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ABSTRACT

The objective of influence maximization problem is to find a set of highly influential nodes

that maximizes the spread of influence in a social network. Such a set of nodes is called seed set.

Targeted labeled influence maximization problem is an extension that attempts to find a seed

set that maximizes influence among certain labeled nodes. However, in certain application

areas such as market and political sciences, it is desirable to limit the spread of influence

on certain set of nodes while maximizing the influence spread among different set of nodes.

Motivated by this, in this work we formulate and study Constrained Targeted Influence

Maximization problem where a network has two types of nodes—targets and non-targets. For

a given k and θ, the objective is to find a k size seed set which maximizes the influence over the

targets and keeps the influence over the non-targets within the threshold θ. We propose two

algorithms based on the greedy approach and establish certain approximation guarantees. We

extend this greedy algorithm to a Multi-Greedy algorithm. However, the pure greedy methods

are not practically viable due to prohibitively high time overhead. To address that, we develop

two-phase framework that will enable us to use multiple heuristic choices as subroutines. We

experimentally show that several of these heuristic algorithms produce solutions whose quality

is close to the quality of solutions produced by the greedy algorithm. We have developed a

prototype framework and evaluated all the algorithms using social networks with different types

and sizes.
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CHAPTER 1. INTRODUCTION

The rapid increase in the number and types of online social networks in the past decade

has paved way for a new marketing strategy: viral marketing, where a small number of indi-

viduals or communities are targeted to initiate a process of advertising (Larson (2009)) and

the dynamics of the information propagation through the network is relied on to spread the

advertised information without further external stimuli. The initiators of the process constitute

a set referred to as the seed. Understanding and identifying the nature and size of the seed that

will help in maximizing the spread of desired information about a product, therefore, is one of

the main focus of research in social sciences that relate to viral marketing. This is called the

diffusion/influence maximization problem. In the recent years, the power of computing and

data sciences have been brought to bear upon this problem–the objective has been to design

computationally efficient algorithms with provable guarantees on the quality of the seed set

generated by such algorithms.

1.1 Background

Central to this problem are two features: the dynamics of the network in which the diffusion

is being examined and the diffusion model. The network dynamics capture both the topology

and the way it expands and contracts as the new groups or individuals become active and inac-

tive in the network (Erdös and Rényi (1960); Watts and Strogatz (1998); Barabási and Albert

(1999)). It has been experimentally validated that social networks typical exhibit behavior of

a small-world network (Kautz et al. (1997)), which has high node clustering and same/similar

node distances. The diffusion model, on the other hand, captures the conditions (both qual-

itative and quantitative) under which an individual can influence (or can be influenced by)
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another individual in the network (Kempe et al. (2003)). Independent Cascade Model (IC)

and Linear Threshold Model (LT), and their generalizations are the diffusion models consid-

ered in the past. The IC model considers the probability with which an individual can influence

his/her neighbors and the LT model, on the other hand, considers the number of neighbors of

node that must become influential to influence node under question. For both these models,

finding the seed with a specific size, that will maximize the result of diffusion is an NP-Hard

problem ( Kempe et al. (2003)). In this context, Kempe et al.( Kempe et al. (2003)) were

the first to present a greedy algorithm with an approximation guarantees of (1 − 1/e) on the

quality of the seed set. Their algorithm is an iterative process, where at each step the selection

of an element to add to a partially computed seed is driven by the highest marginal gain the

element is expected to produce after its addition. The proof that this algorithm has a provable

approximation guarantee crucially relies on the fact that the influence maximization function

is monotone and sub-modular. The greedy algorithm, however, is not viable in practice and

several heuristics (Chen et al. (2009); Ohsaka et al. (2014); Li et al. (2011)) have been pro-

posed and empirically validated in the recent past. At its core, these heuristics rely on simple

and efficient mechanism (such as one-step probabilistic behavior: Degree Discount(Chen et al.

(2009)) or non-probabilistic reachability set computation of graphs generated by Monte Carlo

Simulation( Ohsaka et al. (2014))) for ordering the possible candidates for seed set in each step.

1.2 Driving Problem

We focus on a variant of the diffusion problem, where, unlike the existing setting, the

nodes in the network have labels, say, T and N (properties of individuals in the network). The

objective is to find a k size seed set to initiate the diffusion that will maximize the spread among

the nodes with a label T , while keeping the diffusion among the nodes with label N within a pre-

specified bound θ. We will refer to the individuals with label T as the targets and the individuals

with label N as non-targets. This variant directly follows from several real-life scenarios in

market science, where advertising among the non-target groups or communities may not only

lead to a waste of valuable resources but may also negatively impact the advertising (when
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the non-target groups actively spread information that negates the impact of advertisement)

(Aaker et al. (2000)). The problem is also relevant in political campaign (in particular, in

political fund-raising campaigns), where the objective of the campaign is to reach out to as

many sympathetic individuals (with same or similar political viewpoint) without influencing

and inadvertently energizing the individuals with opposing political views. We call this problem

as Constrained Targeted Influence Maximization Problem (CTIM for short).

1.3 Contributions

From the computational aspect, the problem is as hard as the conventional diffusion max-

imization problem. Furthermore, we first observe that the natural greedy algorithm may not

have an approximation guarantee of (1 − 1/e), as the maximization function in our scenario

is not monotone and sub-modular. Nevertheless, we provide two types certain approximation

guarantees on the quality of solution produced by the greedy algorithm. In this context, we

introduce a new notion of optimality–robust optimality, where the optimal solutions, i.e., the

candidate seed sets are constrained such that addition of k target individuals to the candidate

will still keep the expected diffusion among the non-target individuals within the bound θ.

From practical point of view, robust optimality aims to bring in the importance of non-target

threshold in the computation of the optimal solution. We prove that the greedy algorithm when

applied to constrained targeted influence maximization problem renders itself the approxima-

tion guarantee with respect to robust optimality. We also prove that the greedy algorithm has

an approximation guarantee containing both multiplicative and additive errors (whereas for

the standard influence maximization, the greedy algorithm’s approximation only involves mul-

tiplicative factors). Building on this we propose a new greedy algorithm called Multi-Greedy

Algorithm and theoretically show that this algorithm performs at least as good as the normal

greedy algorithm. Experimentally, we observe that Multi-Greedy algorithm performs a lot

better than the basic greedy algorithm. However, this algorithm is expensive and is inefficient

even for networks with just several thousand nodes.
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To address this issue, we further refine the Multi-Greedy algorithm and implement using

a two-phase approximation strategy. In the first phase, we estimate for each node vεV , the

number of non-target individuals that might get influenced if v is selected as a member of

the seed. In the second phase, we iteratively compute the seed by adding at each step, the

individuals that will impact the diffusion (to the target individuals) the most if added to

the seed while still keeping the number of non-target individuals being influenced below the

threshold. We utilize a tree-structure to keep track of the search space over the (partial)

candidate solutions for the seed set, which, in turn, allows us to efficiently compute the seed

set. We first develop a set of methods, where in the first phase greedy (simulation based)

algorithm is used for estimation and in the second phase, heuristics relying on degree discount

( Chen et al. (2009)) and reachability analysis of graphs generated by Monte Carlo simulations

( Ohsaka et al. (2014)) are used for the seed set computation. We prove that the computed

result is as good as the results obtained from the Multi-Greedy algorithm. We then develop pure

heuristic method, where the first phase estimation also uses heuristics. While the theoretical

guarantees regarding the quality of the result cannot be maintained, these heuristics are very

efficient and we have empirically shown that the results obtained using the heuristics is close

to the optimal solutions. We have developed a prototype implementation and have evaluated

our algorithms on a variety of social networks of different sizes.

