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ABSTRACT

Classical normal mode analysis (CNMA) has been widely acknowledged as one of the most

useful simulation tools for studying protein dynamics. CNMA uses a fine-grained all-atom

model of proteins and a complex empirical potential. In addition, CNMA requires a structure

that must be energetically minimized, which makes the method cumbersome to use, especially

for large proteins. In contrast, elastic network models (ENM) use coarse-grained protein mod-

els and adopt a simplified potential function. ENM is much faster than CNMA but is less

accurate. To take the advantages of both CNMA and ENM, the spring-based normal mode

analysis (sbNMA) was developed. It uses a fine-grained all-atom model for proteins and an

all-atom empirical force field to maintain accuracy while reducing the computing complexity

by eliminating the minimization step. In the previous work on sbNMA, only the CHARMM

force field was explored. In this work, we extend the analyses to AMBER, another widely-used

force field. We investigate the dependence of sbNMA’s performance on force fields. This work

provides also insightful understandings of the differences between CHARMM and AMBER.
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CHAPTER 1. OVERVIEW

1.1 Introduction

Most proteins have their own unique structures and functions. Many evidences have been

provided that show the structure of a protein is directly linked to its function (Henzler-Wildman

2007). Therefore, protein structure and dynamics studies are important for understanding how

a protein interacts with itself as well as with other proteins. A protein may have several distinct

conformations. The native state of a protein is where it has the global energy minimum.

In the last few decades, simulations for the molecular dynamics (MD) of biomolecules are

becoming increasingly popular due to the increasing computing power and many impressive

results they have delivered. As a result, more complex systems are being simulated. However,

many large proteins or protein complexes still require too much computational resources when

it comes to all-atom structure models and all-atom force fields. Normal mode analysis (NMA)

is another powerful tool for analyzing protein dynamics (Brook 1983, Go 1983, and Levitt

1983). NMA makes use of all-atom empirical energy potentials such as CHARMM, AMBER

and so on. It is powerful but it requires energy minimizations in which many iterations of

time-consuming computations are necessary.

Therefore, many efforts have been put into developing simplified models, regarding which a

major milestone was Tirion’s seminal work (Tirion 1996), which showed that a simple Hookean-

like potential was sufficient to reproduce the slow dynamics of proteins. Elastic network model

(ENM) further simplified Tirion’s model by employing also a simplified structure model. Thus,

ENM uses a coarse-grained structure model and a very simplified potential. In ENM, each

residue is commonly represented by one node, usually using the alpha carbon. Two alpha

carbons are considered interacting if their separation distance is less than a pre-set cutoff
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distance. A protein is viewed as a network consisting of residues and Hooke springs that inter-

connect them (Bahar 1997). One major benefit of this simplification is that ENM does not

require the energy minimization step. Consequently, one can obtain vibrational modes quickly

and with surprisingly high accuracy (Bahar 2005 and Chennubhotla 2005). Due to its simplicity

and fast calculation, it has been widely used (Bahar 1997 and Atilgan 2001).

The first ENM model is Gaussian network model (GNM). It gives fairly accurate predic-

tions of mean square fluctuations, and there is usually a strong correlation between X-ray

crystallographic B-factors and GNM predictions (Bahar 1997 and Kundu 2002). However, the

problem of GNM is that the directional information of the atomic motions gets lost because

GNM modes only have scalar amplitudes rather than vectors. That was one major reason why

anisotropic network model (ANM) was developed (Atilgan 2001). With ANM, low frequency

modes, which correspond to the motions of structural domains, can be obtained (Atilgan 2001).

Because both GNM and ANM have their pros and cons, attempts to unify them were made

(Zheng 2008 and Na 2014).

However, according to a recently published paper by Na and Song (2014), ANM still loose

significant accuracy when compared to NMA. They evaluated the accuracy of simplified models

by measuring correlations of mean squared fluctuations (MSF) between NMA and simplified

models such as ANM. ANM was found to correlate poorly with NMA. They then suggested

a few simplified models that are derived directly from NMA and correlate well with NMA.

Their models use a full-atom empirical force field CHARMM in order to preserve the accuracy.

One significant advantage of their model over NMA is that it does not require a computation-

intensive minimization step that NMA has to go through. In addition, Na and Song (2016)

presented method that can potentially be used to tune parameters in empirical potentials.

However, their works were done only with CHARMM force field. Here, I revisit their studies

with another widely used force field, AMBER, in order to evaluate their simplified models with

a different force field, as well as providing insights in the major differences between two force

fields.
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1.2 Background

1.2.1 NMA

The normal mode analysis (NMA) is a technique that provides an analytical description of a

system’s dynamics around its equilibrium state. The main reason why NMA is a major tool for

protein dynamics is that global modes at low frequencies are closely linked to functional motions

of proteins. A normal mode refers a motion by which all atoms of proteins are harmonically

fluctuating with the same frequency in vicinity of their equilibrium (Goldstein 2001). Normal

modes can be obtained from the eigenvalues and eigenvectors by the eigen-decomposition of

Hessian matrix that is the second partial derivative of the potential function. The normal mode

motions have small amplitudes, which makes them unable to cross energy barriers but rather

reside mostly in a potential well. The bottom of the well is referred to as the equilibrium state

where the net forces of the system becomes zero. The major disadvantage of NMA is that it

assumes a simple harmonic form of the potential, which causes NMA to be valid only in the

immediate vicinity to the equilibrium. Therefore, the more an input structure is displaced from

the equilibrium, the more uncertain the harmonic approximation holds.

Since NMA was applied to small molecules (Wilson Jr 1955, Shimanouchi 1970 and Itoh

1970), it has been extensively used in chemistry. NMA was introduced for the normal mode

analysis of protein independently by Levy (1979) Brooks (1983), Go (1983) and Levitt (1983).

The first application of NMA on biological system was on peptide by Levy (1979) followed by

small protein bovine pancreatic trypsin inhibitor which has 58 amino acid residues (Brooks

1983, Go 1983 and Levitt 1983). Larger proteins were studied later, such as crambin (Levitt

1985), human lysozyme (Levitt 1985 and Brooks 1985), ribonuclease (Levitt 1985), and myo-

globin (Seno 1990).

