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ABSTRACT 

 

 Compiler error messages facilitate software development and debugging by providing 

cause and location of the error but due to various compiler bugs and inconsistencies it often 

fails its purpose and negatively affect performance of both novice and experienced 

programmers. An errant semicolon or brace can result in many errors reported throughout the 

program. This study tries to statistically analyze open source code base to predict real errors 

from different type of compiler error messages. It also tries to auto-fix these errors. 

 At the high level, this study handles two cases (1) when one error is present in code, 

(2) when two different errors are present in the code. We start with collecting different type 

of random error messages for both the cases by random error generation in C projects. We 

developed different models using document clustering, probabilistic topic modeling and 

multi-label classification algorithms for training and predicting real errors using collected 

error messages for both the cases. 

 Our empirical evaluation on open-source projects has shown that our model correctly 

predicts the real error in almost 95% cases, when only one error exists in program. In case of 

two errors, model correctly predicts at least one error in almost 91% cases and both the errors 

in almost 39% cases.  
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CHAPTER 1. INTRODUCTION 

 

Compiler error message is the error message that compiler generates when code does 

not conform to the syntax of the programming language. It describes the cause of error and 

contains location of problematic part of code. Ideally these error messages should be enough 

to understand the cause and fix the code, but in many cases it fails to facilitate that. An errant 

semicolon or brace can result in many errors reported throughout the program. Following 

figure 1.1 shows four compiler error messages corresponding to one missing semicolon at 

different location. We can see that how inconsistent compiler error messages may get 

depending on the error location. 

 

 

Figure 1.1. Compiler error messages for one missing semicolon error 

 

This mainly happen because of bugs in compiler and its inconsistency in error 

reporting, this negatively affect the compiler’s usability along with developer’s productivity. 
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Syntax errors substantially affect new programmers learning rate [7]. Experienced 

programmers also get frustrated by compiler errors and waste their efforts to uselessly 

commenting out code to find out the cause of error [11]. Due to inconsistency in compiler 

error messages, it will be really helpful if there exist a model which can predict the correct 

causes from different compiler error messages and can be used to auto-fix these. If we can 

make such method then this will improve developer’s productivity and will facilitate efficient 

programming for both novice and experienced programmers. High volume of publicly 

available open source code, advancement in the field of machine learning, data visualization 

and high performance computing can be used to improve this compiler error reporting. Our 

work primarily focuses on predicting real errors from different compiler error messages using 

statistical analysis and machine learning algorithms. Using open source projects, we can 

generate huge number of training data in the form of compiler error messages which can be 

used to train, improve and test our models. 

There are some main challenges in predicting correct errors from compiler error 

messages. In some cases, compiler error in one line can get reported to different location 

making it hard to interpret the real cause. In some cases, compiler error message does not 

contain information of the fix for the error so it gets very hard to fix the program by just 

using the error messages e.g. Error message like “missing expression” does not give enough 

information of the real cause. In case of two or more errors it gets even more difficult to find 

out the original errors separately as generated compiler error message can be combination of 

error messages corresponding to individual errors when only one present at a time. 

We propose an approach to apply machine learning techniques to improve the real 

cause detection from compiler error messages. We build our machine learning models, train 
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it with randomly generated compiler error messages from freely available open source code 

and then use it to predict error messages. This model can be used to find the real compiler 

errors given the compiler error messages. Furthermore, it can also auto-fix some of the 

errors. This will definitely help developer community to code efficiently and debug their 

programs faster. 

 

1.1. Contribution 

Our main contribution for this work can be divided into two parts. In first part we 

worked for the case of one error at a time, in this we made four main contributions. Firstly, 

we developed a tool to generate all random compiler error messages and classify them into 

one of the two types, type A and type B. Secondly, we performed document clustering on all 

of the type B training data from previous step. Thirdly, we used different machine learning 

algorithms to train our model with clusters created in previous step and perform classification 

for new test data. In fourth step we tried to auto-fix some of the above errors.  

In next part we worked for the case of two errors at a time and made following main 

contributions. Firstly, we developed a tool to generate all random compiler errors with two 

random errors at a time. Secondly, we applied probabilistic topic modeling to find the most 

frequent words for each type of errors. In third step, we implemented slightly modified 

version of Latent Dirichlet Allocation(LDA) algorithm for probabilistic topic modeling using 

words distribution from previous step. In last step we tried finding two errors from test data. 

For second part we also worked with multi-label classification to improve the performance. 

In this we modified our error documents to ARFF and XML form and trained our MLC 

model to predict two major errors in new error documents. To summarize, our work is a 
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maiden attempt towards applying statistical analysis and ML techniques for improving 

compiler error detection and correction. 

