
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2017

Computing change of invariants to support
software evolution
Ashwin Kallingal Joshy
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Kallingal Joshy, Ashwin, "Computing change of invariants to support software evolution" (2017). Graduate Theses and Dissertations.
15334.
https://lib.dr.iastate.edu/etd/15334

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F15334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/15334?utm_source=lib.dr.iastate.edu%2Fetd%2F15334&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Computing change of invariants
to support software evolution

by

Ashwin Kallingal Joshy

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Wei Le, Major Professor

Samik Basu
Jin Tian

The student author and the program of study committee are solely responsible for the
content of this thesis. The Graduate College will ensure this thesis is globally

accessible and will not permit alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2017

Copyright c© Ashwin Kallingal Joshy, 2017. All rights reserved.

ii

DEDICATION

I would like to dedicate this thesis to my parents whose endless support gave me

the courage and motivation needed to complete this work.

iii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGEMENTS . viii

ABSTRACT . ix

CHAPTER 1. INTRODUCTION . 1

CHAPTER 2. PREREQUISITES AND RELATED WORK 5

2.1 Prerequisites . 5

2.1.1 Control flow graph . 5

2.1.2 Inter-procedural control flow graph 6

2.1.3 Version control . 6

2.1.4 Multi version inter-procedural control flow graph 6

2.1.5 LLVM . 6

2.1.6 Z3 . 7

2.2 Related Works . 7

2.2.1 Invariants and assertions . 8

2.2.2 Syntactic differencing . 9

2.2.3 Semantic differencing . 10

2.2.4 Dynamic invariant generation . 11

2.2.5 Static invariant generation . 12

iv

CHAPTER 3. DEFINING CHANGE OF INVARIANT 14

3.1 Prerequisites . 14

3.2 Change Of Invariant . 16

CHAPTER 4. COMPUTING CHANGE OF INVARIANT 20

4.1 Overview . 20

4.2 MVICFG Generation . 21

4.3 Computing The Change Of Invariants . 29

CHAPTER 5. EXPERIMENTAL RESULTS . 45

5.1 Implementation And Experimental Setup 45

5.2 Experimental Results . 49

5.2.1 Computing the change of invariants 49

5.3 Interpreting The Change Of Invariants 53

5.3.1 Program P1 . 53

5.3.2 Program P2 . 54

5.3.3 Program P3 . 54

5.3.4 Program P4 . 55

5.3.5 Program T . 56

CHAPTER 6. FUTURE WORK AND CONCLUSION 57

6.1 Future Work . 57

6.2 Conclusion . 58

BIBLIOGRAPHY . 59

v

LIST OF TABLES

Table 5.1. LLVM IR to Z3 translation examples 47

Table 5.2. List of LLVM IR supported; grouped by instruction type 48

Table 5.3. Computed change of invariant for benchmark 50

Table 5.4. Performance data for the static demand-driven Algorithm 52

vi

LIST OF FIGURES

Figure 3.1 MVICFG for two versions to show matched points 15

Figure 3.2 Function to converts temperature from Fahrenheit to Celsius;

Version 1 . 17

Figure 3.3 Function to converts temperature from Fahrenheit to Celsius;

Version 2 . 17

Figure 3.4 MVICFG for two versions of a function to convert temperature

from Fahrenheit to Celsius . 18

Figure 3.5 MVICFG for illustrating addition type of change of invariants . . 19

Figure 4.1 Program versions to demonstrate generation of MVICFG 23

Figure 4.2 ICFGs of programs shown in Fig. 4.1 24

Figure 4.3 In-progress MVICFG at line 17 of Algorithm 2 25

Figure 4.4 In-progress MVICFG at line 18 of Algorithm 2 27

Figure 4.5 In-progress MVICFG at line 19 of Algorithm 2 28

Figure 4.6 Final MVICFG at line 20 of Algorithm 2 30

Figure 4.7 Sample query generated by Algorithm 7 32

Figure 4.8 Sample query after it is updated by Algorithm 10 at node 6 . . . 35

Figure 4.9 Query state; Snapshot 1 . 36

Figure 4.10 Sample query after it is updated by Algorithm 10 at node 8 . . . 37

Figure 4.11 Query state; Snapshot 2 . 38

Figure 4.12 Query state; Snapshot 3 . 40

Figure 4.13 Query state; Snapshot 4 . 41

vii

Figure 4.14 Query state; Snapshot 5 . 43

Figure 4.15 Query state; Snapshot 6 . 44

viii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to all who helped

me through various stages of my research. First and foremost, Dr. Wei Le for her

continuous guidance, patience and support throughout the research. Her words of

encouragement and trust in my abilities helped me to complete the thesis. I am grateful

to my committee members, Dr. Samik Basu and Dr. Jin Tian, for their support and

understanding spirit. I would also like to thank Dr. David M. Weiss for nudging me

towards this research area. Lastly, I would like to thank all of my lab mates who helped

to make this endeavor an enjoyable one.

ix

ABSTRACT

Software is always evolving. In the recent years, the development community has

shifted towards Agile development paradigm resulting in faster release cycle. This em-

phasis on speed is, generally, accompanied by an increase in the number of bugs and

reduced focus on updating non-functional software artifacts like specification docu-

ment. Recent studies have found that developers find it difficult to determine whether

a change might break code elsewhere in the program, resulting in 25% of bugs fixes

to be incorrect or buggy. A method to capture the semantic changes between differ-

ent versions of a program is vital in understanding the impact of the change and in

preventing bugs.

An invariant is a condition that is always true at a given program point. Invariants

are used to specify the requirements and desired behavior of a program at any program

point. The difference in invariants between different program versions can be used to

capture the changes made to the program. In this thesis, we use the change of invariants

as a way to capture the semantic changes over different program versions. We designed

a static demand-driven algorithm for automatically computing the change of invariants

between different versions of a program. To evaluate the algorithm and its ability

to capture semantic changes over different program versions, we built a prototype

framework called Hydrogen. Our experimental results show that Hydrogen is able to

compute the change of invariants between different versions of the programs, and the

computed change of invariants can be used for understanding changes and generating

assertions to prevent similar bugs in future.

1

CHAPTER 1. INTRODUCTION

Software has become an integral part of our life, from providing entertainment to

ensuring our safety and security. Any software expected to work in a real-world envi-

ronment has to undergo continuous change or become progressively less useful. In or-

der to ensure the continued relevance of their software, most developers have adopted

Agile programming paradigm. While Agile development promises faster release cycles

to keep the software up-to-date, the need for speed limits the time available for the

developer to fully examine and understand the effect of the changes made between

releases. According to Tao et al. (2012), most developers find it difficult to determine

whether a change might break code elsewhere. This problem only aggravates as the

software evolution speeds up; as evident from the study by Yin et al. (2011), which

found that 14.8%-24.4% of bug fixes in large open source systems are either incorrect

or buggy.

Design by Contract paradigm, proposed by Meyer (1992), has been shown to re-

duce the number of bugs. In this programming methodology, invariants in form of

precondition and post-condition, are used to document the change in state caused by a

piece of a program. An invariant is defined as a condition that can be relied upon to be

true during execution of a program, or during some portion of it. However, a significant

amount of time is required for creating and maintaining these contracts. In contrast,

developers following Agile development process typically give lesser priority to non-

functional software artifacts like specification document. Obsolete specifications can

induce a false perception of the impact of the change, leading to bugs. Another defi-

2

ciency of design by contract programming model is that it fails to take into account the

evolving nature of the software.

To redress both these shortcomings, Qi et al. (2012) proposed the concept of change

contracts. The underlying belief being that it is easier to specify the change in behavior

between versions than to specify the absolute behavior of a program. While this ap-

proach takes into account the evolving nature of the software, it still left the daunting

task of writing the change of contracts to the developers. Similarly, the concept of dif-

ferential assertion, suggested by Lahiri et al. (2013), shares the belief that it is easier

to document the changes than to write absolute specification. In this case, the assump-

tion was used to speed up program verification under the premise that the developers

would spend time documenting the change between versions. Rather than helping the

developers understand the impact of a change, both these works, shifts the onus onto

them to accurately judge its effects.

The goal of our work is to help the developers understand the impact of the changes

made between different versions. Specifically, we aim to capture the semantic changes

between different versions of a program. Towards that cause, we introduce the concept

of change of invariants that can be used to comprehend the changes over different pro-

gram versions. We designed a static demand-driven algorithm to automatically com-

pute the change of invariants between different versions of a program. This helps in

understanding the impact of the change rather than relying on developers’ knowledge

in inferring them. A framework called Hydrogen, consisting of three major subsystems,

namely a compiler, a multi version program representation and constraint solver, was

build to evaluate the algorithm.

Intuitively, change of invariants represents the change in program state or condition

at a particular program point, when compared across different versions of a program.

Depending on the changes made between the versions, some invariants might be added

or removed at a program point. For computing the change of invariants there are two

3

fundamental requirements. First and foremost, the program point should be shared

across all the versions. This is because invariants are defined with respect to a program

point and computing the change at different program points across versions won’t help

in understanding the semantic changes made between them. Next, we should be able

to identify the program point across different versions of the program, as modifications

to the program can change its location. We use a multi version program representation,

introduced by Le and Pattison (2014), to help accommodate both these requirements.

This representation, called Multi Version Integrated Control Flow Graph (MVICFG),

also forms the base for static demand-driven algorithm for computing the change of

invariants.

A naive way to compute change of invariants, would be to find out the invariants

present at a program point across different versions and find the difference between

them. This is not ideal for mainly two reasons. For one, this will be very expensive,

especially when trying to analyze multiple version. Second, in order to find out which

invariants have changed, we would require some kind of mapping between the invari-

ants across different versions. Instead, we designed a static demand-driven algorithm

that checks for invariants for all the versions simultaneously on top of MVICFG which

makes identifying changed invariants a straightforward process. The MVICFG also

makes it possible to share computations across different versions of a program, making

the algorithm more efficient and scalable than a brute force approach.

We implemented the algorithm in a prototype framework, called Hydrogen, to eval-

uate it. Hydrogen is build using LLVM as the compiler back-end and Z3 as the con-

straint solver used for invariant detection. Experimental results from Hydrogen shows

that our algorithm is capable of computing the change of invariants between different

versions of a program. The computed change of invariants can be used to understand

the semantic change over different program versions and in some cases be inserted as

assertions to prevent similar bugs in the future.

4

The main contributions of this thesis are as follows:

1. The definition of change of invariant.

2. Static demand-driven algorithm to compute the change of invariants.

3. Hydrogen, a prototype framework, that implements the static demand-driven

algorithm and evaluates its capability to compute the change of invariants.

The rest of the thesis is organized as follows; In Chapter 2 we provide the necessary

details about the tools and concepts needed to understand the thesis followed by a

summarization of the related works in this area. Chapter 3 and Chapter 4 present

the concept of change of invariants and the algorithms respectively. In Chapter 5

we describe our implementation of Hydrogen and presents the experimental results

gathered from it. The future work and conclusions are presented in Chapter 6.

5

CHAPTER 2. PREREQUISITES AND RELATED WORK

This chapter discusses the basic concepts and tools utilized in this thesis, followed

by an exploration of the current frontiers in the related research areas.

2.1 Prerequisites

The main contributions of this thesis are the definition of change of invariants and

an algorithm to compute them. Both of them are based on top of a multi version

program representation called MVICFG. Hence, it is essential to understand the build-

ing blocks of this program representation and how it is implemented in the prototype

framework, called Hydrogen. The back-end compiler and constraint solver utilized in

Hydrogen are preexisting tools that have been modified to suite its needs. A basic

knowledge about these tools, will help in understanding how the framework works.

2.1.1 Control flow graph

A Control Flow Graph (CFG) is a directed graph that represents all the possible

execution paths that a program method can have. A CFG is build for a particular

method (intra-procedural) and doesn’t have edges that represent transfer of control

to other methods. In this thesis, the CFG nodes represents instructions and the edges

represent control flow from one instruction to another. Each CFG node has a unique

ID associated with it. They also store additional information regarding the location of

the instruction with respect to the program.

