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ABSTRACT 

 

 Twitter is a novel online microblogging service launched in July 2006. This service has been 

rapidly gaining worldwide popularity. It has more than 500 million users, out of which there are more 

than 332 million active users in May 2015. Twitter website is one of the ten most visited websites and 

has been described as “the SMS of the Internet.” It is not only widely used in a person’s daily life, but 

also in politics, such as running election campaigns, mining or influencing public opinions.  

We study the problem of automated classification of tweets posted on official accounts by a 

state’s senate and a state’s House of Representatives as well as accounts by individual senators and 

house representatives, to one of the 21 policy agenda topics specified by Policy Agenda Project [2]. This 

problem is a multi-class classification problem for short text since each tweet has a limit of 140 

characters. Compared with traditional text classification, short text classification has a special 

characteristic that the content is short and sparse. Therefore, it is very challenging to extract a useful 

feature for classification. To achieve a reasonable performance, we investigate three methods including 

Support Vector Machine (SVM) with Linear Kernel, SVM with Topics Grouping and Tweets Merging, 

and Convolutional Neural Networks (CNN). Based on the experimental results, the CNN method 

achieved the best performance of 77.34% accuracy on an independent testing set of 1,388 tweets in the 

Iowa dataset. Furthermore, the CNN method is robust and stable without the need to manually tune the 

hyper-parameters, which are the attributes of the neural network such as the number of hidden layers, the 

number of units per layer, and the connections per unit. 
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CHAPTER 1 

INTRODUCTION  

 

Twitter is a hot online microblogging service [1], which has been widely used by politicians [2-

3]. They use Twitter to mine or guide the public opinion or broadcast their political agendas. They can 

also know users’ political alignment by sentiment analysis of the users’ tweets [4]. In 2016, Hillary 

Clinton, a candidate for the Democratic presidential nomination, launched a political fundraiser in Twitter 

for her election campaign [5]. Senators and House representatives use Twitter to convey to the public 

about policy agendas under discussion in a state’s Senate and House through official and individual 

accounts. These political tweets can be very useful for political science scholars to conduct research on 

government related issues.  

Policy Agendas Project [6] defines 20 major topics and 220 subtopics and a codebook [7] 

describing them in detail along with guidelines and exceptions to manually classify text into one of these 

20 topics as listed in Table 1.1. Topic 11 is missing from the list. In Congressional Bill Project [8], the 

classification has been used to manually assign congressional bills to different topics and subtopics. 

Automated classification of congressional bill titles according to these categories have been investigated 

[9-10]. 

Table 1.1. List of 20 Policy Agenda Topics 

Topic Number Topic Name 
1 Macroeconomics 
2 Civil Rights, Minority Issues, and Civil Liberties 
3 Health 
4 Agriculture 
5 Labor and Employment 
6 Education 
7 Environment 
8 Energy 
9 Immigration 
10 Transportation 
12 Law, Crime, and Family Issues 
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13 Social Welfare 
14 Community Development and Housing Issues 
15 Banking, Finance, and Domestic Commerce 
16 Defense 
17 Space, Science, Technology and Communications 
18 Foreign Trade 
19 International Affairs and Foreign Aid 
20 Government Operations 
21 Public Lands and Water Management 

  

By classifying tweets into policy agenda topics, political science scholars can potentially discover 

what is under a discussion by senators and House representatives, how policy agendas are formed and 

conveyed to the public via Twitter, how the conveyed agendas compared to the agendas of the bills 

discussed in the Senate and the House. However, manually labeling each tweet for the corresponding 

topic as shown in Table 1.2 is labor intensive and time consuming for human coders as the number of 

tweets is very large and some tweets could be seen as belonging to more than one topic. In our study, we 

collected 308,601 tweets from 472 accounts of only 11 states. It took two political science students over 8 

months to manually label part of this tweet collection for this study. 

Table 1.2. Tweets and the manually assigned policy agenda topics 

Tweet Body Topic Name 
Radio IA: Gov says FY2017 budget must be ‘very frugal’Not 
surprising after his no-vote massive corp. tax cut! 
https://t.co/Cr5lGj4TqZ 

Macroeconomics 

Former Sen. Warnstad (SCJ): "Flag of rebellion deserves no 
public place of honor" http://t.co/PMV9mn9U3L #ialegis 
http://t.co/l4bihznbdc 

Civil Rights, Minority 
Issues, and Civil Liberties 

RT @mccoyforsenate: Rx drug & heroin overdose deaths could 
be prevented in IA by allowing Iowans to get meds that 
counteract overdoses.htt… 

Health 

McCoy: Senate will pass reforms this year to address the 
problems Branstad/Reynolds continues to ignore. 

Mixed Topics 

 

1.1 Problem Statement 

Automated classification of a tweet into one of the above policy agenda topics has not been investigated 

in the literature. However, it has the potential to assist political scientists to learn about the formation of 

Table 1.1. (Continued) 

https://t.co/Cr5lGj4TqZ
http://t.co/l4bihznbdc
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state policy agendas by state legislatures and the strategies in which these agendas are communicated to 

the public. This classification problem is challenging due to short and informal text content of tweets. 

Furthermore, a tweet sometimes contains words appearing in more than one policy agenda topic. We call 

such a tweet an ambiguous tweet. In our study, we assign ambiguous tweets their own topic named 

“Mixed Topics.” By adding this new topic, we have a total of 21 policy agenda topics in our study. The 

research problem is to design a 21 class classifier that automatically assigns a tweet into one of these 

classes effectively. This problem has many challenges. Firstly, tweets are short, making it difficult to 

extract useful features for classification.  Secondly, tweets are very informal with hashtags and URLs. 

Finally, the problem is a 21-class classification problem, which is more challenging to achieve very high 

accuracy for each class compared to a binary class classification. In fact, how high the accuracy needs to 

be in order for the classifier to be practically useful. 

 

1.2 Contributions 

There are four major contributions in our study as follows. 

(1) We extended an existing Java application to collect tweets from official State Senate and House 

Representatives and individual senator and representative accounts. The application uses Twitter 

REST API to retrieve tweets and store them into a relational database. 

(2) This thesis is first to investigate the problem of classifying a tweet into one of the 21 policy agenda 

topics. The solution has its application for prediction of the top k policy agenda topics under 

discussion by a state’s legislature in a given time period.  

(3) We investigated three classification methods: Support Vector Machine with linear kernel (SVM) 

using Term Frequency weighted by Inverse Document Frequencies, Support Vector Machine with 

Topics Grouping and Tweets Merging, and Convolutional Neural Network (CNN) to find the method 

that gives the best accuracy. We found that the CNN method performs best among these approaches 

with 77% accuracy in an independent testing set containing 1388 tweets by Iowa Senate and House. 
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(4) We developed a new REST API for retrieving top k policy agendas per month per state and for 

finding states with similar policy agenda topics. With the new REST API, it is very convenient for 

user to retrieve the valuable information from the classification result, such as the hot topics discussed 

by a state’s legislature in a given month in a given state and the similarity in topics discussed in a set 

of states in the past one year. 

 

1.3 Organization 

The rest of the thesis is organized as follows. Chapter 2 introduces background and related work 

in text classification and short text classification, tweet classification in Poli-informatics, Convolutional 

Neural Network for text classification, and policy agenda topics related study. Chapter 3 presents our 

proposed work for policy agenda topic classification. Chapter 4 shows the experimental design and 

results. Chapter 5 is our conclusion and the description of the future work. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK  

 

Our study is a multi-class short text classification for policy agenda topics in poli-informatics. In 

this chapter, we summarize related work in text/short text classification, classification in the domain of 

poli-informatics and classification for policy agendas.  

2.1 Text classification vs Short text classification 

Traditionally, text classification, also known as document classification, refers to the 

classification for an entire document or large passage. One advantage of such a classification is that the 

content is rich enough for feature extraction even after applying data pre-processing techniques, such as 

removing stop words and word stemming. Many machine learning algorithms such as Support Vector 

Machine (SVM) with linear kernel, Naive Bayes, Decision Tree, and K-Nearest Neighbor (KNN) have 

been effective for the text classification problems [11-19]. Most of text classification researches focus on 

feature extraction and the performance improvement of KNN and SVM with linear kernel since they 

perform better than other algorithms. The assumption for the KNN method is that nearby instances in the 

vector space should be in the same class. The authors in [12] propose a revised KNN approach to improve 

the performance to deal with the problem that class distribution in the training set is uneven. The revised 

algorithm uses different numbers of nearest neighbors for different classes, rather than a fixed number 

across all categories. The experiments on Chinese text categorization show that the revised algorithm is 

less sensitive to the value of parameter k than the traditional one, and it can properly classify documents 

belonging to smaller classes with a large value of k. The authors in [17] have a deep discussion on the 

popular text classification algorithms, the result shows SVM with linear kernel achieves substantial 

improvements over the currently best performing methods and behaves robustly over a variety of different 

learning tasks. A good result could be achieved fully automatically without any manual parameters tuning 

by SVM with linear kernel. Based on the investigation in this study, SVM with linear kernel can perform 
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well due to four properties of text: (1) high dimensional input space, (2) few irrelevant features, (3) sparse 

document vectors, and (4) mostly linearly separable classes.  

Compared with traditional text classification, short text classification refers to the classification of 

a short sentence. The challenge is that the content is short and sparse, which makes it difficult for feature 

extraction. Most existing solutions enrich the representation of the original short text. The authors of [20] 

proposed two approaches. One method is to search the context of this short text on Internet by using a 

crawling program, and add the context to the short text. The other method is to derive latent topics from 

an existing large corpus. By using these two methods, the content has been enriched and feature 

extraction is on the context or corpus instead of the original short text. The authors of [21] proposed a 

method to map the short text to the concept in Wikipedia. Mapping enriches the representation of short 

text and content in Wikipedia could be used for feature extraction. 