  

1.2. Outline of thesis 

The reminder of the thesis is organized as follows. In chapter 2 we talk about related 

work in compiler error analysis and application of statistical methods. Chapter 3 talkss about 

some of the ML techniques that we used in this work. In chapter 4 we discuss our approach 

towards solving the problem. Chapter 5 illustrates the design of experiments and results. 

Finally, chapter 6 summarizes our contributions and future work. 
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CHAPTER 2. RELATED WORK 

 

There has been numerous work towards studying behavior of novice and experienced 

programmers to find out the importance and frequency of syntax errors in programs [5, 6, 7, 

8]. The authors of [5] studied students’ behavior of repeated editing and compiling code. This 

cycle often represents how students try to fix the program syntactically as opposed to 

semantically. As per the studies in [5, 6] novice programmers make almost 10%-20% 

missing semi-colons and misplaced braces errors. Undefined variable is also one of the most 

occurring type of error, causing almost 24% errors in the study [9]. The authors of [10] 

studied correlation between syntax errors and student’s grades. They studied almost 120 

students and found that lower the incidence of syntax error corresponds to higher grades. So 

syntax errors can negatively affect student’s performance. The authors of [11] studied how 

programmers approach towards fixing syntax errors. They found that experienced 

programmers rely on some strategies to fix syntax errors, in case when these strategies fail 

these programmers also makes erratic changes in the program to fix the programs which is 

similar to novice programmers. These all studies show that syntax errors significantly affect 

performance of both novice and experienced programmers and waste lot of efforts and time. 

Compiler warning and error messages indicates likely programming mistakes that 

developer makes. It contains cause of the error message and the location of it in the program. 

E.g. “adoc.c:333:14: error: expected ';' at end of declaration”. Although these compiler 

diagnostics are widely used, it may contain bugs. These bug can negatively affect the 

debugging efforts. Study in [12] tries to test compilers’ diagnostic support. This work firstly 

generates random errors into program leading to different compiler warnings. Secondly for 
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different compliers it parses generated warnings and align them. Lastly it checks the 

inconsistencies between error reporting for different compliers. 

N-gram language models have been used to improve code auto completion 

performance [2, 3] and find syntax errors [4]. The authors of [4] try to improve compiler 

syntax error location reporting and find the actual source of syntax errors by relying on 

consistency of software, they have assumed that valid source code is very natural, repetitive 

and unsurprising. So this was exploited by N-gram language model of lexed source code 

tokens. Here authors trained a model with compilable source code token sequences and used 

this model to evaluate new code and see how frequently those sequences appear. Source code 

which does not compile should be surprising for the model. They have used existing software 

as a corpus of compilable and working software. This work tries to use the consistency of 

programs but does not evaluate how error messages are related and can be exploited to 

improve the error detection. Although it is possible to have some consistency between 

programs for a particular projects and its versions but it is less common to have such 

inconsistency between different projects by different users. 

The authors of [1] surveyed and found that there exists a huge amount of freely 

available high quality programs in code repositories such as Github. Different statistical 

reasoning can be applied to study different properties of program. These program properties 

can be either sematic or syntactic. In this work they transform the training data and create 

conditional random field model [13] then in prediction phase, test program was converted to 

dependency network and Maximum a Posteriori (MAP) inference was applied to infer the 

unknown properties from the known properties.   
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Authors of [14] has presented a new code metric, charm. Charming code is code that 

attracts the error messages from other part of program to itself. So there exist some part of 

code which shows more error messages even though it does not contain error. This lead to 

wrong error location reporting. In this work random mutations have been done to generate 

different type of errors at different locations. This is interesting concept as it gives a strong 

reason for wrong error location reporting.  
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CHAPTER 3. BACKGROUND 

 

In this chapter we will define some of the algorithms and machine learning 

techniques that we will use as part of this study. Section 3.1 talks about hierarchical 

clustering. Section 3.2 talks about support vector machines. Section 3.3 discusses about 

probabilistic topic modeling. Section 3.4 talks about MLC. 

 

3.1. Hierarchical clustering 

Clustering is grouping similar documents into one clusters and dissimilar document 

into separate cluster. It tries to build a tree-based hierarchical taxonomy (dendogram) from a 

set of documents. We do not need to provide number of clusters, k, for dendogram creation. 

We can cut the dendogram tree into separate required number of clusters once we have the 

dendogram. There are two main types of hierarchical clustering 

1. Agglomerative – It is a bottom-up approach. In this algorithm first start with considering 

each documents as a separate cluster and merging two most similar clusters iteratively. It 

ends when there is only one cluster left and return one dendogram tree. 

2. Divisive – It is a top-down approach. In this algorithm first start with considering all 

documents as part of one cluster and recursively split the clusters based on the dissimilarity 

between documents. It ends when there is no more splitting possible. 

