
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2017

Parity-based Data Outsourcing: Extension,
Implementation, and Evaluation
Zhenbi Hu
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Hu, Zhenbi, "Parity-based Data Outsourcing: Extension, Implementation, and Evaluation" (2017). Graduate Theses and Dissertations.
15325.
https://lib.dr.iastate.edu/etd/15325

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15325&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15325&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F15325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/15325?utm_source=lib.dr.iastate.edu%2Fetd%2F15325&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Parity-based data outsourcing: Extension, implementation, and evaluation

by

Zhenbi Hu

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Ying Cai, Major Professor

Soma Chaudhuri
Johnny S Wong

The student author and the program of study committee are solely responsible for the
content of this thesis. The Graduate College will ensure this thesis is globally accessible

and will not permit alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2017

Copyright c© Zhenbi Hu, 2017. All rights reserved.

ii

DEDICATION

I would like to thank my advisor Dr. Cai, who helped me in the research work, and also

my friends who gave me suggestions in completing the experiments. Last but not the least, I

would like to thank Department of Computer Science and Office of Information Technology at

Iowa State University for financial assistance during my study there.

iii

TABLE OF CONTENTS

LIST OF FIGURES . iv

ACKNOWLEDGEMENTS . v

ABSTRACT . vi

CHAPTER 1. OVERVIEW . 1

CHAPTER 2. RELATED WORK . 4

2.1 Query Authentication . 4

2.2 Parity Coding . 6

CHAPTER 3. PARITY-BASED DATA OUTSOURCING 9

3.1 One-dimensional Data . 10

3.2 Multi-dimensional Data . 14

CHAPTER 4. IMPLEMENTATION . 18

4.1 PDO for One-dimensional Data . 18

4.2 PDO for Multi-dimensional Data . 21

4.3 Implementation of Related Work . 26

CHAPTER 5. PERFORMANCE STUDY . 31

5.1 Analysis . 31

5.2 Experiments . 32

5.3 Extension . 35

CHAPTER 6. CONCLUSION . 38

BIBLIOGRAPHY . 39

iv

LIST OF FIGURES

Figure 2.1 Merkle-Hash tree . 5

Figure 2.2 Signature chain . 5

Figure 3.1 System Architecture . 9

Figure 3.2 Data Preparation, Retrieval, and Authentication and Correction 12

Figure 3.3 Index Example . 14

Figure 3.4 Grid File Partition . 17

Figure 4.1 One Dimensional Parity Coding Class Design 18

Figure 4.2 Multi-dimensional Data Outsourcing Class Design 22

Figure 4.3 Performance Comparison Class Design 28

Figure 5.1 Impact of Data Size . 33

Figure 5.2 Impact of Query Size . 34

Figure 5.3 Impact of Server Number . 35

Figure 5.4 Preparation Cost . 36

Figure 5.5 Authentication Cost . 37

Figure 5.6 Correction Cost . 37

v

ACKNOWLEDGEMENTS

I really appreciate that my advisor Dr. Cai, who was very patient and kind in giving me

guidance for my thesis. I also want to thank Dr. Chaudhuri and Dr. Wong for being my

committee members and their insightful comments and improvement suggestions. Finally, I

would like to thank my family members. They have been supporting me all the way.

vi

ABSTRACT

Our research has developed a Parity-based Data Outsourcing (PDO) model. This model

outsources a set of raw data by associating it with a set of parity data and then distributing

both sets of data among a number of cloud servers that are managed independently by differ-

ent service providers. Users query the servers for the data of their interest and are allowed to

perform both authentication and correction. The former refers to the capability of verifying

if the query result they receive is correct (i.e., all data items that satisfy the query condition

are received, and every data item received is original from the data owner), whereas the latter,

the capability of correcting the corrupted data, if any. Existing techniques all rely on com-

plex cryptographic techniques and require the cloud server to build verification objects. In

particular, they support only query authentication, but not error correction. In contrast, our

approach enables users to perform both query authentication and error correction, and does so

without having to install any additional software on a cloud server, which makes it possible to

take advantage of the many cloud data management services available on the market today.

This thesis makes the following contributions. 1) We extend the PDO model, which was o-

riginally designed for one-dimensional data, to handle multi-dimensional data. 2) We implement

the PDO model, including parity coding, data encoding, data retrieval, query authentication

and correction. 3) We evaluate the performance of the PDO model. We compare it with

Merkle Hash Tree (MH-tree) and Signature Chain, two existing techniques that support query

authentication, in terms of storage, communication, and computation overhead.

1

CHAPTER 1. OVERVIEW

The last decade has seen the rising of cloud computing and storage services. With a small

cost or even free, data owners can simply upload their databases to a cloud and let it manage the

data and process queries on their behalf. By releasing data owners from day-to-day management

of software and hardware, cloud services have the potential to save them significant operation

cost. Data owners, however, are facing with difficulty in fully trusting cloud services. After all,

the data is in the hand of a third party that is beyond their own administrative domain. A

cloud may be compromised by outside hackers or corrupted by malicious insiders, thus sending

users wrong answers, unintentionally or intentionally.

The above problem has led to a large body of research (e.g., [9], [21], [7], [8], [32], [33], [31])

on query authentication, i.e., enabling users to verify if the query results they receive are indeed

correct. In the proposed techniques, data owners build an authentication data structure such

as Merkle Hash tree or signature chain on a database and upload both to a server. When a

user queries the database, the server returns not only the query result, but also a hard-to-forge

verification object as a proof that the result includes all data items in the original database

that satisfy the query condition. Existing research, however, has two major limitations:

• It considers only query authentication, but not query correction. Users can only detect if

a query result is wrong. There is no mechanism for users receiving a wrong query result

to find the correct answer.

• Existing solutions all rely on complex cryptographic techniques and therefore incur high

cost in storage, communication and computation. The authentication data structure

built for a set of data items can be many times larger than the data itself. A data item

can be just a 32-bit integer, yet its one-way hash value needs at least 128 bits to ensure

2

minimum conflict. The number of bits for a digital signature is even more, usually at least

512. This cost is excessive for small records. The authentication data associated with

a query result can also greatly increase the communication cost. Furthermore, there is

hefty computation such as decryption incurred during the authentication process. These

undesired effects are inherent from cryptographic techniques and especially concerned to

the users of battery-powered mobile devices.

• Existing approaches require the server to run the code that builds and returns verification

objects. Such code is not a standard component of a typical database management system

(DBMS) and can be a security concern to a service provider when installed by a data

owner. Companies such as Heroku Postgres [1] and Openshift [2] provide an instance of

DBMS to their customers, who upload data there and use standard SQL commands for

data manipulation. In such Database as a Service (DaaS) business model, the customers

can upload only data, but not install their own code for query authentication.

To address the above problems, we propose a novel Parity-based Data Outsourcing (P-

DO) [29]. This scheme associates the raw data with parity data and stores them on a set of

servers that are from different service providers. Specifically, the data owner encodes a set of

raw data D into a number of blocks. Each block has k+p data, (x1, x2, · · · , xk, yk+1, · · · , yk+p),

where xi (1 ≤ i ≤ k) is a raw data in D and yk+j (1 ≤ j ≤ p) is a parity data generated for

the k raw data. The p parity data are generated to enable error detection and correction.

That is, all k + p data in the block can be recovered as long as no more than e of them are

missing or wrong, where e is determined by p. The data in the blocks are then outsourced

to a set of n = k + p servers, where the ith data in each block is stored on the ith server.

To retrieve the data of interest, a user queries all servers. By allowing the user to receive at

least k + p − e correct data in each of the blocks that contain some data satisfying the query

condition, PDO makes possible for users to perform query authentication and correction, and

achieves so without using encryption or installing any additional software on a server.

Built on top of our work [29], this thesis makes the following contributions:

• We extend the PDO model, which was originally designed for one-dimensional data, to

3

handle multi-dimensional data.

• We implement the PDO model, including parity coding, data encoding, data retrieval,

query authentication and correction.

• We evaluate the performance of the PDO model. We compare it with Merkle Hash Tree

(MH-tree) and Signature Chain, two existing techniques that support query authentica-

tion, in terms of storage, communication, and computation overhead.

The rest of this thesis is organized as follows. We discuss more related work in Chapter 2.

In Chapter 3, we introduce our PDO model. We first discuss how to support one-dimensional

data, and then extend for multi-dimensional data. We present our implementation in Chapter

4, and evaluation its performance in Chapter 5. The concluding remarks are given in Chapter

6.

4

CHAPTER 2. RELATED WORK

2.1 Query Authentication

There are three parties involved in data outsourcing, data owner, cloud server, and data

users. The data owner has a database and asks the cloud server to manage it. Users send their

queries to the server for the data of their interest. The server is considered a third-party and

therefore users want a proof that the query results they receive are correct. A query result is

correct if it is sound (i.e., every data item included is from the original database) and complete

(i.e., all data items in the original database that satisfy the query condition are included) [9; 21].