2.2 Convolutional neural network (CNN) for short text classification 

A convolutional neural network [22-24] is a type of feed-forward artificial neural network that 

contains multiple layers, such as the convolutional layer, pooling layer, and Softmax layer. CNN has been 

applied on image recognition successfully in the past decade [25-27]. In recent years, it have been used 

for natural language processing and proved to be useful for short text classification [28]. Traditionally, to 

build a text classifier, we formulate some human-designed features based on dictionaries, domain 

knowledge, or some special tree kernels [29]. However, with CNNs, we do not need design these features 

manually since the best features will be determined automatically during the training process. The authors 

in [28] propose a sentence classification method with a convolutional neural network. It uses an open 

source tool named word2vec to convert a sentence to a matrix, of which its row is the vector 

representation of a word in the sentence. In convolutional layers, the convolutional filters will be selected 

automatically and applied on the matrix to generate feature maps, which are a set of features. The best 

features in each feature map will be selected to penultimate layer (or max-pooling layer) by the max-

pooling technique. Then these best features will be passed to the Softmax layer and processed to represent 
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the probability of each class. Despite little tuning of hyper-parameters of CNN during the training phase, 

a simple CNN with one layer of convolution performs remarkably well (accuracy was reached 89.6% on 

Opinion polarity detection subtask of the MPQA dataset [30]). The authors in [31] introduce a recurrent 

convolutional neural network (RCNN) for text classification. In this model, when learning word 

representations, a recurrent structure is applied to capture contextual information, which will considerably 

reduce noise. The max-pooling layer judges which words play key roles in text classification to capture 

the key components in the text automatically. Unlike the traditional CNN method, it uses a bi-directional 

recurrent structure instead of a fixed window size for filtering.  By using this structure, it is easy to 

capture the contextual information to the greatest extent possible when learning word representations. On 

the same datasets, RCNN performs better with 96.49% accuracy compared with traditional CNN with 

94.79% accuracy.  

2.3 Tweet classification in Poli-Informatics 

Most of the studies involving tweets in the field of poli-informatics focus on the political 

sentiment analysis in Twitter [33-35]. One of the key steps is sentiment classification: the sentiment 

information is extracted from a tweet by some special tool and classified into three or more classes, such 

as very positive, positive, negative, very negative and neutral. The authors of [36] predicted election 

result based on sentiment analysis. They investigated four different machine learning methods for 

sentiment classification: Multinomial Naïve Bayes (MNB), Support Vector Machine (SVM), Adaboost 

MNB (ADA-MNB) [37], and Adaboost SVM (ADA-SVM). The ADA-MNB classifier performs the best 

and achieves 65.09% classification accuracy in 10-fold cross-validation for three classes. The authors in 

[38] predicted the 2011 Dutch Senate election results by Twitter analysis, using two steps to enhance the 

prediction result. These steps are to (1) improve the quality of the document collection by removing 

certain tweets that contain apparent Dutch words but are actually written in another language; (2) perform 

sentiment analysis on the refined document collection using a binary classifier for negative or non-

negative sentiment towards the party mentioned in the tweet. The authors in [39] proposed a 3-class 
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sentiment classification after sarcastic tweets were removed from the dataset before they were 

individually labeled with one of the following categories: pos (postive), neg (negative), mix (including 

both positive and negative), neu (no sentiment towards the topic), nen (tweets not in English), and non 

(tweets without any mention or relation to the topic). Only the pos, neg, and mix categories are used for 

classification, which is a limitation of the research since the other three categories are discarded manually. 

Several approaches have been proposed for this problem. Among them, the distance based scoring 

method was shown to achieve the best performance with 58.96% accuracy. The authors in [40] predicted 

the political alignment of Twitter users based on a training dataset of 1,000 manually classified 

individuals. The political alignments are classified into three types: left, right, and ambiguous. Using 

SVM, the accuracy was reached 91%.  

 

2.4 Related work in policy agenda topics 

Kaul developed a binary classifier to determine whether a tweet conveys a political policy agenda 

or not [41]. The approach includes several key steps. The pre-processing step removes stop words and 

applies the k-stemming technique for each tweet. The feature extraction step extracts term frequency and 

four additional hand-crafted features: whether or not the tweet contains a hashtag (Hashashtag), whether 

the tweet contains a URL (HasURL), the number of characters in the tweet (TweetStrength), and whether 

it has a keyword in any of the policy agenda topics (HasTopicKeyword). The experimental results show 

that these features are useful to improve the classifier’s performance. Next, feature selection, a process of 

selecting the optimal set of features from the given list such that the classifier yields best results, is 

applied. Lastly, a machine learning approach, SVM with linear kernel, Naïve Bayes, and Decision Tree, is 

applied. Among all of these machine learning algorithms, SVM with linear kernel performs best. The best 

recall for the “Has Agenda” class was 0.891 and the worst recall for the same class was 0.769. 

Janardhan investigated a multi-class classifier to classify a given bill title of a congressional bill 

to one of the 19 policy agenda topics [9].  Similar to [41], this approach starts with data pre-processing by 
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deleting stop words and applying k-stemming for each congressional bill title. The second step is feature 

vector extraction. Several methods had been investigated: term occurrence, term frequency, normalized 

term frequency, and normalized topic keyword frequency.  The third step is feature selection and the last 

step is machine learning. Decision Tree, Naïve Bayes, KNN, SVM with linear kernel, and boosting were 

investigated. The SVM based classifier with the normalized term frequency feature representation 

performs best on bill titles with 75% accuracy. 

Unlike the study in [41] that classifies a tweet into two classes: “agenda” or “no agenda,” we 

classify a tweet into one of the 21 major topics. Furthermore, the dataset in our study has tweets not only 

from the official State Senate and House accounts, but also from individual house representatives. 

Compared to the study in [9] that uses congressional bills, our dataset includes tweets. Tweets are shorter 

and less formal than bill titles in most cases. Besides SVM with linear kernel, we use a convolutional 

neural network to build a multi-class classifier. 
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CHAPTER 3 

PROPOSED TWEET CLASSIFICATION METHODS 

 

We investigated three approaches to build a multi-class classifier that classifies tweets into one of 

the 21 classes. They are SVM with linear kernel, SVM with Topic Grouping and Tweet Merging, and 

CNN. We chose SVM with linear kernel since it was found to perform best for text classification in the 

study [17]. We introduce Topic Grouping that groups some topics together to balance the training set and 

merge tweets in the same group in order to balance the number of merged tweets among the groups. We 

chose the CNN approach because the experimental result in the study [28] shows that it is promising for 

short text classification. 

3.1 Approach 1: SVM with linear kernel 

Figure 3.1 shows the whole architecture of this approach. 

 

Figure 3.1. Architecture of Approach 1: SVM with Linear Kernel 

3.1.1 Data Pre-processing 

Data pre-processing is a common step in natural language processing (NLP), which removes 

information that is unlikely to contribute to the improved classification accuracy. We consider the 

following three aspects in our study. 

(1) Remove duplicates. Some tweets are retweeted. The retweeted tweets are different from the 

original ones is that it starts with “RT @OriginalAccountName” in the tweet body. Occasionally, a 

human coder makes a mistake of assigning the duplicate tweets into different topics although they were 

retweeted from the same original tweet. That would make the duplicate tweets ambiguous, which impacts 

the classification accuracy. Therefore, we remove the retweets, keeping only the original tweets. 
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(2) Remove stop words & URLs. Some extremely common words, such as “the”, “is”, “at”, 

“which”, and “on” are of little value for classification. We define a set of stop words and remove all of 

them if they exist in each tweet. We also remove URLs in the tweet body since they are often short URLs 

that do not carry meaningful information. 

(3) K-Stemming reduces a word to its root. For example, words "fishing" and "fished" could be 

reduced to the root "fish" although they are in a different form. There are several popular stemming 

methods in NLP, such as Porter Stemmer, K-Stemmer (K-Stem), and Hunspell Stemmer. We choose K-

Stem because it can avoid over-stemming. Table 3.1 shows an example of over-stemming and under-

stemming: 

Table 3.1. Over-Stemming vs Under-Stemming 

Original word Over-Stemming (Porter) Under-Stemming (K-Stem) 

Politic Polit politic 

Polite Polit polite 

Although “Politic” and “Polite” have different meaning, an over-stemming algorithm can 

reduce them into the same root “polit.” However, K-Stem can avoid such a mistake. 

3.1.2 Feature Extraction 

 Good features help improving the accuracy significantly. In our study, we use 

StringToWordVector (STWV) in Weka [42] to extract unique terms from tweets. Table 3.2 is a list of 

important parameters for STWV. 

Table 3.2. Parameters of STWV for feature formulation 

Parameters Meaning 

IDF Transform Set if the word frequencies in a document should be transformed into:  

fij*log(num of Docs/num of Docs with word i) where fij is the frequency of 

word i in document (instance) j. 
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TF Transform Set if the word frequencies in a document should be transformed into:  

log(1+fij) where fij is the frequency of word i in document (instance) j. 

TF-IDF Transform Set if the word frequencies in a document should be transformed into:  log(1 + 

fij ) * log (num of Docs/num of Docs with word i), where fij is the frequency 

of word i in document (instance) j. 

normalizeDocLength Set if the word frequencies for a document (instance) should be normalized or 

not. 

outputWordCounts Output word counts rather than boolean value of 0 or 1(indicating presence or 

absence of a word) 

 

In our study, we set the outputWordCounts to true and normalize all data both in the training set 

and testing set. We also use Term Frequency–Inverse Document Frequency (TF-IDF) as features. TF-IDF 

is a numerical statistic taken into account the rarity of a word in a collection or corpus [43]. Table 3.2 

shows the formula for computing TF-IDF values. 

 

3.2 Approach 2: SVM with Topics Grouping and Tweets Merging 

Besides using SVM with linear kernel, we group some topics and merge tweets of the same topic 

to build our classification model in order to balance the number of tweets across topics. Figure 3.2 shows 

the distribution of policy agenda topics from tweets of Iowa senators and house representatives. 

Table 3.2. (Continued) 
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Figure 3.2. Policy Agenda Topics Distribution in Iowa dataset from June 2008-November 2015 

Figure 3.2 reveals that the numbers of tweets are unevenly distributed across topics, which greatly 

affects the performance of the classifier. For example, the numbers of tweets in “Education” and “Mixed 

Topics” are 2,762 and 2,624, respectively. However, for some topics, such as “International Affairs and 

Foreign Aid”, “Foreign Trade”, and “Immigration”, the number of tweets in each of these topics is lower 

than 100.  

