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ABSTRACT

The behavior of matter at the molecular level can be programmed to create nanoscale

molecular components that accomplish desired tasks. Many molecular components are

developed with intended uses that are safety-critical, such as medical applications. Ensuring

the correctness and fault tolerance of such devices is paramount. Techniques to develop

robustly correct programs have been widely studied in software systems and many devices

have been constructed to aid in the safe operation of systems. We seek to demonstrate the

effectiveness of software and safety engineering techniques in the molecular programming

domain.

In this thesis, we present the design of five new devices to aid in the development of

safety-critical molecular programmed systems. We introduce a Runtime Fault Detection

device (RFD) to robustly detect faults and initiate recovery actions in response to a failed

system. We present the Concentration Monitor, a device that can detect changes, major and

minor, in concentrations in real-time and demonstrate its utility. We also describe methods

for constructing chemical reaction networks that can robustly simulate any combinational

logic gate. Finally, we present two devices to log the state of a molecular program, where

the first device logs a state upon receiving a request, and the second device ensures that the

current state meets a defined validity property before allowing a log to be taken. All devices

have been formally verified using model checking, simulations, or formal proof techniques.

The methods used to construct and verify these devices can be adapted to the design of

future molecular systems to assist in ensuring their correctness.
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CHAPTER 1. INTRODUCTION

Molecular programming is a domain where matter, such as DNA strands or chemicals,

is programmed to achieve a desired behavior. The beginnings of the field trace to Seeman

in the 1980s [53], for his work on DNA crystals that self assembled from DNA strands.

Interest in the field began growing when Winfree proved the Turing universality of the model

[66]. Many advancements have appeared in the field in years since, from Boolean circuits

[7, 57, 62], to DNA based nano-robots [6, 12], to devices that contain drugs for delivery to

targeted cells [15, 67, 44].

Though DNA strands are a physical concrete medium, a large amount of research

is performed on more abstract mediums, such as Chemical Reaction Networks (CRNs).

CRNs are an abstract model of computation that emulates the behavior of many molecular

programs. They have been widely studied since at least the 1940s [14]. In recent years

the CRN model has begun to be viewed as a programming language for the development

of molecular programs. The change is largely due to work by Soloveichik, Seelig, and

Winfree, who showed that DNA strands can be used to implement any CRN [55]. Now,

CRNs are widely used as an abstract programming language that can, through the use of

automated tools [2], be compiled into a DNA strand displacement system for experimentation

or deployment.

A system is safety-critical if a system failure can lead to loss of life, equipment, or

significant amounts of money. Many intended applications of molecular devices are safety-

critical in nature, such as using nano-robots to deliver drugs, therefore it is critical to

ensure that devices not only achieve the desired behavior, but are also robust to any failures.
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Software and safety engineering techniques have been used to achieve these goals for many

years. Techniques such as goal oriented requirements engineering [64], a process by which

informal system goals are turned into a formal specification, aid in the analysis of a system’s

intended use for possible faults or failures. Previously, goal oriented requirements engineering

has been used to analyze a molecular system and find obstacles that would hinder correct

operation [45, 46]. Formal methods, specifically model checking, have been shown to be

useful in the study of programmed nanodevices [38].

In this thesis, we present results concerning the application of software engineering

techniques towards the construction of molecular devices to ensure safety in molecular

programs. We utilize requirements engineering techniques to develop a specification for the

devices to ensure that they reflect the intended behavior. Using formal methods including

simulation, model checking and formal proofs we verify the accuracy of our designs in terms

of the specifications.

The capability to detect and recover from potential faults in a device is important in a

molecular program. We introduce an extension of the Molecular Watchdog Timer (MWT)

constructed from stochastic chemical reaction networks, a device that monitors the health

of another system and issues an alarm if a fault is detected, in Chapter 2. Watchdog timers

are widely used in software systems to monitor the health of critical components. We briefly

review the initial version, originally presented in Samuel Ellis’ Masters thesis [20], then

discuss the development of subsequent iterations. We present a goal diagram, generated

using goal oriented requirements engineering [64] techniques, for a MWT and a formal

specification using Continuous Stochastic Logic (CSL) [1]. We then discuss the iterative

tool assisted process used to verify the design of the device against the specification and the

results of the verification.

Chapter 3 introduces a device called a Concentration Monitor, used to detect whether

a concentration is above or below specified bounds. We present a set of requirements for

the concentration monitor and use formal analysis to ensure that the design satisfies the
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specification. The concentration monitor is designed to be robust with respect to a number

of factors, discussed further in Section 3.1, including errors at initialization and during

runtime. We provide an example application of the concentration monitor through the

construction of a molecular watchdog timer for deterministic chemical reaction networks.

Logic circuits play a key role in the operation of computer systems, and it is imperative

that their operation is both correct and robust. Utilizing the concentration monitor, we

present a method for constructing arbitrary logic circuits out of CRNs in Chapter 4. We

present the construction of a CRN based NAND gate and formally prove its correctness.

We present a proof for the creation of arbitrary logic gates using the CRN based NAND

gate and show that the operation of the composed circuit remains correct and robust.

Software systems often use logs, append only files that are written to over time, to study

the behavior of a system, especially if the system encountered a fault. In Chapter 5, we

present two devices to construct a log of a molecular system’s state over time. The first

device is capable of logging the state of its monitored system at any time by being given a

predetermined input signal. The second device extends the first by only logging the state

when it is determined to be valid, based on a predetermined validity property. Both devices

provide a log which can be read by an external user or another molecular program. We show

give a proof that both devices perform the desired behavior robustly and correctly. We then

discuss an extension of the logging devices to create a history of stored states which can be

used for checkpointing and rollback.

All the devices presented assist in the construction of robust molecular programs. They

enable the detection of faults both at runtime and through later study. The devices can also

support the recovery of a system from faults through initiating recovery actions and rolling

back to a previous system state. In addition to the devices themselves, the processes used in

their specification, design, and verification can all be applied to the construction of future

molecular systems.
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1.1 Related Work

Model checking as applied to molecular systems has gained interest in recent years.

Kwiatkowska and Thachuk described their use of the probabilistic model checker PRISM

to perform probabilistic verification of Chemical Reaction Networks (CRNs) for biological

systems [38]. Their work showed the benefits of probabilistic model checking for molecular

systems and informed our work for the Molecular Watchdog Timer (MWT) and the Runtime

Fault Detection Device (RFD). Visual DSD, a design tool for DNA strand displacement [42],

can generate a model of a DNA system for use in PRISM. PRISM has been used previously

to model a variety of biological case studies, including DNA circuits and DNA nanorobotic

walkers [12, 40]. PRISM also has been used widely to model probabilistic protocols, e.g., in

distributed sensor networks, and stochastic multi-player games [37].

We utilized the Lotka-Volterra 3-phase oscillator to construct an example monitored

system for use with the RFD. Ballarini, Mardare and Mura, and Ballarini and Guerriero

performed analysis on the Lotka-Volterra 3-phase oscillator using PRISM and described both

of the failures modes that our MWT design successfully detects [4, 3]. Our work differs in

that we performed verification on an interface attached to the oscillator and its composition

with the RFD.

Stochastic Petri net formalisms, as in the model checker SMART, have been used to

model signal transduction in biological pathways [26]. SMART has been used to model other

types of stochastic systems, e.g., in a NASA-funded study to evaluate an airport runway

safety monitor protocol for false alarms [54]. A good overview of the formalisms used in

population models, including the stochastic petri nets used in SMART, appears in [27].

Due to the scale of molecular systems, there is a disconnect between the size of a feasible

model for automatic checking and the intended system. We are often forced to find ways to

restrict the size of our models to perform model checking. Pavese, Barberman and Uchitel

described how to develop partial explorations of a system model automatically [51]. Their

technique has promise for use in molecular programs that we hope to explore. Since many
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molecular programs deal with extremely large, if not infinite, state spaces, probabilistic

model checking on partial system explorations might provide bounds on the reliability of a

molecular system that is too large to model check.

The values used for parameters in stochastic models are usually derived from experimen-

tation or are only partially known. Small differences between a models’ parameter values

and their counterparts in the real world can have a drastic effect on verification results.

Meedeniya et al. generated reliability evaluations of a probabilistic model of an antilock

brake system with uncertain parameters using Monte Carlo simulations [47]. Su, Chen,

Feng, and Rosenblum extended previous work by Su and Rosenblum [59] on perturbations

in model checking parameters in discrete-time Markov chains to allow model checking on

time-bounded continuous time Markov chains (CTMCs) with imprecise values for transition

rates [58]. The imprecision present in the reaction rates of molecular systems raises the

importance of determining the effects of perturbations in parameter values.

The modeling of biological systems has seen many advances in the past few years.

Yordanov et al. formalized and encoded DNA computing to allow use of Satisfiability Modulo

Theories (SMT) [68]. Fisher, Harel and Henzinger performed computational modeling of

biological systems as reactive systems [22]. Hetherington et al. and Sumner et al. utilized

sub-models of a biological system to compose an advanced model [28, 60]. David et al.

created translators to convert SimBiology models for biological systems into CTMCs for

stochastic model checking or into Ordinary Differential Equations (ODEs) for simulation

[13]. SimBiology is a package from MATLAB that handles biological systems [61].

Through the development of the MWT and RFD, our experiences made it clear that the

requirements and architecture should co-evolve, this is consistent with the “Twin Peaks” idea

described by Nuseibeh [49]. We made extensive use of the probabilistic model checker to check

the alignment of goals with design alternatives. The obstacle analysis gave us a framework for

selecting among alternative designs [64]. We encountered great difficulty correctly specifying

the requirements for the MWT. We often discovered that our requirements needed to change



6

to reflect new understandings gained through the automated analysis of the formal models.

Often, the constraints of the domain drove our revision of the requirements. Whalen et al.,

reported similar experiences developing requirements for large avionic systems, in which

the requirements were just as likely to be right or wrong. [65]. Like us, they found that

analyzing formal models was effective in discovering inconsistencies between environmental

assumptions and the requirements they derived for their systems.

Oscillators play an important role in biology which has increased interest in their study.

Hori and Murray, in a recent paper on synthetic biochemical oscillators, stated that, “The

reliable engineering of oscillators is an important milestone towards robust synthesis of more

complex dynamical circuits in synthetic biology” [30]. Fern et al. reported the use of timer

circuits to precisely coordinate chemical events in vitro [21]. 3-phase oscillators seem to

have been first reported in [39] and more recently [8, 9, 41]. The 2-phase Lotka-Volterra

oscillator also has been studied in the context of DNA strand displacement in [56, 41]. As

stated earlier, formal model checking was performed on the Lotka-Volterra 3-phase oscillator

in [4, 3].

Different motifs for designing molecular circuits have been proposed. Hjelmfelt, Wein-

berger, and Ross proposed the use of chemical based logic gates to construct neural networks

and Turing machines [29]. Ogihara and Ray showed that a DNA computer could be used to

simulate unbounded fan-in boolean circuits [50]. Qian and Winfree used DNA to construct

a four-bit square-root circuit [52] Ge, Zhong, Wen, You, and Zhang presented different

approaches for using Karnaugh maps to create combinatorial logic gates [23]. They used

simulations to compare the stability and robustness of the different constructions. Our

gates differ by being robust with respect to perturbations in rate constants, initial values,

measurement function, and input concentrations. Our gates also update their output in real

time, with a programmed delay, to changes in the inputs.

Molecular programs communicate with each other through the presence and absence of

molecular signals. Barish, Rothemund and Winfree in 2005 showed that DNA self-assemblies
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could pass data by propagating binary information along a DNA tube by making copies of

that pattern [5]. Hsiao, Hori, Rothemund, and Murray showed that the sensing and recording

of sequences of chemical inputs across bacterial cell populations could be performed with

temporal logic gates [31]. Our work on the logging devices differs in a few ways. First, our

devices are robust with respect to a number of factors. Second, the valid only logging device

is capable of determining if a state is valid or not before performing a log.

1.2 Background

Here we present some background information to aid in understanding the work in this

thesis.

1.2.1 Stochastic Chemical Reaction Networks

Chemical reaction networks (CRNs) are an abstraction of molecular processes that are

occurring in a well mixed solution. CRNs are a desirable abstract model that acts as a

programming language for molecular programs. Stochastic CRNs (SCRNs) are a class of

CRNs where each molecular species has a finite integer count for its population. SCRNs

are ideal for modeling small scale systems, tens to a few hundreds of molecules, since the

presence or absence of a single molecule affects the behavior of the system, such as the

presence of a single viral genome within a living cell. The SCRN model dates back to at

least the 1940s [14], but has been widely studied since [24, 63, 25].

An SCRN consists of a tuple N = (S, R), where S contains a set of species and R

contains a set of reactions over the species in S. Each species is given an abstract label (e.g.

A) and has an integer molecular count denoting its population at a given point in time. We

define the current state of an SCRN as an integer vector over the set of species S. The set

R contains a set of chemical reactions, each of which is a tuple ρ = (r, p, k) where

r - an integer vector of reactants over the set S.

p - an integer vector of products over the set S.
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k - a rate constant specifying the speed the reaction occurs.

A reaction ρ is usually written in the form

A0 + · · ·+Ai
k−→ B0 + · · ·+Bj .

A0, . . . , Ai are the reactants, which are both necessary for ρ to occur and are consumed by

the reaction. B0, . . . , Bj are the products, these are produced when ρ occurs. If a species

appears in both the reactant vector and the product vector it is called a catalyst, which is

necessary for the reaction to occur but is not consumed by the reaction.

For clarity, consider the following example. Given a CRN N = (S, R) with S = {A,B,C}

and R containing only the reaction

ρ ≡ A+B
k−→ 2C.

The reaction ρ has a reactant vector (1, 1, 0), a product vector (0, 0, 2) and a rate constant

k. If an A molecule and B molecule are both present in the solution and interact with one

another, they will be consumed to produce two molecules of C at a rate k.

