
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2016

Syntax errors identification from compiler error
messages using ML techniques
Shubham K. Agrawal
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Agrawal, Shubham K., "Syntax errors identification from compiler error messages using ML techniques" (2016). Graduate Theses and
Dissertations. 15653.
https://lib.dr.iastate.edu/etd/15653

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15653&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15653&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F15653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/15653?utm_source=lib.dr.iastate.edu%2Fetd%2F15653&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Syntax errors identification from compiler error messages using ML techniques

by

Shubham K Agrawal

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Jin Tian, Co-Major Professor
Wei Le, Co-Major Professor

Samik Basu

Iowa State University

Ames, Iowa

2016

Copyright © Shubham K Agrawal, 2016. All rights reserved.

ii

TABLE OF CONTENTS

 Page

LIST OF FIGURES ... iv

LIST OF TABLES ... v

NOMENCLATURE .. vi

ACKNOWLEDGMENTS ... vii

ABSTRACT………………………………. .. viii

CHAPTER 1 INTRODUCTION ... 1

 Chapter 1.1 Contribution ... 3
 Chapter 1.2 Outline of thesis ... 4

CHAPTER 2 RELATED WORK .. 5

CHAPTER 3 BACKGROUND ... 8

 3.1 Hierarchical clustering ... 8
 3.2 Support vector machines .. 8
 3.3 Probabilistic topic modeling .. 9
 3.4 Multi-label classification ... 9

CHAPTER 4 ERROR DETECTION... 10

 4.1 Type of error .. 10
 4.2 Document term matrix ... 11
 4.3 Document clustering .. 13
 4.4 Cluster analysis .. 14
 4.5 Training model and prediction ... 15
 4.6 Handling multiple error .. 15
 4.7 Finding word distribution .. 16
 4.8 Topic modeling .. 16

CHAPTER 4 EXPERIMENT DESIGN AND RESULTS .. 18

 5.1 Data and tools .. 18
 5.2 Pre-processing .. 19

iii

 5.3 One error at a time ... 20
 5.3.1 Experimental design .. 20
 5.3.2 Findings .. 25

 5.4 Two errors at a time with topic modeling .. 29
 5.4.1 Experimental design .. 29
 5.4.2 Findings .. 31

 5.5 Two errors at a time with MLC ... 33
 5.5.1 Experimental design .. 33
 5.5.2 Findings .. 34

 5.6 Limitations of the study ... 36

CHAPTER 5 CONCLUSION AND FUTURE WORK .. 37

REFERENCES .. 38

iv

LIST OF FIGURES

 Page

Figure 1.1. Compiler error messages for one missing semicolon error 1

Figure 4.1. Compiler error message when one close curly bracket missing 11

Figure 4.2. Sample DTM ... 13

Figure 4.3. Sample error messages for 2 errors present at a time 16

Figure 5.1. Summary of a DTM ... 21

Figure 5.2. Dendogram for semicolon type-B errors with 4 clusters 23

Figure 5.5. Prediction outcome for 1-error test data .. 25

Figure 5.6. Prediction results ... 26

Figure 5.7. Prediction results for 2-errors data .. 31

Figure 5.8. Sample XML file ... 34

Figure 5.9. Sample document in ARFF file ... 34

Figure 5.10. MLC model prediction results for 2-errors ... 35

v

 LIST OF TABLES

 Page

Table 5.1. Count of error documents ... 20

Table 5.2. Count of error documents in each sub-type .. 23

Table 5.3. Count of error documents in each ... 27

Table 5.4. Top 10 words for each main type of errors ... 29

Table 5.5. Count of each 2-error combination documents used for training 30

vi

NOMENCLATURE

SVM Support Vector Machine

LDA Latent Dirichlet Allocation

MLC Multi Label Classification

LR Label Ranking

v_u Variable undeclared

c_c Close curly

o_c Open curly

c_p Close parenthesis

vii

ACKNOWLEDGMENTS

I would like to thank my major professors Dr. Jin Tian and Dr. Wei Le for their

guidance and support throughout the course of this research. Their patience, valuable input

and inspiring advice led me through the years of my Master’s research. I would like to

sincerely express my respect and heartfelt gratitude to them.

I would also like to thank my POS committee member Dr. Samik Basu for being very

approachable and helpful throughout the course of this research and my Master’s.

In addition, I would like to thank my friends, colleagues, the department faculty and

staff for making my time at Iowa State University a wonderful experience. Finally, I would

like to thank my brother and my family for their encouragement, advice, respect, and love.

viii

ABSTRACT

 Compiler error messages facilitate software development and debugging by providing

cause and location of the error but due to various compiler bugs and inconsistencies it often

fails its purpose and negatively affect performance of both novice and experienced

programmers. An errant semicolon or brace can result in many errors reported throughout the

program. This study tries to statistically analyze open source code base to predict real errors

from different type of compiler error messages. It also tries to auto-fix these errors.

 At the high level, this study handles two cases (1) when one error is present in code,

(2) when two different errors are present in the code. We start with collecting different type

of random error messages for both the cases by random error generation in C projects. We

developed different models using document clustering, probabilistic topic modeling and

multi-label classification algorithms for training and predicting real errors using collected

error messages for both the cases.

 Our empirical evaluation on open-source projects has shown that our model correctly

predicts the real error in almost 95% cases, when only one error exists in program. In case of

two errors, model correctly predicts at least one error in almost 91% cases and both the errors

in almost 39% cases.

