyzer & Test Case generator 

The static analyzer and test case generator will work together to create the test 

cases. The structure of the system can be expressed as shown in Figure 2.6: 
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Path Analyzer

Constraint Generator

Path Expressions

Predicates

Necessity Constraints Constraint Solver

Failure Information

Test Cases

  

Figure 2.6 Structure of the system 

The path analyzer will iterate through all the paths, and pass results to the path 

expressions. Then a constraint generator will subject each Simulink block to a constraint 

and append it as a constraint equation. If an input has constraints from another block, the 

predicates will know this and add them into the current equations. Then of necessity the 

constraints checker will check to see if there is a duplicate constraint or a useless 

constraint; for example, if in the previous calculation, we concluded that signal A > 10, 

and then in the next iteration, we encounter another constraints that say A > 25, then this 

constraint is a useless constraint. After this analysis, the equations will be sent to the 

constraint solver. Constraint solver will calculate a possible solution based on the set of 

equations. Once this is done, the result will be used to generate test cases. 

The basic element in a constraint is an algebraic expression consisting of a set of 

variables, logical/relational operators. Expressions are calculated directly from the output 

dependency graph. A constraint is expressed using variables and one or more of the 

following operator{<, >, =,≥, ≤, ≠}; in MATLAB, it maps to a relational library 

block. 

When iterating the graph, each Simulink library block will be mapped to a 

constraint using the following table: 
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Table 2.4 Simulink block to constraint mapping 

Block Type Description Constraint 

OR Logical OR 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1⋁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2  

AND Logical AND 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 ∧ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 

NOT Logical operator 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 ≠ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 

Compare Relational compare 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 < 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 ; OR 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 > 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2; OR 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 

Math Math operators ( -, +, *, / ) 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 ; 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2; 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2; 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1/𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 ; 

 

Once a constraint is generated, the expression will be sent to JaCoP, an open-

source constraint solver that will analyze the expression and output a feasible result. Once 

we have this answer, we will be able to use it to generate test cases. 

During the iteration, when a node with a Simulink Output Block type is reached, 

the constraint will be stored on that node because the output signal will serve as an input 

to another model. Just as we may call a function A and, inside function A, we may call 

function B to obtain a returned value, this returned value will be used to perform some 

further calculation in function A. In this example, the returned value is the output signal. 

Because function A is dependent on function B. the constraint we set for the output node 

in function B will be set as the initial condition for function A. In this manner we can 
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ensure that, when generating a test case for a subsystem, the combination of all the test 

cases will still work on the whole system. 

Reusable test procedure generation 

In the Simulink model, we can also have reusable subsystems. For example, if we 

are developing software for a car, the front light left-turning signal and right-turning 

signal, the tear light left-turning signal the right-turning signal, and the emergency-stop 

signal will all use the same logic. To test these models, we would like to use a single 

standard test procedure so that the tests would be consistent throughout all the different 

models. 

We can use the following algorithm to generate test case: 

1. Function Generate_TestCase 

2. Input: a Simulink Model file 

3. Output: Test Case 

4. BEGIN: 

5. CALL function in Section 2.4.3 to convert Simulink Model file to Simulink graph 

6. Initialize two empty list, list_constraint and list_testcase 

7. For each OutPort in the graph 

8.        Clear list_constraint 

9.        CALL Function Generate_Logical_Expression(OutPort, list_constraints) 

10.        If OutPort is boolean: 

11.              Solve list_constraints using constraint solver with OutPort = true and 

false 

12.        Elseif OutPort is numberic: 



27 
 

 

13.              Solve list_constraints by giving OutPort = Minimum, Middle, Maximum 

of its valid range 

14.        Else: 

15.              Throw unsupported exception 

16.        END IF 

17.        Push the result to list_testcases 

18. END 

19. Function Generate_Logical_Expression 

20. Input: A Simulink block and a list 

21. OutPut: A list of constraints for this block 

22. BEGIN: 

23.        If input block is a InPort: 

24.            END 

25.        END IF 

26.        Convert all connected blocks into a logical expression for the input block 

27.        Push the logical express (which is the constraint for the block) to the input list 

28.        For each connected block: 

29.              CALL Generate_Logical_Express(connected_block, list) 

30. END 

2.4.4 Tools used for the implementation 

In this section, we will introduce the tools we used to implement all functions. 

The following tools have been used to implement the software: 

• Eclipse 
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• Window Builder Pro 

• Graphviz 

Eclipse 

Eclipse (Eclipse 2015) is an open-source integrated development environment. By 

installing different plug-ins, Eclipse can be adapted to develop applications for various 

programming languages. The latest official release version, Eclipse Luna, is the first 

official support version for Java 8.  