1.4 Organization

The rest of the paper is organized as follows. In Chapter 2, we talk about existing methods

to maximize the influence in social networks . In Chapter 3, we formally define the problem

and complexity of the problem. Also we discuss various algorithms for the CTIM problem.

We present the notion of robust optmaility and show that the greedy algorithm for the con-

strained targeted influence maximization problem renders itself the approximation guarantee

with respect to robust optimality . In Chapter 4, we present our system overview, experimental

results performed on various real world social networks and comparison of various algorithms

with the greedy algorithm . In Chapter 5, we summarize our contributions, and discuss the

possible extensions to this work.
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CHAPTER 2. REVIEW OF LITERATURE

Domingos and Richardson (2001) introduced the influence maximization problem in a social

network represented as G = (V,E), where V is the set of nodes in the graph and E ⊆ V × V

the edge relation between pairs of nodes. The graph also captures propagation probability

p(〈u, v〉) for each 〈u, v〉 ∈ E, which quantifies the amount of influence node u can exert on its

neighbor v. The information in the network is diffused as follows: At the beginning certain set

of nodes (seed set) are activated/influenced. At every time step, a newly activated node u will

activate/influence its neighbor v with probability p(〈u, v〉). This process results in diffusion of

information in the network. Given a seed set S ⊆ V , σ : P(S)→ R is a function capturing the

expected number of set of influenced nodes at the end of the diffusion process. The objective

of the maximization problem is to identify a set of nodes S of size k (= |S|) (defined apriori)

such that the spread of influence (σ(S)) is maximized. This model of information propagation

is known as the Independent Cascade (IC) Model. Several variants of this propagation model

such as linear threshold model have been studied in literature Kempe et al. (2003). In this

work we focus only on IC model.

2.1 Independent Cascade Model

We adopt the Independent Cascade (IC) model of diffusion, formalized by Kempe et al.

(2003) In the IC model, given a directed graph G = (V,E), a propagation probability p(〈u, v〉) ∈

[0, 1] for each 〈u, v〉 ∈ E, and a seed set S ⊆ V , we first activate vertices in S. Then the process

unfolds in discrete steps based on the following randomized rule: When a vertex u becomes

active in step t for the first time, then for every vertex v ∈ Vout(u) , u has a single chance to

activate vertex v with probability p(〈u, v〉). If u succeeds, then v will become active in step
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t+ 1 and remains active in all the subsequent steps. This process runs until no more activation

is possible. We denote the set of activated vertices given a seed set S by AS . The influence

spread of a seed set S under the IC model is defined as the total number of active vertices given

a seed set S. We denote the influence spread of S by σ(S).

Figures 2.1 and 2.2 illustrate the diffusion process under IC Model.Let us consider v3 and

v4 be the initial seed set. The green colored vertices represent the active nodes and the blue

colored vertices represent the nodes that are considered for activation by the active nodes in

the current time step. In the first iteration, we activate the nodes v3 and v4 and push the nodes

to the process queue. Subsequently, we process every node in the process queue. In the next

step, v3 attempts to activate v2 (as v2 is the inactive neighbor of v3) and successfully activates

v2 (as p(〈v3, v2〉) is 0.9) and pushes v2 to the process queue. In the next step, v4 attempts to

activate v5, v6 and v7 and activates only v5 and v6 (as p(〈v4, v7〉) is very less, hence v4 fails

to activate v7) and we push the nodes v5 and v6 to the process queue. In the next step, v2

activates v1 and pushes to the queue. As v5, v6 and v1 do not have any inactive neighbours,

this marks the completion of diffusion process under the IC Model.

2.2 Greedy Algorithm

The influence maximization problem is proved to be NP-hard ( Kempe et al. (2003)).

Kempe et al. (2003) proposed a greedy algorithm which acheives a constant approximation,

1- 1
e , to the optimum solution. Kempe et al’s greedy approach starts with an empty seed set

S = ∅, and then iteratively add vertex v to the seed set, such that v has the maximum marginal

influence spread i.e v = argmaxv∈V (σS∪v−σS). The influence spread of S, σS is estimated by R

repeated simulations, Monte Carlo Simulations, of IC Model. The greedy algorithm acheieves

constant approximation due to non-negativity, monotonicity and submodularity of influence

spread function σS for the IC model ( Kempe et al. (2003)). However, greedy algorithm has

a major limitation, which is its efficiency. The reasons for the limitaion is two fold : (1) The

algorithm requires repeated computes of the spread function for various seed sets. The problem

of computing the spread under IC is #P-hard . As a result, it is estimated by running Monte

Carlo Simulations for R rounds on IC Model, which results in very long computaion time. (2)
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Figure 2.1: Illustration of ICM

Figure 2.2: Illustration of ICM Contd
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Figure 2.3: Sample Graph to illustrate Influence Maximization

In each iteration, the simple greedy algorithm searches all the nodes in the graph as a poten-

tial candidate for next seed node. As a result, this algorithm entails a quadratic number of

steps in terms of the number of nodes. The greedy algorithm takes O(knRm) time to complete.

2.3 CELF Optimized Greedy Algorithm

Leskovec et al. (2007) proposed agorithm, CELF (Cost-Effective Lazy Forward) based on

”lazy-forward” optimization in selecting seeds. This algorithm tackles the issue (2) quadratic

nature of the greedy algorithm by exploiting the submodularity property of σ. The main idea

is that marginal influence gain for a node at step i cannot be more than that at step j (i > j).

CELF maintains a priority queue 〈u,∆u(S)〉 sorted on ∆u(S) in decreasing order, where S is

the current seed set and ∆u(S) is the marginal gain of u w.r.t S. In every interation ∆u(S)

is re-evaluated only for the top node at a time and if needed, the queue is resorted. The node

at the top is picked as the next seed. Leskovec et al. (2007) empirically shows that CELF

dramatically (approx. 700 times speed-up) improves the efficiency of the greedy algorithm

with the same performance, in terms of influence spread, as the original greedy algorithm.

Subsequently, Goyal et al. (2011b) further optimized and have proposed variants of CELF

method for information diffusion problems. However, it still takes a few hours to complete in

a graph of tens of thousands of vertices.
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Figure 2.5: Illustration of CELF Greedy
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Figure 2.5 illustrates the CELF Greedy algorithm for the sample graph in Figure 2.3. Let

us consider the budget k to be 3. In the first iteration, we calculate the gain for every node

and update the priority queue sorted by gain (Figure 2.5). We will remove the node at the

top of the queue which is v4, and add it to the seed set. In the next iteration we pick v3 as

it is at the top of the queue and we re-calculate the gain as the current iteration of v3 is 1.

We will add v3 to the seed set as it remains at the top even after re-calculating the gain. In

the next step for v2, we will re-calculate the gain which is 0 (as the nodes influenced by v2 are

already activated by the current seed set). We update the queue with re-calculated gain of v2.

Similarly, we re-calculate and update the gain for v5, v6 and v7. We will add v7 to the seed

set as it remains at the top for the current iteration. Hence v4, v3 and v7 will be the seed set

produced by CELF algorithm.

2.4 Random Graph Reachability Tests Algorithm

Ohsaka et al. (2014) proposed efficient algorithm, Pruned Monte Carlo Simulations Algo-

rithm, by estimating the influence spread using reachability tests. As reported in ( Ohsaka

et al. (2014)) simulating the IC model is equivalent to testing reachability on random graphs.

The main idea of the algorithm is to (1) maintain and incrementally update the outcome of

Monte-Carlo simulations, by which it reduces the number of necessary simulations and the sim-

ulation cost (2) BFS pruning for reachability tests, by which it reduces the computation time.