1

CHAPTER 1. INTRODUCTION

Compiler error message is the error message that compiler generates when code does

not conform to the syntax of the programming language. It describes the cause of error and

contains location of problematic part of code. Ideally these error messages should be enough

to understand the cause and fix the code, but in many cases it fails to facilitate that. An errant

semicolon or brace can result in many errors reported throughout the program. Following

figure 1.1 shows four compiler error messages corresponding to one missing semicolon at

different location. We can see that how inconsistent compiler error messages may get

depending on the error location.

Figure 1.1. Compiler error messages for one missing semicolon error

This mainly happen because of bugs in compiler and its inconsistency in error

reporting, this negatively affect the compiler’s usability along with developer’s productivity.

2

Syntax errors substantially affect new programmers learning rate [7]. Experienced

programmers also get frustrated by compiler errors and waste their efforts to uselessly

commenting out code to find out the cause of error [11]. Due to inconsistency in compiler

error messages, it will be really helpful if there exist a model which can predict the correct

causes from different compiler error messages and can be used to auto-fix these. If we can

make such method then this will improve developer’s productivity and will facilitate efficient

programming for both novice and experienced programmers. High volume of publicly

available open source code, advancement in the field of machine learning, data visualization

and high performance computing can be used to improve this compiler error reporting. Our

work primarily focuses on predicting real errors from different compiler error messages using

statistical analysis and machine learning algorithms. Using open source projects, we can

generate huge number of training data in the form of compiler error messages which can be

used to train, improve and test our models.

There are some main challenges in predicting correct errors from compiler error

messages. In some cases, compiler error in one line can get reported to different location

making it hard to interpret the real cause. In some cases, compiler error message does not

contain information of the fix for the error so it gets very hard to fix the program by just

using the error messages e.g. Error message like “missing expression” does not give enough

information of the real cause. In case of two or more errors it gets even more difficult to find

out the original errors separately as generated compiler error message can be combination of

error messages corresponding to individual errors when only one present at a time.

We propose an approach to apply machine learning techniques to improve the real

cause detection from compiler error messages. We build our machine learning models, train

3

it with randomly generated compiler error messages from freely available open source code

and then use it to predict error messages. This model can be used to find the real compiler

errors given the compiler error messages. Furthermore, it can also auto-fix some of the

errors. This will definitely help developer community to code efficiently and debug their

programs faster.

1.1. Contribution

Our main contribution for this work can be divided into two parts. In first part we

worked for the case of one error at a time, in this we made four main contributions. Firstly,

we developed a tool to generate all random compiler error messages and classify them into

one of the two types, type A and type B. Secondly, we performed document clustering on all

of the type B training data from previous step. Thirdly, we used different machine learning

algorithms to train our model with clusters created in previous step and perform classification

for new test data. In fourth step we tried to auto-fix some of the above errors.

In next part we worked for the case of two errors at a time and made following main

contributions. Firstly, we developed a tool to generate all random compiler errors with two

random errors at a time. Secondly, we applied probabilistic topic modeling to find the most

frequent words for each type of errors. In third step, we implemented slightly modified

version of Latent Dirichlet Allocation(LDA) algorithm for probabilistic topic modeling using

words distribution from previous step. In last step we tried finding two errors from test data.

For second part we also worked with multi-label classification to improve the performance.

In this we modified our error documents to ARFF and XML form and trained our MLC

model to predict two major errors in new error documents. To summarize, our work is a

4

maiden attempt towards applying statistical analysis and ML techniques for improving

compiler error detection and correction.

1.2. Outline of thesis

The reminder of the thesis is organized as follows. In chapter 2 we talk about related

work in compiler error analysis and application of statistical methods. Chapter 3 talkss about

some of the ML techniques that we used in this work. In chapter 4 we discuss our approach

towards solving the problem. Chapter 5 illustrates the design of experiments and results.

Finally, chapter 6 summarizes our contributions and future work.

5

CHAPTER 2. RELATED WORK

There has been numerous work towards studying behavior of novice and experienced

programmers to find out the importance and frequency of syntax errors in programs [5, 6, 7,

8]. The authors of [5] studied students’ behavior of repeated editing and compiling code. This

cycle often represents how students try to fix the program syntactically as opposed to

semantically. As per the studies in [5, 6] novice programmers make almost 10%-20%

missing semi-colons and misplaced braces errors. Undefined variable is also one of the most

occurring type of error, causing almost 24% errors in the study [9]. The authors of [10]

studied correlation between syntax errors and student’s grades. They studied almost 120

students and found that lower the incidence of syntax error corresponds to higher grades. So

syntax errors can negatively affect student’s performance. The authors of [11] studied how

programmers approach towards fixing syntax errors. They found that experienced

programmers rely on some strategies to fix syntax errors, in case when these strategies fail

these programmers also makes erratic changes in the program to fix the programs which is

similar to novice programmers. These all studies show that syntax errors significantly affect

performance of both novice and experienced programmers and waste lot of efforts and time.

Compiler warning and error messages indicates likely programming mistakes that

developer makes. It contains cause of the error message and the location of it in the program.

E.g. “adoc.c:333:14: error: expected ';' at end of declaration”. Although these compiler

diagnostics are widely used, it may contain bugs. These bug can negatively affect the

debugging efforts. Study in [12] tries to test compilers’ diagnostic support. This work firstly

generates random errors into program leading to different compiler warnings. Secondly for

6

different compliers it parses generated warnings and align them. Lastly it checks the

inconsistencies between error reporting for different compliers.