Our idea is to make the number of tweets evenly distributed across topics as much as possible 

using topics grouping and tweets merging. Figure 3.3 shows the overview of this approach, which is the 

same as the first approach except the “Topics Grouping” and “Merging Tweets” steps. 

 

Figure 3.3. Architecture of SVM with Topics Grouping and Tweets Merging 
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3.2.1 Topics Grouping and Tweets Merging in Training Set 

 To even out the numbers of tweets across the topics, we group the topics with few tweets into a 

“Combined Topic.” Figure 3.4 shows the example of the Iowa dataset where we grouped the fourteen 

topics with fewer tweets into the “Combined Topic”. 

 

Figure 3.4. Group Minority Topics into a Combined Topic in Iowa 

After topics grouping, the numbers of tweets across topics were still unevenly distributed as 

shown in the second column in Table 3.3. We merged the tweets of the same topic in a sliding window in 

chronological order in the training set. Table 3.3 shows the window sizes for the combined topic and the 

numbers of tweets after merging in columns 3 and 4. The numbers of tweets across the topics become 

more even and each tweet becomes longer. 

Table 3.3. Sliding window sizes and the numbers of tweets before/after merging of the Iowa data set 

Topic Name Number of Tweets 

(After Grouping) 

Windows 

Size 

Number of Tweets 

(After merging) 

Mixed Unknown Topics 2345 5 469 

Macroeconomics 1200 2 600 

Health 1362 3 454 
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Education 2442 5 489 

Labor and Employment 761 2 380 

Law Crime and Family 

Issues 

691 1 691 

Government 

Operations 

756 2 378 

Combined Topic 2898 6 483 

 

3.2.2 Tweets Merging in Testing Set 

Since the merged tweets in the training set becomes longer, using the original tweets in the testing 

set to test the performance of the classification model built by SVM with topics grouping and tweets 

merging results in low accuracy even when normalizing all the data in the training and testing sets. We 

then merged tweets in the testing set. Unlike the merging in the training set, we do not know which topic 

a tweet belongs to in the testing set. We explore two ideas for merging tweets in the testing set based on 

the assumptions that two tweets belong to the same topic if their text are more similar. We calculate the 

similarity of the text of the tweets and use it to merge tweets in the testing set. 

3.2.2.1 Text Similarity 

There are many well-known methods to calculate text similarity. We investigated three different 

popular similarity functions: Euclidean Distance, Cosine Similarity, and Jaccard Similarity. Given two 

tweets: 1T  with n unique words and 2T with m unique words. Let },...,,,{ 11312111 nwwwwS =  and 

},...,,,{ 22322212 mwwwwS =  be the sets of unique words in 1T and 2T , respectively. Let vectors 

],...,,,[ 11312111 kvvvvV =  and ],...,,[ 22322212 kvvvvV = be the TF-IDF vector representations of 1T  and 2T , 

respectively, where || 21 SSK ∪= .  

(1) Euclidean Distance 

2
12

2
1222

2
11212121 )(...)()(),( kk vvvvvvVVTTeDist −++−+−=⋅=  

The smaller of the value of ),( 21 TTeDist , the closer the tweets 1T  and 2T . 

Table 3.3. (Continued) 
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(2) Jaccard Similarity 

||
||),(

21

21
21 SS

SSTTjcardSim
∪
∩

=
 

The ),( 21 TTjcardSim of zero indicates that the two tweets are totally different. 

When ),( 21 TTjcardSim  equals one, the two tweets are considered identical. 

(3) Cosine Similarity 

∑∑

∑

==

==
⋅

=
k

i
i

k

i
i

k

i
ii

vv

vv

VV
VVTTineSim

1

2
2

1

2
1

1
21

21

21
21

*

||||*||||
),(cos

 

If ),(cos 21 TTineSim  equals one if the two tweets are identical. If it equals zero, these two tweets 

are totally different. 

3.2.2.2 Individual Similarity vs Center Similarity 

We investigated two different methods to predict a policy agenda topic of a tweet in the testing 

set for the grouping purpose. 

1. Grouping with the individual similarity: for each tweet in the testing set, we calculate the similarity 

with each tweet in the training set using their feature vectors. The tweet from the testing set is 

assigned the topic of the tweet in the training set with the largest similarity to it. This method incurs 

high processing overhead. 

2. Grouping with the center similarity: We first calculate the center for each topic from the feature 

vectors of that topic in the training set. Then, for each tweet in the testing set, we calculate its 

similarity with the calculated center of each topic. The tweet is assigned the topic that it is most 

similar with to the center of the topic. This method reduces the computation overhead and the effect 

of the outliers in the training set. 

3.3 Approach 3: Convolutional Neural Network 
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Due to CNN success in image classification and recently in text classification, we investigate how well 

this approach works on short text classification. 

3.3.1 Vector representation of a word with word2vec 

A word needs to be represented by a vector to be used with CNN. The traditional approach is to 

assign a unique number for each word in the dictionary, for example, 1 for “child” and 2 for “son”. Then, 

we can represent the word “child” as [1,0,0,0……] and “son” as [0,1,0,0……]. The length of the vector is 

the size of dictionary. Obviously, such a word representation is context free. The drawbacks of this 

representation are as follows. (1) We have a large and sparse vector representation for each word. (2) This 

vector representation does not capture semantic relationship between words whether they are 

exchangeable or appear in similar sentences. 

In the CNN method [27], the word embedding method is used to derive a vector representation of 

a word based on the distributional hypothesis. That is words appearing in a similar context share similar 

semantic meaning. As a result, they should have a similar word representation. For example, in these two 

sentences: “China is a great country” and “USA is a great country.” The words “China” and “USA” share 

the same surrounding words (or context), the vector representations of “China” and “USA” should be 

similar, for instance, [-0.2, -0.2, 0.0, 0.1] for “China” and [-0.1, -0.2, 0.2, 0.1] for “USA”. The length of 

the vector using this approach is far shorter than the vector length of the traditional method. 

In our study, we use the Google’s open source word2vec trained using a large corpus to convert 

each word into its representation taking into account the context. For each word, word2vec returns top k 

words and corresponding cosine similarity to the given word in descending order. The result forms a k-

dimensional vector as a word embedding representation of the given word. Figure 3.5 shows an example 

of the word “Soccer” represented in the word embedding form as [0.762262, 0.722919, 0.709261, 

0.663754, 0.658547, 0.646368, 0.641979, 0.619528, 0.601519, 0.593004]. This representation means that 

“Soccer” is seen in the same context as “soccer” the most, followed by “Football”, “Lacrosse”, and so on. 
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Figure 3.5. Top ten closet similar words returned by word2vec 

 

3.3.2 Convolutional Neural Network 

Figure 3.6 shows the overall architecture of the Convolutional Neural Network (CNN) approach 

applied to our problem. Firstly, each tweet without any retweets is converted into a 2-dimensional matrix 

where each row in the matrix is the word representation of each word in the tweet. The rows are ordered 

in the order that the words appear in the tweet. Secondly, during training, in the convolutional layer, 

different filters with various window sizes are automatically selected by CNN and applied on this matrix 

to generate feature maps. Thirdly, the max-over-time pooling layer selects one feature for each tweet from 

the convolutional layer. The output feature vector is passed to a fully connected Softmax layer whose 

output is the probability distribution over our 21 classes (i.e., 20 policy agenda major topics and one 

additional mixed topic). The training process determines the appropriate parameter values that result in 

the model that gives the highest classification accuracy using the verification data. 
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Figure 3.6. Architecture of Approach 3: CNN 

We explain each step in detail in the CNN approach as below. 

(1) Convert a tweet to a corresponding 2-dimensional matrix: The word2vec tool converts each 

tweet into a 2-dimensional matrix where each row is of a fixed size k and is a vector representation of a 

word in the tweet. For a tweet with n words, the result of this step is an n*k matrix for each tweet. 

(2) Apply the filter with the sliding window of size h words (i.e., h rows): Let 

]...[ 321 nwwwwT =  represent a tweet, where  represents the i-th word in the tweet. With the window 

size of h words, we generate n-h+1 substrings from the tweet. Each substring i is denoted as 

121 ... −+++= hiiiii wwwwT  where 1,....,2,1 +−= hni . By using word2vec, we get a h*k matrix for each 

substring. The CNN method randomly applies a filter khRF *= with the size of h*k on this k*h matrix, 

which results in an h*h matrix iM . For all these n-h+1 substrings of the tweet, we have n-

h+1 iM matrices with the dimension h*h where 1,....,2,1 +−= hni . 
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(3) Generate a feature: To generate a feature, the CNN method uses a non-linear function, such as 

a hyperbolic tangent function, to convert the h*h matrix to a real value. We use the following function. 

)( bMfc ii += , where b is a bias term which is also an h*h matrix. After applying the function 

for each matrix iM  where 1,....,2,1 +−= hni , we get a feature map ],...,,[ 121 +−= hncccc  that has one 

element ci for each of the n-h+1 matrices. 

(4) Max-over-time pooling operation: For each feature map, the max-over-time pooling operation 

selects the maximum value in this feature map. That is, }max{
^

icc = where 1,....,2,1 +−= hni . The 

step chooses the most important feature for each feature map for a specific filter. 

For one tweet, the CNN approach generates the best feature given one filter. Since many different 

filters with different sliding window sizes are applied, the CNN approach generates a set of best features, 

which forms a penultimate layer }...,,{
^^

3

^

2

^

1 mccccz = , where m is the number of filters. 

 (5) Softmax layer: The output of the penultimate layer is passed to a fully connected Softmax 

layer whose output is the probability distribution over 21 classes. 

(6) Regularization: We use the L2 norm and a dropout technique for regularization, which 

prevents overfitting. For the filter matrix khRF *= , if the L2 norm of F is larger than s (s is a 

hyperparameter in CNN and was set by an empirical value in our study), i.e.  sF >2|||| , the CNN method 

rescales it to sF =2||||  after a gradient descent step. The dropout technique is applied on the penultimate 

layer, by setting a dropout parameter p where 10 ≤≤ p , only (1-p) of the total features in the penultimate 

layer are passed to the Softmax layer. 