Ohsaka et al’s algorithm starts with generating R random DAG’s based on the following rule:

every edge 〈u, v〉 ∈ E lives with probability p(〈u, v〉). Then, compute the strongly connected

components (SCC’s) for each DAG. Consequently, the i-th vertex-weighted DAG Gi = (Vi, Ei)

is constructed as follows: Vi = {compi[v]|v ∈ V }, Ei = {(compi[u], compi[v])|uv ∈ E′i} where

compi[v] denotes a SCC containing v ∈ V , weighti[v] denotes the number of vertices in a

strongly connected component v. The vertices reachable from set S in DAG Gi is denoted by

σGi(S) and is computed as

σGi(S) =
∑

v∈Vi:∃t∈S,compi[t] Giv

weighti[v]
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.

The seed set is selected according to the greedy startegy based on maximum marginal gain.

An approximate value of marginal gain σ(S ∪ v)− σ(S) is obtained by averaging the gain of v

in each DAG.

2.5 Degree Discount Heuristic Algorithm

Chen et al. (2009) propose the Degree Discount heuristic to efficiently find the effective

seed nodes. Degree Discount assumes that the propagation of influence has lower potentials

to spread globally. And thus it is natural to consider only one-step neighbor nodes and select

nodes with high degree values, which tend to have higher expectations of influence, to be the

seed ones. The central idea is to compute and update such expectations of influence in each

round of selection. If one wants to select k seed nodes, Degree Discount will be performed k

times. After selecting node w as a seed in each round, we will re-calculate the expectation of

influence of each w’s neighbor v, as v’s expectation of influence will get discounted as w is in

the seed set. The expectation of influence Ev is calculated by

Ev = (1− p)|tv |.(1 + (|dv − tv|).p)

where dv = {u|u ∈ V and (v, u) ∈ E}, tv = {u|u ∈ V and (u, v) ∈ E and u ∈ S}. In other

words, Ev is the expectation value that v is not only never influenced by existing seed nodes,

but also able to activate the nodes that are not selected as the seed nodes.

Figure 2.6 illustrates the DegreeDiscount algorithm for the sample graph in Figure 2.3. Let

us consider the budget k to be 3. In the first iteration, we calculate the expectation of influence

Ev for every node. We will pick the node with the maximum Ev which is v4 and add it to the

seed set. In the next iteration, we will re-evaluate the Ev for every node and pick the node

with maximum Ev, which is v2. As we can see that in Figure 2.6, the Ev changes for the nodes

in every iteration. Subsequently, we will pick the node v7. Hence v4, v2 and v7 will be the seed

set produced by DegreeDiscount algorithm.
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Figure 2.6: Illustration of DegreeDiscount Algorithm

2.6 Variations of Influence Maximization

Several other variations of the influence maximization problem have been studied in liter-

ature Li et al. (2015); Chen et al. (2015); Goyal et al. (2011a); Li et al. (2011). Chen et al.

(2015) proposed the Topic Aware Influence Maximization problem, which, given a topic-aware

influence maximization (TIM) query, finds k seeds from a social network ,where each edge is

associated with a topic distribution, such that the topic-aware influence spread of the k seeds is

maximized. Li et al. (2015) proposed Keyword-Based Targeted Influence Maximization (KB-

TIM) problem, to find a seed set that maximizes the expected influence over users who are

relevant to a given advertisement. Goyal et al. (2011a) proposed a data based approach for

the influence maximization, which leverages the existing propagation traces to learn how in-

fluence propagates and uses this to estimate the expected influence spread. Li et al. (2011)

proposed the Labeled Influence maximization problem, which aims to find the set of seed nodes

which maximize the influence spread and profit given a labeled social network with influence

probabilites on edges, set of target labels, profit values for each label and a budget in terms

of number of seed nodes to be selected. They first proposed an algorithm based on the greedy

and heuristics methods of original influence maximization. Later they proposed the Maximum

Coverage algorithm, the central idea of which is to compute off-line the pairwise proximities

of nodes in the labeled social network and then find the set of seed nodes online. However,
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the labeled influence maximization problem considers no information regarding the non-target

customers. In our work, we consider non-target customers and have constrained the influence

maximzation problem with non-target threshold.
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CHAPTER 3. PROPOSED METHOD

3.1 Problem Definition

We will first formalize the earlier discussed variant of the information diffusion problem. Given

a network G = (V,E), assume that each node is either labeled as a target node or as a non-

target node. For any seed S, σT (S) and σN (S) capture the expected number of target nodes and

non-target nodes, respectively, influenced by S. Given a threshold value θ, we define σT (S, θ)

as σT (S) if σN (S) ≤ θ; otherwise σT (S) equals zero. Thus if a set influences more than θ

non-target nodes, then σT (S, θ) is defined as zero. We will now define our problem called.

Problem 1. Constrained Targeted Influence Maximization (CTIM) Given k and θ,

find a seed set S of size ≤ k such that σT (S, θ) is maximized.

We use OPTk,θ to denote the number of target nodes influenced by S when S is a solu-

tion to the Constrained Targeted Influence Maximization problem. Note that when

the number of non-target nodes is 0, then this problem is precisely the Standard Influence

Maximization problem.

Figure 3.1 illustrates the problem objective. There are 11 nodes, green colored nodes repre-

sent target T nodes and red colored nodes represent non-targets N . The diffusion probabilities

are annotated on each neighbor relation. Consider that the objective is to compute a seed of

size k = 2 and non-target threshold θ = 1. Traditional diffusion maximization objective does

not consider the labels of the nodes and will select the nodes v1 and v6 as the seed set (as these

nodes contribute to highest marginal gain in terms diffusion to any node). On the other hand,

for the proposed CTIM problem, the best seed is {v1, v9}—these nodes have the maximum

probability to affect nodes labeled T , while restricting the affect on N -labeled nodes to 1 .
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Figure 3.1: A sample graph to illustrate the CTIM problem

A direct extension of the greedy algorithm in our setting will be to select the node at each

step such that the inclusion of the node will have maximum impact (maximal marginal gain)

under the constraint that its inclusion will not result in violation of the non-target threshold.

For instance, in Figure 3.1, in the first iteration v6 will be the candidate node with influence

spread of 5 T -labeled nodes and 1 N -labeled node. In the next iteration as influenced N -labeled

nodes reached the threshold θ = 1, the probable nodes will be any of the nodes v2, v3, v4 and v5

with the total influence spread on the T -labeled nodes being 6. We will show that the guarantees

this method provides with respect to a new notion of optimality (robust optimality).

However, as noted above, the greedy extension still does not lead to the seed {v1, v9}, which

can achieve influence spread over 7 T -nodes while still conforming to the non-target threshold.

In the following section, we will present the details of the BaseLine Greedy and Multi Greedy

algorithm, introduce a two-phase framework and discuss their effectiveness (both in terms of

quality of computed result and efficiency) in addressing the CTIM problem.

3.1.1 Complexity

It is very easy to see that the CTIM problem is NP-hard by a reduction from the standard

(one that does not consider node labels) influence maximization. Given an instance of such

standard influence maximization, we can always construct an instance of CTIM with all labels
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as target labels and θ = 0, and the solution of our problem embeds a solution of the standard

problem.

Theorem 1. Constrained Targeted Influence Maximization problem under the IC model is

NP-hard.

3.2 Algorithms for Targeted Influence Maximization

In this section, we propose two basic algorithms to solve the CTIM problem. Note that

when there are no non-target nodes in the network, this problem is exactly same as the standard

influence maximization problem. We know that a greedy algorithm achieves an approximation

guarantee of (1−1/e). Thus a natural approach to the CTIM problem is to start with a greedy

algorithm and show that the greedy algorithm produces (1 − 1/e) approximation guarantee.

However, this approach does not seem to succeed here. Known proof that shows that the greedy

algorithm achieves an approximation guarantee of (1 − 1/e), heavily relies on the fact that

influence function is monotone and sub modular. However, for our problem even monotonicity

does not hold. This is because of the following: Let S be a set such that σN (S) = θ. Now, if

we add a vertex v to S, it could be the case that σN (S ∪ {v}) > θ. Thus σT (S ∪ {v}) = 0 an

thus σT (S) is more than ΣT (S ∪ {v}).

