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ABSTRACT

Modular reasoning and concurrent programming are both necessary for scalable development of

performant software. Modular reasoning improves scalability by allowing a program to be understood

one module at a time. Concurrent programming improves the performance by allowing simultaneous

executions of multiple computations in a single program. However, modular reasoning about a con-

current program is difficult because of its thread interference, module inheritance and nondeterministic

message orders. The statement of this thesis is that there exists a concurrent programming model that

enables modular reasoning about behaviors of its programs in the presence of interference, inheritance

and nondeterministic message orders using the following three ideas.

The first idea is an interference control framework that enables modular reasoning in the presence of

interference. The technical innovations of the interference control framework are its sparse interference

and cognizant interference properties that allow for standard Hoare-style modular reasoning about a

concurrent program. Sparse and cognizant interference guarantee that interference happens only at

explicitly specified program points and the interference behavior is statically known, respectively.

The second idea is concurrent behavioral subtyping that enables modular reasoning in the presence

of inheritance. The technical innovations of concurrent behavioral subtyping are a new definition of

behavioral subtyping for a concurrent program in terms of standard interface subtyping and a novel

interference subtyping and show that in the presence of encapsulated inheritance the interface subtyping

is sufficient to guarantee concurrent behavioral subtyping.

The third and last idea is order types that enables modular reasoning in the presence of nondeter-

ministic message orders. The technical innovations of order types are to disallow message races using

existential types that capture unknown module dependencies, abstraction that hides local messaging

behavior of the module in its order type and a blame assignment that properly blames the module with

bad expression composition or bad module composition and not the module in which the race happens.
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These three ideas have the potential to ease software engineering of concurrent systems by improv-

ing a developer’s ability to design, implement, test and evolve their software one module at a time.
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CHAPTER 1. INTRODUCTION

The concurrency revolution [158] and the need for performant software requires sequentially-trained

programmers [108] to write concurrent programs. Modular reasoning [132] allows programmers to

understand their programs one module at a time and in a scalable manner. This is because in modular

reasoning a module is understood using its implementation and static types of other modules it refers

to, independent of their dynamic types [97] and implementations. Modular reasoning is also scalable

because any changes in the dynamic type or implementation of a referred module cannot invalidate an

already verified property of a module that refers to it. However, modular reasoning about a concurrent

program can become difficult and sometimes intractable because of the interference among its threads

[67], inheritance among its modules [97] and nondeterminism in orders of its messages [162].

Interference Two modules interfere if during their concurrent execution, interleaving instructions

of one module changes the program state and consequently the behavior of the other module [177].

Interference makes modular reasoning difficult because the interference can happen between any two

instructions of a module and at each interference point the interference behavior is unknown. To un-

derstand a module M the programmer should consider the possibility of interference between any two

instructions of the module and for each interference point carry out a global reasoning to know its in-

terference behavior, which is a lot of non-modular reasoning work. Any changes in any module in the

program can invalidate a previously verified property of the module M.

To illustrate, consider the single line of code below that sums up the values of variables x and y.

There could be three interference points that occur between instructions that read the value of x, read

the value of y, add the values of x and y and write the result to x.

x = x + y;

That is, this code actually looks like α x = α x + α y where α denotes an interference point. And

there is no information about how interfering tasks at interference points α may or may not modify the
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values of x and y. To understand this single line of code with only four instructions the programmer

should consider three interference points and for each interference point carry out a global reasoning to

know how interference task may modify the values of x and y, which is a lot of work. Any changes in

any part of the program may invalidate this understanding and require the reasoning to be redone.

Inheritance Inheritance and dynamic dispatch make modular reasoning difficult because behaviors

of modules in an inheritance hierarchy can be different. To understand an invocation in a module M, the

programmer should consider the receiver module and carry out a global reasoning over its inheritance

hierarchy to understand modules that inherit from it, which is a lot of non-modular reasoning work. Any

changes in any module in the inheritance hierarchy of the receiver can invalidate a previously verified

property of the module M.

To illustrate, consider the single line of code below that invokes a procedure save of a proxy module

r with a static type Proxy.

r .save();

To understand this invocation, a programmer should understand the behavior of the procedure save in

Proxy and any other module in its inheritance hierarchy that may override save, which is a lot of work.

Any changes in the inheritance hierarchy of Proxy can invalidate this understanding and require the

reasoning to be done.

Nondeterministic message orders Nondeterministic message orders make modular reasoning in-

tractable because nondeterminism can lead to racy messages that can arrive at any arbitrary order. To

understand a module M, the programmer should consider all messages that the module sends and un-

derstand their orderings. This problem becomes exponential with message races. Any changes in the

message ordering of any other module can invalidate a previously verified property of M.

To illustrate, consider the single line of code below in which the programmer intends to save the

client’s work in a server module before shutting down the server. This code is a simplified version of a

real world bug found in previous work [93, 161].

client : r .save(); s. kill () ;

The client first sends a save message to a proxy module r. The proxy saves the client’s work in a server

s by sending a save message to the server, after performing some bookkeeping. The proxy implements
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the Proxy design pattern [71] and relays the client’s messages to the server. Then the client sends a

kill message to the server s which shuts down the server. A procedure invocation emulates a message

send [14,86]. Due to asynchrony of message sends and concurrent execution of client, proxy and server,

messages save and kill sent from client can arrive at the server at any order and with no happens-before

order [91] between them. That is, save and kill messages are racy and save can arrive at the server

before kill or vice versa. To understand this single line of code, a programmer should consider both

(i.e. 2!) message orders. In general, for a message race involving n messages there are n! message

orderings that should be understood, which is intractable [161, 162].

1.1 Contributions

The idea in this thesis is that there exists a concurrent programming model that enables modular rea-

soning about behaviors of its programs in the presence of interference, inheritance and nondeterminism.

The thesis proposes a concurrent programming model with interference control, concurrent behavioral

subtyping and order types to enable modular reasoning.

Interference control framework Interference control framework enables Hoare-style modular rea-

soning [77] in the presence of interference by guaranteeing that interference happens only at explicitly

specified program points in a module and the interference behaviors are statically and modularly known.

A programmer can understand a module M using only its implementation and the static types of other

modules it refers to, independent of their implementations.

Concurrent behavioral subtyping Concurrent behavioral subtyping enables supertype abstraction

modular reasoning [97] in the presence of inheritance by guaranteeing that the behavior of a module

does not violate the behavior of a module that it inherits from. The programmer can understand the

module M using only its implementation and the static types of other modules it refers to, independent

of their dynamic types and inheritance hierarchies.

Order types Order types enables tractable modular reasoning in the presence of nondeterministic

message orders by disallowing message races. The programmer can understand the messaging behavior

of the module M using only its implementation and the abstracted order types of modules it refers to,

independent of their implementations or non-abstracted types.
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1.2 Outline

Chapter 2 presents an overview of the related work on the proposed message passing programming

model in Section 2.1, modular reasoning in Section 2.2, interference control framework in Section 2.3,

concurrent behavioral subtyping in Section 2.4 and order types in Section 2.5.

Chapter 3 discusses and formalizes the interference control framework. Section 3.1 illustrates two

problems of pervasive interference and oblivious interference that make modular reasoning difficult in

the presence of interference. Section 3.2 informally presents the interference control framework and its

two properties sparse and cognizant interference. Section 3.3 defines the core syntax of the proposed

message passing calclulus and model without inheritance and its operational semantics discussed in

Section 3.4. Section 3.5 defines formalizes and proves sparse and cognizant interference properties.

Section 3.6 shows how these two properties allow for the use of sequential Hoare-style modular reason-

ing [77]. Section 3.7 discusses the static semantics and typing rules of the model. Section 3.8 discusses

expressiveness of the proposed model and granularity of interference behaviors. Section 3.9 presents a

detailed discussion of related work to interference control.

Chapter 4 discusses and formalizes concurrent behavioral subtyping. Section 4.1 presents the core

syntax and semantics of of the proposed message passing model with inheritance added. Section 4.2

illustrates two problems of incompatible interface behavior and incompatible interference behavior that

make modular reasoning difficult in the presence of inheritance. Section 4.3 proposes and formalizes

concurrent behavioral subtyping as a combination of standard interface subtyping and new interference

subtyping and presents Hoare-style supertype abstraction reasoning [97] using concurrent subtyping.

Section 4.4 shows reduction of concurrent behavioral subtyping to standard interface subtyping in the

presence of encapsulated inheritance [155]. Section 4.5 discusses the static and operational sematnics

of our calculus with inheritance added. Section 4.6 emprically evaluates the usefulness of concurrent

subtyping and encapsulated inheritance on a large set of Java and Akka [8] projects. Section 4.7 presents

a detailed discussion of related work of concurrent behavioral subtyping.

Chapter 5 discusses and formalizes order types. Section 5.1 motivates the use of existential order

types, order type abstraction and proper blame assignment. Section 5.2 briefly presents the core calcu-

lus and its semantics. Section 5.3 presents the core syntax of order types. Section 5.4 formalizes the
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type checking and well-formedness rules for order types, order type abstraction and abstraction-eligible

modules and blame assignment. It also discusses the over-approximation in the order type of a condi-

tional expression to avoid state-space explosion, use of memory effects for a more precise race detection

and avoiding of benign races. Section 5.5 presents a detailed discussion of related work to order types.

Chapter 6 discusses avenues of future work and concludes.
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CHAPTER 2. OVERVIEW OF RELATED WORK

2.1 Programming Model

This thesis uses and builds on capsule-oriented programming model, an implicit concurrent message

passing programming model with capsules [135–138] as concurrent abstractions. In a message passing

model, a program is a set of concurrent abstractions that run concurrently and communicate by sending

and receiving messages. A concurrent programming model can be explicit, implicit or automatic. In an

explicit model, a programmer manually creates concurrent tasks and manages their synchronizations.

In an implicit model, the programmer uses annotations or programming constructs that provide hints to

the compiler for creation and synchronization of concurrent task. In an automatic model, the compiler

itself is responsible for finding and exposing concurrency.

A capsule [18, 136–138] is a concurrent abstraction with mutable state [172], ownership [38], en-

capsulation [117], inheritance with behavioral subtyping [104], typed messages [86] and sequential exe-

cution [35]. A capsule unites its declaration and the composition of the capsules it owns [113]. Capsule-

oriented programming is implemented [100] in the language Panini with a large set of multithreaded

and actor programs translated into Panini [100,105] that show comparable performances [138]. Various

compilation strategies along with optimal mappings of capsules to JVM threads using their commu-

nication and computation behaviors are also studied [167, 168]. Capsules are closely related to and

build on previous programming models and abstractions including processes in process calculi such as

communicating sequential processes (CSP) [78] and calculus of communicating systems (CCS) [111],

actors [6], active objects [94, 102, 125] and ambients [42].

A CSP [78] process is a sequential entity composed from atomic actions that synchronously com-

municates with another concurrently running process by sending and receiving messages over a com-

munication channel. CCS [111] is similar but adds first class channels that can be passed between two
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process over a shared channel and allow for dynamic changes in the topology of the system. An ac-

tor [6, 76] encapsulates its mutable state and a thread of execution and asynchronously communicates

with another concurrently running actor by sending and receiving messages but without channels. When

receiving a message an actor may update its state, change its behavior, send messages or create more ac-

tors. Variations of the actor model allow for sharing among actors [8], arbitrary actor inheritance [8,14],

concurrent execution inside the actor [152], typed messages [14] or ownership of the actor state [118].

Using typed messages, an actor defines a set of procedures [8,14] invoked by other actors. A procedure

invocation emulates a type-safe message send [86]. Using ownership an actor owns its state and control

access to it. Ownership can be guaranteed using ownership types [37] or analysis [118]. An ambi-

ent [42] is an actor specialized for mobile computing with support for handling of consistency issues

in a distributed network with failures and connectivity losses. An active object [94] is an object that

encapsulates a thread of execution and communicates with another concurrently running active object

by invoking their methods. A method invocation emulates a message send [86]. Variations of active ob-

jects allow for immutable states [151], ownership of states [37], cooperative concurrent execution inside

the object [151] or grouping of active object in a cobox and restricting mutable access to them [151].

Mutable state allows for readonly sharing among objects. Cooperative concurrent execution guarantees

that the state of the object is not simultaneously accessed by more than one thread. The execution of a

thread must explicitly yield before the execution of another thread can start.

Ownership [38], encapsulation [117], behavioral subtyping [104], typed messages [86] and sequen-

tial execution [35] of a capsule enable modular reasoning in a concurrent program in the presence of

interference, inheritance and nondeterministic message orders. Different concurrent abstractions in pre-

vious work propose various combinations of these properties but not a combination of all of them in a

single abstraction. Arbitrary sharing in the absence of ownership or encapsulation, arbitrary inheritance

without behavioral subtyping, untyped messages, and unsynchronized concurrent execution inside cap-

sules can break modular reasoning guarantees of the capsule-oriented programming model and make

modular reasoning about a concurrent program difficult or intractable again.
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2.2 Modular Reasoning

In modular reasoning, a program is understood one module at a time using only its implementation

and static types of other modules it refers to, independent of their dynamic types or implementations

[95,132]. To the best of our knowledge this thesis proposes the first concurrent programming model that

enables modular reasoning in the combined presence of interference, inheritance and nondeterministic

message orders. Modular reasoning is enabled using an interference control framework, concurrent

behavioral subtyping and order types each of which build on a rich body of previous work discussed in

the remaining of this chapter.

2.3 Interference Control Framework

Two modules interfere if during their concurrent execution, interleaving instructions of one mod-

ule changes the program state and consequently the behavior of the other module [177]. Interfer-

ence makes modular reasoning difficult because interference can happen between any two instruc-

tions of a module and at each interference point the interference behavior is unknown. Interference

control framework enables modular reasoning by making interference points and interference behav-

iors known syntactically, statically and modularly. Previous work either controls interference points

[2, 6, 7, 84, 90, 94, 151, 154, 157, 172, 176, 177, 177] or interference behaviors [56, 68, 126, 129] but not

both. Actors [6, 7, 172], active objects [94, 151], atomicity [58, 66, 171], cooperability [157, 176, 177]

and automatic mutual exclusion [2, 84, 154] control interference points but not interference behaviors.

Rely-guarantee reasoning [87], the work of Owicki-Gries [129] and its variations [126], concurrent sep-

aration logic [59,127] and concurrent abstract predicates [47,159] control the interference behavior but

not the interference points.

An actor [6, 76] or an active object [94] with encapsulation and ownership guarantees a macro-step

semantics [4] in which interference can only happen after message sends or receives and the rest of

the implementation is atomic and free from interference. An atomic block is a block of code with the

guarantee that interference cannot happen inside the block. That is, interference can happen anywhere

except inside atomic blocks. Automatic mutual exclusion [84] is the inverse of atomic blocks. That is,

interference can happen only at explicitly specified program points and anywhere else is atomic. Co-
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operability [177] is similar with the guarantee that interference happens only at program points marked

with a special expression yield. These technique control interference points by limiting them to ex-

plicitly specified program points but not the interference behaviors. That is, interference behavior at an

interference point is not known and requires a global reasoning to know about the interference behavior.

In rely-guarantee reasoning [87] and the work of Owicki-Gries [129] a module provides a guarantee

and relies on guarantees provided by other modules in its environment. Environment specification of a

module is an upper bound on the interfering behavior of other modules in its environment. Concurrent

separation logic [127], concurrent abstract predicates (CAP) [47] and impredicative concurrent abstract

predicates (iCAP) [159] limit sharing to modules called resources. A resource can have an invariant

which should hold at any program state. Interfering behavior of other modules on the resource must

not invalidate its invariant. These techniques control the interference behavior but not the interference

points. That is, interference can happen between any two instructions of a module.