(6) Static vs non-static channel: With the static channel method, CNN uses the pre-trained vectors 

from word2vec. All words with its cosine similarity vector remain the same and the other hyper-

parameters of the model are learned during the whole process. Compared with the static channel method, 

the non-static channel adjusts the pre-trained vector in a different epoch of the training process. 
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3.4 REST API 

We proposed two API endpoints as shown in Table 3.4. The similarStates endpoint is to list the 

top k states with the distribution of tweets categorized into the policy agenda topics similar to that of a 

given state. On the other hand, the similarTopic endpoint is to query for the top k states with the most 

percentage of tweets in a given topic for a given year and a given month. The two API endpoints should 

enable political scientists to be able to test different policy diffusion among states. 

 

Table 3.4. REST API endpoints for predicting the top k popular topics 

GET API endpoints Description 
/v1/policyagendas/tweets/
similarStates?state={state}
&year={year}&month={mo
nth}&k=5&distinct={true|f
alse} 

Returns a JSON string of top k states ranked by the 
similarity in the percentage of tweets in each topic 
to that of a given state in a given year and a given 
month. The search range is limited to one year dated 
back from the year and month parameters. 
 
Required parameters: state, year, month 
Optional parameters:  
• distinct with the default value of false 
• k with the default value of 5 
 
Format of the parameters: 
• Year parameter: mm/dd/yyyy 
• Month parameter: [0,12] 
• State parameter: two characters such as IA, IL 
 
 
Example:  
 
/v1/policyagendas/tweets/similarStates?state=IA&y
ear=2012&month=5&k=2 
 
{state: IA, 
  year: 2012, 
   month: 05, 
   k: 2, 
   similarity: [ 
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   { cosineSimilarity: 1, 
     Month:5, 
     Year:2012, 
      statePair: “IA,IA”, 
      vector: [ // similarity in terms of percentage of 
tweets of each of the 21 topics, from topic 1, to topic 
21 
         53.21, // 53 percent of tweets are in topic 1 
         21.00, // 21 percent of tweets are in topic 2 
         11.01, 
         6.02, 
         … 
      ] 
     cosineSimilarity: 0.9, 
     Month:5, 
     Year:2012, 
     statePair: “IA,WA”, 
     vector: [ 
         21.00 
         22.00 
         … 
    ] 
   },  
   {cosineSimilarity: 0.8, 
     Month:5 
     Year:2012 
     statePair: “IA,IL”, 
     vector: [ 
         11.00, 
         12.00, 
         …. 
     ] } 
} 
 
In this example, we show the percentage of tweets 
classified into each topic for IA and the next top 2 
states, WA and IL, with similar classified policy 
agenda topics. We do not take into account the 
mixed agenda topic. This query should search for all 
the policy agendas similar to Iowa whether they 
occur in the same year or month or not. 
 

Table 3.4. (Continued) 
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Optional parameters: 
The distinct parameter is either true or false to limit 
the record number from a same state, if distinct is 
true, only one record from one state could be shown 
in the result. 

/v1/policyagendas/tweets/
similarityTopic?topic={topi
cnumber}&k=2&year={year
}&month={month} 

Returns a JSON of vectors of top k states with the 
most percentage of tweets in a given topic for a 
given year and a given month. List the percentage of 
tweets in that topic for each state. 
 
Required parameters: topic, year, month 
Optional parameters:  
• k with the default value of 5 
 
Return result: JSON string  
{ topic: 1, 
   year: 2012, 
   month: 05, 
   k: 1, 
   topstates: [ 
   {IA: { 
    year:2012: 
    month: 05, 
    percentTweets: 0.50} 
   }, 
   {IL: { 
      year:2012, 
      month:04,  
      percentTweets:05 
    }  
   } 
   ] 
} 
 
The query parameters and values are always listed in 
the returned result. 

 

 

 

Table 3.4. (Continued) 
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CHAPTER 4 

EXPERIMENTAL DESIGN AND RESULTS 

 

4.1 Datasets 

We collected 308,601 tweets from 472 official accounts of Senate and House and of individual 

senators and house representatives from eleven states during the period of 06/29/2008 to 11/29/2015. 

Appendix B shows the Twitter handles of these accounts used for the data collection process. Figure 4.1 

reveals the difference in the distribution of the number of tweets across states. These states, New York, 

Missouri, Minnesota, and California, have noticeably fewer tweets than the other states because the 

dataset of these states does not include tweets of individual senators or house representatives.  

 

Figure 4.1. Distribution of tweets from official senate, senator, and house representative accounts from eleven 
states 

 

We selected the tweets from Iowa and Nebraska for hand labeling of ground truth by two political 

science students under the guidelines and rules specified in the Policy Agendas codebook and under the 

guidance of a political scientist. The labeling process consists of two steps: (1) Label a tweet as “Has 

Agenda” or “No Agenda”. (2) Assign each tweet labeled as “Has Agenda” one of the 21 policy agenda 
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topics. Only the tweets labeled as “Has Agenda” were used as the ground truth in our study. Each tweet 

was labeled by one student. All the tweets labeled as “Has Agenda” from Iowa are referred to as the Iowa 

dataset and all the tweets labeled as “Has Agenda” from Nebraska are referred to as the Nebraska dataset. 

Each of the Iowa dataset and Nebraska dataset was divided into non-overlapping training and testing sets. 

Figure 4.2 shows the distribution of tweets across topics in the Iowa and Nebraska datasets. 

Excluding the mixed unknown topic, “Education” and “Health” topics were two most popular topics for 

Iowa. Unlike Iowa, “Education” was not talked about in Nebraska as much as in Iowa. “Health” and 

“Macroeconomics” were two most popular topics for Nebraska. 

 

Figure 4.2. Distribution of the number of tweets across policy agenda topics in the Iowa and Nebraska 
datasets 

 
4.2 Implementation 

We use MySQL Community Server 5.7.13 for Windows for storing the tweets. The website for 

ground truth was implemented in PHP5. Our REST API was developed in Java using Jersey 2.22.2 REST 

API toolkit. The source code is shown in the Appendix. 
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4.3 Experimental Design 

In our experiment, we used 10% of total tweets in the ground truth as an independent testing set. 

The rest was used as a training set for 10 fold cross validation to build the multi-class classifier. Figure 

4.3 shows the number of tweets used in the training set for 10 fold cross validation and the independent 

testing set. The Nebraska dataset has about half the number of tweets of the Iowa dataset. 

 

Figure 4.3. Number of tweets in the training and testing sets of Iowa and Nebraska datasets 

Besides the 10 fold cross validation method, each approach has its own parameter setting. For 

Approach 1, we chose “Poly Kernel” for SVM parameter. Table 4.1 is a list of parameters of STWV used 

in the experiments. 

 

Table 4.1. Parameter values for STWV 

Parameters Settings 

IDFTransform True 

TFTransform True 
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Most parameter values for Approach 2 were same as those of Approach 1 except the parameter 

values for topics grouping and tweets merging. For the training set of the Iowa dataset, we grouped 14 

topics with fewest tweets into one “Combined Topic,” but for the training set of the Nebraska dataset, we 

grouped 15 topics into one “Combined Topic” instead. The number of groups was different because of the 

different distribution of the number of tweets in the two datasets. Figures 3.3 and 4.4 show the grouping 

of topics for training sets of the Iowa and Nebraska datasets, respectively.  

 

Figure 4.4. Group Minority Topics into a Combined Topic in Nebraska 

For tweets merging in the training set, different window sizes were used for different topics since 

the distribution of the number of tweets from the Nebraska dataset is different from that of the Iowa 

dataset. Table 3.3 and Table 4.2 show the parameter values and result from tweets merging for Iowa and 

Nebraska, respectively. 

normalizeDocLength normalize all data 

outputWordCounts True 

Table 4.1. (Continued) 
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Table 4.2. Sliding window size and number of tweets before/after merging in the Nebraska dataset 

Topic Name Number of Tweets 

(After grouping) 

Window 

Size 

Number of Tweets 

(After merging) 

Mixed Topics 1812 4 453 

Macroeconomics 890 2 445 

Health 1269 3 423 

Labor and Employment 754 2 377 

Law Crime and Family 

Issues 

531 1 531 

Government Operations 400 1 400 

Combined Topic 1924 5 384 

 

For tweets merging in the testing set, we experimented with the “individual based” and the 

“center based” text similarity methods. Since tweets in the “Mixed Topic” are ambiguous, we also 

measured the classification accuracy when merging of tweets in the same topic was used when including 

or excluding the “Mixed Topic.”  

For Approach 3, most of the hyper-parameters are tuned automatically by CNN. There are only 

three parameters that require manual setting. The first one is the word’s vector dimensional length in 

word2vec. We chose 300 as the vector length which was an empirical value. The second one is the set of 

windows sizes, which we chose the empirical value set {3,4,5}. The third one is the selection of the 

channel, either Static or Non-Static. 

4.4 Experimental Result on Classification Accuracy 

Although SVM with linear kernel was found to achieve the best performance for text 

classification [17], it does not perform as well for the classification of tweets into the 21 policy agenda 

topics. Figure 4.5 shows that the highest accuracy using SVM with linear kernel is only 60.44% on the 

testing set of the Iowa dataset. Furthermore, there is a large reduction in accuracy in the testing set of 

about 10% lower compared to that of the training set. This approach is not as good as we have seen in 

longer text such as bill titles and documents. The TF-IDF features extracted from short text are not 
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discriminative enough for this classification problem. Finally, the number of tweets of each topic is 

different. In other words, the dataset is unbalanced. 