In spite of this fundamental difficulty, we first show that this Baseline Greedy algorithm

still has certain approximation guarantees. Next, we will extend this greedy algorithm (called

Multi Greedy Algorithm) that attempts hold multiple candidate solutions at any instance.

We will show that the quality of the solution produced by this Multi-Greedy algorithm is

at least as good as the quality of the solution produced by the Baseline Greedy algorithm.

Finally, we introduce speed-up techniques using pruning, reachability tests and heuristics to

improve the efficiency of the Tree Based Greedy algorithm. We first start with description and

analysis of the baseline greedy algorithm.
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3.2.1 Baseline Greedy Algorithm

Algorithm 1 describes the baseline greedy algorithm. In this algorithm, we start with an

empty seed set S = ∅, and then iteratively add vertex v to the seed set, such that v has

the maximum influence spread on the target nodes (σT (S ∪ v)) and has a influence spread on

non-targets (σN (S ∪ v)) less than non-target threshold (θ) , i.e

v = argmaxv∈V \Si−1
{σT (Si−1 ∪ {v}, θ)

The influence spread is estimated by R repeated simulations, Monte Carlo Simulations,

of IC Model. This algorithm takes O(knRm) time as , algorithm runs for k iterations , in

each iteration we calculate the influence spread for every vertex (n vertices) for R rounds and

calculating the influence spread takes O(m) time. However, this approach has a limitation :

local optimal solution at every iteration does not necessarily lead to a global optimal solution.

To address this limitation, we propose a Multi-Greedy algorithm which is described in Section

3.2.2

Algorithm 1: BaselineGreedy

Data: Labeled Social Network G = (V,E, L), budget k and non-target threshold θ

begin

S0 ←− ∅
for i = 1 to k do

Find v such that v = argmaxv∈V \Si−1
{σT (Si−1 ∪ {v}, θ)}

Si = Si−1 ∪ {v}
return Sk

We establish two types of approximation guarantees on the quality of solution produced

by the above greedy algorithm. Recall that OPTk,θ is the optimal solution when we restrict

the number of non-target threshold nodes to θ. Our first theorem relates the quality of the

Baseline Greedy algorithm to OPTk,1, later we extend the proof and relate the quality

of Baseline Greedy to OPTk,θ. The approximation guarantee has an additive error that

depends on the graph structure and θ. Let v be a node such that σN (v) ≤ θ + 1 and σT (v) is

maximized. Let Bestθ denote σT (v). Given two sets S and R, let gainS(R, θ) = σT (S ∪ R)−

σT (S) if σN (S ∪ R) ≤ θ. Given a node v and a set S of size at most k, let gainS(v) denote
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max{σT (S ∪ {v}, θ)− σT (S, θ), 0}. Let LGainθ denote the minimum value of gainS(v) over all

S and v. Let Diffθ = Bestθ − LGainθ.

Theorem 2. σT (Sk) ≥ (1− 1/e)[OPTk,1 − (k)×Diffθ]

Proof. The greedy algorithm constructs the seed set in an incremental manner, while ensuring

that during each iteration the partial seed set Si will influence at most θ non-target nodes.

During each iteration, we consider an additional set that can influence at most θ+1 non-target

nodes. More precisely let u be a node such that

u = argmaxu∈V \Si−1 ∧ σN (Si−1∪{u})≤θ+1}{σT (Si−1 ∪ {u})}

That is u is a node that would achieve best influence when added to Si while ensuring that

total number of non-target nodes influence by Si ∪ {u} is at most θ + 1. Let S′i = Si ∪ {u}.

Consider the following chain of inequalities. Fix an i, 1 ≤ i ≤ k. Let SEED1 be a seed set

that yields solution whose value is OPTk,1.

OPTk,1 ≤ σT (SEED1 ∪ Si, θ + 1) (3.1)

≤ σT (Si, θ + 1) +
∑

e∈SEED1

gainSi(e, θ + 1) (3.2)

≤ σT (Si, θ) +
∑

e∈SEED1

[σT (S′i+1)− σT (Si)] (3.3)

The first inequality follows because, since SEED1 can influence at most 1 non-target node

and Si can influence at most θ non target nodes, SEED1 ∪ Si can influence at most θ + 1

non-target nodes. The second inequality follows because of the partial sub-modularity—when

S ⊆ R, σN (S ∪ {v}) ≤ θ, σN (R ∪ {v}) ≤ θ, then σT (S ∪ {v}) ≥ σT (R ∪ {v}). Note that since

Si can influence at most θ non-target nodes, σ(Si, θ+ 1) equals σ(Si, θ). Finally last inequality

follows by the definition of S′i+1.

By adding (k−1)OPTk,1 two both sides of the inequality and rearranging terms, and using

the fact that the size of SEED1 ≤ k, we obtain

OPTk,1 − σT (S′i+1) ≤
k − 1

k
(OPTk,1 − σT (Si))

However observe that σT (S′i+1) ≤ σT (Si+1) +Diffθ (due to the definition of Diffθ). Thus

OPTk,1 − σT (Si+1) ≤ (1− 1/k)(OPTk,1 − σT (Si)) +Diffθ
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Solving the above recurrence we obtain that

σT (Sk) ≥ (1− 1/e)[OPTk,1 − kDiffθ]

This completes the proof.

In fact, we can extend the ideas from the above proof to relate the quality of the greedy

solution to OPTk,θ.

We will next compare the quality of the solution produced by the greedy algorithm with

the optimal solution having certain robustness properties. We define a notion of robust optimal

set. A seed set S is (k, θ)-robust if |S| ≤ k, σN (S) ≤ θ and for every set S′ ⊆ T with cardinality

≤ k, we have that σN (S∪S′) ≤ θ. That is even after adding all elements of S′ to S, the number

of non-targets influenced is still at most θ. A seed set S of size is (k, θ)-robust optimal if for

every S′ that is (k, θ)-robust optimal, σT (S) ≥ σT (S′). Let RobOPTk,θ denote the number of

target nodes influence by a (k, θ)-robust optimal seed set.

Theorem 3. σT (Sk) ≥ (1− 1/e)×RobOPTk,θ

Proof. Consider a slight modification of the Baseline Greedy algorithm. During each it-

eration of the loop, the algorithm attempts to find a node v. Consider a modification of the

algorithm where we constrain v to be target node. Let S′1, S
′
2, · · ·S′k be the sets constructed by

the greedy algorithm.

RobOPT ≤ σT (RobOPT ∪ S′i, θ) (3.4)

≤ σT (S′i, θ) +
∑

e∈RobOPT
σ
S′i
T (e) (3.5)

≤ σT (si, θ) +
∑

e∈RobOPT
[σT (S′i+1)− σT (S′i)] (3.6)

(3.7)

The first inequality follows because size of S′i ≤ k and due to the definition of RobOPT . As

before, by solving the above recurrence we obtain that

σT (S′k, θ) ≥ (1− 1/e)RobOPTk,θ
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Finally note they for every i, σT (S′i, θ) ≤ σT (Si, θ). This proves the theorem.

3.2.2 Multi-Greedy Algorithm

In this section, we improve the Baseline Greedy algorithm. The Baseline Greedy

algorithm keeps track of a single set during every iteration and attempts to improve upon it.