2.4 Concurrent Behavioral Subtyping

In modular supertype abstraction reasoning [97], an invocation is understood using the static type of

its receiver module. Inheritance can break modular reasoning because an invocation can be dynamically

dispatched to a module or any modules inheriting from it in its inheritance hierarchy where behaviors of

these modules are incompatible. Concurrent behavioral subtyping allows for modular reasoning about

an invocation by guaranteeing that the behavior of a module or any of the modules that inherit from it

are compatible [130]. Concurrent behavioral subtyping defines interference subtyping for a concurrent

programs and combines it with standard interface subtyping for a sequential program [36,49,96,130] to

provide a new definition for behavioral compatibility in a concurrent program. Concurrent behavioral

subtyping is complementary to previous work that extend sequential interface subtyping for concurrent

programs [9, 45, 47, 48, 67, 87, 88, 95, 104, 117, 127, 148, 165]. Use of encapsulated inheritance [155] to

reduce concurrent behavioral subtyping to interface subtyping is new.

The functional behavior of a procedure of module can be described using its precondition and post-

condition which are predicates on the program state that must hold before and after invocations of the

procedure. Sequential behavioral subtyping guarantees [10] that the behavior of a module does not
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violate the behavior of the module it inherits from by relating their preconditions and postconditions by

requiring a contravariance and covariance relations between preconditions and postconditions respec-

tively. Weak behavioral subtyping [44, 96] for sequential programs weaken the covariance requirement

for postconditions. However, sequential behavioral subtyping cannot accommodate interference among

concurrently running modules and therefore is not directly applicable to a concurrent program [67,148].

Strong behavioral subtyping [104] uses explicit history constraints to accommodate interference.

A history constraint is a predicate on two transitively consecutive program states [95]. To guarantee

behavioral subtyping between two modules of a concurrent program, not only their preconditions and

postcondition but also their history constraints should be related. A variation of strong behavioral

subtyping without history constraints [104] requires that every procedure that is added to an inheriting

module and modifies its state should be expressible using the procedures of the inherited module. Weak

behavioral subtyping [44] for concurrent programs weakens this requirement by controlling cross-type

aliasing between two modules in an inheritance hierarchy and allows for mutable subtypes. Concurrent

JML [148] and Contracts for concurrency [124] exploit the semantic equivalence for executions of

sequential and atomic code to allow for the use of sequential behavioral subtyping for atomic modules.

Previous work integrates behavioral subtyping into concurrent programming languages and tools such

as Eiffel [110, 124], Java [63, 96], JML [95], ESC/Java [69] and Spec# [22]. However, previous work

cannot separate the interference and interface behavior of a module and cannot compute its interference

behavior using its preconditions and postconditions.

2.5 Order Types

Nondeterministic message orders can cause message races [161] and make modular reasoning about

a concurrent message passing program intractable. Order types disallow message races and make

modular reasoning about message orders tractable by avoiding state-space explosion [93, 161, 162].

Order type abstraction that hides the local messaging behavior of an abstraction-eligible module is

new. Similar to previous work [62, 173], the blame assignment lays the blame with the module that

is the supplier of bad values and not the module that uses the bad value. Local descriptive order

types complement previous work on global prescriptive behavioral types and specially session types
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[25, 26, 28, 40, 43, 79–81, 116, 119, 120, 160, 178].

Message orders determine the behavior of a message passing program [93, 161] and should be un-

derstood to understand a program. A state-space exploration that searches through all possible message

orders of a program could become intractable because of the state-space explosion problem. Nonde-

terministic message orders can cause message races and make modular reasoning intractable through

an exponential explosion of state-space. Two messages are racy if they are sent transitively from the

same source module and arrive at a sink module with no happens-before order [91] between them. The

happens-before relation is a partial order that orders messages. Partial order reduction techniques ad-

dress this problem by pruning the state-space into a representative subset of all possible message orders.

However, the pruning is a global analysis that is dependent on the property of interest and cannot be

easily modularized.

A session type [79, 80] is a global type that prescribes a communication protocol among its partic-

ipant modules over a session. A communication protocol includes messages sent by each participant

and their happens-before order. A session is an abstraction that structures the communication over a

private channel [111] and isolates it from other communication. A global session type can be projected

into its participant to compute their local session types. Global progress of a session type guarantees the

absence of deadlocks. Session fidelity ensures that communication over a channel goes as prescribed

by its session type. Session linearity guarantees the absence of message races on its enclosed channel.

Variations of session types support two [79] or more session participants [80] or infer a global principal

type from local types of its participants [116]. Addition of channels and sessions to structure communi-

cation over channels allows the application of session types to a variety of multithreaded [43], message

passing [115, 120] and sequential [81, 119] programming models. Session types and their underlying

session-based programming are also added to languages like Erlang [115], Java [81] and Python [119]

and frameworks like CORBA [169]. However, session types are designed for a session-based pro-

gramming model that uses channel communications and are not directly applicable to message passing

concurrency models without these constructs [120]. Also session types do not support abstraction and

cannot hide local messaging behavior of a module.
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CHAPTER 3. INTERFERENCE CONTROL FRAMEWORK

Modular reasoning is important for scalable software development because it allows programmers

and tools [68, 148] to discharge verification obligations about a module by just considering the imple-

mentation of the module and the interfaces (not implementations) of static types named in that module.

Concurrent programming, i.e. the ability to perform two or more simultaneous computations in a single

program, is also vital for creating modern software systems. We believe that concurrent programming

stubbornly remains difficult and error-prone because we cannot, yet, do modular reasoning about con-

current programs.

3.1 Problem

Two fundamental obstacles make modular reasoning about a concurrent program difficult [87,177]:

¶ the pervasive interference problem, and

· the oblivious interference problem.

By the pervasive interference we mean that in a concurrent program, between any two consecutive

instructions of a concurrent task, interleaving instructions of another task could change the state of the

program such that it influences the subsequent behavior of the first task [177]. This in turn means,

there are too many points in a program that a programmer must analyze before they can understand

the behavior of their program. For example, in the single straight line code below there could be three

interference points that occur between instructions that read the value of x, read the value of y, add the

two values, and write the value of x.

x = x + y;

That is, this code actually looks like α x = α x + α y where α denotes an interference point.
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By the oblivious interference we mean that interference points do not give out any information,

either concrete or abstract, about what other concurrent tasks may interfere or what are their behaviors.

This in turn means, a programmer must consider all potentially concurrent tasks to determine whether

their interleavings would be harmful and cause interferences (global reasoning). For example, in the

straight line code above, there is no information about how interfering tasks at interference points α

may or may not modify the values of x and y.

The key difference between pervasive and oblivious interference is that the former is about loca-

tions of interferences (where) whereas the latter is concerned about behaviors of interferences (what).

Though, these two are well-known concurrency problems we coin the terms “pervasive interference”

and “oblivious interference” to refer to them.

Pervasive and oblivious interference together, make modular reasoning about concurrent programs

difficult [68, 87, 148, 176, 177]. Several prior techniques have been proposed for controlling interfer-

ence and interfering behaviors of concurrent programs. Figure 3.1 summarizes closely related works

and compares them regarding pervasiveness and obliviousness of interferences. Section 3.9 details the

comparison of previous work regarding pervasive and oblivious interference for all related works.

Table 3.1 Previous work addressing (3) pervasive and oblivious interference.

Interference
Pervasive Oblivious

atomicity, transactional memory,
cooperability, AME

3

actors, active objects 3

rely-guarantee, Owicki-Gries 3

Atomicity, transactional memory, cooperability and automatic mutual exclusion (AME) An

atomic block [58, 66, 171] is a code block which is free of interference, i.e. the code in the block be-

haves as if it executes sequentially. Atomicity limits the interference points to the code outside atomic

blocks, however, for the code outside an atomic block interference could still happen between any two

instructions. Atomic blocks do not say anything about behaviors of interfering tasks.
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Cooperability [157, 176, 177] and automatic mutual exclusion [2, 84, 154] are the inverse of atomic

blocks, i.e. the code is atomic and interference-free unless explicitly specified. These techniques limit

interferences to explicitly specified interference points but similarly do not say anything about behaviors

of interfering tasks.

Actors and active objects Actors [6, 7, 172] encapsulate data and control and communicate by

passing messages. A class of actor models (similarly active objects [38, 151]) in which actors provide

confinement and do not permit unfettered internal concurrency limits interference points to message

sends or receives, i.e. a block of code between two message receives are atomic (macro-step semantics

[7]). However, actor models that allow uncontrolled internal concurrency or arbitrary data sharing

among actors still could have interference between any two instructions. Actor models do not solve the

oblivious interference problem because their dynamic name bindings could make the exact static type

of a receiver or sender of a message unknown. Thus, a programmer cannot tell which concurrent tasks

are interfering at interference points.

Rely-guarantee and Owicki-Gries Rely-guarantee based reasoning approaches [68,87] and Owicki-

Gries’s work [129] specify the behavior of the environment (other concurrently running tasks) of a task

and thus limit the interference behavior. However, interferences can still happen between any two in-

structions of a program.

3.2 Solution: Panini

A concurrent programming model can enable more modular reasoning if it provides the following

properties to a programmer:

¶ Sparse interference: interference points are not pervasive in a program, instead they can be ex-

plicitly identified by certain program constructs; and

· Cognizant interference: interference points are not oblivious in the program, instead each explic-

itly identified interference point provides an abstraction of behaviors of all potentially interfering

concurrent tasks.

The language Panini presents such a programming model called capsule-oriented programming

[136, 138]. Before discussing Panini’s interference model and semantics, we provide a gentle introduc-
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tion using the example in Figure 3.1. The example declares a capsule type Counter with a state x, on

line 2, and a procedure add, on lines 3–5. The body of add contains the straight line code shown in the

previous section, which adds y to x. A capsule instance of Counter, say c, can be declared and it behaves

like a process.

In Panini, a program is a set of concurrently running capsule instances which own their states and

communicate with each other through asynchronous procedure invocations. Invocation of a capsule

instance procedure appends the invoked procedure to the tail of the instance’s queue and returns a

future [174] for its result. The single execution thread of a capsule instance dequeues its invoked

procedures from the head of the queue and executes them in the order that they appear in the queue.

Invocation and returning of a procedure transfers the ownership of its parameters and return values

between its invoking and invoked capsule instances, respectively.

1 capsule Counter {
2 int x;
3 void add( int y ) {
4 x = x + y;
5 }
6 }

Figure 3.1 Capsule Counter with state x and procedure add.

3.2.1 Sparse Interference to Solve Pervasive Interference

Panini’s semantics controls and limits sharing among two capsule instances to other capsule in-

stances and futures. This in turn allows a Panini program to limit its interference points to after capsule

procedure invocations and guarantees sparse interference. As an example, there are no interferences in

the body of the procedure add of a capsule instance c of type Counter, which is in contrast with straight

line code in the previous section with pervasive interference and possible interferences between any

two instructions. This is because Panini’s semantics guarantees that the state x is owned and is only

accessible to its enclosing capsule instance c and there is only one thread of execution running c and

accessing x. This in turn allows interferences in the code for the procedure add to be safely swapped

out [101], as if the code runs with no interferences.
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A reader familiar with synchronization features in languages like Java could perhaps achieve the

same by implementing the counter as a class and marking its add method as synchronized, however, the

capsule model saves the programmer from worrying about if there still could be interferences on line 4

and whether acquiring an object-level lock is actually sufficient to protect x. A lock protects a memory

location if, throughout a program, every access to the location is preceded by acquiring the lock [66].

1 capsule Counter {
2 Number x;
3 void add( Number y ) {
4 x.add( y.value() ) ;
5 }
6 Number value() { return x.value() ; }
7 }

Figure 3.2 Capsule Counter with a reference type state.

To illustrate Panini’s semantics more, consider the capsule Counter in Figure 3.2 which creates the

possibility of sharing the state x and the capsule procedure argument y, among an instance of Counter

and other capsule instances, by changing their types from integer to a reference type Number.

Again, the body of the procedure add of a capsule instance c does not have any interferences. This

is because Panini’s semantics guarantees that not only the state x but also its representation [32], i.e.

the object graph rooted at x, is owned by the instance c and is only accessible from within c itself. The

semantics also guarantees that upon invocation of the procedure add and throughout its execution its

argument y and its representation is owned by c. This in turn allows interferences in the code for add to

be safely swapped out, as if the code runs with no interferences.

Note that the alternative using synchronized or locks works only if proper locks are put in place to

guarantee that they protect not only the state x and its representation but also the parameter y and its

representation [66]. Panini’s semantics does not allow lock splitting, i.e. protecting fields in a capsule

by different locks.

So far we have looked at capsules with no interference points in the bodies of their procedures.

To illustrate capsules with interference points consider the capsule Client in Figure 3.3. This capsule

imports an external capsule instance c of type Counter, on line 1, that a capsule instance of type Client can

interact with. The body of the procedure test of Client contains asynchronous invocations of procedures

value and add on the receiver capsule instance c, on lines 4–6. Asynchronous invocation of value, on



17

line 4, appends the body of the procedure to the end of the queue for c and immediately returns the

unresolved future oldVal without waiting for the execution of value. The future is resolved and ready

whenever the capsule instance c dequeues the body of value from its queue and executes it. Any attempt

to access an unresolved future, e.g. on line 7, blocks until the future is resolved. Lines 5–6 append the

queue of c with invocations of procedures add and value, respectively. The capsule instance c dequeues

its invoked procedures from its queue in the same order as they appear in the queue and executes them,

i.e. first in first out (FIFO) order. For invocations of value and add, on lines 5–6, execution of value starts

after the execution of add finishes.

1 capsule Client ( Counter c ) {
2 Number oldVal, newVal;
3 void test ( Number y ) {
4 oldVal = c.value() ;
5 c.add( y ) ;
6 newVal = c.value();
7 //@ assert newVal >= oldVal; Φ

8 }
9 }

Figure 3.3 Capsule Client with JML-like assertion Φ on line 7.

There are three interference points in the body of test , one right after each asynchronous invocation

of procedures value and add, on lines 4–6. This is because, Panini’s semantics guarantees that the

imported capsule instance c is the only shared resource among a capsule instance of type Client and other

capsule instances in the system, with unsynchronized access. Other shared resources are futures oldVal

and newVal, however, their accesses are synchronized and do not cause interference [177]. Panini’s

semantics also guarantees that upon invocation of add, on line 5, the ownership of its parameter y is

transferred to c, and the body of test does not access y after its ownership is transferred.

As Figures 3.1, 3.2 and 3.3 illustrate, unlike pervasive interference in which interferences can hap-

pen between any two instructions in a program, Panini’s semantics guarantees that in a Panini program,

potential interference points are explicitly identified and they are limited to only after asynchronous

procedure invocations.
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3.2.2 Cognizant Interference to Solve Oblivious Interference

Panini controls and limits accessibility of states of a capsule instance to only through its procedures

and dispatches procedure invocations using the static type of their receiver capsule instances. This in

turn, allows a Panini program to limit the interference behavior at an interference point to the Kleene

closure of procedures of the static type of the receiver of the procedure invocation and guarantees

cognizant interference. The Kleene closure of a set of procedures contains the empty set and any

concurrent composition of any number of procedures in the set.

For example, the interfering behavior at the interference point after the invocation of the procedure

value on capsule instance c, on line 4, is contained in the Kleene closure κ = {c.value(),c.add(_)}∗.

This is because Panini’s semantics guarantees that the imported capsule instance c is the only shared

resource with unsynchronized access between an instance of Client and other capsule instance in a

system. Panini’s semantics also guarantees that the state of the capsule instance c is only accessible

through its procedures add and value. Finally Panini’s semantics guarantees that the invocation of value,

at the interference point on line 4, is dispatched using the static type of its receiver capsule instance c

and not its subtype capsules which may have more procedures than add and value.

To interfere with c, other concurrently running capsule instances in the system can change the state

of c by invoking its two procedures add and value any number of times and in any order which basically

is the same as the closure κ . The closure κ is a closure of 0 or more, concurrently running, invocations

of all procedures of the capsule instance c. The Kleene closure for value and add includes empty set

/0 and is closed under the sequential composition and execution operation ;. For example, c.value(),

c.value();c.value(), c.add(_) and c.value();c.add(_) are a few elements of κ .

