
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2015

A formal language towards the unification of model
checking and performance evaluation
Yaping Jing
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Jing, Yaping, "A formal language towards the unification of model checking and performance evaluation" (2015). Graduate Theses and
Dissertations. 14855.
https://lib.dr.iastate.edu/etd/14855

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14855&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14855&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14855&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14855&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14855&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14855&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F14855&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/14855?utm_source=lib.dr.iastate.edu%2Fetd%2F14855&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

A formal language towards the unification of model checking and performance
evaluation

by

Yaping Jing

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:
Andrew S. Miner, Major Professor

Gianfranco Ciardo
Samik Basu
Leslie Miller
Arka Ghosh

Iowa State University

Ames, Iowa

2015

Copyright © Yaping Jing, 2015. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGEMENTS . viii

ABSTRACT . ix

CHAPTER 1. INTRODUCTION . 1

CHAPTER 2. BACKGROUND . 4

2.1 Notations . 4

2.2 �-Algebras and Measure Theory . 6

2.3 Random Variables and Probability Measures . 7

CHAPTER 3. MARKOV PROCESSES . 11

3.1 Stochastic Processes and Markov Chains . 11

3.2 Discrete-Time Markov chain . 12

3.2.1 Transient Analysis . 14

3.2.2 Recurrent, Transient, Irreducible Properties 16

3.2.3 Absorbing DTMCs . 19

CHAPTER 4. TRADITIONAL MODEL CHECKING . 28

4.1 Kripke Structure . 29

4.2 Computation Tree Logic (CTL) . 29

4.3 Linear-time Temporal Logic (LTL) . 34

4.4 LTL vs. CTL . 36

4.5 Computation Tree Logic Star (CTL*) . 37

iii

CHAPTER 5. PROBABILISTIC MODEL CHECKING 39

5.1 Probabilistic Computation Tree Logic (PCTL) . 39

5.1.1 Algorithm For The Case of P
./v

X� . 42

5.1.2 Algorithm For The Case of P
./v

�1 U
t�2, t 2 N [{1} 43

5.2 PLTL and pCTL* . 46

CHAPTER 6. REAL-VALUED PERFORMANCE MODELING FORMALISMS 48

6.1 Computation Tree Measurement Language . 48

6.1.1 Basic Definitions . 49

6.1.2 Syntax of CTML . 51

6.1.3 Semantics of CTML . 52

6.2 Algorithms . 55

6.2.1 Algorithms For The Case of MU . 55

6.2.2 Algorithm For the Case of MV . 59

6.2.3 Computational Complexity . 61

CHAPTER 7. COMPARING CTML’S EXPRESSIVE POWER WITH PCTL AND PLTL 62

7.1 CTML vs. PLTL . 62

7.2 CTML vs. PCTL . 66

CHAPTER 8. ACTION AND STATE BASED FORMALISMS 70

8.1 Action and State Based Computation Measurement Language 70

8.1.1 asCTML Syntax . 73

8.1.2 Semantics of asCTML . 74

8.2 Conversion to CTML . 76

8.3 asCTML vs. CTML . 80

8.4 Other Related Work . 86

CHAPTER 9. SOFTWARE TOOL . 88

9.1 Software Design . 88

9.2 Software Implementation . 91

9.2.1 Sparse Matrix Storage . 92

iv

9.2.2 Solving Linear Systems . 95

9.3 asCTML Software Translator . 98

9.4 Overall Discussion and Software Test . 99

CHAPTER 10. APPLICATION EXAMPLE . 101

10.1 University Graduation Example . 101

10.2 Dining Philosopher Example . 106

CHAPTER 11. CONCLUSION AND FUTURE RESEARCH 113

v

LIST OF TABLES

Table 7.1 A Strict Subset of CTML Formulas that Cover PCTL 69

Table 9.1 Processing Infix Notation . 92

Table 10.1 Numerical Results for the asCTML Queries on the University Graduation Ex-

ample (with probabilities r = 0.1, p = 0.8, and q = 0.1) 106

Table 10.2 Results of Translated Size of DTMCs (�: out of memory). 111

Table 10.3 Numerical Results for Selected CTML Queries of Different DTMC sizes (�:

out of memory). 112

vi

LIST OF FIGURES

Figure 2.1 An Example of Probabilistic Model, with S = {0, 1, · · · , |S|� 1}. 5

Figure 3.1 Luck of Fortune DTMC . 14

Figure 3.2 Another DTMC Example . 16

Figure 3.3 Classification of DTMC States . 18

Figure 3.4 Recurrent DTMC with Period d = 2. 18

Figure 4.1 Unwinding the Kripke Structure ! Obtaining a Computation Tree 30

Figure 4.2 Example Structures Whose Starting States Satisfy the CTL Formulas, Respec-

tively. 33

Figure 4.3 LTL Formula Examples. 35

Figure 4.4 Example LTL formulas in Büchi Automata Representation. 36

Figure 4.5 K |=
LTL

FGp, K 6|=
CTL

AFAGp . 37

Figure 4.6 K 6|=
LTL

FGp, K |=
CTL

AFEGp . 37

Figure 5.1 An Example of Discrete Time Probabilistic Structure 40

Figure 5.2 Modification Example . 45

Figure 8.1 An Example of MAMC Structure . 71

Figure 8.2 An Example Translation from MAMC to DTMC 77

Figure 8.3 A Example for asCTML vs. CTML . 83

Figure 9.1 CTML Software Structure . 89

Figure 9.2 An Example of Input Model Format . 90

Figure 9.3 Polymorphic Design of CTML Software . 91

vii

Figure 9.4 Example of ROWS Array Contents Based on Figure 9.7. 94

Figure 9.5 Example of COLUMNS Array Contents Based on Figure 9.7. 94

Figure 9.6 Example of VALUES Array Contents Based on Figure 9.7. 95

Figure 9.7 An Input Model Example . 95

Figure 9.8 An Example Input Model Format for asCTML Translator 100

Figure 10.1 University Graduation Example . 102

Figure 10.2 An MAMC Example for The University of Graduation and Some Atomic

State+Action Formulas . 105

Figure 10.3 SPN Model of A Single Dining Philosopher. 107

viii

ACKNOWLEDGEMENTS

First and foremost, I am deeply grateful to my PhD advisor Andrew Miner. Dr. Miner has been a

steady influence throughout my Ph.D. career. He has been patient and supportive in times of new ideas

and difficulties. His high scientific standards set an example. He has listened to my ideas during our

weekly meetings, and discussions with him often led to key insights. He’s also given me the freedom

to work everywhere I feel comfortable and focused. I also appreciate he supported me to travel to

conference abroad, and gave me meaningful feedbacks before my technical talk. Above all, I learned a

lot from Dr. Miner; he is one of the most knowledgable professors I could get within the department.

I also have to thank the members of my PhD committee, Professors Gianfranco Ciardo, Samik

Basu, Leslie Miller, and Arka Ghosh for taking time reading the long thesis. I will forever be thankful

to Professor Leslie Miller. I am fortunate for having been a teaching assistant of Professor Miller

for several courses. His truly kindness, trustworthy, and righteousness at the time of my trouble is

invaluable.

I also would like to thank my fellow graduate students: Wen-Chieh Chang, Du-hong Cheng, for

their helpful discussions during my graduate study; thank Benjamin Rittgers, Eric Tuns, Yujia Ge, Yi-

li Wang, and Yaping Feng, for multiple moving help; I enjoyed the time when we were hanging out

together.

Finally, this work is dedicated to my family with great love. My mom, sisters and brother never

lost faith in me, always praying for me, and endured all difficulties in helping my dream come true.

ix

ABSTRACT

In computer science, model checking refers to a computation process that, given a formal structure,

checks whether the structure satisfies a logic formula which encodes certain properties. If the structure

is a discrete state system and the interested properties depend only on which states to be reached, not on

the time or probability to reach them, traditional temporal logics such as linear temporal logic (LTL) and

computation tree logic (CTL) are powerful mathematical formalisms that can express properties such

as “no collision shall occur in a traffic light control system”, or “eventually, a service is completed”.

To express performance-dependability related properties over discrete state stochastic systems, these

logics have evolved into quantitative model checking logics such as probabilistic linear temporal logic

(PLTL), probabilistic computation tree logic (PCTL), and computation tree stochastic logic (CSL), etc.,

and can express properties such as “with probability at least 0.98, the system will not reach a deadlock

state before time 100”. While these logics and their model checking algorithms are powerful, they are

inadequate in expressing complex performance measures, either because they are limited to producing

only true/false responses (although in practice, a real valued response can sometimes be obtained for

the outer-most path quantifier), or the computational complexity is too expensive to be practical.

To address these limitations, for this PhD work, we propose a novel mechanism with the follow-

ing research aims: 1) Define general specification formalisms to express performance queries in real

values while retaining the ability to express temporal properties. 2) Develop efficient mathematical

algorithms for the proposed formalisms. 3) Implement the approach in tools and experiment on large-

scaled Markov models for the analysis of example queries.

1

CHAPTER 1. INTRODUCTION

In the past, performance evaluation and reliability evaluation were two separate disciplines in com-

puter science and engineering [9, 49]. The former studies the probabilistic nature of user demands (e.g.,

average workload, utilization, etc.) under the assumption that no permanent structural changes occur

due to faults, and is concerned with contention of system resources. The latter studies the probabilistic

nature, such as probability of success, mean time to failure, etc., under the assumption of structural

changes due to faults.

With the advent of parallel and distributed computer and communication systems, performance

evaluation is expanded to encompass concurrency and synchronization aspects, and takes into account

of hard/soft deadlines for real time systems. Meanwhile, to incorporate fault-tolerance, reconfiguration,

and repair aspects of system behavior, reliability is often evaluated with availability, safety, survivabil-

ity, and related measures, which are collectively called dependability [47, 63].

As the systems become increasingly complex, an interest of combining performance and depend-

ability evaluations has grown, since performance evaluation often needs to consider the graceful degra-

dation of systems (e.g. fault-tolerance system), which causes blurs with the evaluation of dependability,

in particular, the reliability measure. Early investigations on the necessity of combined assessment of

performance and dependability for complex computer and communication systems are carried out by

[9, 12]. As a result, the “performability”, a unifying model for evaluation of performance and relia-

bility on Markov models was proposed by J. F. Meyer [49] in early 1980s. Until now, performance-

dependability modeling has been widely accepted for the design and analysis of complex computer

and communication systems; this is partly due to the availability of software tools that allows huge

underlying Markov models being generated automatically from the abstract high level formalisms.

2

The classic mechanism for describing performance measures within a high–level model is to use a

reward function, that assigns a real–value to each underlying state of the model (see for instance [53]

for Petri nets or [18] for process algebra). Performance queries can then be expressed in terms of the

expected reward at a fixed time (including infinite time for steady–state), or the expected accumulated

reward for a time interval. This idea was later extended to capture path information [55], by utilizing

a path automata that is combined with the underlying Markov chain via a synchronous product. A

limitation of this work is the lack of a formal language for describing queries or a mechanism for

constructing the path automata.

On the other hand, model checking has had huge success in automated formal verification. Having

realized that a Morkov model is also a finite state machine, many researches are being developed

in applying model checking techniques to Markov models, for path-based performance-dependability

analysis. To express dependability related properties, traditional model checking logics such as linear

temporal logic (LTL) [58] and computation tree logic (CTL) [20] have evolved into quantitative model

checking logics; the original temporal logics are extended by adding or modifying operators (e.g., PLTL

[22, 30], PCTL [33], pCTL* [3, 11], DCTL [25], CSL [6], asCSL [5], CSLTA [29]), and can express

properties such as “with probability at least 0.95, the system will not reach a deadlocked state before

time 10”. Later, by combing a reward structure with Markov models through a classic mechanism

that allows the specification of reward functions within high level models, quantitative model checking

logics are further extended/adapted to incorporate performance-related measures. Most recent example

logics include CSRL [7] and its model checking algorithms [35], DTRMC [2], and some individual

rewards-based operators described in [41].

While these quantitative model checking logics are powerful, they are not quite suitable for ex-

pressing performance-dependability related measures, since they are limited to producing only true or

false responses, precisely because they are logics (although in practice, a real–valued response can

sometimes be obtained for the outer–most path quantifier). As a concrete example, survivability anal-

ysis is important in wide variety of applications such as military command, control, communication

systems, disaster-based optical networks, etc. [47]; and a typical survivability query can be described

as “After an occurrence of failure, what is the probability that the system will reach a set of states under

3

normal operation?” or “If a model encounters a failure, what is the expected time to reach a recovery

state?” To answer these type of complex queries, we identify several challenges. One of them is how

to come up with a more general approach towards the unification of model checking and performance

evaluation. The other main challenges include how to solve such techniques efficiently, identify the

useful performance related queries that cannot be expressed by the existing techniques, and how to

demonstrate the practicality of our approach.

For this PhD work, we propose a more general novel mechanism for expressing both performance

measures and dependability properties in a single framework. Unlike the recent works [2, 7, 35, 41] (as

we mentioned above) which incorporate the performance-related measures into model checking logics

(performance measures are ultimately limited by the boolean values), we extend the model checking

formalism with real values. As such, we can express not only complex performance-dependability

queries such as the survivability measure example that are mentioned above, but also the quantitative

model checking queries like “what is the probability for the system to reach a deadlock state before

100 time units?” in formal, exact, succinct fashion, and processed automatically. To summarize,

our contributions include: 1). A state based formal language that can take real values as input and

output real values, while retaining the expressive power of the existing formal logics. 2). A rigorous

comparison to the existing work. 3). An action and state based formal language that distinguishes

actions for an input model. 4). A software tool that implements those approaches. 5). Application

examples for the illustration of the feasibility of our approach.

The remainder of this document is organized as follows. Chapter 2 presents notations and back-

ground information that represents the current state of the art. Chapter 3 presents Markov processes.

Chapter 4 presents traditional model checking. Chapter 5 presents probabilistic model checking. These

chapters are mainly reviews of the existing work. The following chapters are contributions of this

work. Chapter 6 presents real valued formalisms. Chapter 7 presents a rigorous comparison in expres-

sive power with PLTL and PCTL. Chapter 8 presents action and state based formalism that extends the

one presented in Chapter 6. Chapter 9 presents a software tool for the real valued formalisms. Chap-

ter 10 presents application examples for the techniques developed in Chapter 6 and 8 and discusses

experimental results. Chapter 11 concludes this work and discusses future project.

4

CHAPTER 2. BACKGROUND

To help understand the extension of probabilistic model checking and probabilistic structure which

will be discussed in detail later, in this chapter, we describe basic probability theories [13, 14, 59]

that are relevant to this work. In particular, we discuss concepts of measures that allow us to define a

quantitative measure for this work later, concepts of random variables and several distributions that are

related to the probabilistic structures under consideration.

The following presentation is arranged as follows: Section 2.1 describes notations that are com-

monly used throughout this work. Section 2.2 recalls the notion of sigma algebras and measure. Sec-

tion 2.3 presents basic definitions of random variables and definition of probability measures. Section

?? describes several probability distributions and their properties.

2.1 Notations

Throughout this work, the basic notations used are sets, matrices, and vectors. For consistency, we

use the following symbols and rules to describe these commonly used notations.

Set Notation

In general, a set is denoted in upper-case calligraphic letters, except for the following several classic

notations.

• N denotes the set of natural numbers, {0, 1, 2, 3, · · · }. It includes 0.

• R denotes the set of real numbers.

• R+ denotes the set of positive real numbers.

• R⇤ denotes the set of nonnegative real numbers.

5

Note that all other sets are denoted in upper-case calligraphic letters. In particular, S denotes the

set of states (i.e. nodes) for a given graph, such as a probabilistic model as shown in Figure 2.1

(where the values on all arcs are probabilities). Unless otherwise specified (e.g., every state has a

meaningful description in a clear context), states are indexed by a sequence of natural numbers such as

{0, 1, · · · , |S|� 1}, where |S| denotes the cardinality of S .

0 1 · · · i i+ 1 · · · |S|� 1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

Figure 2.1: An Example of Probabilistic Model, with S = {0, 1, · · · , |S|� 1}.

Matrix Notation

In general, matrices are written in upper-case bold letters, such as R, N, etc.. The following lists

several concrete notations.

• R

m⇥n denotes a real-valued matrix that has dimension of m rows and n columns; when the

context is clear, it is simply written as R.

• Given a square matrix R, the inverse of R is denoted by R

�1.

• Given a matrix R, the transpose of R is denoted by R

T.

• Given a matrix R, R[i, j] denotes an element at row i and column j.

• I denotes an identity matrix of dimension n⇥ n, assuming size n is known in a given context.

• 1 and 0 denote the matrices of all ones and zeroes with m rows and n columns, respectively,

assuming the dimension of m⇥ n is known in the a given context.

• A submatrix of R is denoted by R[I,J] with rows I and columns J .

6

Vector Notation

In general, vectors are denoted by lower-case bold letters, such as ⇡, h, f , etc..

• Given a vector ⇡, ⇡[i] denotes an element of ⇡.

• Given a vector ⇡, ⇡[I] denotes a sub-vector of ⇡, with I ✓ S .

• Diag(f) denotes a square matrix with f along the diagonal and zeroes elsewhere,

2.2 �-Algebras and Measure Theory

Definition 1 (�-algebra). A �-algebra [21] is a subset ⌃ of the power set of a set X such that:

1. X , ; 2 ⌃.

2. if C 2 ⌃, then X \ C 2 ⌃. That is, ⌃ is closed under complementation.

3. if C0, C1, . . . with C
i

2 ⌃, then
S1

i=0 Ci 2 ⌃ and
T1

i=0 Ci 2 ⌃ . That is, a �-algebra ⌃ is closed

under countable sets of operations (� often means countable in mathematics).

There may be many �-algebras over set X . Let F denote a family (i.e., nonempty collection) of

subsets of X , let AF denote the collection of all �-algebras that contains F, then by taking intersections

of all elements in AF, we obtain the smallest �-algebra that contains F, called the �-algebra generated

by F. If X = R, then the �-algebra generated by the collection of open subsets of X , {(a, b) : a, b 2 R}
(or equivalently the collection of closed subsets of X , {[a, b] : a, b 2 R}), is called Borel �-algebra.

For more rigorous discussions on Borel �-algebra, we refer the interested reader to [21].

Note that elements of an arbitrary �-algebra ⌃ are called measurable sets. A function µ : ⌃ !
[0,1] is a measure if µ(;) = 0, and for any sequence C0, C1, . . . of disjoint sets in ⌃,

µ

 1[

i=0

C
i

!
=

1X

i=0

µ(C
i

). (2.1)

7

2.3 Random Variables and Probability Measures

As per the probability theory [13, 14, 59], let (X ,⌃) be a measurable space, where X represents

a sample space (i.e. the set of all possible outcomes) and ⌃ is a subset of the power set of X , then a

random variable, denoted by X , is a function, that maps the sample space X to some set, denoted by

S . If S = R, then X is a real valued random variable; in this case, we have:

X : X ! R such that the set {! | X(!)  x} 2 ⌃ for every x 2 R,

where x is called a realization of X , and {! | X(!)  x} denotes the set of outcomes each of which

has a realization value less than or equal to x. For this work,we are interested in the real valued random

variables, which are simply called random variables, for all subsequent discussions.

If S is countable with S ✓ N, then X is a discrete random variable. Examples of discrete random

variables include the number of defective items in a box of twenty cell phones of the same brand and

model, the number of customers in a restaurant at dinner time, etc. If S is uncountable with S ✓ R,

then X is a continuous random variable. Examples of continuous random variables include the time

required to drive three miles, the amount of fat in one pound of pork, etc. Note that by convention,

random variables are denoted by capital letters.

As an example, consider a sequence of n 2 N consecutive coin tosses. An appropriate sample

space is X = {0, 1}n, where 1 stands for tails and 0 for heads. Let ⌃ be the collection of all subsets

of X , we are interested in the “number of tails” obtained in this experiment. Let ! = (!1, · · · ,!n

)

denote the outcome of a specific experiment, where !
i

is either 0 or 1, with 1  i  n, then the

quantity of the number of tails can be described by the random variable X : X ! N, defined by

X(!) = !1 + · · · + !
n

. Under this scenario, the set {! | X(!) < 3} is simply the event (i.e., the set

of outcomes of an experiment) saying that there are fewer than 3 tails overall, that belongs to the set ⌃.

We are now ready to define probability measure. Let X be a sample space, let ⌃ be an associated

�-algebra, then a probability measure, denoted by Pr, is a function, defined by Pr : ⌃ ! [0, 1], and it

must satisfy the following axioms:

1. 0  Pr(C)  1, for all C 2 ⌃,

8

2. Pr(;) = 0; and Pr(X) = 1 (i.e., the probability measure of the whole space is 1).

3. if C0, C1, . . . 2 ⌃ are pairwise disjoint, then Pr(
S1

i=0 Ci) = ⌃1
i=1 Pr(Ci),

Notice that a probability measure is indeed a measure µ, except the codomain is limited to the range of

[0, 1], rather than R.

Given the definition of probability measure, a conditional probability measures the probability of

an event given that another event has occurred. Let A,B describe the events, then the conditional

probability is defined as:

Pr(B | A) = Pr(A \B)

Pr(A)
(2.2)

with Pr(A) > 0. The following discusses basic notions and properties related to discrete random

variables and continuous random variables, respectively.

Given a discrete random variable X , the probability for a realization of X is denoted by Pr(X =

i), and the probability distribution of X is a list of probabilities associated with each of its possible

value. In fact, a discrete random variable X is associated with probability mass function (pmf) with the

following properties:

(i) 0  Pr(X = i)  1 for all i 2 S

(ii)
P

i2S Pr(X = i) = 1

For example, an unbiased dice roll can take six values numbered as 1, 2, 3, 4, 5, 6; the probabilities

associated with each outcome is 1
6 . Then,

• The probability that the variable X is equal to 1 is: Pr(X = 1) = 1
6 .

• The probability that the variable X is equal to 1 or 2 is: Pr(X = 1 or X = 2) = 1
6 + 1

6 = 1
3 .

• The probability that the variable X is greater than or equal to 3 is: Pr(X � 3) = 1 � Pr(X =

1 or X = 2) = 2
3 .

The expected value of a discrete random variable X , denoted by E(X), refers to the long-run

average value of repetitions of the experiment it represents; precisely, it is the probability-weighted

9

average of all possible values [13], and can be defined as

E(X) =
X

x

xPr(X = x) (2.3)

Take the dice roll example as described above, the expected value of a dice roll is (1 ⇤ 1
6 + 2 ⇤ 1

6 + 3 ⇤
1
6 + 4 ⇤ 1

6 + 5 ⇤ 1
6 + 6 ⇤ 1

6) = 3.5.

Then, the conditional expectation [57] of a discrete random variable B given an event A, denoted

by E(B|A), is the expectation of B under the conditional distribution (i.e. probability distribution for

a sub sample space) given A and can be defined as

E(B | A) =
X

all b

b · Pr(B = b | A) (2.4)

=

P
all b

b · Pr(B = b \A)

Pr(A)
(2.5)

In contrast, a continuous random variable X is characterized by a cumulative distribution function,

abbreviated as cdf, which is typically denoted by upper-case F (x), i.e., F (x) = Pr{X  x} for every

value x 2 R. Formally, F (x) for a continuous random variable X has the following properties:

(i) 0  F (x)  1 for all x 2 R

(ii) F (x1)  F (x2) if x1  x2

(iii) lim
x!�1 F (x) = 0 and lim

x!1 F (x) = 1

The derivative of the distribution function F (x) is called the density function, denoted by lower case

f(x), with the following properties:

(i) f(x) � 0 for all x 2 R

(ii)
R1
�1 f(x)dx = 1

10

By properties of F (x) and f(x), it follows that:

(i) F (x) = Pr(X  x) =
R
x

�1 f(y)dy

(ii) Pr(a  X  b) =
R
b

a

f(x)dx

Given a continuous random variable X with probability density function f(x), the expected value of

E(X) can be defined as:

E(X) =

Z +1

�1
xf(x)dx

11

CHAPTER 3. MARKOV PROCESSES

Low-level modeling formalisms such as Markov chains have long been accepted for the analysis of

performance measures. Due to its large state space typically involved, however, manually constructing

and analyzing such a model often impose a big challenge. With the advent of software tools such as

GreatSPN [4] and SMART [16] in more recent years, large-scaled Markov chains can now be generated

automatically from high-level modeling formalisms such as stochastic Petri net (SPN). Meanwhile, as

a result of great success in the area of model checking, automated analysis towards the unification

of performance measures and formal verification making researching in numerical analysis of such

models again be very much alive.

In this chapter, we first give general concepts of random processes. Then we discuss details about a

special type of the random processes, namely, discrete time Markov chains, that serve as a fundamental

type of models in combining with model checking techniques. Along with the properties and concepts

about this type of random process, we also discuss several real-valued measures that inspired this

work. Finally, for future extension of this work, we give a very brief introductory description of several

other types of random processes (such as continuous time Markov chain). Note that for the following

discussion on the stochastic processes, interested readers should refer to [13, 38, 60] for more details

about the topic; [50] also has some inspiring examples.

3.1 Stochastic Processes and Markov Chains

Definition 2 (stochastic process). A stochastic (random) process is a sequence of random variables

{X(t) : t 2 T }, where T is a time related parameter set .