 

3.2. Support vector machines 

SVM[27] is a supervised machine learning technique which perform classification by 

constructing an optimal separating hyperplane. It finds the support vectors first, which are the 
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nearest training data points. Secondly it tries to find a separating hyperplane by maximizing 

the distance between support vectors and the plane. Larger the distance between support 

vectors and plane, the lower the classification error. It trains the classifier using training data 

and find the separating hyperplane. Once we have the plane it tries to map the test data and 

based on the sides it decides classes for test data. 

 

3.3. Probabilistic topic modeling 

The main objective of probabilistic topic modeling is to find hidden topics across a 

collection of documents. It is a statistical method that analyze the words of the original text 

documents to discover the themes and the relation between them. Author of [15, 26] talks 

about probabilistic topic models and presents simplest topic modeling algorithm, latent 

dirichlet allocation (LDA). The main idea behind LDA is that documents exhibit multiple 

topics. It randomly chooses distribution over topics within documents and reassigns words to 

topic based on the probabilities across all the documents. It gives us word distribution of each 

topic using which we can decide what are the key topics that belongs to each document. We 

will talk more about topic modeling in next chapters. 

 

3.4. Multi-label classification 

MLC[19, 22] is a machine learning technique which tries to assign multiple target 

labels to each document into a corpus of documents. There exist two different approaches for 

MLC. First is problem transformation methods which try to transform the multi-label 

classification into binary or multiclass classification problems. Second method, algorithm 

adaptation, try to adapt multiclass algorithms so they can be applied directly to the problem. 
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CHAPTER 4. ERROR DETECTION 

 

In this chapter, we present our approach to predict the real errors using compiler error 

messages by applying statistical methods on open-source projects. In the following sections 

we will discuss the main steps towards achieving this goal. Section 4.1 talks about our 

terminology for classifying errors into one of the two types. In section 4.2 we define 

document term matrix. Section 4.3 discusses document clustering on error documents. 

Section 4.4 talks about how we analyze clusters which come as a result of clustering. Section 

4.5 talks about training machine learning models with the clusters and predicting clusters for 

new error documents. In section 4.6 we discuss our second part of study, 2 errors at a time. 

Section 4.7 talks about finding word distribution for common error types. In the end section 

4.8 talks about probabilistic topic modeling.  

 

4.1. Type of error 

Compiler error messages are very diverse and may contain multiple useful 

information related to error-fix. Based on the information provided by compiler error 

messages we can divide the them into two type - 

Type A - Compiler error messages in which first error message can be parsed to get 

the correct fix for the error along with the location. exp – “aof.c:1130:37: error: expected ';' 

after goto statement” 

Type B – Compiler error messages which does not have enough information which 

can be find by directly looking at the error messages itself and the can be used to fix for the 

errors. For example, if we take C code provided into following snippet and remove the 
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second last close curly bracket, it generates compiler error message, as shown in figure 4.1. It 

contains multiple errors even though there is only one error present. So we need further 

analysis of such error messages to correctly predict error type. 

for (i = 0; i < bn; i++) 
{ 
bf_key_init(&state, (char_u *)(bf_test_data[i].password), 
        bf_test_data[i].salt, 
        (int)STRLEN(bf_test_data[i].salt)); 
if (!bf_check_tables(state.pax, state.sbx, bf_test_data[i].keysum)) 
    err++; 
 
/* Don't modify bf_test_data[i].plaintxt, self test is idempotent. */ 
memcpy(bk.uc, bf_test_data[i].plaintxt, 8); 
bf_e_cblock(&state, bk.uc); 
if (memcmp(bk.uc, bf_test_data[i].cryptxt, 8) != 0) 
{ 
    if (err == 0 && memcmp(bk.uc, bf_test_data[i].badcryptxt, 8) == 0) 
    EMSG(_("E817: Blowfish big/little endian use wrong")); 
    err++; 
} 
} 
 

 

Figure 4.1. Compiler error message when one close curly bracket missing 

So based on above classification we can skip type A error documents as they don’t 

need any other processing to predict the real error. We will focus on type B errors only in this 

study, and next steps will be applied on these errors. 

 

4.2. Document term matrix 

Document term matrix (DTM) is a numerical matrix which contains frequency of all 

the different terms across a group of documents. In the first part of study we work with the 



12 

 

type B error message documents corresponding to one error at a time. We first create a 

corpus of all the documents that need clustering. We then apply pre-processing on the corpus. 