Theses studies used the same existing empirical potential functions that were used in molec-

ular dynamics simulations. The first three terms corresponds to the internal degree of freedoms:

bond stretching, bond angle bending, and torsional interactions, and the last nonbonded inter-
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actions for van der Waals and electrostatic interactions.

V =
1

2

∑
bonds

Kb(b− b0)2 +
1

2

∑
angles

Kθ(θ − θ0)2

+
1

2

∑
torsions

Kφ[1 + cos(nφ− δ)] +
∑

nonbonded

Kφ[
A

r12
− B

r6
+
q1q2
Dr

]

(1.1)

NMA calculates the global modes of molecules based on the equilibrium state. Therefore, mini-

mization is required for the starting structure. This minimization consumes significant amount

of time and computing resources. It is worth noting also that the minimized structure deviates

from the original X-ray crystalograpic structure (Ma 2005). The global modes of proteins are

not sensitive to local interactions or to specific force field energy functions. Therefore, we can

get the global scale flexibility of protein structures regarding motion directions and frequencies.

To be specific, we can have both the most favorable direction of motion, which requires the

least energy to move, and measure its stiffness (frequency).

Once the structure is minimized, a 3N × 3N Hessian matrix, where N is the number of

atoms, can be constructed by taking the second derivation of the potential energy with respect

to the generalized coordinates qi:

Hij =
∂2V

∂qi∂qj
(1.2)

NMA has been widely used to study proteins since 1980s (Go 1983, Brooks 1983 and Levitt

1983). In the studies of Go (1983) and Levitt (1983), only the torsional angle has been ac-

counted while fixing bond lengths and bond angles for small protein Bovine Pancreatic Trypsin

Inhibitor, which reduced the degree of freedom significantly. As a result, Hessian matrix size

was shrinked without affecting low frequency vibrational modes too much. In the same year,

Brooks and Karplus (Brooks 1983) investigate the same protein but with all degrees of free-

dom. For all atom force-field potentials, empirical force fields have been developed, such as

CHARMM (MacKerell 1998) and AMBER (Wang 2000).

1.2.2 ENM

The insensitivity of NMA global modes to fine-grained local interactions and the type of

force field being used results in the adoption of elastic network model (ENM) for protein
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dynamics. While NMA uses fine-grained all-atom models, ENM models proteins using coarse-

grained alpha carbon atoms. In addition, a simplified potential function is used. In other words,

ENM takes int account mostly of the topology of protein structure especially the connectivity of

atoms. This network representation allows us to implement efficient computational algorithms

that can carry for normal mode computations. As a result, we can scale up the system being

studied to very large biomolecular complexes. The evaluation of ENM is mainly done by

comparisons of RMS fluctuation predictions to X-ray crystallographic B-factors. ENM is mainly

divided into gaussian network model (GNM) (Bahar 1997) and anisotropic network model

(ANM) (Atilgan 2001)

1.2.3 GNM

GNM is inspired by Tirion’s study (1996) and built upon the molecular theory of elasticity

(Eichinger 1972 and Flory 1985) for polymer networks. In GNM, the fluctuation ∆rij in the

separation rij = |rj− ri| between two alpha atoms follows a Gaussian distribution around their

equilibrium coordinates (Bahar 1997 and Haliloglu 1997). The protein structure is represented

as a network of alpha-carbon nodes and elastic springs. The connectivity of alpha-carbon atoms

are described by the N ×N Kirchhoff matrix Γij :

Γij =


0 if i 6= j and rij > rc

−γij if i 6= j and rij ≤ rc∑
i 6=j Γij if i = j

(1.3)

where the cutoff distance rc for inter-residue interactions is usually set to be 7.3 Å between

ith and j th alpha-carbon atoms in the native structure. The diagonal elements Γii are the

negative sum of the off-diagonal elements of ith row or ith column because the Kirchhoff is

symmetric. The nodes are connected by a uniform spring of force constant γij , which reduce

the Kirchhoff to an adjacency matrix. The Kirchhoff matrix controls the fluctuations in alpha

carbon positions and their cross-correlations. The potential function for GNM, VGNM , is define
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(Bahar 1997):

VGNM =
1

2

∑
ij

γij(rij − r0ij)
2

=
1

2

∑
ij

γij(∆rij)
2

(1.4)

where r0ij is the position vectors of alpha-carbons in the X-ray Crystallographic structures at

equilibrium, and rij is instantaneous position vectors of the residues.

From the inverse of the Kirchhoff matrix, statistically expected value of fluctuations, <

∆r2i >, and correlations, < ∆ri · ∆rj >, can be obtained. The eigen-decomposition of the

Kirchhoff matrix Γ gives us different normal modes at equilibrium. In GNM, all fluctuations

are assumed to be isotropic, so we can only have the magnitudes of the fluctuations without

directional information of them.

1.2.4 ANM

To provide directional information GNM does not, Anisotropic Network Model (ANM) is

proposed (Doruker 2000, Atilgan 2001, Tama 2001, and Eyal 2006) and it has become one of

the most broadly used ENMs. The potential function for ANM, VANM is defined by (Hinsen

1998, Hinsen 1999, and Atilgan 2001):

VANM =
1

2

∑
ij

γij(∆rij)
2 (1.5)

Then, we can write a closed form expression for the second derivative of potential function for

interacting ith atom and j th atom by equation 1.5:

∂2V

∂xi∂yj
= −γij(xj − xi)(yj − yi)

r2ij
(1.6)

The dimension of Hessian matrix is 3N × 3N and it can be expressed as a matrix which have

N ×N super-elements of size 3× 3:

HANM =



H11 H11 ... H1N

H21 H22 ... H2N

...
...

. . .
...

