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ABSTRACT

Performance tuning is the leading justification for breaking abstraction boundaries. We target this

problem for message passing concurrency (MPC) abstractions on the Java Virtual Machine (JVM).

Efficient mapping of MPC abstractions to threads is critical for performance, scalability, and CPU uti-

lization; but tedious and time consuming to perform manually. We solve this problem by putting forth

a technique for automatically mapping MPC abstractions to JVM threads. In general, this mapping

cannot be found in polynomial time. Our surprising observation is that characteristics of MPC abstrac-

tions and their communication patterns can be very revealing, and can help determine the mapping. Our

technique addresses a number of challenges that leads to improved performance: i) balancing the com-

putations across JVM threads, ii) reducing the communication overheads, iii) utilizing the information

about cache locality, and iv) mapping MPC abstractions to threads in a way that reduces the contention

between JVM threads. We have realized our technique in the Panini language that has capsules as an

MPC abstraction. We also compare our mapping technique against four default mapping techniques:

thread-all, round-robin-task-all, random-task-all and work-stealing. Our evaluation on wide range of

benchmark programs shows that our mapping technique can improve the performance by 30%-60%

over default mapping techniques.
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CHAPTER 1. INTRODUCTION

Message-passing based concurrency (MPC) is an approach to concurrency, where there are self-

contained concurrently runnable entities that communicate via message passing. Examples of MPC

abstractions include: actors[13], active objects [20], guardians [17], capsules [23], etc. A number of

MPC frameworks support building large scale distributed applications on the Java Virtual Machine

(JVM), e.g. Akka [16], Scala Actors [12], ActorFoundary [5], SALSA [7], Panini [23], etc. We will use

the term abstraction to mean MPC abstraction except when ambiguous.

1.1 Mapping Abstractions to Threads

Although, MPC model exposes parallelism by design and the parallelism stems from being able

to execute multiple MPC abstractions in parallel, abstractions needs to be mapped to cores carefully

for utilizing the multicore. Mapping is a two step process: 1) abstractions to threads mapping and

2) threads to cores mapping (or scheduling). Often, the MPC runtime handles both steps by creating

required threads and scheduling them on different cores using an abstraction to core mapping technique.

However, in case of MPC frameworks that run on JVM platforms, abstractions to JVM threads

mapping is performed by programmers and JVM leaves scheduling of threads on multicore to the OS

scheduler. These frameworks provide several kind of schedulers and dispatchers to programmers using

which they can map the abstractions in their applications to JVM threads, e.g. Akka has four kind of

dispatchers, Scala has two kind of schedulers, Panini has four kinds of dispatchers, etc. The availability

of wide-variety of schedulers and dispatchers suggests that it is important to map MPC abstractions to

JVM threads carefully to utilize multicore efficiently.

A large number of discussions on tuning MPC abstractions (or tuning schedulers/dispatchers) [3]

indicate that programmers find it hard to manually arrive at the optimal mapping. For example, a
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Figure 1.1 Communication graphs and program running time comparison charts
for LogisticMap (logmap) and ScratchPad benchmark programs.
x-axis:2, 4, 8, and 12 core settings and y-axis: runtime (in seconds).
Lower bars are better.

Stackoverflow user asks: “We’re using Akka in such a way where we have two separate dispatch-

ers ... We’re now running into some performance issues and we’re looking into how we can tune

the dispatcher configuration parameters and see how they affect the performance of the application

[http://tinyurl.com/ohwsesn]”. In response an expert user replies: “I strongly encourage you to moni-

tor your system to find the root cause of your performance issues and not just randomly tweaking the

configuration” Another Stackoverflow expert advises: “Tuning the performance of an actor system is a

hard task. But without knowing what the task is (e.g. does it do any blocking operations, read from IO,

...) it is hard to tell what to do or if anything can be done at all. . . [http://tinyurl.com/ovypwnu]”

When manual tuning is hard, programmers use the default mappings (default schedulers/dispatch-

ers) and iteratively fine tune the mappings until the desired performance is achieved. This process is

easy for simple or embarrassingly parallel applications, however for applications that have sub-linear

performance1, improving the performance is tedious and time consuming [28].

Moreover, a single default mapping strategy may not work across programs. To illustrate consider

this problem for two programs shown in Figure 1.1. We investigate the performance of four widely

used default mappings: i) thread, ii) round-robin, iii) random and iv) work-stealing. In thread mapping,

1These are concurrent applications that are not designed with parallelism in mind. They often shows degradation in the
performance upon adding more resources such as, cores
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every abstraction is assigned a dedicated thread and in other three mappings abstractions are tasks that

are assigned to taskpool or threadpool. Figure 1.1 shows the performance (program runtime) for these

default mappings over 2, 4, 8 and 12 core settings. For LogisticMap program, round-robin task based

mapping out-performs other three mappings, whereas for ScratchPad program, there is no clear winner.

On 2-core setting, random task based mapping does better, on 4, and 12-core settings thread based

mapping does better and on 8-core setting work-stealing task based mapping does better. These results

illustrate that single default mapping strategy may not work across programs.

When manual tuning is hard and default mappings may not produce the desired performance, a

brute force technique that tries all possible combinations of abstractions to threads mapping (using

different kinds of schedulers/dispatchers) could be used. However, this approach suffers from combi-

natorial explosion. Even for an MPC program with few kinds of concurrent entities, the number of

combinations that must be tried is large. For instance, for an MPC program with eight kinds of concur-

rent entities, trying all possible combinations of four kinds of schedulers/dispatchers requires exploring

65536 (4ˆ8) different configurations. In such situations, finding a mapping solution that yields signifi-

cant performance improvement over default mappings is desirable.

Our key observation is that, local computation and communication behavior of a concurrent entity

in a MPC program is surprisingly predictive for determining globally beneficial mapping to threads.

Here, by computation and communication behaviors we mean properties such as: externally blocking

behaviors, local state, computational workload, message send/receive pattern, and inherent parallelism.

A related observation is that determining these behavior at a coarse/abstract level is sufficient to solve

this important problem.

1.2 Contributions

Our work makes several contributions: (1) We propose characteristics vector (cVector), a repre-

sentation for computation and communication behavior of an MPC abstraction. Main challenges in

coming up with this representation strategy were to select suitable fields and then to formulate cVector

in a language-agnostic manner. (2) We describe analyses for determining components of a character-

istics vector. Main challenge here was in coming up with local analyses, which can be performed on
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single abstraction at a time — especially challenging for communication patterns. (3) We describe an

automatic cVector to thread mapping technique, which relies on several novel intuitions. (4) We im-

plement this technique in the Panini compiler to map capsules, an MPC abstraction, to threads. (5) We

examine applicability of our approach to other MPC abstractions.

For evaluating our approach, we have selected four default mapping strategies (that are represen-

tative schedulers/dispatchers in this domain). We profile program execution time and cpu consumption

and use them as metrics to compare our mapping technique against four default mapping strategies. Our

results show 30%-60% improvement in program execution times when compared to default mappings.

Since our technique is automatic, it could help decrease the efforts required for performance tuning.

1.3 Thesis Outline

The rest of this thesis is organized as follows. First, we give background on Panini capsules. In

Chapter 3 we describe cVector, cVector analyses, and cVector to thread mapping technique. In Chapter 4

we describe our evaluation. In Chapter 5, we compare and contrast with related ideas, and Chapter 6

concludes.
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CHAPTER 2. BACKGROUND

2.1 Panini Capsules, an MPC Abstraction

A capsule is an MPC abstraction implemented in the programming language Panini [2, 23, 6, 22].

Figure 2.1 presents an example HelloWorld program in this language. In this program there are three

capsules HelloWorld, Greeter and Console and they are connected as HelloWorld → Greeter→ Con-

sole.