If T is countable, then {X(t)} is a discrete time stochastic process; otherwise, it is a continuous time

stochastic process. The state space, S , is the set of all possible values of X(t). Like T , S can be

12

continuous or discrete as well. So, depending on whether or not S and T are discrete or continuous, a

stochastic process can be classified into four types. For example, if {X(t)} represents the outcome of

the tth toss of a fair dice, then {X(t), t � 1} is a discrete time discrete state random process, where

S = {1, 2, 3, 4, 5, 6}. If X(t) describes temperatures at the end of tth hour of a day, then it is a discrete

time continuous state random process. If X(t) describes temperatures at any time of a day, then it is a

continuous time continuous state random process. If X(t) describes the number of jobs in a queue at

time t, then typically it is a continuous time discrete state random process.

Definition 3 (Markov process). A Markov process is a special case of stochastic process that satisfies

the Markov property, or so called “memoryless” property, which is defined as:

Pr{X(t
n+1) = s

n+1 | X(t
n

) = s
n

, . . . , X(t0) = s0} = Pr{X(t
n+1) = s

n+1 | X(t
n

) = s
n

}

where n 2 N, s0, . . . , sn+1 2 S, t0, . . . , t
n+1 2 T and t0 < . . . < t

n+1.

Simply put, the definition says that “the future depends only on the current state, not the past.” In terms

of performance measures, the memoryless property is the key for transient analysis and steady-state

analysis, which are considered as the basis for the quantitative evaluation of the behavior of a stochastic

process representing the time-evolution of a discrete-state event-driven dynamic system (DEDS) [8].

Performance related measure will be discussed in more detail as we reach each specific type of Markov

processes.

Definition 4 (Markov chain). A Markov process with a discrete state space S is called a Markov chain.

For this work, we are only interested in the type of stochastic processes that are Markov chains.

3.2 Discrete-Time Markov chain

Definition 5 (discrete-time Markov chain). A discrete-time Markov chain (DTMC) is a Markov chain

with a discrete set of time indices. With T ⌘ N, a DTMC can be simply written as {X(n) : n 2 N}.

Specifically, a DTMC consists of the following three components:

13

• State space S . S = {0, 1, 2, · · · } is a finite (or countably infinite) set of states that the random

variables X may take on.

• Probability transition rule. This is specified by |S|⇥ |S| transitional matrix P. Note that for this

work, we assume the Markov chains are time-homogeneous, meaning the transition probabilities

are independent of time n and are defined by:

Pr{X(n+ 1) = s
j

| X(n) = s
i

} = Pr{X(n) = s
j

| X(n� 1) = s
i

}, for n > 0.

By the definition of time-homogeneous Markov chains, we have P = P

n

, where P

n

means the

probability transition matrix at time step n, and P

n

[i, j] is the conditional probability that the

chain jumps to the state j at time step n given that the chain is in state i at time step n� 1. That

is, P
n

[i, j] = Pr{X(n) = j | X(n� 1) = i}. For example,

Pr{X(222) = 5 | X(221) = 3} = Pr{X(66) = 5 | X(65) = 3},

Pr{X(2) = 3 | X(1) = 1} = Pr{X(6) = 3 | X(5) = 1}.

Note that P
n

is different from P

n which means the probability matrix to the power of n.

• Initial distribution vector ⇡0. This is the probability distribution of the Markov chain at time 0.

For each state i 2 S , we denote by ⇡0[i] the probability Pr{X(0) = i} that the Markov chain

starts out in state i. Formally, ⇡0 obeys the following rule:

(i) ⇡0[i] 2 [0, 1] for all i 2 S, and

(ii)
P

i2S ⇡0[i] = 1.

Now lets look at example of DTMC and see how it can be used to model a real life situation. A

dreamer from a poor family believes that luck will turn around year after year. So she came up with the

following Markov chain model, trying to predict how many years that she will get the best of luck and

get rid of being poor. The model has three states: poor, middle (for middle class), and rich. If a person

is poor, then there is a 0.5 probability to become middle class; there is 0.4 probability that she will stay

14

being poor, and there is 0.1 probability that she will become rich. If a person is in middle class, then

she’s likely to become poor with 0.3 probability, and stay being middle class with 0.5 probability, and

0.2 probability to become rich. If a person is rich, then she has 0.5 probability keeping in rich status,

and 0.4 probability to become middle class, and 0.1 probability to become poor. The scenario is shown

in Figure 3.1.

Poor Middle

Rich

0.5

0.1

0.4

0.3

0.2

0.5

0.1
0.4

0.5

Figure 3.1: Luck of Fortune DTMC

Now before we can answer questions such as “Given a person is poor, what is the probability that

she will be in middle class after 3 years?” on the “Luck of Fortune” model, we need to describe the

following analysis technique.

3.2.1 Transient Analysis

Given a DTMC, the transient analysis can handle questions like: If the process is in state i at time

0, what is the probability distribution of states at time n, for n > 0? If n = 1, then this can be expressed

as:

What is Pr{X(1) = j | X(0) = i}, for all state j?

15

The solution is simply equal to the row i of P, i.e., ⇡1[j] = P[i, j], for all j 2 S . Similarly, we may

also ask: given a distribution of states at time 0, what is the probability distribution of states at time 2,

or 3, · · · .

To generalize, let vector ⇡
n

denote the distribution of the chain at time n; given the probability

transition rule of a homogeneous DTMC, by the law of total probability, the probability distribution at

time n+ 1, denoted by ⇡
n+1 can be computed as follows:

⇡
n+1[j] = Pr{X(n+ 1) = j}

=
X

i2S
Pr{X(n) = i}Pr{X(n+ 1) = j | X(n) = i}

=
X

i2S
⇡n[i]P[i, j]

which, in matrix notation, is the equation

⇡
n+1 = ⇡

n

P. (3.1)

Alternatively, this can be written in terms of initial distribution

⇡
n

= ⇡0P
n. (3.2)

Now take the example of “Luck of Fortune”, suppose the initial distribution is ⇡0 = [1, 0, 0].

Given

P =

Poor Middle Rich

Poor 0.4 0.5 0.1

Middle 0.3 0.5 0.2

Rich 0.5 0.1 0.4

Then the answer to the question of “What is the luck of the dreamer be in the middle class in five

years?” can be analyzed as follows:

• ⇡1 = ⇡0P = [0.40000, 0.50000, 0.10000]

16

• ⇡2 = ⇡1P = [0.36000, 0.46000, 0.18000]

• ⇡3 = ⇡2P = [0.37200, 0.42800, 0.20000]

• ⇡4 = ⇡2P = [0.37720, 0.42000, 0.20280]

• ⇡5 = ⇡2P = [0.37828, 0.41888, 0.20284]. X

The solution says that, in five years, the dreamer is likely to stay in poor with probability 0.37828, is

like be in middle class with probability 0.41888, and is likely to become rich with probability 0.20284.

3.2.2 Recurrent, Transient, Irreducible Properties

Definition 6 (i j). We say a state j is reachable from state i and written by i j if 9n > 0, n 2
N,Pr{X(n) = j | X(0) = i} > 0; otherwise, we write i 6 j.

The definition says that starting from state i now, it is possible to go to state j at some time n in the

future. If no such n exists, then state j is not reachable from state i. Given a DTMC, state i is reachable

from state j if and only if there is a path in the DTMC graph between the two states. Consider Figure

3.2 for an example, we have state e reachable from states a, b, c, d, and e; state f is reachable from

states a, b, c, d, and f ; state a is reachable from states b, c, d; state b is reachable from states a, c, d;

state c is reachable from states a, b, d; and state d is reachable from states a, b, c. But states a, b, c, d, f

are not reachable from state e, neither are states a, b, c, d, e reachable from state f .

a b c d

e f

1/2

1/2

3/4

1/8

1/8

1/3

1/3

1/3

1/5

4/5

1 1

Figure 3.2: Another DTMC Example

17

Definition 7 (mutually reachable). If i j and j i, then states i and j are mutually reachable.

Definition 8 (transient state). A state i is called transient if there exists a state j such that i j and

j 6 i.

In the above example, states a, b, c and d are transient, because they can reach states e and f , but

not vice versa. Obviously, if a state i is transient, then this means there is a non-zero probability that

the DTMC never return to state i after leaving, and as time goes to infinity, the probability of being in

state i goes to zero.

Definition 9 (recurrent state). A state i is recurrent if starting in state i, the Markov chain will, with

probability 1, eventually return to the state.

In the above example, states e and f are recurrent. In the “Luck of Fortune” example, every state

is recurrent. Also, a recurrent state has infinitely many return times, which will be visited again later.

Based on the above definitions, we can now partition the state space S of a Markov chain into the

following two types of classes: One is called recurrent class, within which all states are mutually

reachable, and once a DTMC enters a recurrent class, it remains in that recurrent class forever. Another

is called transient class, within which all states are transient. Figure 3.3 shows an example partition

of recurrent class and transition class, in which the set of states {c, d, f} and the set of state {e} are

recurrent classes, and {a, b} is a transient class. For more rigorous discussions on recurrent classes, we

refer readers to [60].

Definition 10 (absorbing state). A state i is absorbing if it can reach only itself, i.e. the state has no

outgoing arcs leading to other states, but only has a self loop arc with probability one.

In the above example, states e and f are absorbing. Obviously, every absorbing state is also a

recurrent state.

Definition 11 (irreducible Markov chain). A Markov chain is said to be irreducible if its state space S
is a recurrent class, i.e., all states are mutually reachable; otherwise it is reducible.

For example, the DTMC shown in Figure 3.3 is reducible, because S is not a recurrent class. In

contrast, the “Luck of Fortune” DTMC example is irreducible.

18

a b c d

e f

1/2

1/2

3/4

1/8

1/8

1/3

2/3

1/5

4/5

1

1/2
1/2

all transient

recurrent

all recurrent

Figure 3.3: Classification of DTMC States

Definition 12 (periodicity). A recurrent state i is said to have period d
i

if any return to state i must

occur in multiples of d
i

time steps. Let gcd denote the greatest common devisor, then the period of a

state in DTMC is defined by:

d
i

= gcd{n : Pn[i, i] > 0}.

where n is a possible return time to state i, and there will be infinitely many return times for a recurrent

state i.

0 1

1

1

Figure 3.4: Recurrent DTMC with Period d = 2.

Take the example shown in Figure 3.4, when starting from state 0, it revisits 0 when n = 2,

n = 4, n = 6, · · · , so the period is 2. In fact, the possible returning time to both state 0 and state

1 are: {2, 4, 6, 8, 10, · · · }, so d0 = d1 = 2. In this case, if we start with the initial distribution, say

⇡0 = [1, 0], then ⇡
n

and ⇡
n+1 alternates between [1, 0] and [0, 1].

Definition 13 (aperiodic Markov chain). An irreducible DTMC is said to be aperiodic if there exists a

state i with period d
i

equal to 1, and periodic otherwise.

19

Intuitively, given an irreducible DTMC, if there exists a state i such that P[i, i] > 0, then the

DTMC would be aperiodic, because the set of returning time for i can be {1, 2, 3, · · · }, so the gcd for

i is d
i

= 1.

Definition 14 (ergodic Markov chain). An irreducible, aperiodic Markov chain (i.e., its states are all

aperiodic) is called ergodic Markov chain.

Consider the “Luck of Fortune” DTMC, shown in 3.1, it is irreducible and aperiodic, so the “Luck

of Fortune” DTMC is an ergodic Markov chain. Given the above definitions and properties, we are

now ready to describe several important performance measures for DTMCs.

3.2.3 Absorbing DTMCs

Definition 15 (absorbing DTMC). An absorbing DTMC is defined by the set of states each of which is

either a transient or an absorbing state, i.e., S = S
z

[S
a

, where S
z

is a set of transient states, and S
a

is a set of absorbing states.

By definition, the transition probability matrix P of an absorbing DTMC can be rearranged into the

following block structure:

P =

2

64
P[S

z

, S
z

] P[S
z

, S
a

]

0 I

3

75 (3.3)

where P[S
z

,S
z

] are the arcs from transient states to transient states, P[S
z

,S
a

] are the arcs from tran-

sient states to absorbing states, the block of 0 indicates no actual arcs from absorbing states to transient

states, and the identity matrix I (with dimension |S
a

⇥ S
a

|) contains the self-loop arcs from absorbing

to absorbing states only.

To this end, we discuss two types of performance measures that are tied to absorbing DTMCs:

mean time to absorption and limiting distributions. The former answers questions like “In the long run,

what is the average time that the DTMC takes to reach an absorbing state given an initial distribution?”

The latter answer questions like “In the long run, what is the probability that the DTMC eventually

reached each of the absorbing states?” Before we answer these questions, let’s look at several properties

followed by a fundamental theorem of associated with an absorbing DTMC. [13, 38, 50, 60] give more

detailed discussion about those properties and theorems.

20

Property 16. P

n[S
z

,S
z

] = P[S
z

,S
z

]n.

Proof. By induction on n: If n = 1, then the equation holds trivially. For n > 1, suppose Pn�1[S
z

,S
z

] =

P[S
z

,S
z

]n�1 holds. Then

P

n[S
z

,S
z

] = P

n�1
P[S

z

,S
z

]

= P

n�1[S
z

,S
z

]P[S
z

,S
z

] +P

n�1[S
z

,S
a

]0

= P[S
z

,S
z

]n�1
P[S

z

,S
z

]

= P[S
z

,S
z

]n.

Property 17. Let M be a square matrix with non-negative elements, with largest rowsum ↵ < 1.

lim
n!1

M

n = 0.

Proof. First, we show that the largest rowsum in M

n is at most ↵n, for 1 < n 2 N. We use proof by

induction. Base case: n = 1, in this case, we have Mn = M

1 = M, so it trivially holds that the largest

rowsum in M is at most ↵. Inductive case: Let r ⇥ r denote the dimension of rows and columns of

the square matrix M. Let ↵1, · · · ,↵r

, denote the rowsum value for each row in M, respectively, with

↵ = max{↵1, · · · ,↵r

}. We assume for any n > 2, it is true that the largest rowsum in M

n is at most

↵n. We show the largest rowsum in M

n+1 is at most ↵n+1. For convenience, let M0 denote the matrix

21

for Mn. Let �n
i

denote the rowsum value in M

0 corresponding to the ith row. Then,

�n+1
i

= M

0[i, 1] ·M[1, 1] + · · ·+M

0[i, r] ·M[r, 1]

+ M

0[i, 1] ·M[1, 2] + · · ·+M

0[i, r] ·M[r, 2]

· · ·

+ M

0[i, 1] ·M[1, r] + · · ·+M

0[i, r] ·M[r, r]

= M

0[i, 1] · (M[1, 1] + · · ·+M[1, r]) + · · ·+M

0[i, r] · (M[r, 1] + · · ·+M[r, r])

= M

0[i, 1] · ↵1 + · · ·+M

0[r, 1] · ↵
r

 (M0[i, 1] + · · ·M0[r, 1]) · ↵

 ↵n · ↵ = ↵n+1

We now have proved that for any n > 1, n 2 N, the largest rowsum in M

n is at most ↵n. Since ↵ < 1,

↵n goes to 0 if n goes to infinity. Therefore, all the rowsums in M

n go to 0 if n goes to infinity, which

implies all the elements in M

n goes to zero, thus lim
n!1M

n = 0.

Property 18.

lim
n!1

P[S
z

,S
z

]n = 0

Proof. From the absorbing DTMC block structure, we know every row of Pm[S
z

,S
a

] contains at least

one non-zero entry for some finite m, since each transient state will eventually reach an absorbing state.

As such, every row of Pm[S
z

,S
a

] = P[S
z

,S
a

]m sums to less than one. Therefore, by property 17, we

have

lim
n!1

P[S
z

,S
z

]n = lim
n!1

(P[S
z

,S
z

]m)n = 0.

This is to say, in the long run, the probability that the DTMC stay in all transient states goes to

zero, and the probability that the DTMC remain in absorbing states goes to one. That is, we have:

22

lim
n!1 Pr{X

n

2 S
z

} = 0, and lim
n!1 Pr{X

n

2 S
a

} = 1.

Theorem 19 (fundamental matrix). Let N denote the fundamental matrix [38, 60] for a given absorb-

ing DTMC, then

N = (I�P[S
z

,S
z

])�1 =
1X

k=0

P[S
z

,S
z

]k

Note that N[i, j] denotes the expected (total) number of visits to state j, given the DTMC is starts

in state i at time 0, where i, j are transient states. Consider the example shown in Figure 3.2. We have

S
z

= {a, b, c, d}, and S
a

= {e, f}. The transition probability matrix is:

P =

2

6666666666666666664

a b c d e f

a 0 1/2 0 0 1/2 0

b 3/4 0 1/8 0 1/8 0

c 0 1/3 0 1/3 0 1/3

d 0 0 1/5 0 0 4/5

e 0 0 0 0 1 0

f 0 0 0 0 0 1

3

7777777777777777775

The fundamental matrix is:

N = (I�P[S
z

,S
z

])�1 =

2

666666666664

a b c d

a 1 � 1/2 0 0

b �3/4 1 �1/8 0

c 0 �1/3 1 �1/3

d 0 0 �1/5 1

3

777777777775

�1

23

Plug in the above matrix (before the inverse) into a matrix calculator, we get:

N =

2

666666666664

a b c d

a 1.6461 0.8615 0.1154 0.0385

b 1.2923 1.7231 0.2308 0.0769

c 0.4615 0.6153 1.1538 0.3846

d 0.0923 0.1231 0.2308 1.0769

3

777777777775

The fundamental matrix says that if the DTMC starts in state a, then the expected number of visits to

state a is 1.6461; if it starts in state d, then the expected number of visits to state b is 0.1231, so on and

so forth.

One problem in obtaining N is that though in principle, the inverse of I�P[S
z

,S
z

] is computable,

in practice, the computation is very difficult in the perspective of both storage and efficiency, because

even though the DTMC might be sparse N is usually a dense matrix which could pose storage issue,

and due to the typically very big size of I�P[S
z

,S
z

], direct computation of its inverse can be inefficient.

Fortunately, there exists a way to avoid direct computation of the inverse for the relevant performance

measures which we will be describing below, followed by a practical method of computation.

Property 20 (mean time to absorption). Given an initial probability distribution ⇡0 for an absorbing

DTMC, the measure of mean time to absorption can be computed by summing over the elements of

vector m, with

m[j] =
X

i2Sz

N[i, j] · ⇡0[i] = [S
z

, j] · ⇡0[Sz

],

which denotes the expected number of visits to state j given ⇡0. Hence,

m = ⇡0[Sz

] ·N =
1X

k=0

⇡
k

[S
z

],

where ⇡
k

is the probability distribution at time k.

24

As an example, consider Figure 3.2 again. Suppose ⇡0 = [1/4, 0, 1/4, 0, 1/2, 0], then ⇡0[Sz

] =

[1/4, 0, 1/4, 0]. So the vector m can be computed as:

m = ⇡0[Sz

] ·N

= [1/4 · 1.6461 + 1/4 · 0.4615, 1/4 · 0.8615 + 1/4 · 0.6153,

1/4 · 0.1154 + 1/4 · 1.1538, 1/4 · 0.0385 + 1/4 · 0.3846]

= [0.5269, 0.3692, 0.3173, 0.10577] (3.4)

Finally, the measure of mean time to absorption, given ⇡0 = [1/4, 0, 1/4, 0, 1/2, 0], is

[0.5269 + 0.3692 + 0.3173 + 0.10577] = 1.3192.

Since our real interest is in the measure of mean time to absorption, not the fundamental matrix

itself, for easier computation, we can avoid direct computation of the inverse that we discussed earlier.

To do so, we rewrite the above equation:

m = ⇡0[Sz

] ·N

m(I�P[S
z

,S
z

]) = ⇡0[Sz

] ·N · (I�P[S
z

,S
z

])

m(I�P[S
z

,S
z

]) = ⇡0[Sz

]

�m(I�P[S
z

,S
z

]) = � ⇡0[Sz

]

m(P[S
z

,S
z

]� I) = � ⇡0[Sz

] (3.5)

From the last step, we can obtain the solution vector m by solving the above linear system. The benefits

of the method are obvious: in terms of storage, we now only need to store the matrix P � I which is

typically sparse; in terms of computation efficiency, the linear system can be solved in a very similar

way as solving for steady-state distribution for an ergodic DTMCs.

25

Now let’s see an example by considering the DTMC as shown in Figure 3.2 again. Let m =

[a, b, c, d], and multiply out the matrix equation,

[a, b, c, d] ·

2

666666666664

a b c d

a � 1 1/2 0 0

b 3/4 �1 1/8 0

c 0 1/3 �1 1/3

d 0 0 1/5 �1

3

777777777775

= [�1/4, 0, � 1/4, 0]

we obtain the following system of equations:

�a+ 3/4 b = �1/4

1/2 a� b+ 1/3 c = 0

1/8 b� c+ 1/5 d = �1/4

1/3 c� d = 0

Through a little work by hand, we obtain:

m = [137/260, 24/65, 33/104, 11/104] (3.6)

which exactly matches the result of equation 3.4, which are obtained by computing the inverse directly

through a matrix calculator (that’s why the numbers appear in floating point format).

Besides the measure of mean time to absorption, another natural question to ask on an absorbing

DTMC is that what is the probability that the DTMC eventually reached each of the absorbing states.

That is, what is the probability distribution when time goes to infinity. Formally, we want to know the

solution for:

lim
n!1

Pr{X(n) = i}

for all absorbing states i 2 S
a

.

26

Intuitively, we first try out Pn and come up with the following generalization:

P

n =

2

64
P[S

z

,S
z

]n (P[S
z

,S
z

]n�1 + · · ·+P[S
z

,S
z

] + I) ·P[S
z

,S
a

]

0 I

3

75

From earlier discussions, we know lim
n!1P[S

z

,S
z

]n = 0; and

lim
n!1

(P[S
z

,S
z

]n + · · ·+P[S
z

,S
z

] + I) = N.

So we have:

P

1 = lim
n!1

P

n =

2

64
0 N ·P[S

z

,S
a

]

0 I

3

75 (3.7)

From transient analysis, we know

⇡1 = lim
n!1

⇡
n

= lim
n!1

⇡0P
n

=⇡0 lim
n!1

P

n

= [⇡0[Sz

], ⇡0[Sa

]] ·

2

64
0 N ·P[S

z

,S
a

]

0 I

3

75

= [0, ⇡0[Sz

] ·N ·P[S
z

,S
a

] + ⇡0[Sa

]]

= [0, m ·P[S
z

,S
a

] + ⇡0[Sa

]] (3.8)

The last equations 3.8 says that the limiting distribution of an absorbing DTMC can be determined by

the chance of entering each of the absorbing states each time the DTMC visits a transient state, and

adding the probability that the process started in each absorbing state.

Continue from the previous DTMC example as shown in Figure 3.2, we have

m = [137/260, 24/65, 33/104, 11/104],

27

⇡0 = [1/4, 0, 1/4, 0, 1/2, 0],

and

P[S
z

,S
a

] =

2

66666664

1/2 0

1/8 0

0 1/3

0 4/5

3

77777775

By equation 3.8, we have

P1 =[0 | m ·P[S
z

,S
a

] + ⇡0[Sa

]]

=[0, 0, 0, 0 | [0.30962, 0.19038] + [1/2, 0]]

=[0, 0, 0, 0 | 0.80962, 0.19038]

Therefore, the DTMC is absorbed into state e with probability 0.80962, and into state f with probability

0.19038.

Finally, we note that unlike stationary distributions on ergodic DTMCs, the limiting distribution of

absorbing DTMCs depends on the initial distribution.

28

CHAPTER 4. TRADITIONAL MODEL CHECKING

In the field of formal methods in computer science, model checking refers to the process of checking

whether a given a model structure meets a specification of a relevant system. The main components of

traditional model checking technique include: A logic formalism that describes formal rules governing

property specifications; a model structure in the form of a finite state machine (FSM1) that represents

an abstraction of a real system, and a model checker that will then test if the property is true or false

automatically on the model structure.

Typically, the specification requirements concerns about the correctness behavior of a system (hard-

ware or software) including safety properties such as “no collision shall occur in a traffic light control

system”, liveliness properties such as “eventually, a service is offered”, or fairness constraints such

as “as long as there is a request, ack message is sent infinitely often”, etc.. One commonality of these

types of properties is that it does not depend on the time or probability to reach them, but only on which

states can be reached. For such properties, traditional logic formalisms such as linear-time temporal

logic (LTL) [58], computation tree logic (CTL) [20], and computation tree logic star (CTL*) [31] are

powerful, widely-used logics 2. These logics use atomic propositions and boolean operators to build

up complicated expressions describing state transition properties.

For this chapter in the following, we first describe a classic model structure that is commonly used

in traditional model checking, and then describe the most well known temporal logics namely LTL,

CTL, and CTL*.
1An FSM is a directed graph similar to DTMC but transitions between states are based on non-deterministic choice rather

than probability.
2As a historical note, LTL was invented first by philosopher Arthur Prior in the 1960s; and has been further developed on

by computer scientists A. Pnueli, Z. Manna, and other logicians; CTL was invented by E. Clarke and E. A. Emerson in the
early 1980s; and CTL* was introduced in 1986 by E. A. Emerson and J. Halpern [37].

29

4.1 Kripke Structure

Definition 21 (Kripke structure). By [37], a Kripke structure K over a set of atomic proposition AP
is a four tuple K = (S,S0, T, L) where

• S is a finite set of states.

• S0 ✓ S is a set of initial states.

• T ✓ S ⇥ S is a transition relation such that every s 2 S has some s0 2 S with (s, s0) 2 T .

• L : S ! 2AP is a labeling function that maps each state to a set of atomic propositions true in

that state.