Simple solutions such as signing each data item with a digital signature [15] can prove the

soundness, but not the completeness. The work by Devanbu et al. [9; 10] was among the first

to study this problem. The proposed technique supports the authentication of range query

over a list of data items. The data owner first sorts the data items and computes a one-way

hash value for each data item. A Merkle Hash tree (MH-tree) [18] is then built on top of these

hash values. Figure 2.1 shows 4 data items, r1 ≤ r2 ≤ r3 ≤ r4, and a corresponding MH-tree,

where H(·) denotes the hash function and “|” the concatenation of two nodes. The root node is

signed with the data owner’s private key and made known to all users. In response to a query,

the server returns the result and a Verification Object (VO), which contains a set of data items

for the user to reconstruct the root digest. For example, if the query result is {r3}, then the

corresponding VO includes N1, r2, and r4, and the signed root digest. The user reconstructs

the root digest with these data and compares it with the root digest published by the data

owner. If the two digests match, the user can be assured that r2, r3, and r4 are not tempered

and their order is continuous in the original list.

5

))|(()(
4,32,1

NNHSigrootSig 

1
r

3
r

2
r

4
r

)(
11

rHN )(
22

rHN )(
33

rHN )(
44

rHN 

)|(
212,1

NNHN )|(
434,3

NNHN 

Figure 2.1: Merkle-Hash tree

In [21], Pang et al. proposed an alternative solution. Their idea is to sort the data items

and then create a signature for each data item. Specifically, the signature for a record ri is

computed based on the digest of itself and the digests of its two immediate left and right

neighbors. These signatures together form a signature chain, as illustrated in Figure 2.2. A

query result R = {ri ≤ ri+1 ≤ ... ≤ rj} is accompanied with an VO that contains the signatures

of each data item in R, plus the signatures of ri−1 and rj+1, which are ri’s immediate predecessor

and rj ’s immediate successor, respectively. The chain formed by these signatures serves as the

proof that for any two consecutive data items rk and rk+1 in R, no data item rx exists in

the original database such that rk < rx < rk+1. The completeness is verified by checking the

signatures of boundary records ri−1 and rj+1.

 1i
r

1i
r

i
r

2i
r 

… ...… ... … ...

)))(|)(|)(((
211 


iiii
rHrHrHHSigS

n
S

)))(|)(|)(((
11 


iiii
rHrHrHHSigS

1
S

Figure 2.2: Signature chain

These two Authentication Data Structures (ADS) have their own advantages and disadvan-

tages. With the MH-tree, only the root node needs to be signed, so the computation cost is low.

However, V O(q) needs to contain a set of tree nodes for one to reconstruct the root digest. So

6

the size of V O(q) can be large, resulting in higher communication cost. Moreover, it is difficult

to handle dynamic data. When a data item is changed, a significant part of the tree may

need to be rebuilt. On the other hand, using signature chain incurs more computation cost, to

both the data owner and query issuers, but has a smaller V O(q) and thus less communication

overhead. It is also more flexible to update data. When a data item is changed, only a few

signatures need to be updated accordingly. Moreover, a user can perform boundary checking

without having to know the two records that are immediate left and right to the sorted data

in R(q). This feature is useful in access control, since users may not be allowed to have access

to all data items in the list.

The two ADS have since inspired a large body of research on query authentication. The

work [7] considers multi-dimensional queries. The proposed technique maps the whole region

into a multi-dimension data structure (KD-tree or R-tree). The partitions and the points

in each partition space are ordered and then chained with their signatures. To process a

query, the server returns all points inside the partitions that overlap with the query window

and their corresponding signature chains. The work [32; 33] combines R*-tree and MH-tree

to deal with spatial data. Other more complex queries such as KNN, skyline and function

queries were studied in [8; 34; 30; 31]. The work [16; 22; 28; 27] considers the problem of data

dynamics, where the outsourced data may keep changing. Authenticating aggregate queries

such as sum and average was studied in [3]. While most solutions are software-based, where

the authentication relies solely on the ADS created by the data owner, the work [4] explored

tamper-proof, trusted hardware for authentication. The proposed solution can support a variety

of database operations, but require hardware supports.

Regardless their differences, existing techniques support only query authentication, but not

correction. Moreover, they rely on complex cryptographic techniques and thus incur high costs

in storage, communication and computation.

2.2 Parity Coding

Parity coding has played a central role in the theoretical computer science [25]. The basic

idea is to add some extra data to a message, which receivers can use to check consistency of

7

the message when received, and to recover data determined to be corrupted. Our research is

inspired by error correction codes. These schemes generate parity data and add to a message

such that it can be recovered by a receiver even when a number of errors (up to the capability of

the code being used) were introduced. Techniques such as Hamming code [14] work on bit-level

error correction. When a bit is known to be wrong, then the correct one must be its opposite.

Our work is mostly related to the family of block codes (e.g., [24], [19]) that can correct a data

(e.g., a 32-bit integer) whose value is in a large field. Block codes are similar in encoding a

stream of raw data block by block, but different in the way of generating parity data. We will

use the well-known Reed-Solomon codes [24] to explain how block codes work in general.

Reed-Solomon coding takes the first k raw data in the stream and then generates p parity

data, where k and p are two pre-fixed values. The k raw data and p parity data together form

the first codeword. It then takes the next k raw data from the stream and generates p parity

data accordingly to form the second codeword, and so on so forth until all raw data in the

stream are encoded. Let XY be a codeword, where X = (x1, x2, ..., xk) is a sequence of k raw

data and Y = (yk+1, yk+2, ..., yk+p) a sequence of p parity data generated for X. Each parity

data yk+j (1 ≤ j ≤ p) is generated with a univariate polynomial function yk+j =
∑k

i=1 xia
i−1
j ,

where aj is a unique coefficient used to generate the ith parity data in each codeword. The way

of generating parity data creates an equation system, where x1, x2, ..., and xk are variables:



y1 = x1

y2 = x2

...

yk = xk

yk+1 = x1 + a1 × x2 + a21 × x3 + ... + an−11 × xk

yk+2 = x1 + a2 × x2 + a22 × x3 + ... + an−12 × xk

...

yk+p = x1 + ap × x2 + a2p × x3 + ... + an−1k × xk

(2.1)

8

The above equations form an overdetermined and independent system1 and thus can be

used for error detection and correction. Let (y1, y2, ..., yk+p) be a codeword a user receives.

The user builds the above equations and re-computes the parity data (yk+1, yk+2, ..., yk+p),

with the received (y1, y2, ..., yk). If any computed yk+i does not match the received yk+i

(1 ≤ i ≤ p), then at least one number in the codeword must be wrong. To correct the error(s),

the user computes the most popular copy of X = (x1, x2, ..., xk). Among the k + p equations,

any subset of k equations can be solved to compute a copy of X. Different subsets may result

in different copies of X, but as long as the number of errors in the block is not greater than bp2c,

the most popular copy must be the correct one. The simplest way to find the most popular

copy is to enumerate all subsets of k equations and compute a copy of X for each subset. This

brute-force approach is costly as totally there are
(

k
k+p

)
subsets. Many efficient algorithms

have been developed, such as Peterson decoders [12; 13], Berlekamp–Massey [5; 17], extended

Euclidean algorithm [26]. Some of them (e.g., Syndrome decoding [23], maximum-likelihood

decoding [6], minimum distance decoding [11]) can be used for block codes in general.

Existing parity coding techniques were designed mainly for purposes such as reliable data

transmission over unreliable communication channels and reliable data storage on unreliable

medias. They cannot be applied directly for query authentication and correction, which we

will discuss shortly.

1A system is overdetermined and independent if no equation in any set of k equations can be derived al-
gebraically from the other k − 1 equations in the set. A set of k equations is independent if the rank of their
coefficients matrix is k [20].

9

CHAPTER 3. PARITY-BASED DATA OUTSOURCING

Our research has developed a novel Parity-based Data Outsourcing (PDO) model [29] which

enables query authentication and correction without using cryptographic techniques. We use

Figure 3.1 illustrates our idea. To outsource a database D, a data owner first selects a set of

k+p servers {S1, S2, ..., Sk+p}, each from a different cloud service provider, and decides a value

of e, the maximum number of malicious servers that the system needs to tolerate. A server is

said to be malicious if it does not return correct data back in response to a query (for whatever

reasons, e.g., out of service, compromised by hackers, or network problems). We will assume

the worst case, malicious servers may collude to forge data. The n servers are divided into two

groups. The first k servers are used as data servers and the remaining p = n − k servers as

parity servers, where p has to do with e. The data owner then partitions D into k subsets,

{D1, D2, ..., Dk}, and generates p sets of parity data, {P1, P2, ..., Pp}. Di is uploaded to data

server Si (1 ≤ i ≤ k) and Pj to parity server Sk+j (1 ≤ j ≤ p).