1 signature Stream { //A signature declaration
2 void write(String s) ;
3 }

5 capsule Console () implements Stream { //Capsule declaration
6 void write(String s) { // Capsule procedure
7 System.out.println(s) ;
8 }
9 }

11 capsule Greeter (Stream s) { //Requires an instance of Stream to work
12 String message = "Hello World!"; // State declaration
13 void greet() { // Capsule procedure
14 s.write ("Panini: " + message); // Inter−capsule procedure call
15 long time = System.currentTimeMillis();
16 s.write ("Time is now: " + time);
17 }
18 }

20 capsule HelloWorld() {
21 design { // Design declaration
22 Console c; // Capsule instance declaration
23 Greeter g; // Another capsule instance declaration
24 g(c) ; // Wiring, connecting capsule instance g to c
25 }
26 void run() { // An autonomous procedure
27 g.greet() ; // Inter−capsule procedure call
28 }
29 }

Figure 2.1 HelloWorld Program in Panini
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In Panini’s programming model, capsules are independently acting entities. Capsules provide inter-

faces to communicate to other capsules via capsule procedures. When a capsule wants to communicate

with other capsule it does so using inter-capsule procedure calls. In the HelloWorld program described

above, g.greet() in line 27 is an inter-capsule procedure call between HelloWorld capsule and Greeter

capsule. If a capsule requires return result of inter-capsular call then the caller receives a future as a

proxy for the actual return value (void return values are allowed). If the value is not used immediately,

the caller can continue execution.

Capsules internally use message-passing based concurrency mechanism to process inter-capsule

procedure calls. A capsule contains a message queue for receiving messages, a thread for processing

messages, a set of state variables that represents its local state and a message processing logic con-

taining set of message handlers (mapped to capsule procedures). Capsules cannot share data, multiple

threads cannot process capsule’s messages simultaneously, and capsules can have finite number of

nested capsules.
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CHAPTER 3. MAPPING MPC ABSTRACTIONS TO THREADS

In this chapter we describe our technique for mapping MPC abstractions to threads starting with

our representation strategy. We explain our technical innovations using capsules as an example and then

revisit their applicability to other MPC abstractions.

3.1 Selecting Computation and Communication Features

Performance tuning of MPC applications involves balancing the computations (performed by vari-

ous entities) across available resources and reducing the communication overheads. Selecting compu-

tation and communication features to analyze is the first step toward that goal with four challenges:

selected feature must be representative, amenable to detection by analyses, provide sufficient coverage,

and avoid duplication. We now describe our selected set of features. Note that selecting other features

is also possible, but for our purpose the following suffice.

3.1.1 Blocking behavior

We believe that it is vital to account for blocking behavior that can arise due to I/O, socket or

database blocking primitives. When a concurrent entity externally blocks, it not only adds additional

overhead to its computation, it may also lead to starvation of other concurrent entities in the system

(thread processing this entity may not be available to process messages from other entites when they

share a thread). For instance, consider the code snippet from Searcher capsule in FileSearch Panini

program shown below. This code snippet reads an input string from console and uses this word to query

Indexer capsules, which returns the file paths containing the search word. Such externally blocking

behaviors, blocks the thread processing the message.
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BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
System.out.print("Enter the word you want to search");
String word = br.readLine(); // externally blocks the thread

1 Map<Integer,Integer> dataMap;
2 void write(DictionaryConfig.WriteMessage

writeMessage) {
3 ...
4 dataMap.put(writeMessage.key, writeMessage.

value);
5 ...
6 }

1 void read(DictionaryConfig.ReadMessage
readMessage) {

2 ...
3 if (dataMap.get(readMessage.key) != null)
4 value = dataMap.get(readMessage.key);
5 ...
6 }

3.1.2 Local state

We also consider the state of a concurrent entity, i.e. the set of state variables as an important feature.

State variables may be of primitive data types or large objects such as collections and hash-maps.

The message handlers of a MPC abstraction may read or write to its local state. When a abstraction

has a large local state, the thread processing abstraction’s message can benefit if abstraction’s local

state is available in its cache while processing the subsequent messages (improves cache locality).

For instance, consider the code snippet of Dictionary capsule from concdict Panini program. This

code snippet contains local state dataMap and two message handlers write and read. Both message

handlers read/write to large local state dataMap. Subsequent read/write requests can benefit, if dataMap

is available in the local cache of the thread processing the messages of Dictionary capsule.

3.1.3 Computational workload

Understanding the nature of computations performed by the MPC abstraction is also important.

MPC abstractions may perform CPU intensive computations. MPC abstractions that don’t perform

CPU intensive computations could share a thread resulting in overall saving of resources.

3.1.4 Communication pattern (or message send/receive pattern)

An MPC abstraction may send messages to multiple recepients or receive messages from multiple

senders. Message send and receive patterns can be used to place senders and recepients that commu-
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1 Sender capsule:
2 Receiver receiver;
3 void send(String msg) {
4 for ( int i=0; i<440; i++)
5 receiver .receive(msg);
6 }

1 Receiver capsule:
2 void receive(String msg) {
3 System.out.println("MSG Recv!"+msg);
4 }

1 DispatcherCapsule server;
2 double compute(ComputationContext context) {
3 double val = server.computeAreaUnderTheCurve(context);//Future to store result
4 return val; // claiming the result from Future
5 }

nicate often. Therefore, knowing the pattern of send and receive communications is important. For

instance, consider the code snippet of Sender and Receiver capsules from bang Panini program shown

below. Sender capsule has one-to-many send pattern (for every message it receives, it sends 440 mes-

sages to Receiver capsule). Since Sender communicates with Receiver often, by mapping Sender and

Receiver to the same thread, message processing overheads could be greatly reduced.

3.1.5 Inherent parallelism

MPC abstractions during their computation may communicate with other concurrent entities and

may require results from them to continue its computation. Inherent parallelism represents the nature

of parallelism that can be exploited during this synchronization. Consider following code snippet from

DelegateCapsule that communicates with DispatcherCapsule in message handler compute. The mes-

sage handler defines a Future1 (line 3) when the message is sent to DispatcherCapsule. The result

returned from DispatcherCapsule is used right away (line 4). Here the inherent parallelism is zero.

Inherent parallelism could be used to decide if two communicating capsules can be assigned dedicated

threads to benefit from parallelism.

1Future is a sort of a placeholder object that an capsule can create for a result that does not yet exist. The result of the
Future is computed concurrently and can be later collected.
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3.2 Characteristics Vector (cVector): Representing Computation and Communication

Behaviors of MPC Abstractions

We define characteristic vector (cVector) to represent the computation and communication behav-

iors described in §3.1. The cVector has five fields: 〈β ,σ ,π,ρ,ω〉. The key challenge is to assign

coarse/abstract values to cVector fields (that represents behaviors of an MPC abstraction) which can

be determined using local program analysis (program analysis on the MPC abstraction). For instance,

for deciding capsules to threads mapping, every capsule type is assigned a cVector and cVector fields

are determined by analyzing the capsule type. The rest of this section describes cVector fields, domain

of values that can be assigned to them and the local program analysis steps to determine them for Panini

Capsules.

Blocking. β represents blocking behavior of capsules that use externally blocking primitives such

as I/O, socket and database blocking primitives and it can be assigned values true or f alse. A cap-

sule with blocking behavior may block the executing thread, may lead to starvation of other capsules

and system deadlock. For determining capsules with blocking behaviors the local program analysis

analyzes message handlers of capsules and identifies the usage of blocking library calls such as In-

putStream.read(), ServerSocket.accept() etc. We assign β = true, if any of the capsule procedures use

blocking library calls, i.e. this is an intra-capsule analysis.

Local State. σ represents local state of capsules. State of a capsule includes the parameters

sent during the creation of the capsule and the local state variables defined as part of the capsule.

σ ∈S = {nil, primitive, large} are the legal values and σ is determined as follows:

• nil, if no state variables

• primitive, when state variables are of primitive data types

• large, when state variables use large data structures such as objects, collections, maps etc.

The larger the local state of a capsule, the higher the probability of a pre-fetch fail (cache miss). To

determine σ we check the type of each state variable of the capsule, which is also an intra-capsule

analysis.
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Inherent Parallelism. π represents inherent parallelism exposed by the capsule when it commu-

nicates (sends a message) with other capsules. The communication between capsules is asynchronous,

however capsules may receive results from other capsules and use the result immediately or later. Based

on this we assign following values: π ∈P = {sync,async, f uture} and values are determined as fol-

lows:

• sync, if a capsule sends a message to another capsule and waits for the result, which is consumed

immediately

• async, if a capsule sends a message and does not require the result

• f uture, otherwise (includes cases where a capsule receives result to a Future1 and uses it later

on).