HN1 HN2 ... HNN


(1.7)
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We have the super-element of Hessian matrix, HANM for interacting two atoms:

Hij =


∂2V
∂xi∂xj

∂2V
∂xi∂yj

∂2V
∂xi∂zj

∂2V
∂yi∂xj

∂2V
∂yi∂yj

∂2V
∂yi∂zj

∂2V
∂zi∂xj

∂2V
∂zi∂xj

∂2V
∂zi∂zj

 (1.8)

By equation 1.6 and 1.8, we can have closed form expression of off-diagonal super-element:

Hij = −γij
r2ij


xj − xi

yj − yi

zj − zi


[
xj − xi yj − yi zj − zi

]
(1.9)

where γij = 0 if rij > rc and the optimal cutoff distance rc is about 13-18 Å (Eyal 2006). γij

can be dependant on the identity pair of the two interaction atoms, but usually it is set to a

uniform constant value (Tirion 1996). Lastly, the diagonal super-element is defined by:

Hii = −
∑
i 6=j

Hij (1.10)

GNM and ANM have pros and cons respectively. The GNM has been recognized to have

better fluctuation predictions than those obtained by ANM (Bahar 2005 and Chennubhotla

2005). The reason of the better results may be explained by its potential function which

considers orientational deformations according to the change of distance vectors as well as

distance changes (see equation 1.4 and 1.5).

1.2.5 sbNMA and ssNMA

With ENM, the normal mode analysis can be performed quickly while trading off accuracy

because ENM does not distinguish bonded and non-bonded interactions. NMA is more accurate

than ENM but it requires energy minimization which could be the bottleneck for the analysis

of large macromolecules. Recently, the model spring-based NMA (sbNMA) was developed,

with the hope of performing normal mode analysis faster than NMA while keeping its accuracy

(Na 2014). The sbNMA also uses fine-grained all-atom model and all-atom force fields. In

order to derive the most optimized model, the original NMA connected to ENM with several

intermediate models. The sbNMA does not require an energy minimization step while keeping
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most of its accuracy. NMA Hessian matrix can be written as a summation of two terms (Na

2014):

H = Hspr +Hfrc (1.11)

Na and Song found that the contribution of the spring term Hspr is much greater than the

force term Hfrc. So they kept only the spring-based term and named their model spring-based

NMA (sbNMA). As expected, sbNMA showed superior cross-correlation in MSF with NMA

to other simplified models. The next intermediate model, ssNMA, is an even more simplified

model than sbNMA. It is almost identical except the fact that the ssNMA uses a much smaller

number of parameters (see table 2.1).

1.2.6 CHARMM

CHARMM (Chemistry at HARvard Macromolecular Mechanics) is one of widely used

force fields set especially for molecular dynamics of biomolecules (Brook 1983). It provides

a full atomic empirical potential energy functions (equation 1.12) along with analysis pack-

age. CHARMM potential function consists of five terms. They can be categorized into

three groups which are two-, three- and four-body interactions. Two-body interactions in-

clude bond stretching, van der Waals and electro static interactions, three-body interactions

include bond angle and Urey-Bradley interactions, and four-body interactions include dihe-

dral and improper dihedral interactions. For sbNMA and ssNMA, electrostatic interactions

are ignored. CHARMM provides several versions of optimized empirical potential function

parameter sets, and CHARMM22 is used in this study.

V =
∑
bonds

kb(b− b0)2 +
∑
angles

kθ(θ − θ0)2 +
∑

dihedrals

kφ(1 + cos(nφ− δ))

+
∑

impropers

kω(ω − ω0)
2 +

∑
Urey−Bradley

ku(u− u0)2

+
∑

nonbonded

[
ε

((
rminij

rij

)12

−
(
rminij

rij

)6
)

+
qiqj
εrij

] (1.12)
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1.2.7 AMBER

AMBER (Assisted Model Building with Energy Refinement) is another popular family of

force fields for molecular dynamics (Cornell 1995). It also comes along with molecular dynamics

software package as well as several versions of parameter sets. Unlike CHARMM, it does

not include Urey-Bradley, and the improper dihedral interactions are integrated in dihedral

interactions (equation 1.12 and 1.13). While CHARMM has parameters for van der Waals 1-4

interactions, AMBER has vdw-14-scale parameter which can reduce the exaggeration of effect

of van der Waals 1-4 interactions by dividing the van der Waals parameters by two.

V =
∑
bonds

kb(b− b0)2 +
∑
angles

kθ(θ − θ0)2 +
∑

torsionals

kφ(1 + cos(nφ− δ))

+
∑

nonbonded

[
Aij
r12ij
− Bij
r6ij

+
qiqj
εrij

] (1.13)
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CHAPTER 2. METHODS

2.1 The protein dataset

For this study, the same protein dataset as used in a previous study (Na 2016) is adopted.

The dataset includes 135 globular proteins which consists of 42 alpha-proteins, 37 beta-proteins,

and 56 alpha/beta proteins. The resolution threshold was 2.5 Å. The size of proteins range

from 61 amino acid residues to 149 residues, and none of them deviates for more than 6.0 Å

during energy minimization. The minimization of X-ray crystallographic structures were done

using the program ’minimize’ from Tinker package (Ponder 1987) with either CHARMM22

(MacKerell 1998) or AMBER94 (Wang 2000) force field. The dataset was obtained at

http://www.cs.iastate.edu/ gsong/CSB/NMAdb/135.html.

2.2 Mean square fluctuations (MSF) and normal mode frequency

The Hessian matrix for NMA is obtained through the program ’testhess’ from the Tinker

package with either the CHARMM22 or AMBER94 force field. The NMA Hessian matrix is

imported, and MSF and normal mode frequencies are calculated using a program written in

C# and Matlab (MathWorks). For sbNMA, parameters are imported from Tinker parameter

files for CHARMM22 and AMBER94, and Hessian matrix is constructed first followed by

calculations of MSF and normal mode frequencies using the same program as that is used for

NMA.

2.3 Single parameters of ssNMA

The ssNMA use a single parameter for each type of interactions, and they are summarized

in table 2.1. The parameters for CHARMM22 are taken from a previous study (Na 2014).
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Table 2.1 Parameters used in ssNMA for CHARMM and AMBER94. Unit description:

kcal/mol/Å
2

for Kb and KUB, kcal/mol/rad2 for Kθ, Kφ and Kimptor, kcal/mol for

ε and Å for all radii. The values in parenthesis are for 1-4 van der Waals interactions.

