
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2016

Data access pattern protection in cloud storage
Jinsheng Zhang
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Zhang, Jinsheng, "Data access pattern protection in cloud storage" (2016). Graduate Theses and Dissertations. 15182.
https://lib.dr.iastate.edu/etd/15182

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F15182&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/15182?utm_source=lib.dr.iastate.edu%2Fetd%2F15182&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Data access pattern protection in cloud storage

by

Jinsheng Zhang

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:

Wensheng Zhang, Major Professor

Daji Qiao

Ying Cai

Giora Slutzki

Zhengyuan Zhu

Iowa State University

Ames, Iowa

2016

Copyright c⃝ Jinsheng Zhang, 2016. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . ix

CHAPTER 1. INTRODUCTION . 1

1.1 Motivations . 1

1.2 Objectives . 1

1.3 Overview of Our Approaches . 2

1.3.1 S-ORAM: A Segmentation-based ORAM 2

1.3.2 KT-ORAM: An ORAM Built on A K-ary Tree of PIR Nodes 4

1.3.3 GP-ORAM: A Generalized Partition ORAM 5

1.3.4 MU-ORAM: Dealing with Stealthy Privacy Attacks in Multi-User Data

Outsourcing Services . 5

1.4 Organization of the Dissertation . 6

CHAPTER 2. PROBLEM STATEMENT . 7

2.1 System Model . 7

2.2 Threat Model and Security Definition . 8

2.3 Design Goal . 9

CHAPTER 3. LITERATURE REVIEW . 10

3.1 Single-user ORAMs . 10

3.2 Multi-user ORAMs . 12

iii

CHAPTER 4. S-ORAM: SEGMENTATION-BASED OBLIVIOUS RAM . . 14

4.1 Intuition . 15

4.2 Scheme . 16

4.2.1 Storage Organization and Initialization 16

4.2.2 Data Query . 20

4.2.3 Data Shuffling . 22

4.3 S-ORAM Security Analysis . 26

4.4 S-ORAM Cost Analysis and Evaluations . 30

4.4.1 Cost Comparison . 32

4.5 Summary . 34

CHAPTER 5. KT-ORAM: K-ARY TREE OBLIVIOUS RAM 38

5.1 Preliminaries . 39

5.1.1 Additively Homomorphic Encryption . 39

5.1.2 Overview of P-PIR . 40

5.1.3 Limitation of P-PIR . 43

5.1.4 Naive Extensions of P-PIR . 44

5.1.5 Intuition of KT-ORAM . 45

5.2 Scheme . 46

5.2.1 Storage Organization . 46

5.2.2 System Initialization . 48

5.2.3 Data Query . 48

5.2.4 Data Eviction . 50

5.2.5 Execution of Delayed Evictions . 53

5.3 Security Analysis . 54

5.4 Cost Analysis and Evaluations . 58

5.4.1 Costs of KT-ORAM . 58

5.4.2 Comparisons with Existing ORAMs . 63

5.5 Summary . 67

iv

CHAPTER 6. GP-ORAM: A GENERALIZED PARTITION ORAM 69

6.1 Intuition . 70

6.2 Scheme . 72

6.2.1 Storage Organization . 72

6.2.2 System Initialization . 74

6.2.3 Data Query . 75

6.2.4 Background Eviction . 75

6.3 Recursive GP-ORAM . 77

6.4 Security Analysis . 77

6.5 Cost Analysis and Evaluations . 80

6.6 Summary . 86

CHAPTER 7. MU-ORAM: DEALING WITH STEALTHY PRIVACY AT-

TACKS IN MULTI-USER DATA OUTSOURCING SERVICES 87

7.1 Preliminaries . 90

7.1.1 System Model . 90

7.1.2 Proposed Architecture . 91

7.1.3 Security Definitions . 92

7.2 Scheme . 97

7.2.1 Storage Structure . 97

7.2.2 System Initialization . 98

7.2.3 Data Query . 99

7.2.4 Data Shuffling . 103

7.3 Security Analysis . 108

7.3.1 Security against Curious Server . 109

7.3.2 Security against Collusive Coalition . 111

7.4 Cost Analysis . 120

7.4.1 Storage Costs . 120

7.4.2 Communication Costs . 121

7.4.3 Cost Comparison . 123

v

7.5 Summary . 123

CHAPTER 8. CONCLUSIONS AND FUTURE WORKS 126

8.1 Conclusions . 126

8.2 Future Works . 127

BIBLIOGRAPHY . 129

vi

LIST OF TABLES

Table 3.1 Comparisons of State-of-the-art Oblivious RAM Constructions. N de-

notes the total number of exported data blocks, B denotes the size of

each data block. 12

Table 4.1 Performance Comparison: S-ORAM vs. B-ORAM 33

Table 4.2 Theoretical Performances: S-ORAM vs. Path ORAM 33

Table 4.3 Practical Performances: S-ORAM vs. Path ORAM 33

Table 5.1 Asymptotical comparisons. k = logN for both KT-ORAM and G-

ORAM and B = O(N ϵ) (0 < ϵ < 1). 64

Table 5.2 Computational cost comparisons with O(1) recursion levels. 65

Table 5.3 Asymptotical Communication before Target Data Access. N is the total

number of data blocks and B is the size of each block in the unit of bit.

k = logN and c = 7 for KT-ORAM. 67

Table 6.1 Asymptotical Performance Comparison. 83

Table 6.2 Asymptotical Performance Comparison. 85

Table 6.3 Practical Performance Comparison. 85

Table 7.1 Cost Comparison. N is the total number of data blocks outsourced to

the storage server, B is the size of a data block (B ≥ 4
√
N), and b is the

size of a data piece. 123

vii

LIST OF FIGURES

Figure 4.1 Format of a data block in S-ORAM. 17

Figure 4.2 Organization of the server-side storage. 18

Figure 4.3 Structure of a T1-layer. 19

Figure 5.1 P-PIR’s server-side storage structure. Circled nodes represent the ones

accessed by the user during a query process when the target data block

is mapped to leaf node v5,10. 42

Figure 5.2 An example of the eviction process in P-PIR. 44

Figure 5.3 An example KT-ORAM scheme with a quaternary-tree storage struc-

ture. Bold boxes represent the k-nodes accessed when a user queries a

target data block stored at k-node u3,21. 46

Figure 5.4 An example data eviction process in KT-ORAM with a quaternary-tree

storage structure. The b-nodes that are selected to evict data blocks

are circled. The k-nodes scheduled with delayed evictions (i.e., u2,3 and

u2,11) are highlighted with bold boundaries. 51

Figure 5.5 Markov Chain for random variable Xl′ (i.e., the number of EH entries

from layer l′). 60

viii

Figure 5.6 Communication cost comparisons. The above comparisons show the

communication cost to transfer user’s data block part. For KT-ORAM,

the k-ary tree node size is set to be 2(logN − 1) log logN , tree height

is ⌈ logN
log logN ⌉, and user’s storage stores O(1) data blocks. For Path-PIR,

the binary tree node size is set to be logN , tree height is logN , and

user’s storage stores O(1) data blocks. In SCORAM, the binary tree

node size is set to be Z = 5, the tree height is logN and user’s storage

stores O(logN) · ω(1) data blocks. 66

Figure 5.7 Numerical comparison of communication before target data access in

practical scenarios. k = logN and c = 7 for KT-ORAM. The number

of blocks N ranges from 216 to 240 and the block size B ranges from 64

K bytes to 4 M bytes. 68

Figure 6.1 P-ORAM Storage Organization. 70

Figure 6.2 Organization of the server-side storage. 73

Figure 6.3 Examples illustrating the relation between P , local storage, and minimal

communication cost. 82

Figure 6.4 Comparing local storage and communication cost when B = 64 KB. . . 84

Figure 6.5 Comparing local storage and communication cost when N = 228. . . . 84

Figure 6.6 GP-ORAM vs. S-ORAM with same given local storage. 85

Figure 7.1 System overview. 91

Figure 7.2 MU-ORAMOverview. The data query process includes the three phases

of data request, data reply and data uploading, which is followed by the

data shuffling process. 124

Figure 7.3 [Q1]: Obtain encrypted target data ID. 124

Figure 7.4 Phase 2: Data reply. 125

ix

ABSTRACT

Cloud-based storage service has been popular nowadays. Due to the convenience and un-

precedent cost-effectiveness, more and more individuals and organizations have utilized cloud

storage servers to host their data. However, because of security and privacy concerns, not

all data can be outsourced without reservation. The concerns are rooted from the users’ loss

of data control from their hands to the cloud servers’ premise and the infeasibility for them

to fully trust the cloud servers. The cloud servers can be compromised by hackers, and they

themselves may not be fully trustable.

As found by Islam et. al. [39], data encryption alone is not sufficient. The server is still

able to infer private information from the user’s access pattern. Furthermore, it is possible

for an attacker to use the access pattern information to construct the data query and infer

the plaintext of the data. Therefore, Oblivious RAMs (ORAM) have been proposed to allow

a user to access the exported data while preserving user’s data access pattern. In recent

years, interests in ORAM research have increased, and many ORAM constructions have been

proposed to improve the performance in terms of the communication cost between the user

and the server, the storage costs at the server and the user, and the computational costs at the

server and the user.

However, the practicality of the existing ORAM constructions is still questionable: Firstly,

in spite of the improvement in performance, the existing ORAM constructions still require

either large bandwidth consumption or storage capacity. Secondly, these ORAM constructions

all assume a single user mode, which has limited the application to more general, multiple user

scenarios.

x

In this dissertation, we aim to address the above limitations by proposing four new ORAM

constructions:

• S-ORAM, which adopts piece-wise shuffling and segment-based query techniques to im-

prove the performance of data shuffling and query through factoring block size into design;

• KT-ORAM, which organizes the server storage as a k-ary tree with each node acting as

a fully-functional PIR storage, and adopts a novel delayed eviction technique to optimize

the eviction process;

• GP-ORAM, a general partition-based ORAM that can adapt the number of partitions to

the available user-side storage and can outsource the index table to the server to reduce

local storage consumption; and

• MU-ORAM, which can deal with stealthy privacy attack in the application scenarios

where multiple users share a data set outsourced to a remote storage server and meanwhile

want to protect each individual’s data access pattern from being revealed to one another.

We have rigorously quantified and proved the security strengths of these constructions and

demonstrated their performance efficiency through detailed analysis.

1

CHAPTER 1. INTRODUCTION

1.1 Motivations

Cloud-based storage service has been popular nowadays. Due to the convenience and un-

precedent cost-effectiveness, more and more individuals and organizations have utilized cloud

storage servers to host their data. However, because of security and privacy concerns, not all

data can be outsourced without reservation.

The concerns are rooted from the users’ loss of data control from their hands to the cloud

servers’ premise and the infeasibility for them to fully trust the cloud servers. The cloud

servers can be compromised by hackers, as evidenced by more and more frequent reports in

the media [54, 11]. Even the cloud servers could be technically enhanced to become more

secure against the hackers, they themselves may not be fully trustable; for example, it has been

revealed that some service providers sold customers’ information for their profits [11].

1.2 Objectives

As in many cloud storage systems [17], data is stored in the unit of block. Before out-

sourcing, each data block can be encrypted using some probabilistic encryption method such

as AES [12] with CBC encryption mode, to prevent the data content from being exposed to the

storage server. When the user needs to access the outsourced data, she downloads and decrypts

the data, accesses them, and re-encrypts them before uploading them back. Encryption alone,

however, is not sufficient. The server is still able to infer private information from the user’s

access pattern, for example, the sequences of accessed locations, the orders of accessed locations

on the server, etc. As illustrated by Islam et. al. [39], it is possible for an attacker to use the

access ordering information to construct the data query and infer the plaintext of the data.

2

Therefore, researchers have been exploring ways to protect users’ access patterns and various

schemes have been proposed in the literature. Among them, Oblivious RAM (ORAM) [27, 70,

71, 29, 57, 30, 31, 73, 74, 32, 40, 45, 22, 20, 72, 61, 65, 24, 66, 51, 59, 68, 78, 69, 48, 52, 64,

58, 53, 14, 49, 21, 75, 8, 16, 15, 76, 63, 50, 60, 47, 13, 46] and Private Information Retrieval

(PIR) [3, 62, 56, 10, 5, 43, 25, 26, 37, 44, 9, 7, 67, 41, 23] are two categories of security-provable

methods. PIR schemes are applicable to the scenarios where data are read only, while ORAM

schemes are more flexible as they allow a user to perform both read and write operations on

the data. Hence, in this dissertation, we focus on improving the existing ORAM schemes.

Intuitively, an ORAM system is considered secure if the server cannot learn anything about

a user’s data access pattern. The formal definition can be referred to Definition 2.2 in Chapter 2.

In recent years, interests in ORAM research have increased, and many ORAM constructions

have been proposed to improve the performance in terms of the communication cost between

the user and the server, the storage costs at the server and the user, and the computational costs

at the server and the user. However, the practicality of the existing ORAM constructions is still

questionable: Firstly, in spite of the improvement in performance, these ORAM constructions

still require either large bandwidth consumption or storage capacity in practice. Secondly,

these ORAM constructions all assume a single user mode, which has limited the application to

more general, multiple user scenarios. In this dissertation, we aim to address these limitations

with the following approaches.

1.3 Overview of Our Approaches

We have proposed four new ORAM constructions to achieve better performance than the

state of the arts. In the following, we provide a brief overview of the motivations, key design

ideas, and performance of these constructions.

1.3.1 S-ORAM: A Segmentation-based ORAM

The design is motivated by the observation that a large-scale storage system (e.g., a cloud

storage system such as Amazon S3 [2], Google Drive [33], Dropbox [17]) usually stores data

3

in large blocks [65], but most of the existing ORAM constructions treat data blocks as atomic

units for query and shuffling, and do not factor block size into their designs.

S-ORAM is designed to make better use of the large block size by introducing two segmentation-

based techniques, namely, piece-wise shuffling and segment-based query, to improve the efficiency

in data shuffling and query.

• With piece-wise shuffling, data can be shuffled across a larger range of blocks in a limited

user-side storage; this way, the shuffling efficiency can be improved, and the improvement

gets more significant as the block size increases.

• With segment-based query, S-ORAM organizes the server-side data storage as a hierarchy

of single-segment and multi-segment layers, and an encrypted index block is introduced

to each segment. The introduction of segmentation allows the adoption of hashing and

indexing combined technique to locate query target in the server-side storage, which can

accomplish higher efficiency than the prior hash-based ORAM schemes that only use

hashing technique.

Extensive security proofs have been conducted to demonstrate that the security of S-ORAM.

Particularly, we have shown that the scheme can make the observable location access sequences

of any two private equal-length data query sequences to be computationally indistinguishable,

with a failure probability of only O(N− logN), where N is the total number of outsourced data

blocks.

In terms of communication and storage costs, S-ORAM outperforms the Balanced ORAM

(B-ORAM) [40] and the Path ORAM [66], which are the best known theoretical hash-based

and practical index-based ORAMs, respectively, that can work under small user-side storage.

Particularly, under practical settings [65] where the number of data blocks N ranges from 220

to 236 and the block size ranges from 32 KB to 256 KB, the communication cost of S-ORAM is

12 to 23 times less than B-ORAM when they are given the same constant-size user-side storage;

S-ORAM consumes 80% less server-side storage and around 60% to 72% less bandwidth than

Path ORAM when they are given the similar logarithmic-size user-side storages.

4

1.3.2 KT-ORAM: An ORAM Built on A K-ary Tree of PIR Nodes

In most of existing ORAM schemes, the server is simply a storage, which does not perform

any computation. In practice, however, cloud storage providers usually maintain data centers

to provide their services, and a data center is a collection of not only storage but also rich

computation resources. Hence, we propose a new ORAM construction called KT-ORAM,

based on the motivation of leveraging the available computation capacity of the storage server

to reduce the cost of user-server communication.

More specifically, this design of KT-ORAM is based on the following ideas:

• Firstly, to combine the merits of ORAM and PIR, we organize the server-side storage

as a tree in which each node acts as a fully-functional PIR storage. The PIR-read and

PIR-write primitives are implemented based on additive homomorphic (AH) encryption,

addition and multiplication operations. Combined with PIR, the communication cost

becomes determined only by the height of the tree, because only one data block is trans-

ferred from/to each accessed tree node along a root to leaf path in the tree. Meanwhile,

the PIR primitives can be performed efficiently because they process only a small fraction

of the dataset stored on the tree.

• Secondly, we use a k-ary tree instead of a binary tree for KT-ORAM, to reduce the height

of tree by a factor of O(log k), and thus reduce the communication cost also by O(log k)

times.

• Thirdly, we propose a delayed eviction mechanism which can defer and aggregate as many

eviction operations as possible to reduce the data block access frequency, and thus further

reduce the communication and computational costs.

Through rigorous security analysis and extensive evaluation, we show that KT-ORAM

meets the security requirement of an ORAM construction, and meanwhile accomplishes the

following performance goals simultaneously:

• communication efficiency - Its communication cost is O(logN
log logN · B) bits per query, as

long as the block size B is N ϵ bits for some constant 0 < ϵ < 1.

5

• storage efficiency - The scheme requires O(B) storage space at the user side and O(B ·N)

storage space at the cloud server side.

• computational efficiency - The scheme incurs O(logN
log logN · B) computational cost at the

user side and O(log2N
log logN ·B) computational cost at the server side, per data query.

To the best of our knowledge, no other ORAM constructions can simultaneously achieve the

same or better level of communication, storage and user-side computational efficiency.

1.3.3 GP-ORAM: A Generalized Partition ORAM

Existing ORAM constructions have been designed based on the assumptions that the server-

side storage capacity is constant [27, 57, 30, 40, 61, 52], O(logN) blocks [66, 24, 68, 69], or

O(
√
N) blocks [70, 22, 65, 64, 14, 63]. In practice, users of a cloud storage service may have

different local storage capacities. It is ideal if the available local storage capacities can be fully

utilized to achieve a high level of performance efficiency in accessing data outsourced to the

cloud storage. The GP-ORAM construction is designed for this purpose.

More specifically, GP-ORAM is built based on the Partition ORAM (P-ORAM) construc-

tion [65], a state-of-the-art communication-efficient ORAM construction. P-ORAM requires a

user to have a fixed local storage of capacity of O(
√
N) blocks; however, GP-ORAM allows

smaller and adjustable number of partitions, fully utilizes the available user-side storage to re-

duce communication cost, and can efficiently export the index table to the server. As a result,

GP-ORAM incurs low bandwidth cost (i.e., O(logN) data blocks per query in practice) and

has significantly less user-side storage cost than P-ORAM. We demonstrate the security and

practicality of GP-ORAM through extensive security and performance analysis.

1.3.4 MU-ORAM: Dealing with Stealthy Privacy Attacks in Multi-User Data

Outsourcing Services

At last, we consider a general data outsourcing model, in which multiple users share a set of

data blocks outsourced to a cloud storage. For a multi-user data outsourcing setting, the users

become vulnerable to stealthy privacy attacks targeted at revealing the data access patterns

6

of innocent users, even if only one curious or compromised user colludes with the storage

server. To study the feasibility and costs of overcoming the above limitation, we propose a

new ORAM construction called Multi-User ORAM (MU-ORAM), which is resilient to stealthy

privacy attacks. The key ideas in the design are (i) introducing a chain of proxies to act as

a common interface between users and the storage server, (ii) distributing the shares of the

system secrets delicately to the proxies and users, and (iii) enabling a user and/or the proxies

to collaboratively query and shuffle data. Through extensive security analysis, we quantify the

strength of MU-ORAM in protecting the data access patterns of innocent users from attacks,

under the assumption that the server, users, and some but not all proxies can be curious but

honest, and even colluding. Cost analysis has also been conducted to quantify the extra cost

incurred by the MU-ORAM design.

1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we first describe the

ORAM system and threat model. Then, we give the formal security definition of ORAM

system. In Chapter 3, we review the state-of-the-art Oblivious RAM schemes. In Chapters 4,

5, 6, and 7, we present our proposed four schemes. In Chapter 8, we conclude this dissertation

with a summary of our main contributions and future research plans.

7

CHAPTER 2. PROBLEM STATEMENT

In this chapter, we present the system model, threat model, security definitions and design

goal of an Oblivious RAM (ORAM) construction.

2.1 System Model

When designing an ORAM system, we consider a system consisting of two parties: users

and a remote storage server. Depending on the number of users, the ORAM construction can

be categorized as a single-user ORAM or a multi-user ORAM.

The users export a large amount of data to store at the server, and wish to hide from the

server the pattern of their accesses to the data. Data are assumed to be stored and accessed in

the unit of blocks and the data block size (denoted as B) can range from several kilo bytes to

several mega bytes. We also use N to denote the total number of data blocks outsourced by

the users.

Each data request from one user, which the user wishes to keep private, is of one of the

following types:

• read a data block D of unique ID i from the storage, denoted as a 3-tuple (read, i,D); or

• write/modify a data blockD of unique ID i to the storage, denoted as a 3-tuple (write, i,D).

To accomplish a data request, the user may need to access the remote storage multiple

times. Each access to the remote storage, which is observable by the server, is of one of the

following types:

• retrieve (read) a data block D from a location l at the remote storage, denoted as a

3-tuple (read, l,D); or

8

• upload (write) a data block D to a location l at the remote storage, denoted as a 3-tuple

(write, l,D).

2.2 Threat Model and Security Definition

In a single-user ORAM system, the purpose is to protect the data access pattern of the

user under the assumption that the remote server is not trusted. Particularly, the server is

assumed to be honest but curious; that is, it behaves correctly in storing data and serving the

user’s data access requests, but it may attempt to figure out the user’s access pattern. In all

the proposed work, we do not consider attacks such as timing attacks [6] that are based on

other side-channel information, as they can be addressed separately. The network connection

between the user and the server is assumed to be secure; in practice, this can be achieved by

using well-known techniques such as SSL [35] and HTTPS [34].

We inherit the common security definition of a single-user ORAM [27], and rephrase it as

follows:

Definition Let x⃗ = ⟨ (op1, i1, D1), (op2, i2, D2), · · · ⟩ denote a private sequence of the user’s

intended data requests, where each op is either a read or write operation. Let A(x⃗) = ⟨

(op′1, l1, D
′
1), (op

′
2, l2, D

′
2), · · · ⟩ denote the sequence of the user’s accesses to the remote storage

(observed by the server), in order to accomplish the user’s intended data requests. An ORAM

system is said to be secure if (i) for any two equal-length private sequences x⃗ and y⃗ of the

intended data requests, their corresponding observable access sequences A(x⃗) and A(y⃗) are

computationally indistinguishable; and (ii) the probability that the ORAM system fails to

operate is negligibly small, i.e., O(2−λ), where λ is a security parameter.

The above threat model and security definition will be applied to our first three proposed

schemes, but the model and security definitions for a multi-user ORAM system will be presented

in Chapter 7.

9

2.3 Design Goal

The design goal of an ORAM system includes the following aspects:

• The proposed scheme must be secure according to the ORAM security definition. Specif-

ically, a user’s access pattern should be indistinguishable from a random access pattern

of the same length; the failure probability of the scheme is upper bounded by a small

probability.

• The costs of the proposed scheme should be as low as possible, which is measured by

the following metrics: (i) the communication cost (bandwidth consumption) between the

user and the server; (ii) the computational costs for both the user and the server; (iii)

the user-side storage cost; (iv) the server-side storage cost; and (v) data query and access

latency.

10

CHAPTER 3. LITERATURE REVIEW

The concept of Oblivious RAM (ORAM) was first introduced by Goldreich and Ostro-

vsky [27], which enables users to export their data to a remote storage and access the remote

data storage without exposing the data access pattern. Since then, various ORAM construction-

s have been proposed, including single-user ORAMs and multi-user ORAMs. In this chapter,

we survey the state-of-the-art of the ORAM research. Here, we use N to denote the total

number of data blocks outsourced by the user to the storage server and B to denote the data

block size in bits.

3.1 Single-user ORAMs

According to the adopted data lookup techniques, single-user ORAMs have two major

classes, namely, hash-based ORAMs (hORAMs) and index-based ORAMs (iORAMs).

In hORAMs [27, 70, 71, 29, 57, 30, 31, 74, 40, 45, 20, 72], the server-side storage is usually

organized as a hierarchy of layers and each layer is associated with a hash function to locate

each data block on this layer. The hash function is kept secret from the server. Data blocks on

each layer is distributed according to the hash function. During data query, the user requests

data blocks from the locations according to the hash functions. After obtaining the target data

block, the user re-encrypts and uploads the block back to the top layer on the server. To avoid

layer overflowing, when any layer is full, all data blocks on this layer will be obliviously shuffled

and dumped into the next larger layer.

As the first ORAM solution, Bucket Hash ORAM (BH-ORAM [27]) uses one normal hash

function for each of its logN layers. Thus, the server-side storage for each layer is a hash

table where each entry of the hash table is a bucket that can store up to logN data blocks

11

to avoid hash collision. When data blocks are shuffled to a specific layer, all buckets on this

layer must be fully occupied by adding additional dummy data blocks. Therefore, each data

query retrieves all data blocks in one selected bucket from each non-empty layer. Bucket Hash

ORAM incurs a communication cost of O(log3N · B) bits per query with constant user-side

storage.

The efficiency of Bucket Hash ORAM has been improved by two follow-up proposals, name-

ly, Bloom Filter ORAM (BF-ORAM) by Williams et. al. [73] and Cuckoo Hash ORAM (CH-

ORAM) by Pinkas et. al. [57] and Goodrich et. al. [32, 30, 29, 31]. Bloom Filter ORAM uses

one collision-free Bloom Filter at each layer to replace the fixed-size hash bucket in Bucket Hash

ORAM. Each bit of the Bloom Filter is encrypted and exported to the server. Thus, each data

query retrieves and checks the Bloom Filter for the target data block and only one data block

is retrieved from each non-empty layer. Compared to Bucket Hash ORAM, the communication

cost is reduced by a factor of logN , which is O(log2N · B) bits per query. In Cuckoo Hash

ORAM, a Cuckoo hash function is utilized such that each layer is organized as a Cuckoo hash

table. Due to Cuckoo hash function, each data query only retrieves two data blocks from each

layer. Thus, the communication cost is reduced to O(log2N ·B) bits per query under constant

user-side storage.

Furthermore, Kushilevitz et. al. [40] proposed a hybrid ORAM solution, called B-ORAM, to

balance the communication cost of data query and data shuffling. B-ORAM incurs O(log2N
log logN ·

B) bits communication cost per query with constant user-side storage.

In iORAMs [61, 65, 24, 66, 51, 59, 68, 78, 69, 48, 52, 64, 58, 53, 14, 49, 21, 75, 8, 16, 15,

76, 63, 50, 60, 46], index is used to locate a user’s desired data on the remote server. Due to

the obliviousness requirement, index should be either stored at the user side or outsourced to

the storage server as an oblivious data structure (e.g. index can be recursively built up at the

server side similarly as that of data blocks).

The first iORAM construction was proposed by Shi et. al. [61] with O(log3N ·B) bits per

query, given a constant user-side storage. In that work, the server-side storage is organized as a

binary tree, where each node on the tree is a small bucket to hold up to logN data blocks. The

obliviousness of the scheme is accomplished through distributing each data block to a randomly-

12

Table 3.1 Comparisons of State-of-the-art Oblivious RAM Constructions. N denotes the total
number of exported data blocks, B denotes the size of each data block.

ORAM Communication Cost User-side Storage Server-side Storage

BH-ORAM [27] O(log3N ·B) O(B) O(N logN ·B)

CH-ORAM [57] O(log2N ·B) O(B) O(N ·B)

BF-ORAM [70] O(log2N log logN ·B) O(B) O(N ·B)

B-ORAM [40] O(log2N
log logN ·B) O(B) O(N ·B)

T-ORAM [61] O(log3N ·B) O(B) O(N logN ·B)

Path ORAM [66] O(logN ·B) · ω(1) O(logN ·B) · ω(1) O(N ·B)

G-ORAM [24] O(log2N
log logN ·B) · ω(1) O(log2N ·B) · ω(1) O(N ·B)

P-PIR [61] O(log2N ·B) O(B) O(N logN ·B)

P-ORAM [65] O(logN ·B) O(
√
N ·B) O(N ·B)

selected path on the tree. A data eviction process is launched after every query to make the

node overflow probability small. The construction was later improved to Path ORAM [66] by

reducing the size of each node and adding a stash at the user-side storage to deal with node

overflowing. The evaluation of Path ORAM shows that its per-query communication cost is

O(logN ·B) bits with a stash size of O(logN ·B) bits. According to the Path ORAM, numerous

ORAM constructions have been further proposed. For example, the construction proposed by

Ren et. al. [60], makes integrity checking available in Path ORAM.

Concurrently, another iORAM called Partition ORAM (P-ORAM) [65] was proposed based

on the assumption that the user-side storage size is O(
√
N ·B) bits. The key idea of the scheme is

to split the server storage into “smaller” partitions such that each partition is a fully functional

ORAM; leveraging the user-side storage, data blocks are obliviously transferred between the

partitions. Due to the reduced size of each partition ORAM, this scheme incurs a logN · B

bits communication cost per query in practice.

In Table 3.1, we compare several representative state-of-the-art ORAM constructions.

3.2 Multi-user ORAMs

Most of the existing multi-user ORAMs assume all the users trust each other and they do

not collude with the storage server. Hence, they only need to protect their data access patterns

from the storage server (without the need to protect one user’s access pattern from other users).

13

Based on such assumption, all stateless ORAMs (i.e., ORAMs that do not require local storage

of data) [22, 27, 61, 70, 73, 57, 32, 30, 29, 31, 77, 49, 47] can be extended to support such

scenarios.

Particularly, PrivateFS [73] has been proposed to support parallel accesses from multiple

users. In PrivateFS, the server-side storage is organized as a layered structure and a log file

is stored on the first layer. In order to achieve parallel access, the log file is shared by all the

users in addition to the target data those users try to access. For each access, both the log file

and the data blocks are accessed by all the users to achieve parallelism.

In Delegation ORAM (D-ORAM) [22], the problem of ORAM delegation was studied. It

proposes a scheme with which the data owner can delegate controlled access to third parties

for the outsourced data, while preserving the access pattern privacy. However, this scheme can

only be applied to the square-root ORAM [27].

The recently proposed Group ORAM (GRP-ORAM) [47] considers the following scenario:

A data owner outsources a dataset to a semi-honest cloud storage server, via which the data is

shared with a group of untrusted users who may be malicious. The storage server is assumed

not to collude with any user. The design goal is to employ the storage server to enforce that a

user can only access the data that it is authorized to, and meanwhile preserve the obliviousness

of the users’ access from the server. The obliviousness property for GRP-ORAM is defined as

follows: Assuming the server is not allowed to collude with any users in the system, the access

pattern of any user is protected against the server.

14

CHAPTER 4. S-ORAM: SEGMENTATION-BASED OBLIVIOUS RAM

In the first work, we proposed a novel ORAM scheme, called segmentation-based Oblivious

RAM (S-ORAM), aiming to bring theoretical ORAM constructions one step closer to practical

applications. This work is motivated by the observation that a large-scale storage system (e.g.,

a cloud storage system such as Amazon S3 [2]) usually stores data in blocks and such a block

typically has a large size [65], but most existing ORAM constructions treat data blocks as

atomic units for query and shuffling, and do not factor block size into their designs.