 

Figure 4.5. Accuracy of Approach 1: SVM with Linear Kernel on Iowa Testing Set 

Figure 4.6 and Figure 4.7 reveals that “Topics Grouping and Tweets Merging” improves the 

accuracy around 20% on the training set compared to SVM without this step. This performance 

improvement could be the benefit of a more balanced training set and a longer text combining multiple 

tweets of the same topic. However, the best accuracy on the testing set is only 56.39%, which is even 

worse than that of Approach 1. The reason is the ineffectiveness of merging tweets on the testing set since 

the best accuracy for this task is only 62.02% as shown in Table 4.3. The best accuracy comes from the 

center-based method both in Iowa and Nebraska regardless whether the “Mixed Topics” is included or 

not. 
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Figure 4.6. Accuracy of Approach 2 : Include Mixed Topics 

 

Figure 4.7. Accuracy of Approach 2 : Exclude Mixed Topics 

Compared with the previous two approaches, Figure 4.8 and Figure 4.9 shows that the CNN 

approach achieves the best accuracy of 76.55% on the testing set of the Iowa dataset. This approach is 

stable since there is less than 1% accuracy difference on the training set and the testing set. 
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Figure 4.8. Accuracy of Approach 3 : CNN Static 

 

Figure 4.9. Accuracy of Approach 3 : CNN Non-Static 

 Figure 4.10 and Figure 4.11 shows the detailed accuracy on different topics for Iowa and 

Nebraska. The accuracy on some topics, like “Foreign Trade” in Nebraska, is 0% because the number of 

tweets in the training set and the testing set in this topic is small. For example, “Foreign Trade” in 

Nebraska has 10 for training and only 3 tweets for testing. 
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Figure 4.10. Accuracy across Different Topics in Iowa 

 

Figure 4.11. Accuracy across Different Topics in Nebraska 

Since the CNN approach achieves the best accuracy, we further conducted three experiments to 

determine whether one classifier built from sample tweets from a set of states is able to provide 

comparable classification accuracy for tweets from these states compared to a specific classifier for each 

state.  
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We experimented with the following. 

(1) Building a classifier from the combined training datasets (16,650 tweets in total) of the Iowa and 

Nebraska to classify the combined testing set (2,515 tweets in total) of Iowa and Nebraska 

datasets.  

(2) Using the classifier built from the training set of the Iowa dataset (12,445 tweets in total) to 

classify the Nebraska dataset (6,720 tweets in total).  

(3) Using the classifier built on the training set of the Nebraska dataset (6,720 tweets in total) to 

classify the Iowa dataset (12,445 tweets in total).  

Figure 4.12 shows the best accuracy for these experiments with the non-static method. The figure 

reveals that the accuracy drops significantly if using the classifier built from another state. The classifier 

built from the training data of the combined Iowa and Nebraska datasets is able to perform well. 

 

Figure 4.12. Accuracy on Cross-testing 

4.5 Experimental Results on Prediction of Top k Topics by CNN 

To evaluate whether the CNN method with the current accuracy is of any practical value for political 

science research, we compared the prediction by the CNN method for the top k topics discussed in each 

month by state’s legislatures from December 2014 to November 2015 with the ground truth top k topics 

of the same month in the Iowa dataset and Nebraska dataset. Appendix C shows the prediction of the 
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number of tweets of the top 7 topics for each state. For instance, in September 2015, 309 tweets were 

predicted to be in Topic 0 (Mixed Topics), but the ground truth (original result) has the most number of 

tweets, 274 tweets, in Topic 6. Based on the comparison data in the above period, we found the following: 

1). During Feb. 2015, Mar. 2015, Jun. 2015, and Jul. 2015 for Iowa, top 4 topics of the predicted 

result and the ground truth matched. 

2). In Jul. 2015 for Nebraska, top 4 topics matched. 

3). For both Iowa and Nebraska, top 5 topics matched in the other months. 

4). Topic 0 appears in all the top 5 predicted topics as well as the ground truth.  

Topic 0 is the “Mixed Topics” which is the tweet where the human coder cannot decide to assign the 

tweet on one major topic. The prediction results of the top 4 topics match with the ground truth for all the 

months under study for both states although the ordering of the match is different in some months. It is 

promising that the current result is useful for studying the trends of policy agenda topics under discussion 

in Twitter. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

In this thesis, we explored a new research problem of determining the major policy agenda topic 

of a given tweet. This problem is challenging since some tweets are ambiguous even when human coders 

determine them, containing words of more than one topic; there is a limitation of 140 characters per 

tweet; and there are as many as 21 classes to consider. We investigated three approaches. The 

experimental results show that our application of Convolutional Neural Network (CNN) provides a 

significant accuracy improvement about 15% over SVM with linear kernel with TF-IDF---term frequency 

weighted by the inverse document frequency of the terms, on the same testing set. Besides providing the 

best accuracy, the CNN method is also stable as the accuracies on the training set and the testing set are 

quite similar. Furthermore, it achieves good accuracy without manual tuning of hyper-parameters since 

they are determined automatically by CNN during the training process.  

SVM with Topics Grouping and Tweets Merging offers good accuracy on the training set. It 

shows that lengthening tweets improves the classification accuracy. However, the same level of accuracy 

is not seen in the testing set because the accuracy due to grouping and merging is only 62.02% at best. If 

the grouping and merging of the testing set could be improved, the overall performance of SVM with 

Topics Grouping and Tweets Merging will be improved.  

With the CNN method, the 5 hottest topics discussed in one month in a given state can be 

estimated quite reliably as evidenced in the experimental results and can be used to test different theories 

about the diffusion of policy agendas across states. 
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APPENDIX A 

SORUCE CODE OF REST API 

 

//SimilarState.java 
package edu.iastate.tweet; 
import java.util.ArrayList; 
import javax.xml.bind.annotation.XmlAccessOrder; 
import javax.xml.bind.annotation.XmlAccessorOrder; 
import javax.xml.bind.annotation.XmlRootElement; 
import javax.xml.bind.annotation.XmlType; 
 
@XmlType(name = "SimilarState", propOrder = { 
     "state", 
     "year", 
     "month", 
     "k", 
     "similarity" 
 }) 
 
public class SimilarState { 
 String State; 
 String year; 
 String month; 
 int k; 
 ArrayList<SimState> similarity; 
 public String getState() { 
  return State; 
 } 
 public void setState(String state) { 
  State = state; 
 } 
 public String getYear() { 
  return year; 
 } 
 public void setYear(String year) { 
  this.year = year; 
 } 
 public String getMonth() { 
  return month; 
 } 
 public void setMonth(String month) { 
  this.month = month; 
 } 
 public int getK() { 
  return k; 
 } 
 public void setK(int k) { 
  this.k = k; 
 } 
 public ArrayList<SimState> getSimilarity() { 
  return similarity; 
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 } 
 public void setSimilarity(ArrayList<SimState> similarity) { 
  this.similarity = similarity; 
 } 
} 

 

//SimState.java 
package edu.iastate.tweet; 
 
import javax.xml.bind.annotation.XmlAccessOrder; 
import javax.xml.bind.annotation.XmlAccessorOrder; 
import javax.xml.bind.annotation.XmlType; 
public class SimState implements Comparable<SimState>{ 
 double cosineSimilarity; 
 String StatePair; 
 public String getCurrMonth() { 
  return currMonth; 
 } 
 
 public void setCurrMonth(String currMonth) { 
  this.currMonth = currMonth; 
 } 
 
 public String getCurrYear() { 
  return currYear; 
 } 
 
 public void setCurrYear(String currYear) { 
  this.currYear = currYear; 
 } 
 
 String currMonth; 
 String currYear; 
 double[] vector; 
  
 public SimState() { 
  vector = new double[20]; 
 } 
 public double getCosineSimilarity() { 
  return cosineSimilarity; 
 } 
 public void setCosineSimilarity(double cosineSimilarity) { 
  this.cosineSimilarity = cosineSimilarity; 
 } 
 public String getStatePair() { 
  return StatePair; 
 } 
 public void setStatePair(String statePair) { 
  StatePair = statePair; 
 } 
 public double[] getVector() { 
  return vector; 
 } 
 public void setVector(double[] vector) { 
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  this.vector = vector; 
 } 
 @Override 
 public int compareTo(SimState o1) { 
  // TODO Auto-generated method stub 
  if(this.cosineSimilarity==o1.cosineSimilarity) 
   return 0; 
  else if(this.cosineSimilarity>o1.cosineSimilarity) 
   return -1; 
  else 
   return 1; 
 } 
} 
 
 
//SimilarTopic.java 
package edu.iastate.tweet; 
 
import java.util.ArrayList; 
import java.util.HashMap; 
 
import javax.xml.bind.annotation.XmlAccessOrder; 
import javax.xml.bind.annotation.XmlAccessorOrder; 
import javax.xml.bind.annotation.XmlType; 
 
class StateTopic implements Comparable<StateTopic>{ 
 String year; 
 String month; 
 String state; 
 double percentTweets; 
  
 public String getState() { 
  return state; 
 } 
 public void setState(String state) { 
  this.state = state; 
 } 
 public String getYear() { 
  return year; 
 } 
 public void setYear(String year) { 
  this.year = year; 
 } 
 public String getMonth() { 
  return month; 
 } 
 public void setMonth(String month) { 
  this.month = month; 
 } 
 public double getPercentTweets() { 
  return percentTweets; 
 } 
 public void setPercentTweets(double percentTweets) { 
  this.percentTweets = percentTweets; 
 } 
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 @Override 
 public int compareTo(StateTopic o) { 
  // TODO Auto-generated method stub 
  if(this.percentTweets==o.percentTweets) 
   return 0; 
  else if(this.percentTweets<o.percentTweets) 
   return 1; 
  else 
   return -1; 
 } 
 
} 
@XmlType(propOrder = { 
     "topic", 
     "year", 
     "month", 
     "k", 
     "topstates" 
 }) 
 
public class SimiliarTopic { 
 String topic; 
 String year; 
 String month; 
 int k; 
 ArrayList<StateTopic> topstates; 
  
 public ArrayList<StateTopic> getTopstates() { 
  return topstates; 
 } 
 public void setTopstates(ArrayList<StateTopic> topstates) { 
  this.topstates = topstates; 
 } 
 public int getK() { 
  return k; 
 } 
 public void setK(int k) { 
  this.k = k; 
 } 
 public String getTopic() { 
  return topic; 
 } 
 public void setTopic(String topic) { 
  this.topic = topic; 
 } 
 public String getYear() { 
  return year; 
 } 
 public void setYear(String year) { 
  this.year = year; 
 } 
 public String getMonth() { 
  return month; 
 } 
 public void setMonth(String month) { 
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  this.month = month; 
 }  
} 
 