N-gram language models have been used to improve code auto completion

performance [2, 3] and find syntax errors [4]. The authors of [4] try to improve compiler

syntax error location reporting and find the actual source of syntax errors by relying on

consistency of software, they have assumed that valid source code is very natural, repetitive

and unsurprising. So this was exploited by N-gram language model of lexed source code

tokens. Here authors trained a model with compilable source code token sequences and used

this model to evaluate new code and see how frequently those sequences appear. Source code

which does not compile should be surprising for the model. They have used existing software

as a corpus of compilable and working software. This work tries to use the consistency of

programs but does not evaluate how error messages are related and can be exploited to

improve the error detection. Although it is possible to have some consistency between

programs for a particular projects and its versions but it is less common to have such

inconsistency between different projects by different users.

The authors of [1] surveyed and found that there exists a huge amount of freely

available high quality programs in code repositories such as Github. Different statistical

reasoning can be applied to study different properties of program. These program properties

can be either sematic or syntactic. In this work they transform the training data and create

conditional random field model [13] then in prediction phase, test program was converted to

dependency network and Maximum a Posteriori (MAP) inference was applied to infer the

unknown properties from the known properties.

7

Authors of [14] has presented a new code metric, charm. Charming code is code that

attracts the error messages from other part of program to itself. So there exist some part of

code which shows more error messages even though it does not contain error. This lead to

wrong error location reporting. In this work random mutations have been done to generate

different type of errors at different locations. This is interesting concept as it gives a strong

reason for wrong error location reporting.

8

CHAPTER 3. BACKGROUND

In this chapter we will define some of the algorithms and machine learning

techniques that we will use as part of this study. Section 3.1 talks about hierarchical

clustering. Section 3.2 talks about support vector machines. Section 3.3 discusses about

probabilistic topic modeling. Section 3.4 talks about MLC.

3.1. Hierarchical clustering

Clustering is grouping similar documents into one clusters and dissimilar document

into separate cluster. It tries to build a tree-based hierarchical taxonomy (dendogram) from a

set of documents. We do not need to provide number of clusters, k, for dendogram creation.

We can cut the dendogram tree into separate required number of clusters once we have the

dendogram. There are two main types of hierarchical clustering

1. Agglomerative – It is a bottom-up approach. In this algorithm first start with considering

each documents as a separate cluster and merging two most similar clusters iteratively. It

ends when there is only one cluster left and return one dendogram tree.

2. Divisive – It is a top-down approach. In this algorithm first start with considering all

documents as part of one cluster and recursively split the clusters based on the dissimilarity

between documents. It ends when there is no more splitting possible.

3.2. Support vector machines

SVM[27] is a supervised machine learning technique which perform classification by

constructing an optimal separating hyperplane. It finds the support vectors first, which are the

9

nearest training data points. Secondly it tries to find a separating hyperplane by maximizing

the distance between support vectors and the plane. Larger the distance between support

vectors and plane, the lower the classification error. It trains the classifier using training data

and find the separating hyperplane. Once we have the plane it tries to map the test data and

based on the sides it decides classes for test data.

3.3. Probabilistic topic modeling

The main objective of probabilistic topic modeling is to find hidden topics across a

collection of documents. It is a statistical method that analyze the words of the original text

documents to discover the themes and the relation between them. Author of [15, 26] talks

about probabilistic topic models and presents simplest topic modeling algorithm, latent

dirichlet allocation (LDA). The main idea behind LDA is that documents exhibit multiple

topics. It randomly chooses distribution over topics within documents and reassigns words to

topic based on the probabilities across all the documents. It gives us word distribution of each

topic using which we can decide what are the key topics that belongs to each document. We

will talk more about topic modeling in next chapters.

3.4. Multi-label classification

MLC[19, 22] is a machine learning technique which tries to assign multiple target

labels to each document into a corpus of documents. There exist two different approaches for

MLC. First is problem transformation methods which try to transform the multi-label

classification into binary or multiclass classification problems. Second method, algorithm

adaptation, try to adapt multiclass algorithms so they can be applied directly to the problem.

10

CHAPTER 4. ERROR DETECTION

In this chapter, we present our approach to predict the real errors using compiler error

messages by applying statistical methods on open-source projects. In the following sections

we will discuss the main steps towards achieving this goal. Section 4.1 talks about our

terminology for classifying errors into one of the two types. In section 4.2 we define

document term matrix. Section 4.3 discusses document clustering on error documents.

Section 4.4 talks about how we analyze clusters which come as a result of clustering. Section

4.5 talks about training machine learning models with the clusters and predicting clusters for

new error documents. In section 4.6 we discuss our second part of study, 2 errors at a time.

Section 4.7 talks about finding word distribution for common error types. In the end section

4.8 talks about probabilistic topic modeling.

4.1. Type of error

Compiler error messages are very diverse and may contain multiple useful

information related to error-fix. Based on the information provided by compiler error

messages we can divide the them into two type -

Type A - Compiler error messages in which first error message can be parsed to get

the correct fix for the error along with the location. exp – “aof.c:1130:37: error: expected ';'

after goto statement”

Type B – Compiler error messages which does not have enough information which

can be find by directly looking at the error messages itself and the can be used to fix for the

errors. For example, if we take C code provided into following snippet and remove the

11

second last close curly bracket, it generates compiler error message, as shown in figure 4.1. It

contains multiple errors even though there is only one error present. So we need further

analysis of such error messages to correctly predict error type.

for (i = 0; i < bn; i++)
{
bf_key_init(&state, (char_u *)(bf_test_data[i].password),
 bf_test_data[i].salt,
 (int)STRLEN(bf_test_data[i].salt));
if (!bf_check_tables(state.pax, state.sbx, bf_test_data[i].keysum))
 err++;

/* Don't modify bf_test_data[i].plaintxt, self test is idempotent. */
memcpy(bk.uc, bf_test_data[i].plaintxt, 8);
bf_e_cblock(&state, bk.uc);
if (memcmp(bk.uc, bf_test_data[i].cryptxt, 8) != 0)
{
 if (err == 0 && memcmp(bk.uc, bf_test_data[i].badcryptxt, 8) == 0)
 EMSG(_("E817: Blowfish big/little endian use wrong"));
 err++;
}
}

Figure 4.1. Compiler error message when one close curly bracket missing

So based on above classification we can skip type A error documents as they don’t

need any other processing to predict the real error. We will focus on type B errors only in this

study, and next steps will be applied on these errors.