S-ORAM is designed to make better use of the large block size by introducing two segment-

based techniques, namely, piece-wise shuffling and segment-based query, to improve the efficiency

in data shuffling and query. With piece-wise shuffling, data can be perturbed across a larger

range of blocks in a limited user-side storage; this way, the shuffling efficiency can be improved,

and the improvement gets more significant as the block size increases. With segment-based

query, S-ORAM organizes the data storage at the server side as a hierarchy of single-segment

and multi-segment layers, and an encrypted index block is introduced to each segment. With

these two techniques at the core, together with a few supplementary algorithms for distributing

blocks to segments, S-ORAM can accomplish efficient query with only O(logN) communication

cost and a constant user-side storage, while existing ORAM constructions have to use a larger

user-side storage to achieve the same level of communication efficiency in query.

Extensive security analysis has been conducted to verify the security of the proposed S-

ORAM. Particularly, S-ORAM has been shown to be a provably highly secure solution that

has a negligible failure probability of O(N− logN) according to Definition 2.2, which is no higher

than that of existing ORAM constructions.

In terms of communication and storage costs, S-ORAM outperforms the B-ORAM [40] and

the Path ORAM [66], which are the best known theoretical hash-based and practical index-

15

based ORAMs under small local storage assumption, respectively. Particularly, under practical

settings [65] where the number of data blocks N ranges from 220 to 236 and the block size

is 32 KB to 256 KB, (i) the communication cost of S-ORAM is 12 to 23 times less than B-

ORAM when they have the same constant-size user-side storage; (ii) S-ORAM consumes 80%

less server-side storage and around 60% to 72% less bandwidth than Path ORAM when they

have the similar logarithmic-size user-side storage.

4.1 Intuition

The design of S-ORAM is motivated by the observation that a large-scale storage system

usually stores data in blocks and such a block typically has a large size. To the best of our

knowledge, most existing ORAM constructions treat data blocks as atomic units for query and

shuffling, and do not factor block size into their designs. The recently proposed index-based

ORAM constructions [48, 65, 64, 63] have used large-size blocks to store indices to improve

index search efficiency; still, more opportunities wait to be explored to fully utilize this feature.

S-ORAM is designed to make better use of the large block size to improve the efficiency in

data shuffling and query, which are two critical operations in an ORAM system. Specifically,

we propose the following two segment-based techniques:

• Piece-wise Shuffling. In S-ORAM, each data block is segmented into smaller pieces, and

in a shuffling process, data is shuffled in the unit of pieces rather than blocks. As we

know, data shuffling has to be performed at the user-side storage in order to achieve

obliviousness. With the same size of user-side storage, shuffling data in pieces rather

than blocks enables data perturbation across a larger range of blocks. This way, the

shuffling efficiency can be improved, and the improvement gets more significant as the

block size increases.

• Segment-based Query. In order to improve query efficiency, S-ORAM organizes the data

storage at the server side as a hierarchy of single-segment and multi-segment layers. In

each segment, an encrypted index block (with the same size as a data block) is introduced

to maintain the mapping between data block IDs and their locations within the segment.

16

This way, when a user needs to access a block in a segment, he/she only needs to access two

blocks - the index block and the intended block. By adopting this technique together with

supplementary algorithms for distributing blocks to segments, S-ORAM can accomplish

efficient query with only O(logN) communication cost and a constant user-side storage,

while existing ORAM constructions have to use a larger user-side storage to achieve the

same level of communication efficiency in query.

The details of the proposed S-ORAM are elaborated in the rest of this chapter.

4.2 Scheme

The presentation of S-ORAM consists of the storage organization and system initialization,

data query procedure and data eviction procedure.

4.2.1 Storage Organization and Initialization

4.2.1.1 Data Block Format

Similar to existing ORAMs, S-ORAM stores data in blocks, and a data block is the basic

unit for read/write operations by the user. A plain-text data block can be split into pieces and

each piece is z = logN bits long, where N is the total number of data blocks. The first piece

contains the ID of the data block, say i, which is also denoted as di,1. The remaining pieces

store the content of the data block, denoted as di,2, di,3, · · · , di,P−1. Before being exported to

the remote storage server, the plain-text data block is encrypted piece by piece with a secret

key k, as shown in Figure 4.1:

ci,0 = Ek(ri), where ri is a random number;

ci,1 = Ek(ri ⊕ di,1);

ci,2 = Ek(ci,1 ⊕ di,2);

· · · ,

ci,P−1 = Ek(ci,P−2 ⊕ di,P−1).

17

Thus, the encrypted data block (denoted as Di and hereafter called data block for brevity) has

the following format:

Di = (ci,0, ci,1, ci,2, · · · , ci,P−1).

It contains P pieces and has Z = z · P bits.

id
i

=1, 2,id 1, −Pid

i
D

bitszbitsz

1,ic 2,ic 1, −Pic0,ic

bits

i
r

)(⋅
k

E

3,ic

3,idPlain-text Block

)(⋅
k

E)(⋅
k

E)(⋅
k

E)(⋅
k

E

)(PzZ ⋅=Z

Figure 4.1 Format of a data block in S-ORAM.

4.2.1.2 Server-side Storage

S-ORAM stores data at the remote server in a pyramid-like structure as shown in Figure 4.2.

The top layer, called layer 1, is an array containing at most four data blocks. The rest of the

layers are divided into two groups as follows.

T1 (Tier 1) Layers: Single-Segment Layers. T1-layers refer to those between (inclusive)

layer 2 and layer L1 = ⌊2 log logN⌋. As illustrated in Figure 4.3, each T1-layer consists of a

single segment, which includes an encrypted index block Il and 2l+1 data blocks. Among the

data blocks, at most half of them are real data blocks as formatted in Figure 4.1, while the

rest are dummy blocks each with ID 0 and randomly-stuffed content. The index block has 2l+1

entries; each entry corresponds to a data block in the segment which consists of three fields: ID

of the data block, location of the data block in the segment, and access bit indicating whether

the block has been accessed since it was placed to the location.

18

…
…

I

Layer ……

D D

D DD D DD DD

3
2

I D D D

112
+L

1L

Layer

Layer

1

2

Layer 11 +L ……I D D ……I D D

…
…

…
…

…
…

Layer 2L ……I D D ……I D D……

N
2log3⋅

(single-segment

layers)

Tier 1

(multi-segment

layers)

Tier 2

=

+

+

N
W

L

L 2

1

1
log

2 1

1

N
2log3 ⋅

=

N

N
W

L 2log2
segments

segments

D D

Figure 4.2 Organization of the server-side storage.

T2 (Tier 2) Layers: Multi-Segment Layers. T2-layers refer to those between (inclusive)

layer L1+1 and layer L2, where L2 = logN . Each T2-layer consists of Wl = ⌈ 2l

log2N
⌉ segments,

and each T2-layer segment has the same format as a T1-layer segment except that a T2-layer

segment contains 3 log2N data blocks.

Note that, in the above storage structure, a segment (regardless whether at a T1-layer or

T2-layer) contains at most 3 log2N data blocks. Therefore, the index block of a segment has at

most 3 log2N entries. As each entry contains three fields: ID of the data block (needing logN

bits), location of the data block in the segment (needing log(3 log2N) bits), and access bit, an

index block needs at most 3 log2N [logN + log(3 log2N) + 1] bits. In practice, with N ≤ 236

which is considered large enough to accommodate most practical applications, the size of an

19

……

l
I D D D

12
1 −+l

D

Data ID Location Access bit

1 5 0

6 42 0

…

205 0

1,205
c 2,205

c
1,205 −Pc0,205

c

0 9 0

0 1200 0

…

1
2

+l

E
n

cr
y
p

te
d

 w
it

h
 k

e
y
k

Figure 4.3 Structure of a T1-layer.

index block is less than 32 KB, which can fit into a typical data block assumed in the existing

studies of practical ORAM schemes [65].

4.2.1.3 User-side Storage

The user organizes its local storage into two parts: cache (temporary storage) and permanent

storage. Cache is used to buffer and process (including encrypt and decrypt) data blocks

downloaded from the server. We assume that the size of the cache is αZ bits where α is a

constant. In the S-ORAM design presented in this section, we set α = 2. This design can be

conveniently adapted to other configurations of cache size, as will be discussed in Section 4.4.1.

Permanent storage stores the user’s secret information, including (i) a query counter keeping

track of the number of queries that have been issued, (ii) a secret key k, and (iii) a one-way hash

function Hl(·) for each T2-layer l, which maps a data block to one of the segments belonging

to the layer. Note that, the size of permanent storage is much smaller than that of the cache,

since only several hundreds of bits are needed to store the query counter, secret key, and hash

functions.

20

4.2.1.4 Storage Initialization

The user initializes the S-ORAM system as follows:

• It randomly selects a secret key k and a one-way hash function HL2(·) of layer L2, i.e.,

the bottom layer.

• N plain-text data blocks are encrypted into blocks Di where i = 1, · · · , N with the secret

key k in the format illustrated by Figure 4.1. In addition, 2N dummy blocks are randomly

generated and encrypted also with key k.

• N real data blocks and 2N dummy blocks are uploaded to layer L2 of the server storage in

a delicate manner to ensure that (i) each real data block Di of unique ID i is distributed

to segment HL2(i) at layer L2, (ii) each segment is assigned with exactly 3 log2N data

blocks, and (iii) data blocks distributed to the same segment are randomly placed within

the segment. Note that, a process like data shuffling elaborated in Section 4.2.3.3 can be

adopted to distribute and place the data blocks to satisfy the above properties.

Besides, the user upload a dummy block D to the server and let the server know it is a dummy

block.

4.2.2 Data Query

As formally described in Algorithm 1, the process for querying a data block Dt of ID t

consists of the following four phases.

In Phase I, the user retrieves and decrypts all data blocks stored at layer 1, attempting to

find Dt in the layer.

In Phase II, each non-empty T1-layer l is accessed sequentially. Specifically, the index block

Il of the layer is first retrieved and decrypted, and then one of the following two operations is

performed:

• If Dt has not been found at any layer prior to layer l and Il indicates that Dt is at layer l,

record the location where Dt resides, set the access bit of the location to 1, and re-encrypt

21

and upload Il to save cache space. Then, retrieve Dt. Meanwhile, the server makes a

copy of user uploaded dummy block D to the location where Dt was retrieved.

• Otherwise, the location of a dummy block Dt′ whose access bit in Il is 0 (i.e., it has

not been accessed since last time it was distributed to its current location) is randomly

picked and recorded. After the block’s access bit is set to 1 in Il, Il is re-encrypted and

uploaded. Then, Dt′ is retrieved and discarded. The server also makes a copy of dummy

block D to fill in this location.

In Phase III, each non-empty T2-layer l is accessed sequentially as follows.

• If Dt has not been found at any layer prior to layer l, segment s = Hl(t) of layer l is

picked to access. The index block Isl of the segment is first retrieved and decrypted to

check whether Dt is at this segment. If so, the access bit of Dt is set to 1 in Isl before Isl

is encrypted and uploaded; then, Dt is retrieved, server fill up Dt’s original location with

a copy of dummy block D. Else, the user randomly selects a dummy block Dt′ in this

segment whose access bit in Isl is 0; after the access bit of Dt′ is set to 1, Isl is re-encrypted

and uploaded; then, Dt′ is retrieved and discarded, while a copy of dummy block D is

filled in Dt′ ’s original location.

• If Dt has already been found at a layer prior to layer l, a segment is randomly selected

from layer l and the user randomly selects a dummy blockDt′ in this segment whose access

bit in Isl is 0. After the access bit of Dt′ is set to 1, Isl is re-encrypted and uploaded.

Then, Dt′ is retrieved, discarded, and a copy of dummy block D is filled in Dt′ ’s original

location.

Finally in Phase IV, the user wraps up the query process to ensure that Dt is at layer 1,

i.e., the top layer. To achieve this, the user first checks whether Dt has been found at layer 1.

If so, add a dummy block D to local storage, re-encrypt all blocks in local storage (including

Dt and all blocks fetched from layer 1), and upload them back to layer 1; otherwise, the user

directly re-encrypts all blocks in local storage and uploads them back to layer 1.

22

4.2.3 Data Shuffling

A critical step in S-ORAM is data shuffling which is used to perturb data block locations.

It may occur at all layers of the storage hierarchy. Specifically, data shuffling at layer l (l =

2, · · · , L2−1) is triggered when the total number of queries that have been processed is an odd

multiple of 2l (i.e., a multiple of 2l but not a multiple of 2l+1). At this moment, layer l is empty

because: (i) it was empty immediately after data shuffling for some layer l′, where l′ > l, has

completed; (ii) since then, only 2l queries have been processed, and during this course no data

block has been added to this layer. During data shuffling at layer l, all data blocks in layers

{1, · · · , l − 1} are re-distributed randomly to layer l, and dummy blocks may be introduced

to make layer l full. Data shuffling at layer L2, i.e., the bottom layer, however, is triggered

when the total number of processed queries is any multiple of 2L2 ; it re-distributes all real data

blocks and selected dummy blocks in the entire hierarchy to fully occupy the bottom layer.

4.2.3.1 Preliminary: A Segment-Shuffling Algorithm

Compared to existing ORAM schemes, S-ORAM utilizes the user cache space more effi-

ciently to speed up data shuffling. Specifically, the user cache is divided into four parts:

• π, which is a buffer to store a permutation of up to 2m2 inputs and thus needs 2m2 log(2m2)

bits, where m is a system parameter.

• B0, B1, and B2, which are three buffers and each may temporarily store up to 2m2 data

pieces.

Recall that the size of a data piece is z bits and the size of user cache is αZ. Therefore, the

following relation shall hold between m, z, α, and Z:

2m2 · [log(2m2) + 3z] ≤ αZ. (4.1)

Data shuffling in S-ORAM is based on a segment-shuffling algorithm (as shown in Algo-

rithm 2). It is able to shuffle n (≤ 3 log2N) data blocks with a communication cost of O(n)

data blocks, by setting the system parameter m to
√
1.5 logN , under the following practical

assumptions: (1) N ≤ 236 which is considered large enough to accommodate most practical

23

applications [65]; (2) the size of Z is between 32 KB and 256 KB which is typically assumed

in practical ORAM schemes [65]; and (3) α = 2 meaning that a small local cache of two data

blocks is assumed. It is easy to verify that, under these assumptions, Equation (4.1) holds.

Moreover, as n ≤ 3 log2N = 2m2, π is large enough to store a permutation of the IDs of n

data blocks, and B0, B1, and B2 are large enough to store n data pieces, which are required in

the algorithm.

The segment-shuffling algorithm has two phases. Phase I processes the first two data pieces

of all n blocks as follows. After the first two pieces of all n blocks are retrieved, IDs of the

blocks are obtained and permuted according to a newly picked permutation function, and then

re-encrypted using the key and newly-picked random numbers. After that, the new random

numbers are uploaded after being encrypted, which is followed by the uploading of the shuffled

and re-encrypted block IDs.

In Phase II, the remaining pieces of all n blocks are retrieved, shuffled according to the new

permutation function (newly picked in Phase I), re-encrypted, and then uploaded back to the

server. This phase runs iteratively and the (v + 1)-st pieces are retrieved and processed at the

v-th (v = 1, · · · , P − 2) iteration. Particularly, when the (v + 1)-st pieces are retrieved, two

encrypted versions of the v-th pieces are present in the user cache. Using the key and the older

version of the v-th pieces, the plain-text embedded in the (v + 1)-st pieces are obtained; then,

the pieces are permuted, and re-encrypted using the same key and the newer version of the v-th

pieces, before being uploaded back to the server. At the end of the iteration, two encrypted

versions of the (v + 1)-st pieces are left in the user cache, which will be used in the processing

of the (v + 2)-nd pieces in the next iteration.

4.2.3.2 Shuffling a T1-layer l (2 ≤ l ≤ L1)

When a T1-layer l is to be shuffled, all the blocks belonging to the layers above shall be

shuffled and distributed to layer l, which has 4 + 22+1 + · · · + 2l = 2l+1 − 4 blocks in total.

The server first makes 4 copies of dummy block D such that the total number of blocks to

be shuffled is 2l+1. Then, the segment-shuffling algorithm is invoked to shuffle these blocks to

layer l.

24

4.2.3.3 Shuffling a T2-layer l (L1 < l < L2)

Similar to a T1-layer, when a T2-layer l (excluding the bottom layer L2) is to be shuffled,

all the blocks belonging to the layers above shall be shuffled and distributed to layer l. The

total number of these blocks is w = 4 + 22+1 + · · ·+ 2L1+1 + 3 · 2L1+1 + · · ·+ 3 · 2l−1 which is

less than 3 · 2l. Note that, among these blocks, the number of real data blocks is at most 2l as

data shuffling is triggered every 2l queries.

Before shuffling, the user updates the hash function Hl(·) used for layer l. Then, it uploads

a dummy block to the server, and requests the server to make 4 · 2l − w copies of the dummy

block to be temporarily stored at layer l. This way, the total number of data blocks to be

shuffled becomes 4 · 2l, among which there are at most 2l real data blocks.

Data shuffling at layer l consists of the following three rounds of scanning and two rounds

of oblivious sorting.

Round I: Scanning. Blocks are retrieved, labeled, re-encrypted, and then uploaded.

Labeling obeys the following rules: (i) Each block is labeled with a tuple of two tags; (ii) Each

real data block of ID i has Hl(i) as its first-tag and its second-tag is 0; (iii) Dummy blocks

are labeled in such a way that exactly 3 log2N dummy blocks have j as their first-tag for each

j ∈ {1, · · · , ⌈ 2l

log2N
⌉} while all other dummy blocks have∞ as their first-tag. All dummy blocks

have ∞ as the second-tag.

Round II: Oblivious Sorting. All the labeled blocks are sorted obliviously (using the

oblivious data sorting scheme presented in Section 4.2.3.5 in the non-descending order based

on the tag-tuple. Particularly, a block with a smaller first-tag should precede ones with larger

first-tags; blocks with the same first-tag are sorted in the non-descending order based on the

second-tag. This way, real data blocks are sorted to precede dummy blocks.

Round III: Scanning. The sorted sequence of blocks is scanned and divided into segments

each containing 3 log2N blocks. A counter is used to facilitate the process. Specifically, the

following rule is applied when a block is scanned:

• If the block is the very first one or it has a different first-tag from its immediate prede-

cessor, it becomes the first one of a new segment, and the counter is reset to 1.

25

• Otherwise: If the counter is less than 3 log2N , the counter is incremented by 1. If the

counter reaches 3 log2N , the block is considered redundant and hence its first-tag is

relabeled as ∞, which means this block is a redundant dummy blocks.

Round IV: Oblivious Sorting. This round sorts all the redundant blocks (i.e., those

with ∞ as the first-tag) to the end of the sequence. Similar to Round II, this is achieved by

obliviously sorting the blocks in the non-decreasing order based on the tag-tuple. Then, the

redundant blocks are removed.

Round V: Scanning. This round is to rebuild an index block for each segment. For each

segment formed in the previous round, the segment-shuffling algorithm is applied to distribute

the 3 log2N data blocks back to the server.

4.2.3.4 Shuffling the Bottom Layer L2

Every time when the number of queries is a multiple of 2L2 = N , layer L2 needs to be

shuffled, which means the entire storage shall be shuffled and all blocks from every layer shall

participate in data shuffling. Hence, the total number of blocks to be shuffled is w′ = 4+22+1+

· · ·+ 2L1+1 + 3 · 2L1+1 + · · ·+ 3 · 2L2−1 + 3 · 2L2 < 6N .

Similar to the shuffling of other T2-layers, there are also three rounds of scanning and

two rounds of oblivious sorting to accomplish layer L2 shuffling. To be more specific, Round I

scanning and Round II oblivious sorting are performed on w′ < 6N blocks instead of 4·2l blocks

in T2-layer shuffling. After Round II oblivious sorting, only the first 4N blocks participate in

Rounds III, IV, and V; therefore, they are identical to the ones in T2-layer shuffling.

4.2.3.5 Oblivious Data Sorting

Existing oblivious sorting techniques for ORAMs with constant local storage either in-

curs high asymptotical cost (for example, Batcher’s sorting network [19] incurs O(n log2 n)

communication cost) or large hidden constant behind the big-O notations (e.g., AKS sorting

network [1] incurs c · n log n communication cost with c ≥ 103 and randomized shellsort [28]

incurs > 24 · n log n cost), which significantly impede their practical efficiency. Hence, a more

practically efficient sorting method is needed.

26

In S-ORAM, we develop an m-way oblivious sorting scheme based on the m-way sorting

algorithm [42]. It sorts data in pieces rather than blocks, which exploits the user cache space

more efficiently and thus achieves a better performance than the afore-mentioned algorithms,

particularly when the block size is relatively large (which is common in practice [65]). Modifi-

cations have also been made to the original m-way sorting algorithm to ensure the obliviousness

of data sorting. The proposed m-way oblivious sorting scheme is shown in Algorithm 3. To

sort a set D of n blocks, the m-way oblivious sorting algorithm works recursively as follows: if

n ≤ 2m2, a segment-sorting algorithm similar to the segment-shuffling algorithm is applied to

sort the n blocks at the communication cost of O(n) blocks; otherwise, the n blocks are split

into m subsets each of n
m blocks, the m-way oblivious sorting algorithm is applied to sort each

of the subsets, and finally a merging algorithm is used to merge the sorted subsets into a sorted

set of n blocks.

Next, we describe the segment-sorting algorithm (Algorithm 4) and the merging algorithm

(Algorithm 5) The segment-sorting algorithm is based on the segment-shuffling algorithm (Al-

gorithm 2) with the following revisions: (1) The segment-sorting algorithm sorts blocks that

are labeled with tags. The format of a labeled block is slightly different from the one shown

in Figure 4.1; particularly, the encrypted tag is inserted as an extra piece before the encrypted

block ID. (2) While the segment-shuffling algorithm can randomly pick a permutation function

to shuffle pieces and blocks, the segment-sorting algorithm must permute pieces and blocks

according to the non-decreasing order of tags. (3) The segment-sorting algorithm does not

need to re-construct index blocks.

Finally, Algorithm 5 formally presents the merging algorithm.

4.3 S-ORAM Security Analysis

According to the security definition of ORAM, the security of S-ORAM can be proved

through Theorem 1. Before the proof of the theorem, we describe three lemmas before present-

ing the main theorem.

27

Lemma 1. When shuffling a T2-layer l, the probability that more than 1.5 log2N real data

blocks are distributed to any given segment is O(N− logN).

Proof. When shuffling a T2-layer l as in Section 4.2.3.3, up to 2l real data blocks are mapped

(by a hash function) to ⌈ 2l

log2N
⌉ segments uniformly at random. In the following proof, we first

assume the number of real data blocks is 2l and compute the probability that there exists a

segment with at least 1.5 log2N real blocks.

Let us consider a particular segment, and define X1, · · · , X2l as random variables such that

Xi =

 1 the ithreal block mapped to the segment,

0 otherwise.

Note that, X1, · · · , X2l are independent of each other, and hence for each Xi, Pr[Xi = 1] =

1
2l/log2N

= log2N
2l

. Let X =
∑2l

i=1Xi. The expectation of X is

E[X] = E

 2l∑
i=1

Xi

 =

2l∑
i=1

E[Xi] = 2l · log
2N

2l
= log2N.

According to the multiplicative form of Chernoff bound, for any j ≥ E[X] = log2N , it holds

that

Pr[at least j real data blocks in this particular segment] = Pr[X ≥ j] <
(
eδ−1

δδ

)log2N

,

where δ = j
log2N

. By applying the union bound, we can obtain

Pr[∃ a segment with at least j real data blocks] <
2l

log2N
·
(
eδ−1

δδ

)log2N

.

Further considering that 2l ≤ N , it follows that

Pr[∃ a segment with at least 1.5 log2N real data blocks]

<
N

log2N
·
(
e0.5

1.51.5

)log2N

= O(N− logN).

When the number of real blocks is less than 2l, obviously, the above probability is also

O(N− logN). Therefore, the lemma is proved.

28

Lemma 2. (Failure probability of S-ORAM). The probability that the S-ORAM construction

fails is O(N− logN). Particularly, a data query or shuffling process will never fail on any T1-

layer; a data query or shuffling process on a T2-layer may fail with probability O(N− logN).

Proof. The S-ORAM construction fails if a query or shuffling process fails.

A data query process fails only if: (Q1) the process fails to find the target data block; or

(Q2) the process fails to find a non-accessed dummy block on a layer when it needs to retrieve

one according to the query algorithm. As the storage server is assumed to be honest, case (Q1)

will not occur. Case (Q2) will not occur when the query process is accessing a T1-layer, due to

the following reasons: Each layer l contains 2l+1 blocks, among which the number of dummy

blocks is at least 2l; since the data blocks in the layer are shuffled once every 2l queries, there

must exist at least one non-accessed dummy block for each of the 2l queries.

A data shuffling process for layer l fails only if: (S1) layer overflow occurs, i.e., the process

tries to store more data blocks to the layer than its capacity; or (S2) segment overflow occurs

when layer l is a T2-layer, i.e., the process tries to store more than 3 log2N real data blocks to

a segment. As discussed in Section 4.2.3.2, case (S1) will not occur when shuffling a T1-layer

l because the total number of blocks to be shuffled is 2l+1, which is the capacity of the layer.

According to Section 4.2.3.3, case (S1) will not occur when shuffling a T2-layer l, because

Round IV of the shuffling algorithm marks and removes redundant blocks to make the total

number of blocks less than the capacity of the layer.

Hence, we only need to study the probability for cases (Q2) and (S2) to occur on a T2-layer.

Case (Q2) occurring on a T2-layer l means that a query process fails to find a non-accessed

dummy block on a segment of the layer. This can only happen in one of the following two

scenarios: (i) more than 1.5 log2N real data blocks are distributed to this segment, or (ii) more

than 1.5 log2N dummy data blocks are accessed from this segment since last time the blocks

were shuffled. According to Lemma 1, scenario (i) occurs with probability O(N− logN). As the

selections of dummy blocks during the query processes are also randomly distributed among all

segments of the layer, which is the same as the distribution of real data blocks to the segments

during the shuffling process, the probability for scenario (ii) to occur is also O(N− logN). Hence,

the probability for case (Q2) to occur is O(N− logN).

29

When case (S2) occurs on a T2-layer, there must be at least one segment of the layer

distributed with more than 3 log2N blocks. The probability that this case occurs is smaller

than the probability that at least one segment of the layer is distributed with at least 1.5 log2N

blocks, which is O(N− logN). Hence, the probability for case (S2) to occur is also O(N− logN).

To summarize, the probability that the S-ORAM construction fails is O(N− logN).

Lemma 3. (Random and non-repeated location access in S-ORAM). In S-ORAM, a query

process accesses locations from each non-empty layer l (l > 1) in a random and non-repeated

manner. Here, the non-repeatedness means that, a data block is accessed for at most once

between two consecutive shuffling processes that involve the block.

Proof. When layer l is a T1-layer, there are two cases. Case 1.1. If the query target data block

Dt has not been found at any layer prior to layer l, and layer l contains Dt, Dt is accessed. Due

to the randomness of the hash function Hl(·) used to distribute data blocks to locations, the

location of Dt is randomly distributed among all the locations of layer l. Hence, the access is

random. Also, Dt must not have been accessed since last time it was involved in data shuffling;

otherwise, the block must have been a query target of an earlier query and then moved to layer

1 already. Hence, the access is also non-repeated. Case 1.2. Otherwise, a non-access dummy

block is randomly selected to access, which makes the access to be random and non-repeated.

When layer l is a T2-layer, there are following cases. Case 2.1. If the query target Dt has

not been found at any layer prior to layer l, a segment s = Hl(t) of layer l is picked to access.

Due to the randomness of the hash function Hl(·), the selection of s is random. Then:

• If Dt is in segment s, the block is accessed. As the shuffling process randomly permutes

blocks within the same segment, the access of Dt within segment s is random. The access

is also non-repeated due to the same reasoning as in Case 1.1.

• If Dt is not in segment s, a non-accessed dummy block is randomly picked to access in

the segment. Hence, the access is random and non-repeated.

Case 2.2. If the query target Dt has already been found above layer l, segment s is randomly

selected and a non-accessed dummy block is randomly picked and accessed in the selected

segment. Hence, the access is random and non-repeated.

30

Theorem 1. S-ORAM is secure under the security definition in Section 3.2.

Proof. Given any two equal-length sequence x⃗ and y⃗ of data requests, their corresponding

observable access sequences A(x⃗) and A(y⃗) are computationally indistinguishable, because of

the following reasons:

• Firstly, according to the query algorithm, sequences A(x⃗) and A(y⃗) should have the same

format; that is, they contain the same number of accesses, and each pair of corresponding

accesses have the same format.

• Secondly, all blocks in the storage of S-ORAM are randomized encrypted and each block

is re-encrypted after each access. Hence, the two sequences could not be distinguished

based on the appearance of blocks.

• Thirdly, according to the query algorithm, the j-th accesses (j = 1, · · · , |A(x⃗)|) of the

A(x⃗) and A(y⃗) are from the same non-empty layer of the storage; and according to

Lemma 3, the locations accessed from the layer are random and non-repeated in both

sequences.

Also, according to Lemma 2, the S-ORAM construction fails with probability O(N− logN),

which is considered negligible and no larger than the failure probability of existing ORAMs [27,

29, 32, 30, 31, 40, 57, 70, 61, 66, 64, 65].

4.4 S-ORAM Cost Analysis and Evaluations

We analyze the cost of S-ORAM including bandwidth consumption (i.e., communication

cost), user-side storage cost, and server-side storage cost.

The server-side storage in S-ORAM is no more than 6N · Z bits at any time. Note that a

storage of at most 6N ·Z bits is needed only when shuffling layer L2, i.e., the bottom layer; for

all other layers, a storage of at most 3N · Z bits is needed. The user-side storage is constant;

specifically, it is 2 · Z bits.

The bandwidth consumption consists of two parts: query cost Q(N) and shuffling cost

S(N), which are analyzed next.

31

The query cost includes the retrieval and uploading of up to four data blocks for layer 1

and one data block (i.e., the index block) for each non-empty layer. Hence, the maximum

communication cost Q(N) is the retrieval and uploading of 1.5 logN + 2 blocks per query.

When shuffling a T1-layer l of 2l+1 data blocks, each data block is processed once in the

user cache. Hence, the communication cost is the retrieval and uploading of 2l+1 blocks.

When shuffling a T2-layer l of n = 4 · 2l data blocks or the bottom layer L2 of n <

6N data blocks, the shuffling process includes three rounds of scanning and two rounds of

oblivious sorting. The scanning rounds can be integrated into the oblivious sorting rounds.

Specifically, Round I (scanning round) can be performed side-by-side with the segment-sorting

(line 2 of Algorithm 3) of Round II (oblivious sorting round). Round III (scanning round) can

be performed concurrently with the last step of merging (line 19 of Algorithm 5) in Round II.

Similarly, Round V (the third scanning round) can also be performed concurrently with the last

step of merging in Round IV (oblivious sorting round). This way, the shuffling cost becomes

the cost for two rounds of oblivious sorting.

Next, we compute the cost of m-way obliviously sorting n data blocks. With Algorithm 3,

n blocks are divided into n
2m2 subsets of equal size. These subsets are sorted at the user cache

and then recursively merged into a large sorted set by Algorithm 5. During each merging

phase, every m smaller sorted subsets are merged into one larger sorted subset. Thus, there is

a total of logm
n
2 −1 merging phases needed to form the final sorted set. Let G(m, s) denote the

number of times that each block is retrieved and then uploaded during a merging phase, where

m smaller sorted subsets are merged into one larger sorted subset and each smaller subset

contains s data blocks.