For AMBER94, the range and frequency of usage of the parameters of each interaction type

is considered. Then, the weighted averages of the parameters are computed. There are some

differences between CHARMM and AMBER (see 1.12 and 1.13). First, AMBER potential

function does not contain Urey-Bradley term. Second, CHARMM has a separate term for

improper, while AMBER does not, so only CHARMM has Kimp parameter. AMBER, however,

has separate torsional parameters for improper term Kimptor and nimptor. Lastly, AMBER sets

vdw-14-scale to 2.0 instead of having parameters for 1-4 van der Waals separately to avoid

exaggeration on it. Again, the parameters are not just averaged, but are weighted averages

over the interactions that exist in the 135 proteins in the dataset.

2.4 Converting eigenvalues to vibrational frequencies

From the geometrical information of protein structure and atom types, we can construct

Hessian matrix H (equation 1.2) and inertia matrix M of interacting ith and j th atoms with

respect to the generalized coordinates qi:

Mij =
∑
k

mk
∂rk
∂qi
· ∂rk
∂qj

(2.1)

where mk is the mass of kth atom and rk is its location vector. From the equation 1.2 and 2.1

we forms a generalized eigenvalue problem:

Hvi = λiMvi (2.2)
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where vi is the ith eigenmode and λi is the corresponding eigenvalue. Now we can get the

frequency ωi from λi = ω2
i . To match the value to experimental result, ωi is divided by 2πc

where c is the speed of light, which makes the frequency to have cm−1 unit.
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CHAPTER 3. RESULTS

3.1 Evaluation of simplified models by MSF correlations

Mean square fluctuation (MSF) correlations between NMA and simplified models were used

to evaluate the quality of simplified models (Na 2014). The Hessian matrix for NMA is obtained

from a Tinker program. Then, it is imported and its MSF is calculated using a program written

in C# and Matlab. The Hessian matrices for sbNMA and ssNMA are constructed by the

program above, followed by a calculation of their MSF. Finally, the correlations between NMA

and two simplified models for 135 proteins are performed. The results are summarized in table

3.1 together with those of CHARMM, which is adopted from a previous study (Na 2014).

NMA requires expensive minimization of protein structures while the simplified models

sbNMA and ssNMA do not. Therefore, most of analysis time were consumed by the original

NMA. The ssNMA is further simplified and uses a single uniform parameter for each potential

term because it does not affect low frequency motions which account for the motions of protein

domain. The parameters for ssNMA are summarized in table 2.1. Both MSF correlations of

CHARMM and AMBER with NMA are comparable regardless of simplified model types used.

Although both ssNMA and sbNMA have high correlation coefficients with two force fields,

there exist some differences. To investigate where the difference comes from, their distribution is

taken into account (figure 3.1). In AMBER, the overall shape and the peak position remain, but

the number of proteins that have low correlation in MSF, is higher than CHARMM. Therefore,

it was suspected that the low MSF correlation might be due to the larger RMSD deviation due

to the minimization of original structures, so a scatter plot is drawn to see the relationship of

MSF and RMSD (figure 3.2). However, the proteins, which shows low MSF with AMBER, do

not have high RMSD. Therefore, it is concluded that the relatively higher population of the low-
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Table 3.1 MSF correlations of ssNMA and sbNMA with NMA. The dataset of 135 proteins are

used to get MSF for ssNMA and sbNMA to correlate with NMA with CHARMM

or AMBER. The number in table is averaged from 135 proteins.

MSF-correlation proteins with AMBER is not due to different minimization between CHARMM

and AMBER, but probably due to the difference in the contribution of the force/torque terms

to NMA Hessian matrix (equation 1.11).

3.2 Universality of vibrational spectrum

The frequency of vibrational modes are converted to density g(ω) (Figure 3.3). The density

is properly normalized to see the universal spectrum (ben-Avraham 1993 and Tirion 1993). The

figure design is directly adopted from the previous study in order to compare the spectrum of

AMBER with that of CHARMM easily (Na 2016). The Hessian matrices for NMA, sbNMA and

ssNMA were obtained in section 3.1. Then the vibrational frequencies are calculated by eigen-

decomposition of Hessian matrices, followed by conversion from the eigenvalues to frequencies

(section 2.4).

The black line indicates the mean of g(ω)s on every 5 cm−1 bins. For each bin, the density

distribution is distinguished by different colors. In orange area, 50% densities which are close

to mean density are vertically distributed. Similarly, red and gray area contain 90% and 100%

densities at a frequency bin respectively. As a result, the university of density spectrum of

vibrational modes is appear to be as universal as it was with CHARMM (Na 2016). Other

than the different unique spectrum profile, the distribution at each bin is little bit wider than
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Figure 3.1 Distribution of MSF correlation for sbNMA with CHARMM and AMBER

CHARMM.

The faithful reproduction of spectrum profile throughout the whole frequency range with

both CHARMM and AMBER must imply a connection to certain physical characteristics as Na

and Song (2016) claimed. They also suggested the possibility that there might be dependency

of fluctuations on protein sizes, but due to limit of time, it is left for future work again.

3.3 Spectra of three protein groups by different protein folds

The secondary structure difference between α-helix and β-sheet causes difference in vi-

brational spectra (Levitt 1985). The protein dataset used in this study was categorized in

a previous study (Na 2016) according to the CATH protein structure classification (Sillitoe

2015). The dataset contains 42 alpha-proteins, 37 beta-proteins and 56 alpha/beta proteins.

From each one of three groups, the mean of vibrational frequency distributions g(ω) is obtained

(figure 3.4).
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Figure 3.2 Scatter plot of the RMSD versus the corresponding MSF correlation of sbNMA.

RMSD between minimized and original protein structures for 135 proteins are cal-

culated and then scatter plot is constructed versus MSF correlation. The number

of circles and crosses is 135 respectively and either a circle or cross indicates a

protein out of 135.
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Figure 3.3 Universality of the density of vibrational modes with AMBER. The bin size ∆ω is

-5 cm−1, the densities at each frequency bin are vertically distributed. The black

line connects mean densities at bins. The gray band includes all densities from the

135 proteins of the dataset. The orange and red bands include 50 % and 90 % of

densities which are closed to the mean density.
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Again, the graph design is adopted from a previous study (Na 2016) for a fair comparison.