Later a DTM is created corresponding the corpus which contain all the terms as the columns, 

documents as the row and values are the frequency of term in the document. We also 

normalized the frequency value across the corpus. We used Term frequency–Inverse 

document frequency, tfidf for this. It is a statistical measure used to evaluate how important a 

term t is to a document d in a collection or corpus D 

tfidf(t,d,D) = tf(t,d)*idf(t,D) 

where, 

tf(t,d), term frequency – It is frequency of term t in document d  

and  

idf(t,D), inverse document frequency – It is information provided by term t across all 

the documents D, it shows how common or rare term t is across corpus D. It can be obtained 

by taking logarithm quotient of division of the total number of documents by the number of 

documents containing the term t. 

Figure 4.2 shows a sample DTM where each rows represents all the documents in the 

corpus and columns represent unique terms across corpus. Each value is represents tfidf 

calculated as mentioned before. 

 

Figure 4.2. Sample DTM 
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4.3. Document clustering 

Once we have done pre-processing and DTM is created, we can perform document 

clustering on the corpus. Document clustering [25] is unsupervised learning method which 

group similar documents together into separate cluster. There are many algorithms available 

for document clustering but we found hierarchical clustering to be best for our experiments. 

It always gives same resultant clusters every time we run clustering on data, this was one of 

the main reason behind using hierarchical clustering algorithm. So for clustering first we try 

to find optimal number of clusters k that can be make from given corpus and then apply 

hierarchical clustering algorithm on it. Main reason for clustering is to find sub-types of 

errors based on the similarity of error messages for each sub-type. 

We have used R package, NbClust, for finding k. It tries to vary different number of 

clusters, distance measure and clustering algorithm to find the optimal number of clusters. It 

also uses Silhouette of the data to check how closely data instances are matched within 

cluster and how loosely with instances in neighboring clusters. 

Once we have cluster count k, we cut the dendogram tree into k clusters. This 

clustering gives us all the sub-types of that particular error. We repeat this clustering for all 

of the five main error types and calculate individual sub-types. 

 

4.4. Cluster analysis 

Once we have all the document grouped into different sub-type clusters, we manually 

try to find what can be the cause of errors for the documents in one cluster. Once we finalize 

one error for each cluster we decide the fix for the error, if possible. In the end we have 

written one Java program which contains all the possible fixes for different errors that we 



14 

 

found after cluster analysis. So we can use this for fixing the program based on the cluster 

information of new error document. For fixing, our auto-fix Java program uses cluster 

information and based on that it calls the appropriate fixing module and make changes in the 

original file. It parses approximate error location and file name from the original error 

message. Suppose for one sub-type most of the error messages were similar to error message 

“called object type is not a function or function pointer” and were generated when two 

function are called one after another and ‘;’ is missing after first call. So in this case, our 

auto-fix program takes error message and sub-type information as input and based on the 

error details in error document and sub-type information it tries to insert ‘;’ at correct 

location to fix the program. If we could not find proper fix for any sub-type, we did not make 

any changes in file and displayed the sub-type information without fixing it. 

 

4.5. Training model and prediction 

After we have enough cluster information for each sub-type of compiler error, we can 

train a prediction model with error message documents as training data and use this model 

for predicting clusters for new test error documents. We tried different classification 

algorithms and finally found Support Vector Machine (SVM) [27] to be the best and that is 

why used SVM for training the model. SVM is a supervised machine learning 

technique which perform classification by constructing an optimal separating hyperplane. We 

randomly divided the data into two parts, train and test dataset. Once we trained the model on 

the train dataset we used test dataset to predict the clusters. From this model we were able to 

predict correct cluster and probability of the assignment. We repeated this process multiple 

times by shuffling the data and creating training and test data-set. Once we have the cluster 
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information for new error document, we used java program written in section 4.4 to auto fix 

the error, as many as possible.  

 

4.6. Handling multiple error 

It is very common to have more than one error in the program. In this case when we 

compile the program, compiler error can be a combination of error messages corresponding 

to individual error. It makes it hard to predict cause from the compiler error messages alone. 

A sample error message document will look like as figure 4.3. It contains multiple errors and 

locations. 

 

Figure 4.3. Sample error messages for 2 errors present at a time 

 To handle the case when we have two errors in the program we applied probabilistic 

topic modeling to our error messages. If we consider two errors as two topics and use 

corresponding word distribution to find topics, then it can help us finding the errors from 

error documents. 

 

4.7. Finding word distribution 

Any error can be represented by some of the key words that frequently occur in error 

messages when that particular error is present in the code. So first of all, we try to find word 
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distribution or most common words for each main error type. For this we use our error 

documents of one error at a time from previous steps and apply Latent Dirichlet Allocation 

(LDA) on corpus for probabilistic topic modeling. It tries to find what words are most 

probable for given errors across all the documents. This gives us top k words for each main 

error type.  