Our observation is that if during every iteration, we keep track of multiple sets and attempts

to improve upon them, we might arrive at a better solution. To motivate this, consider the

following simple scenario where the non-target threshold θ is 1 and k is 2. Suppose that there

exist two nodes u and v such that σT (u) = 4 is maximized subject to the constraint σN (u) = 0

and σT (v) = 8 is maximized subject to the constraint σN (v) = 1. Further suppose that there

nodes w1, w2 and w3 such that σN (u,w1) = 0, σT (u,w1) = 7, σN (u,w2) = 1, σT (u,w2) = 12,

and let w3 be the best node such that σT (v, w3) = 10 is maximized subject to the constraint

σN (v, w3) = 1. Now the greedy algorithm will pick {v, w3} as a seed set. However, in this case

the set {u,w2} is a better solution.

The above scenario suggests the following approach. During the `th iteration keep track

of many subsets S0
` , S

2
` , · · · , such that σN (S`i ) ≤ θ and σT (S`i ) is maximized subject to a local

greedy approach. Then at the end of the kth iteration, we pick the best possible solution among

the θ choices S0
k , S

1
k , · · · . Below we formally describe the algorithm.

Multi Greedy. Initially, the algorithm starts with an empty set S0 = ∅. The `+1th iteration

of the algorithm proceeds as follows. Suppose S1
` , S

2
` , S

r
` are the sets that are present at the end

of the `th iteration. For each set Si`, we extend it in at most θ many possible ways as follows:

For every j ∈ {0, · · · , θ} find the best vertex v such that σT (Si` ∪ {v}) is maximized subject to

the constraint σN (Si`∪{v}) ≤ j (if such a v exists). Set Sj`+1to {v}∪S
i
`. Note that this process

will generate at most θ new sets that will be considered in the next iteration. Consider all the

sets that are generated at the end of the kth iteration. Observe that each of these sets will

influence at most θ many non-target nodes. Now, pick the set that will influence maximum

number of target nodes.
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Figure 3.2: Illustration of Multi Greedy Algorithm

Figure 3.2 illustrates the Multi Greedy algorithm for the sample graph in Figure 3.1. Let

us consider the budget k to be 2 and θ to be 1 for CTIM problem. In the first iteration, the two

sets will be v9 and v6 as they have maximum marginal gain on target nodes for σN = 0, 1. In

the next iteration, we will expand these sets with the nodes resulting in the maximum marginal

gain which is as shown in Figure 3.2. As we can see that set {v9, v1} has the maximum influence

on the target nodes, hence the seed set will be {v9, v1 }.

Though this algorithm is computationally very expensive, it can be shown that the quality

of the solution produced is at least as good as the quality of the solution produced by the

Baseline Greedy algorithm. Let MG be the solution produced by this and algorithm and

G be the solution produced by the Baseline Greedy algorithm.

Theorem 4. σT (MG) ≥ σT (G)

Let us now analyze the time complexity of the above algorithm. If the `th iteration of the

above algorithm has r many subsets, then the number of sets that will be considered in the

(` + 1)th iteration could be rθ. Thus the total number of candidate sets at the end of the

kth iteration could be as big as O(θk) and this makes this computationally infeasible. We will

address this by designing a pruning strategy and ensure that during the each iteration, the

algorithm considers only θ many sets.

3.2.2.1 Pruning Candidate Sets

We discuss how to reduce the number sets considered during the each iteration of the

algorithm. Consider `th iteration. Let E and F be two sets that are generated during an

iteration. If σT (E) > σT (F ) and σN (E) ≤ σN (F ), then clearly E is a better solution and E
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influences more target nodes than F , and E does not influence more non-target nodes than F .

Moreover, any extension of E (while obeying non-target constraint) will be a better solution

than any extension of F (while obeying non-target constraint). Thus we can prune F , and

remove it. This strategy will drastically reduce the number of sets that are considered during

each iteration. Observe that this pruning strategy ensures that for every j ∈ {0, · · · , θ} there

exists at most one set S such that σN (S) = j. Thus during every iteration, there are at most

(θ+ 1) sets to consider. Using this, we analyze the time complexity of the algorithm as follows:

Consider an iteration. This iteration starts with θ + 1 many sets. For every set S, we perform

the following computation: For every vertex v, compute σN (S ∪ {v}) and σT (S ∪ {v}). Thus

each iteration of the algorithm takes O(θ × |V | × Inf) time. Where Inf is the time taken to

compute the influence spreads σN (.) and σT (.). Thus the total time taken by this algorithm

is O(kθ × |V | × Inf). Finally, we can show that this pruning strategy does not decrease the

quality of the solution. To summarize, we have the following theorem.

Theorem 5. The Multi Greedy Algorithm with Pruning runs in time O(kθ × |V | × Inf)

and the quality of the solution produced by this algorithm is at least as good as the quality of

the solution produced by the Baseline Greedy algorithm.

3.2.3 Efficient Implementation and a Two-Phase Algorithm

To implement Multi Greedy algorithm, we need to perform kθ× |V | number of influence

spread computation (for computing σN (.) and σT (.)); this makes it infeasible for large graphs.

We propose various techniques improve the efficiency. There are three computational bottle-

necks in the above algorithm. First is that, during every iteration, for every set S, we add every

vertex to S and estimate influence spread. Do we really need to consider every vertex? The

second bottleneck is the estimation of influence spread. This is known to be SharpP -complete

problem and therefore we can not hope to have a efficient algorithm that will estimate this.

Finally, the third bottle neck is that of memory. Holding all the candidate sets during every

iteration will make it memory as well as time inefficient. To address these issues two issues,

we propose a two-phase greedy implementation that build an influence maximization tree to

reduce memory as well as time.
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Consider the first bottleneck. Let S be a set σN (S) = x. If v is a node for which σN (v) > θ,

then definitely σN (S ∪{v}) > θ. Thus, we need not consider such nodes; we build upon this by

performing even more aggressive pruning. If σN (v) > θ−x, then it is likely that σN (s∪{v}) > θ

(though this may not always hold). Thus when we try to extend a set S, we only consider

nodes that will influence up to θ− x non-target nodes. How do we find such nodes? Instead of

searching for such nodes each time, we can perform pre-computation—For each threshold value

j maintain a set of nodes that will influence j non-target thresholds. This pre-computation is

the first phase of our two-phase algorithm.

Phase 1—Estimating the influence spread on non-targets for each vertex : For each

node v in the graph, we estimate σN (v). We store these estimates in a dictionary D consisting

(key, value) tuples of the for 〈j, Aj〉, where 0 ≤ j ≤ θ and Aj is the list of nodes that will

influence j non-target nodes. Note that the run time of this phase is O(|V | × Inf).

Phase 2—Constructing the influence maximization tree: This step is the core of our

two phase implementation. We construct a n-ary tree ,influence maximization tree (IMTree),

with the following properties

• Each tree node consists of three properties (1) vertex (2) influence spread on target nodes

σT and (3) influence spread on non-target nodes σN

• The height of the tree is equal to budget k

• Each tree node has a branching factor of O(θ).

• Every path in the tree satisfies the property: σN (S) ≤ θ where S is the set of nodes in

the path.

We initialize the IMTree with a node with dummy vertex, σT = 0 and σN = 0.We construct

and process the IMTree level by level until the depth k. For each tree node in the IMTree we

find the child nodes based on the following

• Find the partial candidate seed set S at a tree node u by traversing the path from u to

root.
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Algorithm 2: Constructing Influence Maximization Tree Using Simulation

Data: Labeled Social Network G = (V,E, L), target labels TL non-target labels NL,

budget k, non-target threshold θ

begin

D ←− Dictionary Constructed in Phase 1

R = 10000

root←− ∅
root.vertex = −1, root.σT = 0 root.σN = 0

IMTree←− root
level = 0

while level ≤ k do

tree nodes←− NodesAtLevel(IMTree, level)

foreach tree node ∈ tree nodes do

S ←− SeedSetInPath(tree node)

σN (S) = NonTargetsInPath(tree node)

for i = 0 to θ − σN (S) do

max node = FindMaxInfluentialNode(S,D.get(i))

tree node.addChild(max node)

return IMTree

• Find the total influence spread σN (S) by adding the influence spread to non-targets by

each node present in the path from u to the root.