A path in a Kripke structure K is an infinite sequence of states, denoted by ⇡ = s0, s1, s2, . . . such

that (s
i

, s
i+1) 2 T , for all i : i � 0; we use ⇡i to denote the suffix of ⇡ starting at s

i

(i.e., ⇡i is an

infinite sequence of states, whereas ⇡
i

denotes a state s
i

). A state, path formula is one that either holds,

or fails to hold, for a particular state, path, respectively. For a given structure K, if f is a state formula

(of a certain logic) and f holds true at state s in K, then it is written by s |= f ; otherwise, it is written

by s 6|= f (where |= denotes a “satisfaction” relation between a state and a temporal logic formula, and

s |= f is read as s satisfies f). Similarly, if f is a path formula (of a certain logic) and f holds true

along path ⇡ in K, then it is written by ⇡ |= f ; otherwise it is written by ⇡ 6|= f . Figure 4.1(a) shows

an example of Kripke structure, with initial state p. [20, 37] discusses more in detail about the model.

4.2 Computation Tree Logic (CTL)

Computation tree logic [19], or CTL for short, is a formal logic that is designed to express proper-

ties related to the correctness of system behaviors. The interpretation of the logic is described using a

computation tree. Figure 4.1(b) shows an example of infinite computation tree obtained by unwinding

the Kripke structure of figure 4.1(a).

Syntactically, a CTL formula has two path quantifiers: A and E which denote “all” computation

paths and “there exists” a computation path, respectively. A CTL path formula must have one of

the following temporal path operators: next operator X , until operator U , weak until operator V , all

30

p

q

q, f

p, f

(a) A Kripke Structure Example

p

q

q

q p, f

p, f

q, f

q, f

q, f p, f

p, f

(b) An Infinite Computation Tree

Figure 4.1: Unwinding the Kripke Structure ! Obtaining a Computation Tree

31

operator G, and future operator F . Among those, X , G, and F are unary operators that take one state

formula as an argument, and for all other path operators, namely U and V , are binary operators that

take two state formula as arguments.

Informally, let f, f1, f2 be state formulas, given a path ⇡ with starting state ⇡0, then, Xf means f

holds next time at ⇡1; Ff means f holds sometime in the future along ⇡; Gf means f holds globally

in the future; f1Uf2 means f2 holds at some state ⇡
j

, j � 0, and before that, f1 holds at all states ⇡
i

,

with 0  i < j; and f1V f2 means either f1Uf2 holds along ⇡, or f1 holds at all states along the path.

The following gives the formal syntax and semantics of CTL.

Definition 22 (CTL Syntax). Let AP be the set of atomic propositions, and p 2 AP , then CTL syntax

can be recursively defined as follows:

� ::= true | false | p | (¬�) | (� ^ �) | (� _ �) | A | E

where is a path formula and is recursively defined as follows:

 ::= � U � | � V � | G� | F� | X�.

Definition 23 (CTL Semantics). The semantics of CTL formulas can be recursively defined as follows:

• s |= true and s 6|= false for all s 2 S .

• s |= p iff p 2 L(s).

• s |= ¬� iff s 6|= �.

• s |= �1 ^ �2 iff s |= �1 and s |= �2.

• s |= �1 _ �2 iff s |= �1 or s |= �2.

• s |= A iff for every path with ⇡0 = s, ⇡ |= .

• s |= E iff there exists a path with ⇡0 = s, ⇡ |= .

• ⇡ |= X� iff ⇡1 |= �.

32

• ⇡ |= �1 U �2 iff 9j � 0,⇡
j

|= �2 and 8i : 0  i < j,⇡
i

|= �1.

• ⇡ |= �1 V �2 iff either 9j � 0,⇡
j

|= �2 and 8i : 0  i < j,⇡
i

|= �1, or 8i : 0  i,⇡
i

|= �1.

Also, we have:

AF� ⌘ A[trueU �]

EF� ⌘ E[trueU �]

¬AF� ⌘ ¬A[trueU �] ⌘ EG¬�

¬EF� ⌘ ¬E[trueU �] ⌘ AG¬�

Since the top-level CTL formula � is a state formula, the path quantifier must be paired with a path

formula to be valid. By using concrete path formulas, we get ten pairs of state formulas in the form of

AX,EX,AF,EF , AG,EG, AU,EU,AV,EV , and each of these state formulas can be expressed in

terms of the three operators EX,EG, and EU [18, 37]:

AX f = ¬EX(¬f)

EF f = E[true U f]

AG f = ¬EF (¬f)

AF f = ¬EG(¬f)

A[f1 U f2] ⌘ ¬(E[¬f2 U(¬f1 ^ ¬f2)] _ EG¬f2)

⌘ ¬E[¬f2 U(¬f1 ^ ¬f2)] ^ ¬EG¬f2

A[f1 V f2] ⌘ ¬E[¬f2 U(¬f1 ^ ¬f2)]

E[f1 V f2] ⌘ ¬A[¬f2 U(¬f1 ^ ¬f2)]

Figure 4.2 shows example structures that satisfy AFp,EFp,AGp,EGp, respectively. For the structure

of AFp, along each path, an atomic proposition p is labeled, which implies property p holds true in that

state. For the structure of EFp, there is one path where p is labeled, so EFp holds true with respect

to the initial state. For the structure of AGp, p is labeled along every path and every state, hence AGp

33

p p p p

p

(a) AFp

p

(b) EFp

p

p

p

p p

p

p

p

p

p

p

(c) AGp

p

p

p

p

(d) EGp

Figure 4.2: Example Structures Whose Starting States Satisfy the CTL Formulas, Respectively.

34

holds true with respect to the initial state. For the structure of EGp, there exists one path along which

p is labeled on every state, hence EGp holds true with respect to the initial state of the given structure.

Finally, given a Kripke structure K, and a CTL state formula �, the satisfaction set, denoted by

Sat(�), is defined by:

Sat(�) = {s 2 S | s |= �}

and K satisfies � if and only if � holds in all its initial states s0. Interested readers should refer to [37]

for the detailed discussion on computing the set Sat(�).

4.3 Linear-time Temporal Logic (LTL)

Linear-time temporal logic [58], or LTL for short, is designed to express properties related to linear

time paths. Like CTL, LTL has the same set of temporal path operators, namely X, U, V, F , and G,

and they have the exact same interpretations on paths as CTL. However, unlike CTL, LTL’s top level

formulas are path based, rather than state-based. The following gives formal definitions about its syntax

and semantics.

Definition 24 (LTL Syntax). Let AP be a set of atomic propositions, and p 2 AP , then LTL syntax

can be recursively defined as follows:

 ::= p | (¬) | (^) | G | F | X | U | V .

where X , U , V G, and F are temporal operators that denote “next”, “until”, “weak until (a variant

of until)”, “all (states)”, and “there exists (a future state)”, respectively, for a path.

Definition 25 (LTL Semantics). The semantics of LTL formulas can be recursively defined as follows:

• ⇡ |= p iff p 2 L(⇡0).

• ⇡ |= ¬ iff ⇡ 6|= .

• ⇡ |= 1 ^ 2 iff ⇡ |= 1 and ⇡ |= 2.

• ⇡ |= X iff ⇡1 |= .

35

• ⇡ |= G iff 8i � 0,⇡i |= .

• ⇡ |= F iff 9i � 0,⇡i |= .

• ⇡ |= 1 U 2 iff 9j � 0,⇡j |= 2 and 8i : 0  i < j, ⇡i |= 1.

• ⇡ |= 1 V 2 iff either 9j � 0,⇡j |= 2 and 8i : 0  i < j,⇡i |= 1, or 8i : 0  i,⇡i |= 1.

Figure 4.3 illustrates example paths corresponding to the semantics of LTL formulas, respectively.

Specifically, Figure 4.3(a) shows p is labeled everywhere along the path, so Gp holds for the given path.

Figure 4.3(b) shows p is labeled in the next state relative to the beginning of the path, so Xp holds for

the given path. Figure 4.3(c) shows p is labeled somewhere in a state along the path, so Fp holds for

the given path. Figure 4.3(d) shows q is labeled somewhere in a state along the path, before that, p is

labeled in all states along the path, so pUq holds for the given path.

Note that although the syntax of LTL does not have path quantifier A or E as CTL does, at the

outermost level, LTL paths are viewed as all paths [37]. For example, an LTL formula Gp is the same

as saying AGp, FGp is the same as saying A(FGp), Xp_XXp is the same as saying A(Xp_XXp),

and so on.

p p p p p · · ·
(a) Gp

p · · ·
(b) Xp

p · · ·
(c) Fp

p p p p q · · ·
(d) pUq

Figure 4.3: LTL Formula Examples.

Given a Kripke structure K, an LTL formula expresses a set of paths in K that are satisfied by

the formula. Figure 4.4 illustrates some examples of LTL formulas in Büchi automata representation,

where nodes of double circles represent the accepting states. Büchi automata is an important notion in

model checking [64]. Typically, given a model structure K and an LTL formula , a Büchi automaton

is built for ¬ . By computing a cross product of the automata and K, a set of paths that are both in

K and accepted by the automata can be produced; if the set is empty, then K satisfies , otherwise the

36

output of the paths are regarded as a counter example. In this discussion, we omit the details of LTL

model checking and refer interested readers to [64, 65] for the topic of applying Büchi’s techniques to

LTL, and [40] for direct property specification in automata.

p

¬p

true

(a) GFp

q

q

p

p

q

(b) Fp

p

p

q

q

f

(c) pUq

Figure 4.4: Example LTL formulas in Büchi Automata Representation.

4.4 LTL vs. CTL

From previous discussion, we know there is a lot in common between LTL and CTL formulas. In

this section, we illustrate two different scenarios where LTL and CTL can have different expressive

powers.

From Figure 4.5, we see for every path with respect to the initial state of the Kripke structure K,

there exists a future state i such that p is labeled in every state along the future path ⇡i. For example,

we have paths:

p, p, p, p, · · · ,

p, ¬p, p, p, p, · · · ,

p, p, p, ¬p, p, p, p, · · · ,

etc.. So it satisfies LTL formula FGp. However, this is not true with CTL formula AFAGp, because

there exists a path p, p, p, · · · , none of the states from which it satisfies AGp, since from any state of

the path, there exists a path where ¬p holds, which contradicts AGp.

37

Now, let’s look at Figure 4.6. There is a path p,¬p, p,¬p, · · · where p and ¬p are labeled alterna-

tively along the path, which make the LTL formula FGp not satisfiable, because this formula requires

to have labeled p everywhere eventually along every path. In contrast, this structure satisfies CTL for-

mula AFEGp, since along all paths, there exists a future state from which there exists a path where p

holds along the path.

p ¬p p

Figure 4.5: K |=LTL FGp, K 6|=CTL AFAGp

p ¬p

Figure 4.6: K 6|=LTL FGp, K |=CTL AFEGp

4.5 Computation Tree Logic Star (CTL*)

CTL* [31] is an extension of CTL that unifies LTL and CTL. That is, both LTL and CTL are subsets

of CTL*. Its complete syntax consists of state formulas

� ::= true | p | (¬�) | (� ^ �) | (� _ �) | A | E ,

and path formulas

 ::= � | (¬) | (^) | (_) | U | V | G | F | X .

Unlike LTL or CTL, with CTL*, and � are mutually recursive. The semantics of CTL* is omit-

ted here, because they are merely the combination of CTL and LTL. As such, CTL* is strictly more

expressive than both CTL and LTL. For example, the CTL* formula:

AFGp _ AFEGp

38

can neither be expressed by CTL, nor LTL. As another example, E(GFp) means there is a path along

which p holds true infinitely often.

Clearly, CTL is a restricted subset of CTL* that permits only branching-time operators: each of

the linear-time operators G, F , X , U , and V must be immediately preceded by a path quantifier, e.g.

AG(EF (p)). LTL is also a restricted subset of CTL* that consists of formulas that have the form Af

where f is a path formula in which the only state subformulas permitted are atomic propositions. e.g.

A(FGp).

39

CHAPTER 5. PROBABILISTIC MODEL CHECKING

From the previous chapter, we learned that temporal logics such as LTL [58] and CTL [19] are

powerful, widely used logics for properties that depend only on which states can be reached, such

as “the system never reaches a deadlocked state”, and not on the time or probability to reach them.

To express performance related properties, these logics have been extended by adding or modifying

operators (e.g. PLTL [22], PCTL [33], pCTL* [3], DCTL[25], CSL [6], asCSL [5], CSLTA [28]), and

can express properties such as “with probability at least 0.98, the system will not reach a deadlocked

state before time 50.”

For probabilistic model checking, the underlying model structure is typically a Markov chain, either

discrete time or continuous time, which have been discussed in an earlier chapter. So for this chapter,

we describe several stochastic (a.k.a. probabilistic) logics that are most relevant to our work.

5.1 Probabilistic Computation Tree Logic (PCTL)

Probabilistic Computation Tree Logic [33], or PCTL for short, is an extension of CTL for express-

ing real-time and probabilities in systems. From the perspective of language specification, the main

difference between PCTL and CTL is that, PCTL allows specification of probability bounds on paths,

with or without deadline t. As such, PCTL replaces the CTL path quantifiers of A and E with a uni-

versal P
./v

operator, which says that the probability of all paths satisfying � is ./ v, where ./ is a

comparison operator, P means “probability”, v is a probability value specified by user, and � is a state

formula similar to that of CTL.

Definition 26 (PCTL syntax). Let AP be a set of atomic propositions, and p 2 AP , the syntax of

PCTL can be defined recursively as follows:

40

� ::= p | ¬� | (� _ �) | P
./v

 , ::= �Ut � | X�

where t 2 N [{1}, ./2 {�, , >, < }, and v 2 [0, 1].

Like CTL, the top level formula � is a state formula in PCTL. Unlike CTL, however, PCTL is

interpreted over a variant of DTMC structure. The following gives formal definition of PCTL’s inter-

pretation structure.

Definition 27 (Interpretation Structure of PCTL). Let D = (S,⇡0,P) be a DTMC, and L : S ! 2AP

be a labeling function, where AP denotes a set of atomic propositions, then an underlying structure of

PCTL is a pair (D,L).

idle

s0

fail

s3

trying

s1

succs2

1
0.2

0.5

0.3

1

1

Figure 5.1: An Example of Discrete Time Probabilistic Structure

Figure 5.1 shows an example PCTL interpretation structure, with S = {s0, s1, s2, s3},⇡0[s0] =

1,⇡0[s1] = ⇡0[s2] = ⇡0[s3] = 0, AP = {fail, idle, trying, succ}, and

P =

2

66666664

0 1 0 0

0 0.2 0.3 0.5

0 0 1 0

1 0 0 0

3

77777775

.

41

Definition 28 (PCTL Path [33]). A path ⇡ in a probabilistic structure is an infinite sequence of states

⇡ = s0, s1, s2, · · · such that for each i > 0, i 2 N,P[s
i

, s
i+1] > 0.

Definition 29 (Prefix). A prefix in D = (S, s0,P, L) is a finite sequence p = (⇡0,⇡1, · · · ,⇡n�1) 2
Sn, or an infinite sequence p = (⇡0,⇡1, · · ·) 2 S!, where |p| = n 2 N [{!} is the length of the

sequence.

Definition 30 (PCTL Semantics). Let p, q 2 AP , and � be a state formula, the semantics of PCTL can

be defined recursively as follows:

• s |= p iff p 2 L(s).

• s |= ¬� iff s 6|= �.

• s |= �1 _ �2 iff s |= �1 or s |= �2.

• ⇡ |= �1 Ut �2 iff 9j  t : ⇡
j

|= �2 and 8i : 0  i < j, ⇡
i

|= �1.

• ⇡ |= X� iff ⇡1 |= �.

• s |= P
./v

 iff the probability measure, with respect to the initial state s, of the set of paths ⇡ for

which ⇡ |= is ./ v.

Note that the shorthand P
./v

 concerns the quantity of probability measure, which we have dis-

cussed before in general cases. In this context, the probability space is a pair of (X ,⌃), where X is the

set of paths starting in s and ⌃ is a �-algebra over X generated by sets of paths with a common finite

prefix p. The probability measure, with respect to starting state s = ⇡0, for the set of paths that satisfy

the path formula is then defined in terms of the prefix as follows:

Pr({⇡ | p = ⇡0, · · · ,⇡n}) = P[⇡0,⇡1] ⇤ · · · ⇤P[⇡
n�1,⇡n],

for n > 0, and Pr({⇡ | p = ⇡0}) = 1, for n = 0. Then, the probability measure, with respect to the

starting state s, of the set of paths ⇡ for which ⇡ |= is defined as Pr({⇡ | ⇡ 2 X ,⇡ |= , s = ⇡0}).
For more details regarding PCTL’s probability measure, interested reader should refer to [33].

42

Take Figure 5.1 as an example, one can have PCTL specifications such as

• P�0.95true U
1succ asserts that with at least 0.95 probability that the system will eventually

reach the succ state.

• P�0.5true U
100 fail asserts that with at least 0.5 probability that the system will reach fail state

before 100 time unit.

Like CTL, PCTL allows nesting of P,X,U operators in the pairs of PX and PU .

• A() ⌘ P�1()

• E() ⌘ P
>0()

5.1.1 Algorithm For The Case of P
./v

X�

In this case, we first compute probability measure for the formula P./ vX�, then compare the

quantity to v, for each starting state s 2 S . Let f be a vector such that f [j] = 1 if and only if j |= � for

all j 2 S , then following the semantic of X� and the definition of its probability measure, we have

⇡[i] =
X

8j
P[i, j] · f [j] = P[i,S] · f

⇡ =P · f (5.1)

Then, a state i |= P
./v

(X�) if and only if ⇡[i] ./ v. For convenience, let h be the final solution vector

such that h[i] = 1 if and only if i |= P
./v

(X�), then we have:

h[i] = 1 iff ⇡[i] ./ v (5.2)

Consider Figure 5.1 for example, suppose we want to know which states satisfy P
<3/4(X¬fail).

First, we have f = [1, 1, 1, 0], corresponding to states idle, trying , succ, and fail , respectively. Then,

43

we have

⇡ = P · f =

2

66666664

0 1 0 0

0 0.2 0.3 0.5

0 0 1 0

1 0 0 0

3

77777775

·

2

66666664

1

1

1

0

3

77777775

=

2

66666664

1

0.5

1

1

3

77777775

Therefore, the solution vector is h = [0, 1, 0, 0], i.e., only state trying satisfy the formula P
<3/4(X¬fail).

5.1.2 Algorithm For The Case of P
./v

�1 U
t�2, t 2 N [{1}

In this case, the computation involves two main steps: the first main step is to do a simple model

modification. The second main step is to compute the probability measure based on the modified model.

Given the semantics of the path formula �1 Ut�2, we can modify the model such that the states

satisfying �2 are made absorbing (called success states); then the states that neither satisfy �1 nor �2

are made absorbing (called failure states), and the rest of states are unchanged. This makes sense,

because by semantics once a DTMC reaches a success state then computation of the relevant path stops

at that state; similarly, once if a DTMC reaches a failure state then the probability of the relevant path

must be zero and any outgoing edge from there is not needed. For the following discussion, let S
a

✓ S
to denote the set of absorbing states, and S

z

✓ S to denote the set of transient states.

Now, let P (t, s) denote the probability measure for the set of paths that satisfy �1 Ut�2, with

respect to starting state s; let t be a nonnegative integer, then P (t, s) can be computed by the following

recursive algorithm.

Algorithm 5.1 Compute P (t, s)

if s |= �2 then
return 1

end if
if s 6|= �1 or t = 0 then

return 0
end if
return ⌃

s

02SP(s, s0) · P (t� 1, s0)

44

The above algorithm terminates when it encounters one of the following three base cases:

• . If s is a target state that satisfies �2, then regardless of time t, the probability measure is 1 and

the program terminates.

• Otherwise, if s is a failure state that does not satisfy �1, then regardless of time t, the probability

measure is 0 and the program terminates;

• Otherwise, if time t reaches 0, then the probability measure is 0 and the program terminates.

The only remaining case is that t is greater than 0, and s satisfies �1, in this case, it recursively computes

its probability measure until one of the above stopping cases is met. The detailed proof about the

correctness of the algorithm is presented in [33].

Alternatively, the formula can be computed by using matrix-vector product, which yields a vector

of probability measures with respect to each starting state s 2 S . Specifically, let P be the probability

transition matrix corresponding to the new DTMC, let f be the vector such that f [i] = 1 if i |= �2 and

0 otherwise. Then, for a starting state i, we can determine the probability measure by

Pr{X(t) |= �2 | X(0) = i} (5.3)

which can be rewritten as

X

8j
Pr{X(t) = j | X(0) = i} · f [j] (5.4)

Then, for all starting states i 2 S , we have

⇡
t

= P

t · f = P · ⇡
t�1, with ⇡0 = f . (5.5)

Finally, we have h[i] = 1 iff ⇡
t

[i] ./ v.

Consider Figure 5.1 for example, suppose we want to know which states satisfy P�0.3¬fail U3succ.

First, we observe state succ (success state) is already absorbing, so no need to change; we make state

45

fail (failure state) absorbing; states idle and trying are unchanged. Figure 5.2(a) and 5.2(b) show the

modified DTMC model and the corresponding probability transition matrix, respectively.

idle

s0

fail

s3

trying

s1

succs2

1
0.2

0.5

0.3

1

1

(a) Modified Example Structure of Figure 5.1

P =

2

666664

idle trying succ fail

idle 0 1 0 0
trying 0 0.2 0.3 0.5
succ 0 0 1 0
fail 0 0 0 1

3

777775

(b) Probability Transition Matrix

Figure 5.2: Modification Example

Next, we compute the probability measure like the transient analysis for DTMC.

⇡0 = f = [0, 0, 1, 0]

⇡1 = P · ⇡0 = [0, 0.3, 1, 0]

⇡2 = P · ⇡1 = [0.3, 0.36, 1, 0]

⇡3 = P · ⇡2 = [0.36, 0.372, 1, 0]

Finally, we have h = [1, 1, 1, 0], i.e., the idle, trying, and succ states satisfy P�0.3¬failU3succ.

While the above algorithms are good when t is bounded, it requires infinite computation when t

is unbounded [33]. We now discuss a computation method when t goes to infinity. For simplicity,

let P
./v

�1 U
1�2 ⌘ P

./v

�1 U�2. To compute a state i that satisfy P
./v

�1U�2, first we do the same

DTMC modification as we discussed for the time bounded version. In the new DTMC, we want to

measure

⇡1[i] = lim
t!1

P

t · f

for all state i 2 S . By the semantics of the formula, we know the set of failure states always have

46

probability 0, and the set of success states always have probability 1. So it remains to compute the set

of transient states; note that for those which are not transient states, that means they are not able to

reach the success states therefore they are counted as failure states as well. As per the discussion earlier

in section 3.2.3, for the absorbing part of states, we have

⇡1[S
a

] = f [S
a

]

while the transient part of states is

⇡1[S
z

] = N ·P[S
z

,S
a

] · f [S
a

]

which can be written as

N

�1⇡1[S
z

] = N

�1 ·N ·P[S
z

,S
a

] · f [S
a

]

(I�P[S
z

,S
z

]) · ⇡1[S
z

] = P[S
z

,S
a

] · f [S
a

]

(P[S
z

,S
z

]� I) · ⇡1[S
z

] = �P[S
z

,S
a

] · f [S
a

] (5.6)

From previous chapters, we know ⇡1[S
z

] can be determined by solving the linear system of equations

as shown in 5.6. Finally, we can obtain the whole vector h by examining ⇡1 in exactly the same way

as for time bounded until.

5.2 PLTL and pCTL*

Analogous to PCTL, Courcoubetis et al. [22] describe a probabilistic model checking algorithm for

LTL, known as PLTL, and denoted by P
./v

 , where is an LTL path formula, and P
./v

 means the

probability measure of the set of paths ⇡ for which ⇡ |= is ./ v. From the perspective of language

semantics, the difference between PCTL and PLTL is the same as the difference between CTL and LTL.

In the former case, the path formula is limited to CTL’s path formula which is a subset of LTL’s path

formula, whereas in the latter case, the path formula is LTL’s path formula. Note that the probability

operator P
./

of PLTL cannot be nested.

47

pCTL* [3] is a branching time logic similar to PCTL (both are state-based logics). Analogous to

CTL*, it is a unification of PCTL and PLTL. In the following, let � denote a state formula and denote

a path formula. Its syntax is given by:

� ::= p | ¬� | (� _ �) | P
./v

where the path formula is given by

 ::= � | (¬) | (_) | U | X .

Unlike PCTL, a state formula � is also a path formula in pCTL*, and unlike PLTL, every top-level

formula is a state formula in pCTL*. Since the semantics is exactly the same as that of PCTL and

PLTL, respectively, we omit the interpretation of pCTL* formulas.

48

CHAPTER 6. REAL-VALUED PERFORMANCE MODELING FORMALISMS

While probabilistic model checking logics takes a big step towards combining performance anal-

ysis and model checking techniques, and can express performance related properties such as “with

probability at least 0.95, the system will not reach a deadlocked state before time 100”, they are limited

to producing only true or false responses, precisely because they are logics (although in practice, a real

valued response can sometimes be obtained for the outer most path quantifier).

In this chapter, we introduce a real valued formal language [52], towards the unification of model

checking and performance evaluation. The formal language serves a main contribution for this thesis.

It is a further generalization of probabilistic model checking approach, in the sense that it expands

quantitative analysis from the value range of {0, 1} to [0,1). The following discusses more details

about the language and computation algorithms as well.