4.2. Document term matrix

Document term matrix (DTM) is a numerical matrix which contains frequency of all

the different terms across a group of documents. In the first part of study we work with the

12

type B error message documents corresponding to one error at a time. We first create a

corpus of all the documents that need clustering. We then apply pre-processing on the corpus.

Later a DTM is created corresponding the corpus which contain all the terms as the columns,

documents as the row and values are the frequency of term in the document. We also

normalized the frequency value across the corpus. We used Term frequency–Inverse

document frequency, tfidf for this. It is a statistical measure used to evaluate how important a

term t is to a document d in a collection or corpus D

tfidf(t,d,D) = tf(t,d)*idf(t,D)

where,

tf(t,d), term frequency – It is frequency of term t in document d

and

idf(t,D), inverse document frequency – It is information provided by term t across all

the documents D, it shows how common or rare term t is across corpus D. It can be obtained

by taking logarithm quotient of division of the total number of documents by the number of

documents containing the term t.

Figure 4.2 shows a sample DTM where each rows represents all the documents in the

corpus and columns represent unique terms across corpus. Each value is represents tfidf

calculated as mentioned before.

Figure 4.2. Sample DTM

13

4.3. Document clustering

Once we have done pre-processing and DTM is created, we can perform document

clustering on the corpus. Document clustering [25] is unsupervised learning method which

group similar documents together into separate cluster. There are many algorithms available

for document clustering but we found hierarchical clustering to be best for our experiments.

It always gives same resultant clusters every time we run clustering on data, this was one of

the main reason behind using hierarchical clustering algorithm. So for clustering first we try

to find optimal number of clusters k that can be make from given corpus and then apply

hierarchical clustering algorithm on it. Main reason for clustering is to find sub-types of

errors based on the similarity of error messages for each sub-type.

We have used R package, NbClust, for finding k. It tries to vary different number of

clusters, distance measure and clustering algorithm to find the optimal number of clusters. It

also uses Silhouette of the data to check how closely data instances are matched within

cluster and how loosely with instances in neighboring clusters.

Once we have cluster count k, we cut the dendogram tree into k clusters. This

clustering gives us all the sub-types of that particular error. We repeat this clustering for all

of the five main error types and calculate individual sub-types.

4.4. Cluster analysis

Once we have all the document grouped into different sub-type clusters, we manually

try to find what can be the cause of errors for the documents in one cluster. Once we finalize

one error for each cluster we decide the fix for the error, if possible. In the end we have

written one Java program which contains all the possible fixes for different errors that we

14

found after cluster analysis. So we can use this for fixing the program based on the cluster

information of new error document. For fixing, our auto-fix Java program uses cluster

information and based on that it calls the appropriate fixing module and make changes in the

original file. It parses approximate error location and file name from the original error

message. Suppose for one sub-type most of the error messages were similar to error message

“called object type is not a function or function pointer” and were generated when two

function are called one after another and ‘;’ is missing after first call. So in this case, our

auto-fix program takes error message and sub-type information as input and based on the

error details in error document and sub-type information it tries to insert ‘;’ at correct

location to fix the program. If we could not find proper fix for any sub-type, we did not make

any changes in file and displayed the sub-type information without fixing it.

4.5. Training model and prediction

After we have enough cluster information for each sub-type of compiler error, we can

train a prediction model with error message documents as training data and use this model

for predicting clusters for new test error documents. We tried different classification

algorithms and finally found Support Vector Machine (SVM) [27] to be the best and that is

why used SVM for training the model. SVM is a supervised machine learning

technique which perform classification by constructing an optimal separating hyperplane. We

randomly divided the data into two parts, train and test dataset. Once we trained the model on

the train dataset we used test dataset to predict the clusters. From this model we were able to

predict correct cluster and probability of the assignment. We repeated this process multiple

times by shuffling the data and creating training and test data-set. Once we have the cluster

15

information for new error document, we used java program written in section 4.4 to auto fix

the error, as many as possible.

4.6. Handling multiple error

It is very common to have more than one error in the program. In this case when we

compile the program, compiler error can be a combination of error messages corresponding

to individual error. It makes it hard to predict cause from the compiler error messages alone.

A sample error message document will look like as figure 4.3. It contains multiple errors and

locations.

Figure 4.3. Sample error messages for 2 errors present at a time

 To handle the case when we have two errors in the program we applied probabilistic

topic modeling to our error messages. If we consider two errors as two topics and use

corresponding word distribution to find topics, then it can help us finding the errors from

error documents.

4.7. Finding word distribution

Any error can be represented by some of the key words that frequently occur in error

messages when that particular error is present in the code. So first of all, we try to find word

16

distribution or most common words for each main error type. For this we use our error

documents of one error at a time from previous steps and apply Latent Dirichlet Allocation

(LDA) on corpus for probabilistic topic modeling. It tries to find what words are most

probable for given errors across all the documents. This gives us top k words for each main

error type.