Inherent parallelism (π) is defined for each message handler of a capsule and we define
→
π to represent

the inherent parallelism of a capsule (one entry for each message handler). We analyze each message

handler at every communication point (location of sending message) and assign values to π as described

above. In case of multiple communication points in a message handler, we count sync, async and f uture

values and assign whichever dominates. If none dominates, we assign π = f uture for the message

handler. Inherent parallelism of the capsule is then assigned a value from {sync,async, f uture} such

that the value dominates message handlers. If none dominates, we assign π = f uture for the capsule.

So, finding inherent parallelism is also an intra-capsule analysis.

For example, consider the code snippet of SeriesWorker capsule from LogisticMap Panini program

shown below.

1 void nextTerm() {

2 curTerm = computer.compute(new ComputeMessage(senderId, curTerm));

3 }

4 void getTerm() {

5 master.process(new ResultMessage(curTerm));

6 }
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It has two message handlers, nextTerm and getTerm with one communication point each. For mes-

sage handler nextTerm, π = sync and for message handler getTerm, π = async. We assign π = f uture

for SeriesWorker capsule, since none of {sync,async} dominates.

Communication Pattern. ρ represents the communication pattern of the capsule (ρ ∈ R =
→
R

×
←
R). A communication pattern is a tuple (

→
ρ ,
←
ρ ) consisting of message send pattern (

→
ρ ∈

→
R) and

message receive pattern (
←
ρ ∈

←
R). The message send pattern can be assigned following values { lea f ,

router, scatter } and the values are determined as follows:

• lea f , does not send messages to other capsules or just replies to sender

• router, sends exactly one message to the another capsule

• scatter, sends more than one message to one or more capsules.

Some capsules communicates with a set of capsules more often than others (applicable to abstractions

in any MPC model). These capsules form hub-affinity groups. To determine if a capsule (hub) has

higher affinity to a set of capsules (affinity capsules), we use its message send pattern,
→
ρ . The idea is

that by making the thread that processes messages of the hub capsule also process the messages of its

affinity capsules. This helps to reduce the communication overheads between hub and affinity capsules.

If a capsule is assigned scatter value then it indicates that the capsule forms hub-affinity group with

capsules that it communicates with. When a capsule is assigned router or lea f for
→
ρ , that capsule may

be part of the affinity group of some other capsule.

The message receive pattern,
←
ρ ∈

←
R can be assigned following values {gather, request-reply} and

the values are determined as follows:

• gather, if a capsule is expected to receive large number of messages

• request-reply, if a capsule is expected to receive small number of messages.

The local program analysis used to determine communication patterns (
→
ρ ,
←
ρ ) is described in §3.3.

Computational Workload ω represents capsules computational workload. We classify the com-

putations performed in message handlers to be CPU intensive or not. Each message handler is assigned

a legal value from W = {math, io} and the value is assigned as follows:
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• math, indicates cpu intensive computations, when message handler has recursive functions, loops

with unknown bounds, makes high cost library calls, uses heavy data structures such as objects,

collections, maps, receive large data and read/write to capsule state that is heavy

• io, no cpu intensive computations.

Upon computing
→
ω , which has an entry for each message handler, the computational workload of the

capsule is assigned computational workload of the message handler that has message receive pattern,
←
ρ = gather. If none of the message handlers have message receive pattern,

←
ρ = gather then ω for the

capsule is assigned math, if there exists a message handler with ω = math, otherwise ω is assigned io

for the capsule.

3.3 Local Program Analysis to Determine Communication Pattern

Generally, the topology is required to determine message send and receive patterns (
→
ρ ,
←
ρ ). The key

challenge is to determine them without relying on the topology. That is, by performing local program

analysis of the abstraction. We propose a technique that predicts message send and receive patterns by

analyzing how message handlers are defined. Figure 3.1 shows a number of message handler patterns

and the assigned values for ρ . We now describe each of them in detail. In the description we use a term

“connected capsules” to refer to the set of capsules that a capsule can send message to.

The pattern send(capsules[i]) indicates that the capsule can send messages to its connected cap-

sules, but it sends message to only one of its connected capsules. We can derive from this behavior that

the capsule is going to receive more messages that performs send(capsules[i]) to send messages to all

its connected capsules. Here, the message sending pattern is one-to-one, hence we take
→
ρ to be router.

We have predicted that this message handler of the capsule is going to receive many messages, hence

predict
←
ρ to be gather.

The pattern state_rw + {send(capsule) or cond(send(capsule))} indicates that the capsule read/write

its local state and sends message to its connected capsule (always or on condition). Here, the message

sending pattern is one-to-one, hence
→
ρ is assigned router. The message handler pattern indicates that

all functionality of the capsule is performed in this message handler (read/write state, sending message
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Message Handler
Pattern

Description
→
ρ

←
ρ

send(capsules[i]) sends message to one of its capsules router gather
state_rw +
{send(capsule) or
cond(send(capsule))}

read/write state and sends message
to connected capsule (always/on-
condition)

router gather

send_all(capsules) sends message to all connected cap-
sules

scatter request-reply

cond(send_all(capsules)) sends message to all connected cap-
sules on condition

router gather

exit_calls contains library calls that indicates
termination such as exit(), print()
etc.

N/A request-reply

partial_rw read/write state partially N/A gather

Figure 3.1 Predicting
→
ρ and

←
ρ using message handler patterns.

to its connected capsules), hence we predict that this message handler is often executed and we assign

value gather to
←
ρ .

The pattern send_all(capsules) indicates that the capsule sends message to all its connected cap-

sules. Hence,
→
ρ has value scatter. A behavior such as, broadcasts to all is less likely to happen often in

MPC because broadcasting of messages can lead to congestion in the system or system not responding

nature. Hence, we predict that such message handlers will be executed less and we assign request-reply

value to
←
ρ , which indicates small message receive frequency.

The pattern cond(send_all(capsules)) indicates that the message handler conditionally performs

broadcasting of the message.
→
ρ for such a message handler will be router. We predict that the capsule

receives many messages, performs state update and when some condition on its state variable is sat-

isfied it broadcasts the message. Hence, we assign gather to
←
ρ , which indicates high message receive

frequency.

The last two message handler patterns does not apply to predict
→
ρ and they only predict

←
ρ . In

the pattern exit_calls, if the message handler uses library calls that indicates possible termination (for

instance, exit(), print() etc), we predict that such messages will be received less. We assign request-reply

value to
←
ρ . In partial_rw pattern, we predict that capsule that reads or writes to its local state partially

will receive many such messages to perform complete read/write to its local state before the end of its
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existence. We assign gather to
←
ρ , which indicates high message receive frequency. §3.6 provides an

example, where we show how the local program analysis described here is applied to compute cVectors

for capsules in a Panini program.

3.4 Execution Policies for Abstractions

We formulate the problem of mapping capsules to threads as assigning execution policies to cap-

sules in the program. Execution policy defines how capsule messages are processed. We focus on

following four execution policies,

• THREAD, in this execution policy, a dedicated thread is assigned for processing the messages

from the capsule’s message queue and executing the corresponding behavior (works similar to

Akka’s pinned dispatcher).

• TASK, in this execution policy, the capsule messages are processed by the shared thread of the

taskpool. The taskpool may contain one or more capsules that abide to TASK execution policy.

The order in which the messages from different capsules message queue has to be processed

could vary. One simple policy is to process one message from each capsule to avoid starvation of

other capsules.

• SEQ/MONITOR, in case of SEQ and MONITOR, the policy is that the capsule that sends the

message needs to execute the defined behavior at the capsule that received the message (works

similar to Akka’s calling thread dispatcher).