D

Server information and
parity coding parameters

Query

Sub-result

Data Owner Data User

Parity ServersData Servers

Sk+1

... ...

Sk+pSkS2S1

D1 D2 Dk Pk+1 Pk+p

Figure 3.1: System Architecture

To retrieve the data of interest, a user sends a query to all servers. If all servers function

properly, the user can simply filter out the query result R from the data returned by the k data

10

servers. However, some servers, up to e, may be malicious, returning no data or wrong data.

So the challenge is how to enable the user to compute the correct R as long as a minimum of

n− e servers return correct data back. Our research is to address this challenge. To make this

thesis self-contained, we first describe our solution for 1-dimensional data, which we published

in [29], and then discuss how to extend it for multidimensional data.

3.1 One-dimensional Data

At the core of our solution is a novel parity coding technique, which we refer to as Query-

oriented Parity Coding (QPC). Let XY be a codeword, where X = (x1, x2, · · · , xk) is a sequence

of k raw data and Y = (yk+1, yk+2, ..., yk+p) a sequence of p parity data generated for X. QPC

generates each parity data with a unique coefficient vector that consists of k numbers. Let

vk+i = [a[i,1], a[i,2], ..., a[i,k]] be the coefficient vector for yk+i (1 ≤ i ≤ p), we have yk+i =

a[i,1]x1 + a[i,2]x2 + ... + a[i,k]xk. We create the following equation system, where x1, x2, ..., and

xk are variables:



y1 = x1

y2 = x2

...

yk = xk

yk+1 = a[1,1] × x1 + a[1,2] × x2 + ... + a[1,k] × xk

yk+2 = a[2,1] × x1 + a[2,2] × x2 + ... + a[2,k] × xk

...

yk+p = a[p,1] × x1 + a[p,2] × x2 + ... + a[p,k] × xk

(3.1)

Like Reed-Solomon codes, we can make the above equations form an overdetermined and

independent system with appropriate coefficient vectors. However, QPC generates a parity

data with a k-variate 1-degree polynomial, yk+i = a[i,1]x1 + a[i,2]x2 + ... + a[i,k]xk (1 ≤ i ≤ p).

If we select the coefficient vector [a[i,1], a[i,2], ..., a[i,k]] such that every coefficient in the vector

is in between 0 and 1 and
∑k

j=1 a[i,j] = 1, we can guarantee that the generated parity data

11

is always not less than the smallest number in X and not greater than the largest number in

X. In other words, if all numbers in X are in between a query range (l, u), then the generated

parity data must also be in the range. As such, if we store each of the k + p data in XY on a

different server, a user who issues a range query q(l, u) to all servers can expect to receive XY

together; even if some servers (up to bp2c) are malicious, the user can still recover the original

XY , thus achieving the purpose of authentication and correction.

We now discuss how to apply QPC in PDO for range query over D that is a set of N

numbers. Recall in PDO, a data owner first selects a set of n servers {S1, S2, ..., Sn}. To

tolerate at most e malicious servers at any one time, the first k = n− 2e servers will be used as

data servers and the remaining p = 2e servers as parity servers. Each parity server Sk+i is also

associated with a coefficient vector [a[i,1], a[i,2], ..., a[i,k]] (1 ≤ i ≤ p) that meets the requirements

of QPC.

Data Preparation. The data owner first sorts the numbers in D in ascending order. If

N mod k 6= 0 , it appends a number of special token MAX (i.e., the largest number) to the sort-

ed list to make its size divisible by k. D is then organized into sequences, each having k numbers.

The first k numbers form the first sequence, the second k numbers form the second sequence,

..., and finally, the last k numbers form the last sequence. The data owner then applies QPC

to encode each sequence (x1, x2, · · · , xk) into a codeword (x1, x2, · · · , xk, yk+1, yk+2, · · · , yk+p),

where yk+j =
∑k

j=1 a[i,j]xj . After encoding all sequences into codewords, the data owner creates

k+p empty lists D1, D2, ..., Dk, P1, P2, ..., and Pp, and stores the codewords in the lists one by

one, starting from the first codeword. For each codeword (x1, x2, · · · , xk, yk+1, yk+2, · · · , yk+p),

store xi in Di (1 ≤ i ≤ k) and yk+j in Pj (1 ≤ j ≤ p). After storing all codewords, the data

owner inserts special token MIN (i.e., the smallest number) to the head and appends MAX to

the end to each of the k + p lists. A list may end with at most 2 MAX tokens (which happens

when N mod k 6= 0). Finally, the data owner uploads Di to data server Si (1 ≤ i ≤ k) and

Pj to parity server Sk+j (1 ≤ j ≤ p).

The above procedure is illustrated in Figure 3.2, where sorted D = (1.2, 1.5, 2.0, 2.3, 2.9,

2.9, 3.6, 4.0, 4.2, 4.5, 4.8, 5.1, 5.7, 8.0). Five servers are used and one allowed to be malicious.

So the first three servers are used as data servers and the remaining two as parity servers. The

12

coefficient vectors for the two parity servers are [0.1, 0.2, 0.7] and [0.4, 0.2, 0.4], respectively.

The figure shows D is encoded into five codewords, each having two parity data, and the data

list stored on each server. Note that the data lists stored on the servers remain sorted.

D (sorted): 1.2, 1.5, 2.0, 2.3, 2.9, 2.9, 3.6, 4.0, 4.2, 4.5, 4.8, 5.1, 5.5, 5.7, 8.0

1. Data owner partitions D into sequences, and
 encodes each sequence into a codeword

codeword 1 1.2, 1.5, 2.0

raw data
x1, x2, x3

parity data
y4, y5

1.82, 1.58

2.3, 2.9, 2.9, 2.84, 2.66

3.6, 4.0, 4.2, 4.24, 4.00

4.5, 4.8, 5.1, 4.98, 4.80

5.5, 5.7, 8.0, 7.29, 6.54

1.2, 1.5, 2.0 1.82, 1.58

2.3, 2.9, 2.9, 2.84, 2.66

3.6, 4.0, 4.2, 4.24, 4.00

4.5, 4.8, 5.1, 4.98, 4.80

5.5, 5.7, 8.0, 7.29, 6.54

 MIN MIN MIN MIN MIN

 MAX MAX MAX MAX MAX

2. Data owner creates data
 lists and uploads to servers

S1
D1

S2
D2

S3
D3

S4
P1

S5
P2

Y4 = 0.1 * x1 + 0.2 * x2 + 0.7 * x3
Y5 = 0.4 * x1 + 0.2 * x2 + 0.4 * x3

 1.5, 2.0 1.82, 1.58

2.3, 2.9, 2.9, 2.84, 2.66

3.6, 4.0, 4.2, 4.24, 4.00

4.5, 4.8, 5.1, 4.98, 4.80

5.5

S1 S2 S3 S4 S5

3. Data users retrieve and organize
 data into an authentication matrix

Case 1: all data in this
codeword satisfy q(2.5, 4.6)

Case 2: not all data in this
codeword satisfy q(2.5, 4.6)

codeword 2

codeword 3

codeword 4

codeword 5

authentication matrix

Figure 3.2: Data Preparation, Retrieval, and Authentication and Correction

Data Retrieval. To retrieve the data in between l and u, a user connects to all k + p

servers and ask each of them to return 1) the sublist of the data in between l and u, 2) the

sublist’s immediate left neighbor l′ and right neighbor u′, and 3) the position of l′ in the list.

Note all these requests can be done with standard SQL, without any special software to install

and run on the server side.

Authentication and Correction. The user organizes the received data lists into an

authentication matrix. The matrix has n columns. The list from server Si is placed in column

i, starting from either the first row or the second row, depending on the position of l′. Figure 3.2

shows the matrix created for the data lists returned for q(2.5, 4.6). If all servers return correct

13

data back, the matrix shall have these features:

• All columns are occupied. The data in each column must be in the ascending order. The

first data must be smaller than l (except when l = MIN), and the last data must be

larger than u (except when u = MAX).

• Every row, except the first and last rows, are fully occupied, i.e., having n = k + p data.

For each fully occupied row, its first k data (raw data) must match the last p data (parity

data), which can be re-calculated with their corresponding coefficient vectors.

If the matrix does not have these features, something is wrong. The user can detect the

servers that are malicious and still compute the correct result. The ways of encoding D into

codewords and retrieving data for a query q(l, u) guarantee that, for any data in D that is in

between l and u, the user will receive at least n− e correct data in the codeword that contains

the data and thus can recover the data if it is missing or wrong. Let X = (x1, x2, · · · , xk) be

the sequence that contains a data in D that is in between l and u. There are two scenarios:

• Case 1: All data in X are in between l and u. In this case, all corresponding parity data

(yk+1, yk+2, · · · , yk+p) must be also in the range. This is guaranteed by QPC. Since all

servers are asked to return the data in between l and u and at least n − e of them are

trustworthy, the user will receive at least n− e correct numbers in the codeword XY .