As Figure 3.3 illustrates, unlike oblivious interference in which the interference behavior is un-

known, Panini’s semantics guarantees that interference behavior for an interference point after an asyn-

chronous procedure invocation is limited to the Kleene closure of procedures of the static type of the

receiver of the invocation.
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3.2.3 Modular Reasoning Using Panini’s Interference Model

Panini’s sparse and cognizant interference enable static modular reasoning about its concurrent pro-

grams. To modularly understand a module in a Panini program (1) using sparse interference, the interfer-

ence points of the module can be identified syntactically by only considering the implementation of the

module. This is because interference points are explicitly identified by asynchronous procedure invoca-

tions. (2) using cognizant interference, the interfering behaviors at interference points can be identified

statically by just considering the interfaces of static types of receivers of procedure invocations at these

interference points. This is because interfering behaviors are Kleene closures of procedures of receivers

of procedure invocations. (3) for each interference point identified in (1) its interfering behavior identi-

fied in (2) could be inserted at the interference point in the module to arrive at a result module that takes

interference and its behavior into account. Such a module could be modularly understood [68] using

Hoare-style reasoning [77].

For example, consider static verification of the assertion Φ, on line 7 of Figure 3.3. In this example,

sparse interference limits the interference points to after asynchronous invocations of procedures value

and add, on lines 4–6, and cognizant interference limits the interference behavior at these interference

points to the Kleene closure κ = {c.value(),c.add(_)}∗. Φ can be modularly verified after inserting the

interfering behavior κ at each interference point in the procedure test using Hoare-style [77] reasoning.

Such reasoning is modular because the programmer only needs to consider the implementation of

the procedure test and the interface of the static types it refers to, i.e. capsule type Counter. Identification

of interference points and interfering behavior in test is similarly modular. Behaviors of procedures

value and add say that the former does not change the value of the counter whereas the latter only

increases it. Behaviors of these procedures are specified by their contracts, illustrated in Section 3.6.

3.2.4 Contributions

In summary, the contributions of this chapter are the following:

• formalization of Panini’s core calculus and its semantics (Section 3.3 and Section 3.4); and

• proving sparse and cognizant properties of Panini’s interference model (Section 3.5); and
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• illustration of modular Hoare-style reasoning using behavioral contracts for concurrent Panini

programs with interference (Section 3.6).

Section 3.8 briefly discusses Panini’s expressiveness, usability and Kleene closure analysis. Section 3.9

presents related work.

3.3 Panini’s Syntax

prog ::= decl program
decl ::= capsule C(imp){ design state proc } capsule declaration
state ::= T f; state declaration
proc ::= T p ( f orm ){ e α} procedure declaration
form ::= T x formal

design ::= design { ins wire } design declaration
ins ::= C i ; instance declaration
wire ::= i( j); wiring declaration

e ::= expression
| i.p(e)α global procedure invocation
| self.p(e) local procedure invocation
| self.f state read
| self.f := e state assignment
| ref e reference
| deref e dereference
| e := e reference assignment
| let x = e in e let
| x variable
| () unit value

C, D ∈ C set of capsule names T ∈ T set of variable types
f ∈ F set of state names p ∈ run∪P set of procedure names

x ∈ X set of variable names α,β ∈B set of labels
i,j,h ∈ I set of capsule instance names

Figure 3.4 Panini’s core syntax, based on [138].

Figure 3.4 shows Panini’s expression-based core syntax. In this figure, the superscript term shows a

sequence of zero or more terms. A Panini program is a set of capsule declarations. A capsule declaration

contains a capsule name C and declares a set of imported capsule instances imp, a design design, a set of

capsule states state and capsule procedures proc. A capsule instance can interact and invoke procedures
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of two kinds of other capsule instances: imported and locally declared. An import declaration declares

an imported capsule instance by specifying its capsule type D and capsule name i. A local design

declaration declares a set of local capsule instances ins and specifies their connections together in a

wiring declaration wire. A wiring declaration i( j) assigns capsule instances j to the imported capsule

instances of the capsule i. Local capsule instances of one capsule are not accessible to other capsules.

Capsule instances of a Panini program interact only by invoking procedures of each other. A proce-

dure declaration of a capsule has a variable return type T , a name p, set of formal parameters f orm and

a body e. The body of a capsule procedure is a sequence of global and local expressions. Using global

expressions, a procedure can asynchronously invoke a procedure of another capsule instance. However,

using local expressions, a procedure of a capsule can synchronously invoke another procedure of the

same capsule, access the state of the capsule through self or allocate and access memory locations. La-

bels α denote possible interference points after asynchronous procedure invocations. The sequence of

expressions e1;e2 is a syntactic sugar for let x = e1 in e2 in which variable x is free in e2.

Panini’s type system, in Section 3.7, distinguishes capsule types C from variable types T . Unlike

variable types, capsule types cannot subtype each other and thus their exact types are statically known.

This in turn enables statically-bound procedure invocations in which the exact type of the receiver of a

capsule is statically known.

To illustrate, Figure 3.3 declares a capsule type Client with the imported capsule c of capsule type

Counter and a procedure test with formal parameter y of variable type Number. The procedure body is a

sequence of three asynchronous invocations of procedures value and add which are statically dispatched

on the imported capsule instance c. As another example, the capsule type Main in Figure 3.5, declares a

design declaration on lines 2–6 that includes declarations of two capsule instances client and counter of

types Client and Counter, respectively. The design declaration contains a wiring declaration on line 5 that

connects the client and counter instances by passing counter as the client’s imported capsule instance.

3.4 Operational Semantics

In Panini’s operational (dynamic) semantics each concurrently running capsule instance owns its

states and their representations, i.e. reference graphs reachable from its states; dynamically transfers
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1 capsule Main() {
2 design {
3 Counter counter; // a counter
4 Client client ; // a client
5 client (counter); // a wiring
6 }
7 void run() { client . test () ; }
8 }

Figure 3.5 Design and wiring declarations in capsule Main.

ownership of parameters and return values of its global procedure invocations; and uses only one thread

of execution to dequeue and execute its invoked procedures. These in turn result in the following

properties of a Panini programs that are critical to its sparse and cognizant interference model:

1. sharing among two capsule instances is limited to their imported capsule instances and unresolved

future locations;

2. states of a capsule instance and their representations are only accessible through its procedures.

Panini’s interference model and its underlying properties are formalized in Section 3.5. Panini’s type

system is formalized in Section 3.7.

3.4.1 Dynamic Objects

Panini’s dynamic semantics relies on three additional expressions l, resolve and OWE, shown in

Figure 3.6, that are not part of its surface syntax. The expression l represents a memory location in the

store. The expression resolve(l,e, id, p) returns the result of the asynchronous invocation of procedure p

with body e into future location l in the invoking capsule instance id. The ownership transfer exception

OWE denotes accessing a transferred location that a capsule instance no longer owns or transferring a

location in the representation of a capsule’s state.

Panini’s operational semantics transitions from one global (program) configuration to another, as

shown in Figure 3.6. A global configuration K is a concurrent composition || of capsule instance

configurations Σ1. A capsule configuration Σ contains a unique capsule identifier id, a queue Q with an

expression e under evaluation at its head, a local store S, a capsule record r and an instance mapping

I. A queue is a possibly empty queue of expressions e. The local store is a mapping from locations
1Concurrent composition || is commutative, i.e. Σ || Σ′ is equal to Σ′ || Σ.
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Added syntax:
e ::= ..

| l memory location
| resolve(l,e, id, p) resolve a future location
| OWE ownership transfer exception

Evaluation contexts:
E ::= − | i.p(v..E e..) | self .p(v..E e..)

| self . f := E | ref E | deref E
| E := e | let x = E in e

Evaluation relations
a
↪→ and a;: K

a
↪→K ′ and Σ

a; Σ′

Domains:
K ::= • | Σ ||K global (program) configurations
Σ ::= 〈P, id,e.Q,S,r, I〉 capsule instance configurations
r ::= [C.F ] capsule records
F ::= { fk 7→ lk} state maps
Q ::= • | e.Q queues
S ::= {lk 7→ vk} local stores
I ::= {ik 7→ idk} instance maps
v ::= values

l location values
| ε unresolved future values
| 2 transferred location values

Actions:
a ::=
| read(id, l) read
| write(id, l) write
| invoke(id, id′,p, l) invoke
| resolve(id, id′,p, l) resolve
| local(id) local

l ∈ L set of locations id,id’ ∈N set of capsule identifiers
k ∈ N set of natural numbers P program declarations

Figure 3.6 Added syntax, evaluation contexts, configurations and actions in semantics.

l accessible to the capsule instance to their values v. The capsule record contains the static capsule

type C of the instance and a state mapping F from capsule fields f to locations. The instance mapping

maps the names of imported and locally declared capsule instances i to their identifiers id. A capsule

configuration also includes the program text P which contains capsule declarations, similar to the class

table in Featherweight Java, and is similarly used to look up declarations and procedure bodies when

invoking a procedure.
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In Panini, a value can be a location l. A value can also be an unresolved future value ε that denotes

the result of an asynchronous procedure invocation before it is ready; or it can be a transferred value 2

denoting the value of a location whose ownership has been transferred and no longer is accessible to a

capsule instance.

Panini uses a left-most inner-most call-by-value evaluation policy. Evaluation contexts, in Fig-

ure 3.6, specify the evaluation order of an expression and the evaluation position in the expression.

Execution of a Panini program produces a trace of observable actions. Actions are basic units of

execution and each action represents execution of a single indivisible (atomic) instruction. Figure 3.6

shows a core set of actions observed during the execution of a Panini program. An action can be: a read

or write of a memory location l by a capsule instance id; asynchronous invocation of a procedure p of

another capsule id′ with the future result l; resolving the result of an asynchronous procedure invocation

into the future location l; or it can be a local action of a capsule id, such as invocation of a synchronous

procedure of the capsule or dequeuing an expression from its queue.

3.4.2 Local and Global Semantics

Panini’s operational semantics has two sets of evaluation rules for its local and global semantics.

A local evaluation a; denotes transition from a capsule configuration to another performing the action

a. A local transition in turn causes a global transition
a
↪→ from one program configuration to another

in which capsule instances run concurrently. A preemptive scheduler nondeterministically chooses a

capsule instances for evaluation at each point in time.

Figure 3.7 shows Panini’s substitution-based operational semantics for normal execution, i.e. no

exceptions thrown. Figure 3.9 shows its exceptional operational semantics. The notation used in for-

malizing the operational semantic is similar to previous work [177].

3.4.3 Sequential Synchronous Local Semantics

Local evaluation relation a; in a capsule instance denotes evaluation of an expression e at the head

of its queue to another expression e′ and performing the action a. This evaluation causes transition

from a capsule configuration to another with a possibly modified queue and local store2. In local

2 Evaluation of a configuration does not change its mapping I and record r.
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Local evaluation relation a;: 〈P, id,E [e].Q,S,r, I〉 a; 〈P, id,E [e′].Q′,S′,r, I〉

(STATE READ)

〈P, id,E [self . f ].Q,S[l = v], [C.F [ f = l]], I〉 read(id,l)
; 〈P, id,E [v].Q,S, [C.F ], I〉

(STATE ASSIGN)

〈P, id,E [self . f := v].Q,S, [C.F [ f = l]], I〉 write(id,l)
; 〈P, id,E [v].Q,S[l := v], [C.F ], I〉

(SELF INVOC)〈
P[capsule C(..){.. T p(T x){e} ..}], id,E [self .p(v)].Q,S, [C.F ], I

〉 local(id)
; 〈P, id,E [e [v/x]].Q,S, [C.F ], I〉

(REF)
fresh(l)

〈P, id,E [ref v].Q,S,r, I〉 write(id,l)
; 〈P, id,E [l].Q,S[l := v],r, I〉

(DEREF)
v 6= ε

〈P, id,E [deref l].Q,S[l = v],r, I〉 read(id,l)
; 〈P, id,E [v].Q,S,r, I〉

(REF ASGN)

〈P, id,E [l := v].Q,S[l 6= ε],r, I〉 write(id,l)
; 〈P, id,E [v].Q,S[l := v],r, I〉

(LET BINDING)

〈P, id,E [let x = v in e].Q,S,r, I〉 local(id)
; 〈P, id,E [e[v/x]].Q,S,r, I〉

(FIFO DEQUEUE)

〈P, id,v.e.Q,S,r, I〉 local(id)
; 〈P, id,e.Q,S,r, I〉

Global evaluation relation
a
↪→: K || 〈P, id,E [e].Q,S,r, I〉 a

↪→K ′ || 〈P, id,E [e′].Q′,S′,r, I〉

(CONGRUENCE)
〈P, id,E [e].Q,S,r, I〉 a;

〈
P, id,E [e′].Q′,S′,r, I

〉
K || 〈P, id,E [e].Q,S,r, I〉 a

↪→K ||
〈
P, id,E [e′].Q′,S′,r, I

〉
(PROC INVOC)
id′ = I(i) Σ

′ =
〈
P, id′,e′.Q′,S′, [C′.F ′], I′

〉
∈K capsule C′(D j){.. T p(T x){e} ..} ∈ P

e′′ = e [v/x, I′( j)/ j] R = reach(v,S) R′ =
⋃

l′∈dom(F)

reach(l′,S)

R∩R′ = /0 fresh(l) K ′ = K ]
〈
P, id′,e′.Q′.resolve(l,e′′, id, p),S′⊕R, [C′.F ′], I′

〉
K || 〈P, id,E [i.p(v)].Q,S, [C.F ], I〉

invoke(id,id′,p,l)
↪→ K ′ || 〈P, id,E [l].Q,S[l := ε]	R, [C.F ], I〉

(RESOLVE)
R = reach(v,S) l′ ∈ dom(F) R′ =

⋃
l′∈dom(F)

reach(l′,S)

R∩R′ = /0 Σ = 〈P, id,e.Q,S[l = ε],r, I〉 ∈K K ′ = K ]〈P, id,e.Q,S[l := v]⊕R,r, I〉

K ||
〈
P, id′,resolve(l,v, id, p).Q′,S′, [C′.F ′], I′

〉 resolve(id′,id,p,l)
↪→ K ′ ||

〈
P, id′,v.Q′,S′	R, [C′.F ′], I′

〉
Figure 3.7 Local and global operational semantics of Panini.

semantics, a capsule instance can access its state through self , allocate and access memory locations,

invoke a procedure of itself or dequeue an expression in its queue. Local evaluation is synchronous and

sequential, i.e., a capsule instance only has one execution thread.
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A capsule can read and write its state through the variable self in the rules (STATE READ) and

(STATE ASSIGN). A capsule state is accessible through state mapping F and local store S. A capsule’s

state name is mapped to a location in F and then there is a mapping between the state location and its

value in S. To read the value of a state in (STATE READ), the notation F [ f = l] means to check if the

field name f maps to a location l and the notation S[l = v] means to check if the value of the location

in the local store is equal to v and if so returns v. Reading a state stored at the location l by a capsule

instance id causes a read(id, l) action in the execution trace of the program. To assign a value to a state

in (STATE ASSIGN), the notation S[l := v]3 means to replace the old value of the location l with its new

value v, such that the rest of S stays intact. Similar to read, writing a state stored at the location l by

capsule instance id causes a write(id, l) action.

A capsule can also create a reference, dereference it and assign to it in the rules (REF), (DEREF) and

(REF ASGN). To create a new reference with a value v in (REF), fresh(l) ensures that l is a fresh location

which then is mapped to its value in the local store of the capsule. A fresh location is a location that does

not belong to the local store of any other capsule instance in the program, as shown in Figure 5.15. By

mapping the newly allocated location l to its value in the local store S, the rule (REF) makes the capsule

instance id the owner of the location l as well. To dereference a location l in (DEREF), its value is

retrieved from the store unless the value is equal to the unresolved future value ε . Trying to dereference

an unresolved future value causes the capsule instance to block. The capsule instance unblocks and

can continue execution when the value of the future is resolved, i.e. is not equal to ε anymore. The

blocking condition v 6= ε in (DEREF) synchronizes access to unresolved future locations and does not

allow concurrent access to them. To assign to a reference in (REF ASGN), its value is simply updated in

the local store of the capsule. Again, trying to assign to an unresolved future location causes the capsule

instance to block. Evaluation rules (REF), (DEREF) and (REF ASGN) perform their corresponding write,

read and write actions, respectively.