The overall spectrum profiles for three protein groups are shown in figure 3.4(A) with a full

frequency range. The red, blue and gray lines indicate the mean of vibrational spectrum for

alpha, beta and alpha/beta proteins respectively. At a glance, the spectra are similar without

any significant difference. However, when it is zoomed in for three frequency ranges (figure

3.4(B)), which are known as amide vibration frequencies (Nevskaya 1976, Krimm 1986, Susi

1986, Goormaghtigh 1990, Fu 1994, Cai 1999, Cai 2004, Yang 2015), some differences become

visible. Na and Song (2016) observed certain orders of the spectrum peaks of alpha-proteins

and beta-proteins in those ranges. The order of amide III region is well matched to the result

from CHARMM. Although general locations of three amide groups fit well to the amide ranges

reported from experiment results, the orders of peaks in amide I and amide II regions are less

clear or appear to be reversed when using AMBER94. The fact that the order of peaks in

amide III region is strongly conserved in both CHARMM (Na 2016) and AMBER as well as in

experimental study (Cai 2004) may be used to tune parameters of empirical force fields.

3.4 Evaluation of sbNMA and ssNMA on vibrational spectra

The vibrational frequency spectra of two simplified models, sbNMA and ssNMA, are com-

pared to the spectrum of NMA to evaluate their quality (figure 3.5). Low frequency ranges are

important because they represent the motions of large domains of a protein. The first peak is

located at around 80 cm−1 frequency for NMA (figure 3.5(B)), which is well matched to the

previous experimental (Giraud 2003) and simulation result with CHARMM (Na 2016). The

second major peak appears at about 270 cm−1 for CHARMM while for AMBER it is at about

250 cm−1.

The spectrum of sbNMA was well overlapped on that of NMA but ssNMA shows large

discrepancy as frequency increases (figure 3.5(A)). This is a little surprising since ssNMA

showed better MSF correlations with NMA than sbNMA for both CHARMM and AMBER

(table 3.1). In the low frequency range, the motions are governed by the relatively large

conformational changes that involve many atoms, while the high frequency range is related to

the motions of small groups of atoms. Therefore the effects of minor errors are accumulated in
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Figure 3.4 Amide groups in vibrational spectra of NMA for different protein folds. (A) The

vibrational spectra for 42 alpha-proteins (red), 37 beta-proteins (blue), and 56

proteins with comparable alpha helices and beta sheets (gray). The three gray

bands indicate the frequency ranges for amide I, II and III peaks respectively. (B)

Same spectra from (A) but zoomed-in to see the spectra for amide regions in detail.
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Figure 3.5 Vibrational spectra on NMA and two simplified model, sbNMA and ssNMA
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the low frequency motions where many atoms affect each other, which results in more deviation

in ssNMA spectrum (figure 3.5 (B)). However, the peak positions at the high frequency range

(around 3000 cm−1) are just shifted to a higher range (figure 3.5 (A)) without the change of

spectrum profile, which is may be because the number of atoms participating in high frequency

motions is small at high frequency end is thus more conserved.

The large spectral discrepancy of ssNMA shows that vibrational spectrum should be better

for the evaluation of simplified models. To support that, first, the vibrational spectrums for

sbNMA and ssNMA are shown (figure 3.6). Both sbNMA and ssNMA show universal spec-

trum throughout the 135 protein dataset, which again support the universality of vibrational

spectrum of normal modes. Next, the order of peaks for the different secondary structure in

the amide I range is revisited for sbNMA and NMA with AMBER (figure 3.7). The sbNMA

faithfully reproduce the order of peaks in the amide III range as well as amide I and amide

II (figure 3.7 (A)). However, with ssNMA, the position of amide I-III frequency ranges are

distorted, and furthermore no orders could be found.

The ssNMA showed better MSF correlations with NMA (table 3.1) even if it uses a single

uniform parameters for each interactions such as bond, angle, dihedral, improper, Urey-Bradley

and van der Waals (table 2.1). Therefore, ssNMA appeared to be a better simplified model

than sbNMA since it is well correlated to NMA in terms of fluctuation, and does not require to

import force field parameters. However, when the vibrational spectrum is considered, ssNMA

was no as good as sbNMA. Therefore, inspecting the spectrum could be a powerful method

to verify the soundness of simplified models and for tuning the parameters of empirical force

fields.

3.5 Effect of input structure on vibrational spectrum

The sbNMA matched well with NMA in both MSF correlations (table 3.1) and vibrational

spectrum (figure 3.5). It also preserves the order of peak positions of different secondary

structure within the amide III range (figure 3.7), which is also confirmed by experiment result

(Cai 2004) as well as NMA (figure 3.4). However, all analysis of sbNMA above are done with

minimized structures for fair comparisons.
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Figure 3.6 Vibrational of the density of vibrational modes of (A) sbNMA and (B) ssNMA

with AMBER.
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Figure 3.7 Amide groups in vibrational spectra for sbNMA and ssNMA. Two sub-figures for

(A) sbNMA and (B) ssNMA are equivalent to the figure 3.4 (B) for NMA.
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One of the remarkable advantages of using simplified models including sbNMA is that they

do not need the cumbersome minimization step (Tirion 1996). Consequently, sbNMA can be

applied to any input structure as long as it is not deviated too much from one to another

(Na 2015). To investigate the effect of input structure on vibrational spectrum, the sbNMA is

applied to the original X-ray structures from protein data bank (http://www.rcsb.org/pdb/)

(figure 3.8). Similar to the result of CHARMM in a previous study (Na 2016), the first peak

was shifted to a lower frequency. The first peak was positioned around 30 cm−1 while it was

near 80 cm−1 when minimized structures were used. With CHARMM, its position was also

shifted to the left (Na 2016) but a lesser extent. The second peak is placed at about 250 cm−1

which is well matched with the peak location obtained from minimized structures.

The shift ot the first peak position is apparently due to minimization, which is directly

linked to the change of protein structure. However, considering the result that different protein

structures display the universality of vibrational spectrum for NMA (figure 3.3) as well as

simplified models (figure 3.6), it is hard to explain the shift only based on difference in structure.

Therefore, the minimization of protein structure may affect the spectra of van der Waals term

as Na and Song claimed (Na 2016) because the van der Waals term contributes mainly to the

first peak (Na 2016), and elucidating that could be an interesting future work.