• Case 2: Some data, but not all, in X are in the range of l and u. In this case, the user

will still receive at least n − e correct numbers in the corresponding codeword, because

all servers are asked to return two additional data, l’s immediate left neighbor and u’s

immediate right neighbor.

The above two scenarios are illustrated in Figure 3.2. Note that the first row and the last

row in an authentication matrix may not be fully occupied. This is fine since they won’t contain

any number in between l and u.

14

3.2 Multi-dimensional Data

We now consider how to extend our original solution for multidimensional data. To simplify

our presentation, we will assume two-dimensional data. It will be easy to see that our technique

can be applied for higher dimension spaces. The overall process of outsourcing and querying is

similar: The data owner partitions the raw data and calculates the parity data, then distributes

the raw data and parity data to n servers; Users queries all servers simultaneously for the data

of their interest and authenticate, and correct if necessary, the query results returned from each

server. Handling multi-dimensional data, however, is more challenging, because it cannot be

sorted like 1-dimensional data.

Figure 3.3 shows 21 data items indicated by an assigned id number. The dataset is sorted

by the horizontal coordinate, and the order is marked by the polylines. The table in the right

side is the data distribution over 3 data servers, and each row is related with a codeword (the

parity servers are not shown). Given the window query (marked as red), the correct query

result is supposed to be r = {id9, id10, id16, id17}. According to the 1-dimensional PDO model,

each server should return two extra items, the immediate left and right neighbor of the sub-

result. For example, the sub-result for the server S1 is the list {d7, d10, d16, d19}, in which d10

and d16 are in the window query while d7 and d19 are the two extras. Similarly, server S2

returns {d14, d17, d20}, and server S3 returns {d6, d9, d12}. But apparently the returned objects

are not sufficient for the data user to reconstruct complete codewords.

Figure 3.3: Index Example

To solve the problem, we propose indexing data with Grid File. The data owner partitions

the dataset into cells by horizontal and vertical lines. The grid cell is defined by these partition

15

lines, and each cell contains several data items or none. A very important feature about the

structure of the Grid File is that the coordinate value of the partition lines in each dimension are

independent, and can be treated as an one-dimensional dataset. For example, in Figure 3.4, the

horizontal lines can be expressed as an one-dimensional dataset sh = {0, 5, 10, 15} and vertical

lines sv = {0, 5, 10, 15}. The basic idea is that the data items within a grid cell can be sorted by

a certain coordinate, then our 1-dimensional technique can be applied to compute parity data,

which are also within the grid cell. For a user’s query, each cloud server returns all overlapped

grid cells back. That is, if a grid cell overlaps with the window query, then all data items in it

are returned. We explain as follow.

For each dimension of the Grid File, the data owner applies the 1-dimensional PDO tech-

nique to outsource the partition lines. If the number of data items in a cell is not a multiple of

the number of data servers, we add some dummy data items in the cell. This is to ensure that

we can generate complete codewords for the cell. We will discuss how to compute the parity

data shortly. After the codewords are created in a cell, they are distributed among the multiple

servers. The same process is applied for all cells.

Taking a two-dimensional dataset for example, the equation system can be expressed in

equation 3.2. Let X = {d1, d2, ..., dk} be a group of raw data. For each data item di, we

use (di.val1, di.val2) to denote di’s values in the first dimension and the second dimension,

respectively. Let Y = {yk+1, yk+2, ...yk+p} denote the parity set generated for X. Let V =

{vk+1, vk+2, ..., vk+p} be the chosen coefficient vectors for Y , and vk+i = {a[i,1], a[i,2], ..., a[i,k]}.

Both dimensions share the same set of coefficient vector, so y[k+ i] contains a two-dimensional

value field. The first dimension value yk+i.val1 = d1.val1×a[i,1] +d2.val1×a[i,2] + ...+dk.val1×

a[i,k], and second dimension value yk+i.val2 = d1.val2 × a[i,1] + d2.val2 × a[i,2] + ... + dk.val2 ×

a[i,k]. We have the equation yk+i(val1, val2) = [d1(val1, val2), d2(val1, val2), ..., dk(val1, val2)]×

(vk+i)
T :

16



y1(val1, val2) = d1(val1, val2)

y2(val1, val2) = d2(val1, val2)

...

yk(val1, val2) = dk(val1, val2)

yk+1(val1, val2) = [d1(val1, val2), d2(val1, val2), ..., dk(val1, val2)]× (vk+1)
T

yk+2(val1, val2) = [d1(val1, val2), d2(val1, val2), ..., dk(val1, val2)]× (vk+2)
T

...

yk+p(val1, val2) = [d1(val1, val2), d2(val1, val2), ..., dk(val1, val2)]× (vk+p)
T

(3.2)

Users retrieve data in two steps. Let q = (< l1, u1 >,< l2, u2 >) be a query, i.e., retrieving

all data items whose values in the given window. The first step is to identify q’s minimum

boundary cells (MBC), i.e., the minimum set of cells which covers the query window. As a

consequence, the user knows that the sets of partition lines in each dimension. For example,

among the coordinate values in the first dimension, assume l
′
1 is the maximum number which

is no bigger than l1, and u
′
1 is the minimum number which is no less than u1, then all numbers

between the range l
′
1 and u

′
1 form the set of partition lines for the first dimension. We denote

the set as s1. Note that s1 can be retrieved by sending a range query to all servers, and verified

with our 1-dimensional technique. In the same way, the set of partition lines for the second

dimension can be retrieved and verified and we denote this set as s2. As such, the MBC for

q is formed by two sets s1 and s2. The authentication and verification of the two sets can be

done with the one-dimensional data outsourcing technique.

The second step is to retrieve the data items in MBC. The boundary of each grid cell in

MBC can be used as the range of a window query. The authentication and verification are

performed separately for each cell. Users sort the data items according to a certain dimension,

and organize them into authentication matrix for authentication and correction.

Figure 3.4 illustrates the above procedure. The space is partitioned by horizontal lines

sh = {0, 5, 10, 15} and vertical lines sv = {0, 5, 10, 15}. The data owner partitions the set sh,

calculates their parity data, and then uploads the dataset to the the corresponding servers.

17

Figure 3.4: Grid File Partition

The process for sh works in the same way. The data items in each cell are sorted by horizontal

coordinate, partitioned for three data servers (the parity servers are not showed). The window

query is the rectangle in the figure. It overlaps with two cells C[5,10];[5,10] and C[10,15];[5,10], where

the index are the partition lines in horizontal and vertical directions. The MBC is defined by

two sets of partition lines s1 = {5, 10, 15} in the horizontal direction and s2 = {5, 10, 15} in the

vertical direction. Set s1 can be obtained by range queries from the authentication structure of

dataset sh, while s2 can be retrieved from sv. From the table on the right side, we can notice

that the C[5,10];[5,10] contains two codewords, while C[10,15];[5,10] contains one codeword. These

codewords can be obtained from the two cells independently. For instance, the boundary of

C[5,10];[5,10] can be used as a window query to retrieve the two codewords in it.

18

CHAPTER 4. IMPLEMENTATION

We have implemented PDO for both 1-dimensional data and multi-dimensional data, us-

ing Java language. For purpose of performance study, we have also implement two related

techniques, MH-tree and signature chain. We describe as follows.

4.1 PDO for One-dimensional Data

The outsourcing model mainly contains three parts, building the authentication structure,

authenticating query result, and correcting if needed. The model structure is displayed in

Figure 4.1.

BuildMSP

- QPC

+ build()

QueryProcess

+ mspQuery()
QPC

- coefficient

- basicMatrix

+ calculateParity()

+ authenticate()

+ correction()
MspVerfiy

-QPC

+ authenticateAndCorrection()

BasicMatrix

+ mutiply()

+ divide()

Figure 4.1: One Dimensional Parity Coding Class Design

• Class BuildMSP is for the data owner to partition the raw data, and prepare the parity

19

data, and distribute the dataset among the corresponding cloud servers. The number of

data servers and parity servers are given in a configuration file, which is shared by all

the classes in the project. The building process is explained in Algorithm 1. In addition,

to prepare the parity data part of a codeword, the function calls the parity calculation

function in Class QPC.

Algorithm 1 Build()

1: AddHead() //adding the special starting token

2: For each codeword, do //create codeword one by one

3: PrepareRawData() //prepare the raw data part

4: PrepareParityData() //prepare the parity data part

5: End For

6: AddEnd() //adding the special ending token

• Class QueryProcess is used by cloud servers to receive queries from users. After pro-

cessing queries, they return the results to users. Each server processes the queries inde-

pendently, and returns a sub-result for a query.