A reference location manipulated by these rules resides in a capsule’s local store unless its own-

ership is transferred to another capsule via a procedure invocation. In other words, a capsule instance

cannot access locations in other capsule instances if their ownership is not transferred to the capsule

through procedure invocations.

3 Notation S[l = v] does not modify S whereas S[l := v] does.
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A capsule instance can synchronously invoke a procedure of itself in (SELF INVOC). Invocation of

a local procedure causes the body of the procedure to replace the procedure invocation after proper

substitutions for its formal parameters x and imported capsule instances j. The notation e[v/x] means

to substitute formal parameters x with their values v in e. Invocation of a local procedure of a capsule

instance id causes a local action local(id).

In (FIFO DEQUEUE), after evaluation of the head of the queue in a capsule instance to a value v, the

next expression in the queue is moved to the head of the queue for evaluation, if the queue is not empty.

Dequeue blocks until the queue of the capsule instance is not empty. Dequeuing a queue of a capsule

instance causes a local action as well. Semantics of a let expression is standard.

3.4.4 Concurrent Asynchronous Global Semantics

The global evaluation relation
a
↪→ denotes concurrent local evaluations of capsule instances of a

Panini program as well as their asynchronous interactions through procedure invocations.

The rule (CONGRUENCE) plays the role of a preemptive scheduler that nondeterministically chooses

a capsule instance id in the global configuration K to take an atomic action at each point in time,

according to the local semantic rules.

In (PROC INVOC), a capsule instance id asynchronously invokes the procedure p of a capsule in-

stance with the name i. The invoking capsule finds the identifier id′ for the invoked capsule name i

in its instance mapping I, finds its corresponding configuration Σ′ in the global configuration K and

retrieves the body e of its invoked procedure p. It then replaces in e the formal parameters x of p with

their values v and imports j of its capsule type C′ with their identifiers from instance mapping I′, to

arrive at e′′. Then it wraps e′′ in a resolve expression with a fresh future location l for returning the result

of the invocation to its invoking capsule id and appends the resolve expression to the tail of the queue Q′

of the invoked capsule instance id′. The notation K ]
〈
P, id′,e′.Q′.resolve(l,e′′, id, p),S′⊕R, [C′.F ′], I′

〉
denotes overriding the configuration

〈
P, id′,e′.Q′,S′, [C′.F ′], I′

〉
of the capsule instance id′ in the global

configuration K , where ] is an overriding union operation. A resolve expression resolve(l,e, id, p) is

a sugar for let x = e in resolve(l,x, id, p) where x is free in e. The auxiliary function dom returns the

domain of a map like store.
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Because of the asynchrony of the procedure invocation, in (PROC INVOC) the control immediately

returns back to the invoking capsule id without waiting for the execution of the invoked procedure p.

The future location l is now shared between the invoking and invoked capsule instances, marked in the

invoking capsule instance id as an unresolved future location with its value ε . The invocation expression

performs an invoke(id, id′,p, l) action.

The resolve expression ensures that the result of its evaluation is sent back to the invoking capsule

instance when it is ready and is going to be accessible through the future location. In (RESOLVE), the

invoked capsule instance id′ returns the result v of the evaluation of its expression e to the invoking

capsule id and assigns the value to the future location l in its store, i.e. S[l := v]. The resolve expression

performs a resolve(id′, id,p, l) action.

The rule (PROC INVOC) along with (FIFO DEQUEUE) enforce the first in first out (FIFO) evaluation

order of expressions in the queue of a capsule where (PROC INVOC) appends to the tail of the queue

and (FIFO DEQUEUE) dequeues from its head. A Panini program terminates normally when for each

capsule instance id in the program configuration the expression at the head of the queue is evaluated to

a value and the queue is empty, i.e. 〈P, id,v.•,S,r, I〉.

To illustrate, consider the capsule Client, in Figure 3.3, and its asynchronous invocation of the

procedure value of the capsule Counter, on line 4. Upon invocation of value on the capsule instance

c its body, on lines 6 of Figure 3.2, is wrapped in a resolve expression and is appended to the tail of c’s

queue. The control immediately returns to Client and the unresolved future NewVal is shared between the

client and counter capsule instances as a placeholder for the invocation’s result. Any attempt to access

NewVal in the client capsule, e.g. on line 7, blocks until c dequeues the resolve expression for invocation

of value and executes it to resolve the future.

Asynchronous invocation, blocking expressions and procedure execution order Asynchronous

invocations of capsule procedures and blocking access to unresolved future locations impose an order

on executions of invoke procedures which may or may not be the same as in a synchronous setting. To

illustrate, the procedure add, on line 5 of Figure 3.3, is invoked on the capsule instance c before value is

invoked on the same instance, on line 6. This in turn means the body of add is appended to the queue

of c and shows up before the body of value in the queue. Consequently, the invoked procedure add is

executed before value because of the FIFO execution of the queue in c. This is true, even if either add
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or value or both contain blocking expressions, e.g. trying to access an unresolved future, in their body

because the execution of value in c does not start before the execution of add is finished.

1 capsule Client ( Counter c, Counter d ) { ..
2 void test ( Number y ) {
3 ..
4 d.add( y ) ;
5 newVal = c.value();
6 ..
7 }
8 }

In contrast, consider invocations of procedures add and value on different capsule instances c and d,

in the above variation of Client, on lines 4–5. In this example, add and value procedures can execute in

any arbitrary order because instances c and d run concurrently and can execute bodies of their invoked

procedures add and value in any arbitrary order. This is true even with blocking expressions in the bodies

of add or value procedures or both.

In other words, for asynchronous invocations of procedures of the same capsule instance, the rule

(FIFO DEQUEUE) ensures that these procedures run in the same order they are invoked, even if they

contain blocking expressions. This in turn guarantees that blocking does not disrupt modular reasoning

using Kleene closures, because procedure invocations in a closure are on the same receiver instance.

3.4.5 Ownership Transfer Semantics

To control sharing, Panini’s global semantics uses dynamic transfer of ownership for parameters and

the return value of a procedure invocation. Transferring the ownership of a location from one capsule

to another removes that location and locations reachable from it, i.e. its reach (representation), from the

local store of the former instance and adds them to the local store of the latter. This in turn guarantees

that an invocation of a procedure does not cause sharing of its parameters and the result between the

invoking and invoked capsule instances. Panini’s ownership transfer is similar to ownership transfer in

Singularity [57], changing threads access sets in a multithreaded program [85] or inferred ownership

transfer semantics in SOTER [118] for programs in the actor language ActorFoundry [14].

In (PROC INVOC), upon invocation of a capsule’s procedure the ownership of the actual parameters

v of the procedure and their reach reach(v,S), in Figure 5.15, is transferred from the invoking capsule

instance to the invoked capsule. The auxiliary function 	, in Figure 5.15, removes locations from a
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local store of a capsule instance whereas ⊕ adds locations to the local store of the capsule instance. For

example, in the configuration 〈P, id,E [l].Q,S[l := ε]	R, [C.F ], I〉, locations R are removed from the

local store S of the invoking capsule instance id and in
〈
P, id′,e′.Q′.resolve(l,e′′, id, p),S′⊕R, [C′.F ′], I′

〉
the locations R are added to the local store S′ of the invoked capsule instance id′.

After transferring a location, 	 maps the value of a transferred location to 2. This in turn means

that the capsule instance does not own the transferred location anymore and any attempt to access it

results in an exceptional state.

A state of a capsule instance or its reach cannot be transferred to another capsule instance. The

condition R∩R′ = /0 checks that there is no shared location among transferred locations and their reach

R and the locations in the capsule’s state or its reach R′.

In (RESOLVE), upon returning the result of an invocation, the ownership of the resolved future value,

holding the result, and its reach in the local store of the invoked capsule instance are transferred to the

invoking capsule instance. Similar to (PROC INVOC), the state of the invoked capsule instance cannot be

transferred when returning the result of an invocation.

To illustrate, the ownership of the parameter y on line 5 of the procedure test in Figure 3.3 is

transferred from the invoking instance of capsule Client to the invoked capsule instance c. The ownership

of the future newVal on line 6 is transferred from invoked capsule instance c to the invoking capsule Client

when the future is resolved and is ready.

3.4.6 Exceptional Semantics

A Panini program terminates abnormally, throwing an exception OWE, if a capsule instance attempts

to access a location whose ownership is transferred or pass or return capsule states or their representa-

tions into/from global procedure invocations. Figure 3.9 shows Panini’s exceptional semantics.

In rules (X DEREF) and (X REF ASGN), attempting to dereference or assign to a location that is

transferred out and is not owned by a capsule instance anymore results in throwing an ownership transfer

exception OWE. A transferred location is marked with the value 2, by the transfer operation 	. In

rules (X PROC INVOC) and (X RESOLVE), attempting to pass capsule states or any location in their reach

as actual parameters or results of global procedure invocations, i.e. R∩R′ 6= /0, causes throwing the

ownership exception and termination of the program. A Panini program terminates abnormally when a
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(FRESH)
∀〈P, idk,E [ek].Qk,Sk,rk, Ik〉 ∈K , l 6∈ dom(Sk)

fresh(l)

(REACH)
v ∈ {(),2}

reach(v,S) = •

(REACH LOCATION)
v 6∈ {(),2} S[v = v′]

reach(v,S) = {(v,v′)}∪ reach(v′,S)

(	 LOCATION)
S	{(l,v)}= S[l :=2]

(	 REACH)
∀{(l′,v′)} ∈ R

S	R = (S	{(l′,v′)})	 (R\{(l′,v′)})

(⊕ LOCATION)
S⊕{(l,v)}= S[l := v]

(⊕ REACH)
(l′,v′) ∈ R

S⊕R = (S⊕ (l′,v′))⊕ (R\{(l′,v′)})

labels(v) = /0
labels(self . f ) = /0
labels(i.p(e)α) = {α}∪ labels(e)
labels(self .p(e)) = labels(e)
labels(self . f := e) = labels(e)
labels(ref e) = labels(e)
labels(derefe) = labels(e)
labels(e1 := e2) = labels(e1)∪ labels(e2)
labels(let x = e1 in e2) = labels(e1)∪ labels(e2)
labels(T p (T x){e α}) = {α}∪ labels(e)

Figure 3.8 Panini’s auxiliary functions.

capsule instance id in the program evaluates the head of its queue to OWE, i.e. 〈P, id,OWE.Q,S,r, I〉.

In Panini’s core semantics, for simplicity and without loss of generality, exceptions are final ter-

minating states. However, in the current prototype implementation of Panini’s compiler, a violation

of ownership transfer semantics is detected using a modular static analysis incorporated into its type

system and is reported as a compile time warning rather than terminating the program at runtime.

3.4.7 Initial Configuration

Evaluation of a Panini program follows a phase which builds the program’s initial global and local

configurations. Figure 3.10 shows Panini’s initial configuration rules. The initial configuration phase

takes a Panini program and recursively processes design declarations of its capsules, such that for each

capsule instance declaration in a design declaration it instantiates a capsule instance and for each wiring

declaration it connects the declared capsule instances together.

The initial configuration phase starts with the rule (MAIN). The rule constructs a special capsule

instance main of capsule Main with the identifier 0, i.e. Construct(Main main,0). The capsule Main

is the entry point to a Panini program. The rule (MAIN) sets the capsule instance main to the global

configuration K0 and calls functions instantiateRec and wireupRec, in rules (INSTANTIATE REC) and
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(X DEREF)

〈P, id,E [deref l].Q,S[l =2],r, I〉 read(id,l)
; 〈P, id,OWE.Q,S,r, I〉

(X REF ASGN)

〈P, id,E [l := v].Q,S[l =2],r, I〉 write(id,l)
; 〈P, id,OWE.Q,S,r, I〉

(X PROC INVOC)
R = reach(v,S) R′ =

⋃
l′∈dom(F)

reach(l′,S) R∩R′ 6= /0

K || 〈P, id,E [i.p(v)].Q,S, [C.F ], I〉
invoke(id,id′,p,l)

↪→ 〈P, id,OWE.Q,S, [C.F ], I〉

(X RESOLVE)
R = reach(v,S) R′ =

⋃
l′∈dom(F)

reach(l′,S) R∩R′ 6= /0

K ||
〈
P, id,resolve(l,v, id′, p).Q,S, [C.F ], I

〉 resolve(id,id′,p,l)
↪→ 〈P, id,OWE.Q,S, [C.F ], I〉

Figure 3.9 Exceptional semantics of Panini, select rules.

(WIREUP REC), to recursively instantiate and connect other capsule instances of the program.

For a capsule instance declaration C i, declared in the enclosing capsule instance id and a global

configuration K , the function instantiateRec, defined in (INSTANTIATE REC) instantiates a capsule con-

figuration Σ′ with the identifier id′ and name i, using instantiate; changes the instance mapping I of

its enclosing capsule instance to map the name i to its identifier id′, i.e. I[i := id′] and adds Σ′ to K

to create a new global configuration K ′. To process the capsule instance declarations C′ i′ in newly

created id′, instantiateRec is recursively called with the new global configuration K ′.

For a wiring declaration i( j) declared in the enclosing capsule instance id and the global configura-

tion K , the function wireupRec, defined in (WIREUP REC), connects instances i and j, using wireup, to

construct the new configuration Σ′i for i; replaces the old configuration Σi with its new configuration Σ′i

in K to arrive at a new global configuration K ′. To process the wiring declarations i′( j′) for the newly

wired capsule instance idi, wireupRec is recursively called with the identifier idi and the new global

configuration K ′.

Function instantiate defined in (INSTANTIATE) simply instantiates the capsule configuration Σ for

the capsule instance declaration C i in its enclosing capsule id. Function wireup in (WIREUP) connects

capsule instances i and j in their enclosing capsule id.