 

4.8. Topic modeling 

Once we have top k words for each individual error type, we can use this to find two 

errors into 2-error documents. We have implemented modified version of latent Dirichlet 

allocation algorithm. In this each error type corresponds to one topic and we are using these 

topics, for initializing the words in error document, based on the topic distribution. First we 

train our model with training data-set. For corpus of train data-set documents D, let d is a 

document and t is a term. We first initialize each word with a topic based on the topic 

distribution. After this we calculate following probabilities 

• p(topic t | document d) - proportion of words in document d that are currently 

assigned to topic t 

• p(word w | topic t) - proportion of assignments to topic t over all documents that 

come from this word w 

Based on the resultant probability of both probabilities, we reassign words to most 

probable topics. For this assignment, algorithm uses Gibbs sampling [20]. We repeat this 

process multiple time. After large number of iterations, once no more change in allocation we 

stop the reallocation. 
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For testing and evaluation on test data-set. We start with initializing words with 

corresponding topics based on the topic distribution. Later we calculate both of the above 

mentioned probabilities for words in test documents and re-allocate words to topics based on 

the resultant probability. After large number of iterations, once no more change in allocation 

we stop the reallocation and try to calculate two most occurring topics in each document. For 

this calculation we count the words in one document and check which two topics have most 

number of words mapped to it. Those two topic correspond to most probable two errors that 

generated the given compiler error document. 
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CHAPTER 5. EXPERIMENTAL DESIGN AND RESULTS 

 

 In the following sub-sections, we will discuss our experiments and major findings. 

Section 5.1 gives details about data and tools used for this study. Section 5.2 talks about pre-

processing steps taken to clean the data. Section 5.3 gives details about our approach for 

handling one error at a time cases. Section 5.4 talks about how we handle case when two 

different errors are present in the program, using topic modeling. Section 5.5 talks about our 

approach for previous two error cases using MLC. In the end section 5.6 discusses limitation 

of this study. 

 

5.1. Data and tools 

Our study focuses on projects in C language. We have taken open-source projects 

from Github for this study. We have also picked 5 most common errors based on study in [9]. 

All the preprocessing and data collection programs are written in Java. R programming 

language is used for statistical analysis and model creation. Data collection for this study is 

done in two parts. In first part we have developed a tool which take a C project and type of 

error and then randomly generate one error, compile the program and collect all of the 

compiler error messages in one text document. To divide the errors into two types our 

programs also try to parse and fix the error using first compiler error message only. If it is 

fixable error, then it is marked as type A error otherwise type B error. Only type B error 

documents are used for further processing. We used tm package [23] in R for all of the text 

mining and clustering. For building the model, training and evaluation mainly we have used 

RTextTools package [24] in R.  
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In second part, we have developed another program which takes a C project and two 

different errors. In this program both the errors are randomly generated in one of the file in 

the project. After this, project is compiled and all the compiler error messages are collected 

in separate text document. These documents are used for further processing. We used Java 

and R for topic modeling. To work with MLC, we have used Java based open source tool, 

Mulan [21]. 

 

5.2. Pre-processing 

Data pre-processing is important step towards statistical analysis. In our study each 

error message contains many unnecessary terms and information that would not help in 

document clustering as it does not add value towards classification. So to clean this noise we 

performed some common pre-processing and some domain specific pre-processing. Main 

steps involved in pre-processing are as follows –  

• Removing file name and location – As it does not provide any information about the 

error and cannot be use for classification 

• Converting to lower case – To avoid duplicate counting of same words e.g. “Text” is 

equal to “text” 

• Removing all the numbers – No information about errors and common across 

different text documents 

• Removing punctuation and whitespaces - No information about errors and common 

across different text documents 

• Removing some domain specific frequently occurring words e.g. error, ‘int’ - No 

information about errors and frequently occur across different text documents 
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• Changing some symbols to words based on importance e.g. ‘{’ to closecurly – So that 

English string can contribute towards classification 

 

5.3. One error at a time 

In this part we focus on the case when we have single error present in the program. 

We randomly add one compiler error and try to find that error using compiler error message 

generated. We have used document clustering and SVM for this part of study. 

 

5.3.1. Experimental design 

In this we first tried to collect error documents corresponding to both the types for 5 

main errors - semicolon missing, undeclared variable, close curly bracket missing, open curly 

bracket missing, closing parenthesis missing, as we discussed in section 4.1. Each error 

documents contains all the compiler error messages generated by the compiler for one error. 

Table 5.1 shows count of type A and type B errors for each of the five errors for both the 

projects.  