We have the following recursive relation:

G(m, s) = G
(
m,

s

m

)
+ 2.

This is because, during the merging phase, each block should (i) perform another phase of

merging in which smaller subsets each containing s/m blocks are merged into subsets of s

blocks (line 10 in Algorithm 5), incurring G(m, sm) times of retrieval and uploading for each

block, and then (ii) perform steps 13-20 in Algorithm 5, incurring 2 times of retrieval and

32

uploading of each block. Hence, each data block should be retrieved and uploaded for

T (n) =

logm
n
2
−1∑

i=1

G(m, 2mi+1) =
(
logm

n

2
− 1

)2

times during the entire shuffling process.

As shuffling is performed periodically at layers, the amortized shuffling cost consists of the

following:

• Each T1-layer l (2 ≤ l ≤ L1) is shuffled once every time when an odd multiple of 2l

queries have been made, and each of the 2l data blocks at T1-layer l is scanned once for

every shuffling. Hence, the amortized cost is Sl(N) = 2l+1

2l+1 = 1 block scanning per query.

• Each T2-layer l (L1 < l < L2), except the bottom layer L2, is shuffled also once every time

when an odd multiple of 2l queries have been made, and two rounds of oblivious sorting

are performed on 4 · 2l data blocks. Hence, the amortized cost is Sl(N) = 2·4·2l·T (4·2l)
2l+1 =

4 · T (4 · 2l) block scannings per query.

• The bottom layer L2 is shuffled every time when a multiple of N queries have been made,

and two rounds of oblivious sorting are performed. The first oblivious sorting is performed

on w < 6N blocks and second one is performed on 4N . Hence, the amortized cost is at

most SL2(N) = 6N ·T (6N)
N + 4N ·T (4N)

N = 6 · T (6N) + 4 · T (4N) block scannings per query.

Therefore, amortized shuffling cost S(N) is:

S(N) =

L1∑
l=2

Sl(N) +

L2−1∑
l=L1+1

Sl(N) + SL2(N) = O

(
log3N

log2m

)
.

To summarize, the bandwidth consumption for S-ORAM is

Q(N) + S(N) = O

(
log3N

log2m

)
.

4.4.1 Cost Comparison

We now compare the performance of S-ORAM with that of B-ORAM and Path ORAM

from both theoretical and practical aspects. The theoretical results of bandwidth, user-side

storage and server-side storage costs are denoted as Tb, Tc, and Ts, and the practical results as

33

Pb, Pc, and Ps, respectively. The practical settings used here are as follows: the number of data

blocks N ranges from 220 to 236 and the block size ranges from 32 KB to 256 KB, which are

similar to the practical settings adopted by Stefanov et. al. [65]. In the comparisons, system

parameter α in S-ORAM may be set to a value other than 2. If α ̸= 2, the scheme presented in

Section 4.2 can be modified to accommodate this by simply setting parameter m to the largest

integer satisfying Equation (4.1).

Table 4.1 Performance Comparison: S-ORAM vs. B-ORAM
S-ORAM B-ORAM

Tb O(log3N
log2(Z/logN)

· Z) O(log2N
log logN · Z)

Tc O(Z) O(Z)

Ts O(N · Z) O(N · Z)
Pb c log2N · Z(0.599 ≤ c ≤ 0.978) > 60 log2N

log logN · Z
Pc 512 KB 512 KB

Ps ≤ 6N · Z ≥ 8N · Z

Table 4.2 Theoretical Performances: S-ORAM vs. Path ORAM
S-ORAM Path ORAM

Tb O(log3N
log2(Z/logN)

· Z) O(log2N
log(Z/logN) · Z) · ω(1)

Tc O(Z) O(logN · Z) · ω(1)
Ts O(N · Z) O(N · Z)

Table 4.3 Practical Performances: S-ORAM vs. Path ORAM
N = 220 N = 236

S-ORAM Path ORAM S-ORAM Path ORAM

Pb(Z = 32 KB) 0.394 log2N · Z 1.170 log2N · Z 0.456 log2N · Z 1.247 log2N · Z
Pb(Z = 64 KB) 0.334 log2N · Z 1.090 log2N · Z 0.456 log2N · Z 1.157 log2N · Z
Pb(Z = 128 KB) 0.334 log2N · Z 1.021 log2N · Z 0.392 log2N · Z 1.079 log2N · Z
Pb(Z = 256 KB) 0.259 log2N · Z 0.959 log2N · Z 0.392 log2N · Z 1.011 log2N · Z

Pc log2N · Z log3N
log(Z/ logN) · Z log2N · Z log3N

log(Z/ logN) · Z
Ps < 6N · Z 32N · Z < 6N · Z 32N · Z

4.4.1.1 S-ORAM vs. B-ORAM

In order to compare S-ORAM with B-ORAM, the user cache size is set to 512 KB in both

constructions.

34

As shown in Table 4.1, the bandwidth consumption of S-ORAM is 12 to 23 times less than

that of B-ORAM under practical settings, while the server-side storage cost of S-ORAM is

about 75% of that of B-ORAM. The improvement in bandwidth efficiency is attributed to two

factors: (i) the query cost of S-ORAM is only 2 logN blocks while the cost of B-ORAM is

2 log2N
log logN ; and (ii) the shuffling algorithm of S-ORAM is more efficient than that of B-ORAM.

In addition, the failure probability S-ORAM is O(N− logN), which is asymptotically lower than

that of B-ORAM which is O(N− log logN) [40].

4.4.1.2 S-ORAM vs. Path ORAM

To fairly compare the performance of S-ORAM and Path ORAM, their user-side storage

sizes are both set to around log2N blocks and their failure probabilities are set to the same

level, which are both O(N− logN). For this purpose, the security parameter ω(1) of Path

ORAM has to be set to log2N
log(Z/logN) , and the user-side storage size of Path ORAM is set to

log3N
log(Z/logN) · Z bits; the user-side storage size of S-ORAM is expanded to log2N · Z bits. Note

that, log3N
log(Z/logN) · Z ≥ log2N · Z as long as Z ≤ N (which is usually true in practice).

Table 4.2 shows the theoretical performances of both S-ORAM and Path ORAM and Ta-

ble 4.3 is the practical performance comparison of these two ORAMs.

In Table 4.3, it can be seen that S-ORAM outperforms Path ORAM in both bandwidth ef-

ficiency and server-side storage efficiency. It requires 80% less server-side storage and consumes

around 60% to 72% less bandwidth than Path ORAM.

4.5 Summary

In the first work, we proposed a segmentation-based Oblivious RAM (S-ORAM). S-ORAM

adopts two segment-based techniques, i.e., piece-wise shuffling and segment-based query, to

improve the performance of shuffling and query by factoring block size into design. Extensive

security analysis proves that S-ORAM is a highly secure solution with a negligible failure prob-

ability of O(N− logN). In terms of communication and storage costs, S-ORAM outperforms the

B-ORAM and the Path ORAM, which are two state-of-the-art hash and index based ORAMs

respectively, in both practical and theoretical evaluations.

35

Algorithm 1 Query data block Dt of ID t.

1: found← false

/* Phase I: access layer 1 */

2: Retrieve & decrypt blocks in layer 1

3: if Dt is found in layer 1 then found← true

/* Phase II: access T1-layers */

4: for each non-empty layer l ∈ {2, · · · , L1} do
5: Retrieve & decrypt Il – index block of the layer

6: if (found = false ∧ t ∈ Il) then
7: Set the access bit of Dt to 1 in Il
8: Re-encrypt & upload Il
9: Retrieve & decrypt Dt

10: found← true

11: else

12: Randomly pick a dummy Dt′ with access bit 0

13: Set the access bit of Dt′ to 1 in Il
14: Re-encrypt & upload Il
15: Retrieve & discard Dt′

16: end if

17: end for

/* Phase III: access T2-layers */

18: for each non-empty layer l ∈ {L1 + 1, · · · , L2} do
19: if (found = false) then

20: s← Hl(t)

21: else

22: s is randomly picked from {0, · · · ,Wl − 1}
23: end if

24: Retrieve & decrypt Isl – index block of segment s

25: if (found = false ∧ t ∈ Isl) then
26: Set the access bit of Dt to 1 in Isl
27: Re-encrypt & upload Isl
28: Retrieve & decrypt Dt

29: found← true

30: else

31: Randomly find a dummy Dt′ with access bit 0

32: Set the access bit of Dt′ to 1 in Isl
33: Re-encrypt & upload Isl
34: Retrieve & discard Dt′

35: end if

36: end for

/* Phase IV: wrap up */

37: if (Dt is found in layer 1) then

38: Encrypt an extra dummy D in local storage

39: else

40: Re-encrypt Dt in local storage

41: end if

42: Upload all blocks in local storage back to layer 1

36

Algorithm 2 Segment-Shuffling of Blocks (Di1 , · · · , Din).

/* Phase I: shuffling first two pieces of all blocks */

1: Retrieve (ci1,0, · · · , cin,0) to B0

2: Decrypt B0 to (ri1,0, · · · , rin,0) using k
3: Retrieve (ci1,1, · · · , cin,1) to B1

4: Decrypt B1 to (i1, · · · , in) using k and B0

5: Store (i1, · · · , in) in B2

6: Pick & store a random permutation in π

7: Permute B2 to (i′1, · · · , i′n) according to π

8: Generate, re-encrypt & upload entries of a new index block based on B2 and π

9: for each i′j in B2 do

10: Randomly picks r′i′j
11: Encrypt r′i′j

to c′i′j ,0
using k, and upload it

12: Encrypt i′j to c
′
i′j ,1

using k and c′i′j ,0
13: end for

14: Upload B2 to designated locations

/* Phase II: shuffling remaining pieces of all blocks */

15: for each v ∈ {2, · · · , P − 1} do
16: Retrieve (ci1,v, · · · , cin,v) to B0

17: for each j ∈ {1, · · · , n} do
18: Decrypt cij ,v to dij ,v using k and cij ,v−1 in B1

19: Replace cij ,v−1 in B1 by cij ,v from B0

20: Replace cij ,v by dij ,v in B0

21: end for

22: Permute B0 to (di′1,v, · · · , di′n,v) according to π

23: Encrypt (di′1,v, · · · , di′n,v) in B0 using k and B2

24: Replace B2 by B0

25: Upload B2 to designated locations

26: end for

Algorithm 3 m-way Oblivious Sorting (D: a set of data blocks)

1: if (|D| ≤ 2m2) then

2: Apply Algorithm 4 to sort D
3: else

4: Split D into m equal-size subsets of blocks D0, · · · ,Dm−1

5: for each i (0 ≤ i ≤ m− 1) do

6: Apply Algorithm 3 to sort Di
7: end for

8: Apply Algorithm 5 to merge D0, · · · ,Dm−1

9: end if

37

Algorithm 4 Segment-Sorting of Blocks (Di1 , · · · , Din).

1-5: the same as in Algorithm 2

6: Construct a permutation function that sorts B2 in the non-decreasing order

7: the same as in Algorithm 2

8: blank

9-14: the same as in Algorithm 2

15: for each v ∈ {2, · · · , P} do
16-26: the same as in Algorithm 2

Algorithm 5 Merging Sorted-subsets of Blocks (D0, · · · ,Dm−1)

/* Regroup blocks */

1: s = |D0|
2: for each i (0 ≤ i ≤ m− 1) do

3: for each j (0 ≤ j ≤ m− 1) do

4: Add Di[j],Di[m+ j] · · · ,Di[s−m+ j] to D′
j

5: end for

6: end for

/* Recursively merge regrouped blocks */

7: for each j (0 ≤ j ≤ m− 1) do

8: if |D′
j | ≤ 2m2 then

9: Apply Algorithm 4 to sort D′
j

10: else

11: Apply Algorithm 5 to merge sort D′
j

12: end if

13: end for

/* Merge sorted blocks */

14: for each i (0 ≤ i ≤ s
m − 2) do

15: for each j (0 ≤ j ≤ m− 1) do

16: Add D′
j [im],D′

j [im+ 1], · · · ,D′
j [im+ 2m− 1] to D′′

i

17: end for

18: end for

19: for each i (0 ≤ i ≤ s
m − 1) do

20: Apply Algorithm 4 to sort D′′
i

21: end for

38

CHAPTER 5. KT-ORAM: K-ARY TREE OBLIVIOUS RAM

In the second work, we proposed a new hybrid ORAM-PIR construction called KT-ORAM [76].

Suppose N denotes the number of outsourced data blocks, B denotes the data block size. Giv-

en k = logN , KT-ORAM achieves: (i) O(logN
log logN ·B) communication cost when the recursion

level on metadata is of O(1) depth with uniform block size B = N ϵ (ϵ < 0) such that the meta-

data part is absorbed into the data block part, which outperforms all existing solutions with

the same assumption; (ii) O(log2N
log logN · B) communication cost when the number of recursion

levels is O(logN) with B = Ω(log2N log logN); (ii) O(N− log logN) failure probability during

ORAM operations, which is better than or equivalent to all existing ORAM schemes with tree

structure; (iii) O(1) user storage, which is the best scheme among those ORAMs with constant

user storage assumptions.

Our proposed KT-ORAM construction shares the similar idea of P-PIR [48], which builds

an ORAM storage as a tree with each node acting as a fully-functional PIR storage. However,

significant redesigns have been conducted to the storage structure and the ORAM operations,

based on the following key ideas: (i) replacement of the binary tree-based ORAM storage with

a k-ary tree-based storage to reduce the query cost for data block (not including the metadata)

from O(logN · B) to O(logNlog k · B); (ii) mapping the k-ary tree to a logical binary tree and

executing evictions on the binary tree; and (iii) delayed evictions to reduce the eviction cost for

data block (not including the metadata) from O(logN ·B) to O(logNlog k ·B). Compared to P-PIR,

KT-ORAM has the same asymptotical user-side and the server-side computational costs when

k = logN and B = Ω(log2N log logN).

Comprehensive security analysis has been conducted to analyze the performance of KT-

ORAM. The results show that the construction can preserve a user’s data access pattern with

a negligibly-small failure probability of O(N− log logN) according to Definition 2.2.

39

Theoretical and numerical analysis has been conducted to evaluate KT-ORAM and com-

pare it with several existing ORAM constructions. Results show that, under practical scenarios,

where N ranges from 216 to 240 and k = logN , KT-ORAM yields about 1/2 to 1/5 of commu-

nication cost of P-PIR, and it saves even more compared with other ORAM schemes.

5.1 Preliminaries

Our proposed KT-ORAM employs the additively homomorphic encryption [67, 38] primi-

tives and shares some basic ideas with P-PIR [48]. Hence, this section starts with an overview of

additively homomorphic encryption primitives and P-PIR, which is followed by the performance

limitation of P-PIR. Then, we present two straightforward methods to extend P-PIR and point

out their drawbacks. Finally, we introduce the intuitions behind the design of KT-ORAM.

5.1.1 Additively Homomorphic Encryption

Additively Homomorphic encryption (AH-encryption) [67, 38] is a fundamental primitive

used in our proposed design of KT-ORAM. Letting A and B be two data items, and E(∗)

denote an AH encryption (which is also a probabilistic encryption), the following properties

hold:

E(A)⊕ E(B) = E(A+B),

E(A)⊙B = E(A ·B).

Here, + and · are regular addition and multiplication operations between two data items; ⊕

stands for a homomorphic addition between two homomorphically-encrypted data items; the

“homomorphic” multiplication (denoted as ⊙) between a homomorphically-encrypted data item

E(A) and a data item B represents the homomorphic summation of B identical copies of E(A),

i.e., ⊕Bi=1E(A).

Based on an AH encryption, primitives PIR-read and PIR-write have been defined in AH-

based PIR constructions [48]. As they are also used in KT-ORAM, we introduction their

definitions below. Suppose a user exports to a storage server w double-encrypted data blocks,

denoted as
−−−−−−→
E(E(D)) = (E(E(D1)), · · · , E(E(Dw))), where E(∗) represents a symmetric encryp-

tion such as AES [12]. Primitives PIR-read and PIR-write are defined as follows.

40

PIR-read(m) When the user wishes to query data block Dm without exposing Dm’s

position m to the server, it should issue a PIR-read(m) request as follows: (i) The user first

constructs a query vector −→q of w entries, in which only the mth entry is E(1) while each of the

other entries is E(0). (ii) The vector −→q is then sent to the server.

Upon receiving the request, the server performs the following homomorphic encryption

operation for each entry qi of
−→q :

ci = qi ⊙ E(E(Di)) =

 E(0), if i ̸= m;

E(E(E(Di))), otherwise.

Then, the server calculates

c1 ⊕ · · · ⊕ cw = E(E(E(Dm))).

Lastly, this result is returned to the user, who will decrypt it to obtain Dm.

PIR-write(m, ∆D) When the user wishes to replace Dm with D′
m without exposing the

change to the server, it should issue a PIR-write(m, ∆D) request as follows: (i) The user first

computes ∆D = E(D′
m)−E(Dm). (ii) Then, it constructs a writing vector −→q of w entries, in

which only the mth entry is E(1) while each of the other entries is E(0). (iii) Finally, ∆D and

−→q are both sent to the server.

Upon receiving the request, the server conducts the following computations for each i ∈

{1, · · · , w}:

E(∆Di) = qi ⊙∆D =

 E(0), if i ̸= m;

E(∆D), otherwise.

E(E(Di)) = E(E(Di))⊕ E(∆Di) =

 E(E(Di)), if i ̸= m;

E(E(D′
m)), otherwise.

Note that, the effect of the above operations is to change only the mth block to E(E(D′
m))

while other blocks remain intact. Also, if m = ⊥, it means the write operation is a dummy

write, and therefore all entries of −→q are set to E(0).

5.1.2 Overview of P-PIR

The design of P-PIR is summarized in the following from the aspects of storage organization,

data query process, and data eviction process.

41

5.1.2.1 Storage Organization

Assuming N data blocks are exported by the user to a storage server. The server-side

storage of P-PIR is organized as a binary tree with L = logN + 1 layers, the same as in T-

ORAM [61]. Each node can store logN blocks. As the capacity of the storage is larger than

the N real data blocks, dummy blocks are introduced to fill up the rest of the storage.

A real data block is first encrypted with symmetric encryption and then re-encrypted with

homomorphic encryption before it is stored to a position in the node; that is, each data block

Di is stored as E(E(Di)) in a node. Each node also contains an encrypted index block that

records the ID of the data block stored at each position of the node; as the block is encrypted,

the index information is not known to the server.

Figure 5.1 shows an example, where N = 32 data blocks are exported and stored in a binary

tree-based storage with 6 layers. Starting from the top layer, i.e., layer 0, each node is denoted

as vl,i, where l is the layer number and i is the node index on the layer.

P-PIR requires the user to maintain an index table with N entries, where each entry i

(i ∈ {0, · · · , N − 1}) records the ID of a leaf node on the tree such that data block Di is stored

at some node on the path from the root to this leaf node. As in T-ORAM [61], the index table

can be exported to the server as well; hence, the user-side storage is of constant size and only

needs to store at most two data blocks and some secret information such as encryption keys.

5.1.2.2 Data Query Process

To query a certain data block Dt, the user acts as follows:

• The user checks the index table to find out the leaf node vL−1,f that Dt is mapped to.

Hence, a path −→v from the root to vL−1,f is identified.

• For each node on the path −→v , the user first retrieves the encrypted index block from it,

and checks if Dt is in the node. If Dt is at a certain position m of the node, the process

PIR-read(m) (as defined in Section 5.1.1) is launched to retrieve Dt; otherwise, the user

launched process PIR-read(x) where x is a randomly-picked position in the node.

42

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

0,0
v

0,1
v

1,2
v

2,3
v

10,5
v

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

1,1
v

0,2
v

2,2
v

3,2
v

0,3
v

1,3
v

3,3
v

4,3
v

5,3
v 6,3

v

0,4
v

7,3
v

1,4
v 4,4

v
5,4

v 14,4
v

15,4
v

0,5
v

1,5
v

11,5
v 30,5

v
31,5

v

Figure 5.1 P-PIR’s server-side storage structure. Circled nodes represent the ones accessed
by the user during a query process when the target data block is mapped to leaf
node v5,10.

• After Dt has been retrieved and accessed, it is re-encrypted and inserted into the root

node v0,0.

An example is given in Figure 5.1, where the query target Dt is mapped to leaf node v5,10.

Hence, each node on the path v0,0 → v1,0 → v2,1 → v3,2 → v4,5 → v5,10 is retrieved. Finally,

block Dt is found at node v5,10. After being accessed, it is re-encrypted and added to root node

v0,0. Therefore, the user needs to download 2 logN index and data blocks for each query.

5.1.2.3 Data Eviction Process

To prevent any node on the tree from overflowing, the following data eviction process is

conducted by the user after every query. Firstly, for each non-bottom layer l, two nodes are

randomly selected. Note that, a single node v0,0 is selected from the top layer as it only contains

a single root node. Then, for each selected node vl,i, there are two cases:

43

• If node vl,i contains at least one real data block, one such real block is selected and evicted

to the child node which is on the path that the selected block is mapped to; meanwhile, a

dummy eviction to another child of vl,i is performed to hide the actual pattern of eviction.

Primitives PIR-read and PIR-write are employed together for the evictions. Specifically,

the index blocks of vl,i and its two child nodes (denoted as vl+1,j and vl+1,k) are first

retrieved; based on the index information, it can be determined that a certain real block

De in vl,i should be evicted to one child node (say, vl+1,j). Then, De in vl,i, a dummy

block D′ in vl+1,j , and an arbitrary block D′′ in vl+1,k are retrieved with primitive PIR-

read. After that, process PIR-write(m,E(De) − E(D′)) (where m is the location of D′

in vl+1,j) is performed for vl+1,j to obliviously update D′ to De, and dummy process

PIR-write(⊥,x) (where x is an arbitrary value) is performed for node vl+1,k to pretend an

update at the node. Finally, three index blocks are updated, re-encrypted, and uploaded.

• If node vl,i does not contain any real data block, two dummy evictions are performed to

the two child nodes of vl,i.

Figure 5.2 shows an example of the eviction process, where circled nodes are selected to

evict data blocks to their child nodes. Let us consider how node v2,2 evicts its data block. The

index block in the node is first retrieved to check if the node contains any real data block. If

there is a real block De in v2,2 and De is mapped to leaf node v5,20, De will be obliviously

evicted to v3,5, which is v2,2’s child and is on path from v2,2 to v5,20, while a dummy eviction

is performed to another child node v3,4. Otherwise, two dummy evictions will be performed to

nodes v3,4 and v3,5.

5.1.3 Limitation of P-PIR

Though P-PIR was proposed to reduce the communication cost, the overall communication

cost is still as high as O(logN) data blocks per query (metadata recursion is of O(1) depth).

To have a more concrete understanding of the cost, let us consider an ORAM system of 1 TB

capacity and 1 MB data block size. According to the evaluation result in P-PIR [48], fetching

1 MB data incurs nearly 200 MB communication cost. Thus, 5 queries would result in almost

44

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

0,0
v

0,1
v 1,1

v

1,2
v

0,2
v

2,2
v

3,2
v

2,3
v

0,3
v 1,3

v
3,3

v
4,3

v
5,3

v 6,3
v

7,3
v

...

...

...

...

...

...

...

...

...

...

...

0,4
v

1,4
v

10,4
v 12,4

v
13,4

v

20,5
v 21,5

v
26,5

v
27,5

v

Figure 5.2 An example of the eviction process in P-PIR.

1 GB data transfer between the user and the server, while the requested data size is only 5 MB.

Therefore, P-PIR is still expensive given the fact that bandwidth is usually more costly than

computation and storage [65].

5.1.4 Naive Extensions of P-PIR

As the communication cost of P-PIR is mainly determined by the height of the tree structure

(i.e., logN), two straightforward extensions might be applied on P-PIR to reduce the tree height

and hence the communication cost.

One option is to enlarge the node size. For example, let each node on the tree store

O(α logN) blocks, where α is an adjustable system parameter. This way, the tree height is

reduced to logN− logα; however, the overall communication cost is only reduced to O(logN−

logα) blocks per query (with O(1) metadata recursions).

As another option, the binary tree structure used by P-PIR might be extended to a k-ary

(where k > 2) tree structure. This way, the tree height can be reduced faster to logN
log k , and the

45

communication cost for query can also be decreased to O(logNlog k). However, oblivious eviction

of a block from one single node needs to access k + 1 nodes (i.e., the node itself and its k

child nodes), which makes the communication cost of each eviction process to be O(k · logNlog k).

Consequently, the overall communication cost becomes O(k · logNlog k) per query, which is higher

than that of P-PIR.

5.1.5 Intuition of KT-ORAM

Having realized the limitations of P-PIR and its naive extensions, we propose KT-ORAM,

which, similar to P-PIR, also organizes the ORAM storage as a k-ary tree (where k is a power

of 2) and each node acts as a small PIR storage. However, significant redesigns have been

conducted to the storage structure and the query and eviction processes, in order to achieve a

much better bandwidth efficiency. Specifically, the new ideas proposed in KT-ORAM mainly

include the following (with O(1) metadata recursions):

• Replacement of the binary tree-based ORAM storage with a k-ary tree-based storage. As we

discussed in Section 5.1.4, adopting this idea can reduce the height of the tree structure

and thus reduce query cost over the data block tree (excluding the recursions on the

metadata) from O(logN) to O(logNlog k).

• Execution of binary-tree eviction in a k-ary tree. As also discussed in Section 5.1.4,

directly implementing an eviction process on the k-ary tree causes a high cost of O(k· logNlog k)

per query. To reduce the eviction cost, we propose to treat a physical k-ary tree as a logical

binary tree, where every node in the k-ary tree (called k-node hereafter) is equivalent to

a binary subtree of k − 1 nodes (called b-nodes hereafter). Then, the eviction process is

performed to the logical binary tree with possible delayed evictions described below.

• Delayed evictions. This is a unique process in the proposed KT-ORAM. The key idea is

that evictions between b-nodes within the same k-node may not be executed immediately

by the user; instead, they may be recorded by the storage server in a data structure called

eviction history (EH), and multiple such recorded evictions may be executed at a later

time in a batch to reduce the communication cost.

46

5.2 Scheme

In this section, we present the details of the proposed KT-ORAM design in terms of storage

organization, system initialization, data query process, and data eviction process.

5.2.1 Storage Organization

5.2.1.1 Server-side Storage

20,3
u

21,3
u

...

...

DA

EI

EH

(ID, pos, lID, bnID)

...

......

...

...

...

...

...

...

...

...

... ...

0,0
u

0,1
u

3,1
u1,1

u
2,1

u

5,2
u4,2

u

...

...

...

...

...

...

...

...

...

...

...

...

...

6,3
v

...

...

...

...

...

1,2
v

0,2
v

2,2
v

3,2
v

0,3
v

1,3
v

2,3
v

5,3
v 7,3

v
4,3

v3,3
v

...

...

...

...

...

...

...0,0
v

0,1
v

1,1
v

...

...

...

...4,4
v

8,5
v

9,5
v

...

...

...5,4
v

10,5
v

11,5
v

20,3
u 21,3

u

0,0
u

0,1
u

3,1
u1,1

u
2,1

u

5,2
u4,2

u

...

...

...20,6
v

40,7
v

41,7
v

...

...

...

21,6
v

42,7
v

43,7
v

(a) physical view of the server-side storage (b) logical view of the server-side storage

Figure 5.3 An example KT-ORAM scheme with a quaternary-tree storage structure. Bold
boxes represent the k-nodes accessed when a user queries a target data block
stored at k-node u3,21.

At the server side, data storage is physically organized as a k-ary tree where k is a power

of two and each node in the tree (called a k-node) is a PIR storage. As shown in Figure 5.3,

each k-node can be mapped to a binary subtree of k − 1 nodes. For example, k-node u0,0 in

Figure 5.3(a) is mapped to a binary subtree with v0,0 as root, and v1,0 and v1,1 as leaves in

Figure 5.3(b). This way, the physical k-ary tree can be treated as a logical binary tree.

In general, each k-node ul,i consists of the following components:

• Data Array (DA): a data container that stores 2(k − 1) log logN data blocks.

47

• Encrypted Index Table (EI): a table of 2(k − 1) log logN entries recording the control

information for each block stored in the DA. Specifically, each entry is a tuple of format

(ID, pos, lID, bnID)

which records the following information of each block:

– ID - ID of the block;

– pos - position of the block in the DA;

– lID - ID of the leaf k-node that the block is mapped to;

– bnID - ID of the b-node (within ul,i) that the block logically belongs to.

• Eviction History (EH): an ordered list of IDs of b-nodes. This structure is used to support

delayed evictions, which will be elaborated later. In particular, every appearance of the ID

of a b-node on the list indicates that, the b-node has been scheduled to evict a data block

to its child b-node but the eviction has not been actually executed. Such a scheduled but

not-yet executed eviction is called delayed eviction. Also, the order between the b-nodes

listed on EH reflects the order in which these evictions should be executed at a later time.

In KT-ORAM, EH is designed to contain up to 2 logN log logN records.

5.2.1.2 User-side Storage

At the user side, the following storage structures are maintained:

• A user-side index table I: a table of N entries, where each entry i records the ID of the

leaf k-node that data block Di is mapped to (i.e., block Di is stored at some node on

the path from the root to this k-node). In practical implementation of KT-ORAM, the

table can be exported to the server, just as in T-ORAM [61] and P-PIR [48]; to simplify

presentation of the design in this section, however, we assume the table is maintained

locally at the user side. Note that, similar to Path ORAM [66] and SCORAM [69],

outsourcing the index table of O(N logN) bits with a uniform block size of B = N ϵ bits

can ensure the metadata recursion to be of O(1) depth (0 < ϵ < 1).

48

• A constant-size temporary buffer: a buffer used to temporarily store a constant number

of blocks downloaded from the server-side storage.

• A small permanent storage for secrets: a permanent storage to store the user’s secrets

such as the keys used for data encryption and decryption.

5.2.2 System Initialization

To initialize the system, the user acts as follows. It first prepares each real data block Di by

encrypting it with a symmetric key and then homomorphically encrypting it to get E(E(Di)),

and then randomly assigns it to a leaf k-node on the k-ary tree maintained at the server-side

storage. The rest of the DA spaces on the tree shall all be filled with dummy blocks.

For each k-node, its EI entries are initialized to record the information of blocks stored in

the node. Specifically, the entry for a real data block should record the block ID to the ID

field, the ID of the assigned leaf k-node to the lID field, the position within the DA of the

k-node to the pos field, and the ID of an arbitrary leaf b-node within the k-node to the bnID

field. In an entry for a dummy data block, the block ID is marked as “−1” while lID and

bnID fields are filled with arbitrary values. The eviction history of the k-node is initialized to

empty.

For the user-side storage, the index table I is initialized to record the mapping from real

data blocks to leaf k-nodes, and the keys for data encryption are also recorded to a permanent

storage space.

5.2.3 Data Query

To query a data block Dt with ID t, the user first searches the index table I to find out the

leaf k-node that Dt is mapped to. Then, for each k-node u on the path from the root k-node

to this leaf node, the following operations are performed:

• The eviction history (EH) and the encrypted index table (EI) in k-node u are retrieved and

EI is decrypted. If it is non-empty, the delayed evictions recorded in EH are executed and

49

then the EH is cleared. The details of this step will be explained later in Section 5.2.5, as

the step would become easier to understand after the eviction process has been introduced.