To illustrate, consider the capsule Main in Figure 3.5. In this example, Construct(Main main,0)
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(MAIN)
K0 = instantiate(0,Main main) = 〈P,0,•.Q,S, [Main.F ], I〉

capsule Main(){T f design{ins wire} proc} ∈ CT
∀C i ∈ ins . K = instantiateRec(K0,0,C i) ∀ i( j) ∈ wire . K ′ = wireupRec(K ,0, i( j))

construct(Main main,0) = K ′

(INSTANTIATION REC)
capsule C(..){T f design{ins wire} proc} ∈ CT

Σ
′ =
〈
P, id′,•.Q′,S′, [C′.F ′], I′

〉
= instantiate(id,C i) Σ = 〈P, id,•.Q,S, [C.F ], I〉 ∈K

K ′ = K ]
〈
P, id,•.Q,S, [C.F ], I[i := id′]

〉
∪Σ
′ ∀C′ i′ ∈ ins . K ′′ = instantiateRec(K ′, id′,C′ i′)

instantiateRec(K , id,C i) = K ′′

(INSTANTIATION REC-BASE)
capsule C(..){T f} proc} ∈ CT Σ

′ =
〈
P, id′,•.Q′,S′, [C′.F ′], I′

〉
= instantiate(id,C i)

Σ = 〈P, id,•.Q,S, [C.F ], I〉 K ′ = K ]
〈
P, id,•.Q,S, [C.F ], I[i := id′]

〉
∪Σ
′

instantiateRec(K , id,C i) = K ′

(WIRING REC)
Σ = 〈P, id,•.Q,S, [C.F ], I〉 ∈K idi = I(i) Σi = 〈P, idi,•.Qi,Si, [Ci.Fi], Ii〉 ∈K

Σ
′
i = wireup(id, i( j)) capsule Ci(imp){.. design{ins wire} ..} ∈ CT
K ′ = K ]Σ

′
i ∀ i′( j′) ∈ wire . K ′′ = wireupRec(K ′, idi, i′( j′))

wireupRec(K , id, i( j)) = K ′′

(WIRING REC-BASE)
Σ = 〈P, id,•.Q,S, [C.F ], I〉 ∈K idi = I(i) Σi = 〈P, idi,•.Qi,Si, [Ci.Fi], Ii〉 ∈K
Σ
′
i = wireup(id, i( j)) capsule Ci(imp){.. design{ins} ..} ∈ CT K ′ = K ]Σ

′
i

wireupRec(K , id, i( j)) = K ′

(INSTANTIATE)
fresh(id′) capsule C(..){T f design{ins wire} proc} ∈ CT F = /0 S = /0

I = /0 Q = • ∀(T f ) ∈ T f . fresh(l),F [ f := l],S[l := ()] Σ =
〈
P, id′,•.Q,S, [C.F ], I

〉
instantiate(id,C i) = Σ

(WIREUP)
Σ = 〈P, id,•.Q,S, [C.F ], I〉 ∈K idi = I(i) Σi = 〈P, idi,•.Qi,Si, [Ci.Fi], Ii〉 ∈K

∀ j ∈ j . id j = I( j),
〈
P, id j,•.Q j,S j, [C j.Fj], I j

〉
∈K capsule Ci(imp){.. design{ins wire} ..} ∈ CT

Σ
′
i =
〈
P, idi,•.Qi,Si, [Ci.Fi],∀(D h) ∈ imp, j ∈ j . Ii[h := id j]

〉
wireup(id, i( j)) = Σ

′
i

Figure 3.10 Rules to create initial configuration of Panini programs.

creates a capsule instance configuration for Main with the identifier 0; then it calls instantiateRec for

the instantiation of capsule instances counter and client , declared on lines 3–4, followed by a call to

wireupRec to connect the counter and client instances, as declared on line 5.

There is no sharing of memory locations among capsule instances in the initial configuration of a

Panini program, as shown in Lemma 1.
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Lemma 1 (No sharing of memory locations in initial configuration) Let Σ = 〈P, id,E [e].Q,S,r, I〉 and

Σ′ =
〈
P, id′,E [e′].Q′,S′,r′, I′

〉
be two arbitrary capsule instance configurations in the initial configura-

tion K for a Panini program P with global configuration K , i.e. Σ,Σ′ ∈K . Let A = dom(S)∩dom(S′)

be the intersection of domains of the stores S and S′. Then A = /0.

In other words, there is no sharing between local stores of capsule instances in the initial configu-

ration of a program.

Proof : The proof is based on the cases of the initial configuration rules of Figure 3.10. The rule

(INSTANTIATE) is the only rule allocating memory locations and mapping them in the stores of capsule

instances. The rule only uses fresh locations for instantiation of each capsule instance and thus does not

cause any sharing among capsule instances and thus their local stores.

3.4.8 Actions: Conflict and Happens-Before Relations

Evaluation of a Panini program, with its nondeterministic preemptive scheduler, results in a trace

of interleaved actions of the types, shown in Figure 3.6, performed by different capsule instances of

the program. However, as illustrated in Figures 3.1, 3.2 and 3.3, for a trace of a capsule’s procedure,

interleaving actions of other capsule instances can be moved in the trace, such that they only appear

right after the global procedure invocations in the trace, i.e. sparse interference. This is because of

Panini’s conflicting and happens-before relations and the mover properties of its actions which in turn

are affected by sharing semantics of Panini.

In the following, we define the execution trace of a Panini program, the conflict and happens-before

relations and prove mover properties of its comprising actions using Lipton’s reduction theory [101].

Definitions 1-4 are adapted from previous work [175].

Definition 1 (Trace) An execution trace of a Panini program is a total order of actions a performed

by individual capsule instances in the program’s configuration when evaluating the program thorough

local and global evaluation rules of Figure 3.7.

Definition 2 (Adjacent and neighbor actions) Two actions a and b in a trace T are adjacent if one

follows immediately after the other. Two adjacent actions a and b are neighbors if they are performed

by different capsule instances, i.e. instance(a) 6= instance(b).
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The auxiliary function instance returns the capsule identifier of an action.

Definition 3 (Commuting and conflicting actions) Let a1 and a2 be neighbor actions of capsule in-

stances id1 and id2 in an execution trace K0
a1
↪→K1

a2
↪→K2. Then actions a1 and a2 commute, written

as a1 !# a2, if swapping them in the trace results in the same final state in the trace starting with the

same start state, i.e. K0
a2
↪→K ′

1
a1
↪→K2. Otherwise, a1 and a2 conflict, written as a1#a2.

There are several conflicting actions in Panini considering its semantics: read or write of an unre-

solved future location conflicts with the resolution of the same future location and invoke action of a

procedure of a capsule instance conflicts with another invoke action on the same capsule instance.

A happens-before relation � [91] orders the conflicting actions. For example, in Panini resolution

of a future location l by a capsule instance id must happen-before any reads (or writes) of the location

by another capsule instance id′, i.e. resolve(id, id′, l,p) � read(id′, l). Figure 3.11 shows Panini’s

conflicting actions and their happens-before relations. The happens-before relation is a transitively

closed partial order [177].

〈
P, id′,E [e].Q,S[l = ε],r, I

〉
∈K

read(id′, l) # resolve(id, id′, l,p)

〈
P, id′,E [e].Q,S[l = ε],r, I

〉
∈K

write(id′, l) # resolve(id, id′, l,p)

invoke(id1, id,p, l) # invoke(id2, id,p′, l′) resolve(id, id′, l,p) � read(id′, l)

resolve(id, id′, l,p) � write(id′, l)

Figure 3.11 Conflicting actions and their happens-before � relations.

Definition 4 (Right, left, both and non-mover actions) Let a1 and a2 be neighbor actions of capsule

instances id1 and id2 in an arbitrary execution trace K0
a1
↪→K1

a2
↪→K2.

Then a1 is a right mover if swapping a1 with a2 in the trace results in the same final state in the

trace beginning with the same start state, i.e. K0
a2
↪→ K ′

1
a1
↪→ K2. Conversely, a2 is a left mover if

swapping it with a1 results in the same final state. An action that can be swapped with its both left and

right neighbor actions in any trace is a both mover. Conversely, an action that cannot be swapped with

neither its left nor right neighbors is a non-mover.
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Panini’s semantics determines mover properties of its actions. Lemma 2 specifies mover properties

of Panini’s actions.

Lemma 2 (Panini action’s mover properties) Let T be the execution trace of an arbitrary Panini

program P.

Then, in trace T read and write actions read(id, l) and write(id, l) of a capsule instance id of a

memory location l are right movers; a global invocation action invoke(id, id′,p, l) of a procedure p

from the invoking capsule id to the invoked capsule id′ and result l is a non-mover; and a resolve action

resolve(id, id′,p, l) for this global invocation is a left mover.

Proof : The proof is based on happens-before relations of Panini’s actions in Figure 3.11. The

resolution of a future location must happen before any read or write of the location and thus in a trace

of a program, a read action read(id, l) of future location l cannot be swapped with a left neighbor action

resolve(id′, id, l,_) resolving the same location. Thus, a read action is a right mover. The same applies

to an action writing a future location. Similarly, a resolve action is a left mover. Swapping an invoke

action invoke(id′, id,_,_) invoking a procedure of capsule id with another left or right neighbor invoke

action invoke(id′′, id,_,_) on the same capsule id results in different program states especially different

queues for the capsule instance id. Thus an invoke action is a non-mover. The notation _ denotes

irrelevant values in actions.

Let a be an action with left and right neighbors al and ar respectively in the subtrace al ↪→ a ↪→ ar.

We replace a with read, write, invoke and resolve actions of a capsule instance id to show their mover

properties in an arbitrary trace with arbitrary left and right neighbor actions from other capsules.

In a subtrace al ↪→ read(id, l) ↪→ ar, the read action of a location l conflicts with a left neighbor

resolve(id, id′,p, l) action of the same location. This is because swapping the read action with its left

neighbor allows reading a future location even before it is resolved. However, Panini’s happens-before

relations, in Figure 3.11, does not allow this by ensuring that a future location is resolved before it is

read or otherwise it blocks, i.e. resolve(id, id′,p, l)�read(id, l). This in turn means the read action

cannot be a left mover. Since resolving of a future location must happen before its read, a resolve action

resolve(id, id′,p, l) cannot be right neighbor to the read action read(id, l) and thus the read action can be

safely swapped with any of its right neighbors, i.e. the read action is a right mover. The same argument
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applies to a write action write(id, l) and thus a write action is a right mover too.

Similarly, a resolve action resolve(id, id′,p, l) in a subtrace al ↪→ resolve(id, id′,p, l) ↪→ ar only

conflicts with read and write actions from and to the same location l, i.e. read(id, l) and write(id, l).

Again, based on Panini’s happens-before relation a read or write of a future location happens only after

the future is resolved and thus the read and write actions of a future location cannot be left neighbors to

their resolve actions. This in turn means that the resolve action is a left mover and not a right mover.

An invoke action invoke(id, id′,p, l) only conflicts with another invoke action if they both invoke

procedures on the same capsule instance id′, since they both modify the queue of the capsule id′. In a

subtrace al ↪→ invoke(id, id′,p, l) ↪→ ar the invocation action cannot be safely swapped with neither its

left nor its right neighbors and thus is a non-mover. This is because they neighbors could be invocation

actions on the same capsule instance id′.

It is worth to note that local actions as well as read and write of non future locations are both movers.

Finally, in (X DEREF) and (X REF ASGN), trying to dereference or assign to a transferred location not

owned by the capsule instance anymore, causes the program to throw an ownership transfer exception

OWE and terminate. In (X PROC INVOC) and (X RESOLVE), the program terminates by throwing an

ownership transfer exception upon any attempts to leak the states of an instance or its reach by passing

them or returning them from a global procedure invocation.

3.4.9 Sharing of Capsule Instances and Futures

Panini limits sharing among two capsules to their imported capsule instances and unresolved futures

of their procedure invocations.

1 capsule Main() {
2 design {
3 Counter counter;
4 Client client1 , client2 ;
5 client1 (counter);
6 client2 (counter);
7 } ..
8 }

Figure 3.12 Sharing counter among client1 and client2 .

Panini’s semantics allows an imported capsule instance to be freely shared among other instances
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as specified in a design declaration of their enclosing capsule. For example, in the design declaration of

Figure 3.12, counter is shared among two client instances client1 and client2 , on lines 5–6.

Panini’s semantics limits sharing of memory locations to unresolved future locations, as shown

by Lemma 3. A future location, which is a placeholder for the result of an asynchronous procedure

invocation, is shared among its invoking and invoked capsule instances as long as it is unresolved and

accesses to it are synchronized. That is, any attempt to access an unresolved future location in the

invoking capsule instance blocks until the future is ready.

Let Y denote an exclusive logical disjunction, in which at most one of the disjunct predicates can be

true. Let dom2(S) be the domain of the stores S minus its transferred locations with the value 2.

Lemma 3 (Sharing of unresolved future locations) Let Σ = 〈P, id,E [e].Q,S,r, I〉 and

Σ′=
〈
P, id′,E [e′].Q′,S′,r′, I′

〉
be two arbitrary capsule instance configurations in a global configuration

K for a Panini program P, i.e. Σ,Σ′ ∈ K . Let T be the execution trace of the program P. Let

A = dom2(S)∩dom2(S′) be the intersection of domains of the stores S and S′ minus their transferred

locations. Let action a and a′ be any of the read and write actions of a location l in A in the trace T by

capsule instances id and id′, respectively.

Then either A = /0 or:

1. ∀l ∈ A . S[l = ε] Y S′[l = ε]; and

2. ∀l ∈ A, a ∈ {read(id, l),write(id, l)}, a′ ∈ {read(id′, l),write(id′, l)} . a�a′ Y a′�a.

In other words, (i) the only memory locations that local stores S and S′ may share are unresolved future

locations with (ii) synchronized accesses (reads and writes), i.e. with happens-before relation between

their reads and writes.

Transferred locations with values2 are irrelevant and thus taken out in dom2 of local stores, because

any attempt to access them terminates the program.

Proof : The proof is by cases on Panini’s normal and exceptional semantics rules in figures 3.7

and 3.9, happens-before relations in Figure 3.11 and Lemma 1. Initial configuration does not cause

any sharing of memory location among capsule instances; dynamic transfer of ownership of locations

among capsule instances in Panini’s dynamic semantics, and especially (PROC INVOC) and (RESOLVE),
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limits sharing of locations among capsules to only unresolved future locations; and rules (DEREF) and

(REF ASGN) synchronize access to these shared future locations by enforcing that resolving of a future

location in one capsule instance must happen-before any of its reads or writes in other capsule instances.

Initial configuration Using Lemma 1 there is no shared location among capsule instances in the

initial configuration, i.e. A = /0, and thus the lemma holds.

Dynamic semantics Rules (PROC INVOC) and (RESOLVE) transfer ownership of memory locations

among local stores of the invoking and invoked capsule instances. For each procedure invocation, these

rules share a fresh future location among the invoking and invoked capsule instances and set the value

of the shared location in the local store of the invoking instance to ε . However, the condition R∩R′ =

/0 in these two rules prevents them to share other memory locations, upon transferring ownership of

parameters of the procedure invocation or returning its result.

The rule (REF) allocates a fresh location in the local store of a capsule instance and thus does not

cause any sharing.

The rules (DEREF) and (REF ASGN) block when attempting to read or write an unresolved future

location with the value ε . This means for an unresolved future location l with value ε in the capsule

instance Σ, its read action a = read(id, l) does not unblock unless the value of the future location is

resolved by the capsule instance Σ; any write action a′ = write(id′, l) of the location l by the capsule

instance id should happen before the location is resolved, because of ownership transfer after resolve.

That is, a′� resolve(id′, id, l,_)�a which in turn means a′�a because of the transitivity of the happens-

before relation [177]. In other words, there is a happens-before relation between a and a′ and thus they

are synchronized. The same applies to other combination of a and a′ actions in (ii) in the lemma. Other

rules in Panini’s normal and exceptional dynamic semantics do not cause any transfer of ownership or

memory allocation.

3.5 Sparse and Cognizant Interference

Panini guarantees sparse interference by limiting sharing among two capsules to other capsule in-

stances and unresolved futures and guarantees cognizant interference by limiting accessibility of states

of a capsule instance to only through its procedures and dispatching a procedure invocation on the static
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type of its receiver capsule. In this section we formalize and provide proof sketches of Panini’s sparse

and cognizant interferences.

3.5.1 Sparse Interference

Theorem 5 formalizes Panini’s sparse interference property which limits the interference points of

a program to points after its global procedure invocations.

Theorem 5 (Sparse interference in Panini) Let P be a program in Panini. Let I be a set of labels

after global capsule invocations and after procedure bodies in P, i.e. I = {α |α ∈ labels(P), i.p(e)α ∈

P∨T p( f orm){e α} ∈ P} where the auxiliary function labels is defined in Figure 5.15. Then I is the

set of all potential interference points for P.

Proof : The proof is based on Lemma 2 where in a trace of a capsule’s procedure, interfering actions

of other capsule instances can be safely moved to either after the global procedure invocation actions in

the trace or to the beginning or end of the execution of the trace. The interference at the beginning of

the trace of a procedure can be safely moved out to the trace of its invoking procedure, either to the end

of the invoking procedure’s trace or after one of its global procedure invocations.

Let read(id), write(id), invoke(id) and resolve(id) stand as shorter versions of read(id,_), write(id,_),

invoke(id,_,_,_) and resolve(id,_,_,_) of capsule instance id where _ denotes irrelevant values that do

not matter to the discussion.