// tweetSimilarState.java 
package edu.iastate.tweet; 
 
import java.util.ArrayList; 
import java.util.HashMap; 
import java.util.List; 
 
import javax.ws.rs.DELETE; 
import javax.ws.rs.DefaultValue; 
import javax.ws.rs.GET; 
import javax.ws.rs.Path; 
import javax.ws.rs.PathParam; 
import javax.ws.rs.Produces; 
import javax.ws.rs.QueryParam; 
import javax.ws.rs.core.MediaType; 
 
@Path("/v1/policyagendas/tweets") 
//This class will be used for getting similar States and similar topics, and the 
end point is specified in this class. 
public class TweetsSimilarState  
{ 
 @GET 
 @Path("/similarStates") 
 @Produces(MediaType.APPLICATION_JSON) 
    // this function is used for getting similar states, the parameters of this 
end point are set here. 
    public SimilarState findSimilarState(@QueryParam("state") String 
state,@QueryParam("year") Integer year,@QueryParam("month") Integer 
month,@DefaultValue("5") @QueryParam("k") int k,@DefaultValue("false") 
@QueryParam("distinct") boolean distinct,@DefaultValue("12") 
@QueryParam("limitmonth") Integer limitmonth)  
 { 
  DatabaseOperations dbOperations=new DatabaseOperations();   
  return dbOperations.getSimilarStates(k,year, month, 
state,distinct,limitmonth);  

} 
  
 @GET 
 @Path("/similarTopics") 
 @Produces(MediaType.APPLICATION_JSON) 
    // this function is used for getting similar topic, the parameters of this 
end point are set here. 
    public SimiliarTopic findSimilarTopic(@QueryParam("topic") Integer 
topic,@QueryParam("year") Integer year,@QueryParam("month") Integer 
month,@DefaultValue("5") @QueryParam("k") int k)  
 { 
  DatabaseOperations dbOperations=new DatabaseOperations();   
  return dbOperations.getSimilarTopic(k,topic,year, month);  
  

} 
} 
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//DatabaseOperations.java 
package edu.iastate.tweet; 
import java.sql.Connection; 
import java.sql.PreparedStatement; 
import java.sql.ResultSet; 
import java.sql.SQLException; 
import java.text.DecimalFormat; 
import java.util.ArrayList; 
import java.util.Arrays; 
import java.util.Collections; 
import java.util.HashMap; 
import java.util.HashSet; 
import java.util.Iterator; 
import java.util.List; 
 
public class DatabaseOperations  
{ 
 public SimiliarTopic getSimilarTopic(int k,int topic,int year, int month) 
 { 
  if(k<=0) 
      k=5; 
  String SQL = null; 
  String abbreviationSQL = null; 
  String abbreviation =null; 
  int topicNumber = topic; 
   
  SimiliarTopic res = new SimiliarTopic(); 
   
  res.setK(k); 
  res.setTopic(String.valueOf(topic)); 
  res.setMonth(String.valueOf(month)); 
  res.setYear(String.valueOf(year)); 
   
  SQL = "SELECT distinct state FROM pd.tweetsforrest"; 
  ArrayList<String> stateList =executeQueryForString(SQL); 
  ArrayList<StateTopic> statetopic = new ArrayList<StateTopic>(); 
  ArrayList<StateTopic> topstates = new ArrayList<StateTopic>(); 
  for(String s : stateList) 
  { 
   String currAbbr = null; 
   abbreviationSQL="SELECT abbreviation FROM pd.states where name 
= '"+s+"'"; 
   currAbbr=executeQueryForGettingAbbrivation(abbreviationSQL); 
   StateTopic currTopic = new StateTopic(); 
   HashMap<String,Integer> map = new HashMap<String,Integer>(); 
   SQL = "SELECT actual_major as topicNumber,count(actual_major) 
as numberOfTweets FROM pd.tweetsforrest where actual_major!=0 and state='"+s+"' 
and year='"+String.valueOf(year)+"' and month='"+String.valueOf(month)+"' group 
by topicNumber"; 
   map = executeQueryForGettingStateTopics(SQL); 
    
   currTopic.setMonth(String.valueOf(month)); 
   currTopic.setYear(String.valueOf(year)); 
    



 45 

   double[] vector = new double[20]; 
    
   Iterator it = map.keySet().iterator(); 
   int totalTweetsNumber = 0; 
   while(it.hasNext()) 
   { 
     
    String topicString = (String)it.next(); 
     
    int tNumber = Integer.parseInt(topicString); 
    if(tNumber>11) 
     tNumber = tNumber-1; 
    tNumber=tNumber-1; 
    int tweetsNumber = map.get(topicString); 
    totalTweetsNumber+=tweetsNumber; 
    vector[tNumber]=(double)tweetsNumber; 
   } 
    
   for(int i=0;i<vector.length;i++) 
   { 
    if(totalTweetsNumber==0) 
     vector[i]=0; 
    else 
    
 vector[i]=100*vector[i]/(double)totalTweetsNumber; 
   } 
   int tempTopicNumber=0; 
   if(topicNumber>11) 
    tempTopicNumber=topicNumber-1; 
   else 
    tempTopicNumber=topicNumber; 
   tempTopicNumber-=1; 
   DecimalFormat df = new DecimalFormat("#.##"); 
  
 currTopic.setPercentTweets(Double.parseDouble(df.format(vector[tempTopicNum
ber]))); 
  
 //currTopic.setPercentTweets(Double.parseDouble(String.format("%.2f",vector
[tempTopicNumber]))); 
   currTopic.setState(currAbbr); 
   topstates.add(currTopic); 
  } 
   
  //Collections.sort(topstates); 
  Collections.sort(topstates); 
  ArrayList<StateTopic> temp = new ArrayList<StateTopic>(); 
  for(int i=0;i<k;i++) 
  { 
   temp.add(topstates.get(i)); 
  } 
   
   
  res.setTopstates(temp); 
   
  return res; 
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 } 
 public SimilarState getSimilarStates(int k,int year, int month, String 
state,boolean distinct,int limitmonth) 
 { 
  if(k<=0) 
   k=5; 
  if(limitmonth<=0) 
   limitmonth=12; 
  String SQL = null; 
  String abbreviationSQL = null; 
  String abbreviation =null; 
  SimilarState res = new SimilarState(); 
  res.setK(k); 
  res.setMonth(String.valueOf(month)); 
  if(state.length()==2) 
  { 
   res.setState(state); 
   abbreviation=state; 
  } 
  else 
  { 
   abbreviationSQL="SELECT abbreviation FROM pd.states where name 
= '"+state+"'"; 
  
 abbreviation=executeQueryForGettingAbbrivation(abbreviationSQL); 
  } 
  res.setYear(String.valueOf(year)); 
  SQL = "SELECT distinct state FROM pd.tweetsforrest"; 
  ArrayList<String> stateList =executeQueryForString(SQL); 
  ArrayList<SimState> simState = new ArrayList<SimState>(); 
  double[] stateVector = new double[20]; 
  System.out.println("limit month is: "+limitmonth); 
  int count=limitmonth; 
  for(String s : stateList) 
  { 
   String currAbbr = null; 
   abbreviationSQL="SELECT abbreviation FROM pd.states where name 
= '"+s+"'"; 
   currAbbr=executeQueryForGettingAbbrivation(abbreviationSQL); 
    
    
   int currMonth= month; 
   int currYear = year; 
   for(int l=0;l<count;l++) 
   { 
    SimState currState = new SimState(); 
    SQL = "SELECT actual_major as 
topicNumber,count(actual_major) as numberOfTweets FROM pd.tweetsforrest where 
actual_major!=0 and state='"+s+"' and year='"+String.valueOf(currYear)+"' and 
month='"+String.valueOf(currMonth)+"' group by topicNumber"; 
    HashMap<String,Integer> map = new 
HashMap<String,Integer>(); 
    map = executeQueryForGettingStateTopics(SQL); 
    currState.setStatePair(abbreviation+","+currAbbr); 
    double[] vector = new double[20]; 
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    Iterator it = map.keySet().iterator(); 
    int totalTweetsNumber = 0; 
    while(it.hasNext()) 
    { 
     String topicString = (String)it.next(); 
     int topicNumber = Integer.parseInt(topicString); 
     if(topicNumber>11) 
      topicNumber = topicNumber-1; 
     topicNumber=topicNumber-1; 
     int tweetsNumber = map.get(topicString); 
     totalTweetsNumber+=tweetsNumber; 
     vector[topicNumber]=(double)tweetsNumber; 
    } 
    for(int i=0;i<vector.length;i++) 
    { 
     if(totalTweetsNumber==0) 
      vector[i]=0.00; 
     else 
     { 
       
     
 vector[i]=100*vector[i]/(double)totalTweetsNumber; 
      DecimalFormat df = new 
DecimalFormat("#.##"); 
     
 vector[i]=Double.parseDouble(df.format(vector[i])); 
     } 
    } 
    currState.setCurrMonth(String.valueOf(currMonth)); 
    currState.setCurrYear(String.valueOf(currYear)); 
    currState.setVector(vector); 
    simState.add(currState); 
    if(currAbbr.equals(abbreviation) && currMonth==month && 
currYear == year) 
    { 
      
     for(int i=0;i<vector.length;i++) 
      stateVector[i]=vector[i]; 
    } 
    currMonth=currMonth-1; 
    if(currMonth==0) 
    { 
     currMonth = 12; 
     currYear = currYear-1; 
    } 
   } 
  } 
  //System.out.println(simState.size()); 
  for(int i=0;i<simState.size();i++) 
  { 
   double[] sVector = simState.get(i).getVector(); 
   double similarity = calcCosineSimilarity(stateVector,sVector); 
   DecimalFormat df = new DecimalFormat("#.##"); 
   similarity=Double.parseDouble(df.format(similarity)); 
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   System.out.println(simState.get(i).getStatePair()+" | 
"+simState.get(i).getCurrYear()+" | "+simState.get(i).getCurrMonth()+" | 
"+similarity); 
   simState.get(i).setCosineSimilarity(similarity); 
  } 
  Collections.sort(simState); 
  ArrayList<SimState> temp = new ArrayList<SimState>(); 
  if(distinct) 
  { 
   int sCount = 0; 
   HashSet<String> set = new HashSet<String>(); 
   for(int i=0;i<simState.size();i++) 
   { 
    if(sCount>=k) 
     break; 
    String statePair = simState.get(i).getStatePair(); 
    if(!set.contains(statePair)) 
    { 
     sCount++; 
     set.add(statePair); 
     temp.add(simState.get(i)); 
    } 
   } 
  }else 
  { 
   for(int i=0;i<k;i++) 
   { 
    temp.add(simState.get(i)); 
   } 
  } 
  res.setSimilarity(temp); 
   
  return res; 
 } 
 private String executeQueryForGettingAbbrivation(String sql) 
 { 
  String res=null; 
  Connection connection=null; 
  try 
  { 
   DbConnection database= new DbConnection(); 
   connection = database.getConnection(); 
   System.out.println(sql); 
   if(connection==null) 
    System.out.println("Connections is null"); 
   PreparedStatement ps = connection.prepareStatement(sql); 
   ResultSet rs = ps.executeQuery(); 
   //res=rs.getString(1); 
   while(rs.next()) 
   { 
    res=rs.getString(1); 
   } 
  } 
   
  catch(Exception e) 