SCRNs contain integer molecular counts, meaning their behavior can be described by

a continuous-time Markov chain (CTMC)[14]. CTMCs are a useful model for our work as

they are supported by the model checker PRISM [37]. A CTMC is a directed graph where

nodes are states of the system and edges are transitions between the states. We assign each

state in a CTMC to a possible state in the operation of the SCRN. We start with an initial

state, a vector with the initial population counts. From the initial state, for each reaction,

we create a transition to a new state where the reaction has been applied, i.e. the reactants

subtracted and the products added to the current state. We continue this process recursively

for each state until the set of possible states for the SCRN are included. We call this set

of states the statespace of the CTMC. We assign a rate to each transition based on the

reactants and the rate constant. For a given reaction ρ = (r, p, k), we assign a rate as

k(A0)(A1) . . . (Ai)

volume(i−1)
,
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where A0, . . . , Ai represent their current population within the solution and are only the

species with non-zero counts in the reactant vector of ρ. If a reaction is unary, i.e. only has

one reactant, its rate is a special case and is defined as

k(A0).

The rate determines how much continuous time passes while a transition occurs. The

probability of a transition occurring is determined by its rate over the sum of the rates of

all possible reactions in the current state.

Likewise, an SCRN can be modeled as a probabilistic Petri-net (PPN). PPNs are a useful

model for our work as they are supported by the model checker SMART [10]. A PPN consists

of a set of states which contain integer numbers of tokens, and a set of transitions which

move tokens between states. We construct a single state for each species in S. The current

population of a species is specified by the number of tokens in its place. We also construct

a transition for each reaction in R. We assign rates and probabilities to the transitions as

above in CTMCs.

1.2.2 I/O Chemical Reaction Networks

Input/Output Chemical Reaction Networks (I/O CRNs) are a special class of CRNs,

defined here under deterministic mass action kinetics. I/O CRNs were first defined in Titus

Klinge’s thesis [32], and have been used to study robust logic gates [17]. We adopt their

syntax to discuss I/O CRNs. I/O CRNs are a useful model for dealing with signal and

information passing between different CRNs. The basic structure of deterministic CRNs is

the same as SCRNs. A CRN N = (S, R) contains a set of species S and a set of reactions R.

Each reaction ρ in R is a tuple ρ = (r, p, k), where the reactant vector r, product vector p,

and rate constant k are defined as above in SCRNs. The primary difference is in the counts

of the species. Where S is an integer vector in an SCRN, here S is a vector of real numbers.

We call the current population value of a species its concentration.
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An I/O CRN is a tuple N = (U,R, S) where U, S ⊆ S are finite sets of species and no

element that appears in U can appear in S, that is U ∩S = ∅, and R is a set of reactions over

U ∪ S. The set U is called the set of input species and the set S is the set of state species.

Any element that appears in U may only be used catalytically, i.e. non-destructively, by any

reactions in R.

In deterministic mass action kinetics an I/O CRNs state is a vector x ∈ [0,∞)|S|. We

note the concentration of a species Y ∈ S by x(Y ). An I/O CRN also has an input state,

a vector u ∈ [0,∞)|U |, and a global state, a vector (x, u) ∈ [0,∞)|U∪S|. A W -signal space

is a set C [W ] = C([0,∞), [0,∞)|W |) with C(X,Y ) as the set of continuous functions from

X to Y , for a given finite set W ⊆ S. An I/O CRN has a context, defined as a tuple

c = (u, V, h). We call u the input function of the I/O CRN and define it as u ∈ C [U ].

Informally, u is a vector denoting the concentrations of all species in the input set U . We call

V the output species, defined as V ⊆ S, which specifies the state species used to produce

an output from the I/O CRN. Finally, we call h the measurement function, defined as

h : [0,∞)|U∪S| → [0,∞)|V | which defines the behavior of the output species V based on a

global state, a set of concentrations for the input and state species. We use CN to reference

the set of all contexts for a given I/O CRN N .

Each reaction ρ in an I/O CRN N has a rate dependent on the concentrations of all

involved species. For a given global state (x, u) ∈ [0,∞)|U∪S|, the rate of a reaction ρ is

defined by the real value

ratex,u(ρ) = k(ρ)
∏

Y ∈(U∪S)

(x, u)(Y )r(ρ)(Y ). (1.1)

Here, k(ρ) is the rate constant of reaction ρ and (x, u)(Y )r(ρ)(Y ) denotes the concentration

of a species Y raised to the power of its activity in the reaction. More simply, if a species Y

is not involved in the reaction, its activity is 0, meaning its involvement in the rate is a 1.

If the species Y is involved in the reaction, its activity is a 1, meaning its involvement in

the rate is equivalent to its concentration. A species Y ∈ S has a deterministic mass action

function that determines how it will change over time, given the current global state. This
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function is defined as

FY (x, u) =
∑
ρ∈R

∆ρ(Y ) · ratex,u(ρ). (1.2)

where ∆ρ is the net effect of the reaction, subtracting the reactants and adding the products.

In deterministic mass action kinetics, the behavior of a CRN is modeled by a series of

ordinary differential equations (ODEs). For a given species Y ∈ S and a context of the I/O

CRN N , the ODE for Y is

y′(t) = FY (x(t), u(t)), (1.3)

for all t ∈ [0,∞). Informally, given a time t, the species Y will change based on the global

state at time t. The ODE can be rewritten in the form

x′(t) = F (x(t), u(t)), (1.4)

for all t ∈ [0,∞) by defining a function for each Y ∈ S, F (x, u)(Y ) = FY (x, u).

Given an initial state x0 ∈ [0,∞)|S|, by the standard theory of ODEs, the system of

ODEs has a unique solution x(t). Using the measurement function, we can now define the

output signal of an I/O CRN N as

Nx0,c(t) = h(x(t)), (1.5)

for all t ∈ [0,∞) for a given initial state and context. The output signal is the behavior of

the defined output species V , that is, how V will change over time given an initial state and

a context.
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CHAPTER 2. FAULT DETECTION OF MOLECULAR SYSTEMS AT

RUNTIME

When dealing with safety-critical systems, a failure can have disastrous consequences,

leading to massive losses. Therefore, it is important that any fault is quickly detected so

it can be properly handled before any losses occur. Introducing devices to both monitor

for faults and make either another system or a user aware when they occur is a necessary

step. One such device is a watchdog timer, a device which monitors a system for a fault

and raises an alarm upon its occurrence [34, 43]. It does so through the use of a heartbeat.

The monitored system provides a heartbeat at a regular interval, as long as the signal is

being received, the monitored system has not encountered a failure. If a long enough period

of time has occurred since the previous heartbeat, the watchdog timer assumes that the

monitored system has failed and produces an alarm signal.

Watchdog timers have widely been used in order to detect faults and prevent failures

within software systems. One such example is the Voyager spacecraft. The command

computer would receive a heartbeat signal every two seconds from the attitude control

computer upon completion of its self tests. In the event that a heartbeat was not received,

the command computer would respond by activating the backup processor [48]. We present

designs for devices that monitor the health of a molecular system and provide an alarm

if a fault is detected. Each device is an iteration of a Molecular Watchdog Timer (MWT)

constructed from Stochastic Chemical Reaction Networks (SCRNs).
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ACHIEVE
Watchdog Timer

AVOID
Alarm if time<t

ACHIEVE
Alarm if time>t

ACHIEVE
Reset time on HB

Molecular Alarm

ACHIEVE
Timer reset

AVOID
False HB detection

ACHIEVE
Detect HB

Molecular Clock Molecular Clock Molecular Clock

ACHIEVE
Initiate alarm

ACHIEVE
Delay for t time

Molecular Clock Molecular Alarm

Alarm is Mutual 
Exclusive

Alarm is Mutual 
Exclusive

Figure 2.1 Original Goal Diagram for a Molecular Watchdog Timer.

2.1 Original Molecular Watchdog Timer

The work presented in this subsection (2.1) was previously presented in Samuel Ellis’

master’s thesis [20]. A brief review of it is included in this chapter because the remaining

two sections of this chapter are extensions of it.

2.1.1 Requirements of the MWT

We constructed a goal diagram for the molecular watchdog timer. We defined the high

level goal “If the monitored system does not provide the appropriate signal within a specified

time, then issue an alarm.” We derived subgoals from the high level goal until we had only

leaf goals.
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LadderReactions

Lr + U
k−→ Y + U

...

L3 + U
k−→ L4 + U

L2 + U
k−→ L3 + U

L1 + U
k−→ L2 + U

Heartbeat Reset Reactions

Y +H
k−→ L1

Lr +H
k−→ L1

...

L2 +H
k−→ L1

L1 +H
k−→ L1

Figure 2.2 Original Absence Detector Reactions.

The leaf goals covered the tasks of correctly detecting if the heartbeats were present,

resetting the timer if the heartbeat was present, and initiating an alarm if the heartbeat

was absent for a sufficient length of time. To satisfy the leaf goals, we defined two agents, a

molecular alarm and a molecular clock. The molecular alarm simply needed to be a chemical

species. When the species is present, the alarm is considered “on”, when it is absent, the

alarm is “off.” The molecular clock needed to be a device that could detect the heartbeat

molecules and reset a timer based on their presence.

2.1.2 Design of the MWT

We tried a number of designs to satisfy the goals in the goal diagram. After encountering

a number of obstacles, we settled on a design with two main components, an absence detector

and a threshold filter. The absence detector consists of ladders, programmed cascades of

reactions, that climb naturally over time and are reset by consuming heartbeat molecules.

The CRN for the absence detector is shown in Figure 2.2. The absence detectors satisfy

the goals of detecting the presence or absence of heartbeats and reacting accordingly.

The threshold filter reads the outputs of the absence detector to determine if a pro-

grammed threshold number of absence detector ladders have not found any heartbeat

molecules, in which case it issues an alarm. The threshold filter CRN is shown in Figure 2.3.
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Detection Reactions

Tn + Y
k−→ D + Y

...

T3 + Y
k−→ T4 + Y

T2 + Y
k−→ T3 + Y

T1 + Y
k−→ T2 + Y

Threshold Reactions

Tn +R
k−→T1 +R

...

T3 +R
k−→T1 +R

T2 +R
k−→T1 +R

T1 +R
k−→T1 +R

Figure 2.3 Original Threshold Filter Reactions.

2.1.3 Verification of the MWT

We first discussed proofs for the MWT satisfying the goal diagram. Based on a set of

domain properties, we reasoned about the MWTs behavior. We discussed how each leaf goal

is satisfied by its agent. For example, the leaf goal Achieve[Delay for t time.] is satisfied by

the absence detectors. The absence detectors have a programmable delay in their expected

climb time. By programming the delay higher than t, the leaf goal is satisfied. We then

showed that each set of subgoals satisfied their parent goals. In this way, our MWT design

satisfied our goal diagram.

With no formal specification for each leaf goal, we could not perform model checking

directly on the requirements. To show the correctness, we instead used the model checkers

PRISM [37] and SMART [10, 11] to generate probabilities based on different constructions.

The primary goal was to ensure that the probability of false positives and false negatives

were both controllable and ideally very low. In terms of the MWT:

• False Positive: While heartbeats are present, the MWT issues an alarm.

• False Negative: While heartbeats are absent, the MWT does not issue an alarm.

We created models of the absence detector using both tools. We then defined a property

to generate the probability of issuing an alarm before a specified time.
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• PRISM Property:

P=? [F=T Y >= (0.8 ∗MAXL)]

• SMART Property:

prob at(tk(Y ) >= (0.8 ∗ n), T )

We checked this property over different configurations of our models. We tested variations

on number of heartbeats, size of heartbeats, the time heartbeats were inserted, and the

length of the absence detectors.

We also tested variations of the threshold filter using a model in SMART. We wanted to

show that the threshold filter had a low probability of initiating an alarm when the number

of absence detectors that found no heartbeat molecules was below the threshold. We defined

a SMART property to model this behavior.

probDatT : prob at(tk(D)! = 0, t) (2.1)

To show the controllability of the threshold filter, we tested different lengths of threshold

ladders in addition to the strength of the threshold to see their effect on this property.

2.2 Refining the MWT

The work presented in this subsection was previously presented at the 29th IEEE/ACM

International Conference on Automated Software Engineering (ASE 2014) and was performed

in collaboration with Eric R. Henderson, Titus H. Klinge, James I. Lathrop, Jack H. Lutz,

Robyn R. Lutz, Divita Mathur, and Andrew S. Miner [16].

2.2.1 Single Use Watchdog Timer

We formalized the goal diagram from the original MWT to enable software based model

checking of the design. We performed formal verification on the design and requirements of

the molecular watchdog timer to ensure their accuracy using model checking and simulation.
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2.2.2 Requirements Analysis

2.2.2.1 Goal Diagram

We specified the system goals for the MWT using an approach introduced in [45, 46]

based on the KAOS [64] method developed by Axel van Lamsweerde. One of the primary

advantages of goal-based approaches is in the refinement process. You begin with an

informally written goal, a simple description of the behavior desired from the system. You

then incrementally refine it into a formal specification. We constructed a goal diagram, a

graph consisting of goals with AND/OR refinements, for the MWT. We began by defining a

high level goal for the system, the desired behavior of the device. Then, using AND/OR

refinements, we produced a set of subgoals whose satisfaction implies the satisfaction of their

parent goals. We continue this process until each goal, called a leaf goal, can be achieved by

a single agent of the system.

Each goal is specified as an ACHIEVE, AVOID, or MAINTAIN goal. An achieve goal is

a behavior the system must meet to satisfy a requirement. An avoid goal is a behavior the

system must not encounter to satisfy a requirement. Maintain goals are behaviors that must

always be active during system operation.

We redefined the high level goal as “the MWT shall issue an alarm if and only if no

heartbeat signal is detected within a specified time bound”. This is reflected in the top level

goal of the goal diagram, Figure 2.4, Achieve[Alarm iff no Heartbeat provided within t time].

We refined the high level goal into two main subgoals

• Initiating an alarm only when it is correct to do so.

• Correct alarm behavior.