• Class MspVerify is used by users to verify the received query results. At first, a user

authenticates the query result. If the sub-results from cloud servers do not match with

each other, it starts the correction process. The algorithm is given in Algorithm 2. In

line 1, all the sub-results for a query is organized in the authentication matrix. The

authentication of each codeword is checked in line 3, and the correction is executed in

line 5.

Algorithm 2 authentionOrCorrect(subResults, query)

1: Organize each sub-result in a matrix

2: For each codeword, do

3: If it is authenticated, then adding to result

4: Else recover the real sub-result.

5: End For

• Class QPC is responsible for the implementation of calculating parity data, authenticat-

ing query result, and correcting if needed. The functions are explained as follows:

20

– calculateParity() mainly receives the raw data, and multiplies the coefficient vector.

It returns the computed parity data.

– authenticate() receives the organized codeword, and recalculates the equation sys-

tem to check whether the values of the elements match with each other. It returns

a boolean data type.

– correction() recovers the real result if there exists inconsistence in authentication.

The function is invoked by the methods in class MspVerify, and it contains two

important algorithms. One is to find out all the combinations of k of k+p equations,

since every k equations decide a copy of X in equation system. The collection of

all the subsets is recursive process, which display in Algorithm 3. The final result is

returned in subsetsList. Another algorithm is to count the most popular subset in

Algorithm 4. It uses a HashMap to count the copy of solutions and the corresponding

frequency, then sorts the elements in the HashMap to get the most popular with the

highest frequency.

Algorithm 3 subset(subsetsList, currentList, index, equations[])

1: If currentList.size = k, then add currentList to subsetList

2: While index < k + p, do

3: Add equations[index + 1] to currentList

4: subset(subsetList, currentList, index + 1, equations[])

5: Remove equations[index + 1] from currentList

6: index + +

7: End While

Algorithm 4 mostPopularSolution(subsetsList)

1: create a HashMap solutionMap, which stores the copy of solution and the frequency

2: For each subset in subsetsList, do

3: Add to solutionMap, and increase the frequency by one

4: End For

5: Use HeapSort to order the copies of solutions by frequency

6: Return the most popular one

• Class BasicMatrix contains the basic matrix calculation, such as multiplication and

division operations. These methods are called by the class QPC.

21

4.2 PDO for Multi-dimensional Data

Recall that we use Grid File to index the multi-dimensional dataset. To construct the Grid

File index, we need to specify three parameters. The first one is the boundary of the Grid File,

which can cover all the dataset. The second one is the dimension of the dataset, apparently

the dimension of the structure is the same as the dataset. The third one is the capacity of the

grid cell. After the three parameters are fixed, the data items are added into the Grid one by

one. At the beginning, the whole Grid is treated as a big cell. When the number of data items

added reaches to the capacity of the big cell, the cell is cut into two new cells. The data items

are reassigned into the corresponding new cells. In this way, the data items from the original

dataset keep inserting into the grid cells, and a cell is divided by a cutting plane (a cutting line

in two-dimensional case) once its capacity is full.

When the Grid File structure is built, the parity coding technique is applied on for data

items among these cells. Here, each cell is treated as an independent unit, and each dimension

of the data items is independent too. First, if the number of items in a cell is not divisible

by the number of data servers k, then dummy items are added. Second, the data items are

sorted by the first dimension value. Then every k data items can be used to calculate a group

of parity data. Accordingly, a codeword can be created by combining the k raw data and the

related parity data. Finally, all codewords are uploaded into the cloud servers.

The class designed for the parity-based multi-dimensional data outsourcing is displayed in

Figure 4.2. It includes the building of the Grid File, query processing and the performance

measurement of authentication time and correction time.

22

Main

- RangeQuery

+ gridFileBuildTest()
+ processQuery()
+ verifyTest()
+ correctionTest()

GridAgentTest

- Result

+ gridFileBuildStart()
+ queryResult()
+ authentication()
+ correctionResult()

ParityGenerator

- QPC
- numDataServer
- numParityServer
- dimension

+ generatorParityCode()
+ addDummy()
+ codewsGenerator()
+ calculateParityData()
+
calculateParityOneDim()

CpuUsage

- startTime
- endTime

+ startMonitor()
+ endMonitor()
+ costTime()

QuerySolver

- RangeQuery

+ calculateResult()
+ calculateSubResult ()
+ withinCell()
+ calculateQueryCells()
+ calcAxis()

Verification

- QPC
- queryRes

+ authenticate()
+ correction()

GridBuilder

+ buildGrid()
+ setBoundary()
+ insertPoints()

CellManager

+ insertDataToCell ()
+ updateAxis ()
+ furtherCheck()
+ isOverflow()
+ cutCell()
+ generateNewCells()
+ rearranPointsInCell()
+ isDataInCell()
+ cutInTwoCells()
+ candidateCell()
+ prepareNextCut()

Cell

- leftCorner
- rightCorner
- points

+ getLeftCorner ()
+ setLeftCorner()
+ getRightCorner()
+ setRightCorner()

Axis

- treesetList

+ getCellBoundaries()
+ getCell4Point()
+ addCordinates()
+ getLowBound()
+ getUpBound()

Figure 4.2: Multi-dimensional Data Outsourcing Class Design

The definition of each class and the related algorithms are explained as follows:

• Class Main is the entry point for testing the computation time, authentication time and

correction time.

23

• Class GridAgentTest is the agent which receives the query and processes the tasks from

the class Main. The primary attributes and functions are as follows:

– Result: stores the query result after query processing.

– gridFileBuildTest() builds the authentication structure. It contains two steps, the

first one is creating the Grid File index, another is generating the parity data among

the grid cells.

– processQuery() receives the window queries, and returns the query results.

– authenticate() checks the query result whether it is sound and completeness.

– correctionResult() corrects the query result.

• Class GridBuilder is responsible for creating the Grid File index.

– buildGrid() implements of building the Grid File structure.

– setBoundary() sets the boundary of the Grid File.

– insertPoints() inserts the raw data items to the Grid File.

• Class ParityGenerator calculates the parity data and generates the codewords after

the establishment of the Grid File index. The algorithm is given in Algorithm 5.

– QPC: implements the parity data calculation.

– numDataServer: the number of data servers.

– numParityServer: the number of parity servers.

– dimension: the dimension of the dataset.

– generatorParityCode() traverses through all the cells, and sorts the data items in

each cell to prepare for the generation of the codewords.

– addDummy() adds dummy items to a cell if necessary.

– codewsGenerator() generates the codewords within a cell. The specific calculation

is in calculateParityData().

24

– calculateParityData() prepares the parity data for a group of raw data items. For

each dimension, it invokes the function calculateParityOneDim().

– calculateParityOneDim() calculates the parity data for a certain dimension of the

data items.

Algorithm 5 ParityGenerator(QPC, numDataServer, numParityServer)

1: For each cell in Grid File, do

2: If the number of items in cell is not divisible by numDataServer, then addDummy()

3: Sort all the items in cell by the first dimension

4: For each numDataServer items, do

5: For each dimension of these items, do

6: Calculate parity data

7: End For

8: Combine the raw data and parity data into a codeword

9: End For

10: End For

• Class CellManager is the manager of building the Grid File structure, including the

updating of the Grid File structure, updating of the coordinate axis. The functions in

details are as follows:

– insertDataToCell() inserts a data item into the Grid. The inserting process might

cause the overflow of a grid cell, consequently it leads to the cutting requirement of

a series of cells.

– updateAxis()updates the set of axis. When a cell is cut, a new coordinate value

would appear, and it should be added into class Axis.

– furtherCheck() double-checks whether the new divided cell overflowed or not, after

a cell is cut, .

– isOverflow() checks whether a cell overflow, basically it checks whether the number

of data items exceeds the threshold of the cell capacity.

– cutCell() cuts a series of affected cells which overlap with the cutting plane.

– generateNewCells() updates the set of cells in CellManager, since there are new cells

generated.

25

– rearranPointsInCell() rearranges the data items in the new cells after the original

cell is cut.

– isDataInCell() checks whether a data item is in a cell.

– cutInTwoCells() implements the procedure of partitioning a cell into two.

– candidateCell() finds out all the cells affected by the cutting plane.

– prepareNextCut(): indicates the cutting rules.

• Class Cell is used for creating the object of the grid cell. It has three attributes:

– leftCorner: indicates the coordinate of the left corner.

– rightCorner: indicates the coordinate of the right corner.

– points: contains all the data items in the current cell.

• Class Axis keeps all the coordinate values in all dimensions, and provides the functions

related with coordinate value.

– getCellBoundaries() identifies the MBC for the query when a window query is given.

– getCell4Point() inputs a data item, and outputs the cell which can cover it.

– addCordinates() updates the coordinates in Axis.

– getLowBound() returns the lower boundary of a value.

– getUpBound() returns the upper boundary of a value.

• Class QuerySolver communicates with the third-party to fetch the query result.