• If the σN (u) = θ′, then for each i between 0 till θ− θ′, find a node v ( 6∈ S) with maximal

marginal gain (i.e., σT (S ∪{v}−σT (S) is maximal) and σN (v) = i, and add as a child of

u. This step takes O(|V | × Inf) time

Finding the seed set from the influence maximization tree: In this step, given the

IMTree, we find the seed set S such that σT (S) is maximum. To do so, we need to find a max

sum path in IMTree, which is equivalent to standard problem of finding max sum path (leaf to

root) in a tree.

Next we describe a pruning strategy to improve the efficiency of constructing the IMTree

in Phase 2 as in Section 3.2.2.1.

Pruning IMTree: The IMTree constructed could be very large. We discuss how to reduce

the number of tree nodes in IMTree. The following are two scenarios where we can reduce the

number of tree nodes
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Figure 3.3: Scenarios of IMT Pruning

• For a tree node u, let x and y be two child nodes. If σT (x) > σT (y) and σN (x) < σN (y),

we can ignore y as the child node to u. Clearly with x, with lesser influence spread on

non-target nodes we are gaining more influence spread on target nodes. For instance in

scenario 1 of the Figure 3.3, we will prune v5.

• Let x and y be two nodes in the IMTree. If σN (Sx) = σN (Sy) and σT (Sx) > σT (Sy),

where Sx is the set of nodes in the path from x to root and Sy is the set of nodes in the

path from y to root, we can remove tree node y from IMTree due to the same reason as

above. For instance in scenario 2 of the Figure 3.3, we will prune v2.

By pruning the tree nodes in the above scenarios, at each level of tree, we will only have at

most of θ+ 1 tree nodes, with one tree node for every σN = 0, ...θ. Hence, the total tree nodes

will O(θk) compared to that of quadratic number of tree nodes in terms of θ and k. The pseudo

code for this algorithm is described as Algorithm 3.

The complexity of the overall strategy is O(kθ × |V | × inf) (see Theorem 5) as the pruned

tree contains O(kθ) nodes and each insertion of node (Step 3 of IMTree construction) takes

O(|V | × inf) time.

This completes the high-level description of the two-phase implementation. To recap, the

first phase of the algorithm computes number of non-targets influenced for every node and

the second phase constructs a pruned IMTree. Note that in both of these steps, we need to

compute influence spread. Thus the time taken for the both of these steps is bounded by Inf .
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Algorithm 3: Constructing IMTree With Pruning

Data: Labeled Social Network G = (V,E, L), target labels TL non-target labels NL,

budget k, non-target threshold θ

begin

D ←− EstimateNonTargets(G,NL)

R = 10000

root←− ∅
root.vertex = −1, root.σT = 0 root.σN = 0

IMTree←− root
level = 0

while level ≤ k do

tree nodes←− NodesAtLevel(IMTree, level)

MaxNodes←− ∅
foreach tree node t ∈ tree nodes do

S ←− SeedSetInPath(tree node)

σN (S) = NonTargetsInPath(tree node)

σT (S) = TargetsInPath(tree node)

for i = 0 to θ − σN (S) do

m = MaxInfluentialNode(S,D.get(i))

if σT (S) +m.σT ) > MaxNodes[σN (S) + i].σTa then

σTa = σT (S) +m.σT
MaxNodes[σN (S) + i) = (m, t, σTa)

for i = 0 to θ do

(m, t, σTa)←−MaxNodes[i]

t.addChild(m)

return IMTree
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Algorithm 4: Estimating Non-Targets Using Simulation

Data: Graph G = (V,E), non-target label N

begin

D ←− ∅, R = 10000, sv = 0 for every v ∈ V
for node v ∈ V do

for i = 1 to R do

Av = PerformDiffusion(v)

sv+ = CountNonTargets(Av, N)

sv = sv/R /* Estimated number of non-targets influenced by v */

D.add(sv, D.get(sv) ∪ v)

/*D.get(sv) returns the current set of nodes associated with sv */

return D

Next we will discuss several approaches to compute Inf . To compute influence spread in Phase

1, we consider two strategies simulation and random DAGs. To estimate influence in Phase 2,

we consider three strategies simulation, random DAGs and Degree Discount. Note that Degree

Discount heuristic can not be used in the phase 1.

3.2.3.1 Phase 1 using Simulation

A pseudocode for this method is shown in Algorithm 4. To estimate the influence spread

on non-targets for each vertex v ∈ V , we do the following: We add the vertex v to seed set S

and simulate the Independent Cascade (IC) model as described in section 2.1. Let Av be the

set of nodes that are activated at the end of the simulation. We identify node u ∈ Av as a

non-target if L(u) ∈ NL and count the number of non-target nodes in Av. We repeat the above

process for R rounds and take the average of estimate of non-targets.The running time of this

algorithm is O(nRm).

3.2.3.2 Phase 2 using Simulation

In phase 2, we need to compute the influence spread while computing the marginal influence

gain for each node among the set of probable candidates C (nodes with same σN ). Again, this

algorithm will simulate the diffusion process R many times and take the average. Details are

in Algorithm 5.
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Algorithm 5: Find Max Influential Vertex Using Simulation

Data: G = (V,E), target label T , Partial Candidate Seed Set S, Probable Candidates

C (i.e vertices with same σN )

begin

R = 10000

for vertex v ∈ C \ S do

sv = 0

for i = 1 to R do

Av = PerformDiffusion(S ∪ v)

sv+ = CountTargets(Av, TL)

sv = sv/R - σT (S) /* Marginal gain for v */

max node.vertex = argmaxv∈C\S{sv}
max node.σT = smax node.vertex /* marginal gain for the max node */

return max node

Table 3.1: Phase 1 for the graph in Figure 3.1

Non-Targets Estimates (σN ) Nodes

0 {v2, v3, v4, v5, v8, v9, v10, v11}
1 {v1, v6, v7}

Table 3.1 and Figure 3.5 illustrates the two phases of CTIM problem for graph in the Figure

3.1. Let us consider the budget k to be 3 and θ to be 1. Table 3.1 shows the dictionary con-

structed in the phase 1 (non-targets estimates). Figure 3.5 illustrates the phase 2 (constructing

the IMTree). In the first step, we add the node v9 to the IMTree as it has the maximum σT

for σN = 0. In the next step, we add v6 to the IMTree as it has maximum σT for σN = 1. In

the next step, we will add node v2 to v9. Subsequently, we will add nodes v1 to v9 and v2 to

v6. This marks the end of the construction of IMTree. As we can see that the path {v1, v9 }

has the maximum sum of σT , hence {v1, v9 } will be the seed set.

3.2.3.3 Phase 1 using Reachability tests on random graphs

Ohasaka et al. Ohsaka et al. (2014) proposed an efficient algorithm to find the marginal

influence spread using reachability tests on random graphs, which indeed is used to find the seed

set for the influence maximization problem.We borrow this idea to estimate the non-targets. A

pseudocode for this algorithm is described in Algorithm 6. Given a graph G, we first generate
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Figure 3.5: Illustration of IMTree construction

R random graphs using the rule : Each edge 〈u, v〉 ∈ E lives with probability p(〈u, v〉). Then,

we do BFS on each vertex v ∈ V , let rv be the set of reachable nodes from v, we store the

result in Dictionary. We can estimate the marginal influence spread on non-target nodes for a

vertex v by

σN (v) =
1

R

R∑
i=1

CountNonTargets(Ri[v], NL)

However, this method does not improve the time complexity because BFSs still need to be

conducted |V |×R times and it takes O(|E|) for the BFS . In order to make algorithm faster we

adopt cached BFS (pruned BFS) which reduces the number of nodes visited during the BFSs.