It can be seen that, by assigning different execution policies to capsules, they get mapped to threads

differently. For instance, assigning thread execution policy leads to one-to-one capsules to threads

mapping. Assigning task execution policy leads to n-to-one capsules to threads mapping. The prin-

ciple behind selecting these four execution policy is that, they represent the mapping constructs (or

dispatcher/schedulers) available in the widely used JVM-based MPC frameworks. Note that, the exe-

cution policies described here are applicable to any MPC abstraction.
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3.5 Mapping Heuristics: Deciding Abstractions to Threads Mapping

So far we have described cVector as a way to represent MPC abstraction’s computation and com-

munication behaviors. In this section, we examine a number of heuristics that assigns execution policies

to capsules with certain cVectors.

Blocking Heuristics. This heuristic states that a capsule that has externally blocking behavior (β =

true), should be assigned thread (Th) execution policy. Assigning any other policy to blocking capsules

may block the executing thread, may lead to starvation of other capsules and system deadlock.

Heavy Heuristics. This heuristic states that a capsule that is non-blocking, communicates often

with other capsules and performs CPU intensive computations should be assigned thread (Th) execution

policy. The rationale behind this decision is that the dedicated thread can perform its CPU intensive

computations in parallel with other threads without voluntarily interruptions (meaning voluntarily not

giving up CPU to other threads). The cVector of such a capsule is: < f alse, nil, •, scatter, •, math>.

Note that, • as value for any cVector field indicates that any value from the domain of values can be

assigned and the value does not influence the mapping decision.

HighCPU Heuristics. a capsule that is non-blocking, communicating less often with other cap-

sules and performing CPU intensive computations should be assigned task (Ta) execution policy. By

assigning task execution policy, the capsule can share a thread with other capsules (which are also as-

signed task policy) and can also benefit from work-stealing optimizations available for the task/thread

pools. The cVector of such capsules are: < f alse, •, •, router, •, math>.

LowCPU Heuristics. This heuristics states that a capsule that has cVector like < f alse, •, •, lea f ,

•, io> should be assigned monitor (M) execution policy. Such a capsule does not need a thread for

processing its messages and the threads of the capsules that sends the message themselves will process

the messages of the capsule.

Hub Heuristics. This heuristic states that hub capsules should be assigned task (Ta) execution

policy. Hub capsules are represented using cVector < f alse, nil, •, scatter, •, io>. The rationale behind

this decision is that affinity capsules (capsules that a hub capsule communicates with) can be executed

by the shared thread that is processing the messages of the hub capsule.
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Affinity Heuristics. This heuristic states that affinity capsules should be assigned monitor (M)

execution policy. Affinity capsules have following cVector < f alse, •, •, router, request-reply, io>. By

assigning monitor execution policy, the thread processing the hub capsule (of these affinity capsules)

will process the messages of the affinity capsules.

Master Heuristics. There are two types of master capsules. First type has cVector < f alse, primitive/

large, •, scatter, •, io>. This type of master capsules sends messages to worker capsules and may not

receive reply from workers. Second type has cVector < f alse, •, •, router, gather, io>. This type of mas-

ter capsules does not send messages to worker capsules, however they receive messages from worker

capsules. The heuristics states that both types of master capsules must be assigned task (Ta) execution

policy. Master capsules have the property that they delegate the work to worker capsules.

Worker Heuristics. This heuristic states that worker capsules should be assigned task (Ta) ex-

ecution policy. The cVector of worker capsules is < f alse, •, •, lea f , •, math>. Similar to HighCPU

capsules, these capsules can utilize any load-balancing strategies applied to the task/thread pool.

3.6 Mapping Function

Using the heuristics stated above, we have defined a mapping function as shown in Figure 3.2. The

mapping function takes capsule cVector as input and assigns an execution policy. By following the

flow it is easy to see that the function is complete. Because, every capsule with a cVector is assigned an

execution policy. It can also be seen that capsules are never assigned multiple execution policies.

We now present an example where we construct cVectors for capsules and apply our mapping

function to determine the execution policies for capsules. Consider the capsule communication graph

(topology) of LogisticMap program from Savina [14] shown in Figure 1.1. This Panini program has

three types of capsules: Master, SeriesWorker (10 instances) and RateComputer (10 instances). Master

communicates with each SeriesWorker (each SeriesWorker replies back to Master) and RateComputer.

SeriesWorker instances also communicates with RateComputer. One can see that the communication

graph of LogisticMap Panini program is not simple and determining the execution policies to capsules

(or capsules to threads mapping) for such a program is non-trivial. For capsules in LogisticMap Panini

program, we construct cVectors and determine the execution policies using our technique.
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Figure 3.2 Flow diagram of our mapping function.

1 void begin(LogisticMapConfig.StartMessage sm) {
2 int i = 0;
3 while ( i < LogisticMapConfig.numTerms) {
4 for (SeriesWorker worker : workers) {
5 worker.nextTerm();
6 }
7 i += 1;
8 }
9 for (SeriesWorker worker : workers) {

10 worker.getTerm();
11 numWorkRequested += 1;
12 }
13 }

1 void process(LogisticMapConfig.ResultMessage rm)
{

2 termsSum += rm.term;
3 numWorkReceived += 1;
4 if (numWorkRequested == numWorkReceived) {
5 System.out.println("Terms sum: " + termsSum);
6 for (SeriesWorker worker : workers) {
7 worker.done();
8 }
9 for (RateComputer computer : computers) {

10 computer.done();
11 }
12 }
13 }

Figure 3.3 LogisticMap Master capsule code snippet. For brevity, we show only
required code. The source code of complete program can be found in
[1].

Master. This capsule does not use blocking calls, hence β = f alse and it has local state defined

using primitive data types, hence σ = primitive. Figure 3.3 shows two message handlers begin and
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process. The message handler, begin uses send_all(capsules) pattern (lines 4-6 and lines 9-12), hence
→
ρ = scatter and

←
ρ = request-reply (as shown in send_all(capsules) rule shown in Figure 3.1). The

message handler, process has pattern cond(send_all(capsules)) (lines 4-12) and uses print() (line 5)

library call that indicates possible termination, hence
←
ρ = request-reply and

→
ρ = router. Given, (

→
ρ ,
←
ρ )

= (scatter, request-reply) for message handler begin and (
→
ρ ,
←
ρ ) = (router, request-reply) for message

handler process, (
→
ρ ,
←
ρ ) for Master will be (scatter, request-reply). The inherent parallelism, π = async,

as all message sends are asynchronous in message handlers and ω = io, as there is no computation

intensive operations in either of the message handlers. Hence, cVector for Master capsule is, <β , σ ,

π ,
→
ρ ,
←
ρ , ω> = < f alse, primitive, async, scatter, request-reply, io> and by following the mapping

function (shown in Figure 3.2) for this cVector gives us task (Ta) execution policy.

1 double startTerm = 0;
2 double curTerm = 0;
3 void nextTerm() {
4 int senderId = id;
5 curTerm = computer.compute(new
6 ComputeMessage(senderId, curTerm));
7 }
8 void getTerm() {
9 master.process(new ResultMessage(curTerm));

10 }
11 void done() {
12 exit () ;
13 }

1 double rate = 0.0;
2 ResultMessage compute(ComputeMessage

computeMessage) {
3 double result = computeNextTerm(

computeMessage.term, rate);
4 int senderId = computeMessage.senderId;
5 return new ResultMessage(result);
6 }
7 void done() {
8 exit () ;
9 }

Figure 3.4 LogisticMap SeriesWorker capsule (on left) and RateComputer cap-
sule (on right) code snippets.

SeriesWorker. This capsule is non-blocking and has local states defined using primitive data types

(lines 1-2), hence β = f alse and σ = primitive. Figure 3.4 (left) shows three message handlers, next-

Term, getTerm and done. The message handlers, nextTerm and getTerm both have pattern state_rw and

send(capsule) pattern (lines 5-6 and line 9), hence (
→
ρ ,
←
ρ ) = (router, gather). The message handler,

done has exit() (line 12), hence
←
ρ = request-reply. Given, (

→
ρ ,
←
ρ ) for all three message handlers as

above, (
→
ρ ,
←
ρ ) = (router, gather) for SeriesWorker. None of the message handlers have CPU intensive

code, hence ω = io. The message handler, nextTerm uses the returned result immediately, hence π =

sync. The message handler, getTerm uses asynchronous send, hence π = async. For SeriesWorker, π =

f uture as none of {sync, async} dominates. Hence, cVector for SeriesWorker capsule is, <β , σ , π ,
→
ρ ,
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←
ρ , ω> = < f alse, primitive, sync, router, gather, io> and execution policy for this cVector is task (Ta)

execution policy.