3.6 Comparisons between CHARMM and AMBER

Since sbNMA can be directly applied to protein structures without minimization, we can

use it to investigate and compare the effects of different force fields on normal mode computa-

tions without introducing any bias that is due to energy minimization. Here, sbNMA is applied

with CHARMM and AMBER. First, the MSF computed from CHARMM correlates extremely

well with AMBER (figure 3.9). This indicates that two widely-used force fields, CHARMM

and AMBER, have a highly unified spring-based component. The main difference of the two

force fields is thus in the force-based term, i.e., in how forces/torques are balanced in a given

structure. To examine how differently/similarly force-balancing is done in CHARMM and AM-

BER, we compare the minimized structures obtained from minimization using CHARMM with

those using AMBER. To this end, we draw a scatter plot of the distances between minimized
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Figure 3.8 Vibrational spectra on different input structures. Normalized structures are ob-

tained by executing Tinker program with AMBER on 135 protein dataset. (A)

Vibrational spectra of NMA with minimized structure(black), sbNMA with mini-

mized structure (red), and sbNMA with X-ray structures where the minimization

are done. (B) Universality spectra of sbNMA with X-ray structures.
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Figure 3.9 Distribution of the MSF correlation between CHARMM and AMBER on original

protein structures. The average coefficient is 0.93.

structures and the original protein structures from Protein Data Bank (PDB) and the distances

between minimized structures by CHARMM and AMBER (figure 3.10 (A)). Most of the data

points fall under the diagonal line, indicating that the distances between minimized structures

are in generally less than the extent of structure deviation from the original PDB structures due

to minimization by either CHARMM or AMBER. This means the directions of minimization

by CHARMM and AMBER are similar. If we draw these three distances as sides of a triangle

(see figure 3.11), the angle between the two minimization directions can be computed using

the cosine law. Figure 3.10 (B) shows the distribution of this angle θ for the 135 proteins in

the dataset. It is seen that for most of the proteins, the angle is less than 60◦, with a peak

at about 47◦. Therefore, the minimization directions by CHARMM and AMBER are more

similar rather than they are different.
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Figure 3.10 Similarity of minimizations by CHARMM and AMBER. (A) Scatter plot of the

RMSDs between minimized and original PDB structures versus those between

minimized structures by CHARMM and AMBER. All CHARMM/AMBER pairs

on the same Y value are separated by X value. (B) Histogram of angles between

directions of minimizations. Triangles are constructed by three distances of a pair

with the same Y value in (A). The opposite angles of the distance between two

minimized structures by CHARMM and AMBER are calculated by the law of

cosines.
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Figure 3.11 RMSD triangle of PDB structure and minimized structures. A PDB structure is

shown as green cartoon protein. The red and blue arrow indicate the minimization

directions by CHARMM and AMBER respectively. Minimized structures are

shown as red (CHARMM) and blue (AMBER) cartoon protein. The lengths of

red and blue arrow are RMSDs from the PDB structure by minimizations using

CHARMM and AMBER. The length of black line is RMSD between the two

minimized structures. The opposite angle (θ) of the black line is calculated by

the cosine law.



29

Next, we plot the vibrational spectra by CHARMM and AMBER. Overall, the two spectra

are highly similar (figure 3.12 (A)). Compared with spectra produced from minimized struc-

tures, when applied to PDB structures, both force fields cause the first peak to shift to the left,

but to a different extent: CHARMM to 50 cm−1 and AMBER to 30 cm−1. The second peak of

AMBER is also shifted toward a lower frequency (250 cm−1) compared to CHARMM(around

310 cm−1). Taking all together, sbNMA is stable and has a consistent performance that is

independent of the force field being used, whether it is CHARMM or AMBER. CHARMM

seems to be more compatible with X-ray crystal structures since its first spectrum peak shifts

for a lesser extent than AMBER’s.

In summary, the two widely-used force fields, namely CHARMM and AMBER, seem to

be highly similar in their spring-based components, i.e., spring-related interactions. Their

main differences lie in their force-based components, or the forces and torques at any given

conformation, which dictates the direction of minimization. A comparison of their directions

fo minimization suggests that the force/torques given by the two force fields are similar to a

large extent, as their directions of minimization are quite similar.
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Figure 3.12 Vibrational spectra of sbNMA on original PDB structures with CHARMM and

AMBER.
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CHAPTER 4. CONCLUSIONS

In this study, two previous works (Na 2015 and Na 2016), where CHARMM was used, are

revisited with the AMBER force field in order to identify the differences between two well-

recognized empirical force fields, CHARMM and AMBER as well as to evaluate two simplified

models, sbNMA and ssNMA.

First, the MSF correlations of sbNMA and ssNMA with NMA are evaluated using AMBER

force field, and the result are compared with that of CHARMM (figure 3.1). The sbNMA,

which only takes the spring-based term for Hessian matrix (equation 1.11), was well correlated

with NMA with respect to MSF. The more simplified model ssNMA, which is almost identical

to sbNMA but uses a single uniform parameter for each interaction (table 2.1), shows slightly

better correlations with NMA. Two force fields, CHARMM and AMBER, provide comparable

results with sbNMA and ssNMA respectively as expected because their quality has been well

acknowledged.

Although two force fields go well together on MSF correlations, there still exist some dif-

ferences between two force fields. CHARMM provides a slightly better correlation coefficients

for both sbNMA and ssNMA (table 3.1). For the AMBER force field, more proteins have

low MSF correlation coefficient (figure 3.1). So we hypothesized that those proteins may have

higher RMSD by minimization than other proteins with high MSF correlation coefficient. How-

ever, there was no clear relationship between MSF correlation and RMSD (figure 3.2). As a

conclusion, the force/torque term of AMBER (equation 1.2), which is not considered in sb-

NMA, may have a more pronounced contribution to Hessian matrix than for the force term of

CHARMM.

Using AMBER, the universality of vibrational spectrum was reproduced as before when

CHARMM was used (Na 2016) but the universal spectrum profile is different from CHARMM’s
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(figure 3.3). The order of peaks for alpha proteins and beta proteins was conserved in amide III

range (figure 3.4 (B)), which agree with experimental result (Cai 2004) and simulation using

CHARMM (Na 2016). Unfortunately, the orders of peaks in amide I and amide II ranges were

not clear.