With respect to the Eclipse version, there are still different IDEs corresponding to 

different Java Developers. The following IDEs are currently supported by Eclipse Luna: 

• Eclipse IDE for Java Developer 

• Eclipse IDE for Java EE developer 

• Eclipse IDE for C/C+ Developer 

• Eclipse for Tester 

• Eclipse for Java and Report Developers 

• Eclipse IDE for Automotive Software Developer 

The difference between Java EE IDE and Java IDE is that Java EE IDE provides 

all functionalities in Java IDE as well as support for Java EE, JPA, JSF, etc. In this 

project, the Java EE additional functionalities are unnecessary, so we will use the 

standard java IDE. 

Eclipse also provides us a convenient way in which to write Java Code. Designing 

a GUI, for example, can be a very painful process. To hand-code a beautiful GUI, a 

developer must declare all the controls and add them for accurately positioning to a 

panel. Arranging these positions for all controls by hand coding would take hours and it 
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would be hard to trace between the code and the control. We can use the following plugin 

to improve the GUI design methodology. 

Window Builder Pro 

Window Builder Pro (WindowBuilder 2015) is a powerful GUI design plugin for 

Eclipse IDE. It is a bi-directional GUI designer that allows one to trace an event handler 

to a button and vice versa. With Window Builder, a developer can drag and drop controls, 

design completed windows and add event handlers in minutes; the same process could 

take hours if programming it by hand.  

The following user interface components are supported in Window Builder: 

• Design View 

• Source View 

• Structure View 

• Palette 

• ToolBar 

• Context Menu 

The above user interface components include all major user interfaces. More 

importantly, the plugin can create custom, reusable components for a developer to use in 

multiple projects. It also has a Property Pane that helps a developer set and update 

properties. 

Graphviz 

Graphviz (Graphviz 2015) is an open-graph visualization tool. In our thesis, we 

convert a Simulink Model to a graph. To visualize the graph, we convert it to a dot file 

format. Graphviz can visualize a graph from the dot file representation.  
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The dot graph description language can be used to describe a directed or 

undirected graph.  

The following example describes an undirected graph: 

graph graphname { 

     start -- node1 -- node2; 

     node1 -- end; 

     node2 -- end; 

 } 

The bold format graph statement states that the graph is an undirected graph. In 

such a graph, only “--” is syntactically allowed;  “--” connects two nodes with a 

undirected edge. The following figure shows the graph after rendering by Graphviz: 

 

The directed graph is also easy to describe: 

digraph graphname { 

     start -> node1 -> node2; 

     node2 -> end; 

 } 
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The designation Digraph at the beginning states that the dot file is a directed 

graph. Unlike an undirected graph, digraph uses “->” to connect two nodes. The 

following figure shows the directed graph after rendering by Graphviz: 

 

2.4.5 Examples 

To evaluate our theory, we will use two Simulink Models: 

Model AirbrakeControl includes all common Simulink Blocks. Generate test 

cases for this model shows our tool can support most engineering needs. 

Model “Left Turn” includes reference and library blocks. Generating test cases for 

this model shows our tool can support reusable models. 

Model AirbrakeControl 

 

Figure 2.7 AirbrakeControl Model 
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Step 1, we use Simulink Design Verifier (arrow 1) in Figure 2.2 to generate temp 

file, the temporary file  

The temporary file generated from Simulink Design Verifier is shown below: 

 

Figure 2.8 Simulink Design Verifier temporary file 

Step 2, we run algorithm sldv2tpt in section 2.4.2 to convert a temporary file to a 

CSV file format: 

 

Figure 2.9 CSV test case 

Step 3, at last we use algorithm 2.4.1 (arrow 4 of Figure 2.2) to generate the ATP 

from CSV file. The following code is ATP generated from Figure 2.9: 

import system 

 



33 
 

 

#Test step 1 

system.setValue('V', 40); 

system.setValue('DownRange',0) 

system.setValue('Height', -16) 

system.verifyValue('Airbrake_Command', True) 

 

#Test step 2 

system.setValue('DownRange',36) 

system.verifyValue('Airbrake_Command', False) 

 

#Test step 3 

system.setValue('DownRange',0) 

system.setValue('Height', 16) 

system.verifyValue('Airbrake_Command', False) 

 

#Test step 4 

system.setValue('DownRange',35) 

system.setValue('Height', -16) 

system.verifyValue('Airbrake_Command', True) 

 

#Test step 5 

system.setValue('DownRange',35) 

system.setValue('Height', -15) 
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system.verifyValue('Airbrake_Command', False) 

Model Left Turn 

Step1 (Convert Simulink to a graph) and Step 2 (algorithm 2.2) have already been 

discussed in Section 2.4.1 (Figure 2.3, Figure 2.4 and Table 2.2). In this section, we will 

show the ATP generated from the test cases. 