Table 5.1. Count of error documents 

Error Type Subtype 
Count of error 

documents (project 1) 

Count of error 

documents (project 2) 

Semicolon missing 

Type A 9610 10582 

Type B 460 624 

Undeclared Variable 

Type A 0 0 

Type B 507 277 
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Table 5.1. (continued) 
 

Close curly bracket 
missing 

Type A 0 48 

Type B 2219 8357 

Open curly bracket 
missing 

Type A 0 0 

Type B 4461 4583 

Closing parenthesis 
missing 

Type A 7161 5945 

Type B 1078 1209 

 

Once we have enough data points, we disregard type A error messages as no further 

processing require for fixing these errors. In next step, we applied pre-processing on type B 

errors, as we discussed in section 5.2. Following is the example of an error message before 

and after pre-processing –  

“aof.c:238:5: error: called object type 'int' is not a function or function pointer” à 

“called object type is not a function or function pointer” 

As discussed in section 4.2, once our data is cleaned we convert it to DTM for further 

processing. Figure 5.1 shows summary of one of the DTM  

 

Figure 5.1. Summary of a DTM 

 

Once DTM is created, we applied hierarchical clustering to both of the project 

individually using hclust package to find all the sub-types of errors, as discussed in section 
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4.3. We calculated optimal number of clusters as per section 4.3 and used this to cut the 

dendogram tree into separate clusters. Each sub-type represents one kind of error messages 

that can be generated using one particular compiler error. 

We manually checked each cluster and tried to find if there is a consistency between 

all the error documents in one cluster. Also if there exist some pattern between the real 

compiler errors corresponding to error documents in one cluster. If we found a pattern, we 

decided a fix for the errors within each cluster. If no pattern can be found, then we marked 

that cluster as cannot be auto-fixed cluster. If we take example of one cluster that we found 

as a sub-type of semicolon missing error. 

e.g. cluster 1 – It contains compiler errors with same pattern where ‘;’ is missing in the line 

just before value pointer as shown in the following code. Here if we have ‘;’ from the end of 

the first line then the corresponding error message “invalid operands to binary expression” 

belong to cluster 1. 

sec = when_sec; 
*ms = when_ms; 
 

Once we have the pattern, we can decide the fix for this cluster and auto-fix the error by 

adding missing semicolon in the line just before the value pointer in the end of first line. 

 Similarly, we divided all of the error documents into different clusters and based on 

the pattern in the compiler error messages within each clusters we marked them if they can 

be auto-fix or not. 

Figure 5.2 shows dendogram tree for semicolon type errors. We created similar 

dendogram for all of the five error types and divided them into separate clusters. 
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Figure 5.2. Dendogram for semicolon type-B errors with 4 clusters 

 

Table 5.2 shows count of error documents in each sub-types for type-B errors of all 5 

main type of errors. It also shows if any sub-type is auto-fixable or not. We created auto-fix 

modules for sub-types of 2 main types of errors. For remaining 3 type of errors we marked 

them as could not be auto-fix based on the sub-type information, as we could not find 

significant pattern within one sub-type. 

 

Table 5.2. Count of error documents in each sub-type  

Error Type Subtype 

Count of error 

documents 

(project 1) 

Count of error 

documents 

(project 2) 

Auto-fixable 

Semicolon 
missing 

1 38 122 Yes 
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Table 5.2. (continued) 
 

 

2 89 163 Yes 

3 82 220 Yes 

4 251 119 Yes 

Close curly 
bracket missing 

5 2148 8357 No 

Open curly 
bracket missing 

6 2727 4583 No 

Closing 
parenthesis 

missing 

7 415 228 Yes 

8 466 655 Yes 

9 197 326 Yes 

Undeclared 
Variable 

10 36 77 No 

11 456 598 No 

12 15 51 No 

 

So once all the sub-types of main error-types were found, we divided our error 

documents into two sets with 9:1 ratio and used them as training and test dataset respectively, 

we used training dataset to train our model, as discussed in section 4.5. SVM was used to 

build the classification model using all of the subtypes with RTextTools package from R. 

Once we have the trained model, we used it to predict sub-types for new error documents in 

the test dataset. Once we predicted sub-types, we tried auto fixing the errors by passing the 

sub-type information and error document to our program for auto-fixing. If error is auto-

fixable then it fixes the error and make changes into the file otherwise it prints the error sub-

type for the error document, as discussed in section 4.4. 
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5.3.2. Findings  

In this part of study for one error documents, we worked with total five main errors 

and made 12 sub-types of these errors. After training the model with combined data we tested 

our model with test data, which was also combination of all 12 sub-types.  

• test data set size – 1550 

In this figure 5.5 we can see number of test documents mapped to different clusters 

corresponding to different subtypes. The green points show the real cluster and count of 

documents belonging to that cluster. The red points show the predicted clusters and count of 

documents belonging to that cluster. We have created total 12 sub-types.  