6

2.1.2 Inter-procedural control flow graph

An Inter-Procedural Control Flow Graph (ICFG) is a directed graph that combines

the CFGs of all program methods. It connects a method’s entry and exit sites to their

call sites. A ICFG is build for an entire program and also incorporate the transfer of

control between methods. In this thesis, each CFG is augmented with dummy entry

and exit nodes with no program statements to ensure that every call site has single

entry successor and each call site exit node has exactly one call site predecessor and

one procedure exit predecessor.

2.1.3 Version control

A version Control is a system that records changes to a file or set of files over time

so that you can recall specific version and see the changes made between versions.

2.1.4 Multi version inter-procedural control flow graph

The Multi Version Inter-Procedural Control Flow Graph (MVICFG) is used to repre-

sent both inter-procedural and intra-procedural changes of a program across multiple

versions. Intuitively, the MVICFG is a union of the set of ICFGs across different pro-

gram versions. Both the nodes and edges in MVICFG are augmented with information

regarding their version. In this thesis, each node in the MVICFG also have a data struc-

ture to store the traversal and translation information required by the demand-driven

algorithm.

2.1.5 LLVM

LLVM (Low Level Virtual Machine) infrastructure is a collection of modular and

reusable compiler and tool-chain methods used to develop compiler front-end and

back-ends. The LLVM project, started in 2000 at University of Illinois, supports com-

7

piling the source code to an Intermediate Representation (IR). LLVM IR is a Static

Single Assignment (SSA) based representation that provides type safety, low-level op-

erations, flexibility, and the capability of representing all high-level languages cleanly.

In this thesis, LLVM is used as the back-end to generate ICFGs for individual versions

of a program before combining them into MVICFG. To make computation of change of

invariants easier, we encode the instruction in the MVICFG as LLVM IR instruction.

2.1.6 Z3

Z3 is a theorem prover from Microsoft Research. In this thesis, its state-of-the-art

SMT constraint solver is used as the back-end to track, update and evaluate symbolic

values when computing the change of invariants.

2.2 Related Works

The concept of invariants have been applied to software analysis for almost half a

century now, starting with Hoare (1969). Invariants have been used in a wide variety of

fields like Specification Mining [Ammons et al. (2002); Ramanathan et al. (2007a,b)],

Path Invariants [Beyer et al. (2007)], Software Testing [Herzig et al. (2015); Sagdeo

et al. (2013)], Program Refactoring [Kataoka et al. (2001); Massoni (2007)], Soft-

ware Specification [Kramer and Cunningham (1979)], Assertion Verification [Lahiri

et al. (2013)], Static Checking/Verification [Nimmer and Ernst (2002, 2001); Flana-

gan and Leino (2001); Kroening et al. (2009); Flanagan and Qadeer (2002)], Pro-

gram Verification [Ghardallou (2012); Fu et al. (2008); Rodŕıguez-Carbonell and Ka-

pur (2005); Kovacs and Jebelean (2005)], Fault Localization [Sagdeo et al. (2013)]

and Change Contracts [Yi et al. (2015, 2013); Le et al. (2014)] being some of them.

Shi et al. (2010) proposed classifying invariants into the following three categories:

Characteristic-based Invariants, Relation-based Invariants, Value-based Invariants.

8

In spite of its application in almost all software analysis field, invariants have always

been tied to a particular version of a program. Even when used in the context of

evolving software like Program Refactoring and Change Contracts it has been used to

specify program specification that doesn’t change. To the best of our knowledge this is

the first time invariants have been used to capture and represent the evolving nature

of the software.

2.2.1 Invariants and assertions

Invariants and assertion are very closely related. By definition, invariants are the

properties of a program at any given program point that are always true; while asser-

tions are the properties that should always hold at any given program point according

to the developer or specification. Ideally the developer’s intent specified as assertion

and the invariant at any given program point should be the same. Even though the im-

portance of assertions in a project has been highlighted by Zhang and Mesbah (2015);

Hatcliff et al. (2012); Shrestha and Rutherford (2011); (2002) and Casalnuovo et al.

(2015) most projects are devoid of any assertion or are simple null checks as pointed

out by Estler et al. (2014).

The close relation between invariants and assertion have lead to works like Vasude-

van et al. (2010); Lin et al. (2013); Nimmer and Ernst (2002, 2001) and Daniel et al.

(2009) that tries to deduct developer’s intent from invariants, in spite of it being an

unsolvable problem. The work in this thesis is similar to Nimmer and Ernst (2002) and

Daniel et al. (2009) in trying to generate or update assert statements in programs but

is different in two fundamental aspects.

First, our approach is not restricted to any predefined program points and hence

is more fine-grained. Second, by using demand driven analysis we are able to reduce

and reuse computations across versions making the amortized cost of performing the

analysis significantly less. The concept of change of invariants also make it possible

9

to extend our work, in the future, to generate differential assertions like Lahiri et al.

(2013) and change contracts like Le and Pattison (2014); Yi et al. (2013) and Yi et al.

(2015).

2.2.2 Syntactic differencing

In the past, some literature advocated the use of dedicated editors that kept track of

the changes between versions like the works by Horwitz et al. (1989); Donzeau-Gouge

et al. (1980); Notkin (1985) and Reps and Teitelbaum (1984). This fell out of favor

when the extra overhead did not solve the unsolvable nature of software changes. But

quite recently Muşlu et al. (2015) has revived this type of editor tracking that can help

in a variety of program analysis domain.

Currently, algorithms that deducts the changes between versions without any addi-

tional meta-data are commonly used. Unix diff tries to find the longest common sub-

sequence between two source files to match common points in them. Like Unix diff,

most literature in this area like the works by Apiwattanapong et al. (2007); Raghavan

et al. (2004); Yang (1991); Fluri et al. (2007) and Partush and Yahav (2014) are lim-

ited by focusing on comparing two versions of the program. History Slicing by Servant

and Jones (2012) proposed a novel visualization technique that is capable of repre-

senting the entire evolution of code of interest. Similarly, the work by Nagarajan et al.

(2007) can match dynamic behavior between program when matching program points

using control flow graphs. Works like Kim et al. (2007) and Loh and Kim (2010) which

are based on the survey conducted by Kim and Notkin (2006) can be considered the

current state-of-the-art in syntactic differencing. Syntactic differencing, even though

easy to compute and widely used by Version Control repositories, is of limited use to a

developer when trying to analyze or understand how a program has evolved. This is

where semantic differencing tools come into play.

10

2.2.3 Semantic differencing

Semantic differencing tries to capture the actual changes to program behavior be-

tween different versions of a program. While behavior changes have slightly differ-

ent definitions based on the application, frameworks by Qi et al. (2012); Lahiri et al.

(2013); Yi et al. (2013); Jackson and Ladd (1994); Kim and Notkin (2006) and Kim

et al. (2007) approximates textual or specification difference to semantic change be-

tween two versions. Person et al. (2008) and Lahiri et al. (2012) takes a different

approach by relying on input-output changes to appropriate semantic changes. Even

though Person et al. (2008) relies on symbolic execution and Lahiri et al. (2012) on

SMT solver they both attempt to compare the program behavior with different end-use

applications. Similarly, the works by Buse and Weimer (2008, 2010) and Lahiri et al.

(2013) focuses on reporting the semantic changes in a human readable form and tries

to abstract away some irrelevant semantic changes. The work by Partush and Yahav

(2014) is a state-of-the-art static semantic differencing tool that is able to handle loops

by using dynamic interleaving of two programs over abstract domain.

The work in this thesis, in regard to semantic differencing, is a re-implementation

of MVICFG by Le and Pattison (2014) using LLVM IR as base. Hence, it is more similar

to Horwitz et al. (1989); Horwitz (1990) and Raghavan et al. (2004) due to its depen-

dency on graph but is fundamentally different from all other work in one key aspect.

While vast majority of semantic differencing tools work on two versions, MVICFG is

able to handle multiple versions and characterize their semantic differences.

Programming analysis have typically focused on latitudinal exploration of a pro-

gram, i.e determining facts about a program point within that instance of the program.

Longitudinal program analysis, i.e analysis of a program point across the multitude of

versions created during a program’s lifetime, and its advantages were highlighted by

Notkin (2002). When demand driven analysis is carried out on top of Hydrogen, our

approach is taking maximum advantage of longitudinal program analysis.

11

2.2.4 Dynamic invariant generation

Invariant detection and generation can be broadly classified into dynamic and static

generation techniques. While dynamic invariant generation techniques often offer

more concrete and stronger invariants over their static counterparts as explained by

Ernst (2004), they can be unsound and easily mislead by test suite artifacts. This is

illustrated in this work by Ernst et al. (2007). Static inference techniques, on the other

hand, are sound (at least theoretically) but are very conservative. In practice, both

techniques have some unsoundness in them as a result of trade-off between scalability,

run-time constrains and lack of source code for library and API calls.

Daikon by Ernst et al. (1999) is one of the most notable work done in generic

dynamic invariant generation. It has been further advanced in works by Ernst et al.

(2001) and Perkins and Ernst (2004). Daikon uses execution traces obtained from

running instrumented version of the program to infer invariants from predefined tem-

plates. Some dynamic invariant generation tools are designed for specialized purposes

like the work by Colón et al. (2003) which generates liner invariants with the help

of constraint solving, Csallner and Smaragdakis (2006) that mines interface invari-

ants dynamically, Nguyen et al. (2012) that specializes in polynomial and array based

invariants, Shi et al. (2010) which computes invariants that define definition-usage

patterns, Sagdeo et al. (2011) which infers invariants at function and loop boundaries

through program path guided clustering, Yang et al. (2006); Nguyen et al. (2014) and

Xie and Pei (2006) that mines temporal rules for APIs.

DIDUCE by Hangal and Lam (2002) is a lazy dynamic invariant generator that

starts by establishing the strongest possible template and relaxing them as violations

are found. DySy by Csallner et al. (2008) improves relevance of dynamically inferred

invariants, or reduce the size of the test suites required by combining concrete ex-

ecution with symbolic execution and can be considered as a notable improvement to

current state-of-the-art in generic dynamic invariant generation. While dynamic invari-

12

ant generators are generally not good in handling multi-threaded program, the work

by Kusano et al. (2015) has modified the instrumentation process of Daikon to make it

the current state-of-the-art tool in multi-threaded dynamic invariant generation.

2.2.5 Static invariant generation

The main advantage of using static techniques for invariant generation is that the

reported invariants are true for every reachable state of the program. The work by

Gupta and Rybalchenko (2009), which uses constrains solving and that by Dillig et al.

(2013), which relies on abducting inference to generate invariants to assist in program

verification are among the state-of-the-art works tools for static invariant generation.

The work by Sankaranarayanan et al. (2004) that infers non-linear loop invariants by

using theory of ideals over polynomial rings and the those by Colón et al. (2003);

Bozga et al. (2009); Bradley et al. (2006) and Henzinger et al. (2010) that generates

invariants related to integer arrays are a few specialized invariant inference tools.

But static analysis in itself finds plenty of application in static verification tools and

model checking tools like in the works of Nimmer and Ernst (2002, 2001); Flanagan

and Leino (2001); Kroening et al. (2009); Flanagan and Qadeer (2002); Ghardallou

(2012); Fu et al. (2008); Rodŕıguez-Carbonell and Kapur (2005) and Kovacs and Je-

belean (2005). Static analysis or Model checking tools typically relies on symbolic ex-

ecution like Csallner et al. (2008); Schmitt and Weiß (2007) and Păsăreanu and Visser

(2004) or abstract interpretation like those by Cousot and Cousot (1977a,b); Cousot

and Halbwachs (1978); Miné (2006) and Laviron and Logozzo (2009) or symbolic

model checking to infer conditions or invariants. While symbolic execution and model

checking methodology suffers from scalability and state explosion issues, abstract in-

terpretation relies on over-approximation that can lead to loss of some information.

13

The work in this thesis is more closely related to the work by Gupta and Ry-

balchenko (2009), in its reliance on constraint solving and invariant templates, but

is novel in its demand-driven propagation mechanism that enables reuse and reduces

computation across different versions of a program.