4.8. Topic modeling

Once we have top k words for each individual error type, we can use this to find two

errors into 2-error documents. We have implemented modified version of latent Dirichlet

allocation algorithm. In this each error type corresponds to one topic and we are using these

topics, for initializing the words in error document, based on the topic distribution. First we

train our model with training data-set. For corpus of train data-set documents D, let d is a

document and t is a term. We first initialize each word with a topic based on the topic

distribution. After this we calculate following probabilities

• p(topic t | document d) - proportion of words in document d that are currently

assigned to topic t

• p(word w | topic t) - proportion of assignments to topic t over all documents that

come from this word w

Based on the resultant probability of both probabilities, we reassign words to most

probable topics. For this assignment, algorithm uses Gibbs sampling [20]. We repeat this

process multiple time. After large number of iterations, once no more change in allocation we

stop the reallocation.

17

For testing and evaluation on test data-set. We start with initializing words with

corresponding topics based on the topic distribution. Later we calculate both of the above

mentioned probabilities for words in test documents and re-allocate words to topics based on

the resultant probability. After large number of iterations, once no more change in allocation

we stop the reallocation and try to calculate two most occurring topics in each document. For

this calculation we count the words in one document and check which two topics have most

number of words mapped to it. Those two topic correspond to most probable two errors that

generated the given compiler error document.

18

CHAPTER 5. EXPERIMENTAL DESIGN AND RESULTS

 In the following sub-sections, we will discuss our experiments and major findings.

Section 5.1 gives details about data and tools used for this study. Section 5.2 talks about pre-

processing steps taken to clean the data. Section 5.3 gives details about our approach for

handling one error at a time cases. Section 5.4 talks about how we handle case when two

different errors are present in the program, using topic modeling. Section 5.5 talks about our

approach for previous two error cases using MLC. In the end section 5.6 discusses limitation

of this study.

5.1. Data and tools

Our study focuses on projects in C language. We have taken open-source projects

from Github for this study. We have also picked 5 most common errors based on study in [9].

All the preprocessing and data collection programs are written in Java. R programming

language is used for statistical analysis and model creation. Data collection for this study is

done in two parts. In first part we have developed a tool which take a C project and type of

error and then randomly generate one error, compile the program and collect all of the

compiler error messages in one text document. To divide the errors into two types our

programs also try to parse and fix the error using first compiler error message only. If it is

fixable error, then it is marked as type A error otherwise type B error. Only type B error

documents are used for further processing. We used tm package [23] in R for all of the text

mining and clustering. For building the model, training and evaluation mainly we have used

RTextTools package [24] in R.

19

In second part, we have developed another program which takes a C project and two

different errors. In this program both the errors are randomly generated in one of the file in

the project. After this, project is compiled and all the compiler error messages are collected

in separate text document. These documents are used for further processing. We used Java

and R for topic modeling. To work with MLC, we have used Java based open source tool,

Mulan [21].

5.2. Pre-processing

Data pre-processing is important step towards statistical analysis. In our study each

error message contains many unnecessary terms and information that would not help in

document clustering as it does not add value towards classification. So to clean this noise we

performed some common pre-processing and some domain specific pre-processing. Main

steps involved in pre-processing are as follows –

• Removing file name and location – As it does not provide any information about the

error and cannot be use for classification

• Converting to lower case – To avoid duplicate counting of same words e.g. “Text” is

equal to “text”

• Removing all the numbers – No information about errors and common across

different text documents

• Removing punctuation and whitespaces - No information about errors and common

across different text documents

• Removing some domain specific frequently occurring words e.g. error, ‘int’ - No

information about errors and frequently occur across different text documents

20

• Changing some symbols to words based on importance e.g. ‘{’ to closecurly – So that

English string can contribute towards classification

5.3. One error at a time

In this part we focus on the case when we have single error present in the program.

We randomly add one compiler error and try to find that error using compiler error message

generated. We have used document clustering and SVM for this part of study.

5.3.1. Experimental design

In this we first tried to collect error documents corresponding to both the types for 5

main errors - semicolon missing, undeclared variable, close curly bracket missing, open curly

bracket missing, closing parenthesis missing, as we discussed in section 4.1. Each error

documents contains all the compiler error messages generated by the compiler for one error.

Table 5.1 shows count of type A and type B errors for each of the five errors for both the

projects.

Table 5.1. Count of error documents

Error Type Subtype
Count of error

documents (project 1)

Count of error

documents (project 2)

Semicolon missing

Type A 9610 10582

Type B 460 624

Undeclared Variable

Type A 0 0

Type B 507 277

21

Table 5.1. (continued)

Close curly bracket
missing

Type A 0 48

Type B 2219 8357

Open curly bracket
missing

Type A 0 0

Type B 4461 4583

Closing parenthesis
missing

Type A 7161 5945

Type B 1078 1209

Once we have enough data points, we disregard type A error messages as no further

processing require for fixing these errors. In next step, we applied pre-processing on type B

errors, as we discussed in section 5.2. Following is the example of an error message before

and after pre-processing –

“aof.c:238:5: error: called object type 'int' is not a function or function pointer” à

“called object type is not a function or function pointer”

As discussed in section 4.2, once our data is cleaned we convert it to DTM for further

processing. Figure 5.1 shows summary of one of the DTM

Figure 5.1. Summary of a DTM

Once DTM is created, we applied hierarchical clustering to both of the project

individually using hclust package to find all the sub-types of errors, as discussed in section

22

4.3. We calculated optimal number of clusters as per section 4.3 and used this to cut the

dendogram tree into separate clusters. Each sub-type represents one kind of error messages

that can be generated using one particular compiler error.