 

 

Figure 5.5. Prediction outcome for 1-error test data 
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Once we predicted sub-type clusters we checked how many error documents are 

correctly matched so we compared the predicted and actual sub-type for each of the test 

document. Following plot 5.6 shows correctly predicted vs incorrectly predicted sub-type 

counts for both of the projects. Orange shows percentage of correctly predicted error 

documents and blue shows percentage of incorrectly matched error documents. 

 

 

Figure 5.6. Prediction results 

In last step we tried auto-fixing errors using predicted sub-type and error document 

for a sub-set of documents for each sub-type, where we correctly predicted sub-type. 

Following table 5.3 shows results for our auto-fixing tool. In this we used a small number of 

test documents for each sub-type and corresponding correctly predicted sub-type information 

to auto-fix the program, as per section 4.4. If error is auto-fixable then table shows the 
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percentage of correctly auto-fixed error documents otherwise it shows that error cannot be 

auto-fix using sub-type information. 

Table 5.3. Count of error documents in each 

Error Type Subtype 

Count of 

error 

documents 

(project 1) 

Auto-

fixable(%) / 

Not auto-

fixable 

Count of 

error 

documents 

(project 2) 

Auto-

fixable(%) / 

Not auto-

fixable 

Semicolon 
missing 

1 30 83.3 30 76.7 

2 30 76.7 30 80 

3 30 76.7 30 80 

4 30 80.0 30 86.7 

Close curly 
bracket 
missing 

5 100 
Not auto-

fixable 
100 

Not auto-

fixable 

Open curly 
bracket 
missing 

6 100 
Not auto-

fixable 
100 

Not auto-

fixable 

Closing 
parenthesis 

missing 

7 30 66.7 30 76.7 

8 30 86.7 30 80 

9 30 76.7 30 66.7 

Undeclared 
Variable 

10 30 
Not auto-

fixable 

30 
Not auto-

fixable 
11 100 100 

12 15 15 
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So to conclude our finding for the case when we have one error at a time in the 

program –  

• We divided our random error messages into two types and as type-A error messages 

can be auto fix without any further analysis, we discarded those as part of this study  

• For type-B error documents first we tried predicting sub-type information and our 

prediction results are almost 95% correct. So we correctly predicted sub-type for 95% 

of test data.  

• Based on the correctly predicted sub-type information we tried auto-fixing errors in 

the program, we implemented auto-fixing module for sub-types of two main errors 

and fixed programs correctly in almost 80% of test error documents. For rest 3 errors 

we could not find a fix based on the sub-type information. 
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5.4. Two errors at a time with topic modeling 

In this part we focus on the case when two different compiler errors are present at the 

same time in the program. We add two compiler errors at random locations and try to find 

those errors using compiler error message generated. We have used probabilistic topic 

modeling for this part of study. 

 

5.4.1. Experimental design 

Firstly, we tried finding word distribution corresponding to main four error types. As 

discussed in section 4.7, we used type-B single error documents from first part of study and 

applied probabilistic topic modeling to find most common k-words for each error type. Table 

4.3 shows word distribution for each main error type. We ignored “semicolon missing” error 

in this part of study because count of type-B errors for semicolon missing type was relatively 

very low as compared to count of type-A errors and for finding word distribution we were 

using only type-B error messages. Table 5.4 shows word distribution for each of the four 

error types. 

Table 5.4. Top 10 words for each main type of errors 

Open curly 

bracket missing 

Close parentheses 

missing 

Variable 

undeclared 

Close curly 

bracket missing 

identifier closingbracket undeclared definition 

types macro identifier closingbracket 

closing expression use function 

function invocation member allowed 

extraneous function type expression 
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Table 5.4. (continued) 

type functionlike invalid labels 

brace allowed named default 

declarator unterminated increment aka 

use definition expression switch 

parameter closeparentheses declaration type 

 

Once we got the word distribution for all of the 4 main type errors we made 6 

combinations of error pair from these 4 errors. First we generate random error messages 

corresponding to each of the 6 pairs. Table 5.5 shows count of each 2-error combination 

documents, generated from one project. Later we implemented modified Latent Dirichlet 

Algorithm, as discussed in section 4.8, for further probabilistic topic modeling. In this we 

used our individual error word distribution and two error documents from table 5.5 to train 

the model.  

Table 5.5. Count of each 2-error combination documents used for training 

Error Combination Count 

Close Curly,  

Open Curly 
600 

Close Curly, 

Close Parenthesis 
2792 

Close Curly, 

Variable undeclared 
3200 
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Table 5.5. (continued) 
 

Open Curly, 

Close Parenthesis 
2786 

Open Curly, 

Variable undeclared 
3197 

Variable undeclared, 

Close Parenthesis 
3200 

 

5.4.2. Findings 

We created a test data set for each of the 6 pairs. We used 600 total number of test 

documents of each type of pair for evaluating our model once it is trained with training 

dataset. We count the words in each test document and check which two topics have most 

number of words mapped to it. Those two topic correspond to most probable two errors that 

generated the given compiler error document, as we explained in section 4.8. 