6.1 Computation Tree Measurement Language

Computation Tree Measurement Language, or (CTML) for short, is an extension of PCTL. Syntac-

tically, it is similar to CTL and PCTL in a sense that it is a state-based tree structured language. And

they share path operators such as next (X), until (U), and weak until (V), etc. Semantically, however,

CTML quite differs from PCTL, and perhaps all the formal stochastic logics to our best knowledge

thus far, because CTML takes (non-negative) real values as input and output real values, as opposed to

true/false (or 1/0) values as input and output true/false (or 1/0) values. Although in recent research,

some probabilistic model checking tools such as PRISM [42, 44] are able to incorporate operators like

P? (adjusted from P
./

v in PCTL) to get probabilistic real values, they cannot “nest” real values, be-

cause a stochastic logic, by nature and as a whole, is still a logic.

49

The real-valued nature of the CTML language is natural for expressing performance questions such

as, “what is the probability, the system will reach a deadlock state before time t?”. But its significance

comes from the nesting power. Through nesting of the real valued formula, not only this departs it from

other formal stochastic logics, but also it yields a wider variety of performance queries such as: “when

a message is sent, what is the expected time before it is received?”, etc.. To our best knowledge, such

queries are not expressible in existing formal stochastic logics in the general case.

6.1.1 Basic Definitions

Definition 31 (path). Let D = (S,P,⇡0) be a CTML interpretation structure, a path in D, denoted by

⇡, is defined as an infinite sequence (s0, s1, s2, . . .) 2 S! such that P[s
i

, s
i+1] > 0, i � 0, i 2 N.

Definition 32 (state formula). A CTML state formula � is defined as a function that maps a given state

space S to nonnegative real values:

� : S ! R⇤.

Definition 33 (restricted state formula). A restricted CTML state formula ' is defined as a function

that maps a given state space S to the interval [0, 1]:

' : S ! [0, 1].

Definition 34 (path formula). A CTML path formula is a function : S! ! R⇤.

Definition 35 (restricted path formula). A CTML restricted path formula % is defined as a function that

maps from the set of paths to the interval [0, 1].

% : S! ! [0, 1].

For this work, we wish to determine the expected value of a path formula . So below, we describe

some properties on that will allow us to define a measure for this expected value.

50

For a given prefix p = (⇡0, . . . ,⇡n�1) (see definition 29), define S!p as the set of all infinite-length

paths that start with prefix p. Note that, if the length of p is n 2 N, we have

S!p = {⇡0}⇥ · · ·⇥ {⇡
n�1}⇥ S!; (6.1)

otherwise, if the length of p is !, then we have S!p = {p}. Note S!() = S!, where () denotes the

zero-length sequence. Let ⌃
s

denote the �-algebra generated by the set {S!p | p is a prefix}. Since for

any prefix p, the set S!p is isomorphic to some closed interval [a, b], we have that ⌃
s

is isomorphic to

the Borel algebra on reals.

Definition 36 (determines on DTMC). We say a prefix p determines a path formula if, for any

paths x,x0 2 S!p , (x) = (x0); since all paths must have the same value for in this case, we denote

this quantity as (p). Note that any infinite prefix determines .

Definition 37 (Finitely Measurable on DTMC). We say a path formula is finitely measurable on a

DTMC structure D if for every path ⇡ 2 S!p with (⇡) > 0, either:

1. there exists a finite prefix p such that (⇡) = (⇡0) for any paths ⇡,⇡0 2 S!p and we denote the

quantity by (p), or

2. the path ⇡ has probability measure zero.

Definition 38 (Measure of the Expected Value of on DTMC). For any finitely measurable formula

 , we define the measure µ

: GS ! R⇤ by

µ

(S!p) =

8
><

>:

 (⇡)
Q|⇡|�1

i=1 P(⇡
i�1,⇡i) if ⇡ = (⇡0,⇡1, . . .) determines

P
s2S µ

(S!(p,s)) otherwise

with µ

(;) = 0.

Also, for the following discussion, we assume a set AF of atomic state formulas, and a set AR of

atomic restricted state formulas. We are now ready to define CTML.

51

6.1.2 Syntax of CTML

The syntax of CTML is strongly influenced by PCTL and CTL. As it is mentioned previously, both

CTML and PCTL use temporal path operators, namely, “next”, “until”, and “weak until”; and they both

use a superscript t 2 N [{1} that allows “time” related specification for until and weak until path

operators. Moreover, neither PCTL nor CTML allow path operators be arbitrarily nested, but rather,

they must appear in a pair with a path quantifier for being nested. The main differences between CTML

and PCTL are now listed below:

• CTML does not use ./2 {<,>,,�} operator as a subscript for quantifier P , but rather, it uses

./ as a binary operator between two CTML state formulas.

• CTML allows operators � 2 {+,⇥} between two state CTML formulas for performing arith-

metic operations, which PCTL does not have.

• CTML allows subscript � 2 {+,⇥} in until and weak until operators so that these operators can

either sum or multiply values along a path until a condition is met.

• CTML allows a single “path quantifier”, M , that indicates the expected value (mean) of a path

formula, which has no counter part in PCTL.

• CTML has a 1� (read as “one minus”) unary operator for subtraction from one.

• Among all these syntactic differences, the uttermost one is CTML uses a basic set of atomic

function AF , as opposed to a set of atomic propositions AP used in PCTL.

Definition 39 (CTML Syntax). Let f 2 AF , r 2 AR, and let one, zero denote constant values of 1

and 0, respectively, the syntax of CTML can be defined recursively as follows:

� ::= f | ' | �� � | M

' ::= one | zero | r | � ./ � | ' · ' | 1� ' | M%

 ::= �Ut

� � | �V t

� � | �U+ � | X � | 'U⇥ � | 'V⇥ �

% ::= 'Ut

⇥ ' | 'V t

⇥ ' | 'U⇥ ' | 'V⇥ ' | X'

52

Finally, we note that a “top-level” formula in CTML is a state formula, similar in style to CTL and

PCTL, except that we require some “restricted” formulas.

6.1.3 Semantics of CTML

The semantics of CTML are defined in terms of real-valued functions, rather than a satisfaction

relation, while still preserving the existing meaning of temporal logics such as PCTL and CTL. We

now give the formal semantics of the operators appearing in the language.

Definition 40. (CTML Semantics) Let f, g be state formulas, then the semantics of CTML can be

recursively defined as follows:

• If h = f ./ g, then h(s) = 1 if f(s) ./ g(s) holds, otherwise h(s) = 0.

• If h = f + g, then h(s) = f(s) + g(s).

• If h = f · g, then h(s) = f(s) · g(s).

• If h = 1� f , then h(s) = 1� f(s).

• If h = M , then h(s) = µ

(S!
s

).

• If = Xf , then (⇡0,⇡1, . . .) = f(⇡1).

• If = f Ut

� g, with � 2 {+,⇥} and t 2 N [{1}, then

 (⇡0,⇡1, . . .) =

8
>>>><

>>>>:

⇣J
j�1
i=0 f(⇡i)

⌘
· g(⇡

j

) if 9j : 0  j  t, g(⇡
j

) > 0 and
80  i < j, g(⇡

i

) = 0

0 otherwise

with f U1
� g ⌘ f U� g.

53

• If = f V t

� g, with � 2 {+,⇥} and t 2 N [{1}, then

 (⇡0,⇡1, . . .) =

8
>>>>>>>><

>>>>>>>>:

J
t

i=0 f(⇡i) if 80  i  t, g(⇡
i

) = 0

⇣J
j�1
i=0 f(⇡i)

⌘
· g(⇡

j

) if 9j : 0  j  t, g(⇡
j

) > 0 and
80  i < j, g(⇡

i

) = 0

0 otherwise

with f V 1
� g ⌘ f V� g.

Now we show that is finitely measurable on the Markov chain as required by M . The formula

Xf has prefix of length 2, and thus is finitely measurable. To see that the path formula f U� g is

finitely measurable, consider any path (⇡0,⇡1, . . .) with (⇡0,⇡1, . . .) > 0. For this path, there must

exist a j satisfying the first condition, namely j  t, g(⇡
j

) > 0, and 8i < j, g(⇡
i

) = 0. Since formula

f Ut

� g, has the finite prefix (⇡0, . . . ,⇡j), it is finitely measurable. To see that the path formula f V� g

is finitely measurable, for the case when t is an integer, then clearly has a finite prefix (⇡0, . . . ,⇡t) as

of the case for U operator, and thus is finitely measurable. For infinite t, when f is a restricted state

formula and � = ⇥, we have that (x) is positive for path x = (⇡0,⇡1, . . .) if and only if the product

f(⇡0)f(⇡1) · · · has at most finitely many terms less than one. In a finite DTMC, this can occur either

if g(⇡
j

) > 0 for some j, or if the path contains infinitely many “loops” on states where f evaluates to

one. The only such paths with non-zero probability measure are those that eventually reach a recurrent

class, where f evaluates to one for every state in the recurrent class. We therefore have that formula

f V⇥ g is finitely measurable, for restricted state formulas f .

Finally, we can define the measure of the top-level formula � on DTMC structure D based on the

initial distribution as follow.

Definition 41 (measure of D
�

). Given a DTMC structure D = (S,P,⇡0), the total value of a CTML

formula � on D is defined by

D
�

=
X

s2S
�(s)⇡0(s). (6.2)

54

Take the Figure 5.1 as an example, we now show several specification examples. For convenience,

in the following, let 0.5 be a (constant) atomic state formula; alternatively, we can use a symbol v as an

atomic state formula such that v(s) = 0.5 for every state s.

• “With probability at least 0.5, the system will eventually reach fail state before 100 time unit.”

This query can be specified by both PCTL and CTML as shown below.

PCTL: P�0.5true U
100 fail

CTML: (Mone U100
⇥ fail) � 0.5

• “With probability at least 0.5, the system will eventually reach a trying state, and since then it

will keep trying until fail” This query cannot be expressed by PCTL, but can be expressed by

both PLTL and CTML as shown below:

PLTL: P�0.5F (trying ^ trying U fail)

CTML: Mone U⇥(trying ·M trying U⇥ fail)) � 0.5

• “What is the expected amount of time that the system will be keep trying before it reaches the

succ state?” This query can neither be expressed by PCTL, nor by PLTL, but can be expressed

by CTML as shown below:

CTML: M trying U+ succ

Since this query is under conditional distribution, according to the conditional expectation defi-

nition 2.5, the result must be divided by the quantity of M trying U⇥ succ.

• “Given that a process just reached the trying state, then what is the expected time until failure?”

First, we determine the expected time until fail starting from each possible state. Then, we filter

out all but the states where the process has been trying. We then sum over all trying states, the

probability to reach that one “first” multiplied by the expected time to failure starting from that

55

state. This gives us the expression

CTML: Mone U⇥((Mone U+ fail) · trying).

The final quantity can be obtained using conditional probability law, which says that Pr{B|A} =

Pr{B\A}
Pr{A} . In this case, we just divide the result by MoneU⇥trying .

To our best knowledge, this type of query cannot be expressed by any existing (formal) stochastic

logics such as CSL [6], CSRL [7], DTRMC [2], CSLTA [29], etc., either because they do not

operate on real values (such as CSL, CSLTA), or because they cannot nest real values (such as

CSRL, DTRMC).

6.2 Algorithms

Given the CTML language definition, the computation of algebraic formulas such as � + �, � · �,

1� �,� ./ �, etc. can be carried out directly by their semantics. In this section, we present algorithms

for computing CTML formulas, namely MX , MUt

⇥ , MUt

+ , MV t

⇥ , and MV t

+ , where t 2 N [
{1}. When t is unbounded, the algorithms for bounded t may not be feasible due to possibly infinite

computation. For that reason, we give different algorithms for bounded time t and unbounded time t.

The state formula for h = MX f is given by h(s) =
P

s12S f(s1)P[s, s1], in this case the vector h

can be determined simply as h = Pf , which is similar to PCTL in style, except the vector f can contain

real-valued quantities, rather than merely one or zero.

6.2.1 Algorithms For The Case of MU

To compute h = M , = fUt

� g, we first modify the model as follows:

1. states s
g

for which g(s
g

) > 0 are made absorbing, and this set is grouped into S
g

(called success

states);

2. states s
n

from which it is impossible to reach a state in S
g

are also made absorbing, and this set

is grouped into S
n

(called failure states). Note that the formula evaluates to zero for this set of

states.

56

3. the remaining states are all transient states, and grouped into S
z

= S \ (S
g

[S
n

).

The model modification uses a similar approach to PCTL, but here the set S
g

has formula g that requires

to be evaluated to a positive real value, rather than value of one (i.e. true in PCTL).

Note that it can be shown that the state formula M evaluated on (S,P,⇡0) is equivalent to M

evaluated on (S,P0,⇡0): any path ⇡ with (⇡) > 0 must contain a state ⇡
j

with g(⇡
j

) > 0, and since

the prefix (⇡0, . . . ,⇡j) determines , all that remains is to demonstrate that measure µ

(S!p) gives the

same value on P

0 as it does on P, which follows from the fact that rows of P0 and P are equal for

states in S
z

. The benefit of this modification is that, under P0, for any path p = (⇡0,⇡1, . . .) such that

 (p) > 0, it must be the case that at time t, ⇡
t

2 S
g

.

For the following discussions, we assume P has already been modified for operator U . f denotes

a corresponding vector of state formula f , g denotes a corresponding vector of state formula g, and

F = diag(f).

6.2.1.1 Case of MU+

In this case, first, we modify f such that f(s
g

) = 0 for all s
g

2 S
g

, and keep g(s) as is for all s 2 S .

Following the semantics of the until with addition formula, for the state formula of h
t

= Mf Ut

+ g,

we have:

h
t

(s0) =
X

(s1,...,st)2St

(f(s0) + · · ·+ f(s
t�1))P[s0, s1] · · ·P[s

t�1, st]g(st) (6.3)

=
X

(s1,...,st)2St

f(s0)P[s0, s1] · · ·P[s
t�1, st]g(st) +

X

s12S
P[s0, s1]ht�1(s1) (6.4)

where the recurrence terminates with h0(s) = 0 for all s.

The recurrence (6.4) can be written as the matrix equation

h

t

= FP

t

g +Ph

t�1 (6.5)

with terminating condition h0 = 0.

57

In practice, we want to avoid computing P

t directly. So, for finite t, (6.5) can be computed using

auxiliary vector ⇡
t

= P

t

g = P⇡
t�1 with ⇡0 = g.

For unbounded until, the state formula for h = Mf U+ g is given by h = lim
t!1Mf Ut

+ g.

Defining h = lim
t!1 h

t

, from (6.5) we obtain the linear system (I�P)h = F(lim
t!1P

t)g. Since

P is an absorbing DTMC, lim
t!1P

t is given by (3.7). Now, let y = lim
t!1P

t

g. Note that y[i] is

equal to the probability that the DTMC eventually reaches a state in S
g

, starting from state i. We can

split the system based on S = S
z

[S
n

[S
g

to obtain

2

66664

y(S
z

)

y(S
n

)

y(S
g

)

3

77775
=

2

66664

0 NP[S
z

,S
n

] NP[S
z

,S
g

]

0 I 0

0 0 I

3

77775

2

66664

0

0

g(S
g

)

3

77775

and the solution of this system gives y(S
z

) = NP[S
z

,S
g

]g(S
g

), y(S
n

) = 0, and y(S
g

) = g(S
g

).

Vector y(S
z

) can be obtained by solving the linear system

(I�P[S
z

,S
z

])y(S
z

) = P[S
z

,S
g

]g(S
g

). (6.6)

Since h[s] is zero for s 2 S
n

[S
g

, the linear system for h becomes

2

66664

I�P[S
z

,S
z

] P[S
z

,S
n

] P[S
z

,S
g

]

0 0 0

0 0 0

3

77775

2

66664

h(S
z

)

0

0

3

77775

=

2

66664

F(S
z

,S
z

) 0 0

0 F(S
n

,S
n

) 0

0 0 0

3

77775

2

66664

y(S
z

)

0

g(S
g

)

3

77775
, which produces a single equation

(I �P[S
z

,S
z

])h(S
z

) = F(S
z

,S
z

)y(S
z

). (6.7)

Therefore, we can obtain h by first solving (6.6) for y, and then solving (6.7).

58

6.2.1.2 Case of MU⇥

Similar to until with addition, assume that the model has already been modified, with S = S
g

[
S
n

[S
z

, and P has already been modified for U accordingly as well. Now we modify f such that

f(s
g

) = 1 for s
g

2 S
g

, and keep g as is. Following the semantics for until with multiplication, the state

formula for h
t

= Mf Ut

⇥ g is given by

h
t

(s0) =
X

(s1,...,st)2St

f(s0) · · · f(st�1)P[s0, s1] · · ·P[s
t�1, st]g(st) (6.8)

=
X

(s1,...,st)2St

f(s0)P[s0, s1]ht�1(s1) (6.9)

where the recurrence terminates with h0(s) = g(s).

Now, let Mult(t, s) denote the measure of expected value for the set of paths quantified by path

formula f Ut

⇥ g, with respect to starting state s, then the following pseudocode gives more intuitive

algorithm for computing recurrence (6.9) discussed above.

Algorithm 6.1 Compute Mult(t, s)

if t = 0 then
return g(s)

end if

if g(s) = 0 || f(s) = 0 then
return 0

end if

return ⌃
s

02Sf(s) ·P[s, s0] ·Mult(t� 1, s0)

Alternatively, recurrence (6.9) can be written as the matrix equation

h

t

= FPh

t�1 (6.10)

with terminating condition h0 = g. For a finite t, h
t

can be computed iteratively. Note that unrolling

the recurrence gives us h
t

= (FP)tg.

59

For unbounded until, we obtain h = lim
t!1(FP)tg. If no value of f is greater than one, then it

can be shown that lim
n!1(F

z

P[S
z

,S
z

])n = 0, where F

z

is shorthand for F(S
z

,S
z

), since P is the

transition probability matrix of an absorbing DTMC with transient states S
z

. It then follows that

(I� F

z

P[S
z

,S
z

])
1X

i=0

(F
z

P[S
z

,S
z

])i = I

and therefore (I�F

z

P[S
z

,S
z

])�1 exists. Looking at the solution vector h, if we again split the system

based on S = S
z

[S
n

[S
g

, we can obtain

h[S
z

] = lim
n!1

nX

i=0

(F
z

P[S
z

,S
z

])i
!
F

z

P[S
z

,S
g

]g(S
g

)

= (I� F

z

P[S
z

,S
z

])�1
F

z

P[S
z

,S
g

]g(S
g

),

while h[S
n

] = 0 and h[S
g

] = g(S
g

). This implies that the linear system

(I� F

z

P[S
z

,S
z

])h[S
z

] = F

z

P[S
z

,S
g

]g(S
g

) (6.11)

can be solved to obtain h[S
z

].

6.2.2 Algorithm For the Case of MV

To compute h = Mf V t

� g, we use a slightly modified transition probability matrix P

0 similar to

the case for U in the sense that the states s
g

for which g(s
g

) > 0 are made absorbing, and we denote

this set of states as S
g

. By the semantics of the path formula f V t

� g, if there is no s
g

with g(s
g

) > 0,

then f is summed up or multiplied up to the tth state, for a given path. So in this case, there is no need

to identify and partition the other two sets of states namely S
z

and S
n

as the case of until.

6.2.2.1 Case of MV+

We assume that P has already been modified for V as discussed above, and that f(s
g

) = 0 for

s
g

2 S
g

. Additionally, after constructing S
g

, we modify g such that all zero values are replaced with

60

one. With these modifications, the state formula for h
t

= Mf V t

+ g is given by

h
t

(s0) =
X

(s1,...,st)2St

(f(s0) + · · ·+ f(s
t

))P[s0, s1] · · ·P[s
t�1, st]g(st) (6.12)

where the recurrence terminates with h0(s) = f(s) for all s. Since (6.12) is identical to (6.3), we

obtain the same matrix equation as strong until with addition, h
t

= FP

t

g + Ph

t�1, except we use a

different terminating vector h0.

CTML does not currently support V+ in the unbounded case, because such a formula produces

values of infinity whenever there is a recurrent class C with S
g

\ C = ;, and f(s) > 0 for some s 2 C.

While these cases are easy to determine, issues with infinity in the language must be resolved (e.g.,

determining values for 1 � 1 or 1 · 0) before CTML can support unbounded V+.

6.2.2.2 Case of MV⇥

Again, assume that P has already been modified for V as discussed above, except we can add states

with f(s) = 0 and g(s) = 0 to the set S
n

. Additionally, we modify f such that f(s
g

) = 1 for s
g

2 S
g

,

and after these modifications are complete, we modify g so that all zero values are replaced with the

value one. Then, the state formula for h
t

= Mf V t

⇥ g becomes

h
t

(s0) =
X

(s1,...,st)2St

f(s0) · · · f(st)P[s0, s1] · · ·P[s
t�1, st]g(st) (6.13)

where the recurrence terminates with h0(s) = f(s) · g(s) for all s. Since (6.13) is identical to (6.8), we

obtain the same matrix equation as strong until with multiplication, h
t

= FPh

t�1, but with terminating

condition h0 = Fg.

Alternatively, let WeakMult(t, s) denote the measure of expected value for the set of paths quanti-

fied by path formula f V t

⇥ g, with respect to starting state s, then the following pseudocode gives more

intuitive algorithm for computing recurrence (6.13) discussed above.

For unbounded weak until, consistent with the discussion in Definition 40, the state formula h =

Mf V⇥ g is equivalent to the state formula h0 = Mf U⇥ g0 where g0(s) has value g(s) if g(s) > 0, has

value one if s is in a recurrent class where f evaluates to one for every state in the recurrent class, and

61

Algorithm 6.2 Compute WeakMult(t, s)

if t = 0 then
return f(s)g(s)

end if

if g(s) = 0 || f(s) = 0 then
return 0

end if

return ⌃
s

02Sf(s) ·P[s, s0] · WeakMult(t� 1, s0)

has value zero otherwise. Therefore, an algorithm for MV⇥ is to determine the recurrent classes (after

making states with g(s) > 0 absorbing), set the function g0 appropriately, and invoke the algorithm for

MU⇥.

6.2.3 Computational Complexity

For CTML, the overall computational complexity is O(|�| ·Poly(|S|)), where |�| counts the num-

ber of operators in formula �, and Poly(|S|) denotes polynomial time in the size of |S|. This is similar

to the complexity for PCTL [33], but better than the O(2|�| · Poly(|S|)) complexity to compute the

probability for a PLTL formula [22]. Specifically, assuming we limit our computations to floating-point

or rational values, the trivial operations f ./ g and f � g can be computed in O(|S|) time. The opera-

tion MXf requires matrix-vector multiplication, which can be done in O(|D|) time, where |D| refers

to the size of the DTMC (the number of non-zero entries in matrix P plus the number of states). The

bounded operators MfUt

� g and MfV t

� g can be computed in O(t · |D|) time, and the unbounded

operators MfUt

� g and MfV⇥g can be computed using solution of linear systems, which requires

O(Poly(|S|)). Therefore, assuming t is at most polynomial in |S|, the value of a CTML formula � can

be determined in O(|�| · Poly(|S|)) time.

62

CHAPTER 7. COMPARING CTML’S EXPRESSIVE POWER WITH PCTL AND

PLTL

In the previous chapter, we introduced CTML syntax, semantics, algorithms, and proofs. We men-

tioned that the expressive power of CTML, compared with the existing stochastic logics, are in two

aspects: 1) it can express real values from 0 to infinity; 2) it can nest real values. While it is obvious

that neither PLTL nor PCTL can express general real values that CTML can express, it is not clear that

how much a strict subset of CTML, alone, can express for the corresponding PLTL formulas and/or

PCTL formulas.

In this chapter, we investigate the expressibility results of a strict subset of CTML, namely, the

restricted sublanguage of CTML (where the real values is limited to the range of [0, 1]), by comparing

it to PLTL and PCTL.

7.1 CTML vs. PLTL

In terms of probability measures, rather than general real valued quantities, one obvious difference

between CTML and PLTL is that PLTL cannot express probability measures of path formulas nested

with time bounded operators such as Mone U⇥(M left Ut

⇥ eat). The second advantage of CTML is

that its overall computational complexity of CTML is polynomial in the size of both the specification

formula and the input model, whereas PLTL requires exponential time in the size of specification

formula and polynomial in the size of the model structure [22]. For example, if an LTL formula

consists of n until operators in right recursion such as a1U(a2U(· · · (an�1Uan))), then it requires

computational complexity of O(2n|M |), where |M | denotes the size of the model. In this section, we

show a strict sublanguage of CTML, in which a state formula is restricted to the real value of [0, 1], that

can express a sublanguage of PLTL characterized by right recursion.

63

Note that for the following discussion, when the context is clear, we use the same atomic symbols

such as a, b, · · · , for both CTML and PLTL. Let L be the labeling function for LTL expressions. Let

PrD
s

() denote the probability that LTL path formula holds, and �D(s) denote the value of CTML

state formula �, starting from state s in DTMC D. When the context is clear, we use Pr
s

() rather

than PrD
s

(), and �(s) rather than �D(s).

Lemma 42. Let be an LTL path formula, and � be a CTML state formula, such that for any DTMC

structure D and any starting state s in D, Pr
s

() = �(s). Then,

Pr
s

0(X) = (MX�)(s0), for all s0 2 S.

Proof. Suppose Pr
s

() = �(s) for all s 2 S , then by LTL’s semantics, we have ⇡ |= X iff ⇡1 |= .