SimulinkLibrary.py 

import system 

import time 

 

def Test_Light_Blinking_Library(TurningLight, EmergencyLight): 

  #Test step 1 

  system.setValue('TurningLight', True) 

  system.setValue('Emergency_Stop', False) 

  system.verifyValue('Light_On', True) 

   

  #Test step 2 

  system.setValue('Emergency_Stop', True) 

  time.delay(1000) 

  system.verifyValue('Light_On', True) 

 

  #Test step 3 

  system.setValue('TurningLight', False) 

  time.delay(1000) 
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  system.verifyValue('Light_On', True) 

   

LeftTurnModel.py 

import system 

import SimulinkLibrary 

 

''' 

Test Light Blocking block is a Simulink Library block, thus the test script is generated in 

Simulink Library for reusable purpose 

''' 

SimulinkLibrary.Test_Light_Blinking_Library(Left_Turn_On, EmergencyStop) 

For every reusable block in Simulink Model, our tool will generate a function in 

SimulinkLibrary.py. The ATP will call this function to test the block. The advantage of 

this approach is that if we have another model calling this library block, then instead of 

writing duplicate code to test this library block, we will call the test function in 

SimulinkLibrary.py to cover the library block.  

To illustrate the reusability, the example below is an ATP generated for “Right 

Turn Model”, which uses the same library as the “Left Turn Model” shown above: 

RightTurnModel.py 

import system 

import SimulinkLibrary 

'''Test Light Blocking block is a Simulink Library block, thus the test script is generated 

in Simulink Library for reusable purpose''' 
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SimulinkLibrary.Test_Light_Blinking_Library(Right_Turn_On, EmergencyStop) 

2.4.6 Evaluation 

To evaluate the correctness of the software, we consider the following criteria 

from DO-178C section 6.4.2: 

1. Does the software generate normal range test cases and robustness test cases? 

2. Does the test cases provide structural coverage (MCDC in our case)? 

We export all test cases as CSV format. We can view the test cases in Notepad++ 

or Microsoft Excel to check if normal range test case and robustness test case are 

generated. 

For the structural coverage evaluation, we use MATLAB to generate a harness 

model and import the CSV file to the harness model. We select an open source project 

from MATLAB file exchange (Jeppu 2015). The open source project has blocks 

commonly used in flight control laws (Jeppu 2015).   

The project has 7 models. For each model, we first create a harness model. A 

harness model is a model with all input connecting to a signal builder. We can feed all 

test cases to the signal builder, so that MATLAB can calculate the model coverage from 

the test cases. 

A harness model can be easily created by the following command: 

open_system('Simulink model name'); 

load_system('Simulink model name'); 

harnessModelFilePath = sldvmakeharness('Simulink Model name',loggedSignalsPlant); 

[~,harnessModel] = fileparts(harnessModelFilePath); 
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Figure 2.10 Simulink harness model (Mathworks, Simulink Design Verifier 2015) 

A harness model looks like Figure 2.10. The left side is a signal generator and it 

connects to all the input signals in the test unit. The test unit is the model we try to verify. 

If we click the “Inputs” on the left side, we can open the signal builder and import 

our test cases into it. The signal builder looks like the following image, each test case 

takes one tab in the window: 

 

Figure 2.11 Signal builder (Mathworks, Mathworks 2015) 
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The following table shows the number of test cases generated from each model 

using our technique and the coverage obtained through these models. 

Table 2.5 Simulink Model test case and coverage result 

Model ID Model name Normal test 

cases 

Robustness test 

cases 

Coverage 

1 Autodestruct 3 3 100% 

2 Delay OnOff 3 0 100% 

3 Anti-windup Integrator 3 3 100% 

4 Hysteresis 4 9 100% 

5 Priority 32 0 100% 

6 Window Counter 4 0 100% 

7 On ground circuit 68 0 100% 

 

 

Figure 2.12 Simulink Model test case and coverage result 

1 2 3 4 5 6 7
Normal test cases 3 3 3 4 32 4 68
Robustness test cases 3 0 3 9 0 0 0
Coverage 100% 100% 100% 100% 100% 100% 100%
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Table 2.5 shows that all models have 100% coverage which means we did achieve 

the coverage goal specified in DO-178C.  

Figure 2.12 shows that our tool generated robustness test cases for the model. The 

missing robustness test cases for 2, 5, 6, and 7 is because all the inputs in these models 

are Boolean, and there is no way we can assign an out of range value to a Boolean value. 

Thus, our tool also achieved the normal range and robustness test case criteria. 

2.4.7 Tool qualification 

To save time and achieve better accuracy, software tools are widely used to help 

engineers develop code, compile code, and even find code bugs. In this thesis, a tool is an 

automated program to help engineers automate part of the verification work defined in 

Section 6.0 of the DO-178C standard. 