The first task if further refined a few times and its leaf goals are assigned to the original

components, the absence detector and the threshold filter. The second goal was refined into

three leaf goals that are assigned to a new agent, the amplifier.
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Alarm iff no Heartbeat
is provided within

t time

ACHIEVE

ACHIEVE

ACHIEVE

ACHIEVEAVOID MAINTAIN
AlarmTripped iff no
Heartbeat detected

in t’’ time

Alarm iff AlarmTripped
and within t-t’ time of
the first AlarmTripped

Alarm if Not
AlarmTripped

Alarm if AlarmTripped Alarm if the Alarm
has been issued

ACHIEVE
AlarmTripped iff

no Heartbeat provided
in t’ time

ACHIEVE
AlarmTripped iff

Threshold met
Correct Delay

ACHIEVE
Correct timer Reset

ACHIEVE

ACHIEVE
Threshold if Hdet  is

absent
Threshold delay if 

Reset

ACHIEVEACHIEVE
Reset if HdetInitialize to Reset

ACHIEVE AVOID
AlarmTripped until 

first threshold
AlarmTripped if 

Reset

AVOID ACHIEVE
AlarmTripped if 

threshold for some
time

ACHIEVE

ACHIEVE

Hdet Correctly tracks the
presence of Heartbeats

within t’-t’’ time

Hdet when Heartbeat
is present

Hdet when Heartbeat
is not present

AVOID

Figure 2.4 Goal diagram for the single use molecular watchdog timer.

2.2.2.2 Environmental Assumptions

To determine goal satisfaction, it is necessary to analyze the environment a system will

be deployed in and determine any assumptions we must make about it. The MWT operates

in a molecular environment, that is, a nanoscale environment with molecules floating around

in a liquid solution. Some assumptions on the behavior of systems in molecular environments

must be made in order to model their behavior. We utilize four environmental assumptions

to ensure that the goal diagram is satisfied by our design.

1. Heartbeat presence is controlled entirely by the environment, meaning the MWT does

not create any H molecules.

2. Heartbeats are “doses” of H molecules added into the solution. The size of the doses

must fall within a specified range.

3. The only molecular species in the environment that interacts with the MWT is the

heartbeat species H.
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4. The MWT is operating in a well mixed solution, that is, molecules are present evenly

throughout the solution, instead of being bunched together in small parts.

The size range of the heartbeat doses is determined based on other parameters within

the goals, such as the population size of each species in the model.

2.2.2.3 Goal Formalization

Each goal is an informal description of a desired system behavior. However, in order to

design a system and perform formal verification, it is necessary to have a formal specification

for each goal. We use continuous stochastic logic (CSL) [1] to specify each goal. We chose

to use CSL because it handles continuous time Markov chains (CTMCs) which define the

behavior of our CRN model. It is also available in two model checking tools that we use,

the Probabilistic Symbolic Model Checker (PRISM) [37] and the Stochastic Model-checking

Analyzer for Reliability and Timing (SMART) [10, 11]. We include the formal specification

in CSL of each goal in Figure 2.4. These goals are ordered in breadth first order following

the order of the figure.

Our specification has four user defined parameters so that a construction can be made

to meet nearly any needs. The parameters the user must provide are:

u - Alarm should not be issued within u-time of the last heartbeat

v - Alarm should be issued at least by v-time of the last heartbeat

ε - Probability of error allowed by the u-delay

δ - Probability of error allowed by the v-delay

Below is the top-level goal of our diagram. Given parameters, u, v, ε, δ, the following

constraints are placed on the top-level goal:

(1− ε1)(1− ε2) = (1− ε)

(1− δ1)(1− δ2) = (1− δ)
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ACHIEVE: Alarm iff no HB is provided within t-time

P≥1−ε�≤u¬Atrip ∧

P≥1� [Hpres =⇒ P≥1−ε1♦≤g (P≥1−ε2�≤u¬Atrip)] ∧

P≥1� [¬Hpres =⇒ P≥1−δ1♦≤v−wa (Atrip ∨Hpres)] ∧

P≥1� [Alarm =⇒ P≥1�Alarm] ∧

P≥1 (¬AlarmW Atrip) ∧

P≥1� [Atrip =⇒ P≥1−δ2♦≤waAlarm]

Below are the direct subgoals of the high-level goal. The subgoals are simply partitions

of the six individual properties of the parent-goal, and their equivalence is clear.

ACHIEVE: AlarmTripped iff no HB provided in t′ time

P≥1−ε�≤u¬Atrip ∧

P≥1� [Hpres =⇒ P≥1−ε1♦≤g (P≥1−ε2�≤u¬Atrip)] ∧

P≥1� [¬Hpres =⇒ P≥1−δ1♦≤v−wa (Atrip ∨Hpres)]

ACHIEVE: Alarm iff AlarmTripped and within t− t′ time of the first AlarmTripped

P≥1� [Alarm =⇒ P≥1�Alarm] ∧

P≥1 (¬AlarmW Atrip) ∧

P≥1� [Atrip =⇒ P≥1−δ2♦≤waAlarm]

Below are the subgoals of “AlarmTripped iff no HB provided in t′ time”. This refinement

abstracts the role of detecting the presence of a heartbeat from the rest of the goals and

imposes the following constraint on the introduced variables:

• 1− ε1 ≤ (1− α)(1− β)(1− ε′1)

• 1− ε2 ≤ 1− ε′2

• wh ≤ g
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• 1− δ1 ≤ (1− α)(1− β)(1− δ′1)

ACHIEVE: Heartbeat Detected correctly tracks the presence of Heartbeats within

t′ − t′′ time

P≥1� [Hpres =⇒ P≥1−β♦≤whP≥1−αHdet] ∧

P≥1� [¬Hpres =⇒ P≥1−β♦whP≥1−α (¬Hdet W Hpres)]

ACHIEVE: AlarmTripped iff no Heartbeat detected

P≥1−ε�≤u¬Atrip ∧

P≥1�
[
Hdet =⇒ P≥1−ε′1♦≤g−wh

(
P≥1−ε′2�≤u¬Atrip

)]
∧

P≥1�
[
¬Hdet =⇒ P≥1−δ′1♦≤v−wa−wh (Atrip ∨Hdet)

]
AVOID: Alarm if not AlarmTripped

P≥1 (¬AlarmW Atrip)

ACHIEVE: Alarm if AlarmTripped

P≥1� [Atrip =⇒ P≥1−δ2♦≤waAlarm]

MAINTAIN: Alarm if AlarmTripped

P≥1� [Alarm =⇒ P≥1�Alarm]

AVOID: Heartbeat Detected if Heartbeat not present

P≥1� [¬Hpres =⇒ P≥1−β♦whP≥1−α (¬Hdet W Hpres)]

ACHIEVE: Heartbeat Detected if Heartbeat present

P≥1� [Hpres =⇒ P≥1−β♦≤whP≥1−αHdet]
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Below are the subgoals of “AlarmTripped iff no Heartbeat detected”. This refinement

specifically enabled us to verify the components of the MWT individually by isolating their

roles. The introduced variables are constrained in the following way:

(1− γ1)(1− γ2) = (1− ε)

(1− γ1)(1− λ1)(1− λ2)(1− λ3)(1− λ4) = (1− ε′1)(1− ε′2)

(1− η1)(1− η2)(1− η3) = (1− δ′1)

wroff ≤ g − wh

ACHIEVE: Correct timer reset

Reset ∧

P≥1�
[
Hdet =⇒ P≥1−λ1♦≤wronReset

]
ACHIEVE: Correct delay

P≥1� [Reset =⇒ P≥1−γ1�≤uThL] ∧

ThL =⇒ ¬ThH

P≥1�[¬Hdet =⇒ P≥1−η1♦v−wa−2∗wh−wthP≥1−η2

(ThH W P≥1−η3♦≤whHdet)]

ACHIEVE: AlarmTripped iff Threshold met

P≥1�
[
ThL =⇒ P≥1−λ2♦≤wroffP≥1−λ3�≤u¬Atrip

]
∧

P≥1� [ThH =⇒ P≥1−η4♦≤wth (Atrip ∨ ¬ThH)] ∧

P≥1−γ2 (¬Atrip W ¬ThL)

ACHIEVE: Initialize to Reset

Reset

ACHIEVE: Reset if Heartbeat detected

P≥1�
[
Hdet =⇒ P≥1−λ1♦≤wronReset

]
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ACHIEVE: Threshold delay if Reset

P≥1� [Reset =⇒ P≥1−γ1�≤uThL]

ACHIEVE: Threshold if Heartbeat Detected is absent

P≥1�[¬Hdet =⇒ P≥1−η1♦v−wa−2wh−wthP≥1−η2

(ThH W P≥1−η3♦≤whHdet)]

AVOID: AlarmTripped if reset

P≥1�
[
ThL =⇒ P≥1−λ2♦≤wroffP≥1−λ3�≤u¬Atrip

]
ACHIEVE: AlarmTripped if threshold for some time

P≥1� [ThH =⇒ P≥1−η4♦≤wth (Atrip ∨ ¬ThH)]

AVOID: AlarmTripped until first threshold

P≥1−γ2 (¬Atrip W ¬ThL)

2.2.2.4 Goal Model Implication Proofs

Here we present the formal proofs that the satisfaction of any goal is implied by the

satisfaction of its subgoals.

Lemma 2.2.1. The high-level goal is implied by its subgoals where

P≥1−ε�≤u¬Atrip ∧

P≥1� [Hpres =⇒ P≥1−ε1♦≤g (P≥1−ε2�≤u¬Atrip)] ∧

P≥1� [¬Hpres =⇒ P≥1−δ1♦≤v−wa (Atrip ∨Hpres)] ∧

P≥1� [Alarm =⇒ P≥1�Alarm] ∧

P≥1 (¬AlarmW Atrip) ∧

P≥1� [Atrip =⇒ P≥1−δ2♦≤waAlarm]

is the high-level goal specification, and below are the subgoals:
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Subgoal 1:

P≥1−ε�≤u¬Atrip ∧

P≥1� [Hpres =⇒ P≥1−ε1♦≤g (P≥1−ε2�≤u¬Atrip)] ∧

P≥1� [¬Hpres =⇒ P≥1−δ1♦≤v−wa (Atrip ∨Hpres)]

Subgoal 2:

P≥1� [Alarm =⇒ P≥1�Alarm] ∧

P≥1 (¬AlarmW Atrip) ∧

P≥1� [Atrip =⇒ P≥1−δ2♦≤waAlarm]

Proof. Note that the first subgoal contains the first three statements of the parent goal

and the second subgoal contains the last three. These six statements trivially compose the

high-level goal if both are satisfied.

Lemma 2.2.2. The children of “ACHIEVE: AlarmTripped iff no HB provided in t′ time”

imply their parent where the parent specification is:

P≥1−ε�≤u¬Atrip ∧ (2.2)

P≥1� [Hpres =⇒ P≥1−ε1♦≤g (P≥1−ε2�≤u¬Atrip)] ∧ (2.3)

P≥1� [¬Hpres =⇒ P≥1−δ1♦≤v−wa (Atrip ∨Hpres)] (2.4)

and the subchildren are:

Subgoal 1:

P≥1� [Hpres =⇒ P≥1−β♦≤whP≥1−αHdet] ∧ (2.5)

P≥1� [¬Hpres =⇒ P≥1−β♦whP≥1−α (¬Hdet W Hpres)] (2.6)
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Subgoal 2:

P≥1−ε�≤u¬Atrip ∧ (2.7)

P≥1�
[
Hdet =⇒ P≥1−ε′1♦≤g−wh

(
P≥1−ε′2�≤u¬Atrip

)]
∧ (2.8)

P≥1�
[
¬Hdet =⇒ P≥1−δ′1♦≤v−wa−wh (Atrip ∨Hdet)

]
(2.9)

Proof. Assume that equations 2.2-2.4 true. We will now show that these five equations are

sufficient to prove equations 2.2-2.4 each individually.

1. Equation (2.7) trivially implies (2.2).

2. In order to prove the implication in (2.3) holds, we assume that the boolean variable

Hpres is true. By (2.5), with probability (1− β)(1− α), within wh time, Hdet will be

true. When Hdet is true, by (2.8), with probability (1− ε′1)(1− ε′2), within g−wh time,

¬Atrip becomes true. Thus, worst-case, with probability (1−α)(1− β)(1− ε′1)(1− ε′2),

within g time, ¬Atrip becomes true.

Therefore, this implies the (2.3) if we enforce the constraints:

• 1− ε1 ≤ (1− α)(1− β)(1− ε′1)

• 1− ε2 ≤ 1− ε′2

3. Assume ¬Hpres is true. By (2.6), with probability (1 − β)(1 − α), within wh time,

¬Hdet will be true until Hpres is true. Once ¬Hdet is true, by (2.9), with probability

(1− δ′1), within v−wa−w h time, we will either Atrip or Hdet. Here we have two cases:

Case 1: If Atrip happens within the appropriate time from ¬Hdet being true, then

with probability (1−α)(1− β)(1− δ′1), we will Atrip within v−wa time. This satisfies

(2.4).

Case 2: If Atrip does not happen within the appropriate time from Hdet being true,

then similarly, with probability (1− α)(1− β)(1− δ′1), within v − wa time, Hdet will

become true. If Hdet became true, then by (2.6) it must have been because Hpres
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became true. That means that Hpres became true in at most v − wa time and thus

satisfies (2.4).

