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ABSTRACT 

In nearly one decade of Twitter’s being it has witnessed an ever growing user base from 

various realms of the world, one of them being politics. In the political domain, Twitter is used as 

a vital tool for communication purposes, running effective e-campaigns, and mining and affecting 

public opinions to name a few. We study the problem of automatically detecting whether a tweet 

posted by a state’s Senate’s twitter handle in the US has a reference to policy agenda(s). Such a 

capability can help detect the policy agendas that a state focuses on and also capture the inception 

of ideas leading to framing of bill/law. Furthermore, analyzing the spatial and temporal dynamics 

of tweets carrying policy agendas can facilitate study of policy diffusion among states, and help in 

comprehending the changing aspects of states learning policy-making from each other. 

Currently, no study has been carried out that analyzes Twitter data to detect whether or not 

a tweet refers to a policy agenda. We present our analysis on 122,965 tweets collected from verified 

Twitter handles of the US state’s upper house – Senate. We present our high-level analysis on (a) 

how much Twitter has penetrated into state politics and (b) how states use the medium differently 

in terms of the messages they broadcast. Our proposed approach aims to automate classification 

of a tweet based on having a reference to policy agenda (Has Agenda) or not (No Agenda). We 

accomplish this by leveraging existing text classification methodology and achieve a recall of 

89.1% and precision of 77.2% for the “Has Agenda” class. We investigate several machine 

learning algorithms to determine the best performing one for our binary classification problem. 

We conclude that support vector machine using linear kernel was the most efficient algorithm to 

use for our dataset. Lastly, we propose a set of hand-crafted features that together with feature 

selection and stemming improved our classifier’s performance. Prior to including these features 

the classifier was developed using, basic preprocessing techniques, and term occurrence (for 

feature extraction). An overall improvement of 5.187 % at a significance level of 𝛼 = 0.05 was 

achieved.
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CHAPTER 1 INTRODUCTION 

Poli-informatics is an interdisciplinary field that promotes diverse methodological 

approaches to the study politics and government[1]. Publicly available high volumes of 

government datasets [2] together with advances in computational linguistics, machine learning, 

data visualization, and high performance computing, facilitate innovation in perspectives related 

to governance. These government datasets are vast and vary from data on agriculture, business, 

climate, health, finance, local government, education, energy amongst many others. 

In our study, we focus on state governments and their respective policy agendas. A policy 

agenda is a set of issues viewed as important by people in policymaking (e.g., government officials, 

government decision-makers). Since policy agendas can vary in terms of the issues they address, 

Policy Agendas Project [3] divides them into 20 main topics and 220 subtopics. The main topics 

are shown in Table 1.1. 

Table 1.1. List of major topic codes 

1. Macroeconomics 

2. Civil Rights, Minority Issues, and Civil Liberties 

3. Health 

4. Agriculture 

5. Labor and Employment 

6. Education 

7. Environment 

8. Energy 

9. Immigration 

10. Transportation 

12. Law, Crime, and Family Issues 

13. Social Welfare 

14. Community Development and Housing Issues 

15. Banking, Finance, and Domestic Commerce 

16. Defense 

17. Space, Science, Technology and Communications 

18. Foreign Trade 

19. International Affairs and Foreign Aid 

20. Government Operations 

21. Public Lands and Water Management 

 

  Another key aspect of our study is based on the rapid mileage gained by online social 

networking sites in the current digital world. One of the prominent platforms in this domain is 

Twitter, which in less than 10 years of its being has gathered a user base of more than 302 million 
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monthly active users across the globe [4]. Twitter enables its registered users to send short 140 

characters messages called “tweets”, and follow other users’ twitter posts. As of May 2015, US 

President Barack Obama is the most followed politician in the world on Twitter with 58.1 million 

followers [5]. The use of Twitter in the political domain is on the rise. The 115 studies compiled 

in the survey [6] reveal that Twitter is used in the political domain by politicians for running 

effective e-campaigns, sharing their political strategies, their vision for the future and discussions 

on various policy agendas. The medium is also used by constituents to voice their opinions on 

political matters to name a few. 

Our work aims at automating the detection of policy agendas at the state-level in the US 

that are under discussion, or framed into a bill, or passed as a law. The work marks a first attempt 

in analyzing this domain on Twitter. We study the tweets posted from State Legislature twitter 

handles to ascertain whether or not a tweet contains a policy agenda. Tweets that mention about 

passing of bills and state the agenda topic it is related to are considered in our class of “Has 

Agenda”. We also observed tweets that do not mention passing of bills directly but discuss action 

items on agenda topics. Such discussions bear a high chance of formulation of bills related to the 

corresponding agenda topics, hence, we consider them in our “Has Agenda” class as well. Keeping 

these guidelines in mind Table 1.2 exemplifies performing the binary classification manually. 

Table 1.2. Manual classification of tweets 

Tweet text Label 

The Senate passes H.B. 2036, adding and modifies certain statutes related to the 

regulation of abortion and abortion clinics. Vote 20 – 10 

Has Agenda 

Senate passes HB 2601, increasing maximum amount of unpaid wages that enable an 

employee to file a claim with the ICA. Vote 29-0 

Has Agenda 

GOP puts minimum wage bill on fast track to help boost prospects for oil tax law. Has Agenda 

9:30 this morning on the Senate Floor....Marine Corps celebrates its 237th birthday. No Agenda 

Good morning Alabamians!!!!! Today is the last day of the 2013 Legislative Session!!!! 