We manually checked each cluster and tried to find if there is a consistency between

all the error documents in one cluster. Also if there exist some pattern between the real

compiler errors corresponding to error documents in one cluster. If we found a pattern, we

decided a fix for the errors within each cluster. If no pattern can be found, then we marked

that cluster as cannot be auto-fixed cluster. If we take example of one cluster that we found

as a sub-type of semicolon missing error.

e.g. cluster 1 – It contains compiler errors with same pattern where ‘;’ is missing in the line

just before value pointer as shown in the following code. Here if we have ‘;’ from the end of

the first line then the corresponding error message “invalid operands to binary expression”

belong to cluster 1.

sec = when_sec;
*ms = when_ms;

Once we have the pattern, we can decide the fix for this cluster and auto-fix the error by

adding missing semicolon in the line just before the value pointer in the end of first line.

 Similarly, we divided all of the error documents into different clusters and based on

the pattern in the compiler error messages within each clusters we marked them if they can

be auto-fix or not.

Figure 5.2 shows dendogram tree for semicolon type errors. We created similar

dendogram for all of the five error types and divided them into separate clusters.

23

Figure 5.2. Dendogram for semicolon type-B errors with 4 clusters

Table 5.2 shows count of error documents in each sub-types for type-B errors of all 5

main type of errors. It also shows if any sub-type is auto-fixable or not. We created auto-fix

modules for sub-types of 2 main types of errors. For remaining 3 type of errors we marked

them as could not be auto-fix based on the sub-type information, as we could not find

significant pattern within one sub-type.

Table 5.2. Count of error documents in each sub-type

Error Type Subtype

Count of error

documents

(project 1)

Count of error

documents

(project 2)

Auto-fixable

Semicolon
missing

1 38 122 Yes

24

Table 5.2. (continued)

2 89 163 Yes

3 82 220 Yes

4 251 119 Yes

Close curly
bracket missing

5 2148 8357 No

Open curly
bracket missing

6 2727 4583 No

Closing
parenthesis

missing

7 415 228 Yes

8 466 655 Yes

9 197 326 Yes

Undeclared
Variable

10 36 77 No

11 456 598 No

12 15 51 No

So once all the sub-types of main error-types were found, we divided our error

documents into two sets with 9:1 ratio and used them as training and test dataset respectively,

we used training dataset to train our model, as discussed in section 4.5. SVM was used to

build the classification model using all of the subtypes with RTextTools package from R.

Once we have the trained model, we used it to predict sub-types for new error documents in

the test dataset. Once we predicted sub-types, we tried auto fixing the errors by passing the

sub-type information and error document to our program for auto-fixing. If error is auto-

fixable then it fixes the error and make changes into the file otherwise it prints the error sub-

type for the error document, as discussed in section 4.4.

25

5.3.2. Findings

In this part of study for one error documents, we worked with total five main errors

and made 12 sub-types of these errors. After training the model with combined data we tested

our model with test data, which was also combination of all 12 sub-types.

• test data set size – 1550

In this figure 5.5 we can see number of test documents mapped to different clusters

corresponding to different subtypes. The green points show the real cluster and count of

documents belonging to that cluster. The red points show the predicted clusters and count of

documents belonging to that cluster. We have created total 12 sub-types.

Figure 5.5. Prediction outcome for 1-error test data

26

Once we predicted sub-type clusters we checked how many error documents are

correctly matched so we compared the predicted and actual sub-type for each of the test

document. Following plot 5.6 shows correctly predicted vs incorrectly predicted sub-type

counts for both of the projects. Orange shows percentage of correctly predicted error

documents and blue shows percentage of incorrectly matched error documents.

Figure 5.6. Prediction results

In last step we tried auto-fixing errors using predicted sub-type and error document

for a sub-set of documents for each sub-type, where we correctly predicted sub-type.

Following table 5.3 shows results for our auto-fixing tool. In this we used a small number of

test documents for each sub-type and corresponding correctly predicted sub-type information

to auto-fix the program, as per section 4.4. If error is auto-fixable then table shows the

27

percentage of correctly auto-fixed error documents otherwise it shows that error cannot be

auto-fix using sub-type information.

Table 5.3. Count of error documents in each

Error Type Subtype

Count of

error

documents

(project 1)

Auto-

fixable(%) /

Not auto-

fixable

Count of

error

documents

(project 2)

Auto-

fixable(%) /

Not auto-

fixable

Semicolon
missing

1 30 83.3 30 76.7

2 30 76.7 30 80

3 30 76.7 30 80

4 30 80.0 30 86.7

Close curly
bracket
missing

5 100
Not auto-

fixable
100

Not auto-

fixable

Open curly
bracket
missing

6 100
Not auto-

fixable
100

Not auto-

fixable

Closing
parenthesis

missing

7 30 66.7 30 76.7

8 30 86.7 30 80

9 30 76.7 30 66.7

Undeclared
Variable

10 30
Not auto-

fixable

30
Not auto-

fixable
11 100 100

12 15 15

28

So to conclude our finding for the case when we have one error at a time in the

program –

• We divided our random error messages into two types and as type-A error messages

can be auto fix without any further analysis, we discarded those as part of this study

• For type-B error documents first we tried predicting sub-type information and our

prediction results are almost 95% correct. So we correctly predicted sub-type for 95%

of test data.

• Based on the correctly predicted sub-type information we tried auto-fixing errors in

the program, we implemented auto-fixing module for sub-types of two main errors

and fixed programs correctly in almost 80% of test error documents. For rest 3 errors

we could not find a fix based on the sub-type information.