Let Pr(⇡1) denote the probability for the path ⇡1 |= . Let ⇡10 denote the starting state for the suffix

⇡1. Then, we have

Pr
s

0(X) =
X

⇡|=X
⇡0=s

0

Pr(⇡) by PLTL’s semantics

=
X

⇡12S

X

⇡

1
0=⇡1

⇡

1|=

P[s0,⇡1] · Pr(⇡1)

=
X

⇡12S
P[s0,⇡1] ·

X

⇡

1
0=⇡1

⇡

1|=

Pr(⇡1)

=
X

⇡12S
P[s0,⇡1] · �(⇡1) derived CTML semantics

= (MX�)(s0)

Therefore, we have Pr
s

0(X) = (MX�)(s0) holds for all s0 2 S .

64

Lemma 43. Let be an LTL path formula, and � be a CTML state formula, such that for any DTMC

structure D and any starting state s in D, Pr
s

() = �(s). Then for any atomic symbol a,

Pr
s

0(aU) = (MaU⇥ �)(s
0), for all s0 2 S.

Proof. Suppose Pr
s

() = �(s) for all s 2 S . Then by LTL’s semantics, we have ⇡ |= aU iff

⇡s |= , and before that, we have ⇡0 |= a, . . . ,⇡s�1 |= a; that is, it requires the suffix ⇡s that satisfy

 , and ⇡s must be preceded by a sequence of 0 or more number of symbol a. Let Pr(⇡s) denote the

probability of ⇡s. Let ⇡i0 denote the starting state of the suffix ⇡i. Let ⇠s denote the set of path segments

(⇡0, . . . ,⇡s) such that ⇡i |= a, 0  i < s,⇡i0 = ⇡
i

,⇡s |= ,⇡
s

= ⇡s0. Then by PLTL’s semantics, we

have

Pr
s

0(aU) =
X

(s0,...,⇡s)2⇠s

X

⇡

s
0=⇡s

⇡

s|=

P[s0,⇡1] · · · · ·P[⇡
s�1,⇡s] · Pr(⇡s) by PLTL semantics

=
X

(s0,...,⇡s)2⇠s
P[s0,⇡1] · · · · ·P[⇡

s�1,⇡s]
X

⇡s=⇡s
0

⇡

s|=

Pr(⇡s)

=
X

(s0,...,⇡s)2⇠s
P[s0,⇡1] · · · · ·P[⇡

s�1,⇡s] · �(⇡s) derived CTML semantics

= (MaU⇥ �)(s
0)

Therefore, we have Pr
s

0(aU) = (MaU⇥ �)(s0) holds for all s0 2 S .

Lemma 44. Let be a LTL path formula , and � be a CTML state formula, such that for any DTMC

structure D and any starting state s in D, Pr
s

() = �(s). Also, let a be a LTL atomic proposition and

a0 be a CTML atomic formula such that for a given path ⇡ in D ⇡0 |= a iff a0(⇡0) = 1 and ⇡0 6|= a iff

a0(⇡0) = 0. Then,

Pr
s

(a ^) = (a0 · �)(s), for all s 2 S.

65

Proof. Suppose Pr
s

() = �(s) for all s 2 S , then by LTL’s semantics, we have ⇡ |= a ^ iff

⇡0 |= , and ⇡0 |= a. By PLTL’s semantics, since a is an atomic symbol, Pr
s

(a ^) = 1 · Pr
s

() if

a holds on s, and 0 otherwise. By CTML’s semantics, (a0 · �)(s) = a0(s) · �(s) = �(s) if a0(s) = 1

and 0 otherwise. Therefore, we have Pr
s

(a ^) = (a0 · �)(s), for all s 2 S for all s 2 S .

Lemma 45. Let be an LTL path formula, and � be a CTML state formula, such that for any DTMC

structure D and any starting state s in D, Pr
s

() = �(s). Then,

Pr
s

(¬) = 1� �(s), for all s 2 S.

Proof. Suppose Pr
s

() = �(s) for all s 2 S , then by LTL’s semantics, we have ⇡ |= ¬ iff ⇡ 6|=
starting from state s. By the probability measure definition, we have Pr

s

(¬) = 1 � Pr
s

() =

1� �(s).

Definition 46 (Right-recursive LTL Formula). Let a be any atomic symbol, then the right recursive

LTL formula 0 can be defined by the following grammar:

 0 ::= a | X 0 | a ^ 0 | ¬ 0 | aU 0

We now present a translation algorithm, called translate(0), that takes a right recursive LTL

formula 0 as input, and returns a translated CTML formula �, for Pr(0).

For example, given 0 = aU(bU(c ^ d)), translate(0) can go recursively as follows:

1. case aU 0 : � = MaU⇥ (translate(bU(c ^ d)));

2. case bU 0 : � = MaU⇥(MbU⇥ (translate (c ^ d)))

3. case c ^ 0 : � = MaU⇥(MbU⇥(c· (translate (d))))

4. case d : � = MaU⇥(MbU⇥(c · d)).

66

Algorithm 7.1 translate (0)

Input: 0

Output: �

switch 0 do
case a

return a

case X 0

return MX translate (0)

case aU 0

return MaU⇥ translate (0)

case a ^ 0

return a· translate (0)

case ¬ 0

return 1� translate (0)

Theorem 47 (Pr(0) = �). Given any right-recursive LTL formula 0, it is expressible in CTML with

Pr
s

(0) = �(s), for a given DTMC structure D and starting state s, where � = translate(0) based

on the translation Algorithm 7.1.

Proof. In case a is an atomic symbol, we have Pr
s

(a) = a(s) for all s 2 S trivially. For all other

cases, it directly follows from Lemma 42, Lemma 43, Lemma 44, and Lemma 45. Hence, we have one

to one mapping from the right recursive PLTL formula Pr
s

(0) to CTML formula �0(s).

7.2 CTML vs. PCTL

Theorem 48. For any PCTL state formula �, there exists a CTML state formula �0 such that, for any

DTMC and any state s, s |= � iff �0(s) = 1 and s 6|= � iff �0(s) = 0.

Proof. Proof by induction on the structure of PCTL grammar.

• Base case: Given a PCTL atomic proposition p 2 AP , there is a restricted CTML atomic

function p0 2 AF such that p0(s) = 1 iff s |= p, and p0(s) = 0 iff s 6|= p.

• Inductive case: If �,�1,�2 are PCTL state formulas with CTML equivalents �0,�01,�02 such

that s |= �, s |= �1, s |= �2 iff �0(s) = 1,�01(s) = 1, and �02(s) = 1, respectively, and

s 6|= �, s 6|= �1, s 6|= �2 iff �0(s) = 0,�01(s) = 0, and �02(s) = 0, respectively. Then,

67

– s |= ¬� iff s 6|= � iff �0(s) = 0 iff �0 < one(s) = 1; and s 6|= ¬� iff s |= � iff �0(s) =

1 iff �0 < one(s) = 0.

Given s |= ¬� iff s 6|= �, we have �0(s) = 0, so �0(s) < one(s) holds in CTML, hence

�0 < one(s) = 1. On the other hand, if �0 < one(s) = 1 in CTML, then this implies

�0(s) = 0, which implies s 6|= �, therefore s |= ¬� in PCTL.

If s 6|= ¬�, then it implies s |= ¬¬� = s |= �. So we have �0(s) < one(s) does not

hold, which implies �0(s) < one(s) = 0 and �0(s) = 1 in CTML. On the other hand,

if �0 < one(s) = 0 in CTML, then this directly translates to s 6|= ¬� by the above case

analysis.

– s |= �1 ^ �2 iff �01 · �02(s) = 1; and s 6|= �1 ^ �2 iff �01 · �02(s) = 0;

If s |= �1 and s |= �2, then �01(s) = 1, �02(s) = 1, then we have �01(s) · �02(s) = 1, so

�01 · �02(s) = 1. If �01 · �02(s) = 1, then we must have �01(s) = 1 and �02(s) = 1, which

implies s |= �1 and s |= �2; therefore, s |= �1 ^ �2.

If s 6|= �1^�2, then this implies s 6|= �1 or s 6|= �2, or both s 6|= �1 and s 6|= �2; this implies

we have �01(s) = 0, or �02(s) = 0, or both �01(s) = 0 and �02(s) = 0, so �01 · �02(s) = 0. If

�01 · �02(s) = 0, then we must have either �01(s) = 0, or �02(s) = 0, or both �01(s) = 0 and

�02(s) = 0; this implies s 6|= �1 or s 6|= �2; therefore, s 6|= �1 ^ �2.

– s |= �1 _ �2 iff �01 + �02 > zero(s) = 1; and s 6|= �1 _ �2 iff �01 + �02(s) = 0.

If s |= �1 _ �2, then we have s |= �1, or s |= �2, or s |= �1, and s |= �2; this implies

�01(s) = 1, �02(s) = 0, or �01(s) = 0, �02(s) = 1, or �01(s) = 1, �02(s) = 1; whichever the

case, we have (�01 + �02) > zero(s) = 1. On the other hand, if (�01 + �02) > zero(s) = 1,

then we have either �01(s) = 1, or �02(s) = 1, or both; then, we have s |= �1 _ �2.

If s 6|= �1 _ �2, then we have s 6|= �1 and s 6|= �2; this implies �01(s) = 0 and �02(s) = 0,

hence �01 + �02(s) = 0. If (�01 + �02) > zero(s) = 0, then it must be �01(s) = 0 and

�02(s) = 0; this implies s 6|= �1 and s 6|= �2, hence s 6|= �1 _ �2.

– ⇡ |= X� iff X�0(⇡) = 1; and ⇡ 6|= X� iff X�0(⇡) = 0.

If ⇡ |= X�, then by its semantics in PCTL, we have ⇡1 |= �, which is equivalent to

X�0(⇡) = �0(⇡1) = 1 in CTML. If X�0(⇡) = �0(⇡1) = 1, then it is equivalent to ⇡1 |= �

68

in PCTL, then we have ⇡ |= X�. If ⇡ 6|= X�, then by its semantics in PCTL, we have

⇡1 6|= �, which is equivalent to X�0(⇡) = �0(⇡1) = 0 in CTML. If X�0(⇡) = �0(⇡1) = 0,

then it is equivalent to ⇡1 6|= � in PCTL, hence, ⇡ 6|= X�.

– ⇡ |= �1 U
t �2 iff �01 U

t

⇥ �02(⇡) = 1; and ⇡ 6|= �1 U
t �2 iff �01 U

t

⇥ �02(⇡) = 0.

If ⇡ |= �1 U
t �2, then by its semantics in PCTL, 9j : 0  j  t,⇡

j

|= �2, and for all

0  i < j,⇡
i

|= �1, which is equivalent to say, 9j : 0  j  t such that �02(⇡j) = 1, and

for all 0  i < j,�01(⇡i) = 1. The reverse also holds trivially by their definition.

If ⇡ 6|= �1 U
t �2, then by its semantics in PCTL, there does not exist a j : 0  j 

t,⇡
j

|= �2, or for some j : 0  j  t,⇡
j

|= �2, but before that, there does not a sequence

of 0  i  j such that ⇡
i

|= �1; this implies either there is no j such that ⇡
j

(�02) = 0,

or we have ⇡
j

(�02) = 0 for some j : 0  j  t, and before that there exists some i, with

⇡
i

(�01) = 0, therefore, we have �01 U
t

⇥ �02(⇡) = 0. If �01 U
t

⇥ �02(⇡) = 0, then this implies

either there does not exist a j such that ⇡
j

6|= �2, or for some i,⇡
i

6|= �1, i < j, hence, we

have ⇡ 6|= �1 U
t �2.

– s |= P
./v

X� iff MX�0 ./ v(s) = 1; and s 6|= P
./v

X� iff MX�0 ./ v(s) = 0. Let ⇠

and ⇠0 denote the set of paths such that ⇡ |= X� and X�0(⇡) = 1, with respect to starting

state s, in PCTL and CTML, respectively. By previous induction, we know ⇠0 = ⇠. Then,

by PCTL’s semantics, we have s |= P
./v

X� iff
⇣P

⇡2⇠ P[⇡0,⇡1]
⌘
./ v. By CTML’s

semantics, we have MX�0(s) =
P

⇡2⇠0 X�
0(⇡)·P[⇡0,⇡1] =

P
⇡2⇠0 P[⇡0,⇡1]. Therefore,

we have s |= P
./v

X� iff MX�0 ./ v(s) = 1, and s 6|= P
./v

X� iff MX�0 ./ v(s) = 0.

– s |= P
./v

�1U
t�2 iff M�01U

t

⇥ �02 ./ v(s) = 1; and s 6|= P
./v

�1U
t�2 iff M�01U

t

⇥ �02 ./

v(s) = 0. Let ⇠ and ⇠0 denote the set of paths such that ⇡ |= �1U
t�2 and �01U

t

⇥ �02(⇡) =

1, with respect to starting state s, in PCTL and CTML, respectively. By previous in-

duction, we know ⇠0 = ⇠. Then, by PCTL’s semantics, we have s |= P
./v

�1U
t�2 iff

⇣P
⇡2⇠ P[⇡0,⇡1] · · · · ·P[⇡

t�1,⇡t]
⌘
./ v. By CTML’s semantics, we have M�01U

t

⇥ �02(s) =
P

⇡2⇠0 �
0
1U

t

⇥ �02(⇡)·P[⇡0,⇡1]·· · ··P[⇡
t�1,⇡t] =

P
⇡2⇠0 P[⇡0,⇡1]·· · ··P[⇡

t�1,⇡t]. There-

fore, we have s |= P
./v

�1U
t�2 iff M�01U

t

⇥ �02 ./ v(s) = 1, and s 6|= P
./v

�1U
t�2 iff

M�01U
t

⇥ �02 ./ v(s) = 0.

69

Table 7.1: A Strict Subset of CTML Formulas that Cover PCTL

PCTL A Subset of CTML Formulas

�,�1,�2 (state formula) �0,�01,�
0
2 (restricted state formula)

¬� �0 < one

�1 ^ �2 �01 · �02
�1 _ �2 (�01 + �02) > 0

X� X�0

�1U
t�2 (�01U

t

⇥ �02)

P
./v

X� MX�0 ./ v

P
./v

�1U
t�2 (M�01U

t

⇥ �02) ./ v

Table 7.1 lists a strict subset of CTML formulas that covers PCTL.

Corollary 49. CTML is strictly more expressive than PCTL.

Proof. From Theorem 48, we know for each PCTL formula �, there is a CTML equivalent formula

�0 such that s |= � iff �0(s) = 1; and s 6|= � iff �0(s) = 0. Since CTML has additional operators

with no PCTL counterparts such as U+, V+, etc., it follows that CTML is strictly more expressive than

PCTL.

70

CHAPTER 8. ACTION AND STATE BASED FORMALISMS

In this chapter, we describe a new formal language that is syntactically the same, but semantically

more powerful than CTML, for supporting multiple actions, and paths featured by a combination of

states and actions. The new language is largely inspired by asCSL [5] and CSLTA [29], for reasoning

about both state and action properties over probabilistic systems. Unlike asCSL and CSLTA, however,

this language works naturally with the performance measures of reward functions [17, 18, 55] that

are used to be specified within high level models. In the following, we first give the definition of the

language. Then, we present a translation algorithm that converts asCTML to CTML, and a proof for

the correctness of the algorithm. After that, we discuss how CTML can be simulated through asCTML

as interim results. Finally, we discuss some closely related works.

8.1 Action and State Based Computation Measurement Language

Action and state based computation measurement language, or asCTML for short, is designed to

express performance queries based on action and/or state properties over probabilistic systems. The

main differences between asCTML and CTML are in their semantics, the interpretation structure, the

underlying paths, and the basic set of atomic functions. The following discusses in more detail.

Definition 50 (MAMC structure). A DTMC with multiple actions, or MAMC for short, is a tuple (S ,

ACT , �, �, ⇡0), where

• S is a finite set of states.

• ACT is a finite set of action symbols.

• � : S ⇥ACT ! S specifies the state transitions.

71

• � : S ⇥ ACT ! [0, 1] specifies the transition probabilities, under the constraint that 8s 2
S, �(s, ACT) =

P
a2ACT �(s, a) = 1.

• ⇡0 : S ! [0, 1] is an initial probability distribution with
P

s2S ⇡0[s] = 1.

Note that by the definition of �, if (s, a) = (s, b), then �(s, a) = �(s, b) and t = t0, where t, t0

are the next states that a, b lead to, respectively. That is, given a state s, different next states implies

different actions associated with s.

0

1

2

3

a
=
0.
5

c =
0.2b =

0.3

a
=
1

b
=

0.
5

c
=

0.
5

a
=
0.
2

d
=
0.
2

c = 0.6

Figure 8.1: An Example of MAMC Structure

Figure 8.1 shows an example of MAMC structure, with S = {0, 1, 2, 3}, ACT = {a, b, c, d}; at

state 0, action a occurs, leading to state 1, with probability 0.5; when action b occurs, leading to state

2, with probability 0.3; when action c occurs, leading to state 2, with probability 0.2; at state 2, actions

b and c occur, leading to state 1, with probability 0.5 each, so on and so forth.

Definition 51 (path in MAMC). Let Y = (S,ACT ,�,⇡0) be a MAMC structure, a path in Y is

an infinite sequence ⇡ = (s0, a0), (s1, a1), . . . 2 (S ⇥ ACT)!, with ⇡
i

= (s
i

, a
i

), �(s
i

, a
i

) > 0,

s
i+1 = �(s

i

, a
i

), and i 2 N.

Given a MAMC structure Y , a path formula is a function : (S ⇥ ACT)! ! R⇤, where R⇤

denotes nonnegative reals. A prefix in an MAMC structure Y is a finite sequence of state, action pairs

p = (s0, a0), . . . , (sn�1, an�1) 2 (S ⇥ACT)n,

72

or an infinite sequence p = (s0, a0), (s1, a1) . . . 2 (S ⇥ ACT)!, where p

i

is the ith element in p,

and |p| = n 2 N [{!} is the length of the sequence. For a given prefix p, define ⌦!p as the set of all

infinite length paths that start with prefix p. If |p| = n 2 N, we have

⌦!p = (s0, a0)⇥ . . .⇥ (s
n�1, an�1)⇥ ⌦! (8.1)

otherwise, if |p| = !, then we have ⌦!p = {p}.

Definition 52 (determines on MAMC). We say a prefix p determines if, for any paths x,x0 2 ⌦!p,

 (x) = (x0); since all paths must have the same value for in this case, we denote this quantity as

 (p). Note that any infinite prefix determines .

Definition 53 (finitely measurable on MAMC). We say a path formula is finitely measurable on a

MAMC structure Y if, for every path x 2 ⌦!p with (x) > 0, either there exists a finite prefix p with

x 2 ⌦!p that determines , or the probability measure for path x is zero.

Like CTML, we wish to define a measure of the expected value of a path formula .

Definition 54 (measure of the expected value of on MAMC). For any finitely measurable formula

on Y = (S,ACT , �, �,⇡0), we define the measure of the expected value µ

: G
⇡0 ! R⇤ by

µ

(⌦!p) =

8
><

>:

 (p)
Q|p|�1

i=1 �(s
i

, a
i

) if p = ((s0, a0), (s1, a1), . . .) determines

P
(s,a)2S⇥ACT µ

(⌦!(p,(s,a))) otherwise

with µ

(;) = 0.

Note that in this measure definition of the extended model of MAMC, since the starting point is

now a pair of state, action, the probability of the initial action associated with (s0, a0) is not included,

rather, it is treated as part of the initial distribution and captured at the end.

Like CTML, the range of values allowed by asCTML formulas depends on the operator. Unlike

CTML, however, asCTML has a new type of basic formula called state+action formula.

73

Definition 55 (state+action formula). A state+action formula ' formula is defined as a function that

maps from a pair of state and action to a nonnegative real value.

' : S ⇥ACT ! R⇤

Definition 56 (restricted state+action formula). A restricted state+action formula '
r

is defined as a

function that maps from a pair of state and action to a real value in interval [0, 1].

'
r

: S ⇥ACT ! [0, 1]

In principle, a state+action formula f ranges over S and ACT , meaning they are defined on every

pair of (s, a) 2 S⇥ACT ; in practice, however, only the pairs with positive value of f are given explic-

itly. To this end, we assume the following sets of atomic items that are required for the specification of

asCTML, but not required to be tied to a model.

• a finite set AF of atomic state+action formulas,

• AR ✓ AF of restricted atomic state+action formulas.

For convenience, we also assume one, zero 2 AR, that evaluate to 1 and 0, respectively, over any

element (s, a) 2 (S ⇥ACT).

8.1.1 asCTML Syntax

Given the definition of atomic state+action formula, the syntax of asCTML can be defined the

same as CTML, except:

• asCTML operates on state+action formulas, rather than merely state formulas.

• asCTML supports paths of combination of states and actions, whereas CTML supports paths of

sequences of states only.

• asCTML distinguishes among multiple actions, whereas CTML does not.

74

Definition 57 (syntax of asCTML). Let f be a state+action formula, let r be a restricted state+action

formula, and let
r

be a restricted path formula defined as
r

: (S ⇥ ACT)! ! [0, 1], the syntax of

asCTML can be recursively defined as follows:

' ::= f | '
r

| '� ' | M

'
r

::= r | 1� '
r

| ' ./ ' | '
r

· '
r

| M
r

 ::= X' | 'Ut

� ' | 'V t

� ' | 'U+ ' | '
r

U⇥ ' | '
r

V⇥ '

r

::= X'
r

| '
r

Ut

� '
r

| '
r

V t

� '
r

| '
r

U⇥ 'r

| '
r

V⇥ 'r

where ./2 {,�, <,>}, � 2 {+,⇥}, f 2 AF , and f
r

2 AR.

Finally we note that asCTML’s top level formula is a state+action formula.

8.1.2 Semantics of asCTML

We now give the formal semantics of the operators appearing in the language. Unlike CTL, ACTL,

or PCTL, etc., which define a satisfaction relation, asCTML formulas are defined as real-valued func-

tions.

Definition 58 (Semantics of asCTML). Semantics of asCTML are inductively defined as follows:

• If ' = f , then '(s, a) = f(s, a), 8f 2 AF .

• If ' = '1 · '2, then '(s, a) = '1(s, a) · '2(s, a).

• If ' = '1 + '2, then '(s, a) = '1(s, a) + '2(s, a).

• If ' = '1 ./ '2, with ./2 {>,�, <,} then '(s, a) = 1 if '1(s, a) ./ '2(s, a) holds;

'(s, a) = 0 otherwise.

• If ' = 1� '1, then '(s, a) = 1� '1(s, a).

• If ' = M , then '(s, a) = µ

(S!
s,a

).

• If = X', then (⇡0,⇡1, . . .) = '(⇡1),

• If = '1U
t

� '2, then

75

– if 9j  t, '2(⇡j) > 0, and 8i < j, '2(⇡i) = 0,

 (⇡0,⇡1, . . .) =

j�1K

i=0

'1(⇡i)

!
· '2(⇡j)

– otherwise, (⇡0,⇡1, . . .) = 0.

Also, we have '1U
1
� '2 ⌘ '1U�'2.

• If = '1V
t

� '2, then

– if 9j  t, '2(⇡j) > 0, and 8i < j, '2(⇡i) = 0,

 (⇡0,⇡1, . . .) =

j�1K

i=0

'1(⇡i)

!
· '2(⇡j)

– otherwise, if 8i  t, '2(i) = 0 then

 (⇡0,⇡1, . . .) =
tK

i=0

'1(⇡i)

Also, we have '1V
1
⇥ '2 ⌘ '1V⇥'2.

Note that the finite measurable property of asCTML path formula can be proved exactly the same

way as we did for CTML in the previous chapter, so we omit the repetition here.

Finally, we can define the measure of the top-level formula ' on MAMC structure M based on the

initial distribution as follow.

Definition 59 (measure of M
'

). Given a MAMC structure M = (S,ACT , �, �,⇡0), the total value of

a state+action formula ' on M is defined by

M
'

=
X

s2S

X

a2ACT
'(s, a) · �(s, a)

!
· ⇡0(s). (8.2)

76

8.2 Conversion to CTML

In this section, we describe a formal translation method that takes a MAMC structure and a set of

asCTML formula and produces a DTMC structure and a corresponding set CTML formula. Then we

illustrate this mapping on an example. Finally, we prove that the translated DTMC + CTML formula

always gives the same value as the MAMC + asCTML formula.

MAMC+asCTML to DTMC+CTML Translation Algorithm: Given a MAMC structure M =

(S,ACT , �, �,⇡0), a corresponding DTMC D = (S 0,P,⇡0
0) can be built by the following:

• S 0 = {(sa)|(sa) 2 S ⇥ACT , �(s, a) > 0}.

• For all (sa), (s0a0) 2 S 0,

P[(sa), (s0a0)] =

8
><

>:

�(s0, a0) If �(s, a) = s0,

0 otherwise.

• ⇡0
0[(sa)] = ⇡0[s] · �(s, a).

• The translation for the set of atomic state+action formulas AF is simply that for each f 2 AF
on M , we have f 0 2 AF 0 on D, with f(s, a) = f 0(sa), for all (sa) 2 S 0.

Note that since the two sets AF and AF 0 are exactly the same except one is defined on M

with the parameter (s, a) being a pair of state and action and the other is defined on D with

parameter (sa) being a state, for the following discussion, we use notations such as fM and fD,

respectively, to refer to the same formulas on different model structures.

• Then, for any asCTML formula � on M , denoted by �M , is translated to the same formula � on

D, denoted by �D, such that for each atomic state+action formula fM in �M , it is replaced by

the corresponding fD in �D.