DO-178C distinguishes two types of tools: 

1. Development tools: a development tool is a tool for helping engineers develop 

target systems. Such tools include IDE, MATLAB, Simulink, and compilers. 

2. Verification tools: A verification tool is a tool for detecting potential bugs inside a 

software system. Such tools include Pylint, VectorCast, and other bug-detection 

tools. In this thesis, both tools described in Chapters 2 and 3 are verification tools. 

Qualifying a tool is a time-consuming process, and even a minor update of the 

tool requires re-qualification. Thus, when we design a tool, we try to avoid the necessity 

of qualifying the tool.  

DO-330 (RTCA 2012) describes the processes and objectives for qualifying tools. 

However, we can use Figure 2.13 to determine whether tool qualification is needed. The 

first branch is “YES”, and the second branch is “NO”. 
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Figure 2.13 Tool qualification process (Kornecki and Zalewski 2006) 

The test cases generated from our tool will still be sent to peer review. Thus, the 

tool in Chapter 2 does not need to be qualified. 
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CHAPTER 3. PYDETECTOR - STATIC CODE ANALYSIS ENGINE 

3.1 Motivation 

Second only to writing test cases, writing a test procedure and making it pass is 

also a time-consuming process. Usually, one requirement points to one test case and each 

test case will have multiple test steps. One Automated Test Procedure (ATP) usually 

contains several test cases and could take a great deal of time to execute. For example, 

according to Elbaum’s work (Elbaum, Malishevsky and Rothermel 2002), 135 test cases 

were generated to cover 69% of functionality in QTB (an embedded real-time system) 

and it took 27 days to execute those test cases. During execution, an error in the ATP 

would result in a crash and the ATP would have to be rerun from the beginning. Thus 

developing a static code analysis tool to detect errors before execution would be very 

useful and could save thousands of hours of testing. 

3.2 Related works 

Python is an easy-to-learn dynamic typed language. Because of its more flexible 

and less strict coding style. Python is the most popular language for writing ATPs.  

We examined various open-source Python code analysis tools, and selected the 

three most popular tools among the Python community: PyLint, PyFlakes and 

PyChecker, PySonar 2. In the next few subsections, we will introduce these three tools:  

3.2.1 PyLint 

PyLint ( Logilab and contributors 2014) is a Python semantic error checker and 

also a coding standard checker. This tool is implemented in Python and was first created 

in 2003 at Logilab. Many open-source projects have been created to integrate PyLint into 

many IDEs (e.g., Eclipse, Sublime text).  
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It is easy to install PyLint on all kinds of system distributions ( Logilab and 

contributors 2014). 

On OpenSUSE, for example, we can run the following commands 

sudo zypper install pylint  # Python2.7 

sudo zypper install Python3-pylint  

On Mac OS X and Windows, we can use pip  to install Python with the following 

command: 

pip install pylint 

PyLint supports the following features: 

• Coding Standard (PEP 8 style) 

• Error detection 

• Refactoring help 

• Fully customizable 

• Editor integration 

• IDE integration 

• UML diagrams 

• Continuous integration 

• Extensibility 

The PyLint tool is a static code analyzer. The common issue for a static code 

analyzer is significant difficulty in capturing type errors. From PyLint’s specification, it 

claims rule R0923 can detect whether or not an interface is implemented, and many other 

rules for detecting various error messages in the Python code are also supported. 



43 
 

 

However, we show that in some cases PyLint fails to detect the bug, but that our 

approach does find it. We will thus use the following example to test PyLint: 

class signal: 

    def __init__(self): 

        self.rate=100 

        self.name = "" 

    def initialize(self): 

        self.initialized=True 

a=signal() 

print a.test1 # Error showed, OK 

a.test2=10 

print a.test2 # no warning showed, OK 

print a.test3 # no warning showed, ERROR 

a.test3=20 

print a.initialized #no warning showed, ERROR 

print len(a) # len(a) does not make sense, however, no warning showed 

The result produced by the PyLint analysis was a disappointment. Despite the 

claims stated on its website, this tool could not properly analyze the simple (though not 

trivial) example above. What good does PyLint probably do? A dynamic addition of an 

attribute to an object is detected without any problems. A reading context of such a 

dynamically-added attribute is also properly processed. What is PyLint’s issue in this 

example? Almost certainly, PyLint does not know in what sequence these statements will 
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be executed, and in some cases it cannot even determine which statements are executed. 

This is a very important observation that will be used later in proposing our solution. 

3.2.2 PyFlakes 

PyFlakes (PyFlakes 2014), similar to PyLint, is another static code analyzer. The 

installation of PyFlakes is as easy as that of PyLint. There have also been multiple 

projects trying to integrate PyFlakes into IDEs. 

The aim of pyFlakes is to quickly detect common errors without dynamically 

executing them. In addition to detecting common errors in Python, pyFlakes brother 

project Flake8 can also check PEP8 code style in a manner very similar to PyLint. 