14

CHAPTER 3. DEFINING CHANGE OF INVARIANT

In this chapter, we will explore and define the concept of change of invariants with

the help of examples. But before we can get to change of invariants, we need to

disambiguate the basic terms that will be used in defining it, namely program point

and matched program point.

3.1 Prerequisites

One of the fundamental requirement for computing the change of invariants is that

the program point being analyzed should be shared between the different versions of

the program. The program point, without context, is a very ambiguous term. For

example, when we are talking about a program point in the context of grammar of the

program, it can take the definition of an atomic statement in the program. Similarly,

when talking in the context of the source code of a program, it can take the form of

individual lines irrespective of the number of statements present in it. Since our static

demand-driven algorithm relies on the multi version program representation called

MVICFG, in this thesis, we will be using it as the context for defining a program point.

Based on this, we can define a program point as follows.

Definition 1 A program point is a node in MVICFG.

MVICFG captures both the inter-procedural and intra-procedural changes across

different versions of a program. The edges in MVICFG are annotated with version

15

Figure 3.1: MVICFG for two versions to show matched points

information to reflect the changes occurring over the program versions. Intuitively,

for a program point to be matched across different versions of a program it has to be

present across the different program versions. Extending this intuition, we can define

a matched program point as follows.

Definition 2 A matched program point is a program point in the MVICFG, that is

shared across the program versions.

16

Consider a two version MVICFG as shown in Figure 3.1. For the sake of simplicity,

only inter-version difference is expressed in this MVICFG. As seen in the figure, for

creating the second version the blue nodes (3 and 4) were replaced with green nodes

(7-9). The edges from node 2 and those going to node 5, encapsulates the changes

made between the two version of the program, with the help of the annotations. Intu-

itively, we can see that the nodes in orange nodes (1, 2, 5 and 6) are common across

the two versions of the program and hence, can be matched between them. Hence,

according to the definition, the nodes 1, 2, 5, 6 are matched program points for the

MVICFG shown in Figure 3.1.

3.2 Change Of Invariant

Now that we have a precise way to define program points, let’s explore the concept

of change of invariants. Intuitively, a change of invariant portray a change in program

state or condition at a program point when compared across different versions of a

program. Accordingly, we can define change of invariants as follows:

Definition 3 The change of invariants is a 4 tuple (MP, V1, Type, V2); where MP is

the matched program point, V1 is the invariant expressed in conjunctive normal form

for the first version(s) of the program, Type specifies the update kind in terms of addition,

modification and deletion, and V2 is the invariant expressed in conjunctive normal form

for the second version(s) of the program.

17

Consider a function to convert the temperature from Fahrenheit to Celsius as shown

in Figure 3.2.

1 double conv (double f) {
2 double c = (f − 32.0) ∗ 5.0 / 9 .0 ;
3 return c ;
4 }

Figure 3.2: Function to converts temperature from Fahrenheit to Celsius; Version 1

Let’s suppose during refactoring, the developer, removed the parenthesis from the

formula as shown in Figure 3.3.

1 double conv (double f) {
2 double c = f − 32.0 ∗ 5.0 / 9 .0 ;
3 return c ;
4 }

Figure 3.3: Function to converts temperature from Fahrenheit to Celsius; Version 2

The MVICFG over the two versions is show in Figure 3.4. It follows a similar color

code as the MVICFG in Figure 3.1. The unique number associated with the nodes

in the MVICFG is shown on the top left corner. Nodes 1 and 4 are special nodes in

MVICFG used to show the entry and exit of a function. From the definitions above, we

can see that node 3 is one of the matched program point. At node 3, if we calculate

the invariant for the function in Figure 3.2, we get [c = (f - 32) *(0.555555556)].

On the other hand, the invariant reported at node 3 for the function in Figure 3.3

would be [c = f - 17.777777778], i.e. The relation between the variables present at

the matched program point got modified. Hence, the change of invariants at matched

program point would be (3, [c = (f - 32) *(0.555555556)], Modify, [c = f -

17.777777778]).

18

Figure 3.4: MVICFG for two versions of a function to convert temperature from Fahren-
heit to Celsius

Now let’s consider the program versions represented by the MVICFG shown in Fig-

ure 3.5. In the first version, the developer forgot to input the value for one of the

variables, which is rectified in the second version by the addition of node 5. If we

calculate the invariants present at the matched program point 3, for the first version

we get [b = a + 10]. The invariant at node 3 for the second version would be [a

= Input ∧ b = a + 10]. As a new relation is formed between the variables, in this

example, the change of invariants at the matched program point would be (3, [b =

a + 10], Add, [b = a + 10 ∧ a = Input]).

19

Figure 3.5: MVICFG for illustrating addition type of change of invariants

With the concept of change of invariants clearly defined, the next chapter presents

an efficient algorithm to compute the same.

20

CHAPTER 4. COMPUTING CHANGE OF INVARIANT

This chapter presents the static demand-driven algorithm that can be used to com-

pute the change of invariants between different versions of a program. In Section 4.1

we present an overview of the Hydrogen framework, which encapsulates all the algo-

rithms discussed here. Since the definition and computation of change of invariants

are based on top of MVICFG, Section 4.2 will focus on generation an instruction level

MVICFG. Section 4.3 will present the static demand-driven algorithm implemented on

top of the MVICFG.

4.1 Overview

Algorithm 1 presents an overview of the Hydrogen framework, that encompasses

all the other algorithms. It takes different versions of the program, a program point

of interest and the program version(s) of interest as the input. The output is the com-

puted change of invariant at the specified program point over the interested program

versions.

Algorithm 1 Overview of Hydrogen Framework

1: Input: Program versions[V1,V2,. . . ,Vn], Program Point (PP), Interested versions(V)
2: Output: Change of Invariant at PP over V
3: function HYDROGEN(Program versions, Program Point, Interested versions)
4: MVICFG← GENERATEMVICFG([V1,V2,. . . ,Vn])
5: if PP is a matched program point then
6: COMPUTECHANGEINVARIANT(MVICFG, PP, V)
7: end if
8: end function

21

The MVICFG for all the input program is generated at line 4 as the first step. At line

5, we check the given program point over the interested program versions to make sure

that it is common to all of them. This ensures that the given program point is a shared

program point as defined in Definition 2. Once we confirm that it is a shared program

point, we call the demand-driven algorithm to compute the change of invariants. At

the end of the function call, it outputs the computed change of invariants.

Now that we have an overview of the process, let’s consider the generation of

MVICFG next.

4.2 MVICFG Generation

In this section we will explore the algorithms needed to generate the MVICFG.

Algorithm 2 Algorithm to Generate MVICFG
1: Input: Program versions[V1,V2,. . . ,Vn]
2: Output: MVICFG
3: function GENERATE GRAPH(Program versions)
4: MVICFG← BUILDICFG(V1)
5: for all Vi ∈ [V2,V3,. . . ,Vn] do
6: ICFG← BUILDICFG(Vi)
7: D← GENERATEDIFF(Vi, Vi−1)
8: for all diff ∈ D do
9: if diff = Add then

10: N← IDENTIFYADDEDNODES(ICFG, diff)
11: ADDNODES(MVICFG, N)
12: NewNodes← N
13: else if diff = Del then
14: N← IDENTIFYDELETEDNODES(ICFG, diff)
15: DelNodes← N
16: end if
17: end for
18: ADDTOMVICFG(NewNodes, ICFG, MVICFG, diff)
19: DELETEFROMMVICFG(DelNodes, ICFG, MVICFG, diff)
20: UPDATEVERSION(MVICFG, D)
21: end for
22: end function

22

Le and Pattison (2014) originally proposed the algorithms to generate MVICFG.

The algorithms presented here are only trivially different. Algorithm 2 outlines the

basic procedure for generating an MVICFG. It takes as input, the different versions of

the program and generates the MVICFG as its output.

The Algorithm 2, can be broadly split into three parts. In the first part we build

the ICFG of the initial version of the program to be used as the base for building the

MVICFG. The second part deals with identifying the changes that happened across the

program versions. Lastly, we update the edges in MVICFG to reflect the control flow

from all the versions and update the version information embedded in the nodes and

edges.

More specifically, at line 4, the ICFG of the initial version is generated. Lines 5-20

incrementally integrates the differences in program versions, one version at a time.

At line 6, we build the ICFG of the next version to be integrated. We then obtain,

the statement level differences between the two versions using UNIX diff tool at line

7. The diff generator reports only addition and deletion of statements. The changed

statements are reported as deleted from the old version and added in the new version.

Lines 8-17 process each diff line generated in line 7 to identify nodes to be added or

deleted from the MVICFG. If statements are added, we identify the nodes to be added

from the ICFG at line 10 and adds them to MVICFG in line 11. A set called New Nodes

is updated at line 12 to track all the nodes added to the MVICFG. On the other hand if

statements are deleted, we identify the nodes to be removed from the MVICFG at line

14 and track them in the set Del Nodes at line 15.

To help us understand these steps better, let’s try applying them to an example. In

the interest of keeping things simple, let’s consider the function shown in Figure 4.1a.

Let’s suppose that in the second version, we removed the else branch and decided to

add the statement b-- in the if branch as shown in Figure 4.1b. The corresponding

control flow graphs of the two versions are shown in Figure 4.2. Let’s use this example

23

1 void foo () {
2 in t a = 0;
3 in t b = 1;
4 i f (a == 0) {
5 b++;
6 } else {
7 b−−;
8 }
9 a ++;

10 cout<< b ;
11 }

(a) Version 1

1 void foo () {
2 in t a = 0;
3 in t b = 1;
4 i f (a == 0) {
5 b++;
6 b−−;
7 }
8
9 a ++;

10 cout<< b ;
11 }

(b) Version 2

Figure 4.1: Program versions to demonstrate generation of MVICFG

to work through the algorithm. The significance of the colored nodes and edges will

be demystified shortly.

In Figure 4.2, we have highlighted the additions and deletions, happening between

the two versions, by marking the nodes with green and red color, respectively. At line

11 of Algorithm 2, the green node from Figure 4.2b would be added to the MVICFG.

Similarly, at line 15, we would mark the node matching the red node in Figure 4.2a

in the MVICFG. Hence, at line 17, the in-progress MVICFG would be as shown in

Figure 4.3.

Once we have identifying all the added and deleted nodes, we have to update the

edges in MVICFG. At line 18, we add the necessary edges to connect the added nodes,

present in the set New Nodes, to MVICFG through Algorithm 3. Similarly, Algorithm 4

updates the edges for all the deleted nodes present in Del Nodes. At line 20, we update

the version information associated with the edges and nodes in the MVICFG by using

Algorithm 5.

Algorithm 3 details the process to connect the newly added ICFG nodes to MVICFG.

The goal is to identify the control flow for the newly added nodes and append it to

24

(a) Version 1 (b) Version 2

Figure 4.2: ICFGs of programs shown in Fig. 4.1

MVICFG. Lines 2-8 appends the control flow for each added node individually. To

connect the node to its predecessors and successors in the MVICFG, we first identify its

predecessors and successors in the ICFG (line 3). We then map these entries and exits

of the differences to MVICFG in lines 4-6. This appends the missing control flow from

the added nodes to MVICFG.

Going back to the example in hand, there is only one predecessor (node 4) for the

added green node in Figure 4.2b. Since the corresponding node in the in-progress

MVICFG is 4, as shown in Figure 4.3, we add an edge connecting node 4 to 8. Sim-

25

Figure 4.3: In-progress MVICFG at line 17 of Algorithm 2

ilarly, for the one successor, node 6 in Figure 4.2b, we add the edge connecting the

green node 8 to the corresponding matched node in MVICFG. Hence, at line 18 of

Algorithm 2, the in-progress MVICFG would be as shown in Figure 4.4. The edges

added to append the control flow of added nodes have been highlighted in green in

both Figure 4.2b and Figure 4.4.