• According to decrypted EI, the following operations are executed:

– If block Dt is found at a certain location m of the DA in u, process PIR-read(m) will

be launched by the user to retrieve E(E(Dt)), and then decrypt and access Dt. After

the access, Dt will be temporarily stored locally and re-mapped to another randomly-

picked leaf k-node. To reflect the change, the entry for Dt in the downloaded EI

should be updated to mark the block as a dummy; the entry for Dt in the user-side

index table should also be updated to the ID of the newly picked leaf k-node.

– On the other hand, if Dt can not be found in u, the user will launch process PIR-

read(x), where x is an arbitrary location at the DA in u, to pretend retrieving a

data block, and the retrieved data block will be discarded without processing.

• Finally, if u is the root k-node, the downloaded EI is temporarily saved locally; else, the

downloaded EI is re-encrypted and uploaded back to u.

After all k-nodes on the path have been processed, the retrieved Dt is re-encrypted to

E(E(Dt)) and then inserted to the root k-node u0,0. Note that this encrypted block appears

differently from the one downloaded earlier as the AH encryption E(∗) is probabilistic. Specif-

ically, the insertion is implemented in the following steps:

• From the downloaded EI of the root k-node u0,0, a location m′ that currently stores a

dummy block is identified. Note that, if such a location cannot be found, the root k-node

is said to overflow, which is a failure of the KT-ORAM system; but as we prove in the

Section 5.3, the probability for such failure to occur is negligibly small.

• The user launches process PIR-read(m′) to obliviously retrieve and decrypt dummy block

D′ from location m′.

• The user launches process PIR-write(m′, E(Dt)−E(D′)) to obliviously replace the dummy

block at location m′ with E(E(Dt)).

50

• The EI of the root k-node is updated to reflect the change in positionm′, then re-encrypted

and uploaded back to the root k-node.

As shown in Figure 5.3(a), to query a data block Dt stored at k-node u3,21, the EIs at u0,0,

u1,1, u2,5, and u3,21 should be accessed, as these k-nodes are on the path from the root to the

leaf node that Dt is mapped to. A dummy data block should be retrieved obliviously from u0,0,

u1,1, and u2,5, respectively, while Dt is retrieved obliviously from u3,21.

5.2.4 Data Eviction

To prevent a k-node from overflowing its DA, real data blocks should be gradually evicted

towards leaf k-nodes. Similar to T-ORAM and P-PIR, a data eviction process should be

launched in KT-ORAM immediately after each query.

As discussed in Section 5.1.5, data eviction in KT-ORAM is performed to the binary tree

that the k-ary tree is logically mapped to. More specifically, the eviction process is composed

of three phases as elaborated below.

5.2.4.1 Phase I: Scheduling of Evictions for Logical Binary Tree

At the beginning of an eviction process, the user randomly selects a list of b-nodes that

should evict data blocks to their child nodes, and informs the server of the list by sending to it

an eviction vector

−→e = (e0, e1, · · · , elogN−log k),

where e0 = (v0,0) and for each l ∈ {1, · · · , logN − log k}, el = (vl,il , vl,jl) is a pair of IDs of two

b-nodes randomly picked from level l on the binary tree. Note that, vl,il and vl,jl can be the

same node. In this case, el becomes a single value vl,il .

5.2.4.2 Phase II: Identification and Recording of Delayed Evictions

Theoretically, the scheduled evictions can all be executed immediately. However, immediate

execution of all of them would require the user to access O(logN) blocks, which is the same

eviction cost introduced by P-PIR. To reduce the cost, we propose to delay certain evictions and

51

execute them later in a more efficient manner. The idea is developed based on the observation

that there are two types of evictions between b-nodes: intra k-node evictions and inter k-node

evictions.

Intra k-node Evictions vs. Inter k-node Evictions An eviction is called an intra

k-node eviction if the data block is evicted between b-nodes that belong to the same k-node;

else it is called an inter k-node eviction. For example, as shown in Figure 5.4, the scheduled

eviction from v2,2 to its child nodes is an intra k-node eviction, as v2,2 and its child nodes

belong to the same k-node u1,2. On the other hand, the eviction from v3,2 to its child nodes is

an inter k-node eviction, as v3,2 and its two child nodes belong to different k-nodes.

As b-nodes within the same k-node share the same DA space for storing data blocks, an

intra k-node eviction only requires an update of the EI of the k-node to reflect the change

of bnID field for the evicted block. Therefore, such an eviction does not need PIR-read or

PIR-write operations and could be performed more efficiently than inter k-node evictions.

0,0
u

0,1
u

3,1
u

6,3
v

1,1
u

2,1
u

0,0
v

0,1
v

1,2
v

1,1
v

0,2
v

2,2
v

3,2
v

0,3
v

1,3
v 2,3

v
5,3

v
7,3

v4,3
v3,3

v

28,3
u

29,3
u 52,3

u
53,3

u

5,2
u

0,2
u

4,2
u

1,2
u

3,2
u 7,2

u
11,2

u 13,2
u

......

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

0,4
v

0,5
v

1,5
v

...

...

... 1,4
v

2,5
v

3,5
v

...

...

... 3,4
v

6,5
v 7,5

v

...

...

...

4,4
v

8,5
v

9,5
v

...

...

... 5,4
v

10,5
v

11,5
v

...

...

... 7,4
v

14,5
v

15,5
v

...

...

...

11,4
v

22,5
v

23,5
v

...

...

...

13,4
v

26,5
v

27,5
v

...

...

...

28,6
v

56,7
v 57,7

v

...

...

...

29,6
v

58,7
v

59,7
v

...

...

...

52,6
v

104,7
v

105,7
v

...

...

...

53,6
v

106,7
v

107,7
v

...

...

...

...

...

Figure 5.4 An example data eviction process in KT-ORAM with a quaternary-tree storage
structure. The b-nodes that are selected to evict data blocks are circled. The
k-nodes scheduled with delayed evictions (i.e., u2,3 and u2,11) are highlighted with
bold boundaries.

52

Opportunities to Delay Intra k-node Evictions Opportunistically, we may find a k-

node that is not involved in any other inter k-node evictions, i.e., its root b-node is not a child

of any evicting b-node while its own leaf b-nodes do not evict any data blocks. In Figure 5.4,

u2,3 and u2,11 are two examples of such a k-node. If intra k-node evictions have been scheduled

for such a k-node, they can be delayed to perform later (to update the EI of the k-node) when

the k-node is next accessed during a query process or an inter k-node eviction. This is possible

because the EI of the k-node is not needed until the k-node is next accessed. Moreover, since

the user has to download the EI of the k-node anyway during a query process or an inter k-

node eviction, updating of the EI to complete delayed intra k-node evictions does not cause any

additional communication cost, thus reducing the eviction cost. Delayed evictions are recorded

in the eviction history (EH) of the k-node in the order that they were scheduled in the eviction

vector.

For example, as shown in Figure 5.4, evictions from b-nodes v4,3 and v4,11 can be delayed and

hence are recorded in the EH of their k-nodes u2,3 and u2,11, respectively. Later on, when u2,3

and u2,11 are accessed, as elaborated in Section 5.2.5, the recorded evictions shall be executed

first before any other updates.

5.2.4.3 Phase III: Execution of Inter k-node Evictions

All scheduled inter k-node evictions have to be executed immediately according to their

appearance order in eviction vector −→e . Specifically, the eviction for vl,x is performed as follows.

Let ul′,x′ denote the k-node where b-node vl,x resides, let b-nodes vl+1,y and vl+1,z denote the

two child b-nodes of vl,x, and let ul′+1,y′ and ul′+1,z′ denote the two k-nodes where b-nodes

vl+1,y and vl+1,z reside. The EHs and EIs of ul′,x′ , ul′+1,y′ , and ul′+1,z′ are downloaded, and if

any of the EHs are non-empty, the delayed evictions recorded in the non-empty EH shall be

executed as Section 5.2.5 describes.

If vl,x stores at least one real data blocks, one of them is downloaded by using the PIR-read

primitive. Let the downloaded real block be De and without loss of generality, assume k-node

ul′+1,y′ is on the path from the root to the leaf k-node that De is mapped to. Then, one dummy

block D′ will be downloaded from k-node ul′+1,y′ and an arbitrary block will be downloaded

53

from k-node ul′+1,z′ , both using the PIR-read primitive. After that, E(E(De)) will be written

to k-node ul′+1,y′ to replace dummy block D′ by using the PIR-write primitive, and block De

becomes a data block stored in the root b-node within k-node ul′+1,y′ . Meanwhile, a dummy

PIR-write process is launched to update a block in k-node ul′+1,z′ as well. Finally, the EIs of

the three k-nodes are updated to reflect the movement of block De from k-node ul′,x′ to ul′+1,y′ ,

re-encrypted, and uploaded back to the server.

On the other hand, if vl,x does not have any real data blocks, three arbitrary blocks will be

retrieved from the three k-nodes, respectively, with the PIR-read primitive. Then, two dummy

PIR-write processes will be launched to update two blocks in k-nodes ul′+1,y′ and ul′+1,z′ ,

respectively. Finally, the EIs of the three k-nodes will be re-encrypted and uploaded back to

the server.

5.2.5 Execution of Delayed Evictions

When a k-node is accessed during a query process or an inter k-node eviction, its eviction

history (EH) may not be empty. That is, some delayed evictions may have been recorded in the

EH, and these delayed evictions shall be executed before any other operations can be performed

on the k-node.

Suppose the EH of an accessed k-node contains the following sequence of b-node IDs:

vl1,i1 , vl2,i2 , · · · , vln,in ,

which indicates that the eviction from b-node vlj ,ij (j = 1, · · · , n) to one of its child b-nodes

has been delayed. To execute the delay evictions, the EI of the k-node shall be updated as

follows:

• If b-node vlj ,ij has at least one real data block (i.e., there is at least one real data block

whose EI entry has vlj ,ij in the bnID field), one of such real blocks, denoted as De, shall

be selected. Suppose b-node vlj+1,x is a child of vlj ,ij and is on the path from the root

to the leaf k-node that De is mapped to. Then, the bnID field of De’s EI entry shall be

updated to vlj+1,x to indicate the eviction of De from vlj ,ij to vlj+1,x.

54

• On the other hand, if b-node vlj ,ij does not have any real data blocks, no change will be

made to the EI as the scheduled evictions are dummy ones.

• Finally, after all the entries in the EH have been processed, the EH is cleared.

5.3 Security Analysis

In this section, we first show that KT-ORAM construction fails with a negligible prob-

ability of O(N− log logN) through proving the DA of each k-node overflows with probability

O(N− log logN). Then, we show that both the query and eviction processes access k-nodes inde-

pendently of the user’s private data request. Based on the above steps, we finally present the

main theorem.

Lemma 4. Assume k ≥ logN . The DA of any k-node in the k-ary tree has a probability of

O(N− log logN) to overflow.

Proof. The proof considers non-leaf and leaf k-nodes separately.

Non-leaf k-nodes The proof for non-leaf k-node proceeds in the following two steps.

In the first step, we consider the binary tree that a k-ary tree in KT-ORAM is logically

mapped to, and study the number of real data blocks (denoted as a random variable Xv)

logically belonging to an arbitrary b-node v on an arbitrary level l of the binary tree.

As the eviction process of KT-ORAM completely simulates the eviction process of T-ORAM

and P-PIR over the logical binary tree, their results [61] of theoretical study on the number

of real data blocks in a binary tree node can still apply. Specifically, Xv can be modeled as a

Markov Chain denoted as Q(αl, βl). In the Chain, the initial one is Xv = 0, The transition

from Xv = i to Xv = i + 1 occurs with probability αl, and the transition from Xv = i + 1

to Xv = i occurs with probability βl, for every non-negative integer i. Here, αl = 1/2l and

βl = 2/2l for any level l. Also, for any l ≥ 2, an unique stationary distribution exists for the

Chain; that is,

πl(i) = ρil(1− ρl), (5.1)

55

where

ρl =
αl(1− βl)
βl(1− αl)

=
2l − 2

2(2l − 1)
∈
[
1

3
,
1

2

)
.

In the second step, we consider an arbitrary k-node u on the k-ary tree and study the

number of real data blocks stored at the DA of u, which is denoted as a random variable Yu.

The binary subtree that u is logically mapped to contains k−1 b-nodes, which are denoted

as v1, · · · , vk−1 for simplicity. Then Yu =
∑k−1

i=1 Xvi . Also, as k should be greater than 2 to

make KT-ORAM nontrivial, any of the b-nodes v1, · · · , vk−1 should be on a level greater than

or equal to 2 on the logical binary tree (Those b-nodes on level 0 and 1 never overflow).

Now, we compute the probability

Pr [Yu = t] = Pr [Xv1 + · · ·+Xvk−1
= t].

Note that, there are

(
t+ k − 2

k − 2

)
different combinations of Xi = ti (i = 1, · · · , k− 1) such that

t1 + · · ·+ tk−1 = t. Hence, according to Equation (5.1), we have:

Pr [Yu = t] ≤
(
t+ k − 2

k − 2

) k−1∏
i=1

[(
1

2

)ti (2

3

)]

≤
(
(t+ k − 2) · e

k − 2

)k−2(1

2

)t(2

3

)k−1

<

(
(t+ k − 2) · e

k − 2

)k−1(1

2

)t(2

3

)k−1

≤
(
2(t+ k − 2) · e

3(k − 2)

)k−1(1

2

)t
≤

(
1

2

)t/2
.

Note that, the first inequality is due to the following fact: for any l (1 ≤ l ≤ logN),

πl(i) = ρil(1− ρl) ≤ ρil ·
2

3
<

(
1

2

)i
· 2
3
.

The second inequality is due to
(
n
k

)
≤

(
n·e
k

)k
for all 1 ≤ k ≤ n. The last inequality is due to

56

the fact that t = 2(k − 1) log logN , k ≥ logN , and 2(t+k−2)·e
3(k−2) ≤ (12)

t/2. Therefore, we have:

Pr [Yu ≥ t] =
∞∑
i=0

Pr [Yu = t+ i]

<

∞∑
i=0

(
1

2

)(t+i)/2

=
(12)

t/2

1− (12)
1/2
≤ 4 ·

(
1

2

)t/2
≤ 4 ·

(
1

2

)logN log logN

.

(5.2)

Given t = 2 logN log logN , Equation (5.2) renders a negligible probability of O(N− log logN) as

long as k ≥ logN .

Leaf k-nodes At any time, all the leaf k-nodes contain at most N real blocks and each of

the blocks is randomly placed into one of the leaf k-nodes. Thus, we can apply standard balls

and bins model to analyze the overflow probability. In this model, N balls (real blocks) are

thrown into N/k bins (i.e., leaf k-nodes) in a uniformly random manner.

We study one particular bin and let X1, · · · , XN be N random variables such that

Xi =

 1 the ith ball is thrown into this bin,

0 otherwise.

Note that, X1, · · · , XN are independent of each other, and hence for each Xi, Pr [Xi = 1] =

1
N/k = k

N . Let X =
∑N

i=1Xi. The expectation of X is

E[X] = E

[
N∑
i=1

Xi

]
=

N∑
i=1

E[Xi] = N · k
N

= k.

According to the Chernoff bound, when δ = j/k − 1 ≥ 2e− 1, it holds that

Pr [at least j balls in this bin] = Pr [X ≥ j] <
(

eδ

(1 + δ)(1+δ)

)k
<

(
eδ

(2e)δ

)k
= 2−kδ.

By applying the union bound, we obtain:

Pr [∃ a bin with at least j balls] <
N

k
· 2−kδ.

Further considering j = 2(k − 1) log logN and k ≥ logN , we have

Pr [∃ a bin with at least 2(k − 1) log logN balls]

<
N

logN
· 2−(logN(2 log logN−1)−log logN) = O(N− log logN).

57

To sum up, the number of data blocks in any k-node is bounded by O(logN log logN) with

probability 1−O(N− log logN).

Lemma 5. Any query process in KT-ORAM accesses k-nodes from each layer of the k-ary

tree, uniformly at random.

Proof. (sketch) In KT-ORAM, each real data block is initially mapped to a leaf k-node uni-

formly at random; and after a real data block is queried, it is re-mapped to a leaf k-node also

uniformly at random. When a real data block is queried, all k-nodes on the path from the root

to the leaf k-node the real data block currently mapped to are accessed. Due to the uniform

randomness of the mapping from real data blocks to leaf k-nodes, the set of k-nodes accessed

during a query process is also uniformly at random.

Lemma 6. An eviction process in KT-ORAM accesses a sequence of k-nodes independently of

the user’s private data request.

Proof. (sketch) During an eviction process, the accessed sequence of k-nodes is independent to

the user’s private data request due to: (i) the selection of b-nodes for eviction (i.e. Phase I of

the eviction process) is uniformly random on each layer of the logical binary tree and thus is

independent of the user’s private data request; and (ii) the rules determining which scheduled

evictions should be executed immediately (and hence the involved k-nodes should be accessed)

are also independent of the user’s private data requests.

Theorem 2. Assuming PIR-read and PIR-write are both oblivious operations, KT-ORAM is

secure under Definition 2.2.

Proof. Given any two equal-length sequence x⃗ and y⃗ of the user’s private data requests, their

corresponding observable access sequences A(x⃗) and A(y⃗) are computationally indistinguish-

able, because both of the observable sequences are independent of the user’s private data request

sequences. This is due to the following reasons:

• According to the query and eviction algorithms, sequences A(x⃗) and A(y⃗) should have

the same format; that is, they contain the same number of observable accesses, and each

pair of corresponding accesses have the same access type.

58

• According to Lemma 5, the sequence of locations (i.e., k-nodes) accessed by each query

process are uniformly random and thus independent of the user’s private data request.

• According to Lemma 6, the sequence of locations (i.e., k-nodes) accessed by each eviction

process after a query process is also independent of the user’s private data request.

• Finally, both PIR-read and PIR-write operations are oblivious. Hence, each PIR-read or

PIR-write operation does not expose which data block within a k-node is actually read

or written, or what has been written in the case of write operation.

Also, according to Lemma 4, the KT-ORAM construction fails with probability O(N− log logN),

which is considered negligible and no higher than the failure probability of existing ORAMs.

5.4 Cost Analysis and Evaluations

This section analyzes the costs of KT-ORAM, and compares KT-ORAM with state-of-the-

art ORAMs. To simplify presentation, we assume k = logN .

5.4.1 Costs of KT-ORAM

The server-side storage of KT-ORAM is O(N log logN · B). Before analyzing the commu-

nication and computational costs of KT-ORAM, we introduce the following notations:

• B: size of a single data block in the system. We assume B > max{6 log2N log logN), 2b ·

logN log logN} bits. This assumption is commonly used in modern ORAM/file system-

s [65, 48], i.e., a moderate data block size ranges from 64 KB to 4 MB. For example, in

P-PIR, it uses 1 MB; in Dropbox system [17], each data block size is 4 MB.

• Hk and Hb: heights of the k-ary and binary trees. Obviously, Hb = ⌈logN⌉ and Hk =

⌈ Hb
log logN ⌉ = ⌈

logN
log logN ⌉.

• b: size of an additively homomorphic encryption cipher-text, in the unit of bits. In

practice, b ≪ B. For example, in the NTRU implementation, b = 2048 bits, while

B = 1 MB.

59

• SEH : size of an EH. According to Lemma 7, the size of the EH is no more than

2 log2N log logN bits as there are 2 logN log logN records and each of them takes at

most logN bits. In practice, this is no more than 3 KB when N ≤ 240 and is at least one

magnitude less than the data block size.

• SEI : size of an EI. Each EI is 2 logN log logN ·{2 logN+log[2 logN log logN]+log(logN−

1)} bits and this is no more than 5 KB given N ≤ 240 and is at least one magnitude less

than the data block size.

Lemma 7. For any k-node in KT-ORAM, the probability that the EH of the k-node has more

than 2 logN log logN records is O(N− log logN).

Proof. Let us consider the EH of an arbitrary k-node u. As a root k-node is always accessed

during every query and eviction process, the number of entries in its EH should never be larger

than 2(log k − 1), which is obviously smaller than 2 logN log logN . Hence, we assume u is on

layer l (l > 0) of the k-ary tree, and let m = kl ≥ 2l denote the total number of k-nodes on

level l.

Since u is logically a binary subtree with log k levels, let us first consider an arbitrary binary

tree level l′ within u, and study the number of entries (denoted as a random variable Xl′) that

are the IDs of b-nodes on level l′ in the EH.

After every eviction process, Xl′ may increase by 1 or 2 if k-node u is not accessed by

the user but some intra k-node evictions have been appended; or, it may decrease to 0 if it

has been accessed by the user during the eviction process. To simplify our study, we do not

differentiate the cases that it increases by 1 or 2, but treat both as increasing by 2; hence, we

may over-valuate Xl′ . Hence, Xl′ can be modeled as a Markov Chain as shown in Figure 5.5.

Next, we compute the probability p to transition from Xl′ = i to Xl′ = i + 2 and the

probability p′ to transition from Xl′ = i to 0, where i is every even integer.

Transition from Xl′ = i to 0 occurs when u is accessed by the user during an eviction

process. This could be due to the following two cases: (i) the b-node that is the parent of the

root b-node in u is selected to evict, for which the probability is 4
m ; (ii) a b-node on the bottom

60

0 2 4 ... M ...
p p p p p

'p

'p

'p

... ...

Figure 5.5 Markov Chain for random variable Xl′ (i.e., the number of EH entries from layer
l′).

layer of the binary subtree within u is selected to evict, for which the probability is positive.

So, p′ > 4
m due to (i) and (ii).

Transition from Xl′ = i to Xl′ = i+2 occurs when one or two b-node on level l′ are selected

to evict. Denoting the number of b-nodes on level l′ within u as n, the probability is

p =

(
n
2

)
+

(
n
1

)(
(m−1)n

1

)(
mn
2

) <
4

m
.

To further simplify the analysis, let p′ = p = 4
m . Note that, as p′ is under-valuated and p

is over-valuated, X is further over-evaluated. Then, we can find that the Markov Chain has

stationary distribution π = (π0, π2, · · · , πM), where

πi =

(
1

2

)i/2+1

. (5.3)

Since u has log k− 1 such layers in its binary subtree, let’s denote the number of entries in EH

for each such layers as X ′
l (1 ≤ l′ ≤ log k − 1) and Yu = X1 + · · ·+Xlog k−1.

Assume t is the maximum number of entries for the k-node u, there are

(
t+ log k − 2

log k − 2

)
different combinations of Xi = ti (i = 1, · · · , log k − 1) such that t1 + · · ·+ tlog k−1 = t. Hence,

according to Equation (5.3), we have:

Pr [Yu = t] = Pr [X1 + · · ·+Xlog k−1 = t]

≤
(
t+ log k − 2

log k − 2

) log k−1∏
i=1

[(
1

2

)ti/2+1
]

≤
(
(t+ log k − 2) · e

log k − 2

)log k−2(1

2

)t/2+log k−1

.

(5.4)

61

Given k = logN , 216 ≤ N ≤ 240, and t = 2 logN log logN we can simplify Equation (5.4) as:

Pr [Yu = t] <

(
(t+ log k − 2) · e

log k − 2

)log k (1

2

)t/2+log k

<

(
t · e
2

)log k (1

2

)t/2
< 6tlog k

(
1

2

)t/2
< 6

(
1

2

)t/4
.

The last inequality can be proved based on tlog k ≤ 2t/4, which can be easily obtained through

the given conditions on N , k and t. Hence, we have the following equation holds:

Pr [Yu ≥ t] =
∞∑
i=0

Pr [Yu = t+ i] <

∞∑
i=0

6

(
1

2

)(t+i)/4

= 6
(12)

t/4

1− (12)
1/4

< 40

(
1

2

)logN log logN/2

= O(N− log logN).

Thus, the maximum number of entries of EH of any k-node u can be bounded by t =

2 logN log logN with overwhelming probability 1−O(N− log logN).

5.4.1.1 Per-query Communication Cost

During a query process, one k-node is accessed from each layer of the k-ary tree. The

user needs to (i) download the EI and EH of the k-node (needing SEI + SEH bits); (ii) send

one PIR-read vector (needing 2 logN log logN · b bits); (iii) upload the EI (needing SEI bits).

Note that, after all PIR-reads have been executed by the server, there are Hk data blocks on

the server. At this time, the user does not retrieve those data blocks. Instead, s/he launches

another PIR-read on these Hk data blocks to fetch only one data block. This PIR-read requires

the user to send one PIR-read vector (needing Hk · b bits) and download the target data block

(needing B bits). To wrap up a query, the target data block will be obliviously written back

to the root k-node using one PIR read and PIR-write (EI has been retrieved before, so, the

PIR-read and PIR-write here only transfers the read and write vectors and two data blocks.

Thus, this is 4 logN log logN · b+ 2B bits). Therefore, the communication cost per query is:

Qu(N) = 3B +Hk · (2SEI + SEH) + (Hk + (2Hk + 4) logN log logN) · b.

During an eviction process, at most two k-nodes for each non-bottom layer will be selected

for actual eviction, each of which requires one PIR-read. Meanwhile, four k-nodes are selected

62

as the children of previous layer, where each k-node requires one PIR-read and one PIR-write.

All the EI and EH of these six k-nodes will be retrieved and the EI will be uploaded back after

the eviction operations (needing 12SEI + 6SEH bits). Two optimization techniques similar to

P-PIR can be applied here. First, when two child k-nodes of the same parent are accessed,

only one of them contains the block that is required by the user and the other one is dummy.

Thus, the server can further add the two block from this two child k-nodes into one, thus, the

user retrieves 2 data blocks from 2 selected parent k-node and 2 data blocks from 4 children

k-node (needing 4B + 12 logN log logN · b bits). Second, when PIR-write are executed on the

two child k-nodes of the same parent, only one data block is uploaded to the server and the

PIR-write vector is the same as that of the PIR-read vector (needing 2B). Hence, the total

bandwidth consumption is bounded by

Ev(N) = (Hk − 1) · (6SEH + 12SEI + 12 logN log logN · b+ 6B).

Due to the assumptions of B, when the index table is stored at the user storage, we have the

communication cost of KT-ORAM is: O(logN
log logN · B). If the user-side index table is exported

recursively, the overall bandwidth consumption per query is

logN · [Qu(N) + Ev(N)],

which is O(log2N
log logN ·B).

5.4.1.2 Per-query Computational Cost

Server-side Computational Cost The server-side computational cost comes from the

homomorphic addition and multiplication operations; hence, we only count such operations on

data block tree (except the metadata part).

During a query process, a PIR-read operation is conducted on each accessed k-node. As we

analyzed in the previous subsection, the total number of accessed k-node is Hk. As each k-node

has 2(logN−1) log logN blocks each with B bits, there are B/b data pieces operate-able by AH

operations, each PIR-read operation on a k-node requires CompMul = 2(logN−1) log logN ·B/b

AH multiplications and CompAdd = [2(logN − 1) log logN − 1] ·B/b AH additions. Therefore,

63

the computational cost for a query process is

Hk(CompMul + CompAdd) = O(log2N · B
b
)

AH operations.

During an eviction process, at most one PIR-read and one PIR-write operations are con-

ducted on each accessed k-node. The number of accessed k-nodes is bounded by 6Hk and

the cost of PIR-write is similar to that of PIR-read except that the number of AH additions

is 2(logN − 1) log logN · B/b. Therefore, the computational cost for an eviction process is

O(log2N · Bb) AH operations.

In summary, the server-side computational cost is O(log2N · Bb) AH operations per query

for the data block part.

User-side Computational Cost The computational cost at the user side is mainly

contributed by decrypting and re-encrypting downloaded blocks (data blocks and EI), where

each block needs normal encryption (e.g., AES) and/or homomorphic decryption/re-encryption

(except the metadata part).

For each PIR-read of one block from w blocks, the user needs to calculate and send the

query vector to the server. Thus, the calculation takes w AH operations. For each PIR-write

of one block from w blocks, the user will send one query vector of w AH operations and one

data block with B/b normal encryption.

The number of data blocks accessed per query is O(1) with the optimization in Sec-

tion 5.4.1.1. For data query, the user needs to send the query vector, which takes Hk ·

2(logN − 1) log logN = O(log2N) AH operations. For data eviction, the user sends vectors

taking 6Hk · 2(logN − 1) log logN = O(log2N) AH operations and 12B/b normal encryp-

tion operations for data block encryption. Therefore, the computational cost for the user is

O(max{log2N,B/b}).

5.4.2 Comparisons with Existing ORAMs

Detailed comparisons between KT-ORAM and several state-of-the-art ORAMs including

B-ORAM [40], T-ORAM [61], G-ORAM [24], Path ORAM [66], SCORAM [69], and P-PIR [48]

64

are reported in this section.

5.4.2.1 Asymptotical Comparisons

First, we show the asymptotical comparisons in terms of the communication, user storage

costs and failure probability.

Table 5.1 Asymptotical comparisons. k = logN for both KT-ORAM and G-ORAM and
B = O(N ϵ) (0 < ϵ < 1).

ORAM Comm. Cost User Storage Server Storage Failure Probability

B-ORAM [40]
Ω(log3N ·B) O(log2 N

log logN
·B)

O(N ·B) O(B) O(N− log logN)
(N ≤ 237) (N > 237)

T-ORAM [61] O(log2N ·B) O(B) O(N logN ·B) O(N−c)

G-ORAM [24] O(log2 N
log logN

·B) O(log2N ·B) · ω(1) O(N ·B) O(N−ω(1))

Path ORAM [66]
O(logN ·B) · ω(1) O(logN ·B) · ω(1) O(N ·B) O(N−ω(1))

SCORAM [69]
P-PIR O(logN ·B) O(B) O(N logN ·B) O(N−c)

KT-ORAM O(logN
log logN

·B) O(B) O(N log logN ·B) O(N− log logN)

From Table 5.1, the communication cost of KT-ORAM is asymptotically lower than or

equal to the state-of-the-art constructions, when they have the same level of failure probability

O(N− log logN). In addition, KT-ORAM requires only a constant user storage. Note that,

B-ORAM incurs O(log2N
log logN) when the database size is extremely large, but it is degraded to

Ω(log3N) when N ≤ 237 [48]. Also, there is a large constant behind the big-O notation.

Table 5.2 shows the computational comparison between KT-ORAM and P-PIR, which

shows that KT-ORAM does not increase the asymptotical computational cost compared to

P-PIR.

5.4.2.2 Comparisons under Practical Settings

Next, the communication cost is compared between KT-ORAM, SCORAM, and P-PIR.

Note that, T-ORAM and G-ORAM are outperformed by Path ORAM according to [66]. Path

ORAM is outperformed by SCORAM and P-PIR according to [69] and [48]. We assume b

is fixed to 2048 bits same as P-PIR and N ranges from 216 to 240. When data block size B

varies between 64 KB and 4 MB, as shown in Figure 5.6, KT-ORAM outperforms P-PIR and

SCORAM in all the studied scenarios. Particularly, the communication cost introduced by

KT-ORAM is only about 1/2 to 1/5 of that by P-PIR and 1/4 to 1/8 of that by SCORAM.

65

Table 5.2 Computational cost comparisons with O(1) recursion levels.

ORAM User-side Server-side

P-PIR O(max{log2N,B/b}) O(log2N · Bb)
KT-ORAM O(max{log2N,B/b}) O(log2N · Bb)

5.4.2.3 Communication Cost before Target Data Access

Communication Cost before Target Data Access The communication occurring

before the user can access its target data has major impact on data query latency. Hence,

similar to [48], we also analyze the communication cost before target data access.