Therefore, the subchildren imply the parent if we enforce the constraints:

• wh ≤ g

• 1− ε1 ≤ (1− α)(1− β)(1− ε′1)

• 1− ε2 ≤ 1− ε′2

• 1− δ1 ≤ (1− α)(1− β)(1− δ′1)

Lemma 2.2.3. The children of “ACHIEVE: Heartbeat Detected correctly tracks the pres-

ence of Heartbeats within t′ − t′′ time” imply their parent where the parent specification

is:

P≥1� [Hpres =⇒ P≥1−β♦≤whP≥1−αHdet] ∧

P≥1� [¬Hpres =⇒ P≥1−β♦whP≥1−α (¬Hdet W Hpres)]

and the specification for the subgoals are:

Subgoal 1:

P≥1� [¬Hpres =⇒ P≥1−β♦whP≥1−α (¬Hdet W Hpres)]

Subgoal 2:

P≥1� [Hpres =⇒ P≥1−β♦≤whP≥1−αHdet]

Proof. It is clear that the children compose the parent and are equivalent.
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Lemma 2.2.4. The children of “ACHIEVE: AlarmTripped iff no Heartbeat detected”

imply their parent where the parent specification is:

P≥1−ε�≤u¬Atrip ∧ (2.10)

P≥1�
[
Hdet =⇒ P≥1−ε′1♦≤g−wh

(
P≥1−ε′2�≤u¬Atrip

)]
∧ (2.11)

P≥1�
[
¬Hdet =⇒ P≥1−δ′1♦≤v−wa−wh (Atrip ∨Hdet)

]
(2.12)

and the specification of the children are:

Subgoal 1:

Reset ∧ (2.13)

P≥1� [Hdet =⇒ P≥1−λ1♦≤wonReset] (2.14)

Subgoal 2:

P≥1� [Reset =⇒ P≥1−γ1�≤uThL] ∧ (2.15)

P≥1�[¬Hdet =⇒ P≥1−η1♦v−wa−2wh−wth

P≥1−η2 (ThH W P≥1−η3♦≤whHdet)]

(2.16)

Subgoal 3:

P≥1�
[
ThL =⇒ P≥1−λ2♦≤woffP≥1−λ3�≤u¬Atrip

]
∧ (2.17)

P≥1� [ThH =⇒ P≥1−η4♦≤wth (Atrip ∨ ¬ThH)] ∧ (2.18)

P≥1−γ2 (¬Atrip W ¬ThL) (2.19)

Proof. Assume the truth of equations 2.13-2.19. It suffices to show that equations 2.10-2.12

are true.
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1. By (2.13), Reset is true. By (2.15), with probability 1 − γ1, ThL will be true for u

time. By (2.19), ¬Atrip will not be true until ¬ThL is true with probability 1 − γ2.

implying (2.10) if the following constraint is met:

• 1− ε ≤ (1− γ1)(1− γ2)

2. Assume that Hdet is true. By (2.14), with probability 1− λ1, within won time, Reset

will be true. By (2.15), with probability 1− γ1, ThL will be true for u time. By (2.18),

with probability 1− λ2, within woff time, with probability 1− λ3, we will ¬Atrip for

u time. This implies (2.11) if we enforce the following constraints:

• (1− ε′1)(1− ε′2) ≤ (1− λ1)(1− γ1)(1− λ2)(1− λ3)

• g − wh ≥ won + woff

3. Assume ¬Hdet is true. By (2.16), with at least (1−η1)(1−η2)(1−η3) probability, within

v − wa − 2wh − wth time, a path will enter a position that satisfies ThH W ♦whHdet.

Thus we have two cases:

Case 1: Once ThH becomes true, before wth time passes, ♦whHdet becomes true.

Therefore, in at most v−wa−wh time, we receive an Hdet and thus satisfy (2.12).

Case 2: Once ThH becomes true, it stays true for at least wth time. Then by (2.18),

with probability 1− γ2, within wth time of ThH becoming true, we will Atrip or

¬ThH . Since we know ThH is true for at least wth time, we know we must Atrip

by wth time. Therefore, we have an Atrip in no later than w − wa − wh time and

satisfy (2.12).

The above cases only hold true if we enforce the following constraint:

• 1− δ2 ≤ (1− η1)(1− η2)(1− η3)(1− γ2)

Because each of equations 2.10-2.12 hold true with our assumptions, it is clear our

subgoals imply the parent.
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Lemma 2.2.5. All parent goals of leaves are implied by their children.

Proof. All leave goals are broken down by conjunction and trivially imply their parents.

Theorem 2.2.1. All the leaf goals imply the high level goal of our goal diagram.

Proof. By all of the lemmas proven above, the leaves successfully imply the high level

goal.

2.2.3 Design

We utilized 3 agents to satisfy the goal diagram for the MWT. The absence detector

and threshold filter were both included in the original MWT. We added a new component,

called an amplifier, to handle the alarm signal from the threshold filter.

2.2.3.1 Absence Detector

The absence detector monitors the presence and absence of heartbeat signals, in other

words, they detect when a fault has occurred. The absence detector consists of a number of

ladders and acts as a timer between heartbeats. Each ladder in the absence detector notifies

the threshold filter when they have not found an H molecule for a sufficiently long time. If

an H molecule is detected by a ladder, it resets its timer to zero and begins counting again.

There are no changes to this device from the original MWT design and the CRN is

shown in Figure 2.2. Li molecules interact with U molecules, which have a constant supply,

to move one step forward along the cascade. When an Li molecule interacts with an H

molecule, it consumes it to reset back to L0. Intuitively, if the number of H molecules is low,

the likelihood of an Li interacting with an H is low, meaning it will proceed through the

cascade until a Y is released. If the number of H molecules is high, the probability of an Li

interacting with enough H molecules to reach Y is very low. The absence detector is assigned

responsibility for the leaf goals Avoid [Hdet when Heartbeat is not present], Achieve [Hdet

when Heartbeat is present], Achieve [Initialize to Reset], Achieve [Reset if Hdet], Achieve

[Threshold delay if Reset], and Achieve [Threshold if Hdet is absent].
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2.2.3.2 Threshold Filter

The threshold filter monitors the absence detector to determine the correctness of any

fault detection, this prevents false positives. The threshold filter consists of a ladder that

acts as a barrier to alarming. The ladder molecules interact with Y molecules, released by

the absence detector, to move forward through the cascade. The ladder interacts with R

molecules, which have a constant supply, to reset to the bottom rung.

We modified the threshold filter from the original MWT. It consists of the following

reactions.

Ti + Y → Ti+1 + Y

Tk + Y → Tk + Y +D

Ti +R→ T1 +R

Intuitively, if the number of Y molecules is sufficiently higher than the number of R molecules,

there is a high probability of the threshold filter releasing a D molecule. However, if the

number of Y molecules is low, the R molecules hold the cascades in the lower rungs.

The change from the original design is that D molecules are released by the threshold

filter catalytically. This follows from the goals that require the threshold be reset, for example

Avoid [AlarmTripped if reset]. This goal requires the AlarmTripped signal be turned off

when the timers are reset. AlarmTripped specifies that a D molecule has been released. In

the original design, if a reset occurred after a D molecule was released this goal would fail.

In the new design, if a D molecule has been released, it will quickly be consumed by the

amplifier, discussed in the next section, and AlarmTripped will be turned off. However,

in line with the MWT requirements, once the alarm has been tripped, the alarm will go

off. The threshold filter is assigned responsibility for the leaf goals Avoid [AlarmTripped if

Reset], Achieve [AlarmTripped if threshold for some time], and Avoid [AlarmTripped until

first threshold].
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2.2.3.3 Amplifier

The amplifier component is responsible for detecting that an alarm has been tripped

and translating it into a visible alarm. The amplifier monitors for any D molecules that

appear in the solution. Once it encounters at least one D molecule, it begins an irreversible

chain reaction that floods the solution with up to a specified amount of alarm molecules Al.

The amplifier contains the following reactions.

D + Ca→ Al + Ca

Al +Da→ 2Al

At initialization, we begin with a number of Ca molecules, these are the catalyst that

search for D molecules to initiate an alarm, and a specified number, p, of Da molecules,

which denotes how many Al molecules the amplifier must create. When a D molecule is

introduced into the solution, it interacts with a Ca molecule to produce an Al molecule.

The Al molecules are used catalytically to produce more Al molecules until their count is at

least equal to p. The amplifier was assigned responsibility for the leaf goals Avoid [Alarm if

Not AlarmTripped], Achieve [Alarm if AlarmTripped], and Maintain [Alarm if the Alarm

has been issued].

2.2.4 Tool Assisted Verification

In many of the intended uses of the MWT, an absence of a heartbeat indicates that

the system is in an unsafe state. The safety-critical nature of such systems requires the

MWT to be robust, reliable, and correct. It is necessary to perform verification over the

design and system requirements for the MWT. Due to the complexity of the MWT and

the inherently probabilistic nature of the domain, manual verification is complex, making

software verification tools a desirable alternative.

Given the CRN design of each of the three components, we constructed a model of each

component using the PRISM model checker [37], which has been used to perform verification
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Figure 2.5 MWT ODE Simulation using MATLAB’s SimBiology package.

on molecular systems previously [35, 38]. We utilized the formal CSL specification of each

leaf goal as a property to check against each model. To fill in the internal parameters of the

goal specifications, we used an incremental development process. We began with simulations

of the model to find likely ranges for each parameter. Figure 2.5 shows a ODE simulation

of the MWT design using the MATLAB package SimBiology. Then, using PRISM’s

capability to test a range of parameters, we performed incremental model checking on the

components to narrow down the values for each parameter. The end result was, for each

component, a model that specified all parameters for the goal diagram and that satisfied

each of its assigned leaf goals.
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2.3 Runtime Fault Detection Device

The work presented in this section was performed in collaboration with Titus H. Klinge,

James I. Lathrop, Jack H. Lutz, Robyn R. Lutz, and Andrew S. Miner and appears in

[18]. Our goal was to extend the capabilities of the Molecular Watchdog Timer (MWT).

Previously, its uses were limited to the detection of a single fault, which it would respond to

by initiating an alarm. The first problem with the MWT is that it can only be used a single

time. The amplifier component can only be used a single time, since the species involved in

the reactions have limited counts and are consumed in their use. The second major problem

is that it only produces an alarm, which is then present in the solution forever. The MWT

would be a far more useful device if it was able to initiate direct response to a system failure.

Here we present the Runtime Fault Detection (RFD) device, an advancement on the

MWT that maintains a high output signal whenever failure is detected and no output signal

while failures are not detected. The RFD responds in real-time, with a controllable delay, to

failures in the monitored system and provides a recovery signal, called henceforth an alarm,

to either trigger a programmed response or as an externally visible alarm. Recovery actions

can include any action that helps the system recover from its failure. For example, the alarm

could lead to the correction of the fault within the monitored system or activate a backup

system to replace the failed system. We discuss the requirements and specification of the

RFD as a modification of the MWT. We show its correctness using formal methods. We

present an example case of the RFD embedded with a molecular oscillator as a monitored

system.

2.3.1 Requirements Analysis for the RFD

In this section, we discuss the requirements for the RFD. We describe the informal goal

diagram for the RFD. We then describe the environmental assumptions used to satisfy the

goals. Each goal is then given a formal specification in Continuous Stochastic Logic (CSL)
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to have an unambiguous definition. We show that each leaf goal’s formal specification leads

to the satisfaction of their parent goals, allowing the entire goal diagram to be satisfied.

2.3.1.1 Goal Diagram for the RFD

There were two primary goals for the RFD, reusability and flexibility in application.

Instead of always producing a single use alarm, and therefore limiting possible uses for the

MWT, the RFD produces an alarm for use by another component. The RFD allows a client

to create a component that reads the presence and absence of the alarm and takes a desired

action. One such component could be a single use alarm, which detects the presence of

the RFD alarm and initiates an irreversible alarm, however the RFD requirements do not

include this third component. The responsibilities of the RFD lie in producing an alarm as

long as no heartbeats have been detected for a sufficient time and producing no alarm while

hearbeats are detected.

The high level goal of the RFD is Achieve[Alarm iff no Heartbeat provided within t time],

seen at the top of the goal diagram in Figure 2.6. The goals are refined into subgoals until

leaf goals are reached. Notice that the goal diagram is a pruned version of the MWT goal

diagram. We removed the subtree containing the single use alarm goals and propogated

the change up the tree. This left the goal diagram for detecting faults and producing an

alarm, but without the single use aspect. The removal of the subtree led to the removal

of the amplifier component from the RFD, which lead to the renaming of the variable

“AlarmTripped” to “Alarm”.

2.3.1.2 Environmental Assumptions

We utilize environmental assumptions to make statements about the domain that are

accepted as true. They are necessary to reason about the correctness of a set of requirements

as applied to a domain. Any given domain may have unique environmental properties that

a developer must be aware of when designing a device. The RFD works in a molecular
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Figure 2.6 Goal Model for the Runtime Fault Detection Device.

domain, which consists of a set of molecules floating in a liquid solution. We make a number

of assumptions about the domain to ensure our design performs correctly. In addition to the

environmental assumptions listed with previous iterations of the MWT, see Section 2.2.2.2,

we include the new assumption that H molecules are intrinsically ephemeral, so they will

naturally decay over time. When a heartbeat is introduced into the solution, it will increase

the number of H molecules by a programmed “dose” and then their count will naturally

fall towards zero. If no new heartbeats are added, the H molecules will disappear from the

solution entirely.

2.3.1.3 Formal Requirements for the RFD

In order to perform formal verification on the design of the RFD, each goal needs a

formal specification. Each goal is assigned a formal specification in Continuous Stochastic

Logic (CSL) as it is available in the model checking tools that we use, PRISM and SMART.

The complete CSL specifications are shown in Table 2.1, which lists each goal, its formal
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specification, and the agent assigned responsibility to it in a breadth first order over the

goal diagram.

During the refinement of the high level goal into subgoals, and subsequent refinements

into leaf goals, a number of parameters internal to the RFD specifications are generated. As

in the MWT, the client specifies two time bounds and two error bounds.

u - The minimum time since the last heartbeat that the RFD may issue an alarm.

v - The maximum time since the last heartbeat by which the RFD must issue an alarm.

ε - Probability of error allowed by the u-delay

δ - Probability of error allowed by the v-delay

These parameters are used as a base to generate bounds on the internal parameters of the

RFD. The internal parameters with a brief description are listed below.

• ε1 and ε2 are refinements from ε that determine the allowed error in avoiding Alarms

while heartbeats are present.

• wa is a time bound on turning on the alarm.

• α and β are allowed error in detecting the presence of heartbeats.

• wh is the maximum time to detect the presence or absence of a heartbeat.

• ε′1 and ε′2 are allowed error in avoiding Alarms while a heartbeat is detected.

• g is the time allowed between detecting a heartbeat and keeping the Alarm off.

• δ′1 is the allowed error in initiating an Alarm when no heartbeat is detected.

• λ1 is the allowed error in Resetting when a heartbeat is detected.

• won is the maximum time to Reset when a heartbeat is detected.

• γ1 is the allowed error in setting the threshold to low when Reset is true.
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• η1, η2, and η3 are allowed errors in setting the threshold to high until a heartbeat is

detected from a time when no heartbeat is detected.

• wth is a time bound on how long it takes to set the threshold to high.

• λ2 and λ3 are allowed errors in avoiding Alarms while the threshold is low.

• woff is the maximum time allowed between a low threshold and keeping the Alarm

off.

• η4 is the allowed error in turning the Alarm on after the threshold is high.

• γ2 is the allowed error that the Alarm is off at least until the first time that the

threshold is not low.