PyFlakes can detect the following issues: 

1. Unused imports 

2. Redefinition of an unused variable 

3. Global variable shadowed in a loop or function 

4. Undefined variable 

5. Syntax error in doctest 

6. Local variable defined in encoding scope referenced before assignment 

7. Local variable assigned but never used 

8. Duplicate argument in function definition 

Although these errors seem naive, they are rather common and could show up 

when a variable name is mistyped, when an import is missed, or when a function with the 

same name and argument is overwritten. We show in some cases that PyFlakes fails to 

detect an unused local variable.We will test PyFlakes using the following example: 

import sys  
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def foo(a, b): 

  c = 10 

  return a - b 

d = 20 

foo(a) 

  

PyFlakes detected unused import, the unused variable d and the undefined 

variable a. However, the unused variable c was not detected.  Both PyLint and PyFlakes 

use similar technology to detect errors, and neither needs to execute the Python script to 

detect these issues. The next tool we introduce will use a different principle for error 

detection. 

3.2.3 PyChecker 

In contrast to PyLint and pyFlakes, PyChecker (PyChecker 2015) is a dynamic 

code analyzer. PyChecker overcomes the defects of static code analyzers by dynamically 

running the code. Although it is very effective in detecting type errors, it drawbacks are 

also obvious. 

Consider the following example as an input for PyChecker: 

import sys 

import pygear 

raw_input("The following test will examine if terrain warning will alert when altitude is 

below 1000 feet") 

while altitude >= 0: 

  pygear.set_altitude(altitude) 
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  raw_input("Press Y if alert has sound") 

  altitude = altitude + 1000 

PyChecker will wait on the raw input statement for an infinite time. The reason 

for this is that PyChecker tries to execute the above statements and when it reaches any 

statement that requires user input, PyChecker will stop and wait for the user’s response. 

Another example shows that, even without any input function, PyChecker may 

still run into an infinite loop. 

i = 10 

while i > 1: 

  print Developer accidentally used x>1 instead of x < 1 

  i = i + 1  

k = i + j 

When checking the above code, PyChecker will be stuck in the while loop and 

will not give us any information about the undefined variable j.  

The following example shows still another problem: 

import sys 

import pygear 

def get_Altitude(FMS) 

  if(FMS == "FMS1"): 

    return pygear.FMS1.get_Altitude(); 

  elif(FMS == "FMS2"): 

    return pygear.FMS2.get_Altitude(); 

  elif(FMS == "FMS3"): 
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    return pygear.FMS3.get_Altitude(); 

  else: 

    raise Exception("Please select a correct Flight management system") 

     

Altitude = get_Altitude("FMS5");  #pycheck reports an exceptio here which is what we 

designed for 

Altitude = get_Altitude("FMS1","FMS2") #too many arguments, pychecker didn't report 

Because PyChecker reports an error when the Python interpreter returns an error 

exception, the first occurrence of an error is correctly logged. However, PyChecker has 

no recovery system to continue execution after an exception is reported, so the next error 

message will not be generated until all previous errors are fixed. The advantage of 

PyChecker is that it gives a very sound result, i.e., if a code has passed on PyChecker, the 

code will not fail during run time. 

As a dynamic code analyzer, PyChecker also has the following disadvantages: 

1. It can only detect errors in the code it has executed 

2. It cannot detect dead code 

3. Only the first fatal error can be captured. PyChecker does not recover the 

execution after an exception has occurred. 

4. PyChecker might take a long time to run the code or even run in an infinite loop 

In the next section, we show the motivation for our work that is strongly related to 

insufficient results produced by related current work. 
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3.2.4 PySonar 2 

PySonar2 (Wang 2014) is a widely used Python type inference and indexer. It 

infers types of variables by performing inter-procedural analysis. PySonar had been 

tested on million lines of code when internally used at Google (Wang 2014) 

The purpose of PySonar is to infer the type of a variable at a certain program 

point, but the tool does not report any type error. Our tool PyDetector performs both type 

analysis and attribute analysis. PyDetector can do the following analysis that PySonar 

does not: 

• PyDetector analyzes for the logical operation (>, <, =) and Math operation 

( +,−,÷,×) that two or more variables are of the same type. 

• PyDetector analyzes that a function call from an imported library exists. 

• PyDetector analyzes that parameters passed into the function are correct 

(correct number of parameters and correct type for each parameter) 

With the above analysis, our tool PyDetector is capable of detecting code issues 

defined in Section 3.4. 

3.3 Background 

From Section 3.2, we can see the static analysis and dynamic analysis each has 

both advantages and disadvantages. In general, static analysis is more useful and safer for 

users (programmers). On the other hand, dynamic analysis provides the most accurate 

results in exchange for safety and running the entire body of code while checking it. 