29

5.4. Two errors at a time with topic modeling

In this part we focus on the case when two different compiler errors are present at the

same time in the program. We add two compiler errors at random locations and try to find

those errors using compiler error message generated. We have used probabilistic topic

modeling for this part of study.

5.4.1. Experimental design

Firstly, we tried finding word distribution corresponding to main four error types. As

discussed in section 4.7, we used type-B single error documents from first part of study and

applied probabilistic topic modeling to find most common k-words for each error type. Table

4.3 shows word distribution for each main error type. We ignored “semicolon missing” error

in this part of study because count of type-B errors for semicolon missing type was relatively

very low as compared to count of type-A errors and for finding word distribution we were

using only type-B error messages. Table 5.4 shows word distribution for each of the four

error types.

Table 5.4. Top 10 words for each main type of errors

Open curly

bracket missing

Close parentheses

missing

Variable

undeclared

Close curly

bracket missing

identifier closingbracket undeclared definition

types macro identifier closingbracket

closing expression use function

function invocation member allowed

extraneous function type expression

30

Table 5.4. (continued)

type functionlike invalid labels

brace allowed named default

declarator unterminated increment aka

use definition expression switch

parameter closeparentheses declaration type

Once we got the word distribution for all of the 4 main type errors we made 6

combinations of error pair from these 4 errors. First we generate random error messages

corresponding to each of the 6 pairs. Table 5.5 shows count of each 2-error combination

documents, generated from one project. Later we implemented modified Latent Dirichlet

Algorithm, as discussed in section 4.8, for further probabilistic topic modeling. In this we

used our individual error word distribution and two error documents from table 5.5 to train

the model.

Table 5.5. Count of each 2-error combination documents used for training

Error Combination Count

Close Curly,

Open Curly
600

Close Curly,

Close Parenthesis
2792

Close Curly,

Variable undeclared
3200

31

Table 5.5. (continued)

Open Curly,

Close Parenthesis
2786

Open Curly,

Variable undeclared
3197

Variable undeclared,

Close Parenthesis
3200

5.4.2. Findings

We created a test data set for each of the 6 pairs. We used 600 total number of test

documents of each type of pair for evaluating our model once it is trained with training

dataset. We count the words in each test document and check which two topics have most

number of words mapped to it. Those two topic correspond to most probable two errors that

generated the given compiler error document, as we explained in section 4.8.

Figure 5.7 shows results for percentage of correct predictions for each of the six pair.

It shows percentage values with different colors for different matching e.g. green color shows

we correctly predicted both the errors in each document etc.

32

Figure 5.7. Prediction results for 2-errors data

So to conclude our findings for topic modeling for the case when we have two

different errors at the time in the program –

• We predicted at least one error correctly in almost 91.3% of documents.

• We predicted both the errors correctly in almost 35.5% of documents.

• We could not predict any of the error out of 2 correctly in almost 8.7% documents. As

some error messages can be common between different compiler errors so this affect

our performance while predicting separate errors using error messages.

33

5.5. Two errors at a time with MLC

In this part also we focus on the case when two different compiler errors are present

at the same time in the program. We randomly add two compiler errors and try to find those

errors using compiler error message generated. We have used Multi-Label Classification for

this part of study.

5.5.1. Experimental design

In this part, we implemented Multi-Label Classification on the two-error documents

and for this we used same training data as mentioned in table 5.5. For this, first we created a

training dataset which included combined pre-processed 2-error messages and 4 labels

corresponding to 4 errors with values (0,1). Labels has value 1 when corresponding error is

present in the code. So two of the labels has values 1 and remaining two has values 0. We

used Mulan [21], a Java based open-source software devoted to multi-label data mining, for

our study. Mulan requires two text files for the specification of a multi-label dataset first is

XML file specifying all the labels and second is ARFF file which contains actual data that

needs classification along with the labels which should be specified as nominal attributes

with two values "0" and "1" indicating absence or existence of the label respectively. So we

transformed our two error training documents into required ARFF and XML datasets using

mldr package from R and applied MLC. Figure 5.8 shows a sample XML file for the training

dataset. Figure 5.9 shows one of the document in ARFF file, here last 4 values represent 4

labels and values of labels shows which 2 errors are present.

34

Figure 5.8. Sample XML file

Figure 5.9. Sample document in ARFF file

Once our training data is ready, we train a classifier model with it using RAkEL

algorithm. After training the classifier, we performed prediction for new unlabeled 2-error

data. From the labels returned from the classifier we decided the two most relevant labels for

each document. Those 2 labels correspond to 2 type of errors present in program for each of

the error document.

5.5.2. Findings

We used same test dataset, 6 pair combination out of 4 main errors, as previous

section for evaluating our MLC model once it is trained with training dataset. We predicted

two most probable labels in each test document. Those two labels correspond to most

probable two errors that generated the given compiler error document. Figure 5.10 shows

results for percentage of correct predictions for each of the six pair, individually. It shows

percentage values with different colors for different matching e.g. green shows we correctly

predicted both the errors etc.

35

Figure 5.10. MLC model prediction results for 2-errors

So to conclude our findings for MLC for the case when we have two different errors

at the same time in the program –

• We predicted at least one error correctly in almost 86.05% of documents.

• We predicted both the errors correctly in almost 39.02% of documents.

• We could not predict any of the error out of 2 correctly in almost 13.95% documents.

As some error messages can be common between different compiler errors so this

affect our performance while predicting separate errors using error messages.

36

5.6. Limitations of the study

 This study uses five most common compiler errors and corresponding compiler error

messages but it is possible that when we add more type of errors, performance of classifier

and model may get impacted and results may get changed. This study focuses on C

programming language and GCC compiler, so results may change for different programming

language and compiler.