Let Tid,p denote a subtrace corresponding to execution of procedure p of capsule instance id. Tid,p

starts with the first action of the procedure, as, and ends with the resolve action resolve(id) of the pro-

cedure, with actions of procedures of other capsule instances interleaving. Furthermore, lets partition

Tid,p to smaller subtraces Tsub such that actions invoke(id), resolve(id) and as only end up at the begin-

ning or end of the subtrace. Subtraces Tsub do not overlap and their concatenation results in Tid,p. A

subtrace Tsub has one of the following four shapes: (1) it starts and ends with invoke actions invoke(id)

with zero or more read and write actions of id, i.e. read(id) or write(id) in between (2) it starts with as

and ends with an invoke action invoke(id) with read and write actions of id in between; (3) it start with

an invoke(id) and ends in resolve(id) with read and write actions of id in between; or (4) it start with as
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and end with resolve(id) with read and write actions of id in between. In any of these subtraces, actions

of other capsules are interleaving.

In a subtrace Tsub of form (1), using Lemma 2 any read and write actions read(id) and write(id)

can be right swapped such that they form a transaction with the invoke action at the end of the subtrace.

A transaction is a sequence of actions of a capsule instance that behaves as if executed sequentially

with no interference. This in turn means, all neighboring actions of other capsule instances in Tsub

move to after the invoke action at the start of the subtrace. In a subtrace of form (2), right swapping

read and write actions read(id) and write(id) causes them to form a transaction with the invoke action

at the end of the subtrace. Consequently, all neighboring actions in this subtrace moves to before

the as action, i.e. before the execution of the body of the procedure p. In a subtrace of form (3)

right swapping of read(id) and write(id) causes them to form a transaction with read(id) and thus

all neighboring actions of other capsules move to after the invoke at the beginning of the subtrace.

Finally in a subtrace of form (4), right swap of read(id) and write(id) causes the whole subtrace to

form a transaction and all neighboring actions move to before the execution of the procedure p. In other

words, all the neighboring actions interleaving with actions of procedure p of capsule instance id can

be moved to either before the execution of the procedure or to after invocation actions invoke(id) of the

procedure. The interference at the beginning of the trace of the procedure p can be safely moved out to

the trace of its invoking procedure, either to the end of the invoking procedure’s trace or after one of its

global procedure invocations. This argument could be repeated for execution of all procedure bodies in

the trace T of a Panini program P.

3.5.2 Cognizant Interference

Theorem 6 formalizes Panini’s cognizant interference property which limits the interfering behavior

at each global invocation interference point to Kleene closure of behaviors of procedures in the static

type of the invocation’s receiver.

Theorem 6 (Cognizant interference in Panini)

Let Σ = 〈P, id,E [i.pk(e)α ;e].Q,S,r, I〉 be the configuration for capsule instance id in a global config-

uration K , such that the capsule is about to evaluate the sequence expression i.pk(e)α ;e at the head
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of its queue with a single interference point α , i.e, there is no other interference in other expressions e

and e in the sequence. Let Σ′ =
〈
P, id′,E [e′].Q′.resolve(l,e′k, id, pk),S′, [C′.F ′], I′

〉
∈K be the capsule

configuration for capsule name i right at the interference point α , i.e. right after execution of invocation

i.pk(e) in Σ. Let C′ be the static capsule type for i with declared procedures p1 .. pn, i.e. capsule C′(..)

{design state T1 p1(..){e1} .. Tk pk(..){ek} .. Tn pn(..){en}} ∈ CT. Also let e′1, ..e
′
n be bodies of proce-

dure p1, .., pn with their formal parameters substituted with their values from their invocation sites and

their local capsule names substituted with their identifiers from instance mappings I′. Also let θ be the

interfering behavior of other capsule instances in the program at the interference point α .

Then, θ is the Kleene closure of behaviors of procedures of the capsule id′, i.e. θ = {e′1, ..,e′n}∗.

Proof : The proof is by cases on local and global evaluation rules in Figure 3.7 and that Panini limits

sharing of memory locations to unresolved future locations with synchronized access, in Lemma 3, and

limits accessibility of the state of a capsule instance to only through global invocation of its procedures,

in Lemma 4.

Let resolve(e′1) stand as abbreviation for resolve(_,e′1,_,_) in which _ denotes irrelevant values.

Capsule instances id′ and id are shared among other capsule instances in the global configuration K

and thus could be susceptible to interference. Using Lemma 4, the state of id′ can only be accessed and

modified through invocation of its procedures.

Case analysis for dynamic semantic rules:

(PROC INVOC): at the interference point α , Panini’s global procedure invocation along with preemp-

tive and nondeterministic scheduler in (CONGRUENCE) allows any arbitrary number (zero or more) of

procedures of id′ to be invoked and their bodies, with their formal parameters substituted with their

values and self substituted with id′, to be appended to its queue Q′. Consequently the queue of id′ will

be of the form E [e].Q′.resolve(l,e′k, id).{resolve(e′1), .., resolve(e′n)}∗, in which zero or more bodies of

the invoked procedures are appended to the end of the queue.

(FIFO DEQUEUE): at the interference point α , Panini’s dequeue rule (FIFO DEQUEUE) along with

the scheduler (CONGRUENCE) allow an arbitrary number of resolve expressions of procedure bodies to

be dequeued from Q′ and evaluated.
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(OTHER): the global rule (RESOLVE) or other local rules (STATE READ), (STATE ASSIGN), (REF),

(DEREF), (REF ASGN), (LET BINDING) and (SELF INVOC), do not cause any invocation of procedures of

the capsule id′ and thus are irrelevant to interfering behavior at α .

For the capsule instance id, using Lemma 4, its state can only be accessed and modified through in-

vocation of its procedures. At interference point α , any invocation of procedures of id using (PROC INVOC)

is appended to the end of its queue Q for later dequeuing using (FIFO DEQUEUE) and local sequential

execution and thus does not interfere at α . Other dynamic semantic rules do not invoke any procedure

on id and thus do not interfere at α .

Thus, according to the aforementioned case analysis of the dynamic semantics rules, the interfering

behavior of other capsule instances at the interference point α is θ = {e′1, ..,e′n}∗.

Lemma 4 (Global accessibility through procedures) Let Σ = 〈P, id,E [e].Q,S, [C.F ], I〉 and

Σ′ =
〈
P, id′,E [e′].Q′,S′, [C′.F ′], I′

〉
be arbitrary capsule instance configurations in a global configura-

tion K , i.e. Σ,Σ′ ∈K . Let C be the static capsule type of id with states f and procedures p1 ..pn, i.e.

capsule C(..) {design T f U1 p1(..){e1} .. Un pn(..){en}} ∈ P.

Then during evaluation of program P, the capsule instance id′ can access (read and write) states f

of the instance id only through its procedures p1 .. pn, and not directly through memory locations.

Proof : The proof follows from Lemma 3 that guarantees the only shared locations among capsules

are unresolved future locations and the rules (PROC INVOC) and (RESOLVE) in Figure 3.7 that prevent

transfer of ownership of states of a capsule or its reach during procedure invocations and resolving of

their results.

Using Lemma 3, there is no shared location among local stores S and S′ of capsule instances, except

future locations for returning the result of procedure invocations among capsules.

Let l be a shared future location among capsules id and id′ when id′ invokes a procedure of id.

The future location cannot be used to modify the state of id because, upon the invocation the rule

(PROC INVOC) guarantees that the future location is fresh and thus does not point to any state of id;

during the execution of the procedure body, the rules (DEREF) and (REF ASGN) ensure that any attempts

to access the location in id blocks until the future is resolved; and after the future location is resolved,

(RESOLVE) ensures that the resolved future does not point to any state of id or its reachable locations.
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3.6 Hoare-style Modular Reasoning

Standard Hoare logic [77] does not take interference into account and cannot be used right out of the

box to reason about concurrent programs [68, 148]. Panini’s sparse and cognizant interference enable

use of Hoare logic in the presence of interference by making interference points of a Panini program

and their interfering behaviors statically known.

In Panini’s Hoare logic, the only rule that needs to take into account interference is the rule for global

procedure invocations, because sparse interference limits interference points to after global procedure

invocations. Other rules can be used as if they are interference-free. To take interference into account it

is sufficient to consider the interfering behavior at each interference point [68].

To illustrate, consider the Hoare triple {Pre} i.p(v) {Post} which says that if the execution of the

global procedure invocation i.p(v) starts in a state satisfying the predicate Pre and procedure p of the

capsule instance i executes and terminates, it terminates in a state satisfying the predicate Post. To take

into account the interference, the triple becomes {Pre} i.p(v)α {Post} in which α is an interference

point. The new triple says if the execution of the procedure p of the capsule instance i starts in a

state satisfying Pre and is interfered with by execution of some interfering tasks at α , if execution of p

terminates, it terminates in a state satisfying the predicate Post.

Pure predicates In Hoare logic, predicates Pre and Post must be side effect free and if they invoke

a procedures the procedures must be pure. A procedure is pure if it does not change the state of its

program. In Panini the state of a program not only includes local stores of its capsule instances but

also their queues. That is, a Panini procedure is pure if it does not change stores or queues of capsule

instances in the program, including itself. To meet such a requirement a pure procedure in a capsule

instance can only read states or invoke other pure procedures of its enclosing capsule instance via self .

Predicates Pre and Post can only invoke pure procedures of their enclosing capsule instance and cannot

invoke pure procedures of other capsule instances. This is because invocation of a pure procedure

of another capsule instance adds the invoked procedure to the queue of invoked capsule instance and

changes the state of the system, i.e. the predicate is not pure.

Interference-free predicates In a Hoare triple {Pre} e {Post} in a capsule instance in Panini,

predicates Pre and Post are free from interference. This is because, these pure predicates only read
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states of their enclosing capsule instance and invoke only its pure procedures. Corresponding actions for

reading states and invocation of self procedures are both movers and thus any interference in predicates

can be moved out, as if it appears to happen before evaluation of Pre or after the evaluation of Post.

1 capsule Client ( Counter c ) {
2 Number newVal, oldVal;
3 //@ requires y.value() >= 0
4 //@ ensures newVal >= oldVal
5 void test ( Number y ) {
6 oldVal = c.value() ;
7 c.add( y ) ;
8 newVal = c.value();
9 }

10 }
11 capsule Counter {
12 Number x;
13 //@ requires y.value() >= 0
14 //@ ensures self.value() >= \old( self .value() ) ;
15 void add( Number y ) { .. }
16 //@ pure
17 Number value() { .. }
18 }

Figure 3.13 Static verification of the behavioral contract of test .

Behavioral contracts In Panini, a behavioral contract for a procedure specifies the precondition and

postcondition of a procedure. Figure 3.13 illustrates the contracts for procedure test of capsule Client

with its pre and postconditions, on lines 3–4. The contract says if the execution of the procedure test

starts in a state satisfying the precondition y.value() >= 0 and its execution terminates, it terminates

in a state satisfying the postcondition newVal >= oldVal. Similarly, the contract for procedure add

of capsule Counter, on lines 13–14, says it only increases the value of the counter provided that the

parameter y is a positive number. Finally, the contract for value, on line 16, says it is a pure procedure and

does not change the state of its enclosing capsule or any other capsule in the program. The precondition

and postcondition of a behavioral contract are free from interference.

Modular reasoning Hoare-style reasoning can be used to statically verify the contract of procedure

test . To illustrate, consider static verification of the method test in the capsule Client. The Hoare triple
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representing such verification looks like the following:

Γ |= {y.value() >= 0}

self .oldVal = c.value();

c.add(y)

self .newVal = c.value();

{self .newVal >= self .oldVal}

The notation Γ |= {Pre} e {Post} denotes that the Hoare triple {Pre} e {Post} is valid in the typing

environment Γ.

Following Panini’s sparse interference, interferences only happens after global procedure invoca-

tions. Thus, the Hoare triple becomes like the following to take into account the interference, with α

denoting the interference points:

Γ |= {y.value() >= 0}

self .oldVal = c.value() α ;

c.add(y) α ;

self .newVal = c.value() α ;

{self .newVal >= self .oldVal}

Following Panini’s cognizant interference, the interfering behavior at the interference points in the

above Hoare triple is θ = {c.value(),c.add(_)}∗, i.e. the Kleene closure of procedure of the static

capsule type Counter for the receiver c of the global procedure invocations:

Γ |= {y.value() >= 0}

self .oldVal = c.value(y); {c.value(),c.add(_)}∗ ;

c.add(y); {c.value(),c.add(_)}∗ ;

self .newVal = c.value(); {c.value(),c.add(_)}∗ ;

{self .newVal >= self .oldVal}

The above triple could be easily verified assuming c.value() is pure and c.add(_) only increases

the counter, according to their contracts. This is because the closure {c.value(),c.add(_)}∗ either

maintains the value of the counter c or increases it, which in turn means self .newVal >= self .oldVal.

Such reasoning is modular because it only uses the implementation of Client and the interface (contract)
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of procedures of the capsule Counter it refers to. The notation _ stands for the parameter of the procedure

add. The exact value of this parameter is not statically known, however, using the precondition of add,

on line 13, we know it is a positive number.

Without sparse and cognizant interference, one must consider the possibility of interferences with

unknown behaviors between any two instructions of a program and its contracts [148].

Adding a procedure, say subtract, to the capsule Counter, in Figure 3.13, which decreases the counter

changes the interference behaviors to the Kleene closure {value(),add(_),subtract(_)}∗. Using this

closure, one cannot verify the postcondition of the procedure add anymore. However, this is not a limi-

tation and is not specific to Panini. A similar situation happens in other reasoning techniques including

rely-guarantee [67, 87], Owicki-Gries work [129], etc.

Similar to sequential reasoning, completeness of our reasoning is proportional to completeness of

procedure specifications. That is, using incomplete specifications we can still reason about whatever

specifications specify. For example, using the contract of add in Figure 3.13 we can reason about values

of a counter, however, we cannot reason about other values which are part of its state but not mentioned

in the contract.

3.7 Static Semantics

Panini’s type system distinguishes between two kinds of types: variable types and capsule types.

Unlike variable types that can subtype each other, capsule types cannot. This in turn, allows the exact

type of the receiver of a global capsule invocation to be statically known. The type system also en-

sures that capsule instances cannot be passed as parameters or returned as return values of procedure

invocations by requiring procedure parameters and return values to be of variable types.

3.7.1 Type Attributes

Panini’s typing rules use type attributes of Figure 5.12. In this figure variable types are unit and

reference types and capsule types are capsule names declared in a Panini program P.

The typing judgment Γ,Π ` e : θ says that for a program P in the typing environment Γ and store

typing environment Π, the expression e has the type θ . The typing environment Γ maps variable names
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to variable types T and capsule names to capsule types C and the store typing environment Π maps

locations to their variable types.

θ ::= type attributes
| T variable types
|C capsule types

T ::=
| unit unit types
| int int types
| ref(T) reference types

Γ ::= {xk : Tk, ik : Ck} variable typing environment
Π ::= {lk : Tk} store typing environment

Γ,Π ` e : θ typing judgement

k ∈ N set of natural numbers

Figure 3.14 Type attributes

The notation P ` θ in Panini’s typing rules denotes that θ is a well-formed variable or capsule type

and the notation `C denotes well-typedness in the context of the declaration of a capsule type C.

3.7.2 Typing Rules

Figure 3.15 shows Panini’s select typing rules. (T-CAPSULE DECL) type checks a capsule declara-

tion. It ensures that the declarations of the capsule’s imports, design, states and procedures are well

typed. An import declaration is well typed if its imported names are of valid capsule types, i.e. P ` D.

A well typed design declaration has well typed instance and wiring declarations. Similar to import

declarations, an instance declaration is well typed if its declared name is of valid capsule type, i.e.

P ` G. A state declaration is well typed if it declares a state name of a variable type, i.e. P ` T . This

is because capsule instances cannot be part of state of other capsule instances. Wiring and procedure

declarations should type check in the context of imported and locally declared capsule instances in the

design declaration.