The central idea of cached BFS is based on the following: If a vertex v can reach to vertex u,

vertices reachable from u are also reachable from v, hence we can prune these vertices while

doing BFS from v. Figure 3.6 illustrates BFS pruning on a sample graph.A pseudocode for

cached BFS algorithm is described in Algorithm 7.

3.2.3.4 Phase 2 using Reachability tests

We apply similar technique described in Section 3.2.3.3 to find the max influential node.

Given C, S, for every node v ∈ C, we calculate the Gain(v, S) for each DAG. Gain(v, S)

is nothing but the number of target nodes reachable from v (excluding the ones which are
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Figure 3.6: A sample graph to illustrate BFS Pruning

Algorithm 6: Estimating Non-Targets Using Reachability Tests

Data: Labeled Social Network G = (V,E, L), non-target labels NL

begin

D ←− ∅
R = 10000

for i = 1 to R do

E
′
i ←− edges by keeping with probability p(e)

G
′
i ←− (V,E

′
i)

Ri ←− ReachableMap(Gi)

for v ∈ V do

sv = 1
R

R∑
i=1

CountNonTargets(Ri[v], NL)

D.add(sv, D.get(sv) ∪ v)

return D

reachable from S).

Gaini(v, S) = CountTarget(Ri[v] \
⋃
u∈S

Ri[u], TL)

An approximate of marginal influence spread is obtained by averaging the gain of v in each

DAG.

σT (v) =
1

R

R∑
i=1

Gaini(v, S)

We then select the node with the maximum marginal influence spread.

3.2.3.5 Phase 2 using DegreeDiscount

Even with improved greedy algorithms, the running time is still large and may not be

suitable for large graphs. Chen et al. proposed Chen et al. (2009) the degree discount heuristic
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Algorithm 7: ReachableMap using BFS Caching

Data: Labeled Social Network G = (V,E, L)

begin

R←− ∅
for v ∈ V do

Q←− a queue with only one element v

rv ←− ∅
while Q 6= ∅ do

u←− Dequeue Q

if R[u] 6= ∅ then

rv.addAll(R[u])

else

rv.add(u)

for x ∈ {x : (u, x) ∈ E} do

if x /∈ rv then

Enqueue Q with x

R[v] = rv

return R

to efficiently find the seed set. We modify the DegreeDiscount heuristic to consider the target

label information to find the max influential node among the set of nodes C. The pseudocode

for this algorithm is described in Algorithm 8. For every vertex v ∈ C, we calculate the degree

discount heuristic value

ddv = (1− p)|tv |(1 + (|dv − tv|).p)

where dv = {u : (u, v) ∈ E ∧ u ∈ T} and tv = {u : (u, v) ∈ E ∧ u ∈ S}. Then we choose the

node with the maximum ddv.

Algorithm 8: Find Max Influential Vertex Using DegreeDiscount

Data: Labeled Social Network G = (V,E, L), target labels TL, Seed Set S, Probable

Candidates C (i.e vertices with same σN )

begin

for vertex v ∈ C \ S do

ddv = (1− p)|tv |(1 + (|dv − tv|).p)
max node.vertex = argmaxv∈C\S{ddv}
max node.σT = ddmax node.vertex
return max node
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CHAPTER 4. EXPERIMENT RESULTS

The experiments are designed to validate and evaluate the following:

1. How does the simulation-based estimation of marginal influence spread on non-targets

compare to that computed using DAG method?

2. How does the quality of results (estimated number of influenced nodes for a seed of

size k) compare between the baseline greedy algorithm and the different realizations of

multi-greedy algorithm?

3. How do the proposed methods compared with respect to efficiency?

4.1 System Overview

In this section, we describe our framework of the two phase implementation of Multi-Greedy

for CTIM problem. Figure 4.1 illustrates high level modules in our framework. Our framework

consists of four major modules

Figure 4.1: System Overview
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Figure 4.2: Interaction/Class Diagram

1. Graph Generator Module: This module is responsible for generating a graph from a

file, generating labels for the nodes and converting undirected graph to a directed graph.

2. Non-Target Estimator Module: This module is responsible for estimating the non-

targets for every node in the graph (Phase 1). This module consists of two strategies

(implementations) to estimate the non-targets: 1) Using Simulation 2) Reachability Tests

on random DAG’s.

3. Max Influential Node Module: This module is responsible for finding the max influ-

ential node among the given set of nodes (crucial sub step in Phase 2). This module has

three strategies : 1) Using Simulation 2) Reachability Tests on random DAG’s 3) Degree

Discount Heuristic.

4. IMTree Module: This module is responsible for constructing the IMTree based on the

strategy input and finding the seed set from constructed IMTree.This module has two

variations for constructing the IMTree - one with pruning and other without pruning.

This module also consists of a utility to read/write IMTree from/to a file.

Figure 4.2 shows the high level class/interaction diagram of the system. Based on the input

of the strategy, corresponding implementation of phase 1 and phase 2 will be chosen.
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Table 4.1: DataSets

DataSet Nodes Edges Type

ca-GrQC 5,242 14,496 Undirected

ca-HepTh 9,877 25,998 Undirected

wiki-Vote 7,115 103,689 Directed

ca-HepPh 12,008 118,521 Undirected

ca-AstroPh 18,772 198,110 Undirected

soc-Epinions1 75,879 508,837 Directed

Figure 4.3: Non-Targets estimates difference between Simulation-based and DAG-based algo-

rithms

Framework Benefits: The following are the benefits of our framework

• Every phase is modularized, which enable us to plug in different algorithms (implemen-

tations) for different phases very easily.

• Every phase result is cached, hence we can overcome the overhead of running everything

every time.

• IMTree is cached, so we can query with varying budget.

• The propagation/diffusion models can be interchanged easily.
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4.2 Experimental Setup

Dataset. Our dataset contains 6 social networks (Table 4.1): two directed and four undirected

graphs. For the undirected graphs, we consider the influence can propagation in both directions.

We have considered networks of different sizes with respect to the number of nodes and edges.

There are three types of networks

• Collaboration network: These networks are from the e-print arXiv and covers scientific

collaborations between authors papers submitted to a specific category. Each node in

the network represents an author, and each edge represents the two authors collaborated

on a paper. The categories of scientific discipline considered are ca-GrQc: “General

Relativity and Quantum Cosmology” category, ca-HepTh : “High Energy Physics -

Theory” category, ca-AstroPh : “Astro Physics” category, and ca-HepPh : “High

Energy Physics - Phenomenology” category.

• Trust networks: soc-Epinions1 is a who-trust-whom online social network of site Epinions.com

where each vertex represents a user and each edge represents a trust relationship.

• Voting network: wiki-Vote is a Wikipedia vote network, where each vertex represents

Wikipedia user and each edge represents vote relationship (who-voted-whom).

Datasets are available at http://snap.standford.edu/data/.

Environment. All experiments are conducted on Linux server (Virtual machine) with AMD

Opteron 6320 CPU (8 cores and 2.8 GHz) and 32GB main memory. All the algorithms were

implemented in Java.

Notations. We run the proposed algorithms under IC model. In the rest of the section, we

will refer to these algorithms as follows.

Baseline Greedy. This is the baseline greedy algorithm (Algorithm 1) with CELF optimiza-

tion Leskovec et al. (2007).

Multi-Greedy. We have proposed a two-phase efficient realizations of multi-greedy algorithm

and realized different variants of the two-phase method. The variants considered are as follows.
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Figure 4.4: Running time for Non-Targets estimates difference using Simulation-based and

DAG-based algorithms

Sim Sim : In this algorithm, both phase 1 and phase 2 are estimated using Simulation with

CELF optimization Leskovec et al. (2007).The results on original greedy are not reported since

the influence is the same as CELF optimization while its running time is very slow.