Although the ssNMA, the more simplified model than sbNMA, has slightly better result

on the MSF correlations with NMA, it showed some deviation on the vibrational spectra.

The universality of spectrum profile with ssNMA is also conserved (figure 3.6 (B)), but the

spectrum is distorted and deviate away from that of NMA as the frequency increases (figure

3.5). Furthermore, the order of peaks in amide III frequency ranges totally disappeared (figure

3.7). In contrast, the vibrational spectrum of sbNMA matches well with that of NMA, and

the order of the amide III peaks is conserved correctly. Considering the results of ssNMA and

sbNMA on the vibrational spectrum, it seems that the vibrational spectrum is a good tool to

validate the correctness of simplified models and also possibly to tune up the parameter values

of empirical force fields.

The most important advantage of simplified models such as GNM, ANM, ssNMA and sb-

NMA is that the minimization of original protein structure, which is a bottle neck of simulation

for large systems, is not necessary. Therefore, the effect of input structure is investigated with

sbNMA. When it comes to MSF correlation with NMA, sbNMA gives good coefficients, 0.86

with CHARMM and 0.81 with AMBER. Regarding vibrational spectrum comparison with

NMA, sbNMA does well also (figure 3.5 (A)). A major difference is the shift of the first peak

position (figure 3.8 (A)). Because the universality of vibrational spectrum is conserved through-

out the different protein structures in the 135 proteins dataset, the difference might be linked

to the effect of minimization on van der Waals interactions which mostly contributes to the

first peak (Na 2016). Taking all of these together, the original protein structures can be used

with confidence to some extent.

Furthermore, we showed that the sbNMA is stable with different force fields. CHARMM

and AMBER are used for normal mode analysis by sbNMA on original structures. The MSFs

computed from the two force fields highly correlate with one another, with a correlation coef-

ficient of 0.93 (figure 3.9). The vibrational spectra computed from the two force fields also are
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similar overall, with slightly shifted peak locations (figure 3.12). These results provide strong

evidence that sbNMA works consistently with different force fields.

In this study, AMBER force field was applied to two simplified models, sbNMA and ssNMA,

and the results were compared to a previous study that was done with CHARMM (Na 2016).

While ssNMA was comparable to sbNMA in MSF correlations, it is significantly worse than

sbNMA on reproducing the vibrational spectrum. Therefore, we suggest that spectrum analysis

should be performed in validating simplified models. Lastly, by revisiting sbNMA again with

AMBER, more supports are added to the soundness of sbNMA.



34

BIBLIOGRAPHY

Atilgan, A. R., Durell, S. R., Jernigan, R. L., Demirel, M. C., Keskin, O. and Bahar, I. (2001).

Anisotropy of Fluctuation Dynamics of Proteins with an Elastic Network Model. Biophys. J.,

80, 505–15.

Bahar, I., Atilgan, A., Erman, B. (1997). Direct evaluation of thermal fluctuations in proteins

using a single-parameter harmonic potential. Fold. Des., 2, 173–81.

Bahar, I. and Rader A. J. (2005). Coarse-grained normal mode analysis in structural biology.

Curr. Opin. Struct. Biol, 15, 586–92.

ben-Avraham, D. (1993). Vibrational normal-mode spectrum of globular proteins. Phys. Rev.

B, 47, 14559–60.

Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., Karplus,

M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics

calculations. J. Comp. Chem, 4, 187–217.

Brooks, B. and Karplus, M. (1983). Harmonic dynamics of proteins: normal modes and

fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl Acad. Sci. USA, 80, 6571–5.

Brooks, B. and Karplus, M. (1985). Normal modes for specific motions of macromolecules:

application to the hinge-bending mode of lysozyme. Proc. Natl Acad. Sci. USA, 82, 4995–9.

Cai, S. and Singh, B. R. (1999). Identification of beta-turn and random coil amide iii infrared

bands for secondary structure estimation of proteins. Biophys. Chem, 80, 7–20.



35

Cai, S. and Singh, B. R. (2004). A distinct utility of the amide iii infrared band for sec-

ondary structure estimation of aqueous protein solutions using partial least squares methods.

Biochemistry, 43, 2541–9.

Chennubhotla, C., Rader, A. J., Yang, L. W., Bahar, I. (2005). Elastic network models for

understanding biomolecular machinery: from enzymes to supramolecular assemblies. Phys.

Biol, 2, S173–80.

Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M.,

Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A. (1995). A Second Gener-

ation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J.

Am. Chem. Soc, 117, 5179–97.

Doruker, P., Atilgan A. R., Bahar, I. (2000). Dynamics of proteins predicted by molecular

dynamics simulations and analytical approaches: application to alpha-amylase inhibitor. Pro-

teins, 40, 512–24.

Eichinger B. E. (1975). Elasticity Theory. I. Distribution Functions for Perfect Phantom Net-

works. Macromolecules, 5, 496–505.

Eyal E., Yang L. W. and Bahar, I. (2006). Anisotropic network model: systematic evaluation

and a new web interface. Bioinformatics, 22, 2619–27.

Flory P. J. (1985). Molecular Theory of Rubber Elasticity. Polym. J., 17, 1–12.

Fu, F., DeOliveira, D. B., Trumble, W. R., Sarkar, H. K. and Singh, B. R. (1994). Secondary

structure estimation of proteins using the amide iii region of fourier transform infrared spec-

troscopy: Application to analyze calcium-bindinginduced structural changes in calsequestrin.

Appl. Spectrosc, 48, 1432–41.

Giraud, G., Karolin, J., and Wynne, K. (2003). Low-Frequency Modes of Peptides and Glob-

ular Proteins in Solution Observed by Ultrafast OHD-RIKES Spectroscopy. Biophys. J., 85,

1903–13.



36

Go, N., Noguti, T. and Nishikawa, T. (1983). Dynamics of a small globular protein in terms

of low-frequency vibrational modes. Proc. Natl Acad. Sci. USA, 80, 3696–700.

Goldstein, H., Poole, C., Safko, J. (2001). Classical Mechanics Addison Wesley. San Francisco.

Goormaghtigh, E., Cabiaux, V. and Ruysschaert, J. M. (1990). Secondary structure and

dosage of soluble and membrane proteins by attenuated total reflection fourier-transform

infrared spectroscopy on hydrated films. Eur. J. Biochem, 193, 409–20.