In KT-ORAM, the following communication occurs before the user can access its target

data : (i) 2 logN/ log logN EIs of size SEI sent from the server to the user or uploaded back

to the server, for which the amount of communication is 2 logN/ log logN · SEI bits; (ii) one

PIR vector shared by all k-nodes on the retrieved path sent from the user to the server to

perform PIR-read primitives, for which the amount of communication is c(logN − 1) · b bits;

(iii) another PIR vector sent to the server to retrieve the only target data, for which the amount

of communication is logN/ log logN · b bits; (iv) the target data block sent from the server to

the user (needing B bits). Thus, the cost of communication occurring before the user can access

its target data in KT-ORAM is

[c(logN − 1) +
logN

log logN
] · b+ 2c log2N

log logN
· (2 logN + log c) +B,

which is O(B + logN · b) based on the data block size assumption.

To compare the query latency caused by different ORAM constructions, similar to [48],

we further compare KT-ORAM and P-PIR in terms of the communication cost before target

data access. Note that, we do not compare KT-ORAM with other state-of-the-art ORAM

constructions, as [48] has conducted the comparison and showed P-PIR outperforms others in

terms of this metric.

Asymptotical Comparisons Table 5.3 shows the result of asymptotical comparison

between KT-ORAM and P-PIR [48, 65]. As we can see, KT-ORAM has the same level of com-

munication cost before target data access, compared to P-PIR. Similar to 5.4.1.1, we consider

66

64KB 256KB 1MB 4MB

bl

oc
ks

 p
er

 q
ue

ry

Block Size (N=216)

41 32 29 29

KT-ORAM

110 102 100 99

P-PIR

64KB 256KB 1MB 4MB

bl

oc
ks

 p
er

 q
ue

ry

Block Size (N=224)

60 42 37 36

KT-ORAM

171 153 148 147

P-PIR

64KB 256KB 1MB 4MB

bl

oc
ks

 p
er

 q
ue

ry

Block Size (N=232)

82 52 45 43

KT-ORAM

237 206 198 196

P-PIR

64KB 256KB 1MB 4MB

bl

oc
ks

 p
er

 q
ue

ry

Block Size (N=240)

106
63 53 50

KT-ORAM

309
260 247 244

P-PIR

Figure 5.6 Communication cost comparisons. The above comparisons show the communica-
tion cost to transfer user’s data block part. For KT-ORAM, the k-ary tree node
size is set to be 2(logN − 1) log logN , tree height is ⌈ logN

log logN ⌉, and user’s storage
stores O(1) data blocks. For Path-PIR, the binary tree node size is set to be logN ,
tree height is logN , and user’s storage stores O(1) data blocks. In SCORAM, the
binary tree node size is set to be Z = 5, the tree height is logN and user’s storage
stores O(logN) · ω(1) data blocks.

two scenarios in the compared ORAMs: the index structure is exported and accessed in O(1)

recursion levels or in O(logN) recursion levels.

Numeric Comparisons Figure 5.7 shows the results of numeric comparisons between

KT-ORAM and P-PIR. As we can see, the communication before target data access of KT-

ORAM is similar to that of P-PIR. Comparing Figure 5.7 and Figure 5.6, we can also see

that, the communication cost before target data access accounts for only 1/20 to 1/50 of the

total communication cost in KT-ORAM. Most of the communication can be performed at the

background.

67

Table 5.3 Asymptotical Communication before Target Data Access. N is the total number of
data blocks and B is the size of each block in the unit of bit. k = logN and c = 7
for KT-ORAM.
ORAM Communication Cost Communication Cost

with O(logN) Recursion Levels with O(1) Recursion Levels

P-PIR O(logN(logN · b+B)) O(logN · b+B)

KT-ORAM O(logN(logN · b+B)) O(logN · b+B)

5.5 Summary

In the second work, we proposed a new, security-provable hybrid ORAM-PIR construction

called KT-ORAM, which organizes the server storage as a k-ary tree with each node acting as

a fully-functional PIR storage. It also adopts a novel delayed eviction technique to optimize

the eviction process. KT-ORAM is proved to preserve the data access pattern privacy with a

negligibly-small failure probability of O(N− log logN) where N is the number of exported data

blocks. With a constant-size user storage and k = logN , KT-ORAM has an asymptotical

communication cost of O(logN
log logN · B) when the recursion level on metadata is of O(1) depth

with uniform block size B = N ϵ (0 < ϵ < 1), or O(log2N
log logN · B) when the number of recursion

levels is O(logN). In addition, KT-ORAM outperforms all these constructions in terms of

communication and user-side storage costs, under practical scenarios.

68

64KB 256KB 1MB 4MB

bl

oc
ks

 p
er

 q
ue

ry

Block Size (N=216)

1.5
1.1 1 1

KT-ORAM

1.2 1 1 1

P-PIR

64KB 256KB 1MB 4MB

bl
oc

ks
 p

er
 q

ue
ry

Block Size (N=224)

1.8
1.2 1 1

KT-ORAM

1.3 1.1 1 1

P-PIR

64KB 256KB 1MB 4MB

bl

oc
ks

 p
er

 q
ue

ry

Block Size (N=232)

2.1
1.3 1.1 1

KT-ORAM

1.5
1.1 1 1

P-PIR

64KB 256KB 1MB 4MB

bl

oc
ks

 p
er

 q
ue

ry

Block Size (N=240)

2.6

1.4 1.1 1

KT-ORAM

1.6
1.2 1 1

P-PIR

Figure 5.7 Numerical comparison of communication before target data access in practical
scenarios. k = logN and c = 7 for KT-ORAM. The number of blocks N ranges
from 216 to 240 and the block size B ranges from 64 K bytes to 4 M bytes.

69

CHAPTER 6. GP-ORAM: A GENERALIZED PARTITION ORAM

In the third work, we proposed a generalized partition ORAM, GP-ORAM [78], which is

motivated by the design of P-ORAM [65]. P-ORAM construction was designed to achieve a

low and thus practically acceptable communication cost. Specifically, the server-side storage of

P-ORAM is organized as
√
N partitions, assuming N is the number of exported data blocks,

and each partition is an ORAM. The user-side storage includes an index table recording the

location of each block, a shuffling buffer that can store and shuffle all data blocks of any ORAM

partition, and
√
N stash slots. With such a storage arrangement, it has been shown that the

communication cost for data query and shuffling is as low as logN data blocks per query.

Compared to other state-of-the-art ORAM constructions[66, 77, 48], P-ORAM achieves higher

communication efficiency.

However, P-ORAM design has its limitations. First of all, it requires a large and fixed local

storage to store the index table and facilitate shuffling. For example, when N = 232 and block

size is 64 KB, 31 GB local storage is needed. Second, the index table cannot be efficiently

exported to the server. According to our evaluation, if the index structure is exported to the

server, in order to query just a single block, more than 1000 data blocks on average have to be

retrieved. In addition, the user’s accesses to data blocks have to be entirely sequential in order

to compress the index table.

To address the above limitations of P-ORAM, while inheriting its nice feature of low commu-

nication cost, this work proposes a generalized version of P-ORAM, called GP-ORAM. There

are a few key improvements of GP-ORAM over P-ORAM. First, the number of partitions is

adjustable in GP-ORAM. This way, even with a smaller local storage than what P-ORAM

requires, GP-ORAM may still achieve a low communication cost via properly adjusting the

number of partitions. Second, each ORAM partition in GP-ORAM is redesigned (different

70

from that in P-ORAM) to enable efficient query and shuffling. Finally, the index structure in

GP-ORAM is also redesigned to enable efficient exportation of it and accommodate the above

changes.

Rigorous security analysis has been conducted to prove that the proposed GP-ORAM con-

struction can preserve a user’s access pattern and the construction fails with only a probability

of O(N− log logN) according to Definition 2.2. Extensive cost analysis has also been conducted

to show that GP-ORAM is a more practical construction than P-ORAM. Particularly, the

local storage demanded by the recursive version of our proposed GP-ORAM scheme is only

2.5%∼0.14% of that by the non-recursive version of the P-ORAM scheme (note: as shown in

Section 6.3, the recursive version of the P-ORAM scheme is impractical due to its extremely

high communication cost, and therefore is not considered), while GP-ORAM only yields 1 to

3 times higher communication cost than P-ORAM.

6.1 Intuition

As GP-ORAM is generalized from P-ORAM, we first review the key ideas and limitations

of P-ORAM. As shown in Figure 6.1, the server-side storage of P-ORAM is organized as
√
N

…

……

……

Stash

Shuffling Buffer: blocks

Index Table : (Partition ID, Layer Number, Layer Offset)

)(NO

N

ORAM

)(NO

blocks

ORAM

)(NO

blocks

ORAM

)(NO

blocks

Figure 6.1 P-ORAM Storage Organization.

ORAM partitions, while the user-side storage includes an index table recording the location

71

(i.e., partition ID, layer number and layer offset) of each block, a shuffling buffer that can store

and shuffle O(
√
N) data blocks and

√
N stash slots each corresponding to one partition. To

query one data block, it needs to retrieve one data block from each layer of an ORAM partition

on the server, which results in O(logN) data blocks of communication cost, and the query target

block is relocated to a randomly selected stash slot. Each query is followed by a background

eviction, in which some data blocks are evicted from stash slots into their corresponding ORAM

partitions; the evictions cause the ORAM partitions to be gradually reshuffled, and shuffling

causes O(logN) data blocks of communication cost per query, on average. To summarize, as

bandwidth is usually more expensive than storage, P-ORAM was designed to achieve a low

communication cost at the cost of increased local storage.

However, P-ORAM has the following limitations. First, P-ORAM requires a large local

storage (O(
√
NB) bits), due to

√
N stash slots and a shuffling buffer with a capacity of O(

√
N)

blocks. This limits P-ORAM’s practical applicability as it is impossible to implement P-ORAM

if the user has less local storage than required. Second, the index table cannot be efficiently

outsourced to the server. Each entry of the table has three fields: partition ID, layer number,

and layer offset. The layer number and layer offset need to be updated during both query

and shuffling processes. If the index table is outsourced to the server, the query and shuffling

processes need to frequently query and update the index table, which leads to impractically

high communication cost. Third, the user’s data accesses have to be entirely sequential in order

to compress the index table.

Motivated by P-ORAM and also to overcome its limitations, we present GP-ORAM as a

new framework to assemble multiple ORAM partitions together. It has the following key ideas.

First, the number of partitions is not fixed so that the user can adjust the number of partitions

according to the available local storage. Second, the index table is re-designed so that it can

be outsourced to the server efficiently. Third, to make full use the available local storage, each

ORAM partition is based on a revised S-ORAM [77] construction. As a result, GP-ORAM

inherits the security property and the communication efficiency of P-ORAM while being able

to work with and fully utilize a wide range of available local storage.

72

6.2 Scheme

We elaborate the design of GP-ORAM in terms of storage organization, system initializa-

tion, query process, and background eviction process. To simplify the presentation, we assume

the user stores index entries of all outsourced data blocks locally. In practice, to save the user’s

local storage, the index entries can be recursively exported to the storage server, following the

same ideas used in tree ORAM [61] and Path-ORAM [66], which is described in Section 6.3.

6.2.1 Storage Organization

GP-ORAM stores both real blocks (i.e., user’s N actual data blocks outsourced to the

server) and dummy blocks (i.e., faked data blocks with random padding). When a block is in

plain-text, it can be split into pieces and the size of each piece is b = logN bits. For each real

block, the block ID i is contained in its first piece, denoted as di,1, while the first piece of each

dummy block is set to −1. The remaining pieces store the content of that block, denoted as

di,2, di,3, · · · , di,η−1.

Before being exported to the remote storage server, the plain-text block is encrypted using

CTR encryption mode (counter encryption mode) [55] piece by piece with a secret key k.

Specifically, the ciphertext of each block Di contains η pieces, denoted as ci,0, · · · , ci,η−1, where

ci,0 = Ek(ctr), where ctr is a nounce generated by a pseudo-random function;

ci,1 = Ek(ctr + 1)⊕ di,1;

· · · ;

ci,η−1 = Ek(ctr + η − 1)⊕ di,η−1.

Thus, the encrypted block (denoted as Di) is Di = (ci,0, ci,1, ci,2, · · · , ci,η−1).

6.2.1.1 Server Storage

The server-side storage is divided into P smaller fully-functional ORAM partitions, where

P is a system parameter. Each partition can hold 1.1N/P real blocks. As shown in Lemma 8

(Section 6.4), given that logN log logN ≤ P ≤
√
N , the number of real blocks in each partition

is upper bounded by 1.1N/P with a probability of 1−O(N− log logN).

73

In GP-ORAM, each ORAM partition is a revised version of the S-ORAM [77] construction.

Specifically, each partition is organized as a pyramidical structure shown in Figure 6.2, where

the total number of layers is denoted as L2 = ⌈log(N/P)⌉. The top layer, i.e., layer 1, is an

array containing up to four blocks. Each of the rest layers is organized as one or multiple

segments. These layers are further divided into single-segment layers (i.e., T1-layers, including

layers 2 to L1 = ⌊log(3 log2N)⌋ − 1) and multi-segment layers (i.e., T2-layers, including layers

L1 + 1 to L2).

…

……

D D

I D D D

)log3(2 21
N

l

≤
+

Layer 1

T2-Layer l

(Multi-segment)

……I D D ……I D D

T1-Layer l

(Single-segment)

=

N

W

l

l 2
log

2 segments

…

D D

...
... N

2log3

…

……

π buf 0 buf 1 buf 2

ORAM

……

ORAMORAM

Stash

Shuffling Buffer

Index Table

(Data ID, Partition ID)

……I D D ……I D D……

 ∗
=

N

W

L

L 2log

21.1 2

2
segments

...

P

)/(PNO

blocks

)/(PNO

blocks

)/(PNO

blocks

Figure 6.2 Organization of the server-side storage.

Each T1-layer l has a single segment. The segment stores 2l+1 blocks, at most half of which

are real blocks, and one encrypted index block Il with 2l+1 entries. Each entry of Il corresponds

to a block in the segment and consists of three fields: ID of the block, location of the block in

the segment, and access bit indicating whether the block has been accessed since it was placed

to the segment.

For each T2-layer l < L2, it is composed of Wl = ⌈2l/ log2N⌉ segments, while the bottom

layer (i.e., layer L2) containsWL2 = ⌈1.1∗2L2/ log2N⌉ segments. The bottom layer has slightly

more segments, because it should be able to accommodate 1.1N/P real data blocks. A T2-layer

segment has the same format as a T1-layer segment except that it needs to contain exactly

74

3 log2N data blocks. Having 3 log2N data blocks per segment is to ensure the security property

of the design and it has been proved by Zhang et. al. [77].

Inside each segment, there is an index block with at most 3 log2N entries and each entry

contains three fields: ID of the block (needing logN bits), location of the block in the segment

(needing log(3 log2(1.1N/P)) bits), and access bit (needing 1 bit). Thus, an index block needs

at most 3 log2N [logN + log(3 log2(1.1N/P)) + 1] bits. In practice, with N ≤ 232 which is

considered large enough to accommodate most practical applications, the size of an index

block is less than 32 KB, which can fit into a typical block assumed in P-ORAM [65].

In addition, each ORAM partition p maintains a counter Cp to keep track of the times that

the partition has been queried.

6.2.1.2 User Storage

The user-side storage consists of the following components. (i) Stash with P slots: each

stash slot corresponds to one of the ORAM partitions; that is, it buffers the blocks that should

be written to the corresponding partition later. (ii) Shuffling buffer: the shuffling buffer

(with the capacity of S blocks) is used for data shuffling process. (iii) Index table: the index

table records the information of each block. Specifically, it has N entries and each entry (pi, li)

has two fields; the block is in partition pi and the block is latest stored on layer li. (iv) Secret

storage: it stores all secrets including cryptographic keys for encryption and authentication,

and its size is negligible compared to the other components.

6.2.2 System Initialization

To initialize, the user first selects a data encryption key, denoted as k. Then, each real

block is encrypted and randomly assigned to one of the P partitions; the local index table is

initialized to reflect the assignment.

After the above assignment, the user initializes each partition pi as follows. For each of

the real blocks Dj assigned to partition pi, the user selects a secure hash function, denoted as

Hpi,L2(∗), for the bottom layer L2, and assign Dj to segment Hpi,L2(j). Then, the user adds

dummies to ensure each segment contains exactly 3 log2N blocks. For each segment, the user

75

randomly permutes all blocks inside it and builds an encrypted index block for it. Finally, the

index and data blocks are uploaded to the server.

6.2.3 Data Query

To query a data block Dt, the user first searches the index table to get partition ID pt and

layer number lt for Dt. Then, the user searches the stash slot of pt. If Dt is not found, the user

will launch a query for Dt in partition pt; otherwise, a dummy query to pt will be launched.

Algorithm 6 Query(Dt, pt)

1: L ← the set of non-empty layers of partition pt
2: Retrieve Cp from partition pt
3: if (Dt is a dummy block) then

4: S ← {segl|∀ l ∈ L, segl is a randomly-selected segment of layer l}
5: Retrieve the index block of each segment in S
6: From each segment in S, retrieve a dummy block that has not been accessed

7: Update, re-encrypt & upload the retrieved index block

8: else

9: Find layer l̂t where Dt is located; segl̂t ← Hpt,l̂t
(t)

10:

//Secure hash function Hpt,l̂t
(t) decides which segment of layer l̂t in partition pt stores Dt

11: S ← {segl|∀ l ∈ L \ {l̂t}, segl is a randomly-selected segment of layer l}
12: Retrieve the index blocks of segments in S ∪ {segl̂t}
13: From each segment s ∈ S ∪ {segl̂t}, retrieve a dummy block that has not been accessed

if s ∈ S, or Dt otherwise

14: Update, re-encrypt & upload the retrieved index block

15: end if

The algorithm for querying Dt in partition pt, i.e., Query(Dt, pt), is revised from the query

algorithm in S-ORAM [77] and formally presented in Algorithm 6. In the algorithm, the layer

l̂t where Dt is located is found as follows: First, based on the query counter Cpt , the most

recently shuffled layer l′ can be inferred. Then, l̂t ← l′ if l′ ≥ lt because Dt must have been

shuffled to l′ during the most recent shuffling process; otherwise, l̂t ← lt.

6.2.4 Background Eviction

After each data query, a background eviction process as described in Algorithm 7 should be

launched to avoid stash overflowing. Similar to P-ORAM, this process could be sequential or

76

random. For simplicity, we adopt the sequential approach. Suppose ψ records the last evicted

stash slot and λ denotes the eviction rate (i.e., the number of stash slots that should be evicted

after each data query). The eviction operation essentially pushes one data block from its stash

slot to layer 1 of its corresponding partition. As the capacity of layer 1 is limited, every four

eviction operations performed on a partition could result in layer 1 overflow and thus should

trigger a data shuffling of that partition.

Algorithm 7 Sequential Background Eviction (λ)

1: for k = 1 to λ do

2: ψ ← (ψ + 1) mod P

3: if (stash slot[ψ] does not contain real block) then write a dummy to layer 1 of pψ
4: elseremove a real block from stash slot[ψ] and write it to layer 1 of pψ
5: end if

6: Cpψ ← Cpψ + 1

7: if (Cpψ mod 4 = 0) then

8: Shuffle partition pψ
9: end if

10: end for

Different from P-ORAM, GP-ORAM shuffles data in pieces instead of blocks, as in S-

ORAM [77]. To shuffle a certain x number of blocks in the unit of piece, only bx bits of local

storage is needed, while Bx bits of local storage would be needed if shuffling these blocks in

the unit of block. Hence, GP-ORAM can utilize the shuffling buffer more efficiently than P-

ORAM. To facilitate fine-grained shuffling, the shuffling buffer is split into the following two

components (as shown in Figure 6.2): (i) π, which is a buffer to store a permutation of up to

2m2 inputs and thus needs 2m2 log(2m2) bits, where m is a system parameter; (ii) buf0, which

is used to temporarily store up to 2m2 data pieces. Recall that each data piece has b bits and

the capacity of the shuffling buffer is S bits. In GP-ORAM, we set the shuffling buffer size to

S = 4.4 · N
P
· (log(4.4 · N

P
) + b). (6.1)

The purpose is to ensure that, for any layer of each partition, each block is downloaded and

uploaded for only once during a shuffling process. The shuffling process is the same as in

S-ORAM [77], and thus is skipped here due to space limitation.

77

6.3 Recursive GP-ORAM

In the construction presented in Section 6.2, the user needs to maintain an index table in

local storage. To reduce the cost, we can adopt recursive construction to outsource the index

table to the server. Specifically, letting GP-ORAM1 denote the original GP-ORAM used to

store data blocks, a new GP-ORAM2 can be introduce to store the index table of GP-ORAM2;

furthermore, another GP-ORAM called GP-ORAM3 may be introduced to store the index

table of GP-ORAM2, and so on and so forth. Suppose one block in GP-ORAMi+1 can store

up to α index entries of GP-ORAMi (1/α, therefore, is the compression rate, which is the ratio

of GP-ORAMi+1’s capacity to GP-ORAMi’s capacity). Then, in each block of GP-ORAMi+1,

log(N
αi
) bits are needed to represent a sequence of α blocks in GP-ORAMi and α · logPi bits

are needed to record the partitions which these blocks should be stored to, where Pi is the

number of partitions in GP-ORAMi. Therefore, the relation between α, N , B and Pi is as

Equation (6.2):

log(
N

αi
) + α · logPi ≤ B. (6.2)

With the recursive construction, the local storage can be greatly reduced while the extra com-

munication cost is insignificant. This is analyzed in detail in Section 6.5.

6.4 Security Analysis

To show that GP-ORAM is secure according to Definition 2.2 in Section 2.2, we develop

a proof in two parts: (1) GP-ORAM generates a random access pattern independent of user’s

actual access pattern, and (2) GP-ORAM fails with only a negligible probability. For the

second part, there are three aspects to be proved in detail: (i) the stash overflows with a

negligible probability of O(N− log logN), (ii) any partition overflows with a negligible probability

of O(N− log logN), and (iii) any layer of any partition overflows during data shuffling with a

negligible probability of O(N− logN).

Lemma 8. Given that P ≥ logN log logN , the total number of real blocks in the stash at any

time during data queries is upper bounded by 2P (1−2/P) with a probability of 1−O(N− log logN).

78

Proof. The stash capacity can be computed by summing up the number of blocks in all P slots.

Thus, we can focus on the analysis for a single slot. Note that, blocks are loaded to slots in

a uniformly random fashion, and are evicted through the background eviction procedure with

eviction rate λ (we use λ = 2 in the following analysis).

For any single slot, a real block enters this slot with probability p = 1/P and leaves with

probability q = 2/P . Then, the number of real blocks in any slot is a Discrete Time Markov

Chain (DTMC) starting with state 0 (no blocks in the slot), each state i (i blocks in the slot)

has forward probability pf = p(1− q) to state i+ 1 and backward probability pb = q(1− p) to

state i−1. Since ρ = pf/pb ≤ 1/2. The stationary distribution for each state i is πi = ρi(1−ρ)

(i = 0, 1, 2, · · ·) and the expectation of the stationary distribution is ρ/(1 − ρ). Thus, the

expected number of real blocks in the entire stash is

χ = P · ρ

1− ρ
= P (1− 2

P
).

Now, let’s observe the upper bound on the stash capacity. Suppose Zi denotes the number

of real blocks in slot i (1 ≤ i ≤ P). Then, Zi’s are negatively associated [18] and Zi’s are

geometric random variables with parameter ρ as mentioned before. Hence, the upper tail

bound for Z =
∑P

i=1 Zi [18, 65] is:

Pr[Z ≥ Ψ] ≤ e−
P ·(Ψ/χ−1)2

4 = N− P
4 lnN = O(N− log logN),

where Ψ = 2χ and P ≥ logN log logN . Therefore, given P ≥ logN log logN , the stash size

can be bounded by Ψ with overwhelming probability 1−O(N− log logN).

Lemma 9. Given that logN log logN ≤ P ≤
√
N , the total number of real blocks for any

partition at any time during data queries is upper bounded by Φ = 1.1N/P with a probability

of 1−O(N− log logN).

Proof. For every individual partition, we consider the partition together with its corresponding

stash slot as a bin. Thus, the partition capacity can be upper bounded by the bin capacity.

Note that, since the snapshot of any moment for the whole system can be seen as a particular

distribution of randomly throwing N blocks into P bins, the following results can be deduced

on bin capacity:

79

Consider a particular bin, and define X1, · · · , XN as random variables such that

Xi =

 1, the ithreal block is mapped to the bin,

0, otherwise.

Note that,X1, · · · , XN are independent of each other, and hence for eachXi, Pr[Xi = 1] = 1/P .

Let X =
∑N

i=1Xi. The expectation of X is

E[X] = E

[
N∑
i=1

Xi

]
=

N∑
i=1

E[Xi] = N · 1
P

=
N

P
.

According to the multiplicative form of Chernoff bound, for any Φ ≥ E[X] = N/P , it holds

that

Pr[a specific bin has more than Φ real blocks] < e−
N(ΦP/N−1)2

3P .

By applying the union bound, we can obtain

Pr[∃ any bin with more than Φ real blocks] < P · e−
N(ΦP/N−1)2

3P = O(N− log logN),

where Φ = 1.1N/P and logN log logN ≤ P ≤
√
N . Note that any partition capacity is upper

bounded by the bin capacity, it holds immediately that any partition capacity is also upper

bounded by Φ with overwhelming probability 1−O(N− log logN).

Theorem 3. GP-ORAM is secure under the security definition in Section 2.2.

Proof. According to Definition 2.2, we will first show that, given any two equal-length sequence

x⃗ and y⃗ of private data requests, their corresponding observable access sequences A(x⃗) and A(y⃗)

are computationally indistinguishable.

Note that, for the kth access xk = (opk, ik, Dk), the observable sequence A(xk) consists of

two parts: (read, p, D⃗) which is data query; (write, p′, D⃗) which is background eviction.

• First, for data query, xk (or yk) introduces a read operation on a random partition px (or

py). Then, the background eviction incurs a sequential of write operations on pre-defined

partition p′ for both xk and yk. Hence, A(xk) and A(yk) are computationally indistin-

guishable with each other, because their first parts follow a uniform random distribution

and their second parts are the same to each other.

80

• Second, accesses to individual ORAM partition are oblivious.

– The read operation to a selected partition accesses locations from each non-empty

layer (except layer 1) randomly and non-repeatedly;

– When a data block is evicted to this partition, it is re-encrypted and appended to

the first layer of this partition.

Also, we have proved GP-ORAM fails with a probability of O(N− log logN) based on Lemma 8

and Lemma 9. Therefore, it is proved that GP-ORAM construction is secure.

6.5 Cost Analysis and Evaluations

In this section, we analyze the costs of non-recursive and recursive GP-ORAM constructions,

and compare them to P-ORAM [65], Path-ORAM [66] and S-ORAM [77], which are the most

communication-efficient state-of-the-art ORAM constructions.

Cost Analysis for Non-recursive GP-ORAM The communication cost includes query

and background eviction costs. Each data query retrieves two blocks (i.e., one index block and

one data block) from and uploads only the index block to each non-empty layer of the server.

As there are L2 = ⌈log(N/P)⌉ layers, query cost on average is:

Cquery < 1.5 · log(N
P
) ·B.

As for the background eviction cost, after each query, λ blocks are written to λ consecutive

partitions at the server. Thus, P/λ queries result in all P partitions being accessed once.

Therefore, for each partition, layer l (1 < l < L2) is involved in a shuffling process every

2 · 2l · P/λ queries, while layer L2 is shuffled every 2L2 · P/λ queries. Recall that shuffling a

T1-layer l involves 2 · 2l blocks, shuffling a T2-layer l involves 4 · 2l blocks, and shuffling layer

L2 involves 5.3 · 2L2 blocks. Hence, the amortized shuffling cost is

Cshuffle = (

L1∑
l=2

2 · 2l · P
2 · 2l · P/λ

+

L2−1∑
l=L1+1

4 · 2l · P
2 · 2l · P/λ

+
4.4 · 2L2 · P
2L2 · P/λ

)B,

Therefore, the communication cost for non-recursive GP-ORAM is

CGP-ORAM(NR) = Cquery + Cshuffle = (1.5 + 2λ) log
N

P
·B − λ(log logN − 2.8) ·B.

81

For storage cost, as stated in Lemmas 8 and 9, the user needs to maintain the following

amount of storage space:

2P (1− 2

P
)B + S +N · (logN + log log

1.1N

P
),

where P ≥ logN log logN . The size of the stash is 2P (1−2/P)B, the size of the shuffling buffer

is S, and the size of the index table is N · (logN + log log 1.1N
P), respectively. Note that, the

shuffling buffer storage is temporary, while the stash and index table spaces are permanently

needed. For server storage, each partition contains at most 5.3N/P blocks. Thus, the server

storage is less than 5.3NB.

Cost Analysis for Recursive GP-ORAM Suppose there are ϕ levels of recursion in

the recursive construction, and the ith level of recursion is implemented by GP-ORAMi. Thus,

GP-ORAM1, which is used to store the user’s data blocks, requires a stash of size 2P (1−2/P)B

and a shuffling buffer of size S in the user’s local storage, while the index table is exported

to the server as GP-ORAM2. The compression rate for GP-ORAM2 can be smaller than 2−13

(i.e., the size of GP-ORAM2 can be less than 1
213

of that of GP-ORAM1) when N ≤ 244 and

B ≥ 64 KB, which covers the practical scenarios considered by Stefanov et. al. [65]. Therefore,

parameter ϕ is no more than 4; that is, no more than 4 levels of recursion are needed in practice.

Since GP-ORAM1 has much larger capacity than other GP-ORAMs, the extra communi-

cation cost introduced by recursion can be computed as O(
∑ϕ

i=1 log(α
−iN) · B) in practice.

For the extra local storage cost, it mainly comes from the stashes for extra GP-ORAMs (note

that the shuffling buffer for GP-ORAM1 can be reused for other smaller GP-ORAMs), and the

total size of these stashes is much less than that for GP-ORAM1. Specifically, a stash of size

3P (1 − 2/P)B is enough for recursive constructions. At last, the extra cost on server storage

is O(
∑ϕ

i=1 α
−iN ·B).

Tradeoff between Local Storage Capacity and Communication Cost in GP-

ORAM Suppose a user exports N data blocks each of B bits, and the local storage capacity

is Sl. The user could find an optimal P (i.e., number of partitions) for GP-ORAM to minimize

the communication cost.

82

According to CGP-ORAM(NR) in the non-recursive GP-ORAM cost analysis, the larger is P ,

the smaller is the communication cost. Hence, the optimal P should be the largest P without

incurring a local storage cost higher than Sl. Formally:

Maximize P,

subject to 2P (1− 2

P
)B + S +

NB

α
≤ Sl for non-recursive GP-ORAM,

subject to 3P (1− 2

P
)B + S ≤ Sl for recursive GP-ORAM.

The example plotted in Figure 6.3(a) shows the relation between P and local storage con-

sumption in the recursive GP-ORAM. Recall that, the local storage includes shuffling buffer

and stash. As we can see from Figure 6.3(a), when P is small, local storage consumption

decreases as P increases; when P becomes large, local storage consumption increases as P

increases. This phenomenon can be explained as follows.

• When P is small, the size of each partition is large; hence, the shuffling buffer dominates

the local storage. As P increases, shuffling buffer decreases which causes the local storage

to decrease as well.

• When P is large, the number of partitions gets large and so the stashes dominates the

local storage. As P increases, the size of stashes increases which causes the local storage

to increase too.