Stay tuned for updates throughout the day :22) 

No Agenda 

 

  Policy-making has been studied to understand the role media plays in formulating policies 

[7]. The study in [8] studies open government datasets and analyzes how policy agendas have been 

addressed/ignored in the history of American politics. Congressional speeches have been analyzed 

in [9] and mapped to topic codes as per Table 1.1. Twitter data has been analyzed to study different 
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aspects of the political world [10-14] as well as outside of it [15-21]. The work carried out in [22-

24] analyzes the underlying sentiment of tweets and [25-29] addresses the privacy concerns that 

come along with the medium’s growing popularity and usage. Besides using Twitter as the data 

source, there are studies that analyze data from YouTube to determine the impact of political video-

campaigns on online communities [30]. The Lydia project in [31] uses traditional online news 

sources- “New York Times” and “Time Magazine” to gauge how political entities are framed in 

the media. 

  To the best of our knowledge, we do not find any existing study that analyzes Twitter data 

to detect policy agendas in the US. In this paper, we propose an approach to automatically label a 

tweet as “Has Agenda” or “No Agenda” based on the existence of a policy agenda in it as discussed 

earlier. Such an ability would facilitate political scientists to (a) study intra-state politics in the 

new-age digital world, (b) understand which policy agendas are communicated to public using 

online social media, (c) study the course of policy framing at the state level from the inception of 

its idea to becoming a law, and (d) study dynamics of policy diffusion among states by analyzing 

how states impact one another in terms of policy making, if at all. In order to lend credence that 

we analyze data that bears a direct impact in policy making, we manually collected the verified 

State Legislatures’ twitter handles. After initial investigations, we found that the Twitter handles 

of Senate are more prevalent when compared to the twitter handles of House, hence we collected 

the Senate twitter handles for all the 50 states in the US. 

 

1.1 Contribution 

  We make three main contributions in our study. Firstly, in terms of the text classification 

problem that we study, (a) we present how each processing step in the process impacts the 

performance of the classifier for this problem; (b) we examine several machine learning algorithms 

to determine the best performing algorithm that achieves a recall of 89.1% and precision of 77.2 

% for the “Has Agenda” class; and (c) we propose a set of new hand-crafted features which we 

include in our data sets’ feature set. Including these features enhances our support vector machine 

based binary classifier’s performance significantly by 5.187% at a significance level of 𝛼 = 0.05. 

We validate our results on a vast dataset of over 4,000 manually classified tweets of 5 states. 
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  Secondly, we present our findings on (a) how much Twitter usage has penetrated into the 

world of state politics, (b) how various states make use of the medium in terms of communicating 

messages with or without policy agendas. Thirdly, we make our collected data (manually collected 

and using Twitter API) publicly available for further analysis. We manually collected verified 

Twitter handles representing Senate and House of states in the US. Senate representation of states 

was far more prevalent when compared to House representation. As of 12-16-2014, 30 states had 

a verified Senate handle on Twitter and some of the states had a separate representation of Senate 

Republicans and Senate Democrats. Overall 42 handles representing state’s Senate were collected 

and a subset of 122,965 tweets posted by them was stored in our tweet repository. We also 

developed a robust web application for manual classification of tweets which can be modified for 

similar n-class classification problems. As a final point, our study marks a maiden attempt to 

analyze twitter data for detecting policy agendas at the state-level. 

 

1.2 Organization 

  The rest of the thesis is organized as follows. Chapter 2 presents related work in political 

science and social media analysis. Chapter 3 discusses the approach of our proposed work and 

Chapter 4 illustrates the experiment design and results. Chapter 5 presents our conclusion and 

avenues of future work. 
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CHAPTER 2 RELATED WORK 

We consider (i) studies in the Political Science domain that relate to our work, (ii) studies 

that employ machine learning techniques in text classification, and (iii) studies that analyze data 

mined from social media. We found Twitter was used as a data source for majority of the studies 

along with other sources like Pinterest, YouTube and online News sources. As of May, 2015, 

Twitter has 302 million monthly active users and 500 million tweets being posted per day on an 

average. Hence, it is unsurprising that a significant amount of work has been carried out on 

analyzing Twitter data among varied domains, not just in politics. Since we encountered a variety 

of studies in our survey, we organize our related work into different classes and subclasses as 

shown in Table 2.1. 

Table 2.1. Categorization of related work 

Class Subclass 

Research Theme Poli-informatics: Analyzes publicly available data in the realm of 

politics [6, 7, 10-14, 31, 32] 

Social Network Analysis: Studies the flow of information within 

online social networks [15, 17, 18] 

Information Mining: Extracts information relevant to a research topic 

from the text content [16, 19-21, 33-35] 

Sentiment Analysis: Gauges sentiment of the text towards a relevant 

topic [22-24, 30] 

Privacy Concerns: Addresses privacy hazards on online social media 

[25-29, 36] 

Text Classification: Uses machine learning techniques for classifying 

text [26, 32, 37-39] 

Data Source Policy Agendas Project [3] 

Congressional Bills [40] 

Congressional speeches 

Social Media : Twitter, YouTube, Pinterest 

Online news sources: New York Times, Time Magazine 
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Table 2.1. (continued) 

Data Collection 

Methods 

Twitter APIs (REST API, Search API and Streaming API) 

YouTube API 

Web crawler 

Direct download 

 

Technical Approach  Supervised Machine Learning 

Content Analysis 

Sentiment Analysis 

Graph-based Frameworks 

Statistical Modeling 

Manual Classification 

 

Results Visualization  Graphs, Tables, Pie Charts, Heat Maps 

 

 

  In our survey, we found that Twitter is a powerful medium in the domain of Politics. The 

claim can be substantiated by the comprehensive literature survey carried out by [6]. This literature 

survey by Jungherr is a compilation of 115 studies carried out at the intersection of political and 

Twitter domains. The survey grouped the studies into three categories: (a) usage of Twitter by 

politicians, (b) usage of Twitter by constituents during elections, (c) usage of Twitter by various 

actors in reaction to facilitated campaign events, e.g., televised debates or coverage of election-

day. None of the studies mentioned in this survey present an approach to detect policy agendas 

mentioned by State Legislatures on the social networking medium. 