37

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

 Compiler error message reporting is not accurate enough and because of incorrect or

ambiguous errors, developer waste significant efforts. We have described an approach to

predict some common compiler errors, that developers usually make, using statistical

analysis and machine learning techniques on large open-source code base. We have worked

with five main errors and tried to handle the cases when one error or two errors out of these

five are present in code. We have experimented with document clustering, probabilistic topic

modeling and multi-label classification algorithms. Our empirical evaluation on open-source

projects has shown that our model correctly predicted the real error in almost 95% cases,

when only one error exists. In case of two errors, we correctly predicted at least one error in

almost 91% cases and both the errors in almost 39% cases.

Our future work includes (1) work on improving the performance when predicting

multiple errors, (2) working with more types of errors and (3) working with cases when

number of errors present in the code is unknown.

38

REFERENCES

[1] Raychev, Veselin, Martin Vechev, and Andreas Krause. "Predicting program properties
from big code." In ACM SIGPLAN Notices, vol. 50, no. 1, pp. 111-124. ACM, 2015.

[2] M. Allamanis and C. Sutton. Mining source code repositories at massive scale using
language modeling. In Working Conference on Mining Software Repositories (MSR),
2013.

[3] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software.
In International Conference on Software Engineering (ICSE), 2012.

[4] J. Campbell, A. Hindle, and J. N. Amaral. Syntax errors just aren’t natural: Improving
error reporting with language models. In Working Conference on Mining Software
Repositories (MSR), 2014.

[5] Jadud, Matthew C. "Methods and tools for exploring novice compilation behaviour." In
Proceedings of the second international workshop on Computing education research,
pp. 73-84. ACM, 2006.

[6] Jadud, Matthew C. "A first look at novice compilation behaviour using BlueJ." Computer
Science Education 15, no. 1 (2005): 25-40.

[7] L. McIver. The effect of programming language on error rates of novice programmers. In
12th Annual Workshop of the Psychology of Programming Interest Group, pages
181–192. Citeseer, 2000.

[8] Garner, Sandy, Patricia Haden, and Anthony Robins. "My program is correct but it
doesn't run: a preliminary investigation of novice programmers' problems." In
Proceedings of the 7th Australasian conference on Computing education-Volume 42,
pp. 173-180. Australian Computer Society, Inc., 2005.

[9] Denny, Paul, Andrew Luxton-Reilly, and Ewan Tempero. "All syntax errors are not
equal." In Proceedings of the 17th ACM annual conference on Innovation and
technology in computer science education, pp. 75-80. ACM, 2012.

[10] Tabanao, Emily S., Ma Mercedes T. Rodrigo, and Matthew C. Jadud. "Identifying at-
risk novice java programmers through the analysis of online protocols." In Philippine
Computing Science Congress, pp. 1-8. 2008.

[11] Kummerfeld, Sarah K., and Judy Kay. "The neglected battle fields of syntax errors." In
Proceedings of the fifth Australasian conference on Computing education-Volume 20,
pp. 105-111. Australian Computer Society, Inc., 2003.

[12] Sun, Chengnian, Vu Le, and Zhendong Su. "Finding and analyzing compiler warning
defects." In Proceedings of the 38th International Conference on Software
Engineering, pp. 203-213. ACM, 2016.

[13] Lafferty, John, Andrew McCallum, and Fernando CN Pereira. "Conditional random
fields: Probabilistic models for segmenting and labeling sequence data." (2001).

[14] Campbell, Joshua C., and Abram Hindle. The charming code that error messages are
talking about. No. e1388. PeerJ PrePrints, 2015.

[15] Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet allocation." the
Journal of machine Learning research 3 (2003): 993-1022.

[16] Singhal, Amit. "Modern information retrieval: A brief overview." IEEE Data Eng. Bull.
24, no. 4 (2001): 35-43.

[17] Redis project. Available: https://github.com/antirez/redis
[18] Vim project. Available: https://github.com/vim/vim

39

[19] Tsoumakas, G., Katakis, I., Vlahavas, I. (2010) "Mining Multi-label Data", Data Mining
and Knowledge Discovery Handbook, O. Maimon, L. Rokach (Ed.), Springer, 2nd
edition, 2010.

[20] Resnik, Philip, and Eric Hardisty. Gibbs sampling for the uninitiated. No. CS-TR-4956.
MARYLAND UNIV COLLEGE PARK INST FOR ADVANCED COMPUTER
STUDIES, 2010.

[21] Mulan tool. Available: http://sourceforge.net/projects/mulan/
[22] Tsoumakas, Grigorios, and Ioannis Katakis. "Multi-label classification: An overview."

Dept. of Informatics, Aristotle University of Thessaloniki, Greece (2006).
[23] tm package. Available: http://CRAN.R-project.org/package=tm
[24] RTextTools. Available: https://cran.r-project.org/web/packages/RTextTools/index.html
[25] Steinbach, Michael, George Karypis, and Vipin Kumar. "A comparison of document

clustering techniques." In KDD workshop on text mining, vol. 400, no. 1, pp. 525-
526. 2000.

[26] Blei, David M. "Probabilistic topic models." Communications of the ACM 55, no. 4
(2012): 77-84.

[27] Wang, Lipo, ed. Support vector machines: theory and applications. Vol. 177. Springer
Science & Business Media, 2005.

	2016
	Syntax errors identification from compiler error messages using ML techniques
	Shubham K. Agrawal
	Recommended Citation

	Microsoft Word - Thesis_updated.doc