32MB
128MB
512MB

2GB
8GB

32GB
128GB

28 210 212 214

L
oc

al
 S

to
ra

ge

P

GP-ORAM(Recursive), B=64KB

N=228

N=230

N=232

3.5MB

4.5MB

5.5MB

6.5MB

7.5MB

64MB 256MB 1GB 4GB

C
om

m
un

ic
at

io
n

C
os

ts

Local Storage

GP-ORAM(Recursive), B=64KB

N=228

N=230

N=232

(a) P vs. Local storage consumption (b) Local storage capacity vs. Minimal communication cost

Figure 6.3 Examples illustrating the relation between P , local storage, and minimal commu-
nication cost.

83

Based on the relation plotted in Figure 6.3(a), the user can find a range of P , with which

the required local storage does not exceed Sl. Because the communication cost decreases as

P increases, the maximum P within the range becomes the optimal P that minimizes the

communication cost. This way, for any given Sl, the communication cost corresponding to the

optimal P can be found. Figure 6.3(b) plots an example to illustrate the relation between local

storage capacity and minimal communication cost in the recursive GP-ORAM.

GP-ORAM VS. P-ORAM Table 6.1 compares GP-ORAM with P-ORAM in terms

of asymptotical performance. From the table, we have the following observations: (i) When

P is set to N c (c < 0.5) and S is set as in Equation (6.1), the communication costs for both

non-recursive and recursive GP-ORAM can be re-written as O(logN ·B), which is comparable

to the cost for non-recursive P-ORAM and much lower than that for recursive P-ORAM. (ii)

The local storage costs for non-recursive P-ORAM and GP-ORAM are both O(NB), as the

costs are dominated by the index table. The local storage cost for recursive GP-ORAM is

O(PB + S), which is asymptotically smaller than O(
√
NB) as P <

√
N .

Table 6.1 Asymptotical Performance Comparison.
Scheme Bandwidth Cost User Storage Server Storage Failure Prob.

P-ORAM (NR) O(logN ·B) O(NB) < 4NB O(1
Nc)

P-ORAM (R) O(log2N ·B) O(
√
NB) < 8NB O(1

Nc)

GP-ORAM (NR) O(log
3(N/P)

log2 S
·B) O(NB) < 5.3NB O(N− log logN)

GP-ORAM (R) O(log
3(N/P)

log2 S
·B) O(PB + S) < 5.3NB O(N− log logN)

Figures 6.4 and 6.5 compare the performance of GP-ORAM with P-ORAM under the

practical system settings used by Stefanov et. al. [65] (i.e., block size ranging from 64 KB to

1 MB; the number of blocks ranging from 224 to 232). From the figures, we have the following

observations: (i) The local storage demanded by recursive GP-ORAM is only 2.5%∼0.14%

of that by non-recursive P-ORAM, while GP-ORAM only yields about 1 to 3 times higher

communication cost than P-ORAM. (ii) Recursive P-ORAM is impractical due to its extremely

high communication cost.

84

224 228 232

L
oc

al
 S

to
ra

ge
 (

M
eg

a
B

yt
es

)

N

B=64KB

858

4K

30K
P-ORAM(NR)

44 476

7K

GP-ORAM(NR)

854

4K

29K
P-ORAM(R)

32 65
1K

GP-ORAM(R)

224 228 232C
om

m
un

ic
at

io
n

C
os

t (
M

eg
a

B
yt

es
)

N

B=64KB

1.6 1.8 2.2

P-ORAM(NR)

3.8 4.7 5.6

GP-ORAM(NR)

36
49

64

P-ORAM(R)

5 6.1 7.3

GP-ORAM(R)

(i) Local Storage Size under Different N (ii) Bandwidth Cost under Different N

Figure 6.4 Comparing local storage and communication cost when B = 64 KB.

64KB 256KB 1MB

L
oc

al
 S

to
ra

ge
 (

M
eg

a
B

yt
es

)

B

N=228

4K

16K

65K
P-ORAM(NR)

473 569 950

GP-ORAM(NR)

4K

16K

66K
P-ORAM(R)

119 262 83

GP-ORAM(R)

64KB 256KB 1MBC
om

m
un

ic
at

io
n

C
os

t (
M

eg
a

B
yt

es
)

B

N=228

1.8 7.4
34

P-ORAM(NR)

4.5
18

72

GP-ORAM(NR)

49

196

784
P-ORAM(R)

5.8
23

93

GP-ORAM(R)

(i) Local Storage Size under Different Block Size (ii) Bandwidth Cost under Different Block Size

Figure 6.5 Comparing local storage and communication cost when N = 228.

Comparing GP-ORAM, Path-ORAM and S-ORAM Table 6.2 shows the asymp-

totical performance comparisons between GP-ORAM, Path-ORAM and S-ORAM. Compared

to S-ORAM and Path-ORAM, GP-ORAM introduces one adjustable system parameter P ,

which makes it more tunable.

The performance comparison between GP-ORAM and Path-ORAM under practical scenar-

ios [65] is shown in Table 6.3. From the table, it can be seen that GP-ORAM can fully utilize

the local storage to achieve better communication efficiency, and it incurs lower server-side

storage cost.

Figure 6.6 shows the performance comparison between GP-ORAM and S-ORAM under

85

Table 6.2 Asymptotical Performance Comparison.
Scheme Bandwidth Cost User Storage Server Storage Failure Prob.

S-ORAM O(log
3N

log2 S
·B) O(S) < 6NB O(N− logN)

Path-ORAM (NR) O(logN ·B) O(NB) 10NB N−ω(1)

Path-ORAM (R) O(log2N ·B) O(logN ·B) · ω(1) > 10NB N−ω(1)

GP-ORAM (NR) O(log
3(N/P)

log2 S
·B) O(NB) < 5.3NB O(N− log logN)

GP-ORAM (R) O(log
3(N/P)

log2 S
·B) O(PB + S) < 5.3NB O(N− log logN)

Table 6.3 Practical Performance Comparison.
Scheme Bandwidth Cost User Storage Server Storage

Path-ORAM (NR) 10 logN ·B N logN + logN ·B · ω(1) 10NB

Path-ORAM (R) 10 log2N ·B logN ·B · ω(1) 20NB

GP-ORAM (NR) < 4 logN ·B N logN + PB + S < 5.3NB

GP-ORAM (R) < 6 logN ·B PB + S < 5.3NB

practical scenarios [65]. From the figure, we can see that S-ORAM is not fully tunable as local

storage increases. Especially when the local storage is large enough, the communication cost

cannot be further reduced. For example, when N = 232, B = 64KB and the local storage size

has exceeded 1.2 GB, the communication remains the same regardless of the increase in local

storage size, while GP-ORAM can achieve 50%-60% savings in communication cost as the local

storage gets larger.

43MB(N=224) 473MB(N=228) 7GB(N=232)C
om

m
un

ic
at

io
n

C
os

t (
M

eg
a

B
yt

es
)

Local Storage Size

Non-Recursive GP-ORAM V.S. S-ORAM (B=64KB)

3.8 4.5 5.4

GP-ORAM(NR)

12
15

17

S-ORAM

32MB(N=224) 119MB(N=228) 1.2GB(N=232)C
om

m
un

ic
at

io
n

C
os

t (
M

eg
a

B
yt

es
)

Local Storage Size

Recursive GP-ORAM V.S. S-ORAM (B=64KB)

5 5.8 7

GP-ORAM(R)

12
15

17

S-ORAM

Figure 6.6 GP-ORAM vs. S-ORAM with same given local storage.

86

6.6 Summary

In the third work, we proposed a new ORAM construction, called Generalized Partition

ORAM (GP-ORAM). GP-ORAM utilizes a new shuffling method, adjusts the number of par-

titions according to the available user-side local storage, and outsources the index table to

the server. Through these techniques, it achieves low bandwidth cost (O(logN)) and has

significantly less user-side storage cost than P-ORAM. We demonstrate the effectiveness of

GP-ORAM via extensive security and cost analysis.

87

CHAPTER 7. MU-ORAM: DEALING WITH STEALTHY PRIVACY

ATTACKS IN MULTI-USER DATA OUTSOURCING SERVICES

Most of existing ORAM constructions assume only a single user to interact with the storage

server; therefore, the user’s device holds all the system secrets about how the outsourced data

are encrypted, placed and scrambled in the server’s storage. As it is also popular for multiple

users to share outsourced data, such constructions [47, 22, 32, 73] have been proposed to extend

the single-user ORAM to support parallel accesses from multiple users. In these proposals,

however, the users essentially work together as a single user, because either the users need to

go through a single proxy which holds the system secrets and interacts with the server on behalf

of all users, or each of the users should hold the same system secrets and interacts with the

server directly. In either case, the single proxy or any one user becomes a single point of security

failure. If it is malicious or compromised, attacks can be launched from the inside, and the

security of the whole system can be easily brought down. Observable attacks (e.g., illegitimate

deletion or modification of data) launched by the insider attacker can be detected, and the

attacker can be identified with some accountability mechanisms (e.g., auditing the logs), but

detecting stealthy attacks targeted at privacy is much more difficult. A curious or compromised

user can collude with the storage server (if the server is also curious or compromised) to reveal

the access patterns of all other users; meanwhile, the attackers can keep their attacks stealthy,

because they still follow the ORAM protocols without extending any anomaly observable by

others.

For instance, a hospital may wish to export the encrypted information of all its patients,

to a remote storage organized as an ORAM. To allow each doctor to access the data of any

patient who has visited the hospital, all the doctors should share the same secret keys. With

such a system, if a doctor is curious or the account of a doctor is compromised by an attacker,

88

the adversary (i.e., the curious doctor or the attacker) may be able to observe the accesses

made by all other doctors, through colluding with the storage server which is also curious or

compromised, without launching any observable attack to the ORAM.

In the fourth work, we study the feasibility and cost of overcoming the above limitation

of existing ORAM constructions, we propose, design, and analyze a new ORAM construction

called Multi-User ORAM (MU-ORAM) [79]. The construction has two design goals. First, it

shall support multiple users to share data outsourced to a remote storage. Second, it shall be

resilient to the afore-described stealthy privacy attacks, in which the curious or compromised

insider attackers do not extend observable misbehaviors, but collude stealthily to reveal the

data access patterns of innocent users. To the best of our knowledge, this is the first effort

aiming to attain these goals.

To tolerate stealthy privacy attacks, the basic principle is to distribute the shares of the

system secrets among the users, instead of letting every user to hold all the system secrets.

This way, any single user alone will not have sufficient secrets to locate and decrypt a data

block of interest to access; collaboration between the users is required. However, when a user

needs to access a data block, it is not realistic to require other users to be online and available

for collaboration. Hence, the key idea in our design is to introduce a chain of collaborative but

mutually independent proxies between users and the storage server. These proxies are always

online, like the storage server. The shares of the system secrets are distributed delicately to

the proxies and the users. When a user needs to query a data block, its request and the

storage server’s replies shall pass through and be processed by the proxies before they reach

the destination.

In practice, the proxies can be implemented as mutually independent hardware components

(e.g., computers) or software components (e.g., virtual machines) provided in public or private

domains. For instance, in the afore-mentioned “hospital” example, the proxies can be imple-

mented as several physical/virtual machines running in the premise of the hospital or some

cloud providers independent of the remote storage server.

Within this architecture, (i) users do not need to hold all the system secrets as they do not

interact directly with the storage server; (ii) each user can set up a secure and logically isolated

89

communication channel with the chain of proxies; (iii) multiple proxies, with each holding an

independent share of the system secrets, work together to act as a common interface between

users and the storage server. They also take non-user-specific workload (e.g., data shuffling).

Due to the above features, users are securely isolated from each other, and compromising some

but not all proxies cannot capture the system secrets. Thus, the system becomes more resilient

to the stealthy privacy attacks.

We propose formal security definitions to quantify the security strength of MU-ORAM

in protecting an innocent user’s data access patterns against stealthy attacks, and conduct

extensive analysis:

• First, we have shown that, like existing single-user ORAMs, MU-ORAM can fully protect

the access pattern privacy of each individual user against an semi-honest storage server

with a failure probability of O(N− log logN), where N is the total number of exported data

blocks.

• Second, assuming that the server, some users and some but not all proxies are semi-honest

and colluding, we study the security strength of MU-ORAM under different scenarios.

Particularly, we have shown that, the collusive coalition has an advantage of less than 2ϵ

within time period t to reveal an innocent user’s access to data that the coalition is not

authorized to access,

if the Modified Matching Diffie-Hellman (MMDH) problem Gp cannot be solved with an

advantage of at least ϵ within the same time period t.

Note that, as our design aims at dealing with stealthy privacy attacks, the threat model of our

security analysis assumes that the attackers are semi-honest (i.e., the attackers honestly follow

the protocols that they are expected to execute, but may take extra actions to reveal the data

access patterns of innocent users).

Cost analysis has been conducted to quantify the costs incurred to provide the protection.

The results show that, the communication cost introduced by MU-ORAM is O(log2N) data

blocks per query for the user and O(log2N log logN) for the proxies. Meanwhile, MU-ORAM

does not store any dummy data blocks, which makes the server-side storage to be O(N).

90

7.1 Preliminaries

This section presents the system model, the architecture of our proposed MU-ORAM, and

the formal definitions of security.

7.1.1 System Model

We consider a system where multiple users share N data blocks exported to a storage server.

Let Fp be a finite field with p distinct elements, where p is a prime number and N ≪ p. For

example, log p is usually 128 or larger, while in practice logN is seldom greater than 40. Let

Gp be a multiplicative, cyclic group with also p distinct elements. Each data block, denoted as

Di, consists of two components: (i) unique data ID denoted as gi which is an element of Gp;

(ii) data content that is a sequence of pieces each being an element of Gp. As the operations on

each piece of the data content are the same, we use a single element denoted as di to represent

the sequence unless stated otherwise. Hereafter, each data block Di is represented as

(gi, di) where gi ∈ Gp and di ∈ Gp. (7.1)

Each data request from a user, which shall be kept confidential, is one of the following

two types: (i) read a data block di of unique ID gi from the storage, denoted as a 3-tuple

(read, gi, di); or (ii) write/modify a data block di of unique ID gi to the storage, denoted as a

3-tuple (write, gi, di).

To accomplish a confidential data request, the user may need to access the remote storage

multiple times. Each access to the remote storage can be observed by the server and its collusive

coalition, and is one of the following two types: (i) retrieve (i.e., read) a data block di from a

location l at the remote storage, denoted as a 3-tuple (read, l, di); or (ii) upload (i.e., write) a

data block di to a location l at the remote storage, denoted as a 3-tuple (write, l, di).

Also, we assume there is a trusted system initialization server. This server is not involved

in data access, but only responsible for initializing the system and providing public information

for a user when the user joins the system. Note that, once the system initialization finishes, all

system secrets are removed from this server. Therefore, we assume the server is immune from

attacks.

91

7.1.2 Proposed Architecture

MU-ORAM is designed to protect the data access patterns of individual users against

stealthy privacy attacks launched by collusive parties in the system. To attain this goal, we

propose a new architecture (as shown in Figure 7.1) composed of a hierarchical storage server,

multiple users, and a chain of proxies as a bridge between users and the storage server. In

practice, proxies can be implemented as mutually independent hardware components (e.g.,

computers) or software components (e.g., virtual servers). These proxies can be deployed in

the premise of the users or some cloud providers independent of the provider of the storage

server.

...

...

...
...

…

…

...

...

Users

... ...

...

...

...

...

...

Layer 1

Layer 0

……… …

……… …

Layer L-1

Storage Server

Proxies

...

...

ϕ0 ϕ1 ϕk ϕm-1

Figure 7.1 System overview.

Specifically, the introduced chain of proxies serves as a common interface for all users to

access data at the storage server as follows.

• When a user needs to access a certain data block, the request and the data replied from

the storage server shall pass through and be processed (i.e., encrypted or decrypted) by

all the proxies before they reach either the storage server or the user.

• By introducing proxies to protect users from direct interactions with the storage server,

92

each individual user does not need to maintain the information about storage locations or

encryption keys of the data shared with other users. Without exposing such knowledge

to individual users, it becomes possible to prevent a user from learning other users’ data

access patterns through colluding with the storage server or observing their interactions

with the storage server.

• Such an architecture also allows each user to establish a secure and logically isolated

communication channel with the chain of proxies, which makes it possible to prevent a

user from learning other users’ data access patterns through observing their interactions

with the proxies.

• As all the user/server interactions must go through the entire chain of independent prox-

ies, the user’s access pattern privacy is protected, as long as not all of the proxies are

compromised and collude with the storage server.

Under this proposed architecture, appropriate algorithms must be designed to guide the in-

teractions between the storage server, proxies, and users. We will present these algorithms in

Section 7.2.

7.1.3 Security Definitions

As the major goal of our design is to protect individual users’ access pattern privacy from

stealthy attacks, we assume the storage server, users, and proxies in the system are honest but

curious or called semi-honest. Specifically:

• In response to a data query from a user, the user, the proxies and the storage server

follow the query protocol honestly to process the query.

• At the time when data shuffling shall be conducted, we assume that the storage server

and the proxies all follow the shuffling protocol honestly to shuffle the data.

• The storage server, each proxy, and each user may be curious to find out the access

pattern of other users. To do so, they may collude. However, we assume no collusive

coalition will include all proxies.

93

7.1.3.1 Security against semi-honest storage server

As a baseline, we first consider the scenario that the storage server does not collude with any

user or proxy. Following the security definition of ORAMs [27, 66, 65], we define the security

of an MU-ORAM against an honest but curious storage server as follows.

Definition 1. (Security against semi-honest storage server). Let x⃗ = ⟨ (op1, i1, d1), (op2, i2, d2),

· · · ⟩ denote a private sequence of a user’s intended data requests, where each op is either a

read or write operation. Let A(x⃗) = ⟨ (op′1, l1, d′1), (op′2, l2, d′2), · · · ⟩ denote the sequence of the

user’s accesses to the remote storage (observed by the server), in order to accomplish the user’s

private data requests. MU-ORAM is said to be secure if (i) for any two equal-length private

sequences x⃗ and y⃗ of intended data requests, their corresponding observable access sequences

A(x⃗) and A(y⃗) are computationally indistinguishable; and (ii) the probability that MU-ORAM

fails to operate is O(N− log logN).

7.1.3.2 Security against collusive coalition

Next, we consider the more general scenario that the storage server colludes with some users

and some (but not all) proxies.

Depending on whether the collusive users have authorized access to the data blocks queried

by an innocent user, the security strength of MU-ORAM can be very different. This is because,

when the collusive users have access to the data accessed by the innocent user, the collusive

users can check if some data blocks have been changed after the innocent user’s access to infer

the innocent user’s access pattern; however, this approach cannot be applied when the collusive

users are not authorized to access the data accessed by the innocent user. Hence, we study two

cases separately as follows.

Case 1: Users with same access privileges to data In a system where users have

the same access privileges to outsourced data, we study the security strength of MU-ORAM

in protecting an innocent user’s access pattern to the data that can also be accessed by the

collusive users.

94

To facilitate the study, we define a game between an adversary (i.e., the collusive coalition)

and a challenger (i.e., the rest of the system) in the following. Intuitively, the game models the

attacks that can be launched by the adversary: it can launch queries and observe how these

queries are handled; it can observe the interactions between the innocent user and the server

and proxies; it can compromise and thus obtain the secrets of some but not all proxies; it can

inspect data stored on the storage server. The adversary is said to have won the game (i.e.,

defeated the MU-ORAM) if the following happens: the innocent user first selects two data

blocks uniformly at random to query; the user is then asked to randomly choose one of these

two data blocks to query again; the adversary is able to find out the user’s choice.

Definition 2. A game G1(M, p,N,m, ncq) between a challenger and an adversary is defined

as follows (Here,M denotes an MU-ORAM construction):

• Initialization Phase. The challenger initializes the storage server and the chain of m

proxies, according to the algorithm of M. Here, N data blocks {(gi, di)|i = 0, · · · , N −

1; gi ∈ Gp; di ∈ Gp} are exported to the storage server. The adversary has access to all

the data block IDs.

• Query Phase I. The adversary can make any number of queries of the following types.

– Proxy Compromising. The adversary requests to get the information (e.g., secrets)

owned by any compromised proxy. We restrict that at most m − 1 proxies can be

compromised.

– Proxy and Server Transcript Inspection. The adversary requests to get the in-

put/output of any compromised proxy and the storage server.

– Data Query. Two types of queries can be requested:

∗ Type I (controlled queries) - The adversary selects an ID and acts as a user to

start querying the data block of this ID. In response, if the number of Type

I query has exceeds ncq, the request is denied; otherwise, the proxies and the

server follow theM protocol to process the query request.

95

∗ Type II (random queries) - The adversary requests an innocent user to start a

query. In response, the challenger secretly selects an ID from the pool of IDs

uniformly at random, and then acts as a user to start querying the data block of

this ID. The proxies and the server follow theM protocol to process the query.

Note that, this selected ID is unknown to the adversary.

– Storage Inspection. The adversary asks the storage server to return the data blocks

in a specified bucket.

• Selection Phase I. The challenger secretly selects a data block ID denoted as θ0 from the

pool of IDs uniformly at random, and queries it. Note that, θ0 is known only by the

challenger.

• Query Phase II. The phase is the same as Query Phase I, except that the following rule

should be added when processing a Type I data query: the challenger aborts the game

and declares failure if the queried data ID is θ0, θ0 was queried by the adversary before

the Selection Phase I, and there is no Type II query for θ0 between the adversary’s last

and current query for θ0. This is because, when the above conditions are satisfied, the

adversary will find that the content of data block θ0 was changed after the Selection Phase

I, and thus find θ0 was queried in the Selection Phase I; therefore, it will know which of

θ0 and θ1 is selected in the later Challenge Phase by simply querying θ0 right after the

Challenge Phase.

• Selection Phase II. The challenger secretly selects another data block ID denoted as θ1

(θ0 ̸= θ1), and queries it.

• Query Phase III. The phase is the same as Query Phase I, except that the following rule

should be added when processing a Type I data query: the challenger aborts the game

and declares failure if either (i) the queried data ID is θ0, θ0 was queried by the adversary

before the Selection Phase I, and there is no Type II query for θ0 between the adversary’s

last and current query for θ0; or (ii) the queried data ID is θ1, θ1 was queried by the

adversary before the Selection Phase II, and there is no Type II query for θ1 between

96

the adversary’s last and current query for θ1. This change is due to the same reason

explained in Query Phase II.

• Challenge Phase. The challenger decides a binary bit b uniformly at random. Then, it

queries the data block of ID θb.

• Query Phase IV. The phase is the same as Query Phase I, except that the following rule

should be added when processing a Type I query: if θ0 or θ1 is queried, the challenger

aborts the game and declares failure. Note that, the adversary may or may not find out

the query target chosen in the Selection Phases if it requests to query θ0 or θ1. Hence,

by this rule we may under-estimate the security strength of MU-ORAM.

• Response Phase. The adversary returns a binary bit b′ as a guess of the b.

• Result. The adversary wins the game if the challenger declares failure or b′ = b; otherwise,

it loses the game. The advantage for the adversary to win the game is defined as the

probability that it wins the game minus 1/2.

An MU-ORAM constructionM is considered secure against a collusive coalition, if it is hard

for an adversary with limited computational capability to win the above game. To quantify

this notation, we introduce the following definition:

Definition 3. ((ϵ, t, ncq)-security against collusive coalition) An MU-ORAM construction

M, in which all users have the same access privileges to the outsourced data, is said to be

(ϵ, t, ncq)-secure against a collusive coalition of semi-honest storage server, users and some (but

not all) proxies if: no adversary can win the game G1(M, p,N,m, ncq) with an advantage of at

least ϵ under the time complexity of t and the restriction that the adversary cannot make more

than ncq Type I data queries (i.e., controlled queries) during the game.

Case 2: Users with different access privileges to data In a system where users have

different access privileges to data, we study the security strength of MU-ORAM in protecting

an innocent user’s access pattern to the data blocks that cannot be accessed by the collusive

users. In the following, we present new game and security definitions.

97

Definition 4. A game G2(M, p,N,N ′,m) between a challenger and an adversary is defined

similarly to G1 (in Definition 2) except for the following differences:

• In the Initialization Phase: the adversary is given only N ′ IDs from the totally N IDs.

• In the Query Phases I, II and III: there is no limitation on the number of Type I data

queries that the adversary can make.

• In the Selection Phase I and II: θ0 and θ1 are two distinct IDs selected uniformly at

random from the set of IDs that are unknown to the adversary.

To quantify the security strength of MU-ORAM in Case 2, we introduce the following

definition:

Definition 5. ((ϵ, t)-security against collusive coalition) An MU-ORAM constructionM, in

which users have different access privileges to the outsourced data, is said to be (ϵ, t)-secure in

protecting an innocent user’s access to the data that a collusive coalition of semi-honest storage

server, users and some (but not all) proxies are not authorized to access, if no adversary can

win the game G2(M, p, N , N ′, m), where N ′ ≤ N − 2, with an advantage of at least ϵ within

time period t.

7.2 Scheme

This section elaborates our proposed MU-ORAM design, which includes storage structure,

system initialization, data query, and data shuffling. Figure 7.2 illustrates the overall workflow

of data query and shuffling.

7.2.1 Storage Structure

MU-ORAM server organizes its storage as a hierarchy of buckets, and each bucket can store

up to logN data blocks:

• The hierarchy consists of L = ⌈logN − log logN⌉ layers.

98

• Each layer l (l = 0, · · · , L− 1) has nl = 2l+1 · logN buckets. Hence, the top layer of the

hierarchy (i.e., layer 0) has 2 logN buckets, while the bottom layer of the hierarchy (i.e.,

layer L− 1) has N buckets.

• Each layer l is associated with a public hash function, denoted as Hl(∗), which maps each

element of group Gp to one bucket at layer l.

• Each layer l has a bitmap to record whether each bucket at this layer is empty or not.

Note that, in MU-ORAM, there is no dummy data in its storage.

7.2.2 System Initialization

A trusted authority, which we call system initialization server, is responsible for initializing

the system. The system initialization includes proxy initialization, storage initialization, and

user initialization.

• The initialization server first picks z from Fp \ {0} uniformly at random.

• Suppose there are m proxies, denoted as ϕ0, · · · , ϕm−1 in the system. For each ϕk (k =

0, · · · ,m − 1), it is preloaded by the initialization server with the following keys: xk(l),

yk(l) and ∆zk(l) for each layer l ∈ {0, · · · , L − 1}, which are randomly picked from

Fp \ {0}. These keys are used for encrypting data block IDs and contents. To facilitate

presentation, we introduce the following notations:

x(l) =
m−1∏
k=0

xk(l); y(l) =
m−1∏
k=0

yk(l); ∆z(l) =
m−1∏
k=0

∆zk(l); z(l) = z +∆z(l). (7.2)

• The initialization server exports all the N data blocks to the bottom layer (i.e., Layer L−

1) as follows: for each data block (gi, di), it is encrypted to (g
x(L−1)
i , (g

−z(L−1)
i di)

y(L−1)),

and stored to bucket HL−1(g
x(L−1)
i).

• For each user, when s/he joins the system, the initialization server preloads to him/her

the public hash function Hl(∗) for each layer l ∈ {0, · · · , L − 1}. For each data block

Di that this user is authorized to access, the user is preloaded with tuple (gi, g
′
i = g−zi),

where gi is the ID of the data block Di.

99

7.2.3 Data Query

When a user wants to query the data block of ID gi from the storage server, she first needs

to randomly select another ID denoted as gj and also query the data block of ID gj . Then,

for each of the IDs gi and gj , the data request, data reply and data uploading phases shall be

run sequentially for each of the non-empty layers from the top to the bottom of the storage

hierarchy. As the processes for querying gi and gj are similar, in the following we only present

how these phases are executed for non-empty layer l when gi is queried.

7.2.3.1 Phase 1: Data Request

In this phase, the user determines a bucket on layer l and sends a request to retrieve data

blocks from the bucket. The phase includes the following steps.

[Q1: Obtain Encrypted ID of the Query Target Data] The goal of this step is to compute

the encrypted ID of the query target data block. As MU-ORAM uses the product of all proxies’

secret keys as the encryption key, [Q1] requires a collaboration between the user and proxies,

as shown in Figure 7.3. It consists of two sub-steps as follows.

[Q1.1] In the first sub-step, the user sends the following message to proxy ϕ0:

⟨
gr0i , g

r0
i , (g

′
i)
r1
⟩
,

where r0 and r1 are two nonces randomly picked from Fp \ {0}.

[Q1.2] Upon receiving the message, each proxy ϕk (k = 0, · · · ,m− 2) updates it and forwards

to ϕk+1: ⟨
(gr0i)

∏k
t=0 xt(l) , (gr0i)

∏k
t=0 ∆zt(l)yt(l) ,

(
(g′i)

r1
)∏k

t=0 yt(l)
⟩
.

Note that xk(l), yk(l) and ∆zk(l) are secrets preloaded to ϕk. After the message has traversed

the entire proxy chain, it becomes⟨
(gr0i)

∏m−1
t=0 xt(l) , (gr0i)

∏m−1
t=0 ∆zt(l)yt(l) ,

(
(g′i)

r1
)∏m−1

t=0 yt(l)
⟩
=

⟨
g
r0x(l)
i , g

r0∆z(l)y(l)
i , (g′i)

r1y(l)
⟩
,

according to Equation (7.2). Then, the message is returned to the user by ϕm−1. Upon receiving

the message, the user can obtain

g
x(l)
i =

(
g
r0x(l)
i

)1/r0

100

and

g
y(l)z(l)
i =

(
g
r0∆z(l)y(l)
i

)1/r0
·
(
(g′i)

r1y(l)
)1/r1

,

respectively, as r0 and r1 are its self-generated nonces. Note that, g
x(l)
i is the ID of the query

target data block encrypted with the product of all proxies’ secret keys, which will be used in

[Q2]. g
y(l)z(l)
i is stored locally at the user and will be used in [Q5: Data Reply].

[Q2: Compute Bucket for Access] Based on g
x(l)
i , the user computes the position pos of

the bucket that may contain the target data block:

pos← Hl

(
g
x(l)
i

)
.

[Q3: Bitmap Retrieval] This step is to retrieve the bitmap that will be used by the user to

decide the buckets to request. This is to avoid the situation where the user may attempt to

retrieve an empty bucket at layer l; if this happens, the server would know for sure that Dt is

not at this layer, thus leaking the information about Dt.

[Q4: Bucket Request] The user selects the bucket to request based on the retrieved bitmap

as follows:

• If Di has already been found at layer l′ < l, the user randomly picks a non-empty bucket

according to the bitmap.

• Otherwise, the user checks if the bucket at position pos is empty or not. If it is empty,

the user randomly picks a non-empty bucket to access; else, the user accesses bucket pos.

Note that in [Q3], the user needs to retrieve a bitmap of 2l logN bits; when l is large,

it is infeasible for the user to do so. To deal with this issue, the bitmap can be stored in a

recursive manner. For example, suppose there are α bits in the bitmap. The server can create

two bitmaps instead of one. In the first bitmap, it stores α bits and each bit indicates whether

the corresponding bucket is empty or not. The second bitmap stores
√
α bits and each bit i

(0 ≤ i ≤
√
α− 1) is set to 0 if all buckets from

√
α · i to

√
α · (i+ 1)− 1 are empty. This way,

[Q4] becomes:

• If Di has already been found at layer l′ < l, the user first requests the second bitmap

of
√
α bits. According to the retrieved bitmap, the user randomly selects a “1” bit, say,

101

at position P . Then, the corresponding segment indicated by P in the first bitmap is

retrieved. At last, the user randomly picks a non-empty bucket from the segment.