Figure 8.2 shows an example of translation from MAMC to DTMC, and from a set of asCTML

atomic+action formulas to CTML atomic state formulas.

Theorem 60. Let �M be an asCTML formula on MAMC structure M , and D be the translated DTMC

structure, then �M (s, a) evaluate the same as �D(sa) on D, where �D is the translation of �M .

77

0

2

1

3

f(
0,
a)
=
1

a
=
0.
5

l(0, c) =
1

c =
0.2

b =
0.3

f(0, b) =
3

f(2, a) =
1

a
=
1

l(
2,
b)

=
1

b
=

0.
5

c
=

0.
5

f
(2
,c
)
=

2

l(2
, a
) =

1

a
=
0.
2

d
=
0.
2

g(
3,
d)
=
1

c = 0.6
f(3, c) = 2

(a) A MAMC structure and asCTML formulas before translation

(0a)

f=1
a=0.5

(0c)

l=1
c=0.2

(0b)

f=3
b=0.3

(2a)

f=1
a=1

(1c)

f=2
c=0.5

(1b)

l=1
b=0.5

(3c)

f=2
c=0.6

(3a)

l=1
a=0.2

(3d)
g=1
d=0.2

1

0.5

0.5

0.
5

0.5

1

1

0.5

0.
5

0.5

0.5

0.2

0.6

0.2

0
.6

0
.2

0
.2

(b) The Translated DTMC + CTML formulas

Figure 8.2: An Example Translation from MAMC to DTMC

78

Proof. According to the translation method, there is a one to one mapping between state+action pair

(s, a) on M and state (sa) on D, and each atomic state+action formula f on M is mapped to an

atomic state formula f on D. As such, fM = fD holds trivially. By structural induction, assume that

�M = �D, �M1 = �D1 , and �M2 = �D2 . Then,

• (�1 · �2)M = (�1 · �2)D, (�1 + �2)M = (�1 + �2)D, (�1 ./ �2)M = (�1 ./ �2)D, and

(1� �)M = (1� �)D hold trivially, by the assumption.

Note that for succinctness, when the context is clear (e.g., when the parameter is given as a state

such as (sa), then it is a CTML formula; if the parameter is given as a pair of state and action

such as (s, a), then it is an asCTML formula), we drop the the superscript D and M , respectively.

Also, for the following proof of M , we utilize the fact that there exists a one to one mapping

between each state, action pair (s, a) on MAMC and the translated state (sa) on DTMC. Then,

each element (s
i

, a
i

) in a given MAMC path ⇡M = (s, a), (s1, a1), · · · matches the state (s
i

a
i

)

in the corresponding path ⇡D = sa, s1a1, · · · of the translated DTMC.

• (MX�)M = (MX�)D. By asCTML semantics on MX�, for all paths: ⇡ = (s, a), (s1, a1), · · · ,

we have:

(MX�)M (s, a) =
X

(s1,a1)2{�(s,a)}⇥ACT

�(s1, a1)�(s1, a1)

By the assumption, and translations given s1 = �(s, a),

=
X

(s1a1)2S0

�(s1a1) ·P[sa, s1a1]

= (MX�)D(sa).

• (M�1U
t

� �2)M = (M�1U
t

� �2)D. By asCTML semantics on M�1U
t

� �2, for all paths of

⇡ = (s, a), (s1, a1), · · · , with (s, a) = (s0, a0), if 9j : 0  j  t, s.t. �2(sj , aj) > 0 and for all

79

0  i  j, �2(si, ai) = 0, we have:

(M�1U
t

� �2)
M (s, a) =

tX

j=0

X

((s0,a0),...,(sj ,aj))2(S⇥ACT)j ,
si+1=�(si,ai)

j�1K

i=0

�1(si, ai)

!
· �2(sj , aj) ·

jY

i=1

�(s
i

, a
i

)

By the assumption, and translations given si = �(si�1, ai�1),

=
tX

j=0

X

(s0a0,...,sjaj)2S0j

j�1K

i=0

�1(siai)

!
· �2(sjaj) ·

jY

i=1

P[s
i�1ai�1, siai]

= (M�1U
t

� �2)
D(sa).

• (M�1V
t

� �2)M (s, a) = (M�1V
t

� �2)D(sa). According to the asCTML and CTML semantics

of M�1V
t

� �2, there are two cases for this formula. One case is that if 9j : 0  j  t, s.t.

�2(sj , aj) > 0 and for all 0  i  j, �2(si, ai) = 0. In this case, we have just established that

(M�1U
t

� �2)M = (M�1U
t

� �2)D. The second case is when 8i : i  t,�2(si, ai) = 0. In this

case, we have: we have:

(M�1V
t

� �2)
M (s, a) =

X

((s0,a0),...,(st,at))2(S⇥ACT)t

si+1=�(si,ai)

tK

i=0

�1(si, ai)

!
·

tY

i=1

�(s
i

, a
i

)

By the assumption, and translations given si = �(si�1, ai�1),

=
X

(s0a0,...,stat)2S0t

tK

i=0

�1(siai)

!
·

tY

i=1

P[s
i�1ai�1, siai]

= (M�1V
t

� �2)
D(sa).

Therefore, we have (M�1V
t

� �2)M = (M�1V
t

� �2)D.

• Finally, according to the CTML definition 41 for the final value of � on D, denoted by D
�

and

asCTML definition 59 for the final value of � on M, denoted by M
�

, we have:

M
�

=
X

s2S

X

a2ACT
�(s, a) · �(s, a)

!
· ⇡0(s)

=
X

(sa)2S0

�(sa) · ⇡0
0(sa) by the translation algorithm

= D
�

80

8.3 asCTML vs. CTML

In section 8.1, we have defined asCTML and CTML in such a way that they share the same syn-

tax, but having different semantics, with asCTML operating on state+action formulas whereas CTML

operating on state formulas. Given the similarities between asCTML and CTML, we are interested in

exploring the relation between the two languages, in particular, we are interested in finding out whether

an asCTML formula can be used to express a corresponding CTML formula directly. Note that for

the following discussion, if a formula � has a single state parameter, then it is a CTML formula; if its

parameter is a pair of state and action, then it is an asCTML formula.

By their definition, the top-level asCTML formula � returns
P

s

(
P

a

�(s, a)�(s, a))⇡0[s] and the

corresponding top-level CTML formula �0 returns
P

s

�0(s)⇡0[s]. These will be equal if
P

a

�(s, a)�(s, a) =

�0(s), for all s with ⇡0[s] > 0. Further, we can only guarantee
P

a

�(s, a)�(s, a) = �0(s) if all the

operands f 0 in �0 such that f 0(s) = f(s, a). over all actions.

Take the Figure 8.3 for example. Suppose the initial distribution is ⇡0[0] = 1. Let the CTML and

asCTML atomic formulas g0, h0, and g, h be defined as follows, respectively.

• g0(2) = g(2, a) = 1, and

• h0(3) = h(3, b) = 1.

We are interested in finding out whether
P

a2ACT (M(MXg)U+ h)(s, a)�(s, a) = (M(MXg0)U+ h0)(s).

For convenience, let �01 = MXg0, and �0 = M(MXg0)U+ h0. By CTML’s semantics, we have

�01(1) = MXg0(1) = 1 · ↵ + 0 = ↵, with value 0 for all other states. By asCTML’s semantics,

we have �1(1, a) = MXg(1, a) = g(2, a)�(2, a) = 1, with all others having value 0 for �1, then
P

a2ACT �1(1, a)�(1, a) = ↵. In this case, we have �01(1) =
P

a2ACT �1(1, a)�(1, a), because we

have the operand g0(s) = g(s, a) over all actions for formula MXg.

Now, continuing this, for CTML formula �, we have �0(0) = (M�1U+ h)(0) = (0+↵)1(1�↵) =
↵(1� ↵), because we only have one path (0, 1, 3, 3, . . .) that leads to h > 0. For the corresponding as-

CTML formula �, however, we obtain �(0, a) = (M�1U+ h)(0, a) = 0, and
P

a2ACT �(0, a)�(0, a) =

81

0. Thus, we have
P

a2ACT �(0, a)�(0, a) = 0 6= �0(0) = ↵(1 � ↵), because we have the operand

MXg0(1) 6= MXg(1, a) for formula M�1U+ h. This example shows that once we have an operand

f(s) 6= f(s, a) for any a 2 ACT , we cannot guarantee that �(s) is equal to
P

a2ACT �(s, a)�(s, a).

In other words, though strictly speaking CTML cannot be expressed by asCTML “purely”, it can be

simulated by asCTML with proper steps. The overall idea about the simulation is that, for each case of

CTML formula (i.e., it contains one valid CTML operator in the set of {./,�, 1�,MX,MU,MV }),

we set the value of atomic formulas such that f(s, a) = f(s), then compute the corresponding asCTML

formula, then sum over the actions of the computed asCTML formula. Algorithm 8.1 gives details

about the simulation, for which we assume a parse tree has been built for a given CTML formula �0.

Consider the example as shown in Figure 8.3 again. Let �0 = M(MXg0)U+ h0. Initially we

call simulate(�0,M). Then, it goes to the case of M�01U
t

+ �02, with �01 = MXg0, so it calls

simulate(�01,M). Then it goes to the case of MX�0. Again, it calls simulate(g0,M), which re-

turns
P

a2ACT g(s, a)�(s, a). Then �01(s) = MXg0(s) =
P

a2ACT �1(s, a)�(s, a) gives �01(1) =

MXg0(1) = ↵ and 0 for all others. Then it sets �1(1, a) = �1(1, b) = �01(1) = ↵ and h(s, a) = h0(s).

Finally, we have �(s) = M�01U+ h0(s) =
P

a2ACT �(s, a)�(s, a) =
P

a2ACT (M�1U+ h)(s, a)�(s, a) =

↵(1� ↵). The following theorem generalizes the idea of the simulation.

Theorem 61. Let D = (S,P,⇡0) be a DTMC structure obtained from an MAMC structure M =

(S,ACT , �, �,⇡0), with P[s, s0] =
P

a:s0=�(s,a) �(s, a). Let �0 be a CTML formula on D. Then,

algorithm 8.1 computes the correct value for �0.

Proof. • f 0(s) = f 0(s)
P

a2ACT �(s, a) =
P

a2ACT f 0(s)�(s, a) =
P

a

f(s, a)�(s, a), since
P

a

�(s, a) = 1.

• Given �01(s) = �1(s, a) and �02(s) = �2(s, a), for all a 2 ACT . We have: (�01 � �02)(s) =

�01(s) � �02(s) = �1(s, a) � �2(s, a) = (�1 � �2)(s, a) = (�1 � �2)(s, a)
P

a2ACT �(s, a) =
P

a2ACT (�1 � �2)(s, a)�(s, a).

• (�01 ./ �
0
2)(s) = 1 iff �01(s) ./ �02(s) holds, and 0 otherwise. Also, we have (�1 ./ �2)(s, a) = 1

iff �1(s, a) ./ �2(s, a) holds, and 0 otherwise. Since �01(s) = �1(s, a) and �02(s) = �2(s, a), for

82

Algorithm 8.1 simulate(�0, M)

Input: �0,M

Output: vector ⇡ such that ⇡[s] = �0(s)
switch �0 do

case f 0

for 8s 2 S do
⇡[s] = f 0(s);

f = setOperand(⇡,M);
for 8s 2 S do

⇡[s] =
P

a2ACT f(s, a)�(s, a);
return ⇡;

case �0
1 � �0

2

�1 = setOperand(simulate(�0
1,M), M);

�2 = setOperand(simulate(�0
2,M), M);

for 8s 2 S do
⇡[s] =

P
a2ACT (�1 � �2)(s, a)�(s, a);

return ⇡;
case �0

1 ./ �0
2

�1 = setOperand(simulate(�0
1,M), M);

�2 = setOperand(simulate(�0
2,M), M);

for 8s 2 S do
⇡[s] =

P
a2ACT (�1 ./ �2)(s, a)�(s, a);

return ⇡;
case 1� �0

� = setOperand(simulate(�0,M), M);
for 8s 2 S do

⇡[s] =
P

a2ACT (1� �)(s, a)�(s, a);
return ⇡;

case MX�0

� = setOperand(simulate(�0,M), M);
for 8s 2 S do

⇡[s] =
P

a2ACT (MX�)(s, a)�(s, a);
return ⇡;

case M�0
1U

t
� �0

2

�1 = setOperand(simulate(�0
1,M), M);

�2 = setOperand(simulate(�0
2,M), M);

for 8s 2 S do
⇡[s] =

P
a2ACT (M�1U

t
� �2)(s, a)�(s, a);

return ⇡;
case M�0

1V
t
� �0

2

�1 = setOperand(simulate(�0
1,M), M);

�2 = setOperand(simulate(�0
2,M), M);

for 8s 2 S do
⇡[s] =

P
a2ACT (M�1V

t
� �2)(s, a)�(s, a);

return ⇡;

83

Algorithm 8.2 setOperand(⇡, M)

Input: vector ⇡, M
Output: asCTML atomic formula f such that f(s, a) = ⇡[s]

for 8s 2 S do
for 8a 2 ACT do

f(s, a) = ⇡[s];
return f ;

0 1 2

3

a = 1 a = ↵

b =
1�

↵

a = 1

b = 1

(a) A MAMC Example for asCTML

0a 1a 2a

1b 3b

↵ 1

1

1�
↵

1

1

(b) The Translated DTMC for asCTML

0 1 2

3

1 ↵

1�
↵

1

1

(c) The Corresponding DTMC for CTML

Figure 8.3: A Example for asCTML vs. CTML

84

any a 2 ACT , we have (�01 ./ �02)(s) = (�1 ./ �2)(s, a) = (�1 ./ �2)(s, a)
P

a2ACT �(s, a) =
P

a2ACT (�1 ./ �2)(s, a)�(s, a).

• (1��0)(s) = one(s)��0(s) = one(s, a)��(s, a) = (1��)(s, a) = (1��)(s, a)P
a2ACT �(s, a) =

P
a2ACT (1� �)(s, a)�(s, a).

• (MX�0)(s) =
P

a2ACT (MX�)(s, a)�(s, a). By the semantics of CTML formula MX�0 on

D, given all paths ⇡ = (s, s1, . . .), we have:

(MX�0)(s) =
X

s12S
�0(s1)P[s, s1]

=
X

s12S
�0(s1)

X

a: s1=�(s,a)

�(s, a) * P[s,s1]=
P

a: s1=�(s,a) �(s,a)

=
X

s12S
�0(s1)

X

a12ACT
�(s1, a1)

X

a: s1=�(s,a)

�(s, a)

=
X

s12S

X

a12ACT
�0(s1)�(s1, a1)

X

a: s1=�(s,a)

�(s, a)

=
X

(s1,a1)2S⇥ACT

�(s1, a1)�(s1, a1)
X

a: s1=�(s,a)

�(s, a) * �0(s1)=�(s1,a1)

=
X

a2ACT
�(s, a)

X

(s1,a1)2{�(s,a)}⇥ACT

�(s1, a1)�(s1, a1)

=
X

a

(MX�)(s, a) �(s, a) by the definition of MX�

• (M�01U
t

� �02)(s) =
P

a

(M�1U
t

� �2)(s, a) �(s, a).

By the semantics of CTML formula M�01U
t

� �02 on D, given all paths ⇡ = (s, s1, · · ·), with

85

s = s0, if 9j : 0  j  t, s.t. �2(sj) > 0 and for all 0  i  j, �2(si) = 0, we have:

(M�01U
t

� �02)(s) =
tX

j=0

X

(s0,...,sj)2Sj

j�1K

i=0

�01(si)

!
�02(sj)

jY

i=0

P[s
i

, s
i+1]

* P[si,si+1]=
P

ai: si+1=�(si,ai)
�(si,ai)

=
tX

j=0

X

(s0,...,sj)2Sj

j�1K

i=0

�01(si)

!
�02(sj)

jY

i=0

X

ai: si+1=�(si,ai)

�(s
i

, a
i

)

=
tX

j=0

X

((s0,a0),...,(sj ,aj))2(S⇥ACT)j

si+1=�(si,ai)

j�1K

i=0

�1(si, ai)

!
�2(sj , aj)

jY

i=0

�(s
i

, a
i

)

=
X

a2ACT
�(s, a)

tX

j=0

X

((s0,a0),...,(sj ,aj))2(S⇥ACT)j

si+1=�(si,ai)

j�1K

i=0

�1(si, ai)

!
�2(sj , aj)

·
jY

i=1

�(s
i

, a
i

)

=
X

a2ACT
�(s, a)(M�1U

t

� �2)(s, a) by the definition of MU

Note that in the second equation for the proof of M�01U
t

� �02, the term
Q

j

i=0

P
ai: si+1=�(si,ai)

�(s
i

, a
i

)

is equal to
⇣P

a0: s1=�(s0,a0)
�(s0, a0)

⌘
· · · · ·

⇣P
aj : sj+1=�(sj ,aj)

�(s
j

, a
j

)
⌘

, which is essentially

the cross product over {(s
i

, a
i

)}. So we can eliminate the summation term by replacing the

paths of (s0, . . . , sj) with ((s0, a0), . . . , (sj , aj)). Also, in the 4th equation, we simply extract

the starting action out, and make the term
Q

j

i=0 �(si, ai) start from i = 1 rather than i = 0, then

we derived the asCTML semantics for the corresponding formula.

• (M�01V
t

� �02)(s) =
P

a2ACT M�1V
t

� �2(s, a) · �(s, a). According to the semantics of CTML,

there are two cases for the formula of M�01V
t

� �02, One case is that if 9j : 0  j  t, s.t.

�02(sj) > 0 and for all 0  i  j, �02(si) = 0. In this case, we have just established that

M�01U
t

� �02(s) =
P

a2ACT M�1U
t

� �2(s, a) · �(s, a). The second case is when 8i : i 

86

t,�02(si) = 0. In this case, by CTML’s semantics, we have:

(M�01V
t

� �02)(s) =
X

(s0,...,st)2St

tK

i=0

�01(si)
tY

i=1

P[s
i�1, si]

* P[si,si+1]=
P

ai: si+1=�(si,ai)
�(si,ai)

=
X

(s0,...,st)2St

tK

i=0

�01(si)
tY

i=0

X

ai: si+1=�(si,ai)

�(s
i

, a
i

)

=
X

((s0,a0),...,(st,at))2(S⇥ACT)t

si+1=�(si,ai)

tK

i=0

�1(si, ai)
tY

i=0

�(s
i

, a
i

)

=
X

a2ACT
�(s, a)

X

((s0,a0),...,(st,at))2(S⇥ACT)t

si+1=�(si,ai)

tK

i=0

�1(si, ai)
tY

i=1

�(s
i

, a
i

)

=
X

a2ACT
�(s, a)(M�1V

t

� �2)(s, a) by the definition of MV

8.4 Other Related Work

There is a body of past work on applying formal methods to the analysis of stochastic systems;

some of these (namely, [3, 6, 25, 28]) have been briefly discussed already in chapters 1 and 6. In this

section, we look into related works that are concerned with actions, and works that are concerned with

rewards values.

ACTL [32] and asCSL [5] are related to asCTML in the sense that their path formulas can operate

on paths featured by sequences of states and actions. Specifically, ACTL has a primitive set of action

formulas similar to that asCTML and its translation process is also analogous to that of asCTML.

However, unlike asCTML, ACTL’s action formulas cannot be nested. In fact, as it is proven in the

paper [54], ACTL has the same expressive power as CTL, hence asCTML is strictly more expressive

than ACTL since asCTML covers PCTL which is strictly more expressive than CTL.

asCSL is an extension of CSL [6] and aCSL [36] that work with continuous-time Markov chains,

but its path formulas are defined as regular expressions over actions and states. Similar to asCTML,

87

asCSL allows multiple actions to be associated each transition. Unlike asCTML, however, asCSL does

not consider real-valued rewards; in fact, asCTML and asCSL are mostly incomparable.

PRCTL [2], which is very similar to [7] except the latter works with continuous-time Markov

chains, and the recent work [41] are more closely related to CTML, rather than asCTML, since they

do not have action formulas, but are the extensions of PCTL with rewards functions. Both [2] and

[41] present an expected accumulated reward operator that is similar to CTML’s bounded weak until,

with addition. However, the CTML until and weak until operators with addition take two operands,

whereas the cumulative operator defined in [2] takes one operand � that is accumulated over states

that satisfy �, and the cumulative operator in [41] accumulates a reward variable that is given by the

reward structure. Except for rewards defined on edges which are allowed in [41] but not in CTML,

these cumulative operators can be expressed using CTML’s bounded weak until operator by using zero

for the right operand and adjusting the time to be t�1. [41] also presents a reachability operator R that

is similar to CTML’s unbounded until, with addition, except that R takes a single operand, similar to

CTL’s F operator. There are two main differences between R and CTML’s unbounded until operator

using zero for the left operand: first, R requires that the destination states are eventually reached with

probability one, while U does not; second, CTML can use real values to distinguish the destination

states, while R cannot.

Another work we would like to mention is performance trees [61], as they can describe results

of various types (real–valued or otherwise, including distributions). Unlike CTML or asCTML, how-

ever, performance trees is a more general framework or interface that utilizes the existing performance

evaluation algorithms (such as passage time distributions [34]) as well as some of the existing model

checking algorithms for the expression of both logic and real–valued measures.

Additionally, there is work that computes the probabilistic reachability and expected reachability

for Markov decision processes (MDPs) or its variants. More specifically, [23] handles a probabilistic

structure where the duration time is either 0 or 1 between state to state transitions. [46] extended the

idea by allowing the duration time to be an arbitrary natural number between state to state transitions.

[24] and [45] incorporate the real value between state to state transitions for computing the expected

reachability, which is then treated as the stochastic shortest path problem [10] for MDPs.

88

CHAPTER 9. SOFTWARE TOOL

In this chapter, we discuss a prototype software tool, developed for the evaluation of CTML queries.

The CTML software tool serves as the backend engine for performing dependability and performance

analysis. When the input models are small, they can be hand crafted and directly fed into the tool

for automatic analysis. But typically, CTML tool works in conjunction with a front-end engine for

automatic generation of probabilistic models and rewards functions, particularly when the input models

are large, which is often the case in practice. For asCTML queries, we add an additional translator that

translates from MAMC to DTMC and asCTML to CTML.

In the following, Section 9.1 discusses CTML software design. Section 9.2 discusses basic tech-

niques used in the CTML software implementation. Section 9.3 discusses asCTML translator. Section

9.4 discusses overall software test.

9.1 Software Design

As like any other software, CTML tool consists of inputs, outputs, and a control unit which is called

CTML engine. The inputs consist of three parts. The first part is a probabilistic model. The second part

is a set of rewards functions (a.k.a. atomic functions). The third part is the performance/dependability

specifications that are written in CTML. Figure 9.2 shows an input format example for the model shown

in Figure 5.1. The input starts with the line DTMC to indicate that it is a DTMC structure. It is then

followed by the number of states, the initial distribution, the number of edges, then followed by a se-

quence of edges, ordered by the row number, each of which has a nonzero probability value; the line of

END indicates the end of model structure. Note that the probability for each edge is normalized in the

end before the measure is processed. It is normalized in such a way that we calculate the probability

of i ! j by taking the weight of that edge divided by the total weight of all outgoing edges for state i.

89

This is convenient, because in some cases the original edge weight may not necessary be a probability,

rather, it is some positive real value. Following the model structure is the atomic function specifica-

tions in the format of state : weight if the state has nonzero weight value. The third part of input is the

measure specification. It starts with the reserved word MEASURE, followed by a sequence of concrete

measures. For easier processing, in this prototype implementation, each measure is assume to be well

parenthesized for each CTML operator. These inputs are then fed into CTML engine for automatic

processing, and it outputs a set of real values corresponding to each query. Figure 9.1 illustrates a

prototype design of the CTML software tool.

A DTMC
structure D, with
a set of atomic
functions AF

A set of
CTML queries

CTML engine

x 2 R⇤

Figure 9.1: CTML Software Structure

The main component of the whole software tool is the CTML engine. It hosts all the algorithms

for each CTML formula as we discussed in the previous chapter. The design of CTML engine takes

advantage of polymorphism type of object-oriented programing language of Java such that each specific

algorithm implements the same interface method called “compute()”. When a concrete operator such

as until-plus, until-multiply, etc. is read, a computation object for the corresponding operator, say until-

plus-object, is then instantiated, and the compute method associated with the until-plus-object operator

is invoked. Figure 9.3 shows an idea of the polymorphic design feature. Such a design consideration is

90

DTMC

STATES 4

INIT

0 : 1.0

ARCS 5

0 : 1 : 1.0

1 : 1 : 0.2

1 : 2 : 0.3

1 : 3 : 0.5

2 : 2 : 1.0

3 : 3 : 1.0

END

idle

0 : 1.0

end_idle

trying

1 : 2.0

end_trying

succ

2 : 1.0

end_succ

fail

3 : 1.0

end_fail

MEASURE

(one until_plus succ)

(one until_mult(trying mult(trying until_mult succ)))

Figure 9.2: An Example of Input Model Format

91

mainly for flexibility in the sense that if there will be any extensions in the future, then new algorithms

can be added into the tool by its own without largely affecting the existing design and implementation.

CTML

compute()

UNTIL-PLUS-
INFINITE

compute()

...... UNTIL-
MULTIPLY-FINITE

compute()

Figure 9.3: Polymorphic Design of CTML Software

The second design component is a scanner that is responsible for reading and processing input

model along with a set of reward functions. The scanner gets ready for various data, such as the

number of states, the number of edges, the transition probabilities, the set of atomic functions, etc.,

that are needed for processing each query. Also, the scanner reads in measure specifications in such

a way that keeps track of two stacks, one is the operator stack, and the other is the operands stack.