The deleted nodes in MVICFG are not removed. Instead, the edges are updated

to reflect the change in control flow as shown in Algorithm 4. Lines 2-15 update the

edges for each deleted nodes individually. We find the predecessors and successors of

26

Algorithm 3 Algorithm to connect newly added ICFG nodes in MVICFG

1: function ADDTOMVICFG(NewNodes, ICFG, MVICFG, diff)
2: for all N ∈ NewNodes do
3: ConnectedNodes← PRED(N, ICFG) ∪ SUCC(N, ICFG)
4: for all C ∈ ConnectedNodes AND C /∈ NewNodes do
5: C’ = FINDMATCHEDNODE(C, MVICFG)
6: ADDEDGE(C’, N)
7: end for
8: end for
9: end function

Algorithm 4 Algorithm to update edges for deleted ICFG nodes in MVICFG

1: function DELETEFROMMVICFG(DelNodes, ICFG, MVICFG, diff)
2: for all N /∈ DelNodes AND N ∈ MVICFG do
3: ConnectedNodes← PRED(N, ICFG) ∪ SUCC(N, ICFG)
4: for all C ∈ ConnectedNodes do
5: if C ∈ DelNodes then
6: N’← FINDMATCHEDNODE(N, ICFG)
7: for all M’ ∈ PRED(N’, ICFG) ∪ SUCC(N’, ICFG) do
8: M← FINDMATCHEDNODE(M’, MVICFG)
9: if NOEDGE(M, N) then

10: ADDEDGE(M, N)
11: end if
12: end for
13: end if
14: end for
15: end for
16: end function

the deleted node in MVICFG and map them to ICFG in lines 4-6. We then check all the

edges from this mapped ICFG node, to see if there are any missing edges in MVICFG

in lines 7-9. In case a missing edge is identified, we add it to the MVICFG at line 10.

In case of our example, the algorithm finds the predecessors and successors of the

deleted red node from the MVICFG (nodes 3 and 6 in Figure 4.4). Then, from the ICFG

of the second version, we find all the edges associated with them to see if any of the

edges are missing from the in-progress MVICFG. These edges have been highlighted in

blue in Figure 4.2b except for the edge connecting node 3 to node 6. The edge (3,6) is

missing from the in-progress MVICFG and has been highlighted in red.

27

Figure 4.4: In-progress MVICFG at line 18 of Algorithm 2

Once the missing edges have been identified, we add them into the in-progress

MVICFG. Hence, at line 19 of Algorithm 2, the in-progress MVICFG would be as shown

in Figure 4.5.

Algorithm 5 updates the version information for the edges and update the nodes’

location information to reflect the current ICFG versions. This ensures that the loop at

lines 8-17 of Algorithm 2 can integrate the next ICFG. Lines 2-10 updates each node’s

location information individually. If the node was not added or deleted then we update

its location information from diff information in lines 3-5. On the other hand, if it is a

28

Figure 4.5: In-progress MVICFG at line 19 of Algorithm 2

deleted node, then we set its location to be empty in lines 4-9. Similarly, lines 11-17

updates the edges in the MVICFG. If the edge connects either to or from a deleted

node, we leave the edge unchanged. If it doesn’t connect a deleted node and the

starting node doesn’t have any new outgoing edge in the ICFG, we update the edge’s

version to reflect that it is shared between the two versions in line 12-16.

In our example, the edges (1,2), (2,3), (3,4), (4,6), (6,7) do not connect to a

deleted node. Then we check to see if the starting nodes of these edge have any new

outgoing edge in the second ICFG. In this example, for the edge (4,6), the starting

node 4 has a new outgoing edge. This edge is removed from the list of edges to be

29

Algorithm 5 Algorithm to update the version tag(s) for Edges and line number for
Nodes

1: function UPDATEVERSION(MVICFG, NewNodes, DelNodes, ICFG, D)
2: for all N ∈ MVICFG do
3: if N 6∈ DelNodes then
4: if N 6∈ NewNodes then
5: Update node’s location using info in D
6: end if
7: else
8: Set node’s location to empty
9: end if

10: end for
11: for all E ∈ MVICFG do
12: if E.ToNode 6∈ DelNodes then
13: if E.FromNode 6∈ DelNodes then
14: if E.FromNode has no new outgoing edges in ICFG then
15: Add version of ICFG to edge
16: end if
17: end if
18: end if
19: end for
20: end function

updated. For the rest of the identified edges, we append the new version’s information.

At line 20 of Algorithm 2, the generated MVICFG is shown in Figure 4.6.

Now that we can generate an MVICFG, let’s see how to compute the change of

invariants on top of it.

4.3 Computing The Change Of Invariants

Algorithm 6 is one of the main contributions of this thesis. It takes as input, an

MVICFG, the matched program point and interested version(s) over which to compute

the change of invariant. The output of the algorithm is change of invariant computed

for the matched program point over the specified version(s).

We extract the node associated with shared program point from the MVICFG at line

6. At line 7, two things happens. First, we raise the query at the node over the required

30

Figure 4.6: Final MVICFG at line 20 of Algorithm 2

program versions using Algorithm 7. Then we insert this query into the work-list. The

lines 8-15 loop, as long as the work-list is not empty. Inside the loop, we extract the

top query from the work-list at line 9. Then, at line 11, we try to resolve the query

using Algorithm 8. If the query was not resolved then we propagate the query using

Algorithm 9 at line 13. On the other hand, if the query is resolved then there is no

need to propagate it any further. When work-list is empty, we output the change of

invariant using the Algorithm 12 at line 16.

To understand the algorithms better, let’s apply it to the MVICFG generated in Sec-

tion 4.2. At an intuitive level, Algorithm 6 raises a query at the program point of in-

31

Algorithm 6 Algorithm to compute the change of invariants between versions

1: Input: MVICFG (MVICFG), Program point (PP), Interested versions (V)
2: Output: Change of Invariant at Program Point (PP)
3: function COMPUTECHANGEINVARIANT(MVICFG, PP, V)
4: ProcessedNodes← ∅
5: Resolved← False
6: N← MVICFG.GETNODE(PP)
7: Worklist← RAISEQUERY(N, V)
8: while Worklist 6= ∅ do
9: Remove a query Q from the front of the Worklist

10: CurrentSymbolicValue← ∅
11: Resolved← RESOLVEQUERY(Q, &CurrentSymbolicValue)
12: if Resolved 6= True then
13: PROPAGATEQUERY(MVICFG,Q,ProcessedNodes,CurrentSymbolicValue)
14: end if
15: end while
16: OUTPUTCHANGEOFINVARIANT(V)
17: end function

terest and tries to resolve the query by propagating it backwards through the MVICFG.

The propagation stops when the query is resolved, in conflict with another query or

there are no more nodes left to propagate the query to. When all the queries have

been resolved, we compute the change of invariants over the interested versions by

identifying which invariants are not shared across the versions of interest.

Algorithm 7 Algorithm to Raise a query at node N

1: function RAISEQUERY(N, V)
2: Q.Node← N
3: Q.Version← V
4: LiveVars← GETLIVEVARIABLES(N, MVICFG)
5: for all var ∈ LiveVars do
6: Q.Variable← var
7: for all template ∈ InvariantTemplates do
8: Q.Template← template
9: Add the query Q to Worklist

10: end for
11: end for
12: return Worklist
13: end function

32

A query raised in Algorithm 7 consists of the following attributes; the node at which

the query is currently, the version(s) over which the query is to be evaluated, the

variable being evaluated and the invariant template used to evaluate the query. The

first two attributes are the same as the input to Algorithm 6. Since the change of

invariants can be caused by a variable that is explicitly not present in the instruction

at the node, we gather all the live variables at that node (line 4). Then in lines 5-11,

we handle each live variable individually. For each variable and invariant template

pair, we add to work-list a query at line 9. Once all the queries have been raised, the

work-list is returned at line 12.

For the sake of simplicity in the example, let’s assume that the query we want to

raise at node 7 of Figure 4.6, only seeks to answer whether the variable ‘a’, satisfies

the template ‘x = C’, where ‘x’ is any variable and ‘C’ is any constant. Hence,

Algorithm 7 will generate and insert into the work-list, at line 7 of Algorithm 6, the

query shown in Figure 4.7.

Q. Node : 7
Q. Vers ion : V1 , V2
Q. Var i ab l e : a
Q. Template : x = C

Figure 4.7: Sample query generated by Algorithm 7

Algorithm 8 updates the symbolic value of the variable under evaluation and tries

to solve the invariant template. If the constraint solver is able to resolve the query, at

line 6, then we use Algorithm 11 to track the resolved query as a possible invariant at

line 7. If the query is not resolved, then there is no invariant candidate to track. At

line 10, we add the details about the query and the current symbolic value of the query

variable to a data structure called Processed Nodes, to keep track of the query and

the nodes it visited so far. This help in Algorithm 9 to terminate some queries early,

33

adding to scalability and efficiency of the algorithm. We return whether the query

was resolved or not, in line 12. Any constraint solver with support for symbolically

updating the variable under evaluation and the ability to check if a particular template

is true, can be used here.

Algorithm 8 Algorithm to update the symbolic value in order to the resolve the Query

1: function RESOLVEQUERY(Q, &CurrentSymbolicValue)
2: Resolved← False
3: template← Q.Template
4: versions← Q.Version
5: UpdatedSymbolicValue← ∅
6: if CONSTRAINTSOLVER(Q, template, &UpdatedSymbolicValue) then
7: UPDATEINVARIANTS(UpdatedSymbolicValue, Versions)
8: Resolved← True
9: end if

10: Add pair (Q, UpdatedSymbolicValue) to ProcessedNodes
11: CurrentSymbolicValue← UpdatedSymbolicValue
12: return Resolved
13: end function

Going back to our example, we propagate the query shown in Figure 4.7 backwards

through the MVICFG until it is resolved or terminated (loop in the lines 8-15 of Algo-

rithm 6). In our case, during the first iteration when we try to resolve the query at

line 11 using Algorithm 8, it would return that the query cannot be resolved at node 7

of Figure 4.6. Since the instruction at node 7 doesn’t alter the query variable ‘a’, no

symbolic change, with respect to the query occur in this iteration. Hence, other than

adding the query and the node to the set Processed Nodes, no other changes happen.

In Algorithm 9, we propagate the query in case Algorithm 8 was not able to resolve

it at the current node. We find the predecessors of the current node along any edge

whose version have at least some version in common with query’s version (line 2-

5). If the node has not been previously visited by the same query or if the symbolic

value from that visit matches the current symbolic value for the query variable, we use

Algorithm 10 to update the query at lines 7 and 13, respectively. In case the node was

34

Algorithm 9 Algorithm to propagate the Query through MVICFG

1: function PROPAGATEQUERY(MVICFG, Q, CurrentSymbolicValue)
2: for all E ∈ MVICFG.Edges do
3: Intersection←INTERSECT(E.Version, Q.Version)
4: if Intersection 6= ∅ then
5: if E.ToNode = Q.Node then
6: if (E.FromNode, Intersection) /∈ ProcessedNodes then
7: UPDQUERY(E.FromNode, Intersection, Q.Template, Q.Variable)
8: else
9: cachedValue← ProcessedNodes(Q).UpdatedSymbolicValue

10: if cachedValue 6= CurrentSymbolicValue then
11: REMOVEINVARIANT(Q, Intersection)
12: else
13: UPDQUERY(E.FromNode,Intersection,Q.Template,Q.Variable)
14: end if
15: end if
16: end if
17: end if
18: end for
19: end function

visited by the same query carrying a different symbolic value for the query variable,

we use Algorithm 13 to remove any conflicting candidate invariants.

In the example, the query wasn’t resolved at node 7 of Figure 4.6. Hence, we

propagate it backwards using Algorithm 9. In doing so we observe that there is an edge

that shares the same versions as the query’s version, namely the edge (6,7). Since we

don’t have any other information from other queries at this point and we update the

query at line 7 of Algorithm 9 using Algorithm 10.

Algorithm 10 Algorithm to Update the query at node N

1: function UPDQUERY(N, Version, Template, Variable)
2: Q.Node← N
3: Q.Version← Version
4: Q.Variable← Variable
5: Q.Template← Template
6: Add the query Q to Worklist
7: return Worklist
8: end function

35

Algorithm 10 updates the query. When updating the query, we don’t modify the

query variable or the invariant template. This is kept constant by Algorithm 9. The

query node, get updated to reflect the current node being evaluated and the query

version is set to be intersection of query’s version and the version of edge it traversed

to reach the node. At line 6, we add this updated query into the work-list and return

the work-list at line 7.