Outside of the research work cited in this survey, we present related studies in the domain 

of policy agendas. The study presented in [7] showcases the effect of traditional media sources on 

policy-making in U.S Congress. It bases its findings on data collected from New York Times and 

agenda topics of bills introduced in Congress (made available by Policy Agendas Project). The 

study also correlates media coverage on crime related issues to the money invested by state budget 

in corrections (punishment, treatment, and supervision of people convicted of crimes).  

http://en.wikipedia.org/wiki/Punishment
http://en.wikipedia.org/wiki/Therapy
http://en.wikipedia.org/wiki/Supervisor
http://en.wikipedia.org/wiki/Conviction
http://en.wikipedia.org/wiki/Crime


7 
 

The authors of [32] work with a dataset of federal public bills introduced since 1947, 

referred to as the Congressional Bills Project [40]. They present a supervised machine learning 

approach to develop a multi-class classifier which can annotate the subtopic (based on 226 

subtopics in Policy Agendas Project) of a given bill. Our work employs a similar supervised 

machine learning approach, but we assert that our dataset extracted from Twitter comes with a lot 

of noise, is not formal in structure as the bills and has a much higher volume and veracity in 

comparison to the Congressional Bills dataset. In our study, we also present an overview of how 

various processing steps in text classification impact classifier’s performance. Finally, we also use 

hand-crafted features that significantly improve classifier’s performance on our dataset and can be 

re-used in similar Twitter-based studies. 

In the realm of social media and politics, the research work in [11] uses speech acts 

methodology on Twitter data. Speech acts refers to an attempt made in speech to get someone to 

do something regarding the topic mentioned in the speech. This study manually categorizes these 

speech acts into 16 different categories implying the linguistic approach in which constituents 

lobby Congress using the medium. The authors identified 4 prominent political topics and the 

hashtags used for tweeting about such topics. Using Twitter's streaming and search APIs, they 

collected 76,454 tweets that used the identified hashtags and were addressed to Twitter handles 

owned by members of the 112th and/or 113th Congress. They filtered out 42,398 retweets and 

manually classified a random subsample of 925 tweets from the remaining ones to accomplish the 

grouping into the 16 different categories. 

The study in [10] presents a 6-class categorization of the speech acts of Congress on 

Twitter. The study develops an automated classifier using supervised machine learning techniques 

to label the speech category of a tweet. It uses 526 manually classified tweets to train the classifier 

and overall it collects 30,373 tweets to present analysis on tweeting frequency by gender, party 

and chamber (U.S Senate and House.) The study in [41] and several other studies in the literature 

survey in [6] confirm that Twitter can be used as a significant tool when it comes to election 

campaigning. Moreover, the medium can help determine political affiliations of a citizen by 

performing sentiment analysis on their tweets [12]. This study uses existing naïve lexicon based 

approaches (Subjectivity Lexicon [42] and SentiWordNet 3.0 [43]) to determine the sentiment 
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polarity of words in text. The study enhances the sentiment analysis’ performance by incorporating 

support vector machine in a 5-fold cross validation setup.  

The authors of [12] develop a 3-class classifier of tweets into positive, negative, and neutral 

towards a political entity by using a manually classified set of 2,624 tweets as ground truth. Lastly, 

in the political domain, Twitter has also been used to predict election results by using the sentiment 

analysis approach [14]. This study reports the analysis of 104,003 tweets that appeared few weeks 

prior to the election of the national parliament in Germany, 2009. Sentiment Analysis of the tweets 

was carried out using the tool LIWC2007 [44] and it was concluded that the Twitter activity prior 

to elections was a valid reflection of the election outcome. Outside the strict domain of politics, 

[22] uses psychometric instruments to automatically models the moods and emotions of public by 

mapping text to 6 mood states (tension, depression, anger, vigor, fatigue, confusion.) and 

establishes a significant correlation between worldly events and public temperament on Twitter. 

As mentioned earlier in Table 2.1, the data on Twitter has been used to analyze information 

flow on the social networking site. To understand the spatial and temporal mechanics of flow of 

hashtags at a global scale, study in [15] analyzes the geolocation and time properties of 27 million 

unique hashtags extracted from Twitter using the Streaming API. The study quantifies the global 

footprint of the hashtag, analyzes spatial properties of hashtag propagation, and measures the 

spatial impact of a location on hashtag propagation dynamics. Another research work carried out 

in [17] detects a cluster of messages on Twitter that are bound by a common theme referred to as 

campaigns. In this study, 1912 tweets were manually examined to extract such campaigns that 

share a common talking point. Using these groupings as the ground truth, the authors identified 

Shingling [45] as the best existing near-duplicate detection algorithm to find relatedness between 

texts of two tweets. Founded on this approach, authors of [17] constructed message graphs over 

large tweet datasets (~1.5 million tweets), where tweets become nodes and edges reflect the 

relatedness between them. Based on stated formulae in the paper, they were able to extract loosely 

/tightly bound campaigns. And upon manual inspection of certain attributes of these campaigns, 

they were able to categorize them into legitimate/spam campaigns.  