RateComputer. This capsule is non-blocking and has local state defined using primitive data types,

hence π = f alse and σ = primitive. Figure 3.4 (right) shows two message handlers, compute and done.

The message handler, compute has pattern state_rw and send(capsule), hence (
→
ρ ,
←
ρ ) = (router, gather).

The message handler, done has exit() call, hence
←
ρ = request-reply. Given that, (

→
ρ ,
←
ρ ) = (router, gather)

for RateComputer. Since this capsule replies to sender capsule,
→
ρ should be changed to lea f . For this

capsule, π = async and ω = io. Hence, cVector is, <β , σ , π ,
→
ρ ,
←
ρ , ω> = < f alse, primitive, async,

lea f , gather, io> and execution policy for this cVector is monitor (M) execution policy.

3.7 cVector+

Upon deciding the execution policies for capsules, we show that the mappings can be further im-

proved for a specific case. To perform this analysis we use capsule communication graph (CCG) and

execution policies of capsules. An CCG is a directed graph G(V,E) where, V = A0,A1, ...,An is a set of

nodes, each representing a capsule, and E is a set of edges (Ai,A j) for all i,j such that there is commu-

nication from Ai to A j. An example CCG is shown in Figure 1.1. This specific case can be described

as follows: there exists a capsule with monitor (M) execution policy and it communicates with a set

of parent capsules (capsules that sends message to this capsule) that have task (Ta) execution policies,

these parent capsules have ω = io,
→
ρ = router and

←
ρ = request-reply. In such a case, the parent capsules

will be part of a taskpool that is served by a set of threads (size = #cores). The solution we propose is

to cut-down the size of the taskpool by half (size = #cores/2). This will improve the program runtime

due to reduced number of lock contentions between threads that are processing parent capsules when

trying to communicate with a capsule that is assigned monitor execution policy. It also helps to reduce

the CPU consumption of the program by increasing the workload on threads (more tasks per thread).

In our benchmark suite, we have improved both program runtime and cpu consumptions for six Panini

programs that exhibits this special case using cVector+ mapping. One such Panini program is bang.

This program contains a number of Sender capsules that are assigned task execution policy and they all

communicates with a single Receiver capsule which has monitor policy assigned to it.
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3.8 Applicability to Other JVM-based MPC Frameworks

In general, the proposed technique is applicable to other JVM-based MPC frameworks. In the pro-

posed technique, we have selected abstraction behaviors that are commonly seen in MPC frameworks.

We have represented the abstraction behaviors as cVectors, the local program analysis for determining

coarse/abstract values to cVectors only uses the abstraction (does not rely on the topology), the execu-

tion policies described are available in most MPC frameworks and the heuristics that maps abstraction

cVectors to execution policies are based on the intuitions of general MPC abstractions.

Most MPC frameworks have dynamism in terms of creating new abstractions or creating new com-

munications dynamically. Our cVector based mapping technique assigns execution policy to abstraction

types, hence dynamically created abstraction instances just inherit the execution policy assigned to its

abstraction type.
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CHAPTER 4. EVALUATION

4.1 Benchmarks

We have implemented our technique in Panini Capsules [2, 23, 6] and is available from [1]. For

evaluating our technique, we have selected representative programs from Erlang BenchErl Suite [4],

Actor Collections [33], Computer Language Benchmarks Game [9], JavaGrande [30], StreamIt Bench-

marks [34], and Savina Actor Benchmarks [14]. The representative benchmark programs are concur-

rent or parallel applications, which exhibits different concurrency patterns and parallelisms (data, task,

pipeline). These applications show super-linear, linear and sub-linear speedups and they may not scale

well when additional cores are allocated to them. Our idea is to evaluate a wide range of programs

rather than be repetitive. While selecting the representative programs from different benchmark suites,

we have included programs that consists of abstractions with different behaviors and their interac-

tions are not straightforward. We have translated a total of fifteen representative programs to Panini

[23, 2] for evaluation. Panini translations of these programs have one-to-one correspondence with the

source language program (meaning, capsules in the translated Panini program is exactly same as the

MPC abstractions in the source program). For instance, Scala Actors (as MPC Abstractions) in logmap

benchmark from Savina and Capsules (as MPC Abstractions) in Panini version are exactly same and

they perform same computations and communications. Figure 4.1 lists our Panini translated benchmark

programs and it also shows the distribution of execution policies. The assignment of execution policy

and its impact on the program performance is discussed in §4.3.
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Suite Benchmark
Policy Distribution

Thread Task Monitor Sequential

BenchErl
bang 0 1 1 0
mbrot 0 1 1 0

serialmsg 0 1 1 1
FileSearch 2 1 0 1

Actor ScratchPad 1 2 2 0
Collections Polynomial 2 1 0 0

CLBG
fasta 0 2 1 1

Knucleotide 1 1 1 0
Fannkuchredux 1 0 1 0

JG RayTracer 1 1 0 0

Streamit
BeamFormer 0 3 2 2

DCT 1 1 2 4

Savina
logmap 1 1 1 0
concdict 0 2 1 0
concsll 0 2 1 0

Figure 4.1 Lists Panini translated benchmark programs [1] and it shows the dis-
tribution of execution policies of capsules.

4.2 Methodology

We compare our cVector based mapping technique against four widely used mapping techniques in

JVM-based MPC frameworks: 1) thread, 2) round-robin, 3) random and 4) work-stealing (hereon, we

refer to these mappings as default mappings). In thread mapping, each abstraction (capsule, actor, etc)

is assigned a dedicated JVM thread. In round-robin mapping, a collection of abstractions are served by

a pool of threads in round-robin manner. In random mapping, a collection of abstractions are served

by a pool of threads at random, i.e. a thread picks an abstraction to serve at random. In work-stealing

mapping, abstractions are assigned to threads but these threads can steal work from other abstractions,

if idle. We have implemented these four default mappings in Panini Capsules and our comparison uses

the same Panini program.

We measure program runtime and CPU consumption for thread, round-robin, random, work-stealing

and our cVector mappings when the steady-state performance is reached. Following the methodology

of Georges et al.[10], the steady-state performance is reached when the coefficient of variation of the
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most recent three iteration times of a benchmark fall below 0.02. We compare program runtime and

CPU consumption for these five mappings on 2, 4, 8, and 12- cores settings (Linux taskset utility is

used for altering core settings on 12-core system). The experiments are conducted on 12-core system

(2 Six-Core AMD Opteron R© 2431 Processors) with 24GB of memory running the Linux version 3.5.5

and Java version 1.7.0_06. A Java VM max heap size of 2GB is sufficient to run all of our experiments.

4.3 Performance Evaluation

For comparing the performance of our cVector based mapping against default mappings, we de-

fine Ith, Irr, Ir and Iws as percentage reduction in program runtime over thread, round-robin, random

and work-stealing mappings respectively. Note that, we reuse these metrics for comparing the per-

centage reduction in program CPU consumption over thread, round-robin, random and work-stealing

mappings.

We compute Ith, Irr, Ir and Iws for each benchmark program for runtime and CPU consumption on 2,

4, 8, and 12 core settings. We also compute average Ith, Irr, Ir and Iws to determine overall performance

improvement of our cVector based mapping over default mappings for program runtime and CPU

consumption.

Results. Figure 4.2 shows Ith, Irr, Ir and Iws for both program runtime and CPU consumption for our

benchmark programs. Overall, our cVector based mapping technique showed 40.56%, 30.71%, 59.50%,

and 40.03% improvements over thread round-robin, random and work-stealing mappings respectively

(Range: 30% to 60%). We also saw -21.48%, 4.78%, -12.30%, 14.58% changes in cpu consumption

(Range: -21% to 15%). These results suggests that our mapping technique does not boost the program

runtime by just consuming more resources such as CPU.