• Otherwise, the user downloads the second bitmap and checks if the bit of position P ′ =

⌊ pos√
α
⌋ is 1. If it is 0, the user randomly picks a “1” bit (say, at position P) from the second

bitmap; else, let P = P ′. Next, the user retrieves the segment from the first bitmap that

corresponds to P : (1) if bucket at position pos is not empty, it is selected; (2) otherwise,

a non-empty bucket is randomly selected.

This way, the communication cost is reduced to O(
√
α) bits. Indeed, the communication cost

can be reduced further with more recursive levels introduced in the bitmap.

7.2.3.2 Phase 2: Data Reply

In response to the bucket request from the user, the storage server returns all the data

blocks at the requested buckets to the user in two sub-steps: [Q5.1: From Server to User] and

[Q5.2: From User to Proxies and back to User], as shown in Figure 7.4.

[Q5.1] The storage server returns all encrypted data blocks in the requested buckets to the

user. Each data block has the following format:

(
g
x(l)
i′ , (g

−z(l)
i′ di′)

y(l)
)
.

If g
x(l)
i′ = g

x(l)
i for a data block, it is the target data block. In this case, the data content

part d̂ = d
y(l)
i is encrypted by multiplying (g

−z(l)
i′ di′)

y(l) with g
y(l)z(l)
i obtained in step [Q1.2];

then the following step [Q5.2] is executed to decrypt d̂ and obtain di.

Otherwise (i.e., none of the returned data blocks is the query target), the user randomly

selects d̂ from Gp and then starts step [Q5.2] to also pretend the decryption process.

[Q5.2] The user randomly picks r2 from Fp \{0}, and sends d̂r2 to proxy ϕ0. Then, each proxy

ϕk (k = 0, · · · ,m− 2) updates it and forwards to ϕk+1:

d̂
r2∏k

t=0 yt(l) .

102

After the message has traversed the entire proxy train, it becomes

d̂

r2∏m−1
t=0 yt(l) = d̂

r2
y(l) ,

and is then returned to the user.

If d̂ = d
y(l)
i , the returned message is dr2i and the user can obtain di and access it. Otherwise,

the returned message is simply discarded.

7.2.3.3 Phase 3: Data Uploading

In Phase 2, one bucket is downloaded from each non-empty layer of the storage server.

After data access, only one data block from each bucket, which must include the query target,

need to be uploaded to the shuffling buffer, while other downloaded data blocks are discarded.

The storage server updates the corresponding buckets and the bit map to reflect the changes.

Note that, the content of the query target data block may have been changed after access.

For simplicity, the following description will still use di to denote each data block. The data

uploading phase uploads each of the selected data blocks, denoted as (g
x(l)
i , (g

−z(l)
i di)

y(l)), to a

temporary buffer at the storage server as follows.

Each proxy ϕk (k = 0, · · · ,m− 1) picks xtemp
k , ytemp

k and ∆ztemp
k randomly from Fp \ {0}.

We introduce xtemp, ytemp, ∆ztemp and ztemp as follows:

xtemp =

m−1∏
k=0

xtemp
k ; ytemp =

m−1∏
k=0

ytemp
k ; ∆ztemp =

m−1∏
k=0

∆ztemp
k ; ztemp = z +∆ztemp.

The user sends
⟨
g
r3x(l)
i , d̂r4i = (g

−z(l)
i di)

r4y(l),∆dr5i

⟩
to proxy ϕ0, which updates it to

⟨ g
r3x(l)·

x
temp
0
x0(l)

i , g
r3x(l)·

∆z0(l)y
temp
0

x0(l)

i , g
r3x(l)·

−∆z
temp
0 y

temp
0

x0(l)

i , d̂
r4
y
temp
0
y0(l)

i , (∆dr5i)y
temp
0 ⟩,

and sends it to ϕ1. Here, r3, r4 and r5 are three random numbers picked by the user from

Fp \ {0} and ∆di = d′i/di if di is the target data block (where d′i denotes the content of the

target data after the access), otherwise, ∆di is randomly selected from Gp.

103

Upon receiving the message, each proxy ϕk (k = 1, · · · ,m− 2) updates it and forwards the

following to ϕk+1:

⟨ g
r3x(l)·

∏k
t=0 x

temp
t∏k

t=0 xt(l)

i , g
r3x(l)·

∏k
t=0 ∆zt(l)y

temp
t∏k

t=0 xt(l)

i ,

g
r3x(l)·

−
∏k
t=0 ∆z

temp
t y

temp
t∏k

t=0 xt(l)

i , d̂
r4

∏k
t=0 y

temp
t∏k

t=0 yt(l)

i , (∆dr5i)
∏k
t=0 y

temp
t ⟩.

After proxy ϕm−1 updates, the message becomes:

⟨ g
r3x(l)·

∏m−1
t=0 x

temp
t∏m−1

t=0 xt(l)

i , g
r3x(l)·

∏m−1
t=0 ∆zt(l)y

temp
t∏m−1

t=0 xt(l)

i ,

g
r3x(l)·

−
∏m−1
t=0 ∆z

temp
t y

temp
t∏m−1

t=0 xt(l)

i , d̂
r4

∏m−1
t=0 y

temp
t∏m−1

t=0 yt(l)

i , (∆dr5i)
∏m−1
t=0 ytemp

t ⟩,

which is equal to

⟨ gr3x
temp

i , g
r3∆z(l)ytemp

i , g−r3∆z
tempytemp

i , (g
−z(l)
i di)

r4ytemp
, (∆dr5i)y

temp ⟩.

Then, the message is sent to the user and the user removes r3, r4 and r5 and calculates

g
∆z(l)ytemp

i · g−∆ztempytemp

i · (g−z(l)i di)
ytemp

= (g−z
temp

i di)
ytemp

.

If the computed entry is the target data block, the user will further multiply ∆dtemp
i to the

data content field to get

(g−z
temp

i d′i)
ytemp

.

Without loss of generality, we still use di to denote the content of each data block including

the target data block.

Then, the user uploads

⟨ gxtemp

i , (g−z
temp

i di)
ytemp ⟩

to the shuffling buffer at the storage server.

7.2.4 Data Shuffling

After every data query, data shuffling is performed. First, the layer which data blocks

should be shuffled to needs to be determined. As a rule, data should be shuffled to layer l′ > 0

if the total number of data blocks in the temporary buffer and at layers 0, · · · , l′ − 1 is greater

104

than or equal to the total number of buckets at layer l′ − 1, but less than the total number of

buckets at layer l′. Otherwise, shuffling should be performed at layer 0 only. For simplicity, we

use l′ to denote the layer that data blocks are shuffled to.

Data shuffling in MU-ORAM is conducted in the following main steps: (i) Scrambling

Round I (oblivious scrambling data blocks that have been uploaded during Phase 2 and thus

are already in the temporary buffer before data shuffling); (ii) Data Updating and Appending

(updating data blocks at layers 0, · · · , l′ that also need to be shuffled and appending them to

the temporary buffer); (iii) Scrambling Round II (oblivious scrambling all the data blocks); and

(iv) Data Mapping (assigning all the data blocks in the temporary buffer to layer l′ according

to a hash function). The first three steps are performed through the collaborations between

the proxies while the last step is conducted only by the storage server.

To facilitate data shuffling, each proxy maintains a cache that can store c ·
√
N logN · log p

bits, where c ≥ 1 is a system parameter and log p bits is the size of each data block ID or each

piece of the data content. Also, each proxy ϕk (k = 0, · · · ,m− 1) selects keys xnewk , ynewk and

∆znewk (l′) for layer l′, as well as xshufk and yshufk for the temporary buffer. All these keys are

selected from Fp \ {0} uniformly at random.

7.2.4.1 Scrambling Round I

The purpose of this round is to re-encrypt and obliviously scramble the data blocks that

are in the server’s temporary buffer immediately after the data uploading phase ends. Let nI

denote the number of these data blocks. As the total number of layers is L and at most two

data blocks are moved from each non-empty layer to the temporary buffer during the query

process, at most 2L data blocks need to be re-encrypted and scrambled in this round. Hence,

nI ≤ 2L.

Firstly, each proxy ϕk (k = 0, · · · ,m − 1) determines a permutation function πnIk that

permutes a sequence of nI elements. The proxy also prepares a local cache with size 3nI log p

bits; note that log p bits is the size of each data block ID or each piece of data block content.

Secondly, the proxies collaborate in scrambling and re-encrypting the IDs of the data blocks

in the temporary buffer of the server. The process is as follows.

105

Proxy ϕ0 fetches the encrypted IDs of all the data blocks in the server’s temporary buffer, to

its own cache and scrambles these IDs using permutation function πnI0 . Then, each encrypted

ID, denoted as gx
temp

i , is updated (i.e., re-encrypted) to tuple

⟨ g
xtemp· x

shuf
0

x
temp
0

i , g
xtemp·

∆z
temp
0 yshuf0

x
temp
0

i , g
xtemp·−∆znew0 (l′)yshuf0

x
temp
0

i ⟩,

and sent to proxy ϕ1.

Upon receiving the nI tuples from proxy ϕk−1, each proxy ϕk (k = 1, · · · ,m− 2) scrambles

the tuples using permutation function πnIk , and then updates each tuple to the following and

forwards it to ϕk+1:

⟨ g
xtemp·

∏k
t=0 x

shuf
t∏k

t=0 x
temp
t

i , g
xtemp·

∏k
t=0 ∆z

temp
t yshuft∏k

t=0 x
temp
t

i , g
xtemp·−

∏k
t=0 ∆znewt (l′)yshuft∏k

t=0 x
temp
t

i ⟩.

After proxy ϕm−1 scrambles the tuples that it has received and updates them, each tuple

becomes:

⟨ g
xtemp·

∏m−1
t=0 xshuft∏m−1
t=0 x

temp
t

i , g
xtemp·

∏m−1
t=0 ∆z

temp
t yshuft∏m−1

t=0 x
temp
t

i , g
xtemp·

−
∏m−1
t=0 ∆znewt (l′)yshuft∏m−1

t=0 x
temp
t

i ⟩.

which is equal to

⟨ gxshufi , g∆z
tempyshuf

i , g
−∆znew(l′)yshuf

i ⟩,

where xshuf, yshuf, ∆ztemp and ∆znew(l′) are defined as

xshuf =
m−1∏
k=0

xshufk ; yshuf =
m−1∏
k=0

yshufk ;∆ztemp =
m−1∏
k=0

∆ztemp
k ; ∆znew(l′) =

m−1∏
k=0

∆znewk (l′).

Proxy ϕm−1 saves the sequence of re-encrypted IDs (i.e., gx
shuf

i) back to the server’s temporary

buffer, but stores the sequence of {g(∆z
temp−∆znew(l′))yshuf

i } to its local cache.

Thirdly, the proxies scramble and re-encrypt the contents of the nI data blocks, piece by

piece. As the operations for pieces are similar, we only present the operations on the first piece

of the data blocks in the following.

Proxy ϕ0 fetches the first pieces of all the data blocks from the server’s buffer to its own

cache, and scramble these pieces using permutation function πnI0 . Then, each piece, denoted

as d̂i = (g−z
temp

i di)
ytemp

, is updated (i.e., re-encrypted) to d̂i

yshuf0

y
temp
0 , and sent to the next proxy

106

ϕ1. The following proxies conduct the similar scrambling, re-encryption, and forwarding. After

scrambling and re-encryption have been completed in ϕm−1, each of the nI pieces in the sequence

is in the form of

d̂i

∏m−1
k=0

yshufk∏m−1
k=1

y
temp
k ,

which is equal to

d̂i
yshuf

ytemp = (g−z
temp

i di)
ytemp· y

shuf

ytemp = g
−(z+∆ztemp)yshuf

i .

Finally, proxy ϕm−1 multiplies the piece with its locally-stored g
(∆ztemp−∆znew(l′))yshuf

i to obtain

(g
−znew(l′)
i di)

yshuf , and saves it back to the server’s temporary buffer.

7.2.4.2 Data Updating and Appending

For each data block Di on layer l (l = 0, · · · , l′), which needs to be shuffled to layer l′, it

should be updated to

⟨ gxshufi , (g
−znew(l′)
i di)

yshuf ⟩.

The updating is performed collaboratively by the proxies, similar to Phase 2 (Data Uploading).

Different from Phase 2, no any user is involved in the process. Hence, the first proxy ϕ0 directly

updates based on ⟨gx(l)i , d̂i = (g
−z(l)
i di)

y(l)⟩. After the last proxy ϕm−1 has completed its update,

it appends the updated data block to the server’s temporary buffer. Therefore, at the end of this

step, all the data blocks that should be shuffled to layer l′ are stored in the server’s temporary

buffer.

7.2.4.3 Scrambling Round II

This round is to re-encrypt and scramble all the data blocks in the server’s temporary

buffer. Let nII denote the total number of these data blocks. As the total number of data

blocks stored at the server is N , it holds that nII ≤ N . Our proposed algorithm for this

round is based on the idea of piece-wise shuffling proposed by Zhang et al. [77] and the data

scrambling algorithm proposed by Williams et al. [72]. Our algorithm requires the capacity

of each proxy’s local cache to be c
√
N logN log p bits and incurs the communication cost of

O(N log logN) data blocks on average.

107

When nII ≤
√
N , the scrambling round operates as follows.

Initially, each proxy ϕk for k = 0, · · · ,m− 1 determines a secret permutation function πnIIk

which permutes a sequence of nII elements; therefore, the storage requirement of this function

is nII log nII . The proxy also randomly picks new keys xnewk (l′) and ynewk (l′) for layer l′.

Then, proxy ϕ0 downloads the encrypted IDs of the nII data blocks, and performs the

following steps sequentially:

• Re-encryption. Each encrypted ID denoted as gx
shuf

i is re-encrypted to (gx
shuf

i)

xnewk (l′)
yshuf
k .

• Scrambling. All the nII re-encrypted data IDs are scrambled using permutation function

πnII0 .

• Forwarding. The encrypted IDs are forwarded to the next proxy, which also performs

the re-encryption and scrambling using its own key and secret permutation function, and

forwards them to its next proxy. The last proxy stores the encrypted IDs back to the

server’s temporary storage.

In a similar way, the data contents of the nII blocks are also re-encrypted using key ynewk (l′)

and scrambled using permutation function πnIIk sequentially by each proxy ϕk, piece by piece.

When nII >
√
N , the data blocks are also re-encrypted and scrambled sequentially by all

the proxies, piece by piece. As different pieces of the same data block are processed in the

similar way (the only difference is, the first piece, i.e., the encrypted ID, is re-encrypted with

key xnewk (l′) while the content pieces are re-encrypted with key ynewk (l′) by each proxy ϕk), we

present only the processing of the first pieces (i.e., encrypted IDs) of all the nII data blocks.

Furthermore, the processing by different proxies are also similar, except that they use different

keys and permutation functions for re-encryption and permutation. Hence, in the following we

only elaborate how proxy ϕ0 processes the encrypted IDs of the data blocks.

As formally presented in Algorithms 8 and 9, the data blocks are processed through multiple

sub-rounds. In the first sub-round, each of the nII data blocks in the server’s temporary

buffer forms a single-element group, and every n
1/2
II groups are randomly merged together, re-

encrypted, and uploaded back to the server’s temporary buffer. In the second sub-round, these

108

Algorithm 8 Re-encrypt&Scramble({I0, · · · , InII−1}): re-encryption and scrambling of en-
crypted IDs I0, · · · , InII−1 by proxy ϕ0.

1: n← nII
2: kold = xshuf0

3: while n > 1 do

4: split {I0, · · · , InII−1} evenly to n groups: ĝ0, · · · , ĝn−1

5: n′ ← ⌊
√
n⌋

6: split local cache evenly to n′ segments: S0, · · · , Sn′

7: if n′ > 1 then

8: select knew randomly from Fp \ {0}
9: kold = kold ∗ knew

10: else

11: knew = xnew0 (l′)/kold
12: end if

//Merge n groups into n′ larger groups

13: for i := 0 to n′ − 1 do

14: Re-encrypt&Merge(knew, {ĝi∗n′ , · · · , ĝ(i+1)∗n′−1})
15: end for

16: n← n′

17: end while

data blocks form n
1/2
II groups with n

1/2
II pieces in each group. Then, every n

1/4
II of such groups

are randomly merged together, re-encrypted, and uploaded back to the server. Such merging

and re-encryption repeat until all the pieces are merged together.

7.2.4.4 Data Mapping

In this step, the server assigns each of the nII data blocks, which is in the form of

(g
xnew(l′)
i , d̂i) into bucket Hl′(g

xnew(l′)
i) of layer l′.

7.3 Security Analysis

This section presents the security analysis of the proposed MU-ORAM. First, we show that

MU-ORAM is secure against honest but curious storage server. Then, we show that MU-ORAM

is secure against a collusive coalition of honest but curious server, proxies and users.

109

Algorithm 9 Re-encrypt&Merge(knew, {g̃0, · · · , g̃n−1}): merge pieces in groups g̃0, · · · , g̃n−1

and re-encrypt them with key knew

1: s← c
√
N logN/n //calculate the capacity of each segment

//fill in half of each segment

2: for i := 0 to n− 1 do

3: for j := 0 to S/2 do

4: download one piece from g̃i (if any) to segment Si
5: end for

6: end for

//scramble and re-encrypt the pieces

7: while segments are not empty do

8: if groups are not empty then

9: for i := 0 to n− 1 do

10: download one piece from g̃i (if any) to Si
11: end for

12: end if

13: for i := 0 to n− 1 do

14: randomly select r from {j|Sj is not empty }
15: re-encrypt the first piece in Sr with knew & upload it to the server’s temporary buffer

16: end for

17: end while

7.3.1 Security against Curious Server

MU-ORAM follows the framework of hash-based ORAMs [27] with the following major

differences: (i) no dummy data block in the system; (ii) during each query process, two data

blocks from each non-empty level are removed from its bucket and uploaded to the top layer;

(iii) empty bucket will never be accessed due to the bitmap. In the following, we first find the

upper bound of the failure probability (i.e., bucket overflow probability) and then prove that

MU-ORAM is secure against an honest but curious server according to Definition 7.1.3.1.

Lemma 10. (Probability of bucket overflow). ∀0 ≤ l ≤ L− 1,

Pr[A bucket overflows on layer l] ≤ O(N− log logN).

Proof. In MU-ORAM, there are at most nl = 2l+1 logN data blocks to be distributed into

nl buckets. Then, according to a standard balls and bins model, we could have the following

analysis:

110

Let us consider a particular bucket bucj , and for each data block, define X1, · · · , Xnl as

random variables such that

Xi =

 1 the ithdata block mapped to bucj ,

0 otherwise.

Note that, X1, · · · , Xnl are independent of each other, and hence for each Xi, Pr[Xi = 1] =

1
nl
. Then, the probability that bucj has more than t data blocks is:

Pr[# data blocks in bucj ≥ t] ≤
(
nl
t

)(
1

nl

)t
≤

(e · nl
t

)t(1

nl

)t
=

(e
t

)t
(7.3)

Note that the second inequality of Equation (7.3) is due to
(
n
k

)
≤

(
e·n
k

)k
for all k < n. Further

considering the fact that nl ≤ N and t = logN , we apply the union bound of all buckets on

layer l:

Pr[∃ a bucket with more than t data blocks]

≤ nl ·
(e
t

)t
≤ N ·

(
e

logN

)logN

= O(N− log logN).

Therefore, we have for any layer l in MU-ORAM, the probability of any buckets to have more

than logN data blocks is negligible in N , which is O(N− log logN).

Theorem 4. MU-ORAM is secure against an honest but curious server.

Proof. Given any two equal-length sequence x⃗ and y⃗ of data requests, their corresponding

observable access sequences A(x⃗) and A(y⃗) are computationally indistinguishable, because of

the following reasons:

• Firstly, according to the query algorithm, sequences A(x⃗) and A(y⃗) should have the same

format; that is, they contain the same number of accesses, and each pair of corresponding

accesses have the same format.

• Secondly, all data blocks in MU-ORAM are randomly encrypted and each data block

is re-encrypted after each access. Hence, the two sequences could not be distinguished

based on the appearance of data blocks.

111

• Thirdly, according to the query algorithm, the j-th accesses (j = 1, · · · , |A(x⃗)|) of the

A(x⃗) and A(y⃗) are from the same non-empty layer of the storage. Also, according to the

MU-ORAM design, the buckets accessed from each layer are either selected uniformly at

random, or determined by a hash function (which is also uniformly random); hence, they

are uniformly random in both sequences.

Furthermore, according to Lemma 10, a bucket overflows (i.e., MU-ORAM fails) with prob-

ability O(N− log logN). Therefore, according to Definition 7.1.3.1, MU-ORAM is secure against

an honest but curious storage server.

7.3.2 Security against Collusive Coalition

To quantify the security strength of MU-ORAM against a collusive coalition, we first intro-

duce the Modified Matching Diffie-Hellman (MMDH) problem as follows:

Definition 4. (Modified Matching Diffie-Hellman (MMDH) Problem). Let Gp be a multi-

plicative cyclic group of order p and generator g. The MMDH problem is defined as: given

ga0 , ga1 , gc, and (gabc, ga1−bc), for some unknown a0, a1 and c randomly picked from Fp and an

unknown binary bit b randomly picked from {0, 1}, find out the value of b.

Similar to the proofs by Handschuh et. al. [36] and Bao et. al. [4], it can be shown that

MMDH is a computational hard problem as the Decisional Diffie-Hellman and Matching Diffie-

Hellman problems.

We study the security strength of MU-ORAM in the following two cases, as described in

Section 7.1.3.2.

Case 1: Users with same access privileges to data For this case, we study the

security strength of MU-ORAM in protecting an innocent user’s access pattern to the data

that can also be accessed by the collusive users. Specific, we have proved the following theorem

based on the game G1 and the (ϵ, t, ncq)-security notion defined in Section 7.1.3.2:

Theorem 5. If the MMDH problem is (ϵ, t)-hard (i.e., there is no algorithm can solve the

MMDH problem with an advantage of at least ϵ within time period t), MU-ORAM is (1.5ncq/N+

112

(1 − 3ncq)2ϵ/N, t, ncq)-secure against a collusive coalition of semi-honest storage server, users

and some (but not all) proxies, in the scenario that the collusive users can access all the data

accessed by any innocent user.

Proof. The proof includes two parts: In the first part, we develop an algorithm B to play as the

challenger in game G1. Note that, there can be two consequences of the game: (i) Consequence I:

B aborts the game and claims failure because adversary A succeeds in finding a data ID chosen

in a Selection Phase. (ii) Consequence II: B does not “abort the game and declare failure”. In

this case, B will attempt to solve the MMDH problem if A succeeds in the end of the game. In

the second part, we analyze the probabilities of the above two consequences respectively, and

the probability for B to succeed in solving the MMDH problem when Consequence II occurs.

Part (1): Algorithm B.

B acts as the challenger in the game G1(M, p,N,m, ncq). B is given g, ga0 , ga1 , gc, and

(gabc, ga1−bc), where b ∈ {0, 1} and a0, a1 and c are randomly picked from Fp.

Initialization Phase - B simulates to construct and initialize m proxies and the data storage

of N encrypted data blocks according to Sections 7.2.1 and 7.2.2: A hierarchical storage struc-

ture as described in Section 7.2.1 is constructed and initialized. Three integers are randomly

selected from Fp \{0}, and denoted as z, α and β respectively. For each layer l ∈ {0, · · · , L−1}

in the hierarchical structure, a random oracle (hash function)Hl is introduced to map encrypted

data block IDs to buckets. Each proxy ϕk (k = 0, · · · ,m−1) is preloaded with keys xk(l), yk(l)

and ∆z(l) for l ∈ {0, · · · , L− 1}, which are all randomly selected from Fp \ {0}. N data blocks

are initialized as N distinct (ID, content) pairs as follows: Let u and v be two distinct integers

selected from {0, · · · , N −1} uniformly at random. Data blocks Du and Dv are set to (ga0 , gyu)

and (ga1 , gyv) respectively, where yu and yv are randomly selected from Fp\{0}. For each of the

rest data blocks Di = (gi, di) where i ∈ {0, · · · , N − 1} \ {u, v}, gi = gxi and di = gyi where xi

and yi are randomly selected from Fp\{0}. The IDs, i.e., gi for i = 0, · · · , N−1, are provided to

A. Each Di is then encrypted into (g
x(L−1)
i , (g

−z(L−1)
i di)

y(L−1)), where z(L−1) = z+∆z(L−1),

and uploaded to bucket HL−1(g
x(L−1)
i) of layer L− 1.

Query Phase I - This phase consists of multiple requests that can be made by A. We

describe B’s response to each type of A’s requests as follows:

113

• Data Query - Depending on the type of query requests made by A, the responses are

different.

– For Type I query (i.e., controlled query), if the number of such type of query exceeds

ncq, the game aborts. Otherwise, A simulates the behavior of the user, and B

simulates the behavior of the proxies and the server. They both follow MU-ORAM’s

query and shuffling algorithms.

– For Type II query (i.e., random query), B simulates the querying user, the proxies

and the server, following MU-ORAM’s algorithms. Note that, A does not know

which ID is selected by B to query, but it can observe the process through requesting

transcripts from the server and compromised proxies.

Without loss of generality, in this proof we assume that the content of the queried target

data block is always changed before it is uploaded.

• Proxy Compromise - Upon A queries to compromise a proxy, the secret keys xk(l), yk(l)

and ∆zk(l), where l = 0, · · · , L− 1, are returned to A.

• Proxy and Server Transcript Checking - Upon A queries to check the transcript of a

proxy’s or the server’s certain operations, the input and the output of the operations are

returned to A.

• Storage Inspection - A may request to inspect the bitmap of a particular layer or the

content of a particular bucket of some layer. As a result, the bitmap and/or the content

of a bucket are returned.

Selection Phase I - In this phase, B launches the process of querying data block Du, i.e.,

the data block of ID ga0 .

A new game instance (which we call Game Instance 1) is forked from the current game

(which we call Game Instance 0). In both game instances, the query for data block Du is

executed following the querying and shuffling algorithms described in Sections 7.2.3 and 7.2.4.

However, the data content of Du is changed differently in these instances:

114

• In Game Instance 0, after Du is queried, the content of Du, i.e., du, is changed from its

current value to gw where w is randomly selected from Fp \ {0}.

• In Game Instance 1, after Du is queried, du is changed to gz+α·cu gβ. Also, from this point,

the ∆z used in the uploading phase and the shuffling phase should always follow the

format of ∆z = α · c+ γ where γ ∈ Fp \ {0} and can vary. This way, the data content of

Du will be encrypted into

g−(z+∆z)
u gz+α·cu gβ = g−γu gβ,

which can be computed without knowing the answer to the MMDH problem.

Query Phase II - In this phase, the requests are handled in the same way as in the Query

Phase I in both instances of the game, except for the following scenarios. (i) When data block

Du, which was queried in the Selection Phase I, is queried by A as Type I query request: The

rule specified in the definition of G1 is applied, and B will abort the game and declare failure if

the specified conditions are satisfied. (ii) When data block Du is queried again in the response

to Type II query request: The current Game Instance 1 is aborted, and the current Game

Instance 0 forks a new game instance which we call Game Instance 1. In both instances, the

query for Du is processed following the querying and shuffling algorithms described in Sections

7.2.3 and 7.2.4, but the content of Du is changed differently:

• In Game Instance 0, after Du is queried, du is changed from its current value to gw where

w is randomly selected from Fp \ {0}.

• In Game Instance 1, after Du is queried, du is changed from its current value to gz+α·cu gβ.

And, from this point, the ∆z used in the uploading phase and the shuffling phase should

always follow the format of ∆z = α · c + γ where γ ∈ Fp \ {0} and can vary. Note that,

this is the same as in Selection Phase I.

Selection Phase II - In this phase, B launches the process of querying data block Dv, i.e., the

data block of ID ga1 , in both instances of the game. Then, each of the current game instance

forks a new game instance. Game Instance 0 forks a new Game Instance 2, and Game Instance

115

1 forks a new Game Instance 3. All these four game instances follow the same data querying

and shuffling algorithms as above, but the content of Dv is changed differently:

• In Game Instances 0 and 1, after Dv is queried, dv is changed from its current value to

gw where w is randomly selected from Fp \ {0}.

• In Game Instances 2 and 3, after Dv is queried, dv is changed to gz+α·cv gβ.

Furthermore, in Game Instance 3, if Du and Dv are in the same bucket when the query is

launched, the game aborts; otherwise, the following operations should be conducted:

• In the data query phase, both Du and Dv (i.e., the buckets that contain these two data

blocks) should be selected to download. Note that this is attainable because the querying

algorithm downloads two buckets from each layer that has two or more buckets, and Du

and Dv are in different buckets. Also this process is oblivious because both blocks are

randomly distributed to the buckets.

• In the data uploading phase, both Du and Dv should be selected to upload to the tem-

porary buffer of the server. This is attainable because the uploading algorithm uploads

one data block from each downloaded bucket.

• In the data shuffling phase immediately after the query, Du and Dv are scrambled during

the Scrambling Round I, in which ∆znew(l′) (note: l′ is the layer that the data blocks

should be shuffled to) is set to r0 · c and xshuf is set to r1 · c where r0 and r1 are randomly

selected from Fp \ {0}. Hence, Du and Dv are encrypted to

(
ga0c·r1 , (g−a0c·(r0−α)gβ)y

shuf
)

and (
ga1c·r1 , (g−a1c·(r0−α)gβ)y

shuf
)
,

respectively; further after random scrambling, they become

(
(gabc)r1 , (g−abc)(r0−α)·y

shuf
gβ·y

shuf
)

116

and (
(ga1−bc)r1 , (g−a1−bc)(r0−α)·y

shuf
gβ·y

shuf
)
,

where b is either 0 or 1 with the same probability.

• In the rest lifetime of this game instance, the key x(l) should always be some r · c, where

r is selected randomly from Fp \ {0} and can vary.

Query Phase III - The requests in this phase are handled in the same way as in Query Phase

I, except when Du or Dv is queried. (i) When Du or Dv is queried by A as Type I query request,

the specified rule is checked to determine if B should abort the game and declare failure. (ii)

When Du or Dv is queried as B’s response to Type II query request, it is handled as follows.

When Du is queried, Game Instances 1 and 3 abort; meanwhile, Game Instance 0 forks a

new Game Instance 1, and Game Instance 2 forks a new Game Instance 3. These four game

instances follow the same data querying and shuffling algorithms as above, but the content of

Du is changed differently:

• In Game Instances 0 and 2, after Du is queried, du is changed from its current value to

gw where w is randomly selected from Fp \ {0}.

• In Game Instances 1 and 3, after Du is queried, du is changed to gz+α·cu gβ.

Furthermore, in Game Instance 3, if Du and Dv are in the same bucket when the query is

launched, the game aborts; otherwise, the operations as described in the Selection Phase II

should be conducted as well.

When Dv is queried, Game Instances 2 and 3 abort; meanwhile, Game Instance 0 forks a

new Game Instance 2, and Game Instance 1 forks a new Game Instance 3. These four game

instances follow the same data querying and shuffling algorithms as above, but the content of

Dv is changed differently:

• In Game Instances 0 and 1, after Dv is queried, dv is changed from its current value to

gw where w is randomly selected from Fp \ {0}.