Moreover, it may cause unpleasant side effects, such as when working with a database. 

In avionics, it is very difficult to perform dynamic analysis, because simulating a 

test script requires execution on a special simulation system such as Virtual integrated 
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software testbed for avionics (VISTA) (Magor and Stodola 1994), and it might take a test 

script up to 10 hours or more before it completes. Also, if a fatal error occurs or a failure 

is captured, we must restart the entire script. We aim to design a static Python-based 

analysis tool to detect potential issues inside an ATP. 

3.4 Problem definition 

To avoid crashes or failures in test scripts, we design a static analysis tool 

PyDetector to detect issues possibly leading to a software crash. We categorize the issues 

to be examined into the following types: 

• Syntax issue 

• Non-existent import 

• Globals are not found (using a global import before importing it) 

• Wrong number of parameters passed into functions 

• Too many or too few arguments passed for string format  

• Using methods and attributes that don't exist in imports 

• Changing signature when overriding a method 

• Redefining local functions 

• Using an undefined or uninitialized variable 

• Variables / imports / functions defined but not used 

• Argument in a function defined but not used 

• Missing doc string for functions 

Moreover, according to DO-330, any tool that automates any process of DO-178B 

must be qualified, and qualifying a tool requires significant efforts. We thus design a 
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rule-based static code analysis tool and implement each rule as a plugin. In this way, 

when a new rule is added, only that rule requires qualification. 

3.5 System architecture 

Once a user submits an ATP, our analyzer will first generate an AST (Abstract 

syntax tree) from the file. The AST will be sent to the Python compiler to check syntax 

issues, and the file will then be passed through a chain of rules. Each rule will detect 

issues in the file to be attached to a global issue list. 

The architecture of our tool PyDetector conforms to Figure 3.1: 

User Submit an 
ATP

Generate Abstract Syntax 
Tree

Generate flow graph based 
using type flow analysis

Rule 1, use AST to detect 
syntax error

Rule 3: Detecting non-exist 
imports. Append founded 

issue to a list  

Rule 2: Use flow graph to 
detect Unused globals. 

Append founded issue to a 
list

If there is 
syntax error

Report issues to user

Rule 4: Use AST to detect 
wrong parameter list. Append 

founded issue to a list

Rule 5: Use regular 
expression to detect 

importing the same library 
multiple times. Append 
founded issue to a list

……

Keep passing AST, flow graph 
and ATP to the next rule. 

Found issue will be append to 
the issue list

Rule X: use flow graph to 
detect using a variable before 

setting it. Append founded 
issue to a list

Figure 3.1 PyDetector architecture 
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It is very important to convert a Python file into AST. With AST, we can iterate 

every line of code and check the type of each variable using type flow analysis. We will 

discuss what information AST has and how type flow analysis is performed on AST in 

next section. 

3.6 Static code analysis 

The fatal issues listed in Section 3.3 are caused by type or attribute errors. We 

will use "type-flow analysis" to detect such errors before actually running the ATP. Type-

flow analysis is similar to data-flow analysis, but before performing type-flow analysis, 

we will convert the Python program to an abstract syntax tree (AST) so that we can easily 

iterate the code. 

The abstract syntax tree (AST) is a tree representation of the Python source code. 

Each node is an abstract syntactic structure. Python library has a built-in AST module 

that developers can use to obtain the AST from the source code. In the next few sections, 

we introduce how a Python file can be mapped to an AST and what is in the AST. 

There are three available compilation modes for each Python file: 

• Exec 

• Eval 

• Single 

The root node of the AST will differ based on the different compilation modes. 

For exec mode, the root node will be an ast.module; for eval mode, the root will be an 

ast.expression; and for single mode the root will be an ast.Interactive. 

All other nodes in the AST fall into one of the following groups: 

• Literals 
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• Variables 

• Expressions 

• Statements 

• Control flow 

• Function and class definitions 

3.6.1 Literal 

Literals are a set of nodes that deal with constants in the AST. 

• ast.Num 

This node will represent all numbers in the Python file. This includes integer, 

float, or complex values. 

• ast.Str 

This node represents any string in the Python file 

• ast.Bytes 

This node is a bytes object. A bytes object can be returned by reading a file in 

binary mode. This node only exists in Python 3 or higher versions 

• ast.List, ast.Tuple, ast.Set, ast.Dict 

These nodes represent List, Tuple, Set and dictionary types respectively. 

• ast.Ellipsis 

This node represents the “…” syntax for an Ellipsis singleton. 

3.6.2 Variables 

• ast.Name 

This node will store a variable name  

• ast.Starred 
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This node stores a variable reference. Variable references can load the value of 

another variable. 