Analysis. We now analyze the performance improvements of cVector based mapping for each

benchmark program to dig deeper and understand the factors that improved the program runtime and

CPU consumption. As seen in Figure 4.2, there are number of interesting cases like improvements in

both runtime as well as CPU consumption. For deeper analysis, we profiled the program execution

(using perf ) and collected values for following metrics:
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Figure 4.2 First two rows (3 charts) show % runtime improvement over default
mappings, next two rows (3 charts) show % cpu consumption improve-
ment over default mappings for fifteen benchmarks. For each bench-
mark there are four core settings (2, 4, 8, 12-cores) and for each core
setting there are four bars (Ith, Irr, Ir, Iws) showing improvement over
four default mappings (thread, round-robin, random, work-stealing).
Higher bars are better.
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Figure 4.3 Shows reduction in #context-switches in our cVector based mapping
when compared to default mappings for bang, mbrot and BeamFormer
benchmarks (last bar represents cVector based mapping). Lower bars
are better.

• voluntary context-switches

• involuntary context-switches

• #cache-miss, number of cache-miss (cache load/store requests that could not be served by any

level cache).

• #L1-miss, L1-dcache-load-misses.

• #LLC-miss, LLC-load-misses.

Measuring context-switches helps us quantify lock contentions, and measuring #cache-miss, #L1-

miss and #LLC-miss helps us quantify cache locality. We now describe major categories in our results.

1) Reduced lock contentions. For Panini benchmarks bang, mbrot, BeamFormer and Polynomial,

the improvement in performance appears due to higher CPU consumption. However, in case of bang

and mbrot, the program runtime is improved also due to the reduction in lock contentions between

threads processing various capsules in the program and reduced message processing overheads. In

bang program, there exists a large amount of lock contentions due to interaction (a large number of

messages passed) between Sender capsules and a single Receiver capsule. Our mapping technique

assigned monitor (M) execution policy to Receiver capsule, which greatly reduced the lock contentions

and overheads due to message processing logic. Benchmarks mbrot and BeamFormer similar reasons

for the performance improvements (Figure 4.3).
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2) Reduced message-passing overheads. For Panini benchmarks FileSearch, concdict and conc-

sll, the improvement in performance is due to reduced message passing overheads. For example, con-

cdict simulates concurrent dictionary access. Capsules in this program are Master, Worker (20 in-

stances) and Dictionary. The concurrently running Worker capsules performs 180152 dictionary reads

and 19848 dictionary writes. Our technique assigns thread (Th) policy to Master, task (Ta) policy to

Worker and monitor (M) policy to Dictionary. By assigning monitor policy to Dictionary, Worker

capsules process 200000 messages themselves. This reduces the message processing overhead sub-

stantially (when compared to Th or Ta policy to Dictionary).

0	
  

500	
  

1000	
  

1500	
  

2000	
  

2	
   4	
   8	
   12	
  

Th
ou

sa
nd

s	
   thread	
   round-­‐robin	
   random	
  

work-­‐stealing	
   cVector	
  

0	
  

50	
  

100	
  

150	
  

200	
  

2	
   4	
   8	
   12	
  

Th
ou

sa
nd

s	
  

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

2	
   4	
   8	
   12	
  

x	
  
10
00
00
00
0	
  

Figure 4.4 Shows reduction in voluntary context-switches, involuntary contex-
t-switches and #cache-miss for serialmsg benchmark in our cVector
based mapping when compared to default mappings. Lower bars are
better.
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Figure 4.5 Shows reduction in voluntary context-switches, involuntary contex-
t-switches, #cache-miss and #LLC-miss for ScratchPad benchmark
in our cVector based mapping when compared to default mappings.
Lower bars are better.
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Figure 4.6 Shows reduction in voluntary context-switches, involuntary contex-
t-switches, #cache-miss and #LLC-miss for fasta benchmark in our
cVector based mapping when compared to default mappings. Lower
bars are better.
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3) Reduced lock contentions and cache-misses. In Panini benchmarks serialmsg, ScratchPad,

fasta, the improvement in performance is due to reduction in lock contentions and improved cache

locality.

serialmsg. BenchErl serialmsg is about message proxying through a dispatcher. The benchmark

spawns 120 instances of Receiver capsule, one Dispatcher capsule, and 120 instances of Generator

capsule. The dispatcher forwards the messages that it receives from generators to the appropriate re-

ceiver. Each generator sends a number of messages to a specific receiver. Our mapping technique as-

signed task (Ta) policy to Generator and monitor (M) policy to Dispatcher and Receiver capsules.

This allows binding of every Generator instance to its respective Receiver instance. A large number of

messages are sent and received between these capsules, hence reducing the lock contention overheads

due to message-processing logic improved the performance immensely. Figure 4.4 shows reduction in

#context-switches and #cache-miss which supports our hypothesis.

ScratchPad. This Panini program computes line of count for files in the input directory. Capsules

in this program are FSWalker, LocAnalyser, LocCounter (20 instances), Accumulator (10 instances)

and ResultAcc. FSWalker browses all files in the input directory and sends a message to LocAnalyser

with file names. LocAnalyser sends a message to one of the available LocCounter capsules to perform

line counting. Accumulator and ResultAcc collects results from LocCounter capsules. For achieving

good performance, FSWalker and LocAnalyser must have good latency (messages are processed as

soon as they are received) and Accumulator and ResultAcc must not become performance bottlenecks.

This is achieved in our cVector based mapping technique, which assigns thread (Th) policy to FSWalker

and task (Ta) policy to LocAnalyser. This makes capsules FSWalker and LocAnalyser process messages

in uninterrupted manner (as FSWalker’s dedicated thread can send messages to the taskpool thread of

the LocAnalyser). Assigning monitor (M) policy to Accumulator and ResultAcc reduces their com-

munication overheads with LocCounter capsules. Figure 4.5 shows reduction in #context-switches,

#cache-miss and #LLC-miss which supports our hypothesis.

fasta. This Panini program generates and writes random DNA sequences. Capsules in this program

are RandomFasta (2 instances), RepeatFasta, FloatProbFreq (3 instances) and Writer. Both Random-

Fasta and RepeatFasta capsules independently generates sequence with the help of their respective
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FloatProbFreq capsules and sends message to Writer capsule for printing. Here, the communication of

RandomFasta and RepeatFasta capsules with their respective FloatProbFreq capsules is too large. Our

technique assigns sequential (S) policy to FloatProbFreq capsules to reduce this overhead. Figure 4.6

shows reduction in #context-switches and #cache-miss which supports our hypothesis.

Our mapping technique achieved small improvements for three programs (RayTracer, Fannkuchre-

dux, and DCT). These programs are mainly data-parallel applications with embarrassingly parallel be-

havior. The results support our earlier intuition that for embarrassingly parallel applications, it is easy

to determine abstractions to threads mappings, as abstractions independently perform their tasks. For

instance, in RayTracer program Runner acts as master that distributes the work to a set of RayTracer

worker capsules. RayTracer worker capsules perform independent computations. For this program,

mapping is intuitive. Runner could be assigned thread execution policy and each RayTracer worker

could be assigned task execution policy. Hence, it is easy to map capsules to threads and there is very

little opportunity for further improving the mapping.

4.4 cVector+: Further enhancing cVector based mapping

We see a number of benchmark programs that could benefit from our enhanced cVector (cVector+)

mapping strategies (described in §3.7). The programs are bang, mbrot, serialmsg, beamformer, concdict

and concsll.

Methodology. For these programs, we re-run the experiments with our cVector based mapping

but reduced the size of the taskpool to half (initial size of the taskpool was #cores, we reduced it to

#cores/2).