Q. Node : 6
Q. Vers ion : V1 , V2
Q. Var i ab l e : a
Q. Template : x = C

Figure 4.8: Sample query after it is updated by Algorithm 10 at node 6

In our example, when the query is updated after propagating it to node 6 in Fig-

ure 4.6, only the Node attribute will be changed as shown in Figure 4.8. In the second

iteration of the loop in lines 8-15 of Algorithm 6, we try to resolve the query at node 6.

Here, however, the instruction a++ is present. Therefore, we update the symbolic value

of the query variable to reflect this and store the information that a query for checking

whether ‘a = C’ has passed through this node and its symbolic value was [a2 = + 1

a1]. The state of the algorithm after this iteration is shown in Figure 4.9. The nodes

visited by the query have been colored blue for easier identification.

Continuing with the example, when Algorithm 9 is called to propagate the query

from node 6, there are multiple possible paths with different edge versions. Hence, the

query get split at this point and we will use different colors for the edges and the nodes

to capture where the symbolic update at node came from. Different edges connect

the node 6 to nodes 3, 8, 4 and 5, but none of the nodes have instruction that affect

the query variable ‘a’. However, when updating the query using Algorithm 10, the

query version has to be adjusted according to the edge it traversed to reach the current

36

Figure 4.9: Query state; Snapshot 1

node. For example, when the node propagated from node 6 to 8, the Algorithm 10 will

update the query as shown in Figure 4.10.

Again, as none of the nodes in question were visited before, the query state after

propagation is as shown in Figure 4.11. The version for which the symbolic value is

valid is shown in the bracket inside the node whenever the value is not common to

both the versions. At the next iteration, when the query at node 8 (red) propagates

to node 4 (gray), it detects that the node has been visited by a query asking the same

question. But since the symbolic value present at node 4 was made exclusively for

version 1, no comparison is made between the queries and the query is propagated

37

Q. Node : 8
Q. Vers ion : V2
Q. Var i ab l e : a
Q. Template : x = C

Figure 4.10: Sample query after it is updated by Algorithm 10 at node 8

further. In case of the queries being propagated from nodes 4 and 5, it detects that

the preceding nodes were already visited by a query asking the same question and

that the symbolic value is shared with the queries’ version. However, as no conflict

is found between the symbolic values being propagated by the different queries, the

propagation carries forward. This continues till orange query reaches node 1. At this

point, the query can be successfully resolved and the Algorithm 11 is called to add this

as a possible invariant candidate.

Algorithm 11 is used to update the invariant candidates during the computation of

change of invariants. In case no candidate invariants were present, the input candidate

is added to the list of invariant candidates at line 4. On the other hand, if there are

preexisting invariant candidates, then lines 8 and 9 check if there is an invariant can-

didate for the same variable and template. In case of such an invariant candidate, line

11 sets the Boolean variable invExist to true, if the preexisting invariant candidate’s

and input invariant candidate’s versions intersect. If the symbolic values of the exist-

ing invariant candidate and input invariant candidate are not the same, Algorithm 13

is called at line 13 to remove any conflicting invariant candidate. In case there is no

conflict, the preexisting invariant candidate’s Version attribute is updated to be the

union of the preexisting and input invariant candidates’ Version attribute. After the

loop, at line 21, if invExist is false, then the input invariant candidate is created at

line 22 and added to the list of invariant candidates at line 23.

38

Figure 4.11: Query state; Snapshot 2

In our example, when the orange query reaches node 1, there were no preexisting

invariant candidates. Hence, we add the resolution returned by the query as an in-

variant candidate. The state of the queries after this update is shown in Figure 4.12.

The yellow cloud [a = 1], represents the invariant candidate for the first version (as

indicated in the brackets). Wherever the symbolic value represents more queries than

the query being represented by the nodes color, the query’s color has been appended

(in abbreviation) to the symbolic value.

When the work-list is exhausted, in our example, the state of the query is shown

in Figure 4.13. Since no conflicting queries were encountered during the propagation,

39

Algorithm 11 Algorithm to update the Invariant Candidates

1: function UPDATEINVARIANTS(InputCandidate, Versions)
2: if Candidates is empty then
3: InvCan← CREATEINVARIANT(InputCandidate, Versions)
4: Add InvCan to Candidates
5: else
6: invExist← False
7: for all InvCan ∈ Candidates do
8: if InvCan.Variable = InputCandidate.Variable then
9: if InvCan.Template = InputCandidate.Template then

10: if InvCan.Version ∩ Versions 6= ∅ then
11: invExist← True
12: if InvCan.InvariantCandidate 6= InputCandidate then
13: REMOVEINVARIANT(InputCandidate.Variable,Versions)
14: else
15: InvCan.Version← InvCan.Version∪InputCandidate.Version
16: end if
17: end if
18: end if
19: end if
20: end for
21: if invExist 6= True then
22: InvCan← CREATEINV(InputCandidate,Versions)
23: Add InvCan to Candidates
24: end if
25: end if
26: end function

the invariant candidate is confirmed to be an invariant for both the versions and rep-

resented by the green colored cloud. At line 16, in Algorithm 6, the Algorithm 12 is

used to output the result. As the invariant was established over the two versions we

were interested in, it reports that there is no change of invariants for the variable ‘a’

between the two versions.

The Algorithm 12 outputs the change of invariants at the specified matched pro-

gram point. If the invariant hasn’t changed over the versions we evaluated, then in-

variant’s Version attribute must be same as what we are evaluating over. Otherwise,

there is a change in the invariants across the program versions. If there is a change

of invariant then line 4 and 5 reports the change along with necessary information to

40

Figure 4.12: Query state; Snapshot 3

debug, understand or specify the change. Depending on the strength of the constraint

solver and type of invariant template used, it is possible that certain type of invariants

are never resolved. In this case, no change of invariant will be reported.

Now that we have a clear idea of how the algorithm works when there is no change

of invariant, let’s consider a case where there is one. The color coding and annota-

tion methodology used in the previous figures will be re-used to save some textual

explanations.

41

Figure 4.13: Query state; Snapshot 4

Operating under the same assumptions and constraints, let’s analyze the change of

invariants associated with the variable ‘b’ in the MVICFG. We will pickup the propa-

gation from the state shown in Figure 4.14.

When the query from node 4 (gray) propagates to node 3, it will update the sym-

bolic value of the query variable ‘b’ at node 3 to be [b2 = + 1 b1] for the version

1. Similarly, when the query from node 5 (green) propagates to node 3, it will try

to update the symbolic value of query variable, again, as [b2 = - 1 b1] for the same

version. Since the two symbolic values are conflicting, both the queries will be im-

42

Algorithm 12 Algorithm to output change of Invariants

1: function OUTPUTCHANGEOFINVARIANT(V)
2: for all InvCan ∈ Candidates do
3: if InvariantCandidate.Versions 6= V then
4: Report Invariant as changed
5: Reports the Variable, Symbolic Value and Version(s) for which the value

holds
6: end if
7: end for
8: end function

mediately canceled by Algorithm 9 and Algorithm 13 will be called to remove any

conflicting invariant candidates.

Algorithm 13 Algorithm to remove an Invariant Candidates in case of conflict

1: function REMOVEINVARIANT(Variable, Versions)
2: for all InvCan ∈ Candidates do
3: if InvCan.Variable = InvariantCandidate.Variable then
4: if InvCan.Template = InvariantCandidate.Template then
5: Remove intersecting version from InvCan.Version
6: end if
7: end if
8: end for
9: end function

Algorithm 13 is used to remove invariant candidates in case of conflict. If there

exist an invariant candidate with the same variable and template as the input parame-

ters, then at line 5, we remove the intersecting versions from the preexisting invariant

candidate’s Version attribute. If after removing the intersecting versions, the preexist-

ing invariant candidate is left with an empty Version attribute, then we remove the

entire invariant candidate from the list of invariant candidates.

In this example, however, no candidates had been established and hence nothing

needs to be removed. When all the queries have been exhausted the state of the

algorithm will be as shown in Figure 4.15. The conflicting symbolic values at node

3 have been highlighted in red. No query got propagated to node 1 as the query

was resolved at node 2 itself. Also, notice how the green and gray queries were not

43

Figure 4.14: Query state; Snapshot 5

propagated after node 3 due to their conflicting nature. The Algorithm 12, will report

the change of invariant as [No Invariant; Added; b = 1].

With this clear understanding of the algorithms, let’s proceed to their evaluation in

the next chapter.

44

Figure 4.15: Query state; Snapshot 6

45

CHAPTER 5. EXPERIMENTAL RESULTS

The general goals of our experiments are to demonstrate that Hydrogen can com-

pute the change of invariants correctly and to show their usefulness in understanding

the changes made between different version of a program.

5.1 Implementation And Experimental Setup

Hydrogen is composed of mainly there major subsystems; LLVM compiler, MVICFG

system and Z3 theorem prover. Intuitively, the MVICFG system uses the LLVM gen-

erated ICFG to create a Multi Version Inter-procedural Control Flow Graph over the

program versions. This MVICFG is then traversed to evaluate the invariant templates

by the Z3 based constraint solver.

LLVM compiler is used to compile and convert the input program versions into LLVM

IR format. Specifically, we make use of the human readable assembly language repre-

sentation of LLVM IR, which makes it easier to visualize and debug different versions of

a program. The type-safe SSA representation in LLVM IR makes tracking and updating

symbolic values of variables, using constraint solver like Z3, straightforward. The LLVM

front-end provides a static analysis engine that is capable of providing dependency

analysis, call graphs, loop initialization conditions, dominance and post-dominance

trees, control flow graphs and basic pointer aliases information. In Hydrogen, we use

Clang, the C/C++ front-end of LLVM, for generating the ICFG required by Algorithm 2.

Since the compilation flags used by a program can vary between different versions of

46

a program, we decoupled the compilation stage of input program versions from Hy-

drogen. In effect, Hydrogen takes as input the compiled LLVM IR of different program

versions.

The MVICFG system in Hydrogen acts as an arbitrator between LLVM and Z3 to

facilitate the computation of change of invariants. It is written entirely in C++ to make

use of the traversal and analysis libraries provided by LLVM. The algorithms in Chap-

ter 4 operate under the assumption that every instruction in MVICFG is associated with

a location. Even though LLVM is capable of embedding location information into the

compiled LLVM IR for most instructions, it is not complete. The MVICFG system is

designed to overcome this shortcoming by intelligently extracting the missing location

information directly from the source code. In addition to generating the MVICFG of

the input program versions, it also provides traversal and node matching mechanism

required by the algorithms in Section 4.3. The MVICFG system is also capable of ex-

porting the generated MVICFG in DOT representation for visualizing the evolution of

the program.

Hydrogen uses Z3 to track and update the symbolic value of the variables of inter-

est. As Z3 doesn’t natively understand LLVM IR instructions, the IR instructions have

to be first translated into a format compatible with Z3. Table 5.1 showcases some con-

crete examples to give an intuitive idea. Under LLVM IR a valid instruction is shown

with its translated form shown under Z3 Translation. Since instruction of same type

tend to have similar translations, they are grouped under Instruction Type. Any vari-

able in the translation requires a data type to be specified. Z3 only supports two data

types; integer and real. Additionally, the real data type in Z3 requires the input to be in

string format when directly specifying the value. We see this in the translation for fsub

double, fmul float and store float. The LLVM IR, on the other hand, depending on

the value of the float/double variable, can represent the direct value in either an expo-

nential or hexadecimal string format. For successful translation, both the data type (of

47

the variables) and the parameters (of the instruction) have to be correctly extracted

and encoded.