– RangeQuery: stores the query.

– calculateResult() collects all the sub-results from all the cloud servers.

– calculateSubResult() gets the query result from a certain server.

– withinCell() identifies the cell for a record received from a server, since it can contains

extra information, such as dummy mark.

26

– calculateQueryCells(): after the MBC is obtained, assembles all the related cells.

The implementation is a recursive procedure, which is given in Algorithm 6.

– calcAxis(): returns all the overlapping coordinate values.

Algorithm 6 calculateQueryCells(cellsResult, current, axises, level)

1: If level == axises.size, then add current to cellsResult.

2: For each value in level-th element in axises, do

3: Add value in current

4: calculateQueryCells(cellsResult, current, axises, level + 1)

5: Delete value from current

6: End For

• Class Verification gives the functions of authentication and correction of query results.

– QPC: calls the verification operations in it.

– queryRes: the returned result from cloud servers.

– authenticate() checks whether the calculation based on the codeword matches with

the received values. The process of authenticating a query result is given in Algo-

rithm 7

– correction() corrects the query result if there are errors in it.

Algorithm 7 authenticate(QPC, queryRes, axises, level)

1: For each subResults in queryRes, do

2: Organize the subResult into columns

3: For each codeword, do

4: QPC.authenticate(codeword) //check authentication

5: End For

6: End For

4.3 Implementation of Related Work

We compare the parity-based data outsourcing in one-dimensional dataset with the two

existing techniques, MH-tree and Signature Chain. The performance comparison includes the

time cost in computation and authentication. The computation cost refers to the time it

requires to build the authentication structure. That is, the computation cost is in the data

27

owner side. The authentication cost is the time which the user uses to verify the query result.

We start from the MH-tree scheme, the constructing of the MH-tree can be implemented layer

by layer. It is a binary tree and each ancestor node is built upon its two child nodes. For

simplicity, we design a full binary tree. In order to facilitate the query processing through the

tree, each internal node contains the range of attribute it covers. Therefore, the query process

and the constructing of the VO can be done at the same time. In the Signature Chain, two

dummy nodes should be added at the two chain ending. The query result is continue partial

chain from the original Signature Chain. In order to prove that there are no data missing at the

boundary of the query result, the VO needs to include two extra nodes beside the real result.

In the PDO scheme, there are also some places which need to be noticed in implementation.

The original dataset should be sorted in ascending order before applying the parity coding

technique. A certain number of dummy items are added if the size of original dataset is not

divisible by the number of data servers.

The class design is displayed in Figure 4.3. The process starts from building structure, then

query processing, verification at last. Another feature is that in the class VerifyScheme, the

two existing schemes support only authentication, but not correction.

28

Scheme

- queries

+ buildTest()
+ verifyTest()

BuildScheme

+ merkleModel()
+ chainModel()
+ mspModel()

QueryTest

- query
- merkleResult
- chainResult
- mspResult

+ buildMerkleTree()
+ queryMerkle()
+ verifyMerkle()
+ buildSignatureChain()
+ queryChain()
+ verifyChain()
+ buildMsp()
+ queryMsp()
+ verifyMsp()

MerkleVerify

+ merkleResVerify()

QueryProcess

+ merkleQuery()
+ chainQuery()
+ mspQuery()

CpuUsage

- startTime
- endTime

+ startMonitor()
+ endMonitor()
+ costTime()

VerifyScheme

+ merkleResultVerify()
+ chainResultVerify()
+ mspResultVerify()

ChainVerify

+ chainResVerify()

MspVerify

+ authenticationAndCorrection()

BuildMerkle

+ build()
+ calculateTreeHash()

BuildSignatureChain

+ build()

BuildMsp

-QPC

+ build()

MerkleResult

+ calculateQueryResult()

ChainResult

+ calculateQueryResult()

MspResult

+ calculateQueryResult()

Figure 4.3: Performance Comparison Class Design

29

The classes and the related algorithms are explained as follows:

• Class Scheme is the access entry to test the time used for building an authentication

structure, and verifying a query cost. It receives queries from the users.

• Class CpuUsage is used by the class Scheme to record the starting time, ending time

and time cost of an action.

• Class QueryTest provides the whole access points for building structure, query process-

ing, verification.

• Class BuildScheme is called by the class QueryTest. And it contains all the three

building model: merkleModel, chainModel, mspModel.

• Class BuildMerkle provides the implementation of merkleModel. The tree is built

from the bottom to the root. For each leaf node, it stores the real value and the hash

value of the node. For each internal node, it stores the range, which the child nodes

cover, and also the hash value. Only the the root of the tree is digitally signed. The

building procedure is given in Algorithm 8. To calculate the hash value of each node, the

Algorithm 9 involves in a tree postorder traverse.

Algorithm 8 buildMerkle(records)

1: For each level from the bottom to up, do

2: For each node, do

3: Calculate the range it covers, and store in the node

4: End For

5: End For

6: Traverse the tree, and calculate the hash value of each node

7: Sign the root

Algorithm 9 calculateTreeHash(root)

1: If root == NULL, then return

2: calculateTreeHash(root.left)

3: calculateTreeHash(root.right)

4: Calculate the Hash value of the root

• Class BuildSignatureChain provides the implementation of chainModel. The process

is given in Algorithm 10. First, generate two dummy nodes at the two ending, with a

30

special token value. Then, for each node, compute the hash value, and sign a signature

over itself and its two neighbors.

Algorithm 10 buildChain(records)

1: addDummy(MIN)

2: addDummy(MAX)

3: For each record, do

4: Calculate the hash value H(record) of the presented node

5: End For

6: For each chain node, do

7: Sign the node, Sig(H(node)) = Sig(H(H(node.left)|H(record)|H(node.right)))

8: End For

• Class BuildMsp is explained in previous section.

• Class QueryProcess processes the queries representing cloud servers, and returns the

query result to the class QueryTest.

• Class VerifyScheme receives the query result from QueryTest, and passes to the three

different verification module, merkleResultV erify, chainResultV erify, mspResultV erify.

• Class MerkleVerify provides the implementation of the module merkleResultV erify.

The process is similar to the process of building the authentication structure, starting

from the bottom, reconstructing the hash value of the root, and comparing with the

signed one.

• Class ChainVerify provides the implementation of chainResultV erify, which is de-

scribed in Algorithm 11.

Algorithm 11 chainResVerify(Query, Result, V O(query))

1: For each sig(node) in V O, do

2: If Sig−1(Sig(node)) 6= H(H(node.left)|H(node)|H(node.right)), reject Result.

3: Else if node.value is not in Query range, Reject Result.

4: End For

5: Accept Result.

• Class MspVerify is described in previous section.

31

CHAPTER 5. PERFORMANCE STUDY

We compare the performance of PDO, MH-tree, and Signature Chain, through both analysis

and experiments. For all three techniques, the data owner needs to pre-process the original

dataset before delegation to the cloud servers. The cost for the data owner includes that (1)

Storage overhead, defined to be the ratio between the size of the data that needs to be uploaded

to the servers and the size of the original data; (2) Preparation cost, i.e., the time incurred

in building an authentication data structure. To data users, the main overhead includes (1)

Communication cost, which is the size of the data received from the servers; (2) Authentication

cost, which is the time for the users to authenticate the received query result; (3) Correction

cost, which is the time incurred in correcting a wrong query result.

In addition to analysis, we have studied their performance through experiments, where we

are our code on a server with Intel Xeon 4-core CPU 2.67GHz, 16GB RAM.

5.1 Analysis

Storage overhead. Let |D| be the number of records in the database D, k is the number

of data servers, and p = n − k is the number of parity servers, thus e = bp2c is the maximum

number of malicious servers allowed. Let t denote the size of a data record. The length of a

hash value can be varying, e.g. 128 bits, 256 bits, 512 bits, depending on the practical algorithm

used. Let |H| be the length of a hash value. The length of a digital signature is normally longer

than a hash value, it can be 1024 bits or 2014 bits and so on. Let |sign| be the length of a

signature. The storage cost for each of the scheme is as follows:

• Parity Coding : the database D will be encoded into d |D|n−2ee codewords, each consisting k

raw data and p parity data records. Since the parity data has the same size as the raw

32

data, the total size of raw data and parity data is (d |D|n−2ee) · n · t.

• MH-tree: each node in the tree (leaf or internal node) stores the range it represented, a

hash value. We assume that the size of the rangee is the same as a data value. Besides,

the root has a signature. Therefore, the total size of authentication structure is 2 · |D| ·

(t + |H|) + |sign|.

• Signature Chain: in this scheme, every chain node requires not only a data value and hash

value, but also a signature based on itself and its two neighbors. Plus, two dummy nodes

are added in the two ending. In consequence, the total size is (|D|+ 2) · (t+ |H|+ |sign|).