• In Game Instances 2 and 3, after Dv is queried, dv is changed to gz+α·cv gβ.

117

Furthermore, in Game Instance 3, if Du and Dv are in the same bucket when the query is

launched, the game aborts; otherwise, the operations as described in the Selection Phase II

should be conducted as well.

Challenge Phase - If Game Instance 3 does not exist, the game will abort. Otherwise, B

launches the process of querying the data block with ID gab in this game instance. Though B

does not know gab because b is unknown, the query can be implemented as follows: to execute

the first step of data query phase for layer l where x(l) = rc for some r ∈ Fp, B picks γ1 and γ2

from Gp uniformly at random, and then sends out (γ1, γ1, γ2) to the simulated proxies which

will execute the algorithm as specified in MU-ORAM design; no matter what are returned

from the proxies, B sets (gab)
x(l) = (gabc). Then, the rest part of the data query and shuffling

algorithms can be implemented trivially.

Query Phase IV - The requests in this phase are handled in the same way as in Query

Phase I, except that: (i) If A requests to query ID gu or gv, B will abort the game and declare

failure. (ii) In respond to A’s type II query, B will randomly select one of the IDs to query. In

this case, if the selected ID is gu, the data block with ID gab is queried instead; if the selected

ID is gv, the data block with ID ga1−b is queried instead.

Response Phase - A responds with b′. Algorithm B uses b′ as the solution to the MMDH

problem.

Part (2): Analysis of B.

First, we analyze the probability for Consequence I to occur. Note that, Consequence I refers

to the case that B aborts the game and declares failure according to the rules in processing

Type I data queries in Query Phase II and III. As explained in the definition of G1, such failure

of B is due to that A finds the ID chosen in a Selection Phase and thus can discover the access

pattern. Specifically, there are three sub-cases for such failure to occur: Sub-case (i): A finds

the ID chosen in Selection Phase I (i.e., gu - ID of Du); Sub-case (ii) A finds the ID chosen in

Selection Phase II (i.e., gv - ID of Dv); Sub-case (iii): A requests to query Du or Dv in Query

Phase IV. Sub-case (i) occurs if Du as a Type I data query is requested both before and after

Selection Phase I. We can compute the probability for this to occur as follows:

• Supposing x Type I queries are made before Selection Phase I, the probability for the

118

query of Du to be among the x queries is
(
N−1
x−1

)
/
(
N
x

)
= x/N .

• Suppose y Type I queries are made after Selection Phase I. As B has higher probability

to find the target of Selection Phase I if it only chooses the IDs that it has queried

before Selection Phase I to query again (Note: this way it can detect the data block

whose content is changed), the probability for Du to be queried among the y IDs is(
x−1
y−1

)
/
(
x
y

)
= y/x.

Therefore, the probability for Sub-case (i) is (x/N) · (y/x) = y/N ; further due to x+ y ≤ ncq

and y < x, the probability is at most ncq/2N .

Similarly, the probability for Sub-case (ii) is at most ncq/2N . Lastly, the probability for

Sub-case (iii) is at most 1−
(
N−2
ncq

)
/
(
N
ncq

)
< 2ncq/N . Totally, the probability for Consequence

I to occur is less than 3ncq/N .

Second, we consider Consequence II, i.e., B does not “abort the game and declare failure”.

Here, there will be two cases: (i) In the first case, the game aborts at the beginning of Challenge

Phase because Du and Dv are in the same bucket in Game Instance 3. This case occurs with

a probability of at most 1
2 logN , due to the facts that each layer has at least 2 logN different

buckets and data blocks are randomly distributed to the buckets. (ii) In the second case, the

game finishes normally, and the adversary returns a binary bit b′. In this case, if A wins the

game (i.e., b′ = b), B also obtains the correct answer (i.e., b = b′) to the MMDH problem and

thus solve the problem.

Considering the above two cases together, if A can win the game under Consequence II with

advantage ϵ′ within time period t, B can solve the MMDH problem with an advantage of at least

2 logN−1
2 logN ϵ′ > 0.5ϵ′ with the same time complexity. Hence, with the assumption that the MMDH

problem is (ϵ, t)-secure, i.e., no algorithm can solve the MMDH problem with an advantage of

at least ϵ within time t, we conclude that A cannot win the game under Consequence II with

an advantage of at least 2ϵ within time t.

To summarize the above analysis for Consequence I and II, A cannot win the game with

a probability greater than 3ncq/N + (1− 3ncq/N) ∗ (0.5 + 2ϵ) (i.e., an advantage greater than

1.5ncq/N +(1− 3ncq)2ϵ/N), if it can issue at most ncq (ncq < N/3) Type I data queries and its

119

overall running time is t. That is, MU-ORAM is (1.5ncq/N +(1−3ncq)2ϵ/N, t, ncq)-secure.

This theorem reveals the following intuition: As the collusive attackers have the access

privileges to all data that an innocent user can access, they can attack the access pattern

privacy of an innocent user through checking if some randomly selected data blocks have been

changed after innocent user accessed a data block. However, to make such attack effective,

the attackers need to make a number of queries that is proportional to N ; specifically, to gain

an advantage A, the attackers need to make A · N/3 queries on average. Note that, this will

further require the adversary to incur O(A ·N log2N log logN ·B) bits communication cost as

the per query communication cost of MU-ORAM is O(log2N · log logN · B) bits as shown in

Section 7.4.

Case 2: Users with different access privileges to data For this case, we study the

security strength of MU-ORAM in protecting an innocent user’s access pattern to the data that

cannot be accessed by the collusive users. To quantify the strength, we have proved the following

theorem based on the game G2 and the notion of (ϵ, t)-security defined in Section 7.1.3.2:

Theorem 6. If the MMDH problem is (ϵ, t)-hard (i.e., there is no algorithm can solve the

MMDH problem with an advantage of at least ϵ within time period t), MU-ORAM is (2ϵ, t)-

secure in protecting an innocent user’s access pattern to the data that cannot be accessed by a

collusive coalition of semi-honest storage server, users and some (but not all) proxies.

Proof. As the proof of Theorem 6 is actually a subset of the proof of Theorem 5, we only sketch

the difference as follows: This proof also includes two parts: construction of algorithm B′ to

play as the challenger in game G2 with the adversary A, and the analysis of B′.

In the first part, as the definitions of G2 is different from that of G1, we describe the major

difference of B′ from B in the proof of Theorem 2: (i) Initially, A is only provided with a subset

of the complete ID sets; that is, there are totally N IDs but A is only given N ′ ≤ N − 2 of the

IDs. (ii) The IDs of Du and Dv (i.e., the two data blocks queried in Selection Phase I and II)

are unknown to A. (iii) B′ will not “abort the game and declare failure” in the game.

120

In the second part, as B′ does not “abort the game and declare failure”, we only need to

analyze the probability for B′ to solve the MMDH problem if A wins the game. Therefore,

based on the assumption that the MMDH problem is (ϵ, t)-hard, we can conclude that A’s

advantage to win the game within time t is at most 2ϵ.

Theorem 6 reveals the intuition that, MU-ORAM is more effective in protecting an innocent

user’s access pattern to the data that cannot be accessed by the collusive attackers; specifically,

if the advantage is negligible to solve the MMDH problem in a certain time period t, the chance

for the collusive attackers to reveal the above data access pattern within time period t is also

negligible.

Comparing the security strength of MU-ORAM in the above two cases, we can see that,

MU-ORAM is more effective to protect data access pattern in Case 2 than in Case 1.

7.4 Cost Analysis

In this section, we analyze the storage and communication costs of the MU-ORAM with

the following assumptions:

• We assume the data block size B ≥ 4
√
N bits. Note that this is reasonable in practice.

For example, if N ≤ 232, B is just required to be at least 32 bytes.

• We assume the bitmap recursion depth is 4. Hence, for a layer with n buckets, the total

size of the bitmap in bits is:

bitmap(n) = n+
4
√
n3 +

4
√
n2 + 4

√
n ≤ 2n,

where the inequality holds as long as n ≥ 2.

• For simplicity, the size of a piece is set to b = 2048 bits.

7.4.1 Storage Costs

We analyze the storage costs for the storage server, each proxy, and each user, respectively.

121

Storage cost at the server The storage cost at the server is no more than N · (2 +B)

bits, which is O(N ·B) because: (i) there is no dummy data stored on the server; (ii) the size

of the bitmap in bits is

L−1∑
l=0

bitmap(nl) ≤
L−1∑
l=0

2 · nl =
L−1∑
l=0

2l+1 logN = 2 logN · (2L − 1) ≤ 2 logN · 2L ≤ 2N.

Storage cost at each proxy Due to the need to perform data shuffling, the storage cost

at each proxy is O(
√
N logN · b) bits, where b is the size of each data piece. Note that, in

practical settings [65] where N ≤ 232, the cost is no larger than 2 GB.

Storage cost at each user For each user, the storage cost is only O(B + 4
√
N) bits,

which is O(B) due to the assumption that B ≥ 4
√
N bits.

7.4.2 Communication Costs

The communication costs of each user, each proxy and the server are studied in this sub-

section.

Communication cost of each user Each user is involved only in the query process.

For step [Q3], the user needs to retrieve the bitmap from each layer. To retrieve the bitmap

from layer l, 4 4
√
nl bits will be transferred between the server and the user. Thus, the total

number of transferred bits for the bitmap is

L−1∑
l=0

4 4
√
nl =

L−1∑
l=0

4 4
√
2l+1 logN = 4 4

√
2 logN

L−1∑
l=0

2l/4

= 4 4
√

2 logN
2L/4 − 1

21/4 − 1
≤ 22 4

√
2 logN · 2L/4 = 22

4
√
N.

Because there are at most L non-empty layers, the cost of bitmap is at most 22L 4
√
N bits.

For step [Q4], the user needs to retrieve two buckets from each non-empty layer. In step [Q5],

since each bucket may contain up to logN data blocks, the maximum number of data blocks

retrieved is 2L logN (i.e., 2L logN · B bits). During data uploading phase, at most 2L data

blocks are uploaded to the proxy chain and then uploaded to the server, which incurs 2L · B

bits communication cost. Therefore, the total number of bits transferred to the user during

122

each data query is no more than O(log2N ·B+logN · 4
√
N) bits. According to the assumption

of B ≥ 4
√
N bits, the cost is O(log2N ·B) bits.

Communication cost of each proxy During data query process, each data block needs

to go through each proxy. Thus, each proxy’s communication cost for query is the same as a

user’s communication cost, which is O(log2N ·B).

Next, we analyze the communication cost for data shuffling. First of all, as the proxies local

storage is large enough to scramble all data blocks from the first layer, the communication cost

for data scrambling I on the first layer is 2 logN ·B.

Data shuffling for layer l is triggered when the total number of data blocks on layers 0 to

l− 1 exceeds the total number of buckets on layer l− 1. Also, each query process moves up to

logN data blocks to the top layer. Hence, the frequency for data shuffling occurring for layer

l is at most once per nl/ logN queries.

The communication cost incurred to each proxy during a query process is

S(nl) = nl(⌈log log nl⌉+ 1) ·B.

Therefore, the amortized communication cost for data shuffling is bounded by:

L−1∑
l=0

S(nl)

nl/ logN
=

L−1∑
l=0

logN · (⌈log log nl⌉+ 1) ·B

≤
L−1∑
l=0

logN · (log logN + 1) ·B

<

logN∑
l=0

logN · (log logN + 1) ·B

= O(log2N log logN ·B).

Overall, data shuffling communication cost is O(log2N log logN ·B) bits.

Communication cost of the storage server The communication cost of the storage

server is no more than the sum of the costs of each user and each proxy. Hence, the communi-

cation cost of the server is O(log2N log logN ·B) bits.

123

7.4.3 Cost Comparison

Table 7.1 compares MU-ORAM with a couple of representative ORAM constructions, name-

ly, B-ORAM [40] and Path ORAM [66]. B-ORAM is the most communication-efficient hash-

based ORAM construction; Path ORAM is the most communication-efficient index-based O-

RAM that does not require the server to conduct intensive computation. Note that, other

ORAM constructions have been briefly introduced and compared to MU-ORAM in Section 6.

Table 7.1 Cost Comparison. N is the total number of data blocks outsourced to the storage
server, B is the size of a data block (B ≥ 4

√
N), and b is the size of a data piece.

Cost B-ORAM Path ORAM MU-ORAM

Query
Comm.

User O(B log2N
log logN) O(B logN)ω(1) O(B log2N)

Proxy N/A N/A O(B log2N)

Shuffle
Comm.

User O(B log2N
log logN) O(B logN)ω(1) N/A

Proxy N/A N/A O(B log2N log logN)

User Storage O(B) O(B logN)ω(1) O(B)

Proxy Storage N/A N/A O(b
√
N logN)

Server Storage ≥ 4N ·B 20N ·B (B + 2)N

As shown in Table 7.1, MU-ORAM incurs higher communication cost compared to both

B-ORAM and Path ORAM, which is the cost to support multi-user ORAM model and deal

with the stealthy privacy attacks.

7.5 Summary

In this work, we propose MU-ORAM, a new ORAM construction to deal with stealthy

privacy attack in the application scenarios where multiple users share a data set outsourced to

a remote storage server and meanwhile want to protect each individual’s data access pattern

from being revealed to one another. We propose new security definitions for MU-ORAM, design

data storage, query and shuffling algorithms, and conduct extensive security and cost analysis

to evaluate the security properties as well as the communication and storage costs of the design.

124

User Proxy Chain (Φ) Server

[Q4]: Bucket Query

D
a
ta
 R
eq
u
est

D
a
ta
 R
ep
ly

D
a
ta
 U
p
lo
a
d
in
g

D
a
ta
 S
h
u
fflin

g

[Q3]: Bitmap Retrieval

D
a
ta
 Q
u
ery
 (itera

tiv
ely
 fo
r ea

ch
 n
o
n
-em

p
ty
 la
y
er)

[Q5.2]: Obtain target data

Shuffle data to

Upload data

[Q2]: pos = Hash (Encrypted ID)

[Q5,1]: Return data

[Q5,2]: Decrypt data content

[Q1]: Encrypt target data ID

Re-encrypt data

a selected layer

Figure 7.2 MU-ORAM Overview. The data query process includes the three phases of data
request, data reply and data uploading, which is followed by the data shuffling
process.

Server
1,1

Q

2,1
Q

User ϕ0 ϕ1 ϕm-1
Φ

Figure 7.3 [Q1]: Obtain encrypted target data ID.

125

Server
2,5

Q

1,5
Q

ϕ0 ϕ1 ϕm-1

Φ

User

Figure 7.4 Phase 2: Data reply.

126

CHAPTER 8. CONCLUSIONS AND FUTURE WORKS

8.1 Conclusions

In this dissertation, we have presented four novel Oblivious RAM solutions to improve the

state-of-the-art Oblivious RAM performance and study the feasibility of multi-user ORAM. We

have rigorously proved their security and demonstrated their asymptotical efficiency. We have

also shown their practical performances through numerical analysis. The main contributions

of our work are:

• Firstly, we present a segmentation-based Oblivious RAM (S-ORAM). S-ORAM adopts

piece-wise shuffling and segment-based query techniques to improve the performance of

data shuffling and query by factoring block size into design. Extensive security analysis

proves that S-ORAM is a highly secure solution with a negligible failure probability of

O(N− logN). In terms of communication and storage costs, S-ORAM outperforms the

Balanced ORAM (B-ORAM) and the Path ORAM (P-ORAM), which are two state-

of-the-art hash and index based ORAMs respectively, in both practical and theoretical

evaluations.

• Secondly, we present a new, security-provable hybrid ORAM-PIR construction called

KT-ORAM, which organizes the server storage as a k-ary tree with each node acting as a

fully-functional PIR storage. It also adopts a novel delayed eviction technique to optimize

the eviction process. KT-ORAM is proved to preserve the data access pattern privacy

with a small failure probability of O(N− log logN) where N is the number of exported data

blocks. With a constant-size user storage and k = logN , KT-ORAM has an asymptotical

communication cost of O(logN
log logN · B) when the recursion level on metadata is of O(1)

depth with uniform block size B = N ϵ (0 < ϵ < 1). In addition, KT-ORAM outperforms

127

all these constructions in terms of communication and user-side storage costs, under

practical scenarios.

• In the third work, a new ORAM called Generalized Partition ORAM (GP-ORAM) is

presented. GP-ORAM utilizes a new shuffling method, adjusts the number of partitions

according to the available user-side storage, and outsources the index table to the server.

Through these techniques, it achieves low bandwidth cost (O(logN)) and has significantly

less user-side storage cost than P-ORAM. We demonstrate the effectiveness of GP-ORAM

via extensive security and cost analysis.

• In the final work, we present MU-ORAM, a new ORAM construction to deal with stealthy

privacy attack in the application scenarios where multiple users share a data set out-

sourced to a remote storage server and meanwhile want to protect each individual’s data

access pattern from being revealed to one another. We propose new security definitions for

MU-ORAM, design data storage, query and shuffling algorithms, and conduct extensive

security and cost analysis to evaluate the security properties as well as the communication

and storage costs of the design.

8.2 Future Works

For the future work, there are multiple directions to work on. First of all, the feasibility of

all existing ORAM systems in the practical cloud/data center will be a very challenging topic.

For practical deployment, it is possible to have many underlying problems such as how to make

backups of an existing ORAM system such that the disaster tolerance and availability can be

guaranteed. In addition, the user access parallelism could be another issue. Secondly, as the

cloud storage is usually physically distributed in distributed infrastructure, the multi-server

ORAM systems will be more complicated and more interesting, including the issue of how

to distributed workload among these servers. Thirdly, the server-side storage cost of existing

ORAMs are usually high. For example, suppose the server storage cost is 10 times the storage

required without ORAM systems as shown in Path ORAM [66]. When a company outsources

1 PB data, 10 PB storage space is needed for Path ORAM. It would be a very practical issue

128

to reduce the storage cost on the server. At last, for multi-user ORAM systems, the security

strength and efficiency improvement is also a potential and challenging problem to solve.

129

BIBLIOGRAPHY

[1] Ajtai, M., Komlos, J., and Szemeredi, E. (1983). An O(n log n) sorting network. In Proc.

STOC.

[2] Amazon (2006). Amazon S3. https://aws.amazon.com/s3/.

[3] Asonov, D. (2004). Querying databases privately: a new approach to private information

retrieval. In Springer Verlag.

[4] Bao, F., Deng, R. H., and Zhu, H. (2003). Variations of Diffie-Hellman problem. In LNCS.

Springer.

[5] Beimel, A., Ishai, Y., Kushilevitz, E., and Raymond, J.-F. (2002). Breaking the O(n
1

2k−1)

barrier for information-theoretic private information retrieval. In In Proc. FOCS.

[6] Brumley, D. and Boneh, D. (2003). Remote timing attacks are practical. In Proc. USENIX

Security.

[7] Cachin, C., Micali, S., and Stadler, M. (1999). Computationally private information re-

trieval with polylogarithmic communication. In Proc. Eurocrypt.

[8] Chen, B., Lin, H., and Tessaro, S. (2015). Oblivious Parallel RAM: Improved efficiency

and generic constructions. In IACR Cryptology ePrint Archive. International Association for

Cryptologic Research.

[9] Chor, B. and Gilboa, N. (1997). Computationally private information retrieval. In Proc.

Theory of Computing.

[10] Chor, B., Goldreich, O., Kushilevitz, E., and Sudan, M. (1995). Private information

retrieval. In In Proc. FOCS.

130

[11] ComputerWeekly (2012). Investigation reveals serious cloud computing

data security flaws. http://www.computerweekly.com/news/2240148943/

Investigation-reveals-serious-cloud-computing-data-security-flaws.

[12] Daemen, J. and Rijmen, V. (2002). The design of Rijndael. Springer-Verlag New York,

Inc.

[13] Damgard, I., Meldgaard, S., and Nielsen, J. B. (2011). Perfectly secure Oblivious RAM

without random oracles. In Proc. TCC.

[14] Dautrich, J. and Ravishankar, C. (2015). Combining ORAM with PIR to minimize band-

width costs. In Proc. CODASPY.

[15] Dautrich, J., Stefanov, E., and Shi, E. (2014). Burst ORAM: Minimizing ORAM response

times for bursty access patterns. In Proc. USENIX Security.

[16] Devadas, S., van Dijk, M., Fletcher, C. W., Ren, L., Shi, E., and Wichs, D. (2015). Onion

ORAM: A constant bandwidth blowup Oblivious RAM. In IACR Cryptology ePrint Archive.

International Association for Cryptologic Research.

[17] Dropbox (2006). http://www.dropbox.com/. In Dropbox.

[18] Dubhashi, D. and Ranjan, D. (1996). Balls and bins: a study in negative dependence.

Random Structures and Algorithms, 13.

[19] E.Batcher, K. (1968). Sorting networks and their applications. In Proc. AFIPS.

[20] Fletcher, C., Naveed, M., Ren, L., Shi, E., and Stefanov, E. (2015). Bucket ORAM: Single

online roundtrip, constant bandwidth Oblivious RAM. In IACR Cryptology ePrint Archive.

International Association for Cryptologic Research.

[21] Fletcher, C. W., Ren, L., Kwon, A., Dijk, M. V., Stefanov, E., and Devadas, S. (2014).

Tiny ORAM: A low-latency, low-area hardware ORAM controller. In IACR Cryptology

ePrint Archive. International Association for Cryptologic Research.

131

[22] Franz, M., Williams, P., Carbunar, B., Katzenbeisser, S., Andreas, P., Sion, R., and

Sotakova, M. (2012). Oblivious outsourced storage with delegation. In Proc. FC.

[23] Gasarch, W. (2004). A survey on private information retrieval. In Online at

http://crypto.stanford.edu/d̃abo/courses/cs355 fall04/pir.pdf.

[24] Gentry, C., Goldman, K., Halevi, S., Julta, C., Raykova, M., and Wichs, D. (2013).

Optimizing ORAM and using it efficiently for secure computation. In Proc. PETS.

[25] Gertner, Y., Ishai, Y., Kushilevitz, E., and Malkin, T. (1998). Protecting data privacy in

private information retrieval schemes. In In Proc. STOC.

[26] Goldberg, I. (2007). Improving the robustness of private information retrieval. In In Proc.

S&P.

[27] Goldreich, O. and Ostrovsky, R. (1996). Software protection and simulation on Oblivious

RAM. Journal of the ACM, 43(3).

[28] Goodrich, M. T. (2010). Randomized shellsort: a simple oblivious sorting algorithm. In

Proc. SODA.

[29] Goodrich, M. T. and Mitzenmacher, M. (2010). Mapreduce parallel cuckoo hashing and

Oblivious RAM simulations. In Proc. CoRR.

[30] Goodrich, M. T. and Mitzenmacher, M. (2011). Privacy-preserving access of outsourced

data via Oblivious RAM simulation. In Proc. ICALP.

[31] Goodrich, M. T., Mitzenmacher, M., Ohrimenko, O., and Tamassia, R. (2011). Oblivious

RAM simulation with efficient worst-case access overhead. In Proc. CCSW.

[32] Goodrich, M. T., Mitzenmacher, M., Ohrimenko, O., and Tamassia, R. (2012). Privacy-

preserving group data access via stateless Oblivious RAM simulation. In Proc. SODA.

[33] Google (2012). Google Drive. https://www.google.com/drive/.

[34] Group, N. W. (2000). HTTP Over TLS. In RFC 2818.

132

[35] Group, N. W. (2011). The secure sockets layer (SSL) protocol version 3.0. In RFC 6101.

[36] Handschuh, H., Tsiounis, Y., and Yung, M. (1999). Decision oracles are equivalent to

matching oracles. In Proc. PKC.

[37] Helger, L. and Bingsheng, Z. (2010). Two new efficient PIR-writing protocols. In Zhou, J.

and Yung, M., editors, Applied Cryptography and Network Security, volume 6123 of Lecture

Notes in Computer Science. Springer Berlin Heidelberg.

[38] Hoffstein, J., Pipher, J., and Silverman, J. H. (1998). NTRU: A ring-based public key

cryptosystem. In Algorithmic Number Theory, volume 1423 of Lecture Notes in Computer

Science, pages 267–288. Springer Berlin Heidelberg.

[39] Islam, M. S., Kuzu, M., and Kantarcioglu, M. K. (2012). Access pattern disclosure on

searchable encryption: ramification, attack and mitigation. In Proc. NDSS.

[40] Kushilevitz, E., Lu, S., and Ostrovsky, R. (2012). On the (in)security of hash-based

Oblivious RAM and a new balancing scheme. In Proc. SODA.

[41] Kushilevitz, E. and Ostrovsky, R. (1997). Replication is not needed: single database,

computationally-private information retrieval (extended abstract). In Proc. FOCS.

[42] Lee, D.-L. and Batcher, K. E. (1995). A multiway merge sorting network. IEEE Transac-

tions on Parallel and Distributed Systems, 6(2).

[43] Lipmaa, H. (2005). An oblivious transfer protocol with log-squared communication. In In

Proc. ISC.

[44] Lipmaa, H. and Zhang, B. (2010). Two new efficient PIR-writing protocols. In Proc.

ACNS.

[45] Lu, S. and Ostrovsky, R. (2011). Multi-server Oblivious RAM. In IACR Cryptology ePrint

Archive. International Association for Cryptologic Research.

133

[46] Ma, Q., Zhang, J., Zhang, W., and Qiao, D. (2016). SE-ORAM: A storage-efficient Oblivi-

ous RAM for privacy-preserving access to cloud storage. In IACR Cryptology ePrint Archive.

International Association for Cryptologic Research.

[47] Maffei, M., Malavolta, G., Reinert, M., and Schroder, D. (2015). GORAM – Group ORAM

for privacy and access control in outsourced personal records. In IACR Cryptology ePrint

Archive. International Association for Cryptologic Research.

[48] Mayberry, T., Blass, E.-O., and Chan, A. H. (2014). Efficient private file retrieval by

combining ORAM and PIR. In Proc. NDSS.

[49] Mayberry, T., Blass, E.-O., and Noubir, G. (2015). Multi-client Oblivious RAM secure

against malicious servers. In IACR Cryptology ePrint Archive. International Association for

Cryptologic Research.

[50] Moataz, T., Blass, E.-O., and Mayberry, T. (2015a). Constant communication ORAM

without encryption. In IACR Cryptology ePrint Archive. International Association for Cryp-

tologic Research.

[51] Moataz, T., Blass, E.-O., and Noubir, G. (2015b). Recursive trees for practical ORAM.

In Proc. FC.

[52] Moataz, T., Mayberry, T., and Blass, E.-O. (2015c). Constant communication ORAM

with small blocksize. In Proc. CCS.

[53] Moataz, T., Mayberry, T., Blass, E.-O., and Chan, A. H. (2014). Resizable tree-based

Oblivious RAM. In IACR Cryptology ePrint Archive. International Association for Crypto-

logic Research.

[54] News, T. H. (2014). Google Drive vulnerability leaks users’ private data. http://

thehackernews.com/2014/07/google-drive-vulnerability-leaks-users_9.html.

[55] NIST (2013). Block cipher modes. http://csrc.nist.gov/groups/ST/toolkit/BCM/

index.html.

134

[56] Ostrovsky, R. and III, W. E. S. (2007). A survey of single-database PIR: techniques and

applications. In Online at http://eprint.iacr.org/2007/059.pdf.

[57] Pinkas, B. and Reinman, T. (2010). Oblivious RAM revisited. In Proc. CRYPTO.

[58] Ren, L., Fletcher, C. W., Kwon, A., Stefanov, E., Shi, E., van Dijk, M., and Devadas, S.

(2014a). Ring ORAM: Closing the gap between small and large client storage Oblivious RAM.

In IACR Cryptology ePrint Archive. International Association for Cryptologic Research.

[59] Ren, L., Fletcher, C. W., Yu, X., Kwon, A., van Dijk, M., , and Devadas, S. (2014b).

Unified Oblivious-RAM: Improving recursive ORAM with locality and pseudorandomness.

In IACR Cryptology ePrint Archive. International Association for Cryptologic Research.

[60] Ren, L., Fletcher, C. W., Yu, X., van Dijk, M., and Devadas, S. (2013). Integrity verifica-

tion for Path Oblivious-RAM. In Proc. HPEC.

[61] Shi, E., Chan, T.-H. H., Stefanov, E., and Li, M. (2011). Oblivious RAM with O((logN)3)

worst-case cost. In Proc. ASIACRYPT.

[62] Sion, R. and Carbunar, B. (2007). On the practicality of private information retrieval. In

In Proc. NDSS.

[63] Stefanov, E. and Shi, E. (2013a). Multi-cloud oblivious storage. In Proc. CCS.

[64] Stefanov, E. and Shi, E. (2013b). ObliviStore: high performance oblivious cloud storage.

In Proc. S&P.

[65] Stefanov, E., Shi, E., and Song, D. (2011). Towards practical Oblivious RAM. In Proc.

NDSS.

[66] Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., and Devadas, S. (2013).

Path ORAM: an extremely simple Oblivious RAM protocol. In Proc. CCS.

[67] Trostle, J. and Parrish, A. (2011). Efficient computationally private information retrieval

from anonymity or trapdoor groups. In Information Security, volume 6531 of Lecture Notes

in Computer Science, pages 114–128. Springer Berlin Heidelberg.

135

[68] Wang, X., Chan, T.-H. H., and Shi, E. (2015). Circuit ORAM: On tightness of the

Goldreich-Ostrovsky lower bound. In Proc. CCS.

[69] Wang, X., Huang, Y., Chan, T.-H. H., Shelat, A., and Shi, E. (2014). SCORAM: Oblivious

RAM for secure computations. In Proc. CCS.

[70] Williams, P. and Sion, R. (2008a). Building castles out of mud: practical access pattern

privacy and correctness on untrusted storage. In Proc. CCS.

[71] Williams, P. and Sion, R. (2008b). Usable PIR. In Proc. NDSS.

[72] Williams, P. and Sion, R. (2013). Access privacy and correctness on untrusted storage. In

Proc. TISSEC.

[73] Williams, P., Sion, R., and Tomescu, A. (2012a). PrivateFS: a parallel oblivious file system.

In Proc. CCS.

[74] Williams, P., Sion, R., and Tomescu, A. (2012b). Single round access privacy on outsourced

storage. In Proc. CCS.

[75] Yu, X., Ren, L., Fletcher, C. W., Kwon, A., van Dijk, M., and Devadas, S. (2014).

Enhancing Oblivious RAM performance using dynamic prefetching. In IACR Cryptology

ePrint Archive. International Association for Cryptologic Research.

[76] Zhang, J., Ma, Q., Zhang, W., and Qiao, D. (2014a). KT-ORAM: A bandwidth-efficient

ORAM built on k-ary tree of PIR nodes. In IACR Cryptology ePrint Archive. International

Association for Cryptologic Research.

[77] Zhang, J., Zhang, W., and Qiao, D. (2014b). S-ORAM: A segmentation-based Oblivious

RAM. In Proc. AsiaCCS.

[78] Zhang, J., Zhang, W., and Qiao, D. (2015). GP-ORAM: A generalized Partition ORAM.

In Proc. NSS.

136

[79] Zhang, J., Zhang, W., and Qiao, D. (2016). MU-ORAM: Dealing with stealthy privacy

attacks in multi-user data outsourcing services. In IACR Cryptology ePrint Archive. Inter-

national Association for Cryptologic Research.

	2016
	Data access pattern protection in cloud storage
	Jinsheng Zhang
	Recommended Citation

	tmp.1470684968.pdf.SMMBs