We utilized formal proofs to ensure that the formal specification of any goals children

implied the satisfaction of their parent goals. As the goal diagram is the same as the MWT,

with a subtree removed and only a single variable renamed, the proofs within Section 2.2.2.4

remain true over the new goal diagram, and no new proofs are needed.

2.3.2 Design

In this section we discuss the design of the RFD and how it differs from the MWT. The

primary difference is that the RFD can be reset for reuse after it has produced an alarm.

The amplifier restricted the MWT to only produce a single alarm. By removing the amplifier,

we enable the RFD to trigger different types of responses. The RFD can provide a single

use alarm if desired, but it is also capable of triggering a recovery signal to either correct

the detected fault or activate backup systems. We briefly discuss the absence detector and

threshold filter components and their responsibilities in goal satisfaction.

2.3.2.1 Absence Detector

The absence detector component remains largely unchanged from the previous iteration

of the device, the MWT. It consists of ladders, sequential cascades of reactions that are
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Table 2.1 The formal specification for each goal and its assigned agent.

Goal CSL Specification Agent

ACHIEVE:

Alarm iff no Heartbeat provided

within t time

P≥1−ε�≤u¬Alarm ∧
P≥1� [Hpres =⇒
P≥1−ε1♦≤g (P≥1−ε2�≤u¬Alarm)] ∧
P≥1� [¬Hpres =⇒
P≥1−δ1♦≤v−wa (Alarm ∨Hpres)]

RFD

ACHIEVE:

Heartbeat Detected correctly

tracks the presence of Heartbeats

within t− t′ time

P≥1� [Hpres =⇒
P≥1−β♦≤whP≥1−αHdet] ∧
P≥1� [¬Hpres =⇒
P≥1−β♦whP≥1−α (¬Hdet W Hpres)]

RFD

ACHIEVE:

Alarm iff no Heartbeat detected

within t′ time.

P≥1−ε�≤u¬Alarm ∧
P≥1� [Hdet =⇒
P≥1−ε′1♦≤g

(
P≥1−ε′2�≤u¬Alarm

)]
∧

P≥1� [¬Hdet =⇒
P≥1−δ′1♦≤v−wa (Alarm ∨Hpres)

]
RFD

AVOID:

Heartbeat Detected when

Heartbeat not present

P≥1� [¬Hpres =⇒
P≥1−β♦whP≥1−α (¬Hdet W Hpres)]

AD

ACHIEVE:

Heartbeat Detected when

Heartbeat present

P≥1� [Hpres =⇒ P≥1−β♦≤whP≥1−αHdet] AD
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Table 2.1 (Continued)

Goal CSL Specification Agent

ACHIEVE:

Correct Timer Reset

Reset ∧
P≥1� [Hdet =⇒ P≥1−λ1♦≤wonReset]

RFD

ACHIEVE:

Correct Delay

P≥1� [Reset =⇒ P≥1−γ1�≤uThL] ∧
ThL =⇒ ¬ThH
P≥1�[¬Hdet =⇒ P≥1−η1♦v−wa−2∗wh−wthP≥1−η2

(ThH W P≥1−η3♦≤whHdet)]

RFD

ACHIEVE:

Alarm iff Threshold met

P≥1� [ThL =⇒
P≥1−λ2♦≤woffP≥1−λ3�≤u¬Alarm

]
∧

P≥1� [ThH =⇒
P≥1−η4♦≤wth (Alarm ∨ ¬ThH)] ∧
P≥1−γ2 (¬AlarmW ¬ThL)

RFD

ACHIEVE:

Initialize to Reset

Reset AD

ACHIEVE:

Reset if Hdet

P≥1� [Hdet =⇒ P≥1−λ1♦≤wonReset] AD

ACHIEVE:

Threshold delay if Reset

P≥1� [Reset =⇒ P≥1−γ1�≤uThL] AD
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Table 2.1 (Continued)

Goal CSL Specification Agent

ACHIEVE:

Threshold if Hdet is absent

P≥1�[¬Hdet =⇒ P≥1−η1♦v−wa−2wh−wth
P≥1−η2 (ThH W P≥1−η3♦≤whHdet)]

AD

AVOID:

Alarm if Reset

P≥1� [ThL =⇒
P≥1−λ2♦≤woffP≥1−λ3�≤u¬Alarm

] TF

ACHIEVE:

Alarm if Threshold for some time

P≥1� [ThH =⇒
P≥1−η4♦≤wth (Alarm ∨ ¬ThH)]

TF

AVOID:

Alarm until first Threshold

P≥1−γ2 (¬AlarmW ¬ThL) TF
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reset upon the introduction of the heartbeat species H. However, in response to our new

environmental assumptions, H is used catalytically, meaning that the reactions do not “use

up” the H molecules when they occur, to reset the ladders. The behavior of the device

remains the same. While no H molecules are present in the solution, the ladders will proceed

forward through their cascades. If no H molecules are introduced before they reach the top

rung, they each release a molecule notifying the threshold filter that they have not detected a

heartbeat in a sufficient period of time. When H molecules are introduced into the solution,

the ladders are reset to their initial state and remain in their lower rungs until the H

molecules disappear. The difference now is that the absence detector bears no responsibility

or control over the heartbeat species; its presence and absence are entirely controlled by the

environment. This has the added advantage of making the ladders completely independent

of one another, meaning any analysis performed on a single ladder can be applied to the

absence detector as a whole.

The absence detector is assigned responsibility for the leaf goals Avoid [Hdet when

Heartbeat is not present], Achieve [Hdet when Heartbeat is present], Achieve [Initialize to

Reset], Achieve [Reset if Hdet], Achieve [Threshold Delay if Reset], and Achieve [Threshold

if Hdet is absent] as shown in Figure 2.6. The updated CRN for the absence detector ladders

contains the following reactions

Li + U → Li+1 + U (0 ≤ i < k),

Li +H → L0 +H (0 < i ≤ k).

We rename the top rung of each ladder Y to denote its use as a catalyst in the threshold

filter.

2.3.2.2 Threshold Filter

The threshold filter also remains largely unchanged from the MWT. It consists of a set

of ladders with a catalyst R, which restrains the ladders from proceeding through their

cascades in the absence of Y molecules. The change made to the threshold filter is that we
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no longer release D molecules into the solution while at the top rung of the ladder. Instead,

we rename the top rung of the ladder D, meaning we produce an alarm as long as one or

more of the ladders is sitting in the top rung. In the absence of Y molecules, no ladder

will reach the top rung, meaning no D molecules will be produced into the solution. In the

presence of many Y molecules, the ladders will still climb to the top rung, which produces a

number of D molecules into the solution. Unlike the MWT, if the monitored system recovers

from its failure, the absence detectors will fall out of the top rung, removing the Y molecules

from the solution. The absence of Y molecules will force the threshold filter ladders to fall

out of their top rungs, removing D from the solution.

The threshold filter is assigned responsibility for the leaf goals Avoid [Alarm if Reset],

Achieve [Alarm if Threshold for some time], and Avoid [Alarm until first Threshold]. The

threshold filter consists of the reactions

Ti + Y → Ti+1 + Y (0 ≤ i < k),

Ti +R→ T0 +R (0 < i ≤ k),

where the top rung is renamed D.

2.3.3 Verification of the RFD

Formal verification methods provide assurance that a proposed system design satisfies

the intended system behavior, specified by the requirements. We must ensure with high

probability that if a heartbeat is present, the RFD will produce no alarm and while heartbeats

remain absent for sufficiently long, the RFD will quickly produce an alarm. We discuss below

the techniques used to verify the accuracy and robustness of the RFD and the results of the

verification. We show using software tools that formal model checking and simulation aid in

the verification of the RFD. We demonstrate that the RFD satisfies the formal specification

of the goal diagram using two software model checkers PRISM [37] and SMART [10, 11].

We show the functionality of the RFD using a specific example of a system that needs to

be monitored during runtime and by verifying that its heartbeat behavior is correct. Finally,
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we discuss the addition of a recovery module, specific to the example monitored system,

which triggers a recovery response to the RFD’s alarm and show using simulation that the

behavior of the composed system satisfies the intended behavior.

2.3.3.1 Verification of the RFD design

The RFD is an extension of the MWT. It utilized two components of the MWT, with

very minor modifications. First, the heartbeat species is used catalytically, so it is not

consumed by the absence detector. Second, the threshold filter can be reset from a state

containing an alarm, a non-zero number of D molecules, to a state with no alarm, zero D

molecules.

We modified the existing models, the PRISM and SMART models, for the absence

detector and the threshold filter to reflect these few changes. We updated the reactions for

the absence detector ladders in both models and introduced a new reaction to reflect the

environmental assumption that H molecules decay naturally over time. By programming

the rate of decay of the H molecules to be equivalent to the rate of consumption by the

MWT absence detector, the behavior of the absence detector within both devices remains

identical. We updated the reactions for the threshold filter in both models to reflect the

design changes. The only changes made were to rename the top rung of the threshold filter

ladders D and remove D as an additional production from the reaction, which simplified

the model. We re-performed verification, as specified in Sections 2.1.3 and 2.2.4, on both

models within PRISM and SMART to show that the design still satisfied its responsibilities

from the goal diagram.

Using simulation, via the MATLAB package SimBiology, we verified that the RFD is

reusable. From a state containing an alarm, if the monitored system begins producing

heartbeats again, the RFD is reset. At system initialization, the absence detector begins

with most of its population in the lower rungs of the ladder and it returns to this state when

a heartbeat is detected, resetting the RFD for reuse.
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2.3.3.2 Verification of RFD Interaction with a Monitored System

We assign a set of assumptions on the behavior of a monitored system. We present

a system to be monitored by the RFD and show that it can satisfy the assumptions we

assigned to it. We show using model checking and simulation that the interaction is correct

over two different molecular population sizes.

Model checking has a number of limitations, primarily in memory and computation

cost. A molecular system containing a small number of molecules, but a large number of

reactions may lead to a large size model that consumes either too much memory or too

much computation time to be reasonably verified. As an example, an absence detector with

5 ladders produced a continuous time Markov-chain (CTMC) with over 150,000 states, while

10 absence detectors produced a CTMC with over 9 million states. Due to the restrictions on

model size, verification of the RFD is reasonable on molecular counts of up to 5. Verification

on larger population counts is performed using simulations. Using SimBiology to perform

simulations and PRISM and SMART for model checking, we verified that the RFD correctly

translates the presence or absence of heartbeats into a correct alarm. We first utilized a

hypothetical heartbeat, an abstract signal received from a monitored system for both types

of verification.

We then introduced an example monitored system to show that the heartbeat assumptions

made are realistic. We utilized simulation and model checking to ensure that the monitored

system correctly produces heartbeats while healthy and fails to produce heartbeats while

unhealthy. Model checking the monitored system suffers from the same restrictions that

apply to the RFD, model checking large population sizes is infeasible. Instead, we used

simulations to show that its behavior was correct on population sizes up to 100,000.

We utilized a chemical oscillator, many of which can occur naturally in nature to

demonstrate the capabilities of the RFD when attached to a monitored system. Oscillators

have been widely studied in molecular programming, and have previously been used as

benchmarks, such as [21, 2]. A chemical oscillator can also be easily extended to produce a
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heartbeat, since it continually returns to the same states. In the SCRN domain, an oscillator

can be controlled to test both the normal case, heartbeats output within a specified period,

and the failure case, heartbeats cease to be produced.

We used the Lotka-Volterra 3-Phase Oscillator, discussed in [8], as an example monitored

system. The oscillator uses three molecular species A, B, and C, where each species

corresponds to a phase of oscillation. At initialization, one of the species is given a high

molecular count while the other two species are give a low, but non-zero, molecular count.

The oscillator will cycle between phases in the order A to B to C and return back to A.

As an example, consider the following case. If A is dominating and B and C have similar

molecular counts, then reactions (2.20) and (2.22) below are equally likely to occur. However,

when reaction (2.20) or (2.22) fires, the rates of all the reactions change, increasing the

rate of reaction (2.20) and decreasing the rate of reaction (2.22). This continues until B is

dominating, completing the transition to phase B. A similar sequence of events occurs for

each phase transition.

In order to test the monitored system, we needed to construct a heartbeat interface.

The RFD requires that a heartbeat interface be attached to a monitored system in order to

provide heartbeats. If no heartbeat interface exists, the monitored system cannot produce

heartbeats. We extended the CRN model of the oscillator with a heartbeat interface. The

heartbeat interface produces H molecules as long as the oscillator is healthy. The CRN for

the oscillator with the attached heartbeat interface is:

A+B
k−→ 2B +H (2.20)

B + C
k−→ 2C (2.21)

C +A
k−→ 2A (2.22)

H
k2−→ ∅ (2.23)

If a device has more than one failure mode, an attached heartbeat interface must cover

all possible failures. In the stochastic domain, the 3-phase oscillator has two failure modes.
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First, if any of the phase species A,B, or C has a molecular count of zero, no oscillations

can occur. From such a state, only one of the three reactions can occur, leading to a single

phase species having all of the molecules in the solution. Second, if the oscillator remains at

or near equilibrium, all three species have similar molecular counts, the oscillations will be

negligible and any device using it may fail. By the heartbeat interface, while the oscillator

is healthy, a large number of H molecules will be produced as reaction 2.20 occurs, that

is as the phase transitions from A to B. The production of H molecules must be distinct

between healthy and unhealthy states. If any of the molecular species has a count of zero,

the rate of all the oscillator reactions will quickly approach 0. Since the production of H is

dependent on reaction 2.20, no more heartbeats will be produced. If all three species are

near an equilibrium state, the production of H molecules will fall to a roughly constant

amount, below the necessary threshold to be considered a heartbeat, causing the absence

detector to activate.

In a “real-world” scenario, the monitored system is responsible for producing a correct

heartbeat, meaning the RFD assumes that the heartbeat correctly reflects the health of a

monitored system. Therefore, to verify the correct behavior of the RFD with the oscillator,

we needed to confirm that the heartbeat output by the oscillator reflects its health. We

define states of the monitored system to be healthy or unhealthy. If the oscillator is in

a healthy state, it will send a heartbeat within a reasonable amount of time or the state

will quickly become unhealthy. If the oscillator is in an unhealthy state, no heartbeat

will be sent within a reasonable amount of time or the state will quickly become healthy.