(T-PROC DECL) type checks a procedure declaration in the context of a capsule type C. It ensures

that capsule instances cannot be declared as formal parameters or the return value of a procedure, by

requiring them to be of variable types. This in turn prevents capsule instances to be passed to or returned
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(T-CAPSULE DECL)
capsule C(D i){ design{G h wire} T f proc } ∈ P ∀proc ∈ proc . P, i : D, h : G,self : C `C proc
∀wire ∈ wire . P, i : D, h : G ` wire ∀D ∈ D . P ` D ∀G ∈ G . P ` G ∀T ∈ T . P ` T

P `C

(T-PROC DECL)
Γ,Π,x : T ,self : C ` e : T ′ P ` T ′ ∀T ∈ T . P ` T

Γ,Π `C T ′ p(T x){e}

(T-WIRING DECL)
C = Γ(i) capsule C(D h){..} ∈ P ∀ jk ∈ j,Dk ∈ D . Dk = Γ( jk)

Γ,Π ` i( j)

(T-PROC INVOC)
C = Γ(i) capsule C(..){.. T ′ p(T x){e′} ..} ∈ P ∀ek ∈ e,Tk ∈ T . Γ,Π ` ek : Tk

Γ,Π ` i.p(e) : T ′

(T-SELF INVOC)
Γ,Π ` self : C capsule C(..){.. T ′ p(T x){e′} ..} ∈ P ∀ek ∈ e,Tk ∈ T . Γ,Π ` ek : Tk

Γ,Π ` self .p(e) : T ′

(T-STATE-READ)
Γ,Π ` self : C capsule C(..){..T f ..} ∈ P

Γ,Π ` self . f : T

(T-STATE-ASSIGN)
Γ,Π ` e : T capsule C(..){..T f ..} ∈ P

Γ,Π ` self . f := e : T

(T-RESOLVE)
Γ,Π ` e : T T = Π(l)

Γ,Π ` resolve(l,e, id, p) : T

(T-DEREF)
Γ,Π ` e : ref(T )
Γ,Π ` derefe : T

(T-REFERENCE)
Γ,Π ` e : T

Γ,Π ` ref e : ref(T )

(T-2)
P ` T

P `2 : T

(T-ε )
P ` T

P ` ε : T

(T-VARTYPE1)
T ∈ {int,unit}

P ` T

(T-VARTYPE2)
T = ref(T ′) P ` T ′

P ` T

(T-SUBSUME)
Γ,Π ` e : T ′ T ′ <: T

Γ,Π ` e : T

Figure 3.15 Panini’s select typing rules.

from procedure invocations in (T-PROC INVOC). The rule also checks that the type of the body e of the

procedure is the same as its return type. Subtyping can be easily added using the subsumption rule

(T-SUBSUME) if needed.

(T-PROC INVOC) type checks a global procedure invocation. It ensures that the receiver i of the

invocation is of capsule type C and its actual parameters and return value are of variable types. It

also checks that the receiver’s capsule type contains the invoked method p and the actual and formal

parameters of the procedures have the same type. Γ(i) returns the type of a capsule name i in the typing

environment Γ. Type checking of local procedure invocations in (T-SELF INVOC) is similar.
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(T-WIRING DECL) type checks a wiring declaration by ensuring that types of capsule names j passed

to a wiring declaration are the same as capsule types declared in the import declaration of capsule type

C. This is because capsule types do not subtype each other.

(T-RESOLVE) type checks a resolve expression. It ensures that the variable type of the expression e

is of the same variable type of the location that is going to hold the value of e. Π(l) returns the variable

type of the location l in the typing environment Π.

(T-ε ) and (T-2) type check unresolved future value ε and 2 value of transferred locations, respec-

tively. These two values can have any arbitrary variable type T . (T-REF) type checks a reference creation

expression. It ensures that capsule names cannot be stored in the store, by requiring e to be of a variable

type. The same is true in (T-REF ASGN).

Soundness Proof of Panini’s type soundness follows standard progress and preservation arguments

and thus is omitted.

3.8 Discussion

Expressiveness, usability, scalability and concurrency granularity Panini [137, 138] has been

implemented [100] and tried out [100, 105] tried out on hundreds of thousands of lines of code of

concurrent programs including translations of JavaGrande, NPB and StreamIt benchmarks and actor

programs from Basset, Habanero and Jetlang covering a variety of patterns including master/worker,

pipeline, event based coordination, loop parallelism. Previous work shows that Panini programs usually

perform as well as their corresponding multithreaded programs [100, 138]. These experiences have not

run into any issues with granularity of capsules or Panini’s ownership model. We will not report on

these experience as this chapter focuses on the formalization of Panini’s semantics, interference model

and modular reasoning.

Closure analysis Analysis of a Kleene closure can grow with the number of procedures in a capsule.

However, Panini’s cognizant interference is still a significant improvement over oblivious interference

in which interfering behavior is completely unknown. Closure analysis could be further improved for

example by eliminating pure procedures from closures or use of procedure invocation protocols to

eliminate invalid invocation sequences and similar directions which are part of our future work plans.
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Also, we conjecture that number of a capsule’s procedures on average will be on par with average

number of methods in a class, which is not a large number. For all Java projects in SourceForge as of

Sep 2013, this average is about 8 methods, as obtained using Boa [51, 52, 55, 143].

3.9 Related Work

Actors and active objects This chapter builds on the actor model [6]. Some variants of the actor

model, such as Erlang [172], guarantee confinement, i.e. no shared locations among actors, and use

a single thread of execution per actor. Actors of this variant address the pervasive interference via

their macro-step semantics [7] which limits interference points to message receive sites in the code.

However, variants of the actor model which do not guarantee confinement, e.g. Scala Actors [74], or

allow multiple unsynchronized execution threads per actor instance, e.g. Habanero [83], could still

suffer from pervasive interference. Actor models and their variants also do not address the oblivious

interference problem due to their dynamic binding of actor names and message names (in some cases),

e.g. ActorFoundry [14] does not allow the static type of actor instances to be known statically.

Active objects [94], similar to actors, encapsulate their state and control. Variants of active objects

that guarantee confinement and synchronized access to memory in active objects, such as JCoBox [151],

address the pervasive interference problem. Several techniques including ownership type systems [38]

or immutable data [151] can be used to enforce confinement. Again, dynamic binding of names could

lead to oblivious interference.

Atomicity, transactional memory, cooperability and automatic mutual exclusion (AME) Transac-

tional memory [92] is a concurrent programming model that enforces atomic blocks at runtime. There

are also a variety of static [66] and dynamic [58] analyses to detect atomicity violations. Atomic

sets [171] put fields of objects into atomic sets such that access to the fields in these sets is guaranteed

to be atomic. These techniques are not concerned about oblivious interference and only partially ad-

dress the pervasive interference by limiting the interference points to outside of specified atomic blocks.

However, interference outside atomic blocks and between atomic blocks can still be pervasive [177].

An atomic block is an interference-free block of code.

Automatic mutual exclusion [2,84,154] inverts the model of atomic blocks in transactional memory
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such that code is run atomically unless explicitly specified using yield expressions. Similarly, coopera-

tive reasoning [176,177] and observationally cooperative multithreading [157] limit interleaving points

to yield expressions. Task Types [90] enforce pervasive atomicity, i.e. every piece of code must be in

some atomic block, through a data-centric technique for specification of shared objects and syntactically

explicated accesses to share objects. These techniques address the pervasive interference, however, they

are not concerned about the oblivious interference problem.

Rely-guarantee and Owicki-Gries’s work In rely-guarantee reasoning [87] a module satisfies a

guarantee condition after each instruction and in turn can assume the rely condition satisfied by the

environment. Previous work [68] leverages rely-guarantee reasoning for thread-modular verification

of multithreaded programs in which rely and guarantee conditions are specified for threads and their

environments. Similarly, in Owicki and Gries’s work [129] and its variations [126] each instruction

is annotated by an interference-free assertion which must hold locally in the presence of concurrent

interfering tasks. These techniques extend Hoare logic and address the oblivious interference problem

via environment assumptions, however, they still assume pervasive interference between each two in-

structions. Atomic actions [56] combine atomicity and rely-guarantee reasoning through iterative use

of abstraction and reduction to infer atomic blocks. Rely-guarantee addresses oblivious interference,

however, interferences outside atomic blocks and between each two atomic blocks can still be pervasive.

Concurrent separation logic and abstract predicates In concurrent separation logic [127] accesses

to a shared resource are synchronized through mutual exclusion and guaranteed to preserve the re-

source invariants. Use of permissions enables read-sharing [31]. Concurrent separation logic can be

treated as a specialization of rely-guarantee for well-synchronized programs [59]. Concurrent abstract

predicates [47, 159] are self-stable predicates that combine separation logic with permissions to en-

able fine-grained modular reasoning about concurrent programs presenting a fiction of disjointness over

shared resources. Resource specifications in these techniques limit the interference behavior and ad-

dress oblivious interference, however, interferences among each two accesses to a shared resource can

still be pervasive [177].

Aspect-orientation Interference between aspects and base code, its pervasiveness and obliviousness

is discussed in aspect-oriented programming languages [61, 147]. However, solutions for interference

problems of these sequential languages are not directly applicable to concurrent programming models.
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Data race freedom There is a vast number of previous work on finding, fixing and preventing

data races [30, 32, 33, 65, 144]. However, the absence of data races does not guarantee the absence of

interferences and errors due to interferences [66].

Reconciliation of concurrency and modularity Panini and its capsule-oriented programming model

follow previous work [106, 107, 135, 139] that suggests that modularity and concurrency goals are in-

tertwined and could be reconciled.
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CHAPTER 4. CONCURRENT BEHAVIORAL SUBTYPING

Behavioral subtyping is an important property for extensible software design, as it allows a type

hierarchy to be extended without invalidating an already verified property [9, 96, 104, 130, 132]. This

property, initially proposed for sequential programs, has been augmented to handle thread-based con-

currency e.g. by adding history constraints [104], environment and resource specifications [47, 67, 87],

and atomicity [148] and locking specifications [11, 148].

In this chapter, inspired by the recently found success of module-like linguistics abstractions for

concurrency e.g. actors [6, 8], active objects [35, 38, 86, 151], capsules [18, 136, 138], etc., that promote

more disciplined concurrency (compared to threads), we ask whether these linguistic abstractions can

help promote a concurrent programming discipline where behavioral subtyping is the norm.

To explore these goals, we propose concurrent behavioral subtyping — or concurrent subtyping for

short, a novel complementary foundation to previous work [9, 45, 47, 87, 96, 104, 130] on behavioral

subtyping. Given a subtype σ and its supertype τ , concurrent subtyping defines behavioral subtyping

as the combination of the following subtyping relations:

• interference subtyping: the interference behaviors of the subtype σ and its supertype τ are com-

patible [130]; and

• interface subtyping: the interface behaviors of σ and τ are compatible.

Interference and interface subtyping address interference and interface behavior incompatibilities be-

tween the supertype τ and its subtype σ and enable modular reasoning. Interface subtyping is similar

to methods rule in standard behavioral subtyping [104].

Separation of the behavioral subtyping relation into these two, perhaps orthogonal, relations has a

significant positive impact. For some linguistic abstractions, e.g. those that promote more disciplined

concurrency, we find that the language design can imply interference subtyping and only the standard



55

interface subtyping [104] needs to be proven. Surprisingly, our empirical results finds that a majority of

real world programs e.g. 354/416 programs written using Akka framework [8], a library for actors, can

reap these benefits.

Contributions and Scope In summary, this chapter makes the following contributions:

• it proposes and formalizes concurrent behavioral subtyping as the combination of interference

subtyping and interface subtyping.

• it shows how concurrent subtyping can enable modular supertype abstraction reasoning [97].

• it shows that with type encapsulation and encapsulated inheritance concurrent subtyping can be

guaranteed using only the standard interface subtyping [96, 104].

• it presents an empirical study that examines the effectiveness of separating behavioral subtyping

into two relations by measuring prevalence of scenarios where linguistic features can guarantee

interference subtyping.

Throughout this chapter, we remain focussed on subtyping of functional behavior [95] in a concurrent

program. Subtyping of either synchronization behavior (inheritance anomaly [109]) or communication

behavior (session types [73]) is not the focus of this chapter.

4.1 Background

Modular reasoning in the presence of subtyping and dynamic dispatch is sound only if behaviors

Bσ and Bτ of the subtype σ and the supertype τ are compatible [9, 104]. In a concurrent program,

arbitrary inheritance between a subtype σ and its supertype τ can cause incompatibilities [96,104,130]

between behaviors of σ and τ and consequently break modular reasoning in a type η that interacts with

τ and a type η ′ that τ interferes with.

To illustrate these two problems, we use the concurrent programming language Panini that provides

module-like linguistic abstractions for concurrency [18, 136, 138]. The main features that we build

upon are also present in a host of other concurrent languages with actors [6,8,74] such as Akka [8] and

ActorFoundry [14] and Erlang [12], and active objects [35, 38] such as Creol [86] and JCoBox [151]
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and even modeling languages such as ABS [46]. However, a framework for modular reasoning about

Panini has also been developed by Bagherzadeh and Rajan [18] that we build upon here.

4.1.1 Panini

In Panini, a capsule is a type that encapsulates its state by making it accessible only through invo-

cations of its procedures; a capsule instance executes its invoked procedures sequentially while running

concurrently with other capsule instances in a program.

4.1.2 Program Syntax

Figure 4.1 shows the expression-based core syntax of Panini inspired by [18] and extended with

inheritance. term denotes a sequence of zero or more terms and [term] denotes an optional term.

A program is a set of capsule declarations that each contains a capsule name C, a supercapsule

name D and declares a set of imported capsule instances import, a design declaration design, a set

of states state and procedures proc. A capsule instance can asynchronously invoke procedures of its

imported or locally declared capsule instances. An import declaration d has a capsule type D and name

c. A design declaration declares a set of local capsule instances instance and connects them together

in a wiring declaration wiring. A wiring declaration c(d) exports capsule instances d to the imported

capsule instances of c. Imported and exported capsule instances are shared.

Global asynchronous and local synchronous expressions A capsule encapsulates its state by mak-

ing it available only through asynchronous invocation of its procedures [117]. A procedure declaration

has a variable return type T , a name p, set of formal parameters form and a body e. The body of a

capsule procedure is a sequence of global asynchronous and local synchronous expressions. In a global

expression, a capsule can asynchronously invoke a procedure of another capsule including its supercap-

sule through the pseudo-variable super. In asynchronous invocation the invoking capsule does not block

for the execution of the invoked procedure to finish and does not wait for its result. A future [174] is

returned as the result of the asynchronous invocation as a placeholder for a value which need not be im-

mediately available. The value of a future can be claimed by blocking on it when needed using a deref

expression. Due to concurrent execution of capsule instances in a program, an interference can happen
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prog ::= decl program
decl ::= capsule C(import) extends D { design state proc } capsule declaration
import ::= D d import declaration
state ::= T s; state declaration
proc ::= [spec] T p ( T x ){ e } procedure declaration
design ::= {instance wiring} ; design
wiring ::= c(d) wiring
instance ::= D d instance declaration

e ::= expression:
| c.p(x)α | self.p(x)| super.p(x) procedure invocation
| self.s | self.s := x state access
| ref x | deref x | x := e references
| let x be e in e | if x then e else e let, conditional
| deref x future resolution
| x variable
| () unit value

spec ::= requires ep ensures ep specification

ep ::= pure predicates:
| true true
| x variable read
| c.p(x) | self.p(x) procedure invocation
| ep && ep | not ep conjunction, negation
| ep == ep | ep < ep equality, less than
| old(ep) old predicate

C, D ∈ C capsule type names T ∈ T variable types
s ∈ F state names p ∈P procedure names
x ∈ X variable names c,d ∈ I instance names
α ∈ L labels

Figure 4.1 Panini’s core syntax with capsule inheritance and procedure specifications.

at interference point α after an asynchronous procedure invocation. In a local expression, a capsule can

synchronously invoke a procedure of itself or access its state through the pseudo-variable self .

The type system distinguishes between a capsule type C and a variable type T . Sets of possible

values for capsule types and variable types are disjoint.