Results. Figure 4.8 compares the improvements of cVector+ against cVector mapping strategies

and Figure 4.7 provides details about the improvements for each of the six programs. Figure 4.8 shows

that, with proposed enhancement to our cVector based mapping, we are able to further reduce program

runtime for six programs and a substantial improvements can be seen with respect to program CPU

consumptions. This happens due to reduced context-switches, reduced cache-misses and reduction in

cpu consumption as less number of threads are operating. The results supports the fact that reducing

number of threads (whenever necessary) reduces program runtime and cpu consumptions, however
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Figure 4.7 Improvements in program runtime and cpu consumptions over cVector
based mapping for six programs measured on 2, 4, 8 and 12 core set-
tings (higher is better). Overall improvements of cVector+ over cVector
is shown in Figure 4.8

Metric
cVector cVector+

Ith Irr Ir Iws Ith Irr Ir Iws

runtime 40.56 30.71 59.50 40.03 43.51 36.26 60.93 43.00
cpu consumption -21.48 -4.78 -12.30 14.58 -14.93 -0.65 -4.42 18.61

Figure 4.8 Compares average improvements in program runtime and cpu con-
sumptions for cVector and enhanced cVector (cVector+) mappings.

determining which programs can benefit is the key. We determine this using abstractions cVectors,

execution policies and topology.

4.5 Threats to Validity

A threat to validity of our evaluation is that we may not be able to extrapolate our findings to

programs that have completely different characteristics compared to our benchmarks. To mitigate this

threat, we have selected a wide variety of benchmarks from varied sources.



31

Second threat to validity of our evaluation is that it is Panini centric (because, i] default mappings

are implemented in Panini, and ii] source programs are translated to Panini) and we may not be able to

extrapolate our findings to other JVM-based MPC frameworks. To mitigate this threat we have used a

representative set of default mappings that are available in most of the widely used JVM-based MPC

frameworks. And, Panini programs used in the evaluation have one-to-one correspondence with the

source language program (meaning, capsules in the translated Panini program is exactly same as ab-

stractions in the source program). For instance, actors in logmap benchmark from Savina and capsules

in its Panini version are exactly same and they perform same computations and communications.

Third threat to validity of our evaluation is that it compares cVector based mappings that use flexible

mappings (abstractions can be assigned different execution policies) against default mappings that use

single mapping for everything (abstractions are assigned single execution policy). There exists no au-

tomatic technique that assigns flexible mappings like ours. In the current state of the art, programmers

use default mappings (or default scheduler/dispatcher). They customize the mappings when the perfor-

mance is poor (which may involve mixing default mappings). We agree that, a comparison against the

best manually tuned program would help to strengthen the contribution of our cVector based mapping.

However, we could not find such a manually tuned program in the benchmark suites that we have used.

Fourth threat to validity of our evaluation is that we have used a multicore (6+6 core) for evaluation,

which may not have the same platform characteristics as a distributed cluster. However, we believe that

our results would still be applicable, e.g. for a number of cases we reduce the message passing overhead,

which would be specially significant for distributed cluster.

Finally, we have compared only with one candidate from round-robin, random, and work-stealing

algorithms, but our selection is a representative from each class of these scheduling algorithms. Future

work can explore other variations.
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CHAPTER 5. RELATED WORK

5.1 JVM-based MPC Frameworks

Frameworks such as Akka [16], Kilim [32], Scala Actors [12], Jetlang [25], ActorFoundry [5],

SALSA [7] and Actors Guild [15] allow programmers to map their actors to JVM threads and fine

tune their application using schedulers and dispatchers. The default mappings evaluated in this paper

represents these schedulers and dispatchers. Akka provide four kinds of dispatchers: default, pinned,

balancing, and calling thread. The default dispatcher is used if programmer does not specify (this is

similar to our random mapping strategy). In Kilim, actors are runnable tasks which are assigned to

a thread-pool and the scheduling policy is round-robin. Scala Actors allow creation of thread-based

and event-based (uses task-pool and round-robin scheduling policy) actors. SALSA allows creation of

heavy-weight and light-weight actors using Stage and by default maps actors to a set of stages (can be

considered as thread) using round-robin policy. Likewise, other actor frameworks use default actors to

threads mapping or programmer specified mappings (using schedulers/dispatchers). When compared

to these works, our technique automatically assigns capsules to threads.

5.2 Non-JVM MPC Frameworks

Several works on performance improvement of non-JVM MPC frameworks exists. Francesquini et

al.[8] proposes a technique implemented in Erlang [37] runtime that places Erlang actors on multi-core

efficiently. Their technique showed that by placing frequently communicating actors (hub-and-affinity)

together, over two times improvement in the application performance can be achieved. However, pro-

grammers need to identify hub and its affinity actors and annotate the program for runtime to perform

the desired mapping. Our technique uses many more characteristics along with hub-and-affinity.
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5.3 Mapping Task Graphs

Mapping application on to multi-core is a well studied problem. The application is represented as

task graph and the mapping problem is defined as how to map different tasks to CPU cores to minimize

application runtime. A recent survey [29] lists different static, dynamic and hybrid techniques that map

task graph to multi-core with performance, energy consumption and temperature as different goals of

determining optimal mapping. Researchers have explored the problem of mapping application tasks

that communicate via both message passing and shared memory on homogeneous and heterogeneous

cores [11, 26, 27, 31]. These techniques are not directly applicable to JVM-based MPC frameworks,

because threads to cores mapping is left to OS scheduler and only MPC abstraction to threads mapping

can be optimized. However, abstraction to threads mapping technique can utilize solutions proposed for

general task graph mapping problem. In our cVector based mapping technique, we utilize characteristics

and interaction behaviors similar to task characteristics and task graph in general task graph mapping

problem.

5.4 Mapping Problem in Multi-threaded Programs

Note that the mapping problem in MPC programs is different from the mapping problem in general

multi-threaded programs. In multi-threaded programs, the mapping problem is defined as scheduling

and load-balancing of threads on multi-cores. This also involves binding of threads to physical cores.

However in MPC programs, the mapping problem is two-fold: mapping MPC abstractions to threads

and scheduling of threads on multi-cores. Tousimojarad and Vanderbauwhede[35] propose efficient

strategies for mapping threads to cores for OpenMP multi-threaded programs. When compared to this

work, our technique maps capsules to threads and not threads to cores. Threads to cores mapping is

handled by OS scheduler in JVM-based MPC frameworks.

A preliminary version of this work was presented in our AGERE 2014 workshop paper [36]. We

enhanced the work in multiple ways. We incorporate more details to cVector and we assign values

to each capsule procedure not just capsule and propagate it to capsule. This enhancement helped us

to improve the mappings. We have redefined the predictive power of cVector fields and upgraded the

mapping function. In this enhanced work, predicting the incoming message pattern holds the key. We
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show that, it can be used to reveal more properties about capsules such as contention and cache locality.

We have considered four standard default mapping strategies to compare against instead of two (thread

and round-robin-task). Finally, our enhanced cVector based mapping further improved the program

execution time and cpu consumptions. The enhanced work is under submission in OOPSLA 2015

conference.
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CHAPTER 6. CONCLUSION

Performance optimization is one of the leading reasons for breaking abstraction boundaries. In this

work we targeted this problem for message-passing abstractions on JVM, where performance concerns

may lead to deformed designs. We proposed a technique to automatically map such abstractions to

JVM threads using capsules as a specific use case. We assign execution policies to capsules to achieve

capsules to threads mapping. Our mapping technique utilizes a set of properties about capsules and their

communications to select execution policies. We have evaluated our mapping technique against four

commonly used default mapping techniques in JVM-based MPC frameworks. We have evaluated on a

wide-variety of MPC benchmarks that are both concurrent and parallel applications exhibiting different

concurrency patterns and parallelisms (data, task, pipeline). Our results show 30%-60% improvement

in program execution times when compared to default mappings.

At a higher-level, we believe that better abstractions that enable improved modularity are important

for concurrent programming [21, 18, 24]. However, a problem with abstractions in practice is that

the abstraction boundaries are often breached for performance reasons. By providing an automatic

technique for improving mapping of concurrency abstractions to threads, we hope to minimize such

breach of abstraction and improve portability. Our mapping technique does not require any changes to

the design of the application; it mainly defines how capsules will be compiled, preserving design while

improving performance. Our concrete implementation is not applicable to other MPC abstractions,

however, other frameworks for JVM can benefit from our technical innovations namely: (1) cVector,

(2) cVector analysis, and (3) cVector-to-thread mapping.



36

BIBLIOGRAPHY

[1] Download link: cVector-based mapping. http://tinyurl.com/ohrzcjh.