Formally, we define a healthy state as any state with species counts A,B,C > 0 AND

(A−B)2 + (B − C)2 + (C −A)2 > τ , where τ is defined as a distance from equilibrium.

Based on the desired behavior of the heartbeat interface, we created three properties to

verify over the monitored system:

Achieve[Produce heartbeats while healthy]

P≥1[�(healthy =⇒ P≥1−δ1 [♦≤t1((hbHigh ∨ ¬healthy)])]
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Avoid [Produce heartbeats while unhealthy]

P≥1[�(¬healthy =>

P≥1−δ2 [♦≤t2(P≥1−δ3 [hbLow W (P≥1−δ4 [�≤t3healthy])])])]

Heartbeat decays

P≥1[�(hbHigh => P1−δ5 [♦<=t4¬hbHigh])]

We performed model checking on the oscillator with the three properties on population

sizes of up to 200, that is the sum of the molecular counts of A, B, and C was equal to

200. PRISM and SMART both verified true that the oscillator plus heartbeat interface

satisfied the above properties. We also performed simulation over a wide range of initial

counts of A, B, and C along with variations in the initial ratio (e.g., 80% in A, 10% in B

and C) and an initial count of 0 for H and checked these properties against the results. The

simulations demonstrated that the heartbeats correctly reflect the health of the oscillator.

Figure 2.7 shows a simulation of the first failure mode, where one of the species counts

reached 0, causing the production of heartbeats to cease.

We used SimBiology to extensively simulate the composed system of the oscillator and

RFD. A stochastic simulation of the composed system can be seen in Figure 2.8. The

oscillator begins in a healthy state and produces heartbeats correctly. When one of the

species counts reaches 0, the oscillations and heartbeat production cease. The absence of

heartbeats is quickly detected and a recovery signal, discussed further in Section 2.3.3.3,

is produced to correct the fault. The oscillator returns to a healthy state and resumes the

production of heartbeats.

The oscillator is provided as an example of a monitored system and of how a client

can provide a heartbeat interface, specified as a rate and size of heartbeat production, and

we can generate an RFD to monitor it. The RFD is designed to work independent of the

heartbeat production method, meaning any system that can produce heartbeat while healthy

and cease heartbeat production while unhealthy can be monitored by the RFD. The client
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Figure 2.7 A simulation of the oscillator with the heartbeat interface.
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Figure 2.8 A simulation of the oscillator with the RFD.

specifies the 4 parameters, described in Section 2.3.1.3. Given a set of parameters, we will

provide a design model of the RFD that satisfies the goal diagram.

2.3.3.3 Recovery Module for a Molecular Oscillator

A system that can recover from failure is far more robust than one that cannot recover

autonomously. The RFD can do more than simply report the failure of the monitored

system, it can trigger a recovery response. We designed a recovery module, to be attached

to the output of the RFD, to reboot the oscillator from a failed state.

The CRN for the recovery module is:

D +A
k−→ D +B (2.24)

D +B
k−→ D + C (2.25)

D + C
k2−→ D +A, (2.26)

where it is important that the reaction rate of the third reaction is different from the other

two. D is used catalytically in all three reactions, meaning they are only triggered in the
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presence of D molecules. If the oscillator fails due to a molecular species disappearing, the

RFD produces an alarm used by the recovery module to jump start the oscillations. If the

oscillator fails at equilibrium, the recovery module will turn on and since the rates of the

three reactions are different, the oscillator will move away from an equilibrium state. In

either case, once the oscillator is running again, the heartbeat production resumes, turning

off the alarm and recovery module.
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CHAPTER 3. CONCENTRATION MONITOR

The work presented in this chapter was performed in collaboration with James I. Lathrop

and Robyn R. Lutz and was previously presented at the 4th ACM International Conference

on Nanoscale Computing and Communication Washington DC, USA, September 27-29, 2017

[19]. It is an extension of previous work by Titus H. Klinge [32].

In deterministic mass-action chemical reaction networks, it can be useful to view the

concentration of a species as a signal. Signals are only allowed to be used as a catalyst in any

reaction that uses them. Given a signal, we often want to react to the strength of a signal.

However, in a CRN, it can be difficult to distinguish minor variations in signal strength.

We define a Concentration Monitor as a device that monitors a signal and provides

an output dependent on the concentration of the input signal. A Concentration Monitor

has two thresholds, α and β, which are “high” and “low” respectively. The Concentration

monitor will provide one output if the input signal has a concentration above α and the

other output if the input is below β.

3.1 Robustness Properties

Many CRNs are designed to complete a specific task. In many cases, they are even

designed to only work for a specific set of parameters. Any changes in the parameters can

disrupt the functionality of the CRN. We seek to define a CRN to monitor the concentration

of a signal robustly correct, i.e., the correct output even with some perturbation on the

parameters and the inputs. Robustness of CRNs has been formally defined in [33]. Here we

give a brief overview of the robustness parameters used.
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We use the following parameters for robustness. A vector δ = (δ1, δ2, δ3, δ4) defines four

different types of parameters on the construction of the CRN. δ1 defines the perturbation

allowed on the input signal. This means, if an input signal X has two valid states, α and β,

then X is a valid input when

X > α− δ1 or X < β + δ1,

meaning X is high or low respectively.

δ2 is the accuracy of the output function. That is, when the CRN computes its output,

up to δ2 error is allowed.

δ3 is the perturbation allowed in the initial state. If a CRN is constructed with an initial

value of Y0 in species Y , the CRN is robust in terms of δ3 if it outputs correctly for any

initial condition Ŷ0, where

Y0 − δ3 < Ŷ0 < Y0 + δ3.

δ4 is the perturbation allowed in the rate constants. A CRN is considered robust in

terms of δ4 if for every rate constant k, it outputs correctly for any rate constant k̂ where

k − δ4 < k̂ < k + δ4.

We use ε to describe the perturbation allowed in the output. If an output signal X has

two valid states, 0 and 1, then X is a valid output when

X > 1− ε or X < ε,

meaning X is 0 or 1 respectively.

3.2 Construction of a Concentration Monitor

Given an input signal X, the device monitors for certain concentration thresholds. If the

concentration of X is above the target threshold α, then within τ time the concentrations of
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the output species, X̂ and Ŷ will have concentrations of the form

X̂ > 1− ε (3.1)

Ŷ < ε (3.2)

Similarly, if the concentration of X is below the target threshold β then within τ time the

concentrations of the output species, X̂ and Ŷ will have concentrations of the form

X̂ < ε (3.3)

Ŷ > 1− ε (3.4)

The concentration monitor device extends previous work that defined a signal restoration

device [32]. The signal restorer monitored for inputs of above 1− δ1 and below δ1. Our work

extends this construction for arbitrary inputs α− δ1 and β + δ1.

We formally define the I/O Requirement for the concentration monitor as Φ(τ) = (α, φ).

We begin by defining the context assumption α as

α(u, V, h) ≡
[
V = {X̂, Ŷ } and h = h0

]
(3.5)

where h0 is a measurement function defined as h0(x)(X̂) = x(X̂) for all x ∈ [0,∞)|S∪U | and

X̂ ∈ V .

As far as the requirement is concerned, the input has two states, which we will define as

a and b. We define a to be any state where the input signal X has a concentration greater

than α and b to be any state where the input signal has a concentration below β. We first

define a predicate on the input value. For a concentration n ∈ R+

φn(I ) ≡ (∀t ∈ I )
[
u(X)(t) = n = p− u(X)(t)

]
,

where p is the constant X+X for all I = [t2, t2] such that t2− t1 ≥ τ . We define a predicate

on the output value. For a bit n ∈ {0, 1}

ψn(I ) ≡ (∀t ∈ I )
[
v(X̂)(t) = n = 1− v(Ŷ )(t)

]
. (3.6)
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We can now define the I/O Requirement φ of Φ(τ) as

φ(u, v) ≡
[

[φa(I ) =⇒ ψ1(t1 + τ, t2)] and (3.7)

[φb(I ) =⇒ ψ0(t1 + τ, t2)]
]

for all I = [t2, t2] such that t2 − t1 ≥ τ . We now specify a construction for a CRN to satisfy

the I/O Requirement.

3.2.1 Construction 1

Given the real numbers τ > 0, ε ∈
(
0, 12
)
, α > 0, 0 ≤ β < α, and δ = (δ1, δ2, δ3, δ4) where

0 < δ1 <
α−β

2+α+β , δ2 ∈ [0, ε), δ3 ∈ (0, 12) and δ4 > 0, let b = (α−δ1)(1+β)
(1+α)(β+δ1)

and n = d2logb( 8
ε−δ2 )e.

Define the I/O CRN [32] N(τ, ε, δ) = (U,R, S) where

U = {X}, S = {Li|0 ≤ i ≤ n} ∪ {X̂, Ŷ } (3.8)

and where R contains the reactions

X + Li
k1−→ X + Li+1 (∀0 ≤ i < n) (3.9)

Li
k1−→ L0 (∀0 < i ≤ n) (3.10)

Ŷ + Ln
k2−→ X̂ + Ln (3.11)

X̂
k2−→ Ŷ , (3.12)

and where the rate constants k1 and k2 are defined by

k1 = 2δ4 +
2n log(2n)

τ(α− δ1)
+

2

τ
log

(
10

(
8

ε− δ2

)2( 1 + α

α− δ1

)n)
+
δ4(2 + δ1)

δ1
(3.13)

k2 =
2

τ
log

(
3

ε− δ2

)
+ 4δ4 (3.14)

We define the initial concentrations of the species as

X̂ = 0 (3.15)

Ŷ = q (3.16)

L0 = p (3.17)

Li = 0 (∀0 < i ≤ n) (3.18)
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where p = 10
ε−δ2

(
1+α
α−δ1

)n
+ δ3 and q = 1 + δ3.

3.2.2 Proof of Correctness

The device consists of two components, a cascade of species L0, . . . , Ln, and an output

component of species X̂ and Ŷ . The cascade moves in two directions, it climbs forward one

step at a time, and it falls backwards all the way to the first species. The output component

moves the concentration of X̂ and Ŷ based on the concentration of Ln.

The ODEs for the species L0, . . . , Ln can be defined from their reactions.

dl0
dt

=

n∑
i=1

k1li − (k1x)(l0), (3.19)

dli
dt

= (k1x)li−1 − (k1x+ k1)li, for 0 < i < n, (3.20)

ln
dt

= (k1x)ln−1 − k1ln. (3.21)

The ODEs for X̂ and Ŷ are

dx̂

dt
= (k2ln)ŷ − k2x̂ (3.22)

dŷ

dt
= k2x̂− (k2ln)ŷ (3.23)

Analysis on these ODEs was performed in [32], and it provides a number of useful lemmas

to prove the correctness of our CRN.

Our goal is to show that the device has correct output for a given input. It suffices to

show the correctness of the device on an input greater than α and an input lower than β

over a time interval I = [t1, t2]

Lemma 3.2.1. Given a CRN defined as in Construction 1, with a time interval I = [t1, t2].

If the concentration of the input signal X is above α− δ1 for all t ∈ I, then by time t1 + τ ,

x̂(t) > 1− ε. (3.24)

We first analyze the value of ln(t), the concentration of Ln at time t. Using this, we

will show the value of the output component species. First consider the behavior for an
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input above α. This means that for all t ∈ I , the input X is above α, so x(t) > α− δ1. By

this assumption, the input X has a constant concentration during the interval I . Therefore,

we wrap the concentration of X and the rate constant k1 into the forward rate variable f .

Since the backward rate is always constant we abstract it to the backward rate variable b.

We minimize the forward rate of the cascade by assuming all the concentration of

L0, . . . , Ln is in L0 at time t1, that is l0(t) = p. Since the rate constants k1 can be perturbed

by at most δ4, we minimize the forward rate f and maximize the backwards rate b, giving

f = (k1 − δ4)(α− δ1) and b = (k1 + δ4). By Lemma 6.6 from [32], for all time t ∈ I ,

ln(t) > p

(
f

f + b

)n ∞∑
i=n

ti(f + b)i

i!
e−(f+b)(t−t1), (3.25)

Since ln is monotonically increasing, for all t ∈ [t1 + τ
2 , t2], ln(t) ≥ ln( τ2 ) and therefore

ln(t) > p

(
f

f + b

)n ∞∑
i=n

ti(f + b)i

i!
e−(f+b)

τ
2 , (3.26)

Applying Lemma 6.7 from [32], for all t ∈ [t1 + τ
2 , t2],

ln(t) > p

(
f

f + b

)n(
1− ne− 1

n
(f+b) τ

2

)
. (3.27)

Since k1 > δ4 + 2n log(2n)
τ(α−δ1) , Corollary 6.8 from [32] tells us

ln(t) > p

(
f

f + b

)n(1

2

)
=
p

2

(
(k1 − δ4)(α− δ1)

(k1 − δ4)(α− δ1) + (k1 + δ4)

)n
(3.28)

=
p

2

(
(α− δ1)

(α− δ1) + u

)n
(3.29)

where u = k1+δ4
k1−δ4 . Since k1 >

δ4(2+δ1)
δ1

, we know u < 1 + δ1 and therefore

ln(t) >
p

2

(
(α− δ1)
(1 + α)

)n
(3.30)

Since the initial concentration can be perturbed by at most δ3, p >
10
ε−δ2

(
1+α
α−δ1

)n
and

therefore

ln(t) >
5

ε− δ2
(3.31)
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Now consider the output component. The cascade component performed its operations

in the first τ
2 time of the interval I . Let f be the rate of converting Ŷ into X̂ and b be the

rate of converting X̂ back into Ŷ . By Equation 3.31, we know that by t1 + τ
2 ,

ln(t) >
5

ε− δ2
. (3.32)

Therefore, f = (k2 − δ4) 5
ε−δ2 and b = k2 + δ4. Lemmas 6.12 and 6.13 from [32] show that

for f ,b,δ4, and k2 as defined above, x̂(t) > q − ε + δ2. Since the output decision can be

perturbed by at most δ2,

x̂(t) > q − ε. (3.33)

Since q can be perturbed by at most δ3,

x̂(t) > 1− ε. (3.34)

Lemma 3.2.2. Given a CRN defined as in Construction 1, with a time interval I = [t1, t2].