Communication cost. Let |q| be the query size, specifically the number of records which

satisfy the query condition. The communication cost for each of the scheme is as follows:

• Parity Coding : besides the records within the query range, each server will send back two

more extra records. Accordingly the data records received from each server is d |q|n−2ee+ 2.

So the total communication cost is (d |q|n−2ee+ 2) · n · t.

• MH-tree: the query result is a contiguous leaf nodes, and V O contains two extra leaf

nodes in the boundary, the auxiliary hash values of the nodes along in the search path,

and the signature of root. Basically the size of the query result is about (|q|+ 2) · t. Since

the height of the tree is log|D|, the size of hash values in V O is around 2 · log|D| · |H|.

Thus, the total is (|q|+ 2) · t + 2 · log|D| · |H|+ |sign|

• Signature Chain: the items sent back includes a consecutive chain nodes which are in the

query range and the two extra nodes at the boundary. So the cost is (|q|+2) · (t+ |sign|).

5.2 Experiments

We compare the preparation cost, authentication cost and correction cost using simulation,

and we will show how these cost are impacted by the size of the dataset, query size, and the

number of servers.

Impact of Dataset Size. Given a dataset, we study the impact of datasize size on preparation

cost. For the existing schemes, we record the time of building a MH-tree and Signature Chain.

33

For our approach, we use 5 servers in total, and have two configurations on the maximum

number of malicious servers: e = 1 and e = 2. Accordingly, we identify the two settings as

PDO-5-1 and PDO-5-2. We increase the data size (i.e., the total number of records in the

dataset) from 210 to 217. The results are plotted in Figure 5.1, and it shows that Signature

Chain is the worst performer. This is not surprising, since this scheme needs one-way hash on

every number and builds a signature for every hash value. MH-tree also requires to one-way

hash every node of the binary tree. However, it needs to create only one signature for the tree

root. Our result shows that MH-tree outperforms Signature Chain in 2-3 orders of magnitude

in generating the authentication structure. The two PDO schemes outperform MH-tree in

another 3 orders of magnitude. These results convince that generating parity data, which is

to compute a multivariate linear polynomial function, incurs much less computation time than

computing one-way hash function and digital signatures. Our results also show that tolerating

more malicious servers result in more preparation cost, but not in a significant way.

106
107
108
109

1010
1011
1012
1013
1014
1015

210 211 212 213 214 215 216 217

Pr
ep

ar
at

io
n

C
os

t (
ns

)

Data Size

Merkle Hash tree
Signature Chain

PDO-5-1(n=5,e=1)
PDO-5-2(n=5,e=2)

Figure 5.1: Impact of Data Size

Impact of Query Size. In this study, we first compare PDO with MH-tree and Signature

Chain in terms of authentication cost. Again, we use 5 servers in PDO but have two configu-

rations of the maximum number of malicious servers, e = 1 and e = 2. In each simulation, we

apply the three techniques in authenticating a query result, the size of which varies from 1000

to 5000. We consider the worst scenario: the query result is correct so each technique needs to

check every number. In reality, the checking stops whenever an error is found. The results are

plotted in Figure 5.2 (a). It shows that Signature Chain incurs most time in authentication.

Again, this scheme needs to recompute all hash values and verify their signatures. MH-tree

34

performs better than Signature Chain. It also requires to recompute all hash values but needs

to verify only one signature. Note that their performance gap is not as great as in Figure 5.1.

This is due to the fact that verifying a signature is less computation-intensive than creating

a signature. The two PDO schemes outperform the two existing approaches in 2-3 orders of

magnitude. In PDO, the authentication is done by recomputing the parity data. Again, this

computation cost is much less than computing one-way hash values, not mentioning computing

digital signatures.

105

106

107

108

109

1010

 1000 2000 3000 4000 5000

A
ut

he
nt

ic
at

io
n

C
os

t (
ns

)

Query Size

Merkle Hash tree
Signature Chain

PDO-5-1(n=5,e=1)
PDO-5-2(n=5,e=2)

 5

 10

 15

 20

 25

 1000 2000 3000 4000 5000

C
or

re
ct

io
n

C
os

t (
x1

0^
6

ns
)

Query Size

PDO-5-1(n=5,e=1)
PDO-5-2(n=5,e=2)

(a) (b)

Figure 5.2: Impact of Query Size

In this study, we also look at the cost of correcting a wrong query result. MH-tree and

Signature Chain do not support correction, so we focus on our own technique. In our simulation,

we randomly remove one or two data sets (depending on the settings of the number of malicious

servers) returned from the servers and apply our technique to recover them. We vary the query

size from 1000 to 5000 and plot the results in Figure 5.2 (b). As the query size increases,

the correct cost increases, since more data needs to be recovered. For the same reason, more

malicious servers result in more correction cost, which is showed in the figure.

Impact of Server Number. In PDO, a data owner outsources data to a number of servers.

We are interested in how the number of servers impacts the performance of this scheme. For

this purpose, we generate a data set of 230 numbers and vary the number of servers n from

3 to 10. We simulate two settings of malicious servers, e = 1 and e = 2, which requires n

to be at least 3 and 5, respectively. Figure 5.3 (a) illustrates the preparation costs. It shows

35

 60

 80

 100

 120

 140

 160

 180

 200

 2 3 4 5 6 7 8 9 10 11

Pr
ep

ar
at

io
n

C
os

t (
x1

0^
8

ns
)

Num. of Servers

PDO(e=1)
PDO(e=2)

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 2 3 4 5 6 7 8 9 10 11

A
ut

he
nt

ic
at

io
n

C
os

t (
x1

0^
8

ns
)

Num. of Servers

PDO(e=1)
PDO(e=2)

 10

 15

 20

 25

 2 3 4 5 6 7 8 9 10 11

C
or

re
ct

io
n

C
os

t (
x1

0^
8

ns
)

Num. of Servers

PDO(e=1)
PDO(e=2)

(a) (b) (c)

Figure 5.3: Impact of Server Number

that this cost is insensitive to the number of servers. Both curves are nearly flat. This can

be explained as follows. When e is fixed, increasing n results in a larger k (the number of

data servers) and thus, a smaller redundancy rate 2e
n−2e . The result is less number of parity

data to be generated. However, each parity data is now generated with k raw data. In other

words, the number of parity data reduces but the cost of generating a parity data increases.

Apparently the two factors offset each other and result in a nearly constant preparation. For

the same reason, we expect the number of servers to have little impact on the authentication

cost and correction. This is confirmed in Figure 5.3 (b) and (c), respectively. Note that when

n is fixed, but e increases, we have more parity data to generate out of a same set of data, thus

the computation time increases, which we can observe in the figures.

5.3 Extension

The analysis and simulation above compare the PDO scheme with the existing techniques.

But when the dataset turns into multi-dimensional, it causes significant difference, due to the

fact that the original dataset cannot be index in the same way as in one dimensional case.

The introduction of Grid File is for solving the sorting problem. To build the authentication

structure, the data owner needs to create the Grid File index first, then generates the parity

coding among the Grid cells. Here, we will show the performance result of our technique in

multi-dimensional case, in terms of preparation cost, authentication cost, correction cost.

36

Preparation Cost. The result is displayed in Figure 5.4 (a). To avoid the special case, we use

7 servers in total, and have two configurations in the maximum number of malicious servers:

e = 1 and e = 2. In this simulation, the data size increase from 210 to 217. From the two

sets of output, we can see that there is no very obvious difference in the beginning. But with

continuous accretion of the data size, it proves the conclusion that tolerating more malicious

servers lead to more preparation cost.

 2x108

 4x108

 6x108

 8x108

 1x109

 1.2x109

 1.4x109

210 211 212 213 214 215 216 217

Pr
ep

ar
at

io
n

C
os

t (
ns

)

Data Size

PDO(e=2)
PDO(e=1)

 4x108

 5x108

 6x108

 7x108

 8x108

 9x108

 1x109

 1.1x109

 2 3 4 5 6 7

Pr
ep

ar
at

io
n

C
os

t (
ns

)

Dimension

PDO(e=2)
PDO(e=1)

(a) (b)

Figure 5.4: Preparation Cost

To study the impact of the dimension on the preparation cost, we set the data size 214, and

the dimension varies from 2 to 7. The result is displayed in Figure 5.4 (b). As the number

of dimension increases, on the one hand, it incurs more computation time in generating the

parity data; On the other hand, building the Grid File index contains randomness in partition

the Grid cells.