It processes the string of the measure in such a way that when the program sees a left parenthesis, it

does nothing; when it sees an operator, it pushes the operator onto the operator stack; when it sees an

operand such as an atomic function, it pushes it onto operand stack; when it sees a right parenthesis, it

pops off an operator from the operator stack, pops associated number of operands from the operands

stack, compute the operation, and push back the result onto the operand stack; the process continues

until the operator stack is empty and one final result is left on the operand stack. The method is adapted

from the well known Dijkstra’s Shunting yard algorithm [26] for processing well parenthesized infix

expressions. Table ?? presents the specific actions for each cases of character(s) seen so far.

9.2 Software Implementation

For the implementation, there are mainly two challenges that need to be resolved. One is the issue

of storage due to the large state space involved, typically millions of states and tens of millions of

edges. And another is the programming method for solving algebraic linear systems. For the first issue,

92

Table 9.1: Processing Infix Notation

Character(s) Action

(do nothing

MX, MU,MV, ⇤, +, ./ (operator) push onto the operator stack

atomic functions (operand) push onto the operands stack

) 1. pop an operator from the operator stack

2. pop the associated number of operands from the operand stack

3. invoke the operation

4. push back the result onto the operand stack

we use a data structure for sparse matrix storage; a set of primitive arrays that can be accessed fast.

The second issue is resolved by using classic methods called Jacobi and Gauss-Seidel method. The

following describes these two solutions in more detail.

9.2.1 Sparse Matrix Storage

For this work, our main input is a graph with probabilities attached to arcs, which are often repre-

sented by a real valued matrix R

m⇥n. To store a real valued matrix R

m⇥n, a brute-force way is to use

a two dimensional array of reals that requires O(mn) memory space and time to perform vector-matrix

or matrix-vector multiplication as shown in Algorithms 9.1 and 9.2, respectively. Better than that, we

observe that most of our input models are sparse, in the sense that many entries are zero values, as

shown in Figure 9.7 followed by its corresponding matrix P. If we can come up with a data structure

such that it only stores non-zero entries, then we can obtain O(|S| + |E|) for both space and time

complexity in vector-matrix multiplication, where E is the set of nonzero edges in a Markov process.

The basic idea for storing a sparse matrix [62] is that we create three arrays, say ROWS with size

equal to the number of states from the input model plus one (i.e., |S|+ 1). The 0th entry of ROWS is

93

Algorithm 9.1 Compute Vector-Matrix Multiplication: h = xR.

h = 0;
8i, j such that R[i, j] 6= 0 do

h[j] = h[j] + x[i] ·R[i, j];
End 8

Algorithm 9.2 Compute Matrix-Vector Multiplication: h = Rx.

h = 0;
8i, j such that R[i, j] 6= 0 do

h[i] = h[i] +R[i, j] · x[j];
End 8

initialized to 0; the content of ROWS [1] is calculated by the number of outgoing edges from node 0

plus ROWS [0]; the content of ROWS [2] is calculated by the number of outgoing edges from node 1

plus ROWS [1], so on and so forth; the last entry of ROWS [|S|] stores the total number of edges. In

practice, this last entry space is just the total number of edges if we know this number ahead of time.

Also, for simplicity and efficiency purpose, we assume the input models are sorted by ROWS states

starting from 0 (the idea would be the same if we assume the input model is sorted by COLUMN

states), which corresponds to the indices of ROWS except for the last entry which we created to hold

the value of the last row.

Now once we have the ROWS array with proper contents, we create a COLUMNS array with size

equal to the number of edges. Obviously, for each node i 2 S , from COLUMNS [ROWS [i]] until

COLUMNS [ROWS [i + 1]], it stores the index of state j in increasing order if there is an edge from

state i to state j.

Finally, we create a VALUES array with size equal to the number of edges; the array stores the

actual real value (typically probabilities) corresponding to COLUMNS [j] from ROWS [i]. Figures 9.4,

9.5, and 9.6 show examples for the contents of ROWS ,COLUMNS , and VALUES array, respectively,

based on Figure 9.7. For in-depth handing of sparse matrix storage, interested readers should refer to

[39, 50, 56, 60].

94

ROWS 0 1 2 3 4

Contents 0 2 5 8 10

Figure 9.4: Example of ROWS Array Contents Based on Figure 9.7.

COLUMNS 0 1 2 3 4 5 6 7 8 9

Contents 0 1 0 1 2 1 2 3 2 3

Figure 9.5: Example of COLUMNS Array Contents Based on Figure 9.7.

P =

2

666666666664

a b c d

a 1/2 1/2 0 0

b 3/4 1/8 1/8 0

c 0 1/3 1/3 1/3

d 0 0 1/5 4/5

3

777777777775

Given the sparse matrix storage representation as described above, for a real valued matrix, we

can now compute vector-matrix product or matrix-vector product, as shown in Algorithms 9.3 and

9.4, respectively, by utilizing the three arrays, namely ROWS , COLUMNS , and VALUES . Clearly,

by taking advantage of sparse matrix storage, Algorithms 9.3 and 9.4 costs O(|S| + |E|) spaces and

operations in computing matrix-vector (or vector-matrix) multiplication.

Algorithm 9.3 Compute Vector-Matrix Multiplication Using Sparse Matrix Storage.

r = 0; // r is row index
h = 0; // vector holding results
8r < |ROWS | do

8j >= ROWS [i] and j < ROWS [i+ 1]
c = COLUMNS [j]; // c is column index
h[r] = h[r] + x[c] · VALUES [j];

End 8j
End 8r

95

VALUES 0 1 2 3 4 5 6 7 8 9

Contents 1/2 1/2 3/4 1/8 1/8 1/3 1/3 1/3 1/5 4/5

Figure 9.6: Example of VALUES Array Contents Based on Figure 9.7.

a b c d

1/2

1/2

3/4

1/8

1/8

1/3

1/3
1/3

1/5

4/5

Figure 9.7: An Input Model Example

9.2.2 Solving Linear Systems

For CTML formulas with bounded time t, according to the algorithms presented in chapter 6, our

implementation simply loops through t times over the modified version of Algorithms 9.3 and 9.4 such

that it incorporates other necessary parameters (e.g. a real-valued diagonal matrix F) and operations.

For CTML formulas with unbounded time t, however, the simple iteration method used for bounded

time can no longer work efficiently as desired. Instead, we chose to use classic iterative methods

known as Jacobi and Gauss-Seidel, for solving large linear system of the form Rx = h, or xR =

R

T
x = h [50]. The basic idea is that we start with a guessed solution x0, then we compute a sequence

x1, · · · ,xi

,x
i+1, · · · ,xn

of the following form:

x

i+1 = Rx

i

+ k (where R,k are known),

Algorithm 9.4 Compute Matrix-Vector Multiplication Using Sparse Matrix Storage.

r = 0; // r is row index
h = 0; //vector holding results
8r < |ROWS | do

8j >= ROWS [i] and j < ROWS [i+ 1]
c = COLUMNS [j]; // c is column index
h[c] = h[c] + x[r] · VALUES [j];

End 8j
End 8r

96

until we reach a solution vector x
n

(approximation of x) that satisfies one of the following stopping

criteria:

absolute precision:

k x

n

[i]� x

n�1[i] k< ✏, for all i 2 S.

or relative precision: ����
x

n

[i]� x

n�1[i]

x

n

[i]

���� < ✏, for all i 2 S.

where ✏ is a threshold value for determining whether we should stop iterations.

Take Figure 9.7 as an example, suppose we want to solve the following linear equation.

⇡(P� I) = 0, or (P� I)T⇡ = 0

Then, by plug in the probability transition matrix P, we have

(P� I)T =

2

66666664

�5/6 3/4 0 0

5/6 �7/8 1/3 0

0 1/8 �2/3 1/5

0 0 1/3 �1/5

3

77777775

⇡ =

2

66666664

a

b

c

d

3

77777775

Multiplying out, we obtain the following system of equations:

a = (3/4b� 0)/(5/6) = 8/5b (9.1)

b = (5/6a+ 1/3c� 0)/(7/8) = 20/21a+ 8/21b (9.2)

c = (1/8b+ 1/5d� 0)/(2/3) = 3/16b+ 3/10d (9.3)

d = (1/3c� 0)/(1/5) = 5/3c (9.4)

Set ⇡0 = [1/4, 1/4, 1/4, 1/4], we have

97

Iteration 1:

a1 = 2/5 (9.5)

b1 = 5/21 + 5/21 = 10/21 (9.6)

c1 = 3/64 + 3/40 = 39/320 (9.7)

d1 = 5/3c = 5/12 (9.8)

Note that the sum of (a1 + b1 + c1 + d1) is not 1, so we need to do normalization such that each value

of a1, b1, c1, d1 is divided by the sum value of (a1 + b1 + c1 + d1). By doing so, in this case we get

a1 ⇡ 0.28274, b1 ⇡ 0.33659, c1 ⇡ 0.086147, d1 ⇡ 0.29452.

Then, we keep computing iteration 2, iteration 3, · · · . Now if we choose to use Jacobi iteration method,

then we need to keep two vectors for ⇡
i+1 and ⇡

i

, respectively, since ⇡
i+1 is computed only after all

values of ⇡
i

becomes available. For example, by using Jacobi iteration method, following iteration 1,

we have

Iteration 2:

a2 = (3/4 ⇤ b1)/(5/6) (9.9)

b2 = (5/6 ⇤ a1 + 1/3 ⇤ c1)/(7/8) (9.10)

c2 = (1/8 ⇤ b1 + 1/5 ⇤ d1)/(2/3) (9.11)

d2 = (1/3 ⇤ c1)/(1/5) (9.12)

In contrast, if we choose to use Gauss-Seidel iteration method, then we can use values that are newly

computed immediately. For example, by using Gauss-Seidel method, following iteration 1, we have:

98

Iteration 2:

a2 = (3/4 ⇤ b1)/(5/6) (9.13)

b2 = (5/6 ⇤ a2 + 1/3 ⇤ c1)/(7/8) (9.14)

c2 = (1/8 ⇤ b2 + 1/5 ⇤ d1)/(2/3) (9.15)

d2 = (1/3 ⇤ c2)/(1/5) (9.16)

Either using Jacobi or Gauss-Seidel, we keep iterating until the vector converges. With this example,

our solution should be:

⇡ ⇡ ⇡
n

= [3/7, 2/7, 3/28, 5/28].

For more details about solving linear systems, interested readers should refer to [50, 60]. In our

CTML tool, both methods of Jacobi and Gauss-Seidel are used in implementing the algorithms that we

discussed in previous Chapter for CTML formulas.

9.3 asCTML Software Translator

The asCTML translator is a separate tool from CTML. The translator reads an MAMC input file

along with a set of the atomic state+action formulas, and output a DTMC plus a corresponding set of

atomic state formulas for CTML. Figure 9.8 gives an example format for the input file for the MAMC

structure shown in Figure 8.2(a). The output format is the same as the example shown in Figure 9.2.

The implementation is tedious but straightforward. It merely follows the translation algorithm 8.2 for

setting the states and edges and probabilities and action names.

The basic idea is that it first creates a DTMC state array, with its size equal to the number of arcs

from MAMC. Then it scans through the model and stores the accumulated number of the DTMC edges

in each slot of the DTMC state array. Meanwhile, it stores the corresponding value (for later translation)

in MAMC state array, MAMC arcs array, MAMC probability array, and MAMC action array, in a way

similar to those described in sparse matrix storage for rows 9.4, columns 9.5, and probabilities 9.6. At

the end of scanning, we get the total number of arcs for the translated DTMC. Given the size of the

DTMC arcs, we create a DTMC arcs array, a DTMC probability array, and a DTMC action array. The

99

next step is to process the four MAMC arrays discussed above and store the translated information into

the corresponding DTMC arrays. At the last step, we go through these DTMC arrays, and print the

DTMC along with the atomic formulas.

9.4 Overall Discussion and Software Test

Our prototype tools are implemented in Java, for the evaluation of CTML and asCTML languages.

The testing environment we used is a desktop computer with a 2.5 Ghz Intel core 2 duo processor

and 4GB of 667 MHz RAM, running MacOS X, and the Java virtual machine for JDK version 1.6.

The testing strategy is that we first plug in small well known Markov chain models such as “Luck of

Fortune” into our tool together with various CTML and asCTML queries, then we verify the outputs

of the software against the numerical solutions computed by hand. Because of the sensitivity of the

floating point precisions of numerical values, after running several dozens of such small cases for each

different formulas and getting all consistent answers, we believe that our implementation is correct and

robust. Then, we move on to large models for automatic blind testing.

100

MAMC

STATES 4

INIT

0 : 1.0

ARCS 9

0 : 2 : 0.5 : a

0 : 1 : 0.2 : c

0 : 1 : 0.3 : b

1 : 2 : 0.5 : b

1 : 2 : 0.5 : c

2 : 3 : 1.0 : a

3 : 1 : 0.2 : a

3 : 1 : 0.2 : d

3 : 3 : 0.6 : c

2 : 2 : 1.0

3 : 3 : 1.0

END

f

0 : a : 1.0

0 : b : 3.0

1 : c : 2.0

2 : a : 1.0

3 : c : 2.0

end_f

l

0 : c : 1.0

1 : b : 1.0

3 : a : 1.0

end_l

g

3 : d : 1.0

end_g

MEASURE

(f until_plus g)

Figure 9.8: An Example Input Model Format for asCTML Translator

101

CHAPTER 10. APPLICATION EXAMPLE

In this chapter, we demonstrate the use of CTML and asCTML through the analysis of two ap-

plication examples. In case users are interested in dependability-performance related queries that do

not depend on actions, then CTML applies. Otherwise, if the associated queries are action dependent,

then asCTML applies; in this case, the input model and the asCTML specifications can be reduced to

DTMC and CTML, as we have shown in chapter 8. Since many existing models have named actions,

we believe asCTML has wide applications. Compared with CTML, asCTML can quantify much wider

sets of paths characterized by a variety of actions.

10.1 University Graduation Example

In this section, we deploy a small model structure for the discussion of example asCTML and

CTML queries. With the example of small model structure, we tend to show users more clearly the

quantification of action driven paths; how action dependent queries can be expressed by asCTML

but not CTML; and how action independent queries can be expressed by CTML, and their syntactic

similarities. More importantly, through the small application example, we tend to deliver the overall

specification idea of asCTML with respect to CTML.

The University Graduation example as shown in Figure 10.1 is from [38]. Each year, at a ficti-

tious four year undergraduate university, a student has probability p to move up to a higher grade, has

probability r to repeat for the same grade, and probability q to drop the school. The following presents

interesting queries for this model.

1. “What’s the average number of years of repeating at the freshman level?” First of all, the query

requires to count the repeat action at the freshman year only. So we define an atomic formula

repeats-fr such that it has value 1 on (fr , repeat), and 0 on all others. Also, for this model, there

102

fr so jr sr

gradflunk

upgrade = p

repeat = r

drop =q

upgrade = p

repeat = r

drop
=

q

upgrade = p

repeat = r

dr
op

=
q upgrade = p

repeat = r

drop = q

succ = 1fail = 1

Figure 10.1: University Graduation Example

are only two destinations which are either finish successfully indicated by grad or flunk. So

we define another atomic formula finish such that it has value 1 on (grad , succ) and (flunk , fail),

and 0 otherwise. The query can then be expressed as

M repeats-fr U+ finish

In general, this type of query is not expressible by CTML. repeats-fr(fr , repeat) to some other

positive value other than 1. In this particular case, however, we can use the CTML expression

M fr U+ (1� fr) to get the average number of years spent as a freshman, and then we subtract

one to get the number of repeats.

2. “What’s the average number of repeating at all levels of grades given that students gradu-

ate successfully?” Unlike the previous query, this query asks for the quantification of the re-

peating behavior at all levels of grades, so we define an atomic formula repeats such that

repeats({fr, so, jr, sr}, repeat) = 1 and 0 for all others. Also, we need an atomic formula

graduate(grad, succ) = 1 and 0 otherwise. Then the query can be expressed as

Mrepeats U+ graduate

103

By the definition of conditional expectation equation 2.5, the result of the expression must be di-

vided by the quantity of Mone U⇥ graduate . The query is not expressible by CTML in general.

3. “What’s the probability to quit the school after sophomore year?” Let quit-after -soph be an

atomic formula such that quit-after -soph({so, jr, sr}, drop) = 1, and 0 for all others. Then

the query can be expressed as

Mone U⇥ quit-after -soph

This query is expressible by CTML as

Mone U⇥(M soU⇥ flunk)

and by PLTL as

P?=F (soU flunk)

In this case, asCTML requires one path operator U⇥, whereas both CTML and PLTL requires

two path operators.

4. “What’s the probability of graduation in 6 years?” Let graduate be an atomic formula with

graduate(grad, succ) = 1 and 0 otherwise. Then the query can be expressed as

M one U6
⇥ graduate

This query is expressible by CTML, with the same syntax as for asCTML, except that with

CTML the atomic formulas graduate and one quantify the corresponding states only, rather

than the (state, action) pairs.

5. “Given that a student reached the junior state and never repeated a year before, what’s the

probability that the student will graduate in 3 years?” This query requires to only quantify the

upgrade action at the freshman and sophomore level as the conditional statement imposes. Let

no-repeat-soph({fr, so}, upgrade) = 1, and 0 otherwise. Let graduate(grad, succ) = 1 and

104

0 otherwise. Let junior(jr, {repeat, upgrade, drop}) = 1, and 0 otherwise. Then this query

can be expressed as

M no-repeat-soph U⇥(junior ·M one U3
⇥ graduate)

and the result must be divided by M no-repeat-soph U⇥ junior , according to the conditional

probability definition 2.2. Since the query depends on actions, it is not expressible by CTML.

6. “What’s the probability that students drops the school before junior year?” This question is

equivalent to, the probability that a student never becomes a junior. Let junior be an atomic

formula such that junior(jr, {repeat, upgrade, drop}) = 1, and 0 otherwise. Then this query

can be expressed as:

1�(M one U⇥ junior)

This query is expressible by CTML, since it does not depend on actions.

We note that the main contribution of asCTML is that it can quantify all kinds of combinations of

actions along the paths. In case there are multiple actions between the same pair of states, the idea of

the specification would be the same.

We now discuss experimental results for the queries. First of all, we come up with an MAMC model

structure for the University Graduation example, and a set of atomic state+ action formulas for the

queries. we set the probabilities p, r, q to be 0.1, 0.8, and 0.1, respectively. The input format and some

atomic formulas are shown in Figure 10.2. The MAMC model and the atomic state+action formulas

are then translated into DTMC model and CTML atomic state formulas, which are then plugged into

CTML software for evaluation of each queries. The asCTML specification for each query can either be

created at run time or written at the end of the model. Also, since the specifications are syntactically

the same for asCTML and CTML. they can either be included in MAMC model and carried over to

the DTMC model or be put in the translated DTMC model directly. Table 10.1 presents the numerical

results each query discussed above.

105

MAMC

STATES 6

INIT

0 : 1

ARCS 14

0 : 0 : 0.1 : repeat

0 : 1 : 0.8 : upgrade

0 : 5 : 0.1 : drop

1 : 1 : 0.1 : repeat

1 : 2 : 0.8 : upgrade

1 : 5 : 0.1 : drop

2 : 2 : 0.1 : repeat

2 : 3 : 0.8 : upgrade

2 : 5 : 0.1 : drop

3 : 3 : 0.1 : repeat

3 : 4 : 0.8 : upgrade

3 : 5 : 0.1 : drop

4 : 4 : 1.0 : succ

5 : 5 : 1.0 : fail

END

repeatsfr

0 : repeat : 1.0

end_repeatsfr

finish

4 : succ : 1.0

5 : fail : 1.0

end_finish

repeats

0 : repeat : 1.0

1 : repeat : 1.0

2 : repeat : 1.0

3 : repeat : 1.0

end_repeats

quitaftersoph

1 : drop : 1.0

2 : drop : 1.0

3 : drop : 1.0

end_quitaftersoph

Figure 10.2: An MAMC Example for The University of Graduation and Some Atomic State+Action Formulas

106

Table 10.1: Numerical Results for the asCTML Queries on the University Graduation Example (with probabili-
ties r = 0.1, p = 0.8, and q = 0.1)

Query Initial State Numerical Result

1 M repeats-fr U+ finish fr 0.11111

2 M repeats U+ graduate

M one U⇥ graduate

fr 0.44443

3 M one U⇥ quit-after -soph fr 0.26459

4 M one U6
⇥ graduate fr 0.57344

5 M no-repeat-soph U⇥(junior ·M one U

3
⇥ graduate)

M no-repeat-soph U⇥junior

fr 0.64000

6 1�M one U⇥ junior fr 0.20988

10.2 Dining Philosopher Example

The classic dining philosophers model [27] as shown in Figure 10.3 is similar to the one from [51].

The model is described in stochastic Petri net formalism [1, 15]. For the sake of space, the picture

only shows a single philosopher. In experimentation, we used around 3-10 dining philosophers (cor-

responding to 3-10 copies of the subnets of the connected philosophers). The figure shows the initial

state of the dining philosopher, where a token in place idl suggests that the philosopher is in thinking

state; a token in place fork
i

suggests fork
i

is available. Now imagine that we have multiple philoso-

phers connected, sitting in a round table and sharing the left fork with a philosopher sitting on the left

hand side, and sharing the right fork with a philosopher sitting on the right hand side. After a while, a

philosopher may become hungry. In order to eat, the philosopher must first obtain a left and right fork,

which means he/she must “fire” transitions getl and getr. When the philosopher gets one fork, he/she

must wait for the other fork before he/she can eat. After eating, the philosopher releases forks via

transition release. This model is well known for having exactly two deadlocked states, corresponding

to every philosopher holding their left fork, and to every philosopher holding their right fork.

107

In the following, we describe performance measures through example queries followed by the

corresponding CTML and asCTML specifications. Due to the large size, it is neither realistic nor

necessary for us to show whether an asCTML query is expressible by CTML. Rather, we choose one

that can express the query more intuitively.

hungryi

waitri

hasri

idli

waitli

hasli

releasei

getrigetli

forkifork(i+1 mod N)

Figure 10.3: SPN Model of A Single Dining Philosopher.

1. “How much food will philosopher 1 consume, on average, before reaching deadlock?” We define

an atomic formula food that specifies, for each state, how much food philosopher 1 consumes per

unit of time (with value 0 when philosopher 1 is not eating); and we define an atomic function

deadlock with value 1 for the deadlocked states, and 0 otherwise. The query can then be written

in CTML as

M food U+ deadlock .

2. “How much food will philosopher 1 consume in the first t time units, on average?” Consistent

with the above query, we can write this in CTML as

M food V t

+ deadlock ,

since no food is consumed in the deadlock states. Alternatively, we can write

M food V t

+ zero.

108

3. What is the probability that philosopher 1 will obtain the left fork within t time units? This is

similar to the previous query, except we use a time–bounded formula:

M one Ut

⇥ left ,

where left returns 1 only for states where philosopher 1 has the left fork.

4. What is the probability that phil 1 eventually eats? First, note that for any state formula g, the

formula

M one U⇥ g

computes the sum over all states s with g(s) > 0, the probability that s is reached before any

other state s0 with g(s0) > 0, multiplied by g(s). We can therefore express the above query as

M one U⇥ eat

where atomic function eat returns 1 for any state where philosopher 1 is eating (i.e., has both

forks), and is 0 otherwise.

5. “Given that philosopher 1 obtains the left fork, what is the probability that philosopher 1 even-

tually eats?” To determine this quantity, we use the fact that Pr{B | A} = Pr{B \A}/Pr{A}.

Thus we first determine the probability that philosopher 1 obtains the left fork, and then eats.

Since before philosopher 1 eats, he/she must obtain the left fork, we can write this in CTML as

M one U⇥ (M left U⇥ eat). (10.1)

To allow philosopher 1 to release the left fork before eating, we would write

M one U⇥ ((M one U⇥ eat) · left) (10.2)

instead. Note that the former is preferred when possible, since the linear system for M left U⇥ eat

has smaller dimension than the one for M one U⇥ eat . These types of queries (in general) are

109

not expressible with PCTL, even allowing the top–most P=? operation as described in PRISM

[44]. However, they are expressible in PLTL as P=?[F (left Ueat)] and P=?[F (left ^ F eat)],

respectively. Alternatively, we can note that, for this model, before philosopher 1 eats, he/she

must obtain the left fork, and write this as

M one U⇥ eat .

Regardless of the formula used, we must divide the result by the quantity of M one U⇥ left ,

which is the probability that philosopher 1 obtains the left fork, for some starting state s.

6. “If philosopher 1 just picked up left fork, then what is the expected time until deadlock?” First,

we determine the expected time until deadlock starting from each possible state. Then, we filter

out all but the states where philosopher 1 has the left fork. We then sum over all left fork states,

the probability to reach that one “first” multiplied by the expected time to deadlock starting from

that state. This gives us the CTML expression

M one U⇥(left · (M one U+ deadlock)). (10.3)

By the definition of conditional expectation equation 2.5, we must divide the result by M one U⇥ left .