Table 5.1: LLVM IR to Z3 translation examples

Instruction

Type

LLVM IR Z3 Translation

Binary

Operations

x = add nsw i32 y, z x.int = y.int + z.int

x = sub nsw i32 y, 1 x.int = y.int - 1

x = fsub double y,

3.200000e+01

x.real = y.real - “32.0”

x = fmul float y,

0x3FF3AE147AE147AE

x.real = y.real - “1.23”

x = fdiv float y, z x.real = y.real - z.real

Memory

Access

store i32 3, i32* x x.int = 3

x = load i32, i32* y x.int = y.int

store float 1.000000e+00,

float* x

x.real = “1.0”

We translate each instruction traversed by the static demand-driven algorithm in

Hydrogen, individually. The demand-driven algorithm, to compute the change of in-

variant, traverses the MVICFG backward from the instruction of interest until the query

is resolved. However, the constraint solver in Z3 is sensitive to the order in which the

translated instructions are provided to it. Hence, if the instructions are directly fed to

the constraint solver, due to the traversal direction used by the demand-driven algo-

rithm, wrong inferences can be made. The Hydrogen framework make use of internal

data structures to re-order the translations, in program order, before invoking the con-

48

straint solver. Once the instructions are in the correct order and in a compatible form,

the Z3 based constraint solver can be used to check for the invariant templates.

As completely translating all the LLVM IR is beyond the scope of this thesis, only a

handful of instructions have been translated. As the thesis focuses primarily on defining

and computing the change of invariant, instructions handling numerical operations and

branch conditions were focused. The decision was made primarily due to the fact that

numerical constraint are easier to resolve. Table 5.2 shows all the translated LLVM

IR grouped by their type. Currently, only one invariant template, x = c, has been

implemented. In the template x is any variable and c is any constant. As with many

static analysis tools, loops are unrolled twice and have not been modeled fully. In

keeping with the goals of the experiment, the current implementation of Hydrogen is

crafted to work with only two versions of a program. This is sufficient to demonstrate

the algorithm’s ability to compute the change of invariants and showcase the usefulness

of the same in understanding the changes made between the two versions. However,

the implementation can be expanded to work with more than two versions without

much difficulty.

Table 5.2: List of LLVM IR supported; grouped by instruction type

Terminal

Instruc-

tion

Binary

Operations

Memory Access and

Addressing

Operations

Other Op-

erations

ret add alloca icmp

br fadd load fcmp

switch sub store call

fsub

mul

Continued on next page

49

Table 5.2 – continued from previous page

Terminal

Instruc-

tion

Binary

Operations

Memory Access and

Addressing

Operations

Other Op-

erations

fmul

udiv

sdiv

The experiment is designed to show that the algorithm is able to compute the

change of invariant and to indicate its usefulness in understanding the changes made

between program versions. Due to the limitations mentioned above, evaluating the

Hydrogen framework over real world programs is difficult. In order to overcome this,

a small benchmark of 4 test programs were constructed to mimic the common human

made error as mentioned by Fedora in DefCon 2012. In order to show the applicability

in real world programs, tcas from SIR benchmark was also included in this benchmark.

Since Hydrogen is made on top of LLVM IR instructions, all the gathered results are in

the IR format as well.

5.2 Experimental Results

In this section we present the experimental data gathered from the benchmark

using Hydrogen.

5.2.1 Computing the change of invariants

In this experiment we wanted to evaluate the ability of the algorithm to compute

the change of invariants between two versions of a program. Table 5.3 shows the

data collected from Hydrogen when evaluating the benchmark. Since we are using

50

a template based invariant query, we have to check for the change of invariants on

all the live variables present at the Matched Point. The number under P denote the

program number in the benchmark. Under Change of Invariant we present the 4 tuple

that defines it, namely Matched Point, Version 1, Type and Version 2. We report the

line number associated with matched node in Matched Point. The invariants present,

at the matched program point, for the different versions are reported under Version 1

and Version 2, respectively. Type represent the change in relation between the variables

present at the matched points across versions.

Table 5.3: Computed change of invariant for benchmark

P Changed

Inv

Live Vars Change of Invariants

Matched

Point

Version 1 Type Version 2

1

1 3 10 %6 main = Input M %6 main =

%2 main

2 10 11 %10 main = Input M %10 main =

%2 main

%6 main = Input M %6 main =

%2 main

2

1 3 18 %13 main = 1 M %13 main = Input

1 17 24 %27 main = 1 R

6 40 32 %47 main = Input R

%50 main = 2 R

%45 main = 1 R

%30 main = 1 R

Continued on next page

51

Table 5.3 – continued from previous page

P Changed

Inv

Live Vars Change of Invariants

Matched

Point

Version 1 Type Version 2

%27 main = 1 R

3 2 9 12 %6 main = Input M %6 main = NDef

%13 main = (+ (-

(/ 160.0 9.0)) (*

(/ 5.0 9.0)

%3 main))

M %13 main = (+ (-

462569 721726

8096000.0)

%3 2 main)

4 1 8 21 %10 main = 1 R

T 1 5 135 A %92 alt sep test

= 5

The results show that the algorithm is capable of computing the change of invari-

ants, automatically, between different program versions. Upon manual inspection of

the results, it was found that the effective number of change of invariants, in most

cases, was one. Since LLVM IR is SSA based, each time a variable is assigned a new

value, it gets renamed. This indicates that the number of change of invariants, be-

tween incremental versions, is generally small. We will discuss the cause and possible

applications of the change of invariants reported in Table 5.3 in the Section 5.3.

In Table 5.4, we present the performance data gathered during the computation of

change of invariants. According to the study by Marinescu et al. (2014), the average

number of executable lines in a patch from 6 open source projects is six. As the test

program are smaller, we limited the size of diff to an average of three. Similar to

52

Table 5.3, the number under P denote the program number in the benchmark and

under Matched Point we report the matched program point’s line number from the

MVICFG. Diff Size shows the size of the diff file generated by standard Unix diff utility.

Total execution time of Hydrogen, in ms, is presented in Times. The last two columns

report the number of nodes visited for the query to be resolved for the first and second

version respectively. The number reported in these columns are maximal if the same

query was propagated in different paths in MVICFG causing different number of nodes

to be traversed.

Table 5.4: Performance data for the static demand-driven Algorithm

P Diff Size Matched

Point

Time(ms) No of Nodes Visited

Version 1 Version 2

1 2
10 20.085 2 9

11 107.827 11 17

2 4

18 75.677 5 6

24 1755.08 6 23

32 8015.64 32 48

3 4 12 177.21 18 16

4 2 21 95.893 7 8

T 5 135 41.705 14 12

The results suggest that the number of nodes traversed for the query resolution is

generally small. The execution time depends on both the number of nodes traversed

and the number of liver variables analyzed for the matched program point.

53

5.3 Interpreting The Change Of Invariants

In the previous section, we saw that Hydrogen was able to capture the change of

invariants in the benchmark. The results presented in Table 5.3 are not very intuitive,

as they are reported in LLVM IR format. This section interprets the change of invariants

and show how they capture the changes made between the versions. According to a

study by Nguyen et al. (2013), bug fixes repeat as much as 60% in some open source

programs. Repetition of the fixes can be avoided if an assertion is inserted the first

time the bug was fixed. In this spirit, we also show how the change of invariant can be

used to generate assertions. We have grouped the discussion by programs, in the rest

of this section.

5.3.1 Program P1

P1 is a program to convert temperature from Celsius to Fahrenheit. The difference

between the two versions is shown below.

10d9

< c in >> c e l s i u s ;

From the diff generated, we can see that in the second version the statement seeking

input to the variable celsius was deleted. In the LLVM IR, the variable celsius was

given the name %6 main. The change of invariants reflects this change made between

the versions. Specifically, the invariant at program point in line 10, changed from

[%6 main = Input] to [%6 main = %2 main], where %2 main is the uninitialized value

of the variable. Since LLVM IR is in SSA form, the second use of the variable celsius

got the name %10 main. This got reported as the second changed invariant in P1.

If the developer knows that the program behaves correctly in the first version, then

the invariants generated for the correct version can be inserted as an assertion. In this

54

specific case, if [celsius = Input] is inserted as an assertion before the use of the

variable celsius, we can avoid bugs related to uninitialized variables in the future.

5.3.2 Program P2

P2 is a general arithmetic operations tester program. The diff over the program

version is as follows.

17c17

< i f (number1 = 1) {

−−−

> i f (number1 == 1) {

There was a mistake in the if condition in the first version, causing the variable

to be assigned instead of being compared. The variable number1 was renamed as

%13 main in the LLVM IR. As evident from the change of invariant reported for P2, this

change is captured by Hydrogen at program point in line 18. In this case, if the if

condition was specified correctly, the symbolic value of the variable number1 would

have been equal to input and not 1. The other change of invariants reported can be

ignored as they are all associated with the same source variable number1, except for

[%47 main = Input]. This invariant was present in the first version due to incorrect

if condition. For this program, the change of invariants can be used characterize and

understand the changes made between program versions but cannot be used directly

to generate assertion like in P1.

5.3.3 Program P3

P3 is a program to convert temperature from Fahrenheit to Celsius. The difference

between the two versions is shown below.

55

11c11

< c e l s i u s = (fah renhe i t − 32.0) ∗ 5.0 / 9 .0 ;

−−−

> c e l s i u s = fahrenhe i t − 32.0 ∗ 5.0 / 9 .0 ;

A very simplified version of this program was explained in Chapter 3. Here, the

source variable celsius was mapped to LLVM IR variable %13 main at program point

in line 12. This change is reflected in the change of invariant reported. Like in P1,

the invariants generated for the correct version, [celsius = (fahrenheit - 32.0) *

(5.0 / 9.0)], can be used as an assertion to prevent similar logical bugs in the future.

5.3.4 Program P4

P4 mimics, minimally, the scenario of missing break statement inside a switch

condition. The diff over the program versions is as follows.

13a14

> break ;

The first version of the program was missing a break statement in one of the switch

cases. The fall-through caused by this missing statement eliminated one of the control

flow paths, which would have negated the reported invariant in the first version. While

the change is shown by the change of invariants, the exact cause is harder to debug.

The path followed by the query, raised by the static demand-driven algorithm, is useful

in debugging as it shows the paths along which computation of differing invariants

went.

56

5.3.5 Program T

T is the tcas program from SIR benchmark. The difference between the two ver-

sions is shown below.

132c132 ,133

< a l t s e p++;

−−−

> a l t s e p += 1;

> a l t s e p −= 1;

The diff lines shown above occurred inside of a conditional branch. Since, in the

second version, the value of the variable alt sep was left unmodified inside the condi-

tional branch, the invariant [%92 alt sep test = 5] was reported. In the first version,

as the value was modified, it conflicted with the symbolic value from the other condi-

tional path and negated the invariant. However, change of invariants reported in this

program is not complete. There were other semantic changes that occurred between

the versions which could not be captured due to the lack of mappings for arrays and

#define variables.

In this section, we have seen that the change of invariants can be useful in under-

standing the changes made between different versions of a program and in some cases

be used directly to generate assertions, required prevent similar bugs in the future.

57

CHAPTER 6. FUTURE WORK AND CONCLUSION

In this chapter, we discuss the future avenues for research using change of invari-

ants and present a concluding message.

6.1 Future Work

The concept of change of invariants provides another tool to understand and an-

alyze program evolution. New applications for the concept needs to be explored to

demonstrate its usefulness in the long run. Since change of invariants fully utilizes the

evolutionary aspect of the software, we hope that it will pave way for more longitudinal

program analysis techniques.

The Hydrogen framework could be improved to support more invariant templates

and Z3 translation. This will help to truly evaluate its potential in real world programs.

The reporting and computation of the invariants have to be elevated from LLVM IR level

to source level for the reported change of invariants to be useful for the developers.

Automatic assertion generation, using change of invariants, is an area which needs

to be explored. Studies by Nguyen et al. (2010) and Kim et al. (2006) report that

as much as 19-40% bug re-occur. Hence, providing a mechanism to automatically

generate and update assertion with minimal interaction from the developers can help

improve the quality of software evolution. As the number of change of invariants

reported during the evaluation remained fairly low, it’s use in automatically generating

change contracts and differential assertions to aid in software verification needs to

58

be explored further. For specifying change contracts and differential assertions, both

longitudinal and latitudinal program property knowledge is required. The concept of

change of invariant seems like an ideal fit in helping to automate these.