Lastly, the work carried out in [29] quantifies the influence of a user on Twitter by 

analyzing attributes like, user’s followers’ network and its dynamics of retweeting a user’s tweet 

that contains a URL. Retweeting such tweets clearly implies propagating information in the URL 
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to their respective follower networks. Quantifying influence can prove to be a strong component 

in laying out strategies to craft public opinions or obtain word of mouth publicity. 

With the variability of purviews these tweets can fall into, different studies focus at mining 

variegated information from Twitter.  For example, the occurrence of diseases like Influenza is 

mined from Twitter in [19]. The study evaluates the ability of statistical models like linear 

regression, multivariable regression, and support vector machine regression (SVMRegression) to 

accurately assess the prevalence of the disease. In another study, a probabilistic framework is 

proposed to narrow down the user’s whereabouts to the city level by only analyzing the content of 

tweets by a user [16]. The dataset used in this study is the 5 million tweets posted from 5,190 users 

spread across the continental United States. The study uses maximum likelihood estimation to 

identify probability distribution of unique words in their dataset over cities and employs 

classification algorithms available in Weka Toolkit [46] to classify words as being local to a city. 

It uses various techniques to smoothen the probability distributions of words over cities and proves 

to be a promising method in estimating content-driven locations in the future.  

The study in [20] is centered around journalism and confirms that the death of Osama Bin 

Laden first broke on Twitter before it reached traditional media. This was established by manually 

backward tracing the tweets containing the keyword “laden” and verifying the user as 

@keithurbahn who broke the news on Twitter prior to US President Barack Obama stating it in 

his official address. 

From the visible outburst of information on Twitter, it was found that people tend to give 

away vital personal details that could have serious ramifications by attackers. For example, the 

study in [36] ascertains that online social media divulges our personally identifiable information 

(PII) on the internet. Study in [25] presents an approach to combat privacy hazards on online social 

networks.  

Apart from PII, study in [26] states that users tend to reveal information that may belong 

to three subjects of: divulging vacation plans, tweeting about driving in a drunk state, or tweeting 

information regarding diseases contracted. This study aims at developing an automated binary 

classifier to label tweets as “sensitive” if they belong to any of the aforementioned three subjects 

otherwise label as “insensitive.” The study performs a primary filtering on tweets by extracting 

those tweets that have matching subject-specific-keywords in it. It uses a set of 600 tweets as 
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ground truth and has a 70:30 distribution of the size of the training set to testing set. The study 

uses machine learning techniques - Naïve Bayes and SVM to train the binary classifier. Our 

problem under consideration is similar in nature being a binary classification problem, but we 

emphasize that we do not use any keyword matching in data collection which is bound to add a 

positive bias in the classifiers performance. Also, we examine performance of additional machine 

learning algorithms like Decision Trees (J48,) Cost Sensitive Classifier, Attribute Selected 

Classifier, and CV Parameter Selection. Our study is based on a vaster ground truth of over 4,000 

tweets with a 50:50 distribution of training set to testing set. Lastly, we also contribute towards 

employing Twitter specific and Policy Agendas specific feature extraction from tweets in our 

classification process which significantly enhances classifier’s performance. 

Analyzing data from social media platforms is not limited to Twitter but extends to other 

such platforms like Pinterest [35] and YouTube [30]. Other than using social media platforms as 

the data source, the Lydia Project [31] uses data from online news sources like New York Times 

and Time Magazine. Lydia enables a user to visualize media trends on political entities 

encompassing (a) reference classification by type (News/ Business/ Entertainment/ Sports/ Other), 

(b) polarity (positive/negative sentiment) and subjectivity (number of sentiment references) trends 

for an entity in the media, (c) analysis of the words co-occurring with an entity in media referred 

to as juxtaposition analysis, (d) spatio-temporal analysis on the entity i.e., monitoring trends over 

time and geography. 

After careful research, we can affirm that we did not find any existing study that presents 

an approach to detect policy agendas in tweets posted by State Legislature handles. Since our 

problem falls under the purview of text classification, we leverage the basic schematics of text 

classification from [26, 32, 37-39]. We utilize the text classification framework which involves 

Stemming, Data Cleansing, Feature Extraction, and Machine Learning along with our proposed 

set of features (mentioned in upcoming sections), which improves our binary classifier’s 

performance significantly. 
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CHAPTER 3 PROPOSED POLICY AGENDA DETECTOR 

 In this chapter, we present our approach to classify a given tweet into one of the two 

classes---“Has Agenda” or “No Agenda.” We analyzed the tweets posted from state’s Senate 

Handles in USA to develop an algorithm to automate the categorization of these tweets into the 

aforementioned two classes. Manual collection of twitter handles and formulating the ground truth 

(discussed in upcoming sections) proved to be a very time-consuming and painstaking effort.  

In the following sections, we discuss the step by step process carried out to achieve our 

goal. Section 3.1 defines a “policy agenda”. In Section 3.2, we discuss the overview of our 

approach. In 3.3, we detail the data collection process and in Section 3.4 we present the process of 

ground truth formulation. In Section 3.5, we discuss steps to prepare data for training and in 

Sections 3.6 and 3.7, we articulate the process of feature extraction and feature selection 

respectively. Finally, in Section 3.8, we present the machine learning techniques used to develop 

an efficient binary classifier. 

 

3.1 Definition of a policy agenda 

A policy agenda by definition refers to a set of issues and policies laid out by political 

groups which may possess the credibility to be formulated into a bill and later law. Also considered 

as policy agenda are topics under discussion by a governmental executive, or a cabinet in 

government that tries to influence current and near-future political news and debate. 