7. “What is the probability that philosopher 1 never eat before deadlock?” Since we do not count

actions that indicate philosopher 1 is eating, we define never -eat to be an atomic formula such

that it has value 0 on all pairs of (s, release1) where s can be any state at which the transition

release1 is enabled, and 1 otherwise. Let deadlock be defined as above. The query can then

be expressed in asCTML as

M never -eat U⇥ deadlock

8. “How much food will philosopher 1 consume, on average, between obtaining and releasing

the forks?” We define an atomic formula food as above. We also define an atomic formula

release such that it has value 1 on all pairs (s, release1) and 0 otherwise. The query can then be

110

expressed in asCTML as

M food U+ release

9. “What is the probability that philosopher 1 triggered the deadlock (i.e., was the last philosopher

to pick up a fork)?” Let deadlock -trigger be an atomic formula that has value 1 on all pairs of

(s, getl1) and (s, getr1). Let deadlock be as previously defined. The query can then be expressed

in asCTML as

M one U⇥(deadlock -trigger ·MXdeadlock)

If an action of getl1 or getr1 triggers the deadlock, then deadlockmust be the next state.

As such, � = (deadlock -trigger · MXdeadlock) must have positive values, then M one U⇥�

gives the probability that philosopher 1 triggered the deadlock.

10. “How many times will philosopher 1 eat, on average, before reaching deadlock?” Let count-eat

be an atomic formula such that it has value 1 on all pairs of (s, release1) where s can be any

state at which release_1 is enabled, and 0 otherwise. Let deadlock be defined as before. This

query can be expressed in asCTML as

Mcount-eat U+ deadlock

For the dining philosopher model, we are mainly interested in exploring the various model size

for different number of philosophers and running time of the example queries. To test large models,

we deploy SMART [16] as our front-end engine. Specifically, we plug in the dining philosopher of

stochastic Petri-net benchmark models into the SMART tool, and generate CTMCs, then we study

their embedded DTMC. For asCTML queries, the MAMC models are obtained by having a set of

named transitions associated with the DTMCs. That is, each edge has a named action. The MAMC

models are then fed into the asCTML translator for the conversion to DTMC and CTML. Table ?? lists

the translated DTMC sizes for each of the corresponding MAMC model along with the CPU time for

the typical translation time of the model. The converted DTMC and CTML queries can then be plugged

into the CTML software for evaluation. Note that in case the queries are all CTML formulas (that is,

111

action independent), then we can skip the step of (asCTML to CTML) translation. The tool has been put

to experiment on various number of dining philosophers until the computer is run out of memory when

the model is too large. For the case of 10 dining philosophers, it produces a DTMC with 1,860,498

states for CTML queries. For the nested formula of type MU⇥(MU+), we first compute its inner

formula, and we have |S
g

| = 2 for the two deadlocked states and |S
n

| = 0; the query requires solution

of two linear systems of dimension |S
z

|= 1,860,496. Using Gauss Seidel and a relative precision of

106, this requires roughly 689 seconds of CPU time. Then, we compute the outer formula, MU⇥.

For a typical example in which we say a dining philosopher has obtained the left fork, with |S
n

| = 1

from which the dining philosopher will never obtain the right fork, leaving |S
z

| = 1, 346, 268. This

linear system is solved in about 32 seconds. So the typical nested formula MU⇥(MU+) runs about

721 seconds in total. Table ?? presents the numerical results and CPU time for both the CTML and

asCTML queries we discussed.

Table 10.2: Results of Translated Size of DTMCs (�: out of memory).

Model
DTMC for CTML Translated DTMC for asCTML

CPU Time
states # edges # states # edges (seconds)

5 phils 1,364 6,377 6,377 29,372 0.92

6 phils 5,778 32,408 32,408 179,552 1.35

7 phils 24,476 160,155 160,155 1,037,010 3.33

8 phils 103,682 775,338 775,338 5,745,082 17.65

9 phils 439,204 3,694,925 3,694,925 30,832,400 185.34

10 phils 1,860,498 17,391,050 17,391,052 161,376,412 �

112

Table 10.3: Numerical Results for Selected CTML Queries of Different DTMC sizes (�: out of memory).

Query
Number of Philosophers

6 phils 7 phils 8 phils 9 phils 10 phils

1
M food U+ deadlock 14.5476 20.0333 26.3501 33.4931 41.4595

CPU (CTML) 1.1 sec 3.6 sec 17.1 sec 89.5 sec 564.4 sec

2
M food V 300

+ deadlock 13.5434 17.0743 20.0597 22.4465 24.3176

CPU (CTML) 0.9 sec 1.3 sec 2.7 sec 7.3 sec 29.5 sec

3

Mone U20
⇥ left 0.6733 0.5985 0.5385 0.4818 0.4341

CPU (CTML) 0.7 sec 1.1 sec 1.8 sec 4.2 sec 15.8 sec

Mone U⇥left 0.9501 0.9620 0.9703 0.9764 0.9809

CPU (CTML) 0.8 sec 1.2 sec 2.3 sec 7.0 sec 33.1 sec

4
Mone U⇥eat 0.9002 0.9239 0.9406 0.9527 0.9617

CPU (CTML) 0.7 sec 1.3 sec 2.7 sec 7.9 sec 39.1 sec

5

Mone U⇥(M left U⇥ eat) 0.9002 0.9239 0.9406 0.9527 0.9617

CPU (CTML) 0.9 sec 1.5 sec 3.4 sec 11.4 sec 58.5 sec
Mone U⇥(M left U⇥ eat)

Mone U⇥left

0.9475 0.9605 0.9694 0.9758 0.9805

6

Mone U⇥(left ·Mone U+ deadlock) 112.6291 160.2409 217.0598 283.3792 359.4763

CPU (CTML) 1.4 sec 3.8 sec 17.8 sec 91.9 sec 585.6 sec
Mone U⇥(left·Mone U+ deadlock)

Mone U⇥left

118.5445 166.5706 223.7038 290.2285 366.4760

7
Mnever -eat U⇥deadlock 0.0998 0.0761 0.0579 0.0473 -

CPU (asCTML) 1.4 sec 2.8 sec 11.1 sec 66.1 sec -

8
M food U+release 2.1416 2.7209 3.3036 3.8877 -

CPU (asCTML) 1.6 sec 3.8 sec 17.3 sec 102.3 sec -

9
Mone U⇥(deadlock -trigger ·MXdeadlock) 0.1667 0.1429 0.1250 0.1111 -

CPU (asCTML) 2.8 sec 11.6 sec 86.3 sec 569.9 sec -

10
Mcount-eat U+deadlock 4.8853 5.9282 6.9990 7.2867

CPU (asCTML) 3.8 sec 19.5 sec 180.6 sec 1131.2 sec -

113

CHAPTER 11. CONCLUSION AND FUTURE RESEARCH

To summarize, up to this point, model checking techniques have gone through three generations.

The first generation is represented by the classic temporal logics such as CTL and LTL and the underly-

ing model is typically a Kripke structure. The second generation is probabilistic model checking; they

are represented by PCTL, PLTL, and CSL, and the underlying model is typically a Markov chain struc-

ture, either discrete time or continuous time. From the first generation to the second generation, model

checking techniques has transformed from qualitative analysis to quantitative analysis in limited way.

The limited quantitative analysis of probabilistic model checking come from the following facts: first,

the quantity is a probabilistic value between 0 and 1; second, probabilistic logics such as PCTL and

CSL cannot nest real values, since they are by nature logics and produce true/false values only; though

PLTL can output real values between 0 and 1, its overall computational complexity is exponential in

the size of the formula and polynomial in the size of the model. The third generation, represented

by CTML, or asCTML for a later extension, is relatively a more seamless formal language towards

the unification of model checking and performance evaluation; it is classified as third generation for

the fact that, the language adopts model checking’s specification style and retains the original model

checking’s expressive power, yet it is no longer a logic, because it can handle and nest any real valued

quantities between 0 and infinity rather than between 0 and 1. The language is currently supported by

a set of algorithms and software tools. The following discusses potential future work.

Compare to CTML, asCTML can answer questions such as: What is the expected number of times

that a particular event occurs before deadline t? that can not be answered by CTML, because CTML

can not handle weighted arcs along paths, nor does it support multiple actions. While asCTML is pow-

erful, it can not handle queries like What is the probability that a given path formula has accumulated

value larger than x? This is another type of useful query related to performance measures and was

114

recently addressed in [2], which presents an operator for a path formula to be able to check against the

boundary real-valued interval J . One of the problems is that the algorithm is exponential in the size of

the graph if the state-based rewards are real values. This makes the approach less practical due to large

state space for a typical model structure.

Another direction for future research is to apply asCTML or a similar language for continuous time

Markov chains (CTMCs) or semi-Markov processes (SMPs). For unbounded until and unbounded

weak until queries, this is fairly straightforward: since CTML can handle real–valued state formulas,

we can instead analyze the embedded DTMC using CTML, and scale the state formulas by the expected

time spent in each state. The time bounded versions of these formulas are not so straightforward to

handle, and will likely require significant changes. For CTMC, one of the main difficulties is how the

reward values shall be accumulated, since the time distribution is no longer Const(1) as in DTMC. If

we calculate an embedded DTMC via uniformization, then the quantity varies with how q is chosen.

SMP is essentially for general distributions that are not limited to exponential; as like CTMC, however,

the analysis for bounded until is the main challenge. Helpful inspirational works can be found here

[7, 35, 48], though they are all similar to CSL.

In addition to CTMCs and SMPs, another type of Markov processes that are of our interest is

Markov Decision Processes (MDPs). MDPs are essentially extension of Markov chains with rewards;

the main difference is the addition of a set of non-deterministic actions. If a policy is assumed to

be given, then MDPs can be reduced to Markov chains and analyzed by model checking formalisms

similar to PCTL. This idea is presented in [23, 46]. More specifically, [23] handles a probabilistic

structure where the duration time is either 0 or 1 between state to state transitions. [46] extended the

idea by allowing the duration time to be an arbitrary natural number between state to state transitions.

While [24, 45] extended the previous approaches with real values between state to state transitions for

computing a set of measures so called probabilistic reachability and expected reachability [43], they are

not supported by a formal specification language, and therefore limited in handling complex measures

such as nested formulas. On the other hand, asCTML computes a wide variety of complex formulas

for DTMCs/MAMCs, hence working on MDPs can be a potential future work for a broader measures

in the domain of optimization and concurrency.

115

In chapter 7, we have already shown that CTML covers the right recursive PLTL formulas that

cannot be expressed by PCTL. In the future, we wish to further extend asCTML such that it covers

pCTL* [3], which is a unification of PCTL and PLTL. In that case, however, the time complexity will

become exponential in the length of the formula.

116

Bibliography

[1] Ajmone Marsan, M., Conte, G., and Balbo, G. (1984). A class of generalized stochastic Petri nets

for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst., 2(2):93–122.

[2] Andova, S., Hermanns, H., and Katoen, J. P. (2003). Discrete-time rewards model-checked. In

Larsen, K. G. and Niebert, P., editors, Formal Modelling and Analysis of Timed Systems (FORMATS

2003), volume 2791 of Lecture Notes in Computer Science, pages 88–104. Springer Verlag.

[3] Aziz, A., Singhal, V., and Balarin, F. (1995). It usually works: The temporal logic of stochastic

systems. In Proceedings of the 7th International Conference on Computer Aided Verification, pages

155–165, London, UK. Springer-Verlag.

[4] Baarir, S., Beccuti, M., Cerotti, D., De Pierro, M., Donatelli, S., and Franceschinis, G. (2009). The

GreatSPN tool: Recent enhancements. SIGMETRICS Perform. Eval. Rev., 36(4):4–9.

[5] Baier, C., Cloth, L., Haverkort, B. R., Kuntz, M., and Siegle, M. (2007). Model checking Markov

chains with actions and state labels. IEEE Transactions on Software Engineering, 33:209–224.

[6] Baier, C., Haverkort, B., Hermanns, H., and Katoen, J.-P. (2003). Model-checking algorithms for

continuous-time Markov chains. IEEE Transactions on Software Engineering, 29(6):524–541.

[7] Baier, C., Haverkort, B. R., Hermanns, H., and Katoen, J.-P. (2000). On the logical characterisation

of performability properties. In Automata, Languages and Programming, pages 780–792.

[8] Balbo, G. (2000). Introduction to stochastic Petri nets. In Brinksma, E., Hermanns, H., and Katoen,

J.-P., editors, European Educational Forum: School on Formal Methods and Performance Analysis,

volume 2090 of Lecture Notes in Computer Science, pages 84–155. Springer.

117

[9] Beaudry, D. M. (1978). Performance-related reliability measures for computing systems. IEEE

Transactions on Computers, C-27(6):540–547.

[10] Bertsekas, D. P. and Tsitsiklis, J. N. (1991). An analysis of stochastic shortest path problems.

Math. Oper. Res., 16(3):580–595.

[11] Bianco, A. and de Alfaro, L. (1995). Model checking of probabalistic and nondeterministic sys-

tems. In Proceedings of the 15th Conference on Foundations of Software Technology and Theoretical

Computer Science, pages 499–513, London, UK. Springer-Verlag.

[12] Borgerson, B. R. and Freitas, R. F. (1975). A reliability model for gracefully degrading and

standby-sparing systems. IEEE Trans. Comput., 24(5):517–525.

[13] Çinlar, E. (1975). Introduction to stochastic processes. Prentice-Hall, Englewood Cliffs, NJ.

[14] Chung, K. L. (1979). Elementary Probability Theory with Stochastic Processes. Undergraduate

Texts in Mathematics. Springer-Verlag, Orlando, 3 edition.

[15] Ciardo, G. (1989). Analysis of large stochastic Petri net models. PhD dissertation, Duke Univer-

sity, Durham, NC.

[16] Ciardo, G., R. L. Jones, I., Miner, A. S., and Siminiceanu, R. I. (2006). Logic and stochastic

modeling with SMART. Perform. Eval., 63(6):578–608.

[17] Ciardo, G. and Trivedi, K. S. (1993). A decomposition approach for stochastic reward net models.

Perf. Eval, 18:37–59.

[18] Clark, G., Gilmore, S., and Hillston, J. (1999). Specifying performance measures for PEPA. In

ARTS ’99: Proceedings of the 5th International AMAST Workshop on Formal Methods for Real-Time

and Probabilistic Systems, pages 211–227, London, UK. Springer-Verlag.

[19] Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986). Automatic verification of finite-state con-

current systems using temporal logic specifications. ACM Transactions on Programming Languages

and Systems, 8:244–263.

118

[20] Clarke, E. M., Grumberg, O., and Peled, D. A. (1999). Model Checking. MIT Press.

[21] Cohn, D. L. (1980). Measure Theory. Birkhäuser, Boston.

[22] Courcoubetis, C. and Yannakakis, M. (1995). The complexity of probabilistic verification. J.

ACM, 42(4):857–907.

[23] de Alfaro, L. (1997). Temporal logics for the specification of performance and reliability. In

STACS’97: Proceedings of the 14th Annual Symposium on Theoretical Aspects of Computer Science,

pages 165–176, London, UK. Springer-Verlag.

[24] de Alfaro, L. (1999). Computing minimum and maximum reachability times in probabilistic

systems. In CONCUR ’99: Proceedings of the 10th International Conference on Concurrency

Theory, pages 66–81, London, UK. Springer-Verlag.

[25] de Alfaro, L., Faella, M., Henzinger, T. A., Majumdar, R., and Stoelinga, M. (2005). Model

checking discounted temporal properties. Theor. Comput. Sci., 345(1):139–170.

[26] Dijkstra, E. W. (1961). Algol 60 translation : An algol 60 translator for the x1 and making a

translator for algol 60. Technical Report MR 34/61.

[27] Dijkstra, E. W. (1971). Hierarchical ordering of sequential processes. Acta Inf., 1:115–138.

[28] Donatelli, S., Haddad, S., and Sproston, J. (2007). CSLTA: an expressive logic for continuous-

time Markov chains. Quantitative Evaluation of Systems, International Conference on, 0:31–40.

[29] Donatelli, S., Haddad, S., and Sproston, J. (2009). Model checking timed and stochastic properties

with CSLTA. IEEE Transactions on Software Engineering, 35(2):224–240.

[30] Emerson, E. A. (1990). Temporal and modal logic. In Handbook of Theoretical Computer Sci-

ence, pages 995–1072. Elsevier.

[31] Emerson, E. A. and Halpern, J. Y. (1983). “sometimes” and “not never” revisited: on branching

versus linear time (preliminary report). In POPL ’83: Proceedings of the 10th ACM SIGACT-

SIGPLAN symposium on Principles of programming languages, pages 127–140, New York, NY,

USA. ACM.

119

[32] Fantechi, A., Gnesi, S., and Ristori, G. (1994). Model checking for action-based logics. Formal

Methods in System Design, 4:187–203.

[33] Hansson, H. and Jonsson, B. (1994). A logic for reasoning about time and reliability. Formal

Aspects of Computing, 6(5):512–535.

[34] Harrison, P. G. and Knottenbelt, W. J. (2002). Passage time distributions in large Markov chains.

SIGMETRICS Perform. Eval. Rev., 30(1):77–85.

[35] Haverkort, B. R., Cloth, L., Hermanns, H., and Katoen, J.-P. (2002). Model checking performa-

bility properties. In DSN’02: Proceedings of the 2002 International Conference on Dependable

Systems and Networks, pages 103–112, Washington, DC, USA. IEEE Computer Society.

[36] Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., and Siegle, M. (2000). A Markov chain model

checker. In Tools and Algorithms for Construction and Analysis of Systems, pages 347–362.

[37] Huth, M. R. A. and Ryan, M. D. (2004). Logic in Computer Science: Modelling and Reasoning

about Systems. Cambridge University Press, Cambridge, England.

[38] Kemeny, J. G. and Snell, J. L. (1960). Finite Markov Chains. D.Van Nostrand Company, Inc,

Princeton, NJ.

[39] Knuth, D. E. (1997). The Art of Computer Programming, Volume 1: Seminumerical Algorithms.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[40] Kurshan, R. P. (1994). Computer-aided verification of coordinating processes: the automata-

theoretic approach. Princeton University Press, Princeton, NJ, USA.

[41] Kwiatkowska, M. (2007). Quantitative verification: models techniques and tools. In ESEC-FSE

’07: Proceedings of the the 6th joint meeting of the European software engineering conference and

the ACM SIGSOFT symposium on The foundations of software engineering, pages 449–458, New

York, NY, USA. ACM.

120

[42] Kwiatkowska, M., Norman, G., and Parker, D. (2004). Prism 2.0: a tool for probabilistic model

checking. In Proc. 1st International Conference on Quantitative Evaluation of Systems (QEST’04),

pages 322–323.

[43] Kwiatkowska, M., Norman, G., and Parker, D. (2006). Game-based abstraction for Markov de-

cision processes. In In Proc. of QEST: Quantitative Evaluation of Systems, pages 157–166. IEEE

Computer Society.

[44] Kwiatkowska, M., Norman, G., and Parker, D. (2011). PRISM 4.0: Verification of probabilistic

real-time systems. In Gopalakrishnan, G. and Qadeer, S., editors, Proc. 23rd International Confer-

ence on Computer Aided Verification (CAV’11), volume 6806 of LNCS, pages 585–591. Springer.

[45] Kwiatkowska, M., Norman, G., Parker, D., and Sproston, J. (2003). Performance analysis of

probabilistic timed automata using digital clocks. In Proc. Formal Modeling and Analysis of Timed

Systems (FORMATS03), volume 2791 of LNCS, pages 105–120. Springer.

[46] Laroussinie, F. and Sproston, J. (2005). Model checking durational probabilistic systems. In

Sassone, V., editor, FoSSaCS, volume 3441 of Lecture Notes in Computer Science, pages 140–154.

Springer.

[47] Liu, Y. and Trivedi, K. S. (2004). A general framework for network survivability quantification.

In Buchholz, P., Lehnert, R., and Pióro, M., editors, MMB, pages 369–378. VDE Verlag.

[48] Lopez, G. G. I., Hermanns, H., and Katoen, J. (2001). Beyond memoryless distributions: Model

checking semi-Markov chains. In In Proceedings of the Joint International Workshop on Process

Algebra and Probabilistic Methods, Performance Modeling and Verification, volume 2165 of LNCS,

pages 57–70. Springer-Verlag.

[49] Meyer, J. (1980). On evaluating the performability of degradable computing systems. Computers,

IEEE Transactions on, C-29(8):720–731.

[50] Miner, A. (2000). DATA STRUCTURES FOR THE ANALYSIS OF LARGE STRUCTURED

MARKOV MODELS. PhD dissertation, College of Williams of Mary in Virginia, Williamsburg,

VA.

121

[51] Miner, A. S. (2004). Implicit GSPN reachability set generation using decision diagrams. Perf.

Eval., 56(1-4):145–165.

[52] Miner, A. S. and Jing, Y. (2010). A formal language toward the unification of model checking

and performance evaluation. In Analytical and Stochastic Modeling Techniques and Applications,

pages 130–144.

[53] Muppala, J. K., Ciardo, G., and Trivedi, K. S. (1993). Modeling using stochastic reward nets. In

MASCOTS’ 93: Proceedings of the International Workshop on Modeling, Analysis, and Simulation

On Computer and Telecommunication Systems, pages 367–372. Society for Computer Simulation.

[54] Nicola, R. D. and Vaandrager, F. W. (1990). Action versus state based logics for transition sys-

tems. In LITP Spring School on Theoretical Computer Science, pages 407–419.

[55] Obal, II, W. D. and Sanders, W. H. (1999). State-space support for path-based reward variables.

Performance Evaluation, 35(3-4):233–251.

[56] Pissanetzky, S. (1984). Sparse matrix technology. Academic Press, London, Orlando. Includes

index.

[57] Pitman, J. (1993). Probability. Springer-Verlag, New York.

[58] Pnueli, A. (1981). The temporal semantics of concurrent programs. Theor. Comput. Sci., 13:45–

60.

[59] Ross, S. M. (2006). Introduction to Probability Models, Ninth Edition. Academic Press, Inc.,

Orlando, FL, USA.

[60] Stewart, W. (1994). Introduction to the Numerical Solution of Markov Chains. Princeton Univ.

Press.

[61] Suto, T., Bradley, J. T., and Knottenbelt, W. J. (2007). Performance trees: Expressiveness and

quantitative semantics. In QEST ’07: Proceedings of the Fourth International Conference on Quan-

titative Evaluation of Systems, pages 41–50, Washington, DC, USA. IEEE Computer Society.

122

[62] Tewarson, R. (1973). Sparse Matrices. Mathematics in science and engineering : a series of

monographs and textbooks. Academic Press.

[63] Trivedi, K. S., Ciardo, G., Malhotra, M., and Sahner, R. A. (1993). Dependability and performa-

bility analysis. In Performance Evaluation of Computer and Communication Systems, Joint Tutorial

Papers of Performance ’93 and Sigmetrics ’93, pages 587–612, London, UK. Springer-Verlag.

[64] Vardi, M. Y. (1996). An automata-theoretic approach to linear temporal logic. In Proceedings

of the VIII Banff Higher order workshop conference on Logics for concurrency : structure versus

automata, pages 238–266, Secaucus, NJ, USA. Springer-Verlag New York, Inc.

[65] Vardi, M. Y. and Wolper, P. (1986). Automata-theoretic techniques for modal logics of programs.

J. Comput. Syst. Sci., 32(2):183–221.

	2015
	A formal language towards the unification of model checking and performance evaluation
	Yaping Jing
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	2. BACKGROUND
	2.1 Notations
	2.2 -Algebras and Measure Theory
	2.3 Random Variables and Probability Measures

	3. MARKOV PROCESSES
	3.1 Stochastic Processes and Markov Chains
	3.2 Discrete-Time Markov chain
	3.2.1 Transient Analysis
	3.2.2 Recurrent, Transient, Irreducible Properties
	3.2.3 Absorbing DTMCs

	4. TRADITIONAL MODEL CHECKING
	4.1 Kripke Structure
	4.2 Computation Tree Logic (CTL)
	4.3 Linear-time Temporal Logic (LTL)
	4.4 LTL vs. CTL
	4.5 Computation Tree Logic Star (CTL*)

	5. PROBABILISTIC MODEL CHECKING
	5.1 Probabilistic Computation Tree Logic (PCTL)
	5.1.1 Algorithm For The Case of P-3muvX
	5.1.2 Algorithm For The Case of P-3muv 1 Ut 2, t N{ }

	5.2 PLTL and pCTL*

	6. REAL-VALUED PERFORMANCE MODELING FORMALISMS
	6.1 Computation Tree Measurement Language
	6.1.1 Basic Definitions
	6.1.2 Syntax of CTML
	6.1.3 Semantics of CTML

	6.2 Algorithms
	6.2.1 Algorithms For The Case of MU
	6.2.2 Algorithm For the Case of MV
	6.2.3 Computational Complexity

	7. COMPARING CTML'S EXPRESSIVE POWER WITH PCTL AND PLTL
	7.1 CTML vs. PLTL
	7.2 CTML vs. PCTL

	8. ACTION AND STATE BASED FORMALISMS
	8.1 Action and State Based Computation Measurement Language
	8.1.1 asCTML Syntax
	8.1.2 Semantics of asCTML

	8.2 Conversion to CTML
	8.3 asCTML vs. CTML
	8.4 Other Related Work

	9. SOFTWARE TOOL
	9.1 Software Design
	9.2 Software Implementation
	9.2.1 Sparse Matrix Storage
	9.2.2 Solving Linear Systems

	9.3 asCTML Software Translator
	9.4 Overall Discussion and Software Test

	10. APPLICATION EXAMPLE
	10.1 University Graduation Example
	10.2 Dining Philosopher Example

	11. CONCLUSION AND FUTURE RESEARCH