 49 

  { 
   e.printStackTrace(); 
  } 
  finally 
  { 
   try  
   { 
    connection.close(); 
   }  
   catch (SQLException e) { 
    // TODO Auto-generated catch block 
    e.printStackTrace(); 
   } 
  } 
  return res;   
 } 
 private double calcCosineSimilarity(double[] a,double[] b) 
 { 
  double res=0; 
  double ab=0,aa=0,bb=0; 
  boolean same=true; 
  for(int i=0;i<a.length;i++) 
  { 
   ab+=a[i]*b[i]; 
   aa+=a[i]*a[i]; 
   bb+=b[i]*b[i]; 
   if(a[i]!=b[i]) 
    same=false; 
  } 
  if(same) 
   return 1; 
  if(aa==0 || bb==0) 
   return 0; 
  res = ab/(Math.sqrt(aa)*Math.sqrt(bb)); 
  return res; 
 } 
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APPENDIX B 

TWITTER HANDLES USED IN OUR STUDY 

 

handle State 
@AZSenateGOP Arizona 
@AZSenateGOP Arizona 
@SenatorAbleser Arizona 
@Allen4AZSenate Arizona 
@LelaAlstonAz Arizona 
@NancyBarto Arizona 
@Barton4Az Arizona 
@CarlyleBegay Arizona 
@reginaldbolding Arizona 
@SonnyBorrelli Arizona 
@Rusty4Congress Arizona 
@BoyerAZ Arizona 
@RepMarkCardenas Arizona 
@HeatherCarterAZ Arizona 
@Charlene4House Arizona 
@recobbforazrep Arizona 
@douglas_coleman Arizona 
@Dalessandro4AZÂ Protected Tweets Arizona 
@jeffdial Arizona 
@AdamDriggs Arizona 
@SteveFarleyAZ Arizona 
@MarkFinchem Arizona 
@DrRandyFriese Arizona 
@RosannaGabaldon Arizona 
@katiehobbs Arizona 
@RepLarkin Arizona 
@DebbieLesko Arizona 
@Sen_LindaÂ  Arizona 
@PhilLovas Arizona 
@StefanieMach Arizona 
@McCuneDavis4D30 Arizona 
@KateMcGeeAZ Arizona 
@SenBarbMcGuire Arizona 
@mendezforaz Arizona 
@JDMesnard Arizona 
@DrEricMeyer Arizona 
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@SenRobertMeza Arizona 
@Miranda4Arizona Arizona 
@ElectDarin Arizona 
@SteveMontenegro Arizona 
@JillNorgaard Arizona 
@RepOtondo Arizona 
@votewarren Arizona 
@SenStevePierce Arizona 
@pratt4az Arizona 
@RepQuezada29 Arizona 
@Rios_Rebecca Arizona 
@AZ_Rep_Sherwood Arizona 
@SteeleForHouse Arizona 
@_DavidStevens Arizona 
@azrepbobthorpe Arizona 
@KellyTownsend11 Arizona 
@MichelleUgenti Arizona 
@cecivelasquez_ Arizona 
@kelliwardaz Arizona 
@JeffWeninger Arizona 
@BruceWheelerAZ Arizona 
@bob_worsley Arizona 
@KimberlyYeeAZ Arizona 
@FLSenateGOP Florida 
@FlaDems Florida 
@FLSenate Florida 
@FloridaGOP Florida 
@RepJanetAdkins Florida 
@Larry_Ahern Florida 
@RepAlbritton Florida 
@SenatorAltman Florida 
@Artiles118 Florida 
@BryanAvilaFL Florida 
@AaronPBean Florida 
@lizbethkb Florida 
@loriberman Florida 
@HalseyBeshears Florida 
@mbileca Florida 
@RepJimBoyd Florida 
@JeffreyBrandes Florida 
@oscarjb2 Florida 
@jasonbrodeur Florida 
@DougBroxson Florida 



 52 

@DwightBullard Florida 
@ColleenLBurton Florida 
@mattcaldwell_fl Florida 
@RepCampbellD108 Florida 
@Gwyn_ClarkeReed Florida 
@ClemensFL Florida 
@NeilCombee Florida 
@richardcorcoran Florida 
@Cortes_FL Florida 
@CortesBob Florida 
@fredcostello Florida 
@SteveCrisafulli Florida 
@RepJanetCruz Florida 
@CharlieDeanSD5 Florida 
@SenNancyDetert Florida 
@MarioDB Florida 
@josefelixdiaz Florida 
@RepMannyDiazJr Florida 
@RepBobbyDuBose Florida 
@DwightDudleyFL Florida 
@DaneEagle Florida 
@EricEisnaugle Florida 
@gregevers Florida 
@jay_fant Florida 
@RepFitzenhagen Florida 
@anitere_flores Florida 
@ErikFresenFL Florida 
@RepFullwood Florida 
@mattgaetz Florida 
@BillGalvano Florida 
@SenReneGarcia Florida 
@RepJosephGeller Florida 
@GibsonForSenate Florida 
@TGoodsonFLHD50 Florida 
@JamesGrantFL Florida 
@denisegrimsley Florida 
@RepBillHager Florida 
@Gayle_Harrell Florida 
@Shawnfor63 Florida 
@Hays2010 Florida 
@DorothyHukill Florida 
@BlaiseIngoglia Florida 
@repclayingram Florida 
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@Kristin_Jacobs Florida 
@ArtheniaJoyner Florida 
@DavidMKerner Florida 
@ChrisLatvala Florida 
@JackLatvala Florida 
@SenatorJohnLegg Florida 
@MaryLynnMagar Florida 
@GwenMargolis Florida 
@debbie_mayfield Florida 
@Rep_McBurney Florida 
@kionnemcghee Florida 
@larrymetz Florida 
@MillerFlorida14 Florida 
@AmandaMurphyFL Florida 
Â ?@joenegronflÂ  Florida 
@RepJNunez Florida 
@marleneotoole Florida 
@MarkPafford Florida 
@Kathleen4SWFL Florida 
@keithperry21 Florida 
@KathleenMPeters Florida 
@CaryPigman Florida 
@PilonForFlorida Florida 
@TeamPlakon Florida 
@voteCoachP Florida 
@ElectLizPorter Florida 
@BPowellforRep Florida 
@rep_pritchett Florida 
@JakeRaburn Florida 
@KevinRader Florida 
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@WiltonSimpson Florida 
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@IrvSlosberg Florida 
@SenChrisSmith Florida 
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@SRDrury Illinois 
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@Repevans33 Illinois 
@StateRepSara Illinois 
@RepLauraFine Illinois 
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@ToiHutchinson Illinois 
@JeanneIves Illinois 
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@StateRepLouLang Illinois 
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@chrisnybo Illinois 
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@chrisradogno Illinois 



 56 

@KwameRaoul Illinois 
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@RepBobRita Illinois 
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@ElgieSims Illinois 
@Smiddy4IL71 Illinois 
@repsosnowski Illinois 
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@HeatherSteans Illinois 
@Sen1Dave Illinois 
@RepThapedi Illinois 
@reptryon Illinois 
@ArthurLTurner Illinois 
@mikeunes Illinois 
@SenatorVanPelt Illinois 
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@Sam4Rep Illinois 
@IowaSenate Iowa 
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@ChazAllen2013 Iowa 
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@JeffDanielsonÂ  Iowa 
@SenatorDix Iowa 
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@Jason_Schultz Iowa 
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Â @SenRobySmith Iowa 
@Senator_Sodders Iowa 
@StaedArt Iowa 
@QStanerson Iowa 
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@SallyStutsman Iowa 
@RobTaylorIowa Iowa 
@phyllisthede Iowa 
@jackwhitver Iowa 
@CindyWinckler Iowa 
@MattWindschitl Iowa 
@zaunforcongress Iowa 
@DanZumbach Iowa 
@missourigop Missouri 
@NebraskaDems Nebraska 
@NEGOP Nebraska 
@katejbolz Nebraska 
@LydiaBrasch Nebraska 
@ColbyCoash Nebraska 
@joni_craighead Nebraska 
@SenCrawford Nebraska 
@SenLauraEbke Nebraska 
captaincorn Nebraska 
@wnta12 Nebraska 
@SenatorKenHaar Nebraska 
@MattHansenNE Nebraska 
@burkeharr Nebraska 
@senhilkemann Nebraska 
@SaraForNebraska Nebraska 
@BillKintner Nebraska 
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@SenatorBobKrist Nebraska 
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@NYSenDems New York 
@NewYorkGOP New York 
@SoDakDems South Dakota 
@sdgop South Dakota 
@VoteBolin South Dakota 
@angiebuhl South Dakota 
@Krisdistrict32 South Dakota 
@BlakeCurd South Dakota 
@FredDeutsch South Dakota 
@jasonfrerichs South Dakota 
@BrockGreenfield South Dakota 
@donhaggar South Dakota 
@jennahaggar South Dakota 
@haverly_terri South Dakota 
@PhyllisHeineman South Dakota 
@riedholien South Dakota 
@berniehunhoff South Dakota 
@RepDanKaiser South Dakota 
@kevinck04 South Dakota 
@IsaacLatterell South Dakota 
@danlederman South Dakota 
@micksd South Dakota 
@JeffJeffmonroe South Dakota 
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@RepStaceNelson South Dakota 
@anovstrup South Dakota 
@dnovstrup South Dakota 
@parsley4senate South Dakota 
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@BruceRampelberg South Dakota 
@SDSenLeader South Dakota 
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@LeeSchoenbeck South Dakota 
@SoholtDeb South Dakota 
@SenatorSolano South Dakota 
@JimStalzer South Dakota 
@Billie_Sutton South Dakota 
@larrytidemann South Dakota 
@SteveWestra South Dakota 
@wiikfor4 South Dakota 
@MarkWilladsen South Dakota 
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@LarryZikmund South Dakota 
@WisDems Wisconsin 
scotte_allen Wisconsin 
TylerAugust Wisconsin 
JoanBallweg Wisconsin 
PeterWBarca Wisconsin 
TheOtherMandela Wisconsin 
TereseBerceau Wisconsin 
JanetBewley4WI Wisconsin 
RepJillBillings Wisconsin 
RepJanel Wisconsin 
RepRobBrooks Wisconsin 
Jbrostoff Wisconsin 
TimCarpenterMKE Wisconsin 
Considine1Dave Wisconsin 
RepDaveCraig Wisconsin 
MaryCzaja Wisconsin 
SenDarling Wisconsin 
JonErpenbach Wisconsin 
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SenFitzgerald Wisconsin 
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rep89 Wisconsin 
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RepDanielRiemer Wisconsin 
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APPENDIX C 