Another direction that we are interested in pursuing is computing the change of

invariant for APIs. Already, works by Nguyen et al. (2014); Xie and Pei (2006) and Yang

et al. (2006) try to mine the API invariants. But by computing interface level invariants,

we can easily detect if incompatibility will arise from changing the versions of the API

used. Also, by specifying the change of invariants at different program points, we

might be better able to assist developer in adapting their program to accommodate

changes to API or help the API developer classify a revision as major or minor release

depending on if the revision breaks interface invariants or not.

6.2 Conclusion

Change of invariants provides a way of capturing the changes made between evolv-

ing versions of a program. A static demand-driven algorithm provides an efficient and

scalable method to compute the change of invariants over program versions on top of

MVICFG. The experimental results show that change of invariants can be calculated

using the demand-driven algorithm and that they help in understanding the changes

made between program versions.

The main contributions of this thesis are the definition for change of invariant, an

efficient static demand-driven algorithm for computing them on top of multi version

program representation called MVICFG and the prototype framework, called Hydro-

gen, that implemented algorithm to evaluate its ability to compute change of invari-

ants.

59

BIBLIOGRAPHY

(2002). Two controlled experiments concerning the usefulness of assertions as a means

for programming. In Proceedings of the International Conference on Software Mainte-

nance (ICSM’02), ICSM ’02, pages 84–, Washington, DC, USA. IEEE Computer Soci-

ety.

Ammons, G., Bod́ık, R., and Larus, J. R. (2002). Mining specifications. In Proceedings of

the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’02, pages 4–16, New York, NY, USA. ACM.

Apiwattanapong, T., Orso, A., and Harrold, M. J. (2007). Jdiff: A differencing tech-

nique and tool for object-oriented programs. Automated Software Engg., 14(1):3–36.

Beyer, D., Henzinger, T. A., Majumdar, R., and Rybalchenko, A. (2007). Path invariants.

In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’07, pages 300–309, New York, NY, USA. ACM.

Bozga, M., Habermehl, P., Iosif, R., Konečný, F., and Vojnar, T. (2009). Automatic

Verification of Integer Array Programs, pages 157–172. Springer Berlin Heidelberg,

Berlin, Heidelberg.

Bradley, A. R., Manna, Z., and Sipma, H. B. (2006). What’s Decidable About Arrays?,

pages 427–442. Springer Berlin Heidelberg, Berlin, Heidelberg.

60

Buse, R. P. and Weimer, W. R. (2008). Automatic documentation inference for excep-

tions. In Proceedings of the 2008 International Symposium on Software Testing and

Analysis, ISSTA ’08, pages 273–282, New York, NY, USA. ACM.

Buse, R. P. and Weimer, W. R. (2010). Automatically documenting program changes.

In Proceedings of the IEEE/ACM International Conference on Automated Software En-

gineering, ASE ’10, pages 33–42, New York, NY, USA. ACM.

Casalnuovo, C., Devanbu, P., Oliveira, A., Filkov, V., and Ray, B. (2015). Assert use

in github projects. In Proceedings of the 37th International Conference on Software

Engineering - Volume 1, ICSE ’15, pages 755–766, Piscataway, NJ, USA. IEEE Press.

Colón, M., Sankaranarayanan, S., and Sipma, H. (2003). Linear invariant generation

using non-linear constraint solving. In Hunt, WarrenA., J. and Somenzi, F., editors,

Computer Aided Verification, volume 2725 of Lecture Notes in Computer Science, pages

420–432. Springer Berlin Heidelberg.

Cousot, P. and Cousot, R. (1977a). Abstract interpretation: A unified lattice model

for static analysis of programs by construction or approximation of fixpoints. In

Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, POPL ’77, pages 238–252, New York, NY, USA. ACM.

Cousot, P. and Cousot, R. (1977b). Static determination of dynamic properties of

generalized type unions. In Proceedings of an ACM Conference on Language Design for

Reliable Software, pages 77–94, New York, NY, USA. ACM.

Cousot, P. and Halbwachs, N. (1978). Automatic discovery of linear restraints among

variables of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium

on Principles of Programming Languages, POPL ’78, pages 84–96, New York, NY, USA.

ACM.

61

Csallner, C. and Smaragdakis, Y. (2006). Dynamically discovering likely interface in-

variants. In Proceedings of the 28th International Conference on Software Engineering,

ICSE ’06, pages 861–864, New York, NY, USA. ACM.

Csallner, C., Tillmann, N., and Smaragdakis, Y. (2008). Dysy. In Software Engineering,

2008. ICSE ’08. ACM/IEEE 30th International Conference on, pages 281–290.

Daniel, B., Jagannath, V., Dig, D., and Marinov, D. (2009). Reassert: Suggesting repairs

for broken unit tests. In Proceedings of the 2009 IEEE/ACM International Conference

on Automated Software Engineering, ASE ’09, pages 433–444, Washington, DC, USA.

IEEE Computer Society.

Dillig, I., Dillig, T., Li, B., and McMillan, K. (2013). Inductive invariant generation via

abductive inference. In Proceedings of the 2013 ACM SIGPLAN International Confer-

ence on Object Oriented Programming Systems Languages & Applications, OOP-

SLA ’13, pages 443–456, New York, NY, USA. ACM.

Donzeau-Gouge, V., Huet, G., Kahn, G., and Lang, B. (1980). Programming environ-

ments based on structured editors: The mentor experience.

Ernst, M. D. (2004). Invited talk static and dynamic analysis: Synergy and duality.

In Proceedings of the 5th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for

Software Tools and Engineering, PASTE ’04, pages 35–35, New York, NY, USA. ACM.

Ernst, M. D., Cockrell, J., Griswold, W. G., and Notkin, D. (1999). Dynamically dis-

covering likely program invariants to support program evolution. In Proceedings of

the 21st International Conference on Software Engineering, ICSE ’99, pages 213–224,

New York, NY, USA. ACM.

Ernst, M. D., Cockrell, J., Griswold, W. G., and Notkin, D. (2001). Dynamically dis-

covering likely program invariants to support program evolution. IEEE Trans. Softw.

Eng., 27(2):99–123.

62

Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S., Pacheco, C., Tschantz, M. S., and

Xiao, C. (2007). The daikon system for dynamic detection of likely invariants. Sci.

Comput. Program., 69(1-3):35–45.

Estler, H. C., Furia, C. A., Nordio, M., Piccioni, M., and Meyer, B. (2014). Contracts

in practice. In Proceedings of the 19th International Symposium on FM 2014: Formal

Methods - Volume 8442, pages 230–246, New York, NY, USA. Springer-Verlag New

York, Inc.

Flanagan, C. and Leino, K. R. M. (2001). Houdini, an annotation assistant for esc/java.

In Proceedings of the International Symposium of Formal Methods Europe on Formal

Methods for Increasing Software Productivity, FME ’01, pages 500–517, London, UK,

UK. Springer-Verlag.

Flanagan, C. and Qadeer, S. (2002). Predicate abstraction for software verification. In

Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’02, pages 191–202, New York, NY, USA. ACM.

Fluri, B., Wuersch, M., PInzger, M., and Gall, H. (2007). Change distilling: Tree dif-

ferencing for fine-grained source code change extraction. IEEE Trans. Softw. Eng.,

33(11):725–743.

Fu, J., Bastani, F., and Yen, I.-L. (2008). Automated discovery of loop invariants for

high-assurance programs synthesized using ai planning techniques. In High Assur-

ance Systems Engineering Symposium, 2008. HASE 2008. 11th IEEE, pages 333–342.

Ghardallou, W. (2012). Using invariant relations in the termination analysis of while

loops. In Software Engineering (ICSE), 2012 34th International Conference on, pages

1519–1522.

63

Gupta, A. and Rybalchenko, A. (2009). Invgen: An efficient invariant generator. In

Proceedings of the 21st International Conference on Computer Aided Verification, CAV

’09, pages 634–640, Berlin, Heidelberg. Springer-Verlag.

Hangal, S. and Lam, M. S. (2002). Tracking down software bugs using automatic

anomaly detection. In Proceedings of the 24th international conference on Software

engineering, pages 291–301. ACM.

Hatcliff, J., Leavens, G. T., Leino, K. R. M., Müller, P., and Parkinson, M. (2012).

Behavioral interface specification languages. ACM Comput. Surv., 44(3):16:1–16:58.

Henzinger, T. A., Hottelier, T., Kovács, L., and Voronkov, A. (2010). Invariant and

type inference for matrices. In Proceedings of the 11th International Conference on

Verification, Model Checking, and Abstract Interpretation, VMCAI’10, pages 163–179,

Berlin, Heidelberg. Springer-Verlag.

Herzig, K., Greiler, M., Czerwonka, J., and Murphy, B. (2015). The art of testing less

without sacrificing quality. In Proceedings of the 2015 International Conference on

Software Engineering. IEEE – Institute of Electrical and Electronics Engineers.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commun. ACM,

12(10):576–580.

Horwitz, S. (1990). Identifying the semantic and textual differences between two

versions of a program. In Proceedings of the ACM SIGPLAN 1990 Conference on Pro-

gramming Language Design and Implementation, PLDI ’90, pages 234–245, New York,

NY, USA. ACM.

Horwitz, S., Prins, J., and Reps, T. (1989). Integrating noninterfering versions of

programs. ACM Trans. Program. Lang. Syst., 11(3):345–387.

64

Jackson, D. and Ladd, D. A. (1994). Semantic diff: A tool for summarizing the effects

of modifications. In Proceedings of the International Conference on Software Mainte-

nance, ICSM ’94, pages 243–252, Washington, DC, USA. IEEE Computer Society.

Kataoka, Y., Notkin, D., Ernst, M. D., and Griswold, W. G. (2001). Automated support

for program refactoring using invariants. In Proceedings of the IEEE International

Conference on Software Maintenance (ICSM’01), ICSM ’01, pages 736–, Washington,

DC, USA. IEEE Computer Society.

Kim, M. and Notkin, D. (2006). Program element matching for multi-version pro-

gram analyses. In Proceedings of the 2006 International Workshop on Mining Software

Repositories, MSR ’06, pages 58–64, New York, NY, USA. ACM.

Kim, M., Notkin, D., and Grossman, D. (2007). Automatic inference of structural

changes for matching across program versions. In Proceedings of the 29th Interna-

tional Conference on Software Engineering, ICSE ’07, pages 333–343, Washington,

DC, USA. IEEE Computer Society.

Kim, S., Pan, K., and Whitehead, Jr., E. E. J. (2006). Memories of bug fixes. In

Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of

Software Engineering, SIGSOFT ’06/FSE-14, pages 35–45, New York, NY, USA. ACM.

Kovacs, L. I. and Jebelean, T. (2005). An algorithm for automated generation of in-

variants for loops with conditionals. In Proceedings of the Seventh International Sym-

posium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC ’05,

pages 245–, Washington, DC, USA. IEEE Computer Society.

Kramer, J. and Cunningham, R. J. (1979). Invariants for specifications. In Proceedings

of the 4th International Conference on Software Engineering, ICSE ’79, pages 183–193,

Piscataway, NJ, USA. IEEE Press.

65

Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., and Wintersteiger, C. (2009).

Loopfrog: A static analyzer for ansi-c programs. In Automated Software Engineering,

2009. ASE ’09. 24th IEEE/ACM International Conference on, pages 668–670.

Kusano, M., Chattopadhyay, A., and Wang, C. (2015). Dynamic generation of likely

invariants for multithreaded programs. In 2015 IEEE/ACM 37th IEEE International

Conference on Software Engineering, volume 1, pages 835–846.

Lahiri, S. K., Hawblitzel, C., Kawaguchi, M., and Rebêlo, H. (2012). Symdiff: A

language-agnostic semantic diff tool for imperative programs. In Proceedings of the

24th International Conference on Computer Aided Verification, CAV’12, pages 712–

717, Berlin, Heidelberg. Springer-Verlag.

Lahiri, S. K., McMillan, K. L., Sharma, R., and Hawblitzel, C. (2013). Differential

assertion checking. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 345–355, New York, NY, USA. ACM.

Laviron, V. and Logozzo, F. (2009). Subpolyhedra: A (more) scalable approach to infer

linear inequalities. In Verification, Model Checking, and Abstract Interpretation, pages

229–244. Springer.