Figure 5.7 shows results for percentage of correct predictions for each of the six pair. 

It shows percentage values with different colors for different matching e.g. green color shows 

we correctly predicted both the errors in each document etc. 
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Figure 5.7. Prediction results for 2-errors data  

So to conclude our findings for topic modeling for the case when we have two 

different errors at the time in the program –  

• We predicted at least one error correctly in almost 91.3% of documents. 

• We predicted both the errors correctly in almost 35.5% of documents. 

• We could not predict any of the error out of 2 correctly in almost 8.7% documents. As 

some error messages can be common between different compiler errors so this affect 

our performance while predicting separate errors using error messages.  
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5.5. Two errors at a time with MLC 

In this part also we focus on the case when two different compiler errors are present 

at the same time in the program. We randomly add two compiler errors and try to find those 

errors using compiler error message generated. We have used Multi-Label Classification for 

this part of study. 

 

5.5.1. Experimental design 

In this part, we implemented Multi-Label Classification on the two-error documents 

and for this we used same training data as mentioned in table 5.5. For this, first we created a 

training dataset which included combined pre-processed 2-error messages and 4 labels 

corresponding to 4 errors with values (0,1). Labels has value 1 when corresponding error is 

present in the code. So two of the labels has values 1 and remaining two has values 0. We 

used Mulan [21], a Java based open-source software devoted to multi-label data mining, for 

our study. Mulan requires two text files for the specification of a multi-label dataset first is 

XML file specifying all the labels and second is ARFF file which contains actual data that 

needs classification along with the labels which should be specified as nominal attributes 

with two values "0" and "1" indicating absence or existence of the label respectively. So we 

transformed our two error training documents into required ARFF and XML datasets using 

mldr package from R and applied MLC. Figure 5.8 shows a sample XML file for the training 

dataset. Figure 5.9 shows one of the document in ARFF file, here last 4 values represent 4 

labels and values of labels shows which 2 errors are present. 
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Figure 5.8. Sample XML file 

 

Figure 5.9. Sample document in ARFF file 

Once our training data is ready, we train a classifier model with it using RAkEL 

algorithm. After training the classifier, we performed prediction for new unlabeled 2-error 

data. From the labels returned from the classifier we decided the two most relevant labels for 

each document. Those 2 labels correspond to 2 type of errors present in program for each of 

the error document. 

 

5.5.2. Findings 

We used same test dataset, 6 pair combination out of 4 main errors, as previous 

section for evaluating our MLC model once it is trained with training dataset. We predicted 

two most probable labels in each test document. Those two labels correspond to most 

probable two errors that generated the given compiler error document. Figure 5.10 shows 

results for percentage of correct predictions for each of the six pair, individually. It shows 

percentage values with different colors for different matching e.g. green shows we correctly 

predicted both the errors etc.  
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Figure 5.10. MLC model prediction results for 2-errors 

So to conclude our findings for MLC for the case when we have two different errors 

at the same time in the program –  

• We predicted at least one error correctly in almost 86.05% of documents. 

• We predicted both the errors correctly in almost 39.02% of documents. 

• We could not predict any of the error out of 2 correctly in almost 13.95% documents. 

As some error messages can be common between different compiler errors so this 

affect our performance while predicting separate errors using error messages.  
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5.6. Limitations of the study 

 This study uses five most common compiler errors and corresponding compiler error 

messages but it is possible that when we add more type of errors, performance of classifier 

and model may get impacted and results may get changed. This study focuses on C 

programming language and GCC compiler, so results may change for different programming 

language and compiler. 
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

  

 Compiler error message reporting is not accurate enough and because of incorrect or 

ambiguous errors, developer waste significant efforts. We have described an approach to 

predict some common compiler errors, that developers usually make, using statistical 

analysis and machine learning techniques on large open-source code base. We have worked 

with five main errors and tried to handle the cases when one error or two errors out of these 

five are present in code. We have experimented with document clustering, probabilistic topic 

modeling and multi-label classification algorithms. Our empirical evaluation on open-source 

projects has shown that our model correctly predicted the real error in almost 95% cases, 

when only one error exists. In case of two errors, we correctly predicted at least one error in 

almost 91% cases and both the errors in almost 39% cases.  

Our future work includes (1) work on improving the performance when predicting 

multiple errors, (2) working with more types of errors and (3) working with cases when 

number of errors present in the code is unknown. 
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