3.6.3 Expressions 

Expressions are an extensive category of nodes that encapsulate all the work with 

expressions in Python. The main node is ast.Expr. Within this node, all operations are 

executed. The kind of operations may be recognized by a nested node of the operation, 

with the following possibilities:  

• ast.UnaryOp - unary operation 

• ast.UAdd, USub, Not, Invert - unary operator tokens. Not is the not keyword in 

Python. Invert is “~” operator 

• ast.BinOp  - Binary operations 

• ast.Add, Sub, Mult, Div, FloorDiv, Mod, pow, LShift, RShift, BitOr, BitXOR, 

BitAnd - Binary operator tokens 

• ast.BoolOp - Boolean operator. 

3.6.4 Statement 

The group of the statements consists of: 

• ast.Assign - This represents assigning value to variable  operation in Python 

• ast.AugAssign - This represents Python syntax like a+=1 

• ast.Print - This represents a print statement 

• ast.Raise - This represents raising an exception syntax 

• ast.Pass - This represents a pass statement in Python 

3.6.5 Imports 

• ast.Import 



54 
 

 

• ast.ImportFrom 

• ast.alias 

These three nodes represent Python syntax “import library”, “from library import 

module” and “import library as alias” 

3.6.6 Control flow 

• ast.If 

• ast.For, ast.While 

• ast.Break, ast.Continue 

• ast.TryFinally, ast.TryExcept 

• ast.ExceptHandler 

From the name of the node it is easy to see that these nodes represent the “if”, 

“for”, “while”, “break”, “continue”, “try... except … finally” statements in Python. 

Each line of Python code can be broken into a multiple expression or statement 

and each statement is a node in the tree. Each node also stores all AST information listed 

above: type information is most important for us during type flow analysis. We can figure 

out the type of a current node from its adjacent nodes. 

Consider the following example: 

var1 = "Yijia" 

var2 = 3 

var3 = var1 * var2 

var4 = var1 + var2 

From the above statements, PyDetector constructs the abstract syntax tree shown 

below: 
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Figure 3.2 Graph converted from the code above 

Nodes var3 and var4 in the bottom of Figure 3.2, converted from string “Yijia” 

and integer number 3, are built-in Python types. The green nodes on the first row are the 

defined variables. We have assigned a string type to var1 and an Integer type to var2. The 

two red color nodes marked as “*” and “+” on the third row are expression nodes; they 

store the kind of expression required from the two input nodes. The brown nodes on the 

fourth row are the final output nodes. 

When we do type flow analysis, we can see var3 = String * Integer. This 

operation is supported by Python and the returned type is String, so we will store type = 

“String” at node var3 and var4 = String + Integer. This operation is NOT supported by 

Python; an error will be reported for this operation. 

Next consider an example involving a function: 

def func1(x): 

  return x*2 

f1 = func1(“a”) 

f2 = func1(1) 
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The above code will generate the following abstract syntax tree shown as in 

Figure 3.3: 

 

Figure 3.3 Graph converted from the code above 

The big box marked as func1 in the middle of Figure 3.3 represents function 

“func1” and the green node “x” is its parameter. This function has been called twice and 

a string and then an Integer are passed as parameters for the two calls. Then node x will 

multiply by another Integer and return a value to f1 and f2 respectively. From type-flow 

analysis, we can see that f1 = String * Integer and f2 = Integer * Integer. Thus f1 is a 

string and f2 is an Integer. 

By this method, all Python built-in types can be correctly analyzed. However, if 

an engineer defined two custom classes and overwrote the “+”, “-”, “*”, “/” operators, 

our approach cannot successfully perform an analysis. At this time, none of the open 

source static code analyzers can yet perform this analysis. The way to mitigate this 

drawback is to apply a dynamic code analyzer technology method and let the analyzer 
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become a hybrid analyzer. However, this represents future work not included in this 

thesis. 

3.7 Evaluation 

In this section, we will set up experiments to compare the performance of our tool 

to that of PyFlakes. As discussed in Section 3.2. PyFlakes is also a static code analyzer. 

We use a set of sample test scripts to compare the performance of the two tools. 

The experiment analyzed 139 Python scripts with a total of 40840 lines of code. 

These scripts are test scripts designed in open source project pyChecker (Neal 2013) to 

test Python Code Analyzer. We run PyFlakes against each file and categorize issues it 

reported. Table 3.1 shows all the errors reported by PyFlakes. 