3.2 Approach overview 

                    

Figure 3.1. Overview of the proposed approach 
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As depicted in Figure 3.1, the goal of our proposed approach is to develop a binary 

classifier for tweets in order to label them into classes- Has Agenda/No Agenda. This goal in 

achieved in several steps by using supervised machine learning techniques and following 

architecture of text classification process depicted in Figure 3.2. The processing steps include – 

data collection and storage, formulation of ground truth, data cleansing, feature extraction, feature 

selection, and application of machine learning algorithms.  

 

 

Figure 3.2. Application of supervised machine learning to determine if a tweet  

contains a policy agenda. 

 

3.3 Data collection and storage 

We began data collection by manually collecting the Twitter handles for State Legislatures 

in the US. After initial investigations, we found that the user handles for Senate outnumbered the 

House and we proceeded with collecting the Senate twitter handles for each state. As of December 

16, 2014, 31 states out of 50 had Senate Twitter handles and majority of these had two Senate 
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handles, one for Senate Democrats and another for Senate GOP (Grand Old Party or Republicans). 

Overall, we collected 42 twitter handles and gathered tweets posted from by them.  

In order to collect data from Twitter, we developed a standalone Java based application 

that used the Twitter4J library, and Twitter’s REST API for collecting twitter data. We used the 

“GET statuses” method from the Twitter API, which returns 3,200 most recent tweets for each 

user handle for which data is requested. Due to this limitation of the API, the “date of creation of 

tweets” that our collected tweets span across varies as per the tweeting frequency of these user 

handles. Overall, we had tweets from as early as September 13, 2007 until December 16, 2014 (the 

date we requested the tweets). From these 42 handles, we gathered a total of 122,965 tweets and 

present our findings in section 4.3. Based on our literature survey, this is the largest dataset 

analyzed upon in the domain of politics and twitter. Since we work with tweets that are posted by 

user handles and are not based on keyword search we did remove any duplicate tweets.  

We stored this Twitter data in a Relational database using MySQL Community Server 5.5. 

Apart from storing the text in the tweet, we also stored tweets’ other attributes and data related to 

twitter handles as shown in the database schema in Figure 3.3. 

 

Figure 3.3. Snapshot of DB schema of our experiment. 
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3.4 Formulation of ground truth 

In text classification problems that use supervised machine learning techniques, the term 

"ground truth" refers to a set of accurately labeled documents which can be used to train and later 

test classifier’s performance. Since no such set is publicly available for our classification problem, 

we manually classified a set of tweets to serve as ground truth. We shortlisted states that had both 

Democrat and Republican verified Twitter handles. From these we selected 5 states such that we 

could work with different data dimensionalities and at the same time the manual labelling for 

which would be under reasonable human capacity. In this study we worked with states namely, 

Alabama, Arizona, Minnesota, Pennsylvania, and Oklahoma. 

We extracted the respective tweets for each state which totaled to 4,790 tweets. Five human 

coders from different educational backgrounds (Computer Science, Political Science, Journalism 

and Agronomy) labeled different data sets according to the criteria for “Has Agenda” class as 

described in Table 3.1. The criteria was developed under consultation with the domain expert in 

Political Science and relies on Policy Agendas Project [3] that explains 20 political agenda topics 

and 220 subtopics in detail. Tweets that do not match the criteria were labeled as “No Agenda.” 

 

Table 3.1. Criteria for manually labeling a tweet as “Has Agenda” 

Aspects in Tweet Labeled Class 

Mention of passing/proposing a bill containing/referring to policy agenda(s) Has Agenda 

Laying out political strategies centered on policy agenda(s) Has Agenda 

Expressing an interest in bringing forth a reform centered on policy agenda(s) Has Agenda 

Criticizing existing scenario on policy agenda(s) Has Agenda 

Sharing inputs/reporting progress in the state regarding policy agenda(s) Has Agenda 

Any other direct reference to policy agenda(s) that has political relevance Has Agenda 

Any reference to state’s budget  Has Agenda 

 

To facilitate the ground truth manual labeling, we developed a PHP web-application that 

multiple people could access the tweets in our central data repository. In the application, tweets 
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are populated on screen based on the selected state. The human coder assigns a label to each tweet 

accordingly.  

3.5 Data preprocessing 

The collected data have noise (unwanted data). Preprocessing techniques ensure that all the 

noise is disregarded before processing to next steps in text classification. We employ two 

techniques: Stemming and Data Cleansing. Stemming is a common term used in Natural Language 

Processing (NLP) which refers to a method of reducing a word to its root word or stem. The 

technique drastically reduces the number of unique words in the dataset while still maintaining the 

word’s basic intent of usage. There are various existing stemming algorithms that are used in NLP 

today namely, Porter Stemmer, K-Stemmer and Hunspell Stemmer among few others [47]. 

Hunspell Stemmer can be applied to languages other than English. Different stemmers over stem 

and under stem to a different degree. As exemplified in Table 3.2, Porter stemmer performs 

aggressive stemming whereas K-Stem algorithm is known to under stem words [48]. Since the 

tweet content is already limited to 140 characters, we prefer using K-Stem to avoid any data loss. 

For Data Cleansing, we remove the standard stop words in English dictionary and also eliminate 

URLs in the tweets. 

Table 3.2. Examples of stemming results using Porter and K-Stem algorithms 

Original word Over stemming (Porter) Under stemming (K-Stem) 

Recession Recess Recession 

Importance Import Importance 

Import Import Import 

Namely Name Namely 

Addicting Addict Addict 

Political Polit Politics 

Policy Polic Policy 

Police Polic Police 

Educating Educ Educate 
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3.6 Feature extraction 

We observed the preprocessed data and introduced additional features listed in Table 3.3. 