 2x107
 4x107
 6x107
 8x107
 1x108

 1.2x108
 1.4x108
 1.6x108
 1.8x108

213 214 215 216 217

A
ut

he
nt

ic
at

io
n

C
os

t (
ns

)

Query Size

PDO(e=2)
PDO(e=1)

Figure 5.5: Authentication Cost

37

 1x109

 2x109

 3x109

 4x109

 5x109

 6x109

 7x109

 8x109

213 214 215 216 217

C
or

re
ct

io
n

C
os

t (
ns

)

Correction times

PDO(e=2)
PDO(e=1)

Figure 5.6: Correction Cost

Authentication Cost. To retrieve the query result, the users first need to find out the MBC

of the window query, then authenticate the MBC. If MBC is correct, then for each candidate

cell, the users send the boundary of the cell (used as window query) to each server. Considering

that the first step is similar to the process in one dimensional case, we only test the time cost in

the second step, which authenticates the sub-result in each candidate cell. The authentication

result is displayed in Figure 5.5. The query size varies from 213 to 217. Basically, the time cost

increases as the query size increases.

Correction Cost. Similar to the testing in authentication cost, we only consider the second

step. To correct a codeword, the users need to find out the most popular solution. However,

in reality, if a server is marked as malicious, then the returned data is just removed from

the equation system. This implies that the correction procedure does not need any more

for the remaining codewords, once the malicious server is confirmed. Besides, the number of

equations in the equation system reduced accordingly. In this simulation, to test the average

time for correction, we repeat the correction operation on each codeword received. The result

is displayed in Figure 5.6. We use the query size as the correction time from 213 to 217. The

time increases almost in a linear increasing manner.

38

CHAPTER 6. CONCLUSION

We have described a Parity-based Data Outsourcing (PDO) model. In contrast to existing

techniques that use cryptography and store data on a single server, our approach is to pair

the raw data with parity data and store them on a number of servers from different vendors.

We show that this approach allows data users to verify if the query results they receive are

indeed sound and complete, but also correct if any data is wrong. Our model has a few other

desired features. 1) PDO is fault-tolerant. Unless more than e servers are malicious, users

can always have access to their data and receive correct query results. 2) PDO is simple

and practical. Customers simply upload a smaller database to a cloud server and query it

with standard SQL. There is no need for them to develop and/or install any extra software.

3) PDO is cost-effective and load balanced by its nature. The extra storage overhead is the

parity data. In our implementation, each server is allocated with a similar size of data. The

communication cost of receiving a query result has a similar redundant rate. While the original

PDO is designed to support one-dimensional data, we have extended it for multi-dimensional

data. We have implemented our techniques and two existing techniques, namely, MH-tree and

Signature Chain, and studied their performance through both analysis and experiments.

39

BIBLIOGRAPHY

[1] Heroku Postgres Free Cloud Data Management Services. Web page at http-

s://www.heroku.com/postgres.

[2] Openshift cloud hosting. Web page at https://www.openshift.com.

[3] B. Thompson and S. Haber and W. Horne and T. Sander and D. Yao. Privacy-Preserving

Computation and Verification of Aggregate Queries on Outsourced Databases. Privacy

Enhancing Technologies: Lecture Notes in Computer Science, 5672:185–201, 2009.

[4] S. Bajaj and R. Sion. Correctdb: Sql engine with practical query authentication. The

VLDB Journal, 6(7):529–540, 2013.

[5] Elwyn R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, New York, NY, 1968.

[6] David Chase. Code combining–a maximum-likelihood decoding approach for combining an

arbitrary number of noisy packets. Communications, IEEE Transactions on, 33(5):385–

393, 1985.

[7] Weiwei Cheng, HweeHwa Pang, and Kian-Lee Tan. Authenticating multi-dimensional

query results in data publishing. In Data and Applications Security XX, pages 60–73.

Springer, 2006.

[8] Cheng, W. and Tan, K. Authenticating kNN Query Results in Data Publishing. Secure

Data Management: Lecture Notes in Computer Science, 4721:47–63, 2007.

[9] P. Devanbu, M. Gertz, Martel, and Stubblebine C. Authentic third-party data publishing.

In Fourteenth IFIP 11.3 Conference on Database Security, 2000.

40

[10] P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine. Authentic data publication over

the internet. Journal of Computer Security, 11(3):291–314, 2003.

[11] G David Forney. Generalized minimum distance decoding. Information Theory, IEEE

Transactions on, 12(2):125–131, 1966.

[12] G.D. Forney. Authentication of k nearest neighbor query on road networks. IEEE Trans-

actions on Information Theory, 11:549 – 557, Oct 1965.

[13] Daniel Gorenstein, W Wesley Peterson, and Neal Zierler. Two-error correcting bose-

chaudhuri codes are quasi-perfect. Information and Control, 3(3):291–294, 1960.

[14] Richard W Hamming. Error detecting and error correcting codes. Bell System technical

journal, 29(2):147–160, 1950.

[15] Jonathan Katz and Yehudi Lindell. Introduction to Modern Cryptography: Principles and

Protocols. Chapman and Hall Cryptography and Network Security Series. Chapman and

Hall, 2007.

[16] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. Dynamic authen-

ticated index structures for outsourced databases. In Proceedings of SIGMOD’06, pages

121–132. ACM, 2006.

[17] James L Massey. Shift-register synthesis and bch decoding. Information Theory, IEEE

Transactions on, 15(1):122–127, 1969.

[18] Ralph C Merkle. A certified digital signature. In Advances in Cryptology – CRYPTO’89

Proceedings, pages 218–238. Springer, 1990.

[19] D. E. Muller. Application of boolean algebra to switching circuit design and to error

detection. IRE Transactions on Electronic Computers, 3:6–12, 1954.

[20] Ben Noble and James W Daniel. Applied linear algebra, volume 3. Prentice-Hall New

Jersey, 1988.

41

[21] HweeHwa Pang, Arpit Jain, Krithi Ramamritham, and Kian-Lee Tan. Verifying complete-

ness of relational query results in data publishing. In Proceedings of SIGMOD’05, pages

407–418. ACM, 2005.

[22] HweeHwa Pang, Jilian Zhang, and Kyriakos Mouratidis. Scalable verification for out-

sourced dynamic databases. Proceedings of VLDB’09, 2(1):802–813, 2009.

[23] W Wesley Peterson. Encoding and error-correction procedures for the bose-chaudhuri

codes. Information Theory, IRE Transactions on, 6(4):459–470, 1960.

[24] Irving S. Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal

of the Society for Industrial and Applied Mathematics (SIAM), 8(2):300–304, 1960.

[25] Madhu Sudan. Coding theory: Tutorial & survey, 2001.

[26] Yasuo Sugiyama, Masao Kasahara, Shigeichi Hirasawa, and Toshihiko Namekawa. A

method for solving key equation for decoding goppa codes. Information and Control,

27(1):87–99, 1975.

[27] Yuzhe Tang, Ling Liu, Ting Wang, Xin Hu, Reiner Sailer, and Peter Pietzuch. Outsourcing

multi-version key-value stores with verifiable data freshness. In Proceedings of ICDE’14,

pages 1214–1217. IEEE, 2014.

[28] Yuzhe Tang, Ting Wang, Xin Hu, Jiyong Jang, Ling Liu, and Peter Pietzuch. Authenti-

cation of freshness for outsourced multi-version key-value stores, 2013.

[29] Shixin Tian, Ying Cai, and Zhenbi Hu. A parity-based data outsourcing model for query

authentication and correction. In Distributed Computing Systems (ICDCS), 2016 IEEE

36th International Conference on, pages 395–404. IEEE, 2016.

[30] X. Lin and J. Xu and H. Hu and W. Lee. Authenticating Location-Based Skyline Queries in

Arbitrary Subspaces. IEEE Transactions on Knowledge and Data Engineering, 26(6):1479

– 1493, 2014.

[31] Guolei Yang, Ying Cai, and Zhenbi Hu. Authentic publishing of mathematic functions. In

review by ICDE’16, 2016.

42

[32] Yin Yang, Stavros Papadopoulos, Dimitris Papadias, and George Kollios. Spatial out-

sourcing for location-based services. In Proceedings of ICDE’08, pages 1082–1091. IEEE,

2008.

[33] Yin Yang, Stavros Papadopoulos, Dimitris Papadias, and George Kollios. Authenticated

indexing for outsourced spatial databases. The VLDB Journal, 18(3):631–648, 2009.

[34] Yiu, M. and Lo, E. and Yung, D. Authentication of moving kNN queries. In Proc. of

ICDE’11, pages 565 – 576, April 2011.

	2017
	Parity-based Data Outsourcing: Extension, Implementation, and Evaluation
	Zhenbi Hu
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. OVERVIEW
	2. RELATED WORK
	2.1 Query Authentication
	2.2 Parity Coding

	3. PARITY-BASED DATA OUTSOURCING
	3.1 One-dimensional Data
	3.2 Multi-dimensional Data

	4. IMPLEMENTATION
	4.1 PDO for One-dimensional Data
	4.2 PDO for Multi-dimensional Data
	4.3 Implementation of Related Work

	5. PERFORMANCE STUDY
	5.1 Analysis
	5.2 Experiments
	5.3 Extension

	6. CONCLUSION
	BIBLIOGRAPHY