Table 3.1 PyFlakes analysis result 

Python Script Number of issues Type of issue
exceptions1.py 1  UnusedVariable 
func1.py 1  UnusedImport 
sequence.py 4  UnusedVariable 
test1.py 9  UnusedImport UndefinedName UnusedVariable 
test13.py 3  UndefinedName 
test14.py 1  UnusedImport 
test2.py 1  UnusedImport 
test22.py 5  UnusedVariable 
test24.py 1  ImportStarUsed 
test3.py 1  UndefinedName 
test33.py 2  UndefinedName UnusedVariable 
test35.py 1  UnusedImport 
test36.py 2  UnusedImport 
test37.py 1  UnusedImport 
test39.py 2  UnusedVariable 
test41.py 3  RedefinedWhileUnused 
test44.py 1  ImportStarUsed 
test45.py 5  UnusedVariable 
test46.py 4  UnusedImport RedefinedWhileUnused ImportStarUsed 
test54.py 3  UndefinedName 
test55.py 1  UnusedVariable 
test58.py 1 Invalid syntax
test64.py 3  UnusedImport 
test73.py 3  UnusedVariable 
test8.py 1 Invalid syntax
test83.py 8  UnusedVariable 
test97.py 1  UnusedImport   
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Table 3.1 shows that lacking type flow analysis, PyFlakes only detected a total of 

33 issues, out of which, only 6 of them can cause a program to crash. 

Figure 3.4 compares how many errors our tool PyDetector detects from the 

Python scripts as compared to how many PyFlakes detects: 

 

Figure 3.4 PyFlakes and PyDetector evaluation result  

After applying type flow analysis, our program, PyDetector, can find a total of 

502 issues. And of these, 475 can cause a program to crash. The above figure shows our 

program PyDetector can detect 15 times more errors than PyFlakes. 

PyFlakes cannot deal with most issues in the file because PyFlakes only scans the 

file we submitted. It does not load the imported library file but simply assumes the library 

file exists and has all the parameters passed in correctly. In contrast, our PyDetector tool 
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will search and load the library file to make sure that the expected function is there and 

has the correct parameters.  

3.8 Tool qualification 

In DO-178C, after the test developer writes the test script, a reviewer must review 

the ATP to make sure it is working correctly. By applying PyDetector, a reviewer can get 

a list of issues in the ATP. However, a reviewer still needs to go through all the issues to 

make sure that none of them are false positive. More importantly, a reviewer must review 

ATP to make sure all test cases have been implemented in the ATP. Thus, the tool does 

not need to be qualified since none of the DO-178C processes has been replaced by 

PyDetector. 
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CHAPTER 4. CONCLUSIONS AND FUTURE WORK 

In Chapter 2, we proposed a new methodology to generate test cases from a 

Simulink Model. First, we designed an m-script to decode test cases generated by a 

Simulink Design Verifier and exported them into a CSV-format test-case document. 

Second, we converted the model into a dependency graph and from this graph we 

developed our test cases.  

To avoid requirement conflicts, for each outport signal, we must store a constraint 

calculated from its input. When generating a test case for another model that depends on 

that constraint, we submit it to a constraint solver and determine whether the stimulus can 

be achieved under the current constraint. 

For future work, we state two goals: 

1. In our current work, we use a Simulink Design Verifier to provide us with test 

cases for state flow. Our Simulink Analyze Engine does not analyze state flow, an 

important part of Simulink. We expect to develop state- flow support in the near 

future to provide more accurate test case results. 

2. In our current implementation, we only handle a limited number of blocks. While 

our analysis indicates that the existing blocks already support most models in 

display systems, we will develop support for more blocks in the future for use in 

analyzing control systems. 

In Chapter 3, we developed a tool, PyDetector, to deal with dynamically-typed 

languages. The purpose of that tool was to detect errors that could crash the execution of 

Automated Test Procedure (ATP). Three technologies have been introduced in our 

solution. 
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We used Abstract Syntax Tree (AST), a tree representation of the abstract 

syntactic structure of source code. In AST, “each node of the tree denotes a construct 

occurring in the source code” (Wikipedians 2012). If any syntax issue exists in an ATP, 

an error will occur when constructing the AST. Constructing the AST is essential for the 

subsequent static code analysis. 

Type flow analysis is an enhancement to the Abstract Syntax Tree. It does not 

require running the Python program to obtain the variable type at each program point.  

We combined the safety of static analysis with the power and accuracy of dynamic 

analysis and, as a result, achieved a powerful approach with significant potential. The 

demonstration of the correctness of our idea was accomplished by implementation of this 

solution in Python. 

Our tool provides a wide range of error detection for Python scripts. In Chapter 3, 

we compared our tool with PyFlakes, another well-known static code analysis engine. We 

listed 12 test items supported by our tool, PyDetector, only 4 of which are supported in 

PyFlakes. This comparison shows the relative power of our tool and, within the discipline 

of error detection that our tool improves on other open source solutions. 

The future plans for PyDetector include support of a larger number of Python 

standard libraries. Unlike a user library file, Python standard libraries are in pyc format, 

and we have no access to the source code. However, we can analyze the library files from 

Python source code and dump them into a saved file. Although it is still not clear whether 

or not this solution is feasible, it should be very interesting and challenging to support 

such functionality in the future.   
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