These features include three Twitter specific features and one policy agenda specific feature. The 

latter, HasTopicKeyword, is to extend the capability of the classifier to classify tweets not seen in 

the training set. We created a dictionary of representative words of 20 policy agenda topics from 

the description of the topics provided by Policy Agendas Project [3]. A value 1 or 0 is assigned as 

the value of this feature based on whether or not the tweet includes any of the words in the 

dictionary.  

Table 3.3. Description of Twitter specific/policy agenda specific feature(s) 

Feature Name  Allowed Feature Values  Description 

Twitter specific 

HasHashtag 0,1 Whether or not a tweet contains a 

hashtag 

HasURL 0,1 Whether or not a tweet contains a URL 

TweetStrength 0-8, 9-13, 14-18, 19-24, >25 The histogram bin range of word counts 

in a tweet. 

Policy agenda specific 

HasTopicKeyword 0,1 Whether or not a tweet contains a word 

in the policy agenda dictionary 

 

After the data were preprocessed, we segregated them based on states because we observed 

several differences in each state’s pattern of tweeting frequency, choice of words used in tweets, 

structure of framing sentences, and policy agendas referred to in the tweets. For any given state’s 

dataset, we divided it into equal halves of training set and testing set. We developed a program to 

process the training set to generate a set of unique terms and a feature vector to represent each 

tweet. The basic features are Term Occurrence (0 when the term is not present in the tweet or 1 

otherwise) of the unique terms. The Twitter specific features and policy agenda specific feature 

are also extracted. In Section 4.3.2, we discuss the effectiveness of these features.  
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3.7 Feature selection 

Feature selection refers to the process of selecting the optimal set of features/attributes 

from the given list such that the classifier yields best results. We used Weka Toolkit [46] to perform 

this study. We experimented with “InfoGainAttributeEval” Attribute Evaluator and the “Ranker” 

search method. InfoGainAttributeEval evaluates the worth of an attribute by measuring the 

information gain with respect to the class. The Ranker search method ranks attributes by their 

individual evaluations. We also experimented with “CfsSubsetEval” Attribute Evaluator and the 

“BestFirst” CfsSubsetEval evaluates the worth of a subset of attributes by considering the 

individual predictive ability of each attribute along with the degree of redundancy between them. 

The “BestFirst” search method searches the space of attribute subsets by greedy hill-climbing 

augmented with a backtracking facility. 

 

3.8 Machine learning 

Machine learning (ML) explores the development and study of algorithms that can 

artificially learn from existential data (in a certain realm) and based on the learning predict 

outcomes on unseen data (in the same realm) without being explicitly programmed to do so.  

In our study, after formulating ground truth, preprocessing the data, adding new features, 

and extracting an optimal set of features to work with, we applied ML algorithms to develop a 

binary classifier. Although, performance of ML algorithms is largely dependent on the nature of 

datasets that are worked upon, but existing literature [26, 32, 37-39] claims that support vector 

machine (SVM) is the better algorithm for text classification. We explore the performance of SVM 

along with other ML algorithms for our classification of tweets. 

 

 

 

 

 



18 
 

CHAPTER 4 EXPERIMENTAL DESIGN AND RESULTS 

4.1 Design of experiments 

We worked with 5 datasets from our tweet repository where each dataset comprises of 

tweets belonging to each of these states – Alabama, Arizona, Minnesota, Pennsylvania and 

Oklahoma, respectively. We manually classified 4,790 of these tweets to serve as the ground truth 

and for each dataset we divide tweets labelled as “Has Agenda” and “No Agenda” into respective 

equal subsets. We used one subset of each class for training the binary classifier using machine 

learning techniques and the other subset for testing its performance.  

We aim to: 

 find the best performing classification algorithm for our datasets 

 employ combination of processing steps discussed in Section 3.5 through Section 3.8 to 

gauge the impact of these steps in the classification process 

 and finally, to establish whether or not our hand-crafted features enhance the classifier’s 

performance 

We refer to these different combination of processing steps as a Method Type and details are 

shown in Table 4.1 (underlined steps in the table are a part of feature extraction step). 

Table 4.1. Method types based on combination of processing steps  

Method Type Combination of processing steps 

DT Data Cleansing + Term Occurrence 

DTF Data Cleansing + Term Occurrence + Feature Selection 

SDTF Stemming + Data Cleansing + Term Occurrence + Feature Selection 

SDTTF Stemming+ Data Cleansing+ Term Occurrence + Twitter Features  

+ Feature Selection 

SDTTAF Stemming + Data Cleansing + Term Occurrence + Twitter Features  

+ Agenda Topic Keywords + Feature Selection 
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DT applies the Data Cleansing technique and use Term Occurrence as the feature set. 

Learning about successful machine learning algorithms in text classification from our literature 

survey, we chose to analyze performance of three algorithms on our dataset namely, (a) Decision 

Trees (J48), (b) Naïve Bayes, and (c) Support Vector Machine (SVM) with linear kernel. We used 

Weka 3.6 [49], an open source data mining software in Java to employ aforementioned algorithms 

and perform 5-fold cross validation on our training set. 

Among these 3 algorithms, SVM performed the best for four out of five datasets, hence we 

used it for the remainder Method Types. Using Weka, we employ CV Parameter Selection 

algorithm on SVM to find the optimal values for two parameters: Cost (C) and Kernel function. 

For all five datasets optimal values were C = 1 and Kernel function = Linear Kernel. In the rest of 

the study, we use this algorithm and SVM refers to SVM with linear kernel and C=1. 