Le, T.-D. B., Yi, J., Lo, D., Thung, F., and Roychoudhury, A. (2014). Dynamic inference

of change contracts. In ICSME, pages 451–455.

Le, W. and Pattison, S. D. (2014). Patch verification via multiversion interprocedural

control flow graphs. In Proceedings of the 36th International Conference on Software

Engineering, ICSE 2014, pages 1047–1058, New York, NY, USA. ACM.

Lin, C.-H., Liu, L., and Vasudevan, S. (2013). Generating concise assertions with com-

plete coverage. In Proceedings of the 23rd ACM International Conference on Great

Lakes Symposium on VLSI, GLSVLSI ’13, pages 185–190, New York, NY, USA. ACM.

66

Loh, A. and Kim, M. (2010). Lsdiff: A program differencing tool to identify systematic

structural differences. In Proceedings of the 32Nd ACM/IEEE International Conference

on Software Engineering - Volume 2, ICSE ’10, pages 263–266, New York, NY, USA.

ACM.

Marinescu, P., Hosek, P., and Cadar, C. (2014). Covrig: A framework for the analysis

of code, test, and coverage evolution in real software. In Proceedings of the 2014

International Symposium on Software Testing and Analysis, ISSTA 2014, pages 93–

104, New York, NY, USA. ACM.

Massoni, T. (2007). An approach to invariant-based program refactoring. Electronic

Communications of the EASST, 3.

Meyer, B. (1992). Applying’design by contract’. Computer, 25(10):40–51.

Miné, A. (2006). The octagon abstract domain. Higher Order Symbol. Comput.,

19(1):31–100.

Muşlu, K., Swart, L., Brun, Y., and Ernst, M. D. (2015). Development history gran-

ularity transformations. In ASE 2015: Proceedings of the 30th Annual International

Conference on Automated Software Engineering, Lincoln, NE, USA.

Nagarajan, V., Gupta, R., Zhang, X., Madou, M., and De Sutter, B. (2007). Matching

control flow of program versions. In Software Maintenance, 2007. ICSM 2007. IEEE

International Conference on, pages 84–93.

Nguyen, H. A., Dyer, R., Nguyen, T. N., and Rajan, H. (2014). Mining preconditions

of apis in large-scale code corpus. In Proceedings of the 22Nd ACM SIGSOFT Interna-

tional Symposium on Foundations of Software Engineering, FSE 2014, pages 166–177,

New York, NY, USA. ACM.

67

Nguyen, H. A., Nguyen, A. T., Nguyen, T. T., Nguyen, T., and Rajan, H. (2013). A

study of repetitiveness of code changes in software evolution. In Automated Software

Engineering (ASE), 2013 IEEE/ACM 28th International Conference on, pages 180–190.

Nguyen, T., Kapur, D., Weimer, W., and Forrest, S. (2012). Using dynamic analysis to

discover polynomial and array invariants. In Proceedings of the 34th International

Conference on Software Engineering, ICSE ’12, pages 683–693, Piscataway, NJ, USA.

IEEE Press.

Nguyen, T. T., Nguyen, H. A., Pham, N. H., Al-Kofahi, J., and Nguyen, T. N. (2010). Re-

curring bug fixes in object-oriented programs. In Proceedings of the 32Nd ACM/IEEE

International Conference on Software Engineering - Volume 1, ICSE ’10, pages 315–

324, New York, NY, USA. ACM.

Nimmer, J. W. and Ernst, M. D. (2001). Static verification of dynamically detected

program invariants: Integrating daikon and esc/java. Electronic Notes in Theoretical

Computer Science, 55(2):255–276.

Nimmer, J. W. and Ernst, M. D. (2002). Invariant inference for static checking: An

empirical evaluation. SIGSOFT Softw. Eng. Notes, 27(6):11–20.

Notkin, D. (1985). The gandalf project. Journal of Systems and Software, 5(2):91–105.

Notkin, D. (2002). Longitudinal program analysis. In Proceedings of the 2002 ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,

PASTE ’02, pages 1–1, New York, NY, USA. ACM.

Partush, N. and Yahav, E. (2014). Abstract semantic differencing via speculative cor-

relation. In Proceedings of the 2014 ACM International Conference on Object Oriented

Programming Systems Languages & Applications, OOPSLA ’14, pages 811–828,

New York, NY, USA. ACM.

68

Păsăreanu, C. S. and Visser, W. (2004). Verification of java programs using symbolic ex-

ecution and invariant generation. In International SPIN Workshop on Model Checking

of Software, pages 164–181. Springer.

Perkins, J. H. and Ernst, M. D. (2004). Efficient incremental algorithms for dynamic

detection of likely invariants. In Proceedings of the 12th ACM SIGSOFT Twelfth Inter-

national Symposium on Foundations of Software Engineering, SIGSOFT ’04/FSE-12,

pages 23–32, New York, NY, USA. ACM.

Person, S., Dwyer, M. B., Elbaum, S., and Pǎsǎreanu, C. S. (2008). Differential sym-

bolic execution. In Proceedings of the 16th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, SIGSOFT ’08/FSE-16, pages 226–237, New

York, NY, USA. ACM.

Qi, D., Yi, J., and Roychoudhury, A. (2012). Software change contracts. In Proceedings

of the ACM SIGSOFT 20th International Symposium on the Foundations of Software

Engineering, FSE ’12, pages 22:1–22:4, New York, NY, USA. ACM.

Raghavan, S., Rohana, R., Leon, D., Podgurski, A., and Augustine, V. (2004). Dex:

A semantic-graph differencing tool for studying changes in large code bases. In

Proceedings of the 20th IEEE International Conference on Software Maintenance, ICSM

’04, pages 188–197, Washington, DC, USA. IEEE Computer Society.

Ramanathan, M. K., Grama, A., and Jagannathan, S. (2007a). Path-sensitive inference

of function precedence protocols. In Proceedings of the 29th International Confer-

ence on Software Engineering, ICSE ’07, pages 240–250, Washington, DC, USA. IEEE

Computer Society.

69

Ramanathan, M. K., Grama, A., and Jagannathan, S. (2007b). Static specification

inference using predicate mining. In Proceedings of the 28th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’07, pages 123–134,

New York, NY, USA. ACM.

Reps, T. and Teitelbaum, T. (1984). The synthesizer generator. In Proceedings of the

First ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software

Development Environments, SDE 1, pages 42–48, New York, NY, USA. ACM.

Rodŕıguez-Carbonell, E. and Kapur, D. (2005). Program verification using automatic

generation of invariants. In Proceedings of the First International Conference on Theo-

retical Aspects of Computing, ICTAC’04, pages 325–340, Berlin, Heidelberg. Springer-

Verlag.

Sagdeo, P., Athavale, V., Kowshik, S., and Vasudevan, S. (2011). Precis: Inferring

invariants using program path guided clustering. In Automated Software Engineering

(ASE), 2011 26th IEEE/ACM International Conference on, pages 532–535.

Sagdeo, P., Ewalt, N., Pal, D., and Vasudevan, S. (2013). Using automatically gener-

ated invariants for regression testing and bug localization. In Automated Software

Engineering (ASE), 2013 IEEE/ACM 28th International Conference on, pages 634–639.

Sankaranarayanan, S., Sipma, H. B., and Manna, Z. (2004). Non-linear loop invariant

generation using gröbner bases. In Proceedings of the 31st ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’04, pages 318–329, New

York, NY, USA. ACM.

Schmitt, P. H. and Weiß, B. (2007). Inferring invariants by symbolic execution. VERIFY,

259:195–210.

70

Servant, F. and Jones, J. A. (2012). History slicing: Assisting code-evolution tasks. In

Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of

Software Engineering, FSE ’12, pages 43:1–43:11, New York, NY, USA. ACM.

Shi, Y., Park, S., Yin, Z., Lu, S., Zhou, Y., Chen, W., and Zheng, W. (2010). Do i use

the wrong definition?: Defuse: Definition-use invariants for detecting concurrency

and sequential bugs. In Proceedings of the ACM International Conference on Object

Oriented Programming Systems Languages and Applications, OOPSLA ’10, pages 160–

174, New York, NY, USA. ACM.

Shrestha, K. and Rutherford, M. J. (2011). An empirical evaluation of assertions as

oracles. In Proceedings of the 2011 Fourth IEEE International Conference on Software

Testing, Verification and Validation, ICST ’11, pages 110–119, Washington, DC, USA.

IEEE Computer Society.

Tao, Y., Dang, Y., Xie, T., Zhang, D., and Kim, S. (2012). How do software engi-

neers understand code changes?: An exploratory study in industry. In Proceedings

of the ACM SIGSOFT 20th International Symposium on the Foundations of Software

Engineering, FSE ’12, pages 51:1–51:11, New York, NY, USA. ACM.

Vasudevan, S., Sheridan, D., Patel, S., Tcheng, D., Tuohy, B., and Johnson, D. (2010).

Goldmine: Automatic assertion generation using data mining and static analysis. In

Proceedings of the Conference on Design, Automation and Test in Europe, DATE ’10,

pages 626–629, 3001 Leuven, Belgium, Belgium. European Design and Automation

Association.

Xie, T. and Pei, J. (2006). Mapo: Mining api usages from open source repositories. In

Proceedings of the 2006 international workshop on Mining software repositories, pages

54–57. ACM.

71

Yang, J., Evans, D., Bhardwaj, D., Bhat, T., and Das, M. (2006). Perracotta: Mining

temporal api rules from imperfect traces. In Proceedings of the 28th International

Conference on Software Engineering, ICSE ’06, pages 282–291, New York, NY, USA.

ACM.

Yang, W. (1991). Identifying syntactic differences between two programs. Softw. Pract.

Exper., 21(7):739–755.

Yi, J., Qi, D., Tan, S. H., and Roychoudhury, A. (2013). Expressing and checking

intended changes via software change contracts. In Proceedings of the 2013 Inter-

national Symposium on Software Testing and Analysis, ISSTA 2013, pages 1–11, New

York, NY, USA. ACM.

Yi, J., Qi, D., Tan, S. H., and Roychoudhury, A. (2015). Software change contracts.

ACM Trans. Softw. Eng. Methodol., 24(3):18:1–18:43.

Yin, Z., Yuan, D., Zhou, Y., Pasupathy, S., and Bairavasundaram, L. (2011). How do

fixes become bugs? In Proceedings of the 19th ACM SIGSOFT Symposium and the

13th European Conference on Foundations of Software Engineering, ESEC/FSE ’11,

pages 26–36, New York, NY, USA. ACM.

Zhang, Y. and Mesbah, A. (2015). Assertions are strongly correlated with test suite ef-

fectiveness. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2015, pages 214–224, New York, NY, USA. ACM.

	2017
	Computing change of invariants to support software evolution
	Ashwin Kallingal Joshy
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	2. PREREQUISITES AND RELATED WORK
	2.1 Prerequisites
	2.1.1 Control flow graph
	2.1.2 Inter-procedural control flow graph
	2.1.3 Version control
	2.1.4 Multi version inter-procedural control flow graph
	2.1.5 LLVM
	2.1.6 Z3

	2.2 Related Works
	2.2.1 Invariants and assertions
	2.2.2 Syntactic differencing
	2.2.3 Semantic differencing
	2.2.4 Dynamic invariant generation
	2.2.5 Static invariant generation

	3. DEFINING CHANGE OF INVARIANT
	3.1 Prerequisites
	3.2 Change Of Invariant

	4. COMPUTING CHANGE OF INVARIANT
	4.1 Overview
	4.2 MVICFG Generation
	4.3 Computing The Change Of Invariants

	5. EXPERIMENTAL RESULTS
	5.1 Implementation And Experimental Setup
	5.2 Experimental Results
	5.2.1 Computing the change of invariants

	5.3 Interpreting The Change Of Invariants
	5.3.1 Program P1
	5.3.2 Program P2
	5.3.3 Program P3
	5.3.4 Program P4
	5.3.5 Program T

	6. FUTURE WORK AND CONCLUSION
	6.1 Future Work
	6.2 Conclusion

	BIBLIOGRAPHY