Sim DAG: In this algorithm, Phase 1 is by using Simulation (Algorithm 4) and Phase 2 is by

using reachblity tests on random graphs.

Sim DD : In this algorithm, Phase 1 is by using Simulation (Algorithm 4) and we Phase 2 is

by using degree discount heuristic (Algorithm 8)

DAG DAG : In this algorithm, Phase 1 is estimated using reachbaility tests (Algorithm 6)

and Phase 2 is by using reachability tests.

DAG DD : In this algorithm, Phase 1 is estimated using reachbaility tests (Algorithm 6) and

Phase 2 is by using degree discount heuristic (Algorithm 8)

4.3 Experimental Results

4.3.1 Estimation of Influencing Non-targets

Our first objective is to experimentally evaluate the differences between the estimates of

influencing non-targets as computed by the simulation-based (Algorithm 4) and the DAG-based

(Algorithm 6) algorithms. Figure 4.3 presents the number of nodes (y-axis) with estimated
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Figure 4.5: Influence spreads of different algorithms on the graph CA-GrQc (θ = 10 and

p = 0.05)

differences (x-axis) between simulation-based and DAG-based algorithms when applied to ca-

GrQc, ca-HepTh and wiki-vote networks. It shows that 97.0% vertices has the difference

between the estimates ≤ 1.

Figure 4.4 shows the running time for estimating the non-targets using these algorithms.

Note that y-axis is in log scale. As expected, the DAG-based algorithm takes far lesser time com-

pared to simulation-based one. The running time of the simulation-based approach increases

significantly with the increase of number of vertices, edges and the propagation probability.

4.3.2 Estimation of Influencing Targets

Our second objective is to evaluate the quality of the results obtained by applying the

proposed methods. We considered the threshold θ = 10 and experimented with different values

for the size of the seed set ranging from k = 2, 4, 6 . . . , 20 (budget). Figures 4.5, 4.6 and 4.7 show

the influence spread of various algorithms on the graphs ca-GrQc, ca-HepTh and wiki-Vote,

respectively, under the IC model.

As expected, the Sim Sim algorithm computes the seed set with highest influence spread

among the targets while keeping the non-target influence within the threshold. With respect to
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the influence spread achieved using the resulting seed set, we computed the average percentage

difference of each algorithm from the Sim Sim.

Figure 4.6: Influence spreads of different algorithms on the graph CA-HepTh (θ = 10 and

p = 0.05)

% Lower than Sim Sim by

ca-GrQc ca-HepTh wiki-Vote

Sim DAG 6.6 3.2 9.9

Sim DD 10.0 2.45 11.6

Baseline Greedy 9.45 14.93 18.18

DAG DAG 16.46 22.9 38.2

DAG DD 24.5 26.2 36.8

Note that, the percentage difference is higher for the wiki-vote network. This can be attributed

to the structure of the network, where the number edges in the largest SCC is 38.1% compared

to that 92.6% in ca-GrQc and 95.5% in ca-HepTh.

Figure 4.8 shows the running time for various algorithms on networks ca-GrQc, ca-HepTh

and wiki-Vote for k = 20. The y-axis represents time in log scale. Sim DAG, DAG DAG takes

are almost four orders of magnitude faster than that of Sim Sim. Sim DD and DAG DD are

even faster. DAG DD is the fastest of all algorithms. For even a medium dataset Sim Sim
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Figure 4.7: Influence spreads of different algorithms on the graph Wiki-Vote (θ = 10 and

p = 0.02)

algorithm takes several hours and will not be practical to apply for large social networks. After

estimating the non-targets, finding seed set takes significantly less time when DD-based and

DAG-based algorithms are applied (as opposed to simulation-based ones). DAG DAG and

DAG DD are the most scalable for the large social networks; however, it is important to recall

that the diffusion spread using these algorithms can be 15–40% less than that obtained using

Sim Sim algorithm. We believe that for very large networks, the benefits of finding a result

within reasonable time can outplay the cost in terms of the degree of quality.

4.3.3 Application to Large Social Networks

As the Baseline Greedy, Sim DAG and Sim DD algorithm takes several hours on medium

size networks, we conduct the experiments on larger social networks only using DAG DAG

and DAG DD. Figure 4.9, 4.10 and 4.11 shows the influence spread on ca-HepPh, ca-AstroPh

and soc-Epinions respectively. The results are very close, for ca-HepPh network DAG DAG

the influence spread is 6.02% more than DAG DD, for ca-AstroPh network DAG DAG the

influence spread is 5.37% less than DAG DD and for soc-epinions network DAG DAG the

influence spread is 6.15% less than DAG DD.
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Figure 4.8: Running times of different algorithms on the graph CA-GrQc, Wiki-Vote, CA-

HepTh

Figure 4.12 shows the running time of DAG DAG and DAG DD algorithms on networks

ca-HepPh, ca-AstroPh and soc-Epinions for k = 51, θ = 50, p = 0.01. DAG DD takes far lesser

time compared to DAG DAG on all the above networks.
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Figure 4.9: Influence spreads of DAG DAG and DAG DD algorithms on the graph CA-HepPh

(θ = 50 and p = 0.01)

Figure 4.10: Influence spreads of DAG DAG and DAG DD algorithms on the graph CA-

AstroPh (θ = 50 and p = 0.01)
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Figure 4.11: Influence spreads of DAG DAG and DAG DD algorithms on the graph soc-

Epinions (θ = 50 and p = 0.01)

Figure 4.12: Running times of DAG DAG and DAG DD algorithms on the collaboration graph

CA-HepPh, CA-AstroPh and soc-Epinions
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CHAPTER 5. SUMMARY AND DISCUSSION

We introduce the Constrained Targeted Influence Maximization problem in social networks

for target marketing which focus on maximizing the influence spread on target nodes while

restricting the influence spread on non-target nodes. We propose a baseline greedy algorithm

for this problem with guarantee on the influence spread on target nodes. We introduced the

concept of robust optimality to characterize the quality of solutions relevant in the context of

non-target nodes. We further propose a two phase tree based framework with combination

of simulation-based algorithms to further improve the influence spread with a guarantee of

solution which is at least as good as the solution produced by the baseline greedy. We have

improved the efficiency of the two phase algorithm using combination of heuristics methods.

The experiment results suggest that the proposed methods perform faster while quality of the

influence spread is not considerably compromised.

5.1 Future Work

1. Neutral Customers: In CTIM, we consider only target and non-target customers.

We can extend our problem by considering the neutral customers (neither target nor

non-target). To motivate this, let us consider the following real world scenario : While

marketing you would like to spread the influence to the customers, who has more influ-

ence on the target customers, although the customer might not be interested (neutral

customer) in the product.

2. Dynamic Social Networks : CTIM deals with the influence maximization in static

networks. However, in real world, many of the networks exhibit dynamic behaviour,

specifically, the network changes over time and the changes can be observed by periodi-
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cally probing some nodes for the update of their connections. We can extend the CTIM

to maximize influence diffusion in a dynamic social network. .

3. Topic Distributions: Evidently, in real-world social networks, users have their own

interests, which can be represented by topics, and are more likely to be influenced by

users with similar interests. We can extend the CTIM problem with topic distributions

by representing the social network as topic aware graph, where each edge represents the

distribution of influence probablities on various topics.

4. Rumor Source Detection: Identifying rumor sources in social networks plays a crit-

ical role in limiting the damage caused by them through the timely quarantine of the

sources.We can extend the framework of CTIM to solve this problem by labelling the

influenced nodes as target nodes and others as non-target nodes and estimating the seed

set using our framework.

5. Different Heuristics: We plan to use our framework to evaluate different heuristics

and investigate how the structure of the network influences the quality of the result
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