DTF uses Attribute Selected classifier and feature selection algorithms as discussed in 

Section 3.6. We use SVM on the reduced feature set and analyze its performance on all five 

datasets. SDTF applies the K-Stem algorithm first for stemming and then follow the steps as in 

Method 2. 

SDTTF differs from SDTF by not limiting the feature extraction step to Term Occurrence 

and it uses Twitter specific features: HasHashtag, HasURL, and TweetStrength. As discussed in 

Section 3.6, SDTTAF adds HasTopicKeyword as another feature in this feature extraction step. 

Table 4.2 shows dimensionality of our dataset, and Table 4.3 shows the number of training 

instances used in this study and the reduced length of feature vectors after various processing steps.   

Table 4.2. Count of total tweets in our datasets 

Dataset Name Total Number of Tweets 

Minnesota 953 

Alabama 938 

Oklahoma 364 

Pennsylvania 800 

Arizona 1735 
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Table 4.3. Count of training instances and length of feature vector in our datasets 

Dataset 

Name 

Training 

Instances 

Total number of features in a feature vector 

  DTF SDTF SDTTAF 

Alabama 468 1404 1216 1219 

Arizona 850 1890 1657 1660 

Minnesota 476 1729 1506 1509 

Oklahoma 183 862 783 786 

Pennsylvania 413 1139 1004 1007 

 

We use the common metrics of recall and precision to evaluate our classifier’s 

performance. In pattern recognition and information retrieval with binary classification, precision 

(also called positive predictive value) is the fraction of retrieved instances that are relevant, while 

recall (also known as sensitivity) is the fraction of relevant instances that are retrieved [50]. 

 

4.2 Findings 

In the subsequent sections, we discuss the findings of our study. The first subsection 

includes the observations on characteristics of the tweets that we collected. In our second 

subsection, we share insights on the best performing machine learning algorithm for our 

classification problem and report the features from the feature extraction step (described in Section 

3.6) that contribute the most in enhancing our classification performance. 

4.2.1 Characteristics of political agendas tweets 

As mentioned in Section 3.3, we articulate a list of user handles for which we extracted the 

tweets. Post the tweets collection phase, we found that Senate handles from states like Washington, 

Colorado, Florida, North Carolina and Alaska tweet heavily; Senate handles from states like 

Oklahoma, North Dakota use Twitter very judiciously. Senate handles from states like Arkansas, 

Georgia, Texas, Wyoming and Vermont, are yet to enter the online social media platform. Figure 
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4.1 depicts an assessment of the penetration of the microblogging platform into the Senate of states 

in USA.  

 

Figure 4.1. Heat map of number of tweets posted from the Senate handles in the US as of  

December 16, 2014 

From the collected tweets, we observed that the social media medium was used for 

purposes of telling the masses about - bills that are proposed, bills being discussed on the floor, 

issues that concern the state, new senators that join the Senate, the details of Senators’ public 

appearances, alerts as to when the session goes into recess, resumes or adjourns, the strategies that 

get condemned by the minority, and for sending wishes on special occasions to its constituents.                                                                                                                                                                                                                             

Also observed was that two states could have an entirely contrasting pattern of tweeting 

and usage of words. For instance, tweets by one of the Arizona Senate’s handle were very formal 

and followed a strict pattern of stating the bill number that was being read in the Senate and 2-3 

keywords that best related to it. Whereas Alabama followed no such pattern and informally 

mentioned the reforms they would want to bring into the state. The Alabama Senate handle made 
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maximal use of the platform to apprise its constituents of the media appearances of its senators 

and other such events held with the mainstream media.  

A common trait that was observed for majority of tweets was that the usage of misspelt 

words, internet slang and political jargon was kept to the minimum. Also common was a frequent 

use of hashtags and of attaching shortened URLs (with the help of shortening devices like – bitly 

[51]and TinyURL [52]).  

As discussed in Section 3.4, we worked on formulating the ground truth for our proposed 

approach. Post manual labelling, we analyzed the distribution of tweets between the two classes 

for each state. As can be seen in Figure 4.2, Arizona has the highest percentage of tweets with a 

Policy Agenda at 76%, with Pennsylvania as a close second at 74%. Minnesota has the least 

percentage of tweets with Policy Agenda at 25%.  

 

Figure 4.2. Comparison of count of tweets labeled as “Has Agenda” per state 

 

4.2.2 Classification results 

We mainly worked with three machine learning algorithms, (a) Support Vector Machine 

(SVM) using linear kernel and Gaussian kernel, (b) Decision Trees (J48), and (c) Naïve Bayes. 

SVM with Gaussian kernel did not yield satisfactory results whereas SVM with linear kernel 
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yielded the best overall classification performance on our 5 datasets. SVM yielded adequate results 

on states which had at least 465 tweets in the training set and 1,215 features after stemming. In 

case of Oklahoma, the dataset was small with only 183 tweets available for training and the number 

of features after stemming at 783. In such a scenario, the Naïve Bayes algorithm performed best 

in comparison to the other algorithms. Table 4.4 compares the recall of these algorithms on our 5 

datasets. 