If the concentration of the input signal X is below β + δ1 for all t ∈ I, then by time t1 + τ ,

x̂(t) < ε. (3.35)

Now consider an input below β. This means that for all t ∈ I , the input X is below β,

so x(t) < β + δ1. Since the rate constants k1 can be perturbed by at most δ4, we maximize

the forward rate f and minimize the backwards rate b, giving f = (k1 + δ4)(β + δ1) and

b = (k1 − δ4). By Lemma 6.10 from [32], for all t ∈ I ,

ln(t) < pe−b(t−t1) + p

(
f

f + b

)n(
1− e−b(t−t1)

)
(3.36)

Since this function is monotonically decreasing, for all t ∈ [t1 + τ
2 , t2],

ln(t) < p

(
f

f + b

)n
+ pe−b

τ
2 (3.37)

= p

(
(k1 + δ4)(β + δ1)

(k1 + δ4)(β + δ1) + (k1 − δ4)

)n
+ pe−b

τ
2 (3.38)

= p

(
(β + δ1)

(β + δ1) + u

)n
+ pe−b

τ
2 , (3.39)
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where u = k1−δ4
k1+δ4

. Since k1 >
δ4(2−δ1)

δ1
, we know that u > 1 − δ1 and therefore for all

t ∈ [t1 + τ
2 , t2],

ln(t) < p

(
(β + δ1)

(1 + β)

)n
+ pe−b

τ
2 . (3.40)

Since p < 10
ε−δ2

(
1+α
α−δ1

)n
+ 2δ3,

ln(t) <
10

ε− δ2

(
1 + α

α− δ1

)n((β + δ1)

(1 + β)

)n
+ 2δ3

(
(β + δ1)

(1 + β)

)n
+ pe−b

τ
2 (3.41)

<
10

ε− δ2

(
1 + α

α− δ1

)n((β + δ1)

(1 + β)

)n
+

(
(β + δ1)

(1 + β)

)n
+ pe−b

τ
2 (3.42)

<
10 + ε− δ2
ε− δ2

(
(1 + α)(β + δ1)

(α− δ1)(1 + β)

)n
+ pe−b

τ
2 (3.43)

<
32

3(ε− δ2)

(
(α− δ1)(1 + β)

(1 + α)(β + δ1)

)−n
+ pe−b

τ
2 . (3.44)

Since n ≥ log(
(α−δ1)(1+β)
(1+α)(β+δ1)

) ( 64
(ε−δ2)2

)
,

ln(t) <
32

3(ε− δ2)

(
(ε− δ2)2

64

)
+ pe−b

τ
2 (3.45)

=
(ε− δ2)

6
+ pe−b

τ
2 . (3.46)

As we showed before p < 32
3(ε−δ2)

(
1+α
α−δ1

)n
+ 2δ3,

ln(t) <
(ε− δ2)

6
+

32

3(ε− δ2)

(
1 + α

α− δ1

)n
e−b

τ
2 + 2δ3e

−b τ
2 . (3.47)

Since b = k1 − δ4 > 2
τ log

((
640

(ε−δ2)2

)(
1+α
α−δ1

)n)
,

ln(t) <
(ε− δ2)

6
+

(ε− δ2)
60

+ 2δ3e
−b τ

2 (3.48)

<
(ε− δ2)

6
+

(ε− δ2)
30

, (3.49)

whence for all t ∈ [t1 + τ
2 , t2]

ln(t) <
(ε− δ2)

5
(3.50)

Now consider the output component. The cascade component performed its operations

in the first τ
2 time of the interval I . Let f be the rate of converting Ŷ into X̂ and b be the
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rate of converting X̂ back into Ŷ . By Equation 3.50, we know that by t1 + τ
2 ,

ln(t) <
(ε− δ2)

5
(3.51)

Therefore, f = (k2 + δ4)
(ε−δ2)

5 and b = k2 − δ4. Lemmas 6.12 and 6.13 from [32] show that

for f ,b,δ4, and k2 as defined above, ŷ(t) > q − ε+ δ2. Since x̂(t) + ŷ(t) = q for all t ∈ [0,∞),

x̂(t) < ε− δ2 (3.52)

ŷ(t) > q − ε+ δ2 (3.53)

for all t ∈ [t1 + τ, t2]. Since q can be perturbed by at most δ3, and the output can be

perturbed by at most δ2

x̂(t) < ε (3.54)

ŷ(t) > 1− ε (3.55)

Thus a CRN defined as in Construction 1 satisfies the I/O Requirement for a concentration

monitor.
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CHAPTER 4. ROBUST CIRCUITS

The work presented in this chapter was performed in collaboration with Titus H. Klinge

and James I. Lathrop.

Logic gates play a key role in computing with uses ranging from simple boolean operations

to microprocessors. The correctness of logic gates is important to ensure no errors arise

during computation. The utility of logic gates is also desirable in safety-critical programmed

molecular systems. For example, logic gates can be used to handle data and to verify

properties on data.

In this chapter we present a construction for a 2-input NAND gate made from a chemical

reaction network. We prove that the design simulates a NAND gate correctly and robustly

with respect to perturbations on rate constants, initial concentrations, output calculation

and input values. We then prove that any combinational logic gate can be simulated using

the 2-input NAND gate. All the CRNs presented in this section use deterministic mass

action kinetics.

4.1 2-Input NAND Gate

We construct an NAND gate that takes 2 inputs, X1 and X2. X1 and X2 are “dual-railed”,

meaning they have compliment species, X1 and X2 respectively, such that X1 +X1 = C

is always true for some initial constant C. The NAND Gate has two output species, X̂

and Ŷ , where Ŷ high is considered to be an output of 1 and X̂ high is considered to be

an output of 0.. We consider all inputs to be binary, that is they are considered to be

1 when their concentration is above some 1 − δ̂1 and they are considered to be 0 if their
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concentration is below δ̂1. If both inputs X1 and X2 are considered to be 1 over a time

interval I = [t1, t2], then by t1 + τ time the concentrations of the output species, X̂ and Ŷ

will have concentrations of the form

X̂ > 1− ε (4.1)

Ŷ < ε (4.2)

Similarly, if the concentration of either X1 or X2 is below δ̂1 then within τ time the

concentrations of the output species, X̂ and Ŷ will have concentrations of the form

X̂ < ε (4.3)

Ŷ > 1− ε (4.4)

More formally, given the propagation delay τ , as a positive real number, we can define

the requirement for a NAND gate as Φ(τ) = (α, φ). We define the context assumption α as

α(u, V, h) ≡
[
V = {Ŷ , X̂} and h = h0

]
(4.5)

where h0 is a measurement function defined as h0(x)(Ŷ ) = x(Ŷ ) for all x ∈ [0,∞)|S∪U | and

Ŷ ∈ V .

The two inputs can have the binary values of n,m ∈ {0, 1}, so we define the predicate

on an input as

φn,m(I ) ≡ (∀t ∈ I )
[
u(X1)(t) = n = 1− u(X1)(t)and (4.6)

u(X2)(t) = m = 1− u(X2)(t)
]

for all I of length greater than or equal to τ . We also define a predicate on the output value.

For a bit n ∈ {0, 1}

ψn(I ) ≡ (∀t ∈ I )
[
v(Ŷ )(t) = n = 1− v(X̂)(t)

]
. (4.7)

We can now define the I/O Requirement φ of Φ(τ) as

φ(u, v) ≡
[

[φ11(I ) =⇒ ψ0(t1 + τ, t2)] and (4.8)

[φ00(I ) ∨ φ01(I ) ∨ φ10(I ) =⇒ ψ1(t1 + τ, t2)]
]
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for all I = [t2, t2] such that t2 − t1 ≥ τ .

4.1.1 Construction 2

We construct the NAND gate as above in Construction 1 with a minor modification. We

replace reaction 3.9 with the following reactions

X1 + Li
k1−→ X1 + Li+1 (∀0 ≤ i < n) (4.9)

X2 + Li
k1−→ X2 + Li+1 (∀0 ≤ i < n) (4.10)

The ODEs for this cascade change to

dl0
dt

=
n∑
i=1

k1li − k1(x1 + x2)(l0), (4.11)

dli
dt

= k1(x1 + x2)li−1 − (k1(x1 + x2) + k1)li, for 0 < i < n, (4.12)

ln
dt

= (k1(x1 + x2))ln−1 − k1ln. (4.13)

That is, both input species equally push the cascade forward.

We also add some constraints to the values of α, β, and δ1. We define α as

α = 2, (4.14)

since we want the input to be above α when both input species X1 and X2 are considered

to be 1. We define β as

0 ≤ β < α, (4.15)

however, the closer β approaches α the more accurate the NAND gate is. Ideally, we define

β as at least

β = α− 1 = 1. (4.16)

Each input species is allowed to be perturbed by at most δ̂1. Therefore we add the constraint

2δ̂1 < δ1 (4.17)

which ensures that, no matter how far either input species is perturbed within its bounds,

the perturbation will never exceed δ1.
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4.1.2 Proof of Correctness

Lemma 4.1.1. Given a CRN N defined as in Construction 2, with a time interval I = [t1, t2]

such that t2 − t1 ≥ τ , then N |=δ
ε Φ(τ).

Since X1 and X2 are pushing the same cascade forward, it is useful to define the function

x(t) = x1(t) + x2(t). Observe that if we substitute this input x = x1 + x2 into Construction

2, the ODEs are the same as in Construction 1.

The NAND gate requirement cleanly breaks into two subcomponents. It suffices to

show that each case is satisfied. Since the NAND gate is an extension of the concentration

monitor, by Lemmas 3.2.1 and 3.2.2, it suffices to show instead that

[φ11(I ) =⇒ x(t) > α− δ1] and (4.18)

[φ00(I ) ∨ φ01(I ) ∨ φ10(I ) =⇒ x(t) < β + δ1] (4.19)

Consider the case where all inputs X0, . . . Xk−1 are considered to be 1. By their pertur-

bation bounds, this means that

x1(t) > 1− δ̂1, (4.20)

x2(t) > 1− δ̂1. (4.21)

By the definition of X,

x(t) = x1(t) + x2(t). (4.22)

Since both inputs are considered to be 1,

x(t) > 2(1− δ̂1) (4.23)

= 2− 2δ̂1 (4.24)

= α− 2δ̂1 (4.25)

x(t) > α− δ1. (4.26)
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For all other sets of inputs, the worst case is when only 1 input species Xl has a value

below δ̂1 and the other species has its highest value,

xj(t) < 1 + δ̂1 (4.27)

By the definition of X,

x(t) = x1(t) + x2(t). (4.28)

Assume that input Xl has a value below δ̂1. Since the other input is considered to be 1,

x(t) < (1 + δ̂1) + xl(t) (4.29)

< 1 + δ̂1 + δ̂1 (4.30)

= 1 + 2δ̂1 (4.31)

Since α = 2,

x(t) < α− 1 + 2δ̂1. (4.32)

Since β = α− 1,

x(t) < β + 2δ̂1. (4.33)

Whence by the definition of δ̂1,

x(t) < β + δ1. (4.34)

4.2 Combinational Circuits

The following proof is an application of a proof defined in [17]. We now present a proof

for robustly simulating any combinational circuit. We must first define the I/O requirement

for a robust combinational circuit. Consider a combinational circuit Cn,m with n-inputs and

m-outputs. We do not consider feedback loops, so the circuit is a directed acyclic graph

where each node is a 2-input NAND gate. The circuit has n binary inputs and m binary

outputs, so there is an edge in for each input and an edge out for each output. The circuit

has a depth equivalent to the longest path from an input edge to an output edge within the

circuit.
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We define the input species for a circuit Cn,m as

U = {Xi, Xi|0 ≤ i < n}. (4.35)

We define the requirement Φ(Cn,m, τ) = (φ, α) with α defined as

α(u, V, h) ≡
[
V = {Ŷi, X̂i | 0 ≤ i < m} and h = h0

]
. (4.36)

The circuit Cn,m has an expected set of outputs for any binary input string w of length

n. For such an input string w ∈ {0, 1}n and an input u ∈ C [U ], we use u(t) = w to indicate

that u(t)(Xi) = w [i] for each 0 ≤ i < n. Since Xi and Xi are dual railed, this also means

that u(t)(Xi) = w [i]. Which allows us to define the predicates

φw(I) ≡ (∀t ∈ I)
[
u(t) = w

]
ψw(I) ≡ (∀t ∈ I)

[
v(t) = w

]
.

Using these predicates, we can define the I/O requirement φ for a combinational circuit

Cn,m as

φ(u, v) ≡ (∀w ∈ {0, 1}n
)[
φw(I) =⇒ ψCn,m(w)(t1 + τ, t2)

]
(4.37)

for all I = [t1, t2] of length greater than or equal to τ .

4.2.1 Construction 3

Given an arbitrary combinational circuit Cn,m with G gates and a depth of d. Given

the real numbers τ > 0, and δ = (δ1, δ2, δ3, δ4) where δ1 ∈ {0, 13}, δ2 ∈ [0, ε), δ3 ∈ (0, 12) and

δ4 > 0, with ε ∈
(
0, δ1

)
. We define the CRN N by joining G copies of the two-input NAND

gates with the above constants and τ as τ
d in the obvious way to simulate Cn,m.

Lemma 4.2.1. Given a combinational circuit Cn,m and a CRN N defined as in Construction

3, N |=δ
ε Φ(Cn,m, τ)
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4.2.2 Proof of correctness

This lemma follows from the robustness of each two-input NAND gate. Each NAND gate

robustly changes its output within τ
d time. Since the longest path in the circuit is d, within

τ time, the circuit will have the correct output. The output of each circuit will be within ε

of the correct output. Since ε is smaller than δ1, the input of each circuit will be within δ1

of 1 or 0 meaning that each circuit will robustly compute the correct output. Therefore the

CRN N will robustly simulate the circuit Cn,m within the proper time period τ .
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CHAPTER 5. LOGGING OF CRNS

The work presented in this chapter was performed in collaboration with James I. Lathrop

and Robyn R. Lutz. This work was previously presented at the 4th ACM International

Conference on Nanoscale Computing and Communication Washington DC, USA, September

27-29, 2017 [19]. All CRNs presented in this section utilize deterministic mass action kinetics.