[2] Panini Programming Language. http://paninij.org/.

[3] Tuning Dispatchers: Discussion threads. http://tinyurl.com/o6utwkp,http:

//tinyurl.com/ovypwnu,http://tinyurl.com/ponekm6,http://tinyurl.

com/o7xzh8s,http://tinyurl.com/ohwsesn.

[4] S. Aronis, N. Papaspyrou, K. Roukounaki, K. Sagonas, Y. Tsiouris, and I. E. Venetis. A Scalability

Benchmark Suite for Erlang/OTP. In Erlang’12 Workshop.

[5] M. Astley. The Actor Foundry: A Java-based Actor Programming Environment. In Open Systems

Laboratory, University of Illinois at Urbana-Champaign, 1998-99.

[6] M. Bagherzadeh and H. Rajan. Panini: A Concurrent Programming Model for Solving Pervasive

and Oblivious Interference. In Modularity’15: 14th International Conference on Modularity,

March 2015.

[7] T. Desell and C. A. Varela. SALSA Lite: A Hash-Based Actor Runtime for Efficient Local Con-

currency. In Concurrent Objects and Beyond, Lecture Notes in Computer Science, 2014.

[8] E. Francesquini, A. Goldman, and J.-F. Méhaut. Actor Scheduling for Multicore Hierarchical

Memory Platforms. In Erlang’13 Workshop.

[9] B. Fulgham and I. Gouy. Computer language benchmarks game. http://benchmarksgame.

alioth.debian.org/.

http://tinyurl.com/ohrzcjh
http://paninij.org/
http://tinyurl.com/o6utwkp, http://tinyurl.com/ovypwnu, http://tinyurl.com/ponekm6, http://tinyurl.com/o7xzh8s, http://tinyurl.com/ohwsesn
http://tinyurl.com/o6utwkp, http://tinyurl.com/ovypwnu, http://tinyurl.com/ponekm6, http://tinyurl.com/o7xzh8s, http://tinyurl.com/ohwsesn
http://tinyurl.com/o6utwkp, http://tinyurl.com/ovypwnu, http://tinyurl.com/ponekm6, http://tinyurl.com/o7xzh8s, http://tinyurl.com/ohwsesn
http://benchmarksgame.alioth.debian.org/
http://benchmarksgame.alioth.debian.org/


37

[10] A. Georges, D. Buytaert, and L. Eeckhout. Statistically Rigorous Java Performance Evaluation.

In OOPSLA’07.

[11] F. Guirado, A. Ripoll, C. Roig, and E. Luque. Performance prediction using an application-

oriented mapping tool. In Proceedings of 12th Euromicro Conference on Parallel, Distributed

and Network-Based Processing, 2004.

[12] P. Haller and M. Odersky. Actors That Unify Threads and Events. In ICCML COORDINA-

TION’07.

[13] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular ACTOR Formalism for Artificial

Intelligence. In IJCAI’73.

[14] S. Imam and V. Sarkar. Savina-An Actor Benchmark Suite. In AGERE’14 Workshop.

[15] T. Jansen. Actors guild. https://code.google.com/p/actorsguildframework/.

[16] B. Jonas. Akka, TypeSafe Inc. http://akka.io.

[17] B. Liskov and R. Scheifler. Guardians and Actions: Linguistic support for robust, distributed

programs. TOPLAS ’83, 5.

[18] Y. Long, S. L. Mooney, T. Sondag, and H. Rajan. Implicit invocation meets safe, implicit concur-

rency. In GPCE ’10: Ninth International Conference on Generative Programming and Compo-

nent Engineering, October 2010.

[19] R. May. Simple mathematical models with very complicated dynamics. In The Theory of Chaotic

Attractors, 2004.

[20] O. M. Nierstrasz. Active objects in Hybrid. In the ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA), pages 243–253, 1987.

[21] H. Rajan. Building scalable software systems in the multicore era. In 2010 FSE/SDP Workshop

on the Future of Software Engineering, Nov. 2010.

https://code.google.com/p/actorsguildframework/
http://akka.io


38

[22] H. Rajan. Capsule-oriented Programming. In ICSE’15: The 37th International Conference on

Software Engineering: NIER Track, May 2015.

[23] H. Rajan, S. M. Kautz, E. Lin, S. L. Mooney, Y. Long, and G. Upadhyaya. Capsule-oriented

Programming in the Panini Language. Technical Report 14-08, 2014.

[24] H. Rajan, S. M. Kautz, and W. Rowcliffe. Concurrency by modularity: Design patterns, a case in

point. In 2010 Onward! Conference, October 2010.

[25] M. Rettig. Jetlang. http://code.google.com/p/jetlang/.

[26] C. Roig, A. Ripoll, and F. Guirado. A New Task Graph Model for Mapping Message Passing

Applications. IEEE Trans. Parallel Distrib. Syst. 2007.

[27] C. Roig, A. Ripoll, M. A. Senar, F. Guirado, and E. Luque. Modelling Message-passing Programs

for Static Mapping. In EURO-PDP’00.

[28] H. Sasaki, T. Tanimoto, K. Inoue, and H. Nakamura. Scalability-based Manycore Partitioning. In

PACT’12.

[29] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel. Mapping on Multi/Many-core Systems:

Survey of Current and Emerging Trends. In DAC’13.

[30] L. A. Smith, J. M. Bull, and J. Obdrzálek. A Parallel Java Grande Benchmark Suite. In SC’01.

[31] T. Sondag and H. Rajan. Phase-based tuning for better utilization of performance-asymmetric

multicore processors. In International Symposium on Code Generation and Optimization (CGO),

April 2011.

[32] S. Srinivasan and A. Mycroft. Kilim: Isolation-Typed Actors for Java. In ECOOP’08.

[33] S. Tasharofi and R. Johnson. Actor Collection. http://actor-applications.cs.

illinois.edu/.

[34] W. Thies and S. Amarasinghe. An Empirical Characterization of Stream Programs and Its Impli-

cations for Language and Compiler Design. In PACT’10.

http://code.google.com/p/jetlang/
http://actor-applications.cs.illinois.edu/
http://actor-applications.cs.illinois.edu/


39

[35] A. Tousimojarad and W. Vanderbauwhede. An Efficient Thread Mapping Strategy for Multipro-

gramming on Manycore Processors. Journal of Parallel Computing, 2014.

[36] G. Upadhyaya and H. Rajan. An Automatic Actors to Threads Mapping Technique for JVM-based

Actor Frameworks. In AGERE’14.

[37] J. Zhang. Characterizing the scalability of erlang vm on many-core processors. Master’s thesis,

KTH, 2011.


	2015
	Abstraction and performance, together at last: auto-tuning message-passing concurrency on the Java virtual machine
	Ganesha Upadhyaya
	Recommended Citation


	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Mapping Abstractions to Threads
	1.2 Contributions
	1.3 Thesis Outline

	2. BACKGROUND
	2.1 Panini Capsules, an MPC Abstraction

	3. MAPPING MPC ABSTRACTIONS TO THREADS
	3.1 Selecting Computation and Communication Features
	3.1.1 Blocking behavior
	3.1.2 Local state
	3.1.3 Computational workload
	3.1.4 Communication pattern (or message send/receive pattern)
	3.1.5 Inherent parallelism

	3.2 Characteristics Vector (cVector): Representing Computation and Communication Behaviors of MPC Abstractions
	3.3 Local Program Analysis to Determine Communication Pattern
	3.4 Execution Policies for Abstractions
	3.5 Mapping Heuristics: Deciding Abstractions to Threads Mapping
	3.6 Mapping Function
	3.7 cVector+
	3.8 Applicability to Other JVM-based MPC Frameworks

	4. EVALUATION
	4.1 Benchmarks
	4.2 Methodology
	4.3 Performance Evaluation
	4.4 cVector+: Further enhancing cVector based mapping
	4.5 Threats to Validity

	5. RELATED WORK
	5.1 JVM-based MPC Frameworks
	5.2 Non-JVM MPC Frameworks
	5.3 Mapping Task Graphs
	5.4 Mapping Problem in Multi-threaded Programs

	6. CONCLUSION
	BIBLIOGRAPHY