Haliloglu, T., Bahar, I., and Erman, B. (1997). Gaussian Dynamics of Folded Proteins. Phys.

Rev. Lett, 79, 3090.

Henzler-Wildman, K., Kern, D. (2007). Dynamic personalities of proteins. Nature, 450, 964–

72.

Hinsen, K. (1998). Analysis of Domain Motions by Approximate Normal Mode Calculations.

Proteins: Struct., Funct., Bioinf., 33, 417–29.

Hinsen, K., Thomas, A., Field, M. J. (1999). Analysis of domain motions in large proteins.

Proteins, 34, 369–82.

Itoh, K. and Shimanouchi, T. (1970). Vibrational frequencies and modes of -helix. Biopoly-

mers, 9, 383–399.

Krimm, S. and Bandekar, J. (1986). Vibrational spectroscopy and conformation of peptides,

polypeptides, and proteins. Adv. Protein Chem, 38, 181–364.

Name. (2002). Dynamics of Proteins in Crystals: Comparison of Experiment with Simple

Models. Biophys. J., 83, 723–732.

Levitt, M., Sander, C. and Stern, P. S. (1983). The normal modes of a protein: Native bovine

pancreatic trypsin inhibitor. Int. J.Quant. Chem, 10, 181–99.

Levitt, M., Sander, C. and Stern, P. S. (1985). Protein normal-mode dynamics: Trypsin

inhibitor, crambin, ribonuclease and lysozyme. J. Mol. Biol, 181, 423–47.



37

Levy, R. and Karplus, M. (1979). Vibrational approach to the dynamics of an -helix. Biopoly-

mers, 18, 2465–95.

Ma, J. (2005). Usefulness and limitations of normal mode analysis in modeling dynamics of

biomolecular complexes. Structure, 13, 373–80.

MacKerell, A. D., Bashford, D., Bellott, Dunbrack, R. L., Evanseck, J. D., Field, M. J.,

Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.

T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E., Roux,

B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera,

J., Yin, D., and Karplus, M. (1998). All-atom empirical potential for molecular modeling and

dynamics studies of proteins. J Phys Chem B, 102, 3586-616.

Na, H. and Song, G. (2014). Bridging between normal mode analysis and elastic network

models. Proteins: Struct., Funct., Bioinf., 82, 2157–68.

Na, H. and Song, G. (2014). A natural unification of GNM and ANM and the role of inter-

residue forces. Phys. Biol, 11, 036002.

Na, H and Song, G. (2015). The performance of fine-grained and coarse-grained elastic network

models and its dependence on various factors. Proteins, 83, 1273–83.

Na H, Song G, ben-Avraham D. (2016). Universality of Vibrational Spectra of Globular Pro-

teins. Phys. Biol, 13, 016008.

Nevskaya, N. A. and Chirgadze, Y. N. (1976). Infrared spectra and resonance interactions of

amide-i and ii vibrations of -helix. Biopolymers, 15, 637–48.

Ponder, J. W. and Richards, F. M. (1987). An efficient newton-like method for molecular

mechanics energy minimization of large molecules. J. Comput. Chem., 8, 1016–24.

Seno, Y. and Go, N. (1990). Deoxymyoglobin studied by the conformational normal mode

analysis: I. Dynamics of globin and the heme-globin interaction. J. Mol. Biol, 216, 95–109.



38

Shimanouchi, T. (1970). Stable conformations of polymer chains and model compound

molecules. Discuss. Faraday Soc, 49, 60–69.

Sillitoe, I., Lewis, T. E., Cu, A., Das, S., Ashford, P., Dawson, N. L., Furnham, N., Laskowski,

R. A., Lee, D., Lees, J. G., Lehtinen, S., Studer, R. A., Thornton, J., and Orengo, C. A. (2015).

CATH: comprehensive structural and functional annotations for genome sequences. Nucleic

Acids Res, 43, D376–81.

Susi, H. and Byler, D. M. (1986). Resolution-enhanced fourier transform infrared spectroscopy

of enzymes. Methods Enzymol, 130, 290–311.

Tama, F., Sanejouand Y. H. (2001).Conformational change of proteins arising from normal

mode calculations. Protein. Eng, 14, 1–6.

Tirion, M. M. and ben-Avraham, D. (1993). Normal mode analysis of g-actin. J. Mol. Biol,

230, 186–95.

Tirion M. M. (1996). Large amplitude elastic motions in proteins from a single-parameter.

Phys. Rev. Lett., 77, 1905–8.

Wang, J., Cieplak, P., and Kollman, P. A. (2000). How well does a restrained electrostatic po-

tential (RESP) model perform in calculating conformational energies of organic and biological

molecules?. J. Comput. Chem., 21, 1049–74.

Yang, H., Yang, S., Kong, J., Dong, A. and Yu, S. (2015). Obtaining information about

protein secondary structures in aqueous solution using Fourier transform IR spectroscopy.

Nat. Protoc., 10, 382–96.

Zheng, W. (2008). A unification of the elastic network model and the Gaussian network model

for optimal description of protein conformational motions and fluctuations. Biophys. J, 94,

3853–7.


	2016
	Investigating the effects of different force fields on spring-based normal mode analysis
	Jaekyun Song
	Recommended Citation


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. OVERVIEW
	1.1 Introduction
	1.2 Background
	1.2.1 NMA
	1.2.2 ENM
	1.2.3 GNM
	1.2.4 ANM
	1.2.5 sbNMA and ssNMA
	1.2.6 CHARMM
	1.2.7 AMBER


	2. METHODS
	2.1 The protein dataset
	2.2 Mean square fluctuations (MSF) and normal mode frequency
	2.3 Single parameters of ssNMA
	2.4 Converting eigenvalues to vibrational frequencies

	3. RESULTS
	3.1 Evaluation of simplified models by MSF correlations
	3.2 Universality of vibrational spectrum
	3.3 Spectra of three protein groups by different protein folds
	3.4 Evaluation of sbNMA and ssNMA on vibrational spectra
	3.5 Effect of input structure on vibrational spectrum
	3.6 Comparisons between CHARMM and AMBER

	4. CONCLUSIONS
	BIBLIOGRAPHY