COMPARISON OF THE TOP FIVE TOPICS 
 

 
December 2014 
Iowa: 
predict result(top 7):[6=274, 0=213, 1=174, 3=162, 5=90, 11=89, 19=64] 
original result(top 7):[6=257, 0=217, 3=172, 1=163, 5=93, 19=91, 11=75] 
 
predict top 5:  0,6,1,3,5 
original top 5: 6,0,3,1,5 
Matched!!! 
 
Nebraska: 
predict result(top 7): [0=243, 3=118, 1=81, 5=75, 11=46, 6=27, 2=23] 
original result(top 7):[0=165, 3=122, 1=84, 5=78, 11=50, 19=33, 6=30] 
 
predict top 5:  0,3,1,5,11 
original top 5:  0,3,1,5,11 
Matched!!! 
 
January 2015 
Iowa: 
predict result(top 7):[6=297, 0=296, 1=154, 3=153, 5=93, 11=75, 19=74] 
original result(top 7):[6=277, 0=237, 3=162, 1=151, 5=96, 19=93, 11=77] 
 
predict top 5:  0,6,1,3,5 
original top 5: 6,0,3,1,5 
Matched!!! 
 
Nebraska: 
predict result(top 7): [0=208, 3=126, 1=91, 5=74, 11=54, 6=42, 19=37] 
original result(top 7):[0=178, 3=118, 1=94, 5=78, 11=51, 19=41, 6=39] 
 
predict top 5:  0,3,1,5,11 
original top 5:  0,3,1,5,11 
Matched!!! 
 
February 2015 
Iowa: 
predict result(top 7):[0=337, 6=278, 3=150, 1=144, 5=81, 11=73, 19=68] 
original result(top 7):[6=283, 0=272, 3=161, 1=140, 19=91, 5=80, 11=67] 
 
predict top 5:  0,6,3,1,5 
original top 5: 6,0,3,1,19 
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top 4 Matched!!! 
 
Nebraska: 
predict result(top 7): [0=242, 3=144, 1=93, 5=81, 11=47, 6=26, 14=20, 2=20] 
original result(top 7):[0=205, 3=134, 1=93, 5=77, 11=49, 6=27, 19=26, 2=25] 
 
predict top 5:  0,3,1,5,11 
original top 5:  0,3,1,5,11 
Matched!!! 
 
March 2015 
Iowa: 
predict result(top 7):[6=294, 0=285, 3=148, 1=133, 19=92, 5=88, 11=75] 
original result(top 7):[6=283, 0=255, 3=147, 1=126, 5=98, 19=94, 11=74] 
 
predict top 5:  6,0,3,1,19 
original top 5: 6,0,3,1,5 
top 4 Matched!!! 
 
Nebraska: 
predict result(top 7): [0=227, 3=140, 5=86, 1=70, 11=47, 6=37, 2=26] 
original result(top 7):[0=174, 3=144, 5=76, 1=71, 11=42, 6=39, 19=36] 
 
predict top 5:  0,3,1,5,11 
original top 5:  0,3,1,5,11 
Matched!!! 
 
April 2015 
Iowa: 
predict result(top 7):[0=298, 6=290, 3=148, 1=124, 5=92, 19=91, 11=78] 
original result(top 7):[6=273, 0=258, 3=148, 1=132, 5=92, 11=91, 19=83] 
 
predict top 5:  0,6,3,1,5 
original top 5: 6,0,3,1,5 
Matched!!! 
 
Nebraska: 
predict result(top 7): [0=203, 3=136, 1=84, 5=56, 11=47, 6=30, 9=24] 
original result(top 7):[0=179, 3=130, 1=76, 5=60, 11=49, 19=30, 9=27] 
 
predict top 5:  0,3,1,5,11 
original top 5:  0,3,1,5,11 
Matched!!! 
 
May 2015 
Iowa: 
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predict result(top 7):[6=319, 0=318, 3=148, 1=134, 5=92, 11=70, 19=65] 
original result(top 7):[6=307, 0=274, 3=164, 1=136, 5=99, 19=83, 11=65] 
 
predict top 5:  6,0,3,1,5 
original top 5: 6,0,3,1,5 
Matched!!! 
 
Nebraska: 
predict result(top 7): [0=223, 3=146, 1=95, 5=65, 11=59, 6=27, 2=23] 
original result(top 7):[0=186, 3=142, 1=100, 5=62, 11=54, 19=38, 6=27] 
 
predict top 5:  0,3,1,5,11 
original top 5:  0,3,1,5,11 
Matched!!! 
 
June 2015 
Iowa: 
predict result(top 7):[0=308, 6=274, 1=156, 3=147, 5=81, 19=78, 11=78] 
original result(top 7):[6=275, 0=265, 1=144, 3=140, 19=98, 5=82, 11=78] 
 
predict top 5:  0,6,1,3,5 
original top 5: 6,0,1,3,19 
top 4 Matched!!! 
 
Nebraska: 
predict result(top 7): [0=200, 3=136, 1=91, 5=88, 11=48, 6=26, 2=25] 
original result(top 7):[0=171, 3=131, 1=86, 5=85, 11=47, 19=39, 6=31] 
 
predict top 5:  0,3,1,5,11 
original top 5:  0,3,1,5,11 
Matched!!! 
 
July 2015 
Iowa: 
predict result(top 7):[0=317, 6=273, 3=142, 1=122, 5=74, 11=71, 19=60] 
original result(top 7):[0=260, 6=255, 3=141, 1=126, 19=84, 11=83, 5=70] 
 
predict top 5:  0,6,3,1,5 
original top 5: 6,0,3,1,19 
Top 4 Matched!!! 
 
Nebraska: 
predict result(top 7): [0=215, 3=112, 1=99, 5=88, 11=49, 6=31, 19=28] 
original result(top 7):[0=180, 3=114, 1=88, 5=84, 19=48, 11=43, 6=42] 
 
predict top 5:  0,3,1,5,11 
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original top 5:  0,3,1,5,19 
Top 4 Matched!!! 
 
August 2015 
Iowa: 
predict result(top 7):[0=287, 6=286, 3=148, 1=142, 5=93, 11=84, 19=69] 
original result(top 7):[0=282, 6=282, 3=139, 1=123, 5=92, 11=83, 19=67] 
 
predict top 5:  0,6,3,1,5 
original top 5: 6,0,3,1,5 
Matched!!! 
 
Nebraska: 
predict result(top 7): [0=212, 3=121, 1=103, 5=94, 11=46, 19=24, 6=24] 
original result(top 7):[0=171, 3=115, 1=96, 5=82, 11=52, 19=38, 2=26] 
 
predict top 5:  0,3,1,5,11 
original top 5:  0,3,1,5,11 
Matched!!! 
 
September 2015 
Iowa: 
predict result(top 7):[0=309, 6=275, 3=166, 1=116, 5=95, 11=78, 19=69] 
original result(top 7):[6=274, 0=253, 3=164, 1=121, 5=91, 19=79, 11=74] 
predict top 5:  0,6,3,1,5 
original top 5: 6,0,3,1,5 
Matched!!! 
 
Nebraska: 
predict result(top 7): [0=241, 3=122, 5=96, 1=84, 11=55, 6=29, 2=25] 
original result(top 7):[0=175, 3=130, 1=89, 5=84, 11=47, 19=42, 6=29] 
 
predict top 5:  0,3,5,1,11 
original top 5:  0,3,1,5,11 
Matched!!! 
 
October 2015 
Iowa: 
predict result (top 7):[6=306, 0=301, 3=136, 1=124, 5=100, 11=95, 19=82] 
original result(top 7):[6=285, 0=263, 3=134, 1=125, 5=96, 19=93, 11=93] 
 
predict top 5:  6,0,3,1,5 
original top 5: 6,0,3,1,5 
Matched!!! 
 
Nebraska: 
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predict result(top 7): [0=230, 3=120, 5=75, 1=68, 11=57, 2=28, 15=22] 
original result(top 7):[0=175, 3=123, 5=73, 1=69, 11=61, 19=42, 2=25] 
 
predict top 5:  0,3,5,1,11 
original top 5:  0,3,5,1,11 
Matched!!! 
 
November 2015 
Iowa: 
predict result(top 7): [0=347, 6=262, 1=158, 3=149, 11=74, 5=74, 19=63] 
original result(top 7):[0=289, 6=264, 3=161, 1=124, 11=81, 19=80, 5=71] 
 
predict top 5:  0,6,1,3,11 
original top 5: 0,6,3,1,11 
Matched!!! 
 
Nebraska: 
predict result(top 7): [0=22, 3=9, 1=3, 6=3, 19=2, 9=2, 5=1] 
original result(top 7):[0=16, 3=10, 1=4, 6=2, 19=2, 15=2, 9=2] 
 
predict top 5:  0,3,1,6,19 
original top 5: 0,3,1,6,19 
Matched!!! 
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