5.1 Logging the State of a CRN

In software systems, logs have a multitude of uses. They can be read externally, by

either another system or an external user. They can be used to synchronize multiple devices

across a network, i.e., to make sure all devices have the same value for a variable. A log

can be used to ensure data is correct or valid before it is passed to another device. They

can also be used as a checkpoint for future rollbacks in the case of an error. Each of these

behaviors can be desirable in a molecular program. We present a method to create a log of

a molecular program.

5.1.1 Log Device

We first define the device used to record the state of a CRN, called the Log Device.

This device tracks a set of input signals, specified at system design, and a log signal. When

the log signal is low, the device will not track the values of the input signals. However, when

the log signal is high, for each tracked signal, the log device will set the concentration of a

copy signal equal to that of the tracked signal. This allows the log device to only take a log

when desired.
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A single log device can track any number of species, but can only maintain a single log

at a time.

We construct a device to record the state of a CRN using two components, a Log Device

and a Log Interpreter, see Figure 5.1. We specify a Log Device to copy the values of

all the species to be logged, made up of Follower CRNs. Consider a CRN device with s

number of species to be logged. Let Xi be the ith species to be logged in the device, Ci be

the species that will contain the value of Xi after it is logged, and log be a catalyst. For

each such species Xi, we construct a Follower CRN as an I/O CRN with

U = {Xi, log}

S = {Ci},

and where R contains the reactions

log +Xi
k−→ log +Xi + Ci, (5.1)

log + Ci
k−→ log (5.2)

where Xi is only used catalytically, since it is an input signal. Since log is a catalyst,

reactions (5.1) and (5.2) have a propensity dependent on the concentration of log. When log

is entirely absent, i.e., the concentration of log is 0, then neither reaction can occur, meaning

that Ci will remain at a constant value. When log is present in any amount, reactions (5.1)

and (5.2) can occur, meaning that Ci will approach the value of Xi.

Intuitively, reactions (5.1) and (5.2) have similar rates. They both share the catalyst

log and the rate constant k. The only difference is that reaction (5.1) has Xi in its set of

reactants and reaction (5.2) has Ci in its set of reactants. When the concentration of Xi is

larger than the concentration of Ci, reaction (5.1) will happen more often. On the other

hand, if the concentration of Ci is larger than the concentration of Xi, then reaction (5.2)

will happen more often. Therefore, whatever the values of Xi and Ci, the value of Ci will

be more likely to approach the value of Xi than it will be to leave the value of Xi. This

behavior remains the same for any concentration of log above 0, but the speed differs.
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To take a log, we first add log to the system to a target amount, speeding up the follower

reactions and allowing them to copy their target species. We then need to remove as much

log from the system as possible, making the rates of the follower reactions approach 0.

Since we are in a deterministic setting, it is impossible to make the concentration of

log = 0 after it has been introduced to the system. Therefore, we seek to lower the value

of log to some ε > 0. The smaller we make ε, the closer to 0 the concentration of log will

be, and thus the slower reactions (5.1) and (5.2) will be. We accomplish this using the

previously discussed Concentration Monitor.

To control the concentration of log between 1− ε and ε, let logSignal be the input that

requests a log be taken. We construct a Log Interpreter, a Concentration Monitor on the

input logSignal. We choose α and β based on the desired log signal input range. Intuitively,

the user provides a threshold above which the input signal is On (α) and a threshold below

which the input signal is Off (β), with the range between α and β unknown. We choose

a τ > 0 time delay and an ε as small as desired. We assign the species log and log to

the output species X̂ and Ŷ respectively, where log and log are “dual-railed”, i.e., a high

concentration of log indicates a low concentration of log, and vice versa.

When the concentration of logSignal is above α, log will have a concentration of at least

1− ε. When it is below β, log will have a concentration of at most ε. A log request inputs

enough logSignal to raise its concentration above α, raising the concentration of log to at

least 1− ε. When we remove enough of logSignal to lower its concentration below β, we

reduce the concentration of log to at most ε. Figure 5.2 shows the Logging Device applied

to record the concentration of a signal.

5.2 Logging of Valid States of a CRN

Some applications require that only states meeting certain specifications be logged. For

example, consider a CRN system where all the signals used are read as digital signals, i.e.,
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Figure 5.2 Simulation of the Logging Device on a monitored system adapted from [36].
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within some ε of 0 or 1. In such a case, saving a system state containing values in between 0

and 1 is undesired.

The state logging algorithm is insufficient to only log valid states, as it will log when it

is told to regardless of the validity of the system state. Logging only valid states adds two

new requirements.

1. Detect whether a signal X satisfies its validity properties, and thus has a valid

concentration.

2. Detect whether a state validity property is satisfied by the current system state.

We extend the state logging algorithm to only allow the logging of valid system states.

5.2.1 State Validity

We first define what it means for a signal to be valid. Each signal is a concentration

of a species, meaning that its validity is determined by properties of its concentration. We

define the validity of a signal in terms of upper and/or lower bounds. We specify validity

bounds for a signal using real numbers a and b with a > 0 and 0 < b < a. When defining a

bound we use a and b to determine the range of correct detection. When defining a lower

bound, we say the signal is valid if its concentration is above a, invalid if its concentration

is below b and unknown if its concentration is in between a and b. For an upper bound, we

say the signal is valid if its concentration is below b, invalid if its concentration is above

a and unknown if its concentration is in between a and b. Figure 5.3 shows a graphical

representation of these bounds. A validity property is a boolean expression of the validity

bounds of a signal using combinational relations. A state validity property is a boolean

expression of the validity properties of the system signals.

5.2.2 Validity Detector

To satisfy the first requirement, we begin by constructing a device that detects whether

a signal satisfies a validity bound. For a given signal Xi and an a and b defining a validity
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Figure 5.3 These figures depict the validity of an input signal over time. (A) shows a lower

bound and (B) shows an upper bound.

property, we construct a Concentration Monitor. We define a Validity Detector as a

Concentration Monitor (see Chapter 3) with the following properties. Let X̂i and Ŷi represent

the validity of the signal, meaning that if X̂i has a high concentration, the signal is valid and

if Ŷi has a high concentration, the signal is invalid. Assign the validity bounds a and b to be

α and β respectively. Assign Xi to be the input signal X. Assign τ to be a value reflecting

the acceptable delay between input and output. Assign ε to be the accuracy tolerance of the

output. Assign X̂i and Ŷi to be the outputs X̂ and Ŷ respectively for computing a lower

bound. Assign Ŷi and X̂i to be the outputs X̂ and Ŷ respectively for computing an upper

bound.

By the definition of a Concentration Monitor, the Validity Detector satisfies its require-

ments. Suppose there is a lower bound a on the input signal Xi. If the concentration of the

input species Xi is above a,

Xi > α
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and thus, within τ time

X̂i > 1− ε.

If the concentration of Xi is below b,

Xi < β

and thus, within τ time

Ŷi > 1− ε.

Suppose there is an upper bound b on the input signal Xi. If the concentration of the

input species Xi is below b,

Xi < β

and thus, within τ time

X̂i > 1− ε.

If the concentration of Xi is above a,

Xi > α

and thus, within τ time

Ŷi > 1− ε.

If the concentration of Xi is between a and b, its state is unknown and therefore no specific

output is guaranteed.

5.2.3 Validity Gate

As shown in Section 4.2, we can robustly simulate any combinational circuit. We

construct a validity gate as a combinational circuit to simulate the state validity property of

the monitored system. The boolean variables taken as input are the outputs of the validity

detectors of each signal. Since the output of each validity detector is robust, the output of

the combinational circuit will be robust and correct by Lemma 4.2.1.
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5.2.4 Log Controller

The log controller is an extension of the log interpreter from the simple logging device.

Instead of allowing a log to occur whenever the log signal is high, we also require the output

of the validity gate to be high, i.e., the state is valid. We can construct an AND gate robustly

using two NAND gates. We input the log signal and validity gate output into a NAND

gate. We then feed the output of the NAND gate into both outputs of another NAND gate.

This creates a NOT gate attached to the output of a NAND gate, making an AND gate.

Therefore, the log controller only has a high output when both the log signal and validity

gate output are high.

5.2.5 Valid-only Log device

We now show how to construct a logging device that only logs valid states, shown in

Figure 5.4, using the components described in Sections 5.2.2, 5.2.3, and 5.2.4. Specifically,

this helps prevent data from being transmitted that does not meet data quality requirements.

As before, we utilize Follower CRNs to log each signal.

For each monitored signal and a validity bound, we construct a validity detector. Each

validity detector provides a high output if its input signal satisfies its validity bound and a

low output if it is known to not satisfy its validity bound. If the input signal to a validity

detector falls within its error region, no guarantees are made on the output of the validity

detector.

We construct a validity gate over the outputs of all the validity detectors to determine if

the current state satisfies a state validity property. The validity gate provides an output

of Y > 1− ε if the state validity property is satisfied and an output of Y < ε if the state

validity property is not satisfied. If any of the monitored signals are in an unknown known

state, there are no guarantees on the output of the Validity Gate.

We then construct a log controller as the AND of logSignal and Y , with the error

tolerances on logSignal and Y to determine the parameters, while still having its outputs as
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Figure 5.4 Logging Device Conditional on Validity.

log and log. We use a log controller to control the presence of the catalyst for the Follower

CRNs.

Figure 5.5 shows two simulations of the logging device conditional on validity. Both plots

use the same set of devices in their construction with the validity property (X1 ≥ 0.9∧X2 ≥

0.9). As shown by the figure on the left, when both X1 and X2 have concentrations of at

least 0.9, the state is considered valid, meaning the validity gate has an high output and the

state is logged when the log is requested. The figure on the right is the same model, with

the only difference being that X1 does not satisfy its validity bound. Therefore, the validity

gate has a low output and no log is performed when the log is requested.
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5.3 Further Applications

We now present some further applications of the logging devices discussed in this chapter.

5.3.1 Logging Multiple Devices

Both devices discussed for logging can be applied to multiple devices in a system. Consider

two systems A and B that contain m and n signals to be logged, respectively. To take a

log of their states, we construct a Follower CRN for each signal in m ∪ n and a single Log

Interpreter. Upon receiving a log request, all desired signals in A and in B will be logged.

Similarly, for a valid only log device, we construct a Follower CRN for each signal in

m ∪ n. In addition, we construct validity detectors based on the validity properties of each

system. We have two choices, either to use a single validity gate and log interpreter to cover

both systems, or to use a validity gate and log interpreter for each system. In the first case,

a device will only be logged if both devices are valid, while in the second case, each device

can be logged independently.



77

5.3.2 Logging a History of a CRN

We can construct a history of logs using the components discussed previously. For

each signal being monitored, we construct two Follower CRNs, A and B, that use different

catalysts, i.e. L1 and L2. We construct two Log Interpreters, outputting L1 and L2

respectively, that take in different inputs, logSignal and hist respectively. We assign A to

copy the desired signal and B to copy the output of A. By ensuring that we never send

both logSignal and hist at the same time, we will maintain one history log. We can then

chain such devices to create a finite length log.

A consequence of our operating in the deterministic mass action domain is that all

Follower CRNs are always active, regardless of how slow they are. Therefore, the stored

log signal will degrade over time. However, since we can control the concentrations of

the catalysts L1 and L2, and make them as small as desired, we can control the rate of

deterioration.

5.3.3 Checkpoint and Rollback

With a log of a molecular program, we have one or more saved states that the system

realized at a previous point in time. When an error occurs, it may be desirable to revert to a

previous state that was known to be working. The creation of checkpoints is already handled

by either of the log devices. Attaching a number of history devices allows the storage of

multiple checkpoints.

In order to rollback, the molecular program must be able to load the desired state on

command. All the components required for this behavior have already been described here.

We utilize log devices and log interpreters. As stated previously, the log devices copy the

concentration of one molecular species into the concentration of another. We used them

to copy the monitored signals’ concentrations into the copy signals. In order to load a

checkpoint, we need to create another log device, called a Rollback device, where the

signals that have been logged, each Ci, are the signal to be copied and each monitored signal,
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Xi are the copied signals. When the rollback device is activated, it will copy the saved

values back into the monitored signals, resetting the current state to the saved state. The

rollback device requires its own unique activation signal, so that it will only be activated

when desired. A log controller can be used to manipulate the activation signal to be below ε

or above 1− ε as desired.

When a history of logs is stored, a unique rollback device and unique log controller must

be created for each log stored. That is, if there are k logs stored, k unique rollback devices

with k associated log controllers are required for full rollback capability. As long as each

rollback device and log controller has a unique log signal, only the desired checkpoint will

be rolled back at a given time.
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CHAPTER 6. CONCLUSIONS

In this thesis, we presented a number of devices that aid in the development of robust

and correct molecular programs. The devices presented here, along with the processes

and methodologies used to develop them, help to ensure that molecular programs remain

fault free or that they remain safe even in the case of a fault. Safety is critical in many

molecular programs due to their potential in medical applications. Requirements engineering

techniques and formal methods, such as simulation and model checking, are essential in the

development of safe molecular programs.

The Runtime Fault Detection device (RFD) and its predecessor, the Molecular Watchdog

Timer (MWT) can be used to ensure that users and other molecular programs are made

aware of any failures that occur. The RFD provides the possibility for a molecular program

to autonomously recover from a failure by triggering a recovery response.

The concentration monitor can be used to validate bounds on a chemical species’

concentration during runtime. It can be used to ensure that data conforms to specifications

either before storage or before the data is passed as input to another molecular program.

Reducing the possibility of data corruption leads to a reduction in system faults. We

further demonstrated the utility of the concentration monitor by presenting an MWT,

constructed with a concentration monitor, for deterministic mass action kinetic chemical

reaction networks (CRNs) ensuring that there exists an MWT for the two most common

kinetics of CRNs.

We presented a robust CRN NAND gate, using the concentration monitor, that can be

nested to create an arbitrary combinational circuit. We proved that the circuits update their
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outputs to reflect changes to the inputs correctly and robustly. Using these gates, along with

the concentration monitor, we developed two devices to log the state of chemical reaction

networks. A log allows devices to recover from failures by rolling back to a state before the

failure occurred. A log can be viewed by an external user or another molecular system to

monitor for faults and aids in determining the cause of faults.

We hope that the devices and processes discussed here prove useful in the development

of molecular programs.
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