 

Table 4.4. Performance comparison of machine learning algorithms on 5 independent datasets for 

Has Agenda class 

 Recall for Has Agenda class 

State Name Naïve Bayes Decision Tree (J48) SVM with linear kernel 

Minnesota 0.109 0.773 0.782 

Alabama 0.431 0.549 0.822 

Oklahoma 0.641 0.219 0.469 

Pennsylvania 0.907 0.923 0.891 

Arizona 0.734 0.207 0.981 

 

As discussed in Section 3.6, we extracted four new features from the dataset (3 Twitter 

specific and 1 Policy Agenda specific). As discussed in Section 3.7, we implemented “Attribute 

Selection” algorithms in Weka to find the optimal set of features that yielded best classification 

results. We found that all these hand-crafted features appeared among the top fifty features with 

highest information gain. This finding was consistent across all datasets wherein each dataset 

consisted of 1,400 features each on an average. Based on information gain, Table 4.5 lists top eight 

features of all datasets and the feature – “TweetStrength” consistently showed up in all 5 datasets. 
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Table 4.5. Top eight features of each state with highest information gain 

Minnesota Alabama Oklahoma Pennsylvania Arizona 

mnsure 

tax 

#mnsots 

TweetStrength 

politician 

HasTopicKeyword 

higher 

obamacare 

Act 

accountable 

budget 

TweetStrength 

recess 

HasTopicKeyword 

@ltgovivey 

gun 

TweetStrength 

HasURL 

ivester 

HasHashtag 

approve 

oeta 

education 

bond 

Senate 

TweetStrength 

recess 

HasHashtag 

#voterid 

people 

amendment 

economic 

Pass 

vote 

TweetStrength 

HasURL 

hb 

HasTopicKeyword 

renewable 

final 

 

Besides using the three machine learning algorithms, we also worked with Cost Sensitive 

Classifier [53] to be able to achieve high recall of tweets that have a Policy Agenda. Attaining a 

high recall for “Has Agenda” class was our top priority because the future work of our study 

envisions extracting specific policy agenda major topics for each state. Although we achieved a 

high recall of 82.3% for Has Agenda class but an attempt to improve it further drastically affected 

the precision. We wanted to keep the precision for both the classes at least 70% hence we did not 

investigate further along this direction. 

Table 4.1 illustrates description of several Method Types. The performance metrics for all 

these Method Types averaged over all datasets are reported in Table 4.6. As illustrated in Fig 4.3, 

the recall for “Has Agenda” class follows a non-decreasing curve corresponding to application of 

each Method Type. We report that attribute selection did not improve the performance of the 

classifier. With the help of SVM and feature extraction techniques the best recall achieved for the 

“Has Agenda” class was 0.891 and the worst recall achieved for the same class was .769. 
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Table 4.6. Performance metrics of the binary classifier using different method types 

Method Recall  

(Has Agenda) 

Recall 

(No Agenda) 

Precision 

(Has Agenda) 

Precision 

(No Agenda) 

DT 0.769 0.769 0.769 0.834 

DTF 0.769 0.878 0.802 0.839 

SDTF 0.823 0.822 0.748 0.839 

SDTTF 0.859 0.835 0.763 0.868 

SDTTAF   0.891* 0.836 0.772 0.873 

 

 

Figure 4.3. Impact of data processing techniques on recall for class -"Has Agenda" 

In order to validate that our findings of adding features and using topic keywords actually 

enhanced the classifiers performance and was not just a mere coincidence, we performed paired t-

tests on the recall values for these four states – Alabama, Arizona, Minnesota, Pennsylvania. We 

omit Oklahoma because the best performing algorithm for this dataset was Naïve Bayes and not 

SVM like the other states. We verify that the difference between the recall values for these states 

before and after applying feature extraction is normally distributed by using the Shapiro-Wilk 

Normality test [54]. The paired t-tests executed using R software [55] confirms that the difference 

between the mean value of “Recall” for class “Has-Agenda” before and after feature extraction is  

statistically significant at 𝛼 = 0.05. The overall gain in recall was that of 5.187%. 

0.7688 0.7690

0.8293

0.8585

0.8910

0.7
0.72
0.74
0.76
0.78

0.8
0.82
0.84
0.86
0.88

0.9
0.92

DT DTF SDTF SDTTF SDTTAF

R
EC

A
LL

METHOD

Method vs. Recall (class - "Has Agenda")



26 
 

4.3 Limitation of the study 

In labeling the ground truth, each dataset was manually coded by one person. It is possible 

that different human coders may label the same tweet differently. However, we do not expect high 

inter-coder disagreement because each human coder was briefed about the coding guideline; the 

guideline is clearly presented in the web application used for ground truth labeling. Secondly, we 

did not consider images embedded in tweets, tweet’s spatial and temporal attributes, and number 

of times a tweet has been retweeted. Including these features in our hand-crafted twitter specific 

features may impact the classifier’s performance. 
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK 

Twitter has emerged as a new medium for politics. No prior work has studied this medium 

for state politics, perhaps due to the large volume of the data and lack of effective methods to 

process them. Official tweets from State Senate and House may contain information regarding 

policy topics under discussion which possess a high chance of being formulated into a bill. Hence, 

collecting and analyzing this type of data adds a new dimension to the study of state politics. 

We collected 122,965 tweets from various State Legislature handles of 50 states. Our 

finding from manual inspection of over 4500 tweets from 5 states shows a large variation on the 

percentage of agenda tweets (those with reference to Policy Agendas topics) between 25% 

(Minnesota) and 76% (Arizona). Since manual analysis is time consuming and does not allow for 

the study to cover 50 states, we proposed an approach to automate the classification of tweets. This 

approach uses our Twitter specific and policy agenda specific features that were shown to 

significantly enhance the classification performance. Among several supervised machine learning 

algorithms investigated in this study, SVM with linear kernel gave the best performance with 

89.1% recall of agenda tweets. 

Our future work includes (a) automatic detection of which policy agenda topic and subtopic 

is referred to in the tweet, (b) study of policy diffusion among states by analyzing spatio-temporal 

characteristics of these topics/subtopics of states in the US, and (c) hypothesis testing of whether 

or not states learn policy-making from each other.  
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