Atomic procedure specifications A procedure specification requires ep1 ensures ep2 includes a pre-

condition predicate ep1 and a postcondition ep2 that both are pure and side-effect free. A specification

predicate can be true, read variable x or it can invoke pure procedures of its enclosing capsule or other
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capsules that the enclosing capsule encapsulates. Specification predicates can be compared for their

values, conjoined or negated. The old predicate in a procedure specification refers to the state of its en-

closing capsule at the beginning of the procedure execution. Procedure specifications are syntactically

similar to JML specifications but are semantically different because they are atomic [18]. The specifi-

cation requires ep1 ensures ep2 is atomic iff ep1 and ep2 predicates are free from interference. Procedure

specifications are for partial correctness and do not specify termination [77, 95].

Type specifications There are no type specifications like invariants or history constraints [95, 104].

An invariant, similar to previous work [95,103] can be desugared and conjoined into preconditions and

postconditions of procedures of a capsule. Unlike previous work [103], concurrent subtyping does not

require history constraints to guarantee behavioral subtyping.

4.1.3 Semantics in a Nutshell

A Panini program is a set of concurrently running capsule instances with the following semantics:

P1 Encapsulation: A capsule encapsulates its state and its representation, non shared local capsule

instances, supercapsule and parameters of its procedures and their representations. The capsule

makes what it encapsulates accessible only through asynchronous invocations of its procedures.

The representation of a state is the object graph reachable from the state.

P2 Sequential execution: A capsule instance has a single thread of execution that dequeues and

executes its invoked procedures from its queue sequentially [35]. The execution of an invoked

procedure does not start before the execution of the currently running invoked procedure finishes

[83].

P3 Typed messages: The procedures of a capsule constitute the set of messages it can accept [8,14].

Invocation of a procedure of a capsule is the type-safe equivalent of sending a message to the

capsule [86].

Encapsulation provided by a capsule can be guaranteed using various techniques such as copying

[151], uniqueness [112] or ownership and ownership transfer [38, 39, 118]. Panini uses the latter to

guarantee encapsulation.
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P4 Ownership and ownership transfer: A capsule owns what it encapsulates. Upon a procedure

invocation, the ownership of parameters of the procedure (and their representations) is transferred

from the invoking to the invoked capsule instance; upon the return of the invocation result, the

ownership of the result (and its representation) is transferred from the invoked to the invoking

capsule instance.

Semantic properties P1–P4 are sufficient for defining concurrent subtyping. P1–P4 in turn guar-

antee properties P5–P6:

P5 Interference control: Interference can only happen after a procedure invocation on a shared

capsule instance and the interference behavior at that interference point is bound by the behavior

of its interference closure.

P6 Specification atomicity: Procedure specifications in a capsule are atomic if they only access the

encapsulated state of the capsule.

Intuitively, the interference control and specification atomicity hold because the state encapsulated by

a capsule can only be accessed by invocations of sequentially executing procedures of the capsule. The

detailed formal proofs of these properties can be found in previous work [18].

Asynchronous execution increases the possibility of concurrency [86] and first in first out (FIFO)

execution of invoked procedures of a capsule decreases the unnecessary nondeterminism in message

passing concurrency [163]. However, P7–P8 are not necessary for concurrent subtyping.

P7 Asynchronous invocation: Asynchronous invocation of a procedure of a capsule instance puts

the procedure in the capsule’s queue and immediately returns a future value without waiting for

the execution of the procedure.

P8 FIFO execution: The single execution thread of a capsule instance dequeues and executes its

invoked procedures from its queue in a first in first out (FIFO) order.

Ownership guarantees Panini’s sharing model.

P9 Sharing: The only shared entities among two capsule instances are either other capsule instances

or unresolved future results of their procedure invocations. Access to an unresolved shared future

is synchronized.
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P10 Encapsulated inheritance: A subcapsule can access its supercapsule’s state only through invo-

cations of its procedures and not directly [155].

In summary, P1–P4 will be sufficient to define concurrent subtyping.

Illustration To illustrate, Figure 4.2 declares a capsule Counter with a state r and procedures inc

and val to increment the counter by 1 and return its value. Another capsule Client imports a shared

instance c of Counter, line 1, and in its main procedure asynchronously invokes Counter procedures inc

and val and assigns their results to futures v1 and v2. The specification of inc in counter says that if

the procedure execution starts in a program state that satisfies its precondition true, and the execution

terminates, then it terminates in a state that satisfies its postcondition c.val() == old(c.val())+ 1, i.e.

inc increments the counter by one. The specification of val says that it is pure and does not change the

value of the counter.

1 capsule Client(Counter c) {
2 int v1, v2;

4 //@ requires true;
5 //@ ensures v2 >= v1 + 1; Φ

6 void main() {

7 v1 = c.val () ; α κ(c,Counter) = {c.inc(),c.val()}∗

8 c. inc () ; α κ(c,Counter) = {c.inc(),c.val()}∗

9 v2 = c.val () ; α κ(c,Counter) = {c.inc(),c.val()}∗

10 }
11 }
12 capsule Counter {
13 int r ;

15 //@ requires true;
16 //@ ensures val() == old(val () )+1;
17 void inc () { r = r + 1; }

19 //@ pure
20 int val () { return r ; }
21 }

Figure 4.2 Interference points α and interference closure κ(c,Counter).

4.2 Key Challenges

Incompatibilities between behaviors of subtype σ and supertype τ can be divided into the following

two fundamental problems:
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¶ interference behavior incompatibility: the implementation of the subtype σ does not satisfy the

interference behavior of its supertype τ; and

· interface behavior incompatibility: the implementation of an overriding procedure in the subtype

σ does not satisfy the behavior of the procedure it overrides in its supertype τ .

The interference behavior of τ denotes its behavior when the execution of an instance of τ interferes

with the concurrent execution of an instance of some type η . The interface behavior of τ is the behavior

it exposes via its procedures and is used by η to interact with τ . An instance of η interacts with τ by

invoking its procedures.

4.2.1 Problem ¶: Interference Behavior Incompatibility

A subcapsule σ with an interference behavior that is incompatible with the interference behavior of

its supercapsule τ breaks modular reasoning in a capsule η that τ interferes with.

To illustrate, consider modular verification of the assertion Φ in Figure 4.2. Φ says that the imple-

mentation of the procedure main in the capsule Client satisfies its specification. To prove Φ, one should

prove that if the execution of main starts in a program state that satisfies its precondition true, and the

execution terminates, then it terminates in a program state that satisfies its postcondition v2 >= v1+1.

4.2.2 Modular Reasoning and Interference

Concurrency gives rise to thread interference and therefore any reasoning technique about a con-

current program should take into account the possibility of interference [18, 47, 87]. We first provide a

short background on how modular reasoning is carried out in Panini in the presence of interference.

One way to take interference that is caused by concurrent execution of instances of Client and Counter

into account when proving Φ is:

• to identify the program points in the implementation of main in which interference can happen

(interference points); and

• for each interference point identify its interference behavior.

Panini’s encapsulation and sequential execution of capsules guarantee that in a Panini program:
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G1 interference can happen only after a procedure invocation on a shared capsule instance; and

G2 interference behavior at the procedure invocation (interference point) is limited to the Kleene

closure of invocations of procedures of the static type of the invocation’s receiver. We refer to

this closure as interference closure.

The interference closure is an upper bound on the interference and therefore its behavior provides an

upper bound on the interference behavior. Intuitively, this hold because the state encapsulated by a cap-

sule instance can only be accessed by invocations of sequentially executing procedures of the capsule.

More details and proofs about Panini’s interference control above can be found in previous work [18].

Using these two properties one can easily take interference into account when proving Φ. To illus-

trate, Figure 4.2 shows the Counter and Client capsules with their interference points and interference

closures. Using G1, there are no procedure invocations in the body of the procedure inc and therefore it is

free from interference points and is atomic. A block of code is atomic if it is free from interference. Sim-

ilarly, the procedure val is atomic. However, there are three interference points α in the procedure main

of Client because there are three procedure invocations on the shared capsule instance c, on lines 7–9.

In Panini, an imported capsule instance is a shared capsule instance. Using G2, the interference closure

at α after the first invocation c.val () , on line 7, is the Kleene closure κ(c,Counter) = {c.inc(),c.val()}∗

of all procedures inc and val of the static type Counter of the receiver c. The closure κ(c,Counter) is a

set that is either empty /0 or contains any sequential composition ; of any number of procedure invoca-

tions c.val () and c. inc () in any order. Invocations c. inc () , c. inc () ;c.val () , c.val () ;c. inc () or c. inc () ;c. inc ()

are examples of few elements that belong to the κ(c,Counter). Other interference closures in main are

computed similarly.

After identifying interference points α and interference closures κ(c,Counter) in main, one can

construct the following Hoare-like triple HΦ. The standard Hoare triple does not take interference into

account [148]. To take interference into consideration, interference closures κ(c,Counter) are inserted

at interference points α in the body of main. HΦ says that in the typing environment Γ if the execution

of main starts in a program state that satisfies its precondition true, and the execution terminates, then

it terminates in a program state that satisfies its postcondition v2 >= v1+ 1. This is exactly what the

assertion Φ wants to prove. The static typing environment Γ for Client maps the counter instance c to
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its static type Counter where the annotation @import denotes that c is a capsule instance shared between

Client and other capsule instances in the system.

HΦ : Γ |= {true} precondition

v1 = c.val();

κ(c,Counter): increase or not change c︷ ︸︸ ︷
{c.inc(),c.val()}∗;

c.inc(); {c.inc(),c.val()}∗;

v2 = c.val(); {c.inc(),c.val()}∗;︸ ︷︷ ︸
(true,c.val() >= old(c.val()))

{v2 >= v1+1} postcondition 3

Γ ` c : @import Counter

To prove Φ, recall that specifications of procedures of Counter say that inc increases the counter by 1

and val is pure and does not change the counter. Using these specifications, an oracle can conclude that

the interference closure κ(c,Counter) = {c.val(),c.inc()}∗ either increases the counter by an arbitrary

value or does not change it (but does not decrease it). The behavior of κ(c,Counter) can be explained

using the specification (true,c.val() >= old(c.val())) which says if the interference in the counter

c starts in a program state that satisfies the precondition true, and its execution terminates, then it

terminates in a program state that satisfies the postcondition c.val() >= old(c.val()). The old predicate

in this specification refers to the state of the counter c before the start of the interference. The behavior

(ep1,ep2) is short for requires ep1 ensures ep2. Using this interference behavior and specification of

Counter one can prove that the postcondition of HΦ and therefore the assertion Φ holds. In proving Φ,

one should note that read accesses to values of futures v1 and v2 in the postcondition v2 >= v1+1 do

not unblock until the executions of val in the counter c are executed and finished. Panini’s first in first

out execution model guarantees that in the postcondition of HΦ, the execution of the first asynchronous

invocation c.val () finishes before the start of the execution of c. inc () which itself finishes before the

execution of the second invocation c.val () starts.

Next, we illustrate interference and interface behavior incompatibility problems of modular reason-

ing in the presence of interference and inheritance.
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4.2.3 Interference Behavior Incompatibility

To illustrate, consider the addition of the subcapsule CxCounter in Figure 4.3 to the inheritance hi-

erarchy of Counter. CxCounter adds an extra procedure dec that decreases the counter by one. The

incompatibility between interference behaviors of CxCounter and Counter invalidates the assertion Φ,

that was previously verified in the absence of CxCounter. In the presence of CxCounter and dynamic

dispatch, invocations c.val () and c. inc () in the body of the procedure main in Client can be dispatched to

an instance c of CxCounter instead of Counter. However, the interference closure κ(c,CxCounter) =

{c.val(),c.inc(),c.dec()}∗ for c of type CxCounter is different from the interference closure κ(c,Counter)=

{c.val(),c.inc()}∗ for c of type Counter and their behaviors are not compatible. Specifications (true,true)

and (true,c.val()>= old(c.val())) denote the behaviors of interference closures κ(c,CxCounter) and

κ(c,Counter), respectively. The behavior of κ(c,Counter) either increases the counter or not change

it, whereas the behavior of κ(c,CxCounter) with its newly added dec procedure can not only increase

or not change the counter but also decrease it by any arbitrary value, which is incompatible with the

behavior of κ(c,Counter).

22 capsule CxCounter extends Counter {
23 int i ;
24 void dec() { r = r − 1; }
25 }

Figure 4.3 Interference behavior incompatibility breaks modular reasoning.

A non modular verifier with the knowledge about the subcapsule CxCounter would construct the

following Hoare triple H ′
Φ

instead of the previous triple HΦ. However, unlike HΦ, the postcondition

of H ′
Φ

and therefore the assertion Φ cannot be proved anymore. The incompatibility of the interference

behavior of the subcapsule CxCounter with the interference behavior of its supercapsule Counter breaks

modular reasoning in the capsule Client that the supercapsule Counter interferes with. The dynamic

typing environment Π of Client maps its counter instance c to its dynamic type CxCounter.
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H ′
Φ

: Γ |= {true}

v1 = c.val();

decrease, increase or not change c︷ ︸︸ ︷
{c.inc(),c.val(), c.dec() }∗

c.inc(); {c.inc(),c.val(), c.dec() }∗

v2 = c.val(); {c.inc(),c.val(), c.dec() }∗︸ ︷︷ ︸
(true,true)

{v2 >= v1+1} 7

Γ ` c : @import Counter

Π ` c : CxCounter

4.2.4 Problem ·: Incompatible Interface Behavior

A subcapsule σ with an interface behavior that is incompatible with the interface behavior of its

supercapsule τ breaks modular reasoning in

1 a type η that τ interferes with; and

2 a type η that interfaces with τ by invoking its procedures.

Incompatible interface behavior causes incompatible interference behavior We first discuss the

case in which the incompatibility of interface behaviors of σ and τ breaks the modular reasoning in

a type η that τ interferes with. To illustrate, reconsider the assertion Φ that was previously verified

in Figure 4.2 in the absence of CxCounter and consider the addition of the subcapsule CxCounter in

Figure 4.4 to the inheritance hierarchy of Counter. CxCounter overrides the procedure inc of Counter.

22 capsule CxCounter extends Counter { ..
23 void inc () { r = 0; }
24 }

Figure 4.4 Interface behavior incompatibility breaks modular reasoning.

After the addition of the subcapsule CxCounter, the incompatibility between the interface behaviors

of CxCounter and Counter invalidates the assertion Φ. In the presence of CxCounter and dynamic dispatch,

invocations c. inc () in the procedure main in Client can be dispatch to an instance c of CxCounter instead
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of Counter. However, the interface behavior ι(c,CxCounter) = {inc(true,c.val() == 0),val(pure)}

for an instance c of CxCounter is not compatible with the interface behavior ι(c,Counter) = {inc(true,

c.val() == old(c.val())+ 1,val(pure)} for c of Counter for the procedure inc. The interface behavior

of CxCounter includes behaviors (true,c.val() == 0) and pure of its procedures inc and val. The

behavior (true,c.val() == 0) of the procedure inc specifies its precondition true and the postcon-

dition c.val() == 0. Unlike inc in Counter that increases the counter by one, inc in CxCounter resets

the counter. This interface behavior incompatibility, causes incompatibility between the behavior of

the interference closure κ(c,CxCounter) = {c.val(),c.inc()}∗ for CxCounter and the behavior of the

interference closure κ(c,Counter) = {c.val(),c.inc()}∗ for Counter. Behaviors (true,c.val() == 0)

and (true,c.val() >= old(c.val())) denote behaviors of κ(c,CxCounter) and κ(c,Counter). Unlike

κ(c,Counter) that either increases the counter or not change it, κ(c,CxCounter) with its overriding

procedure inc either resets the counter or not change it.

Interface incompatibility breaks modular reasoning The case in which the incompatibility of

interface behaviors of σ and τ breaks the modular reasoning in a type η that interacts with τ is standard

and is recognized by previous work [9, 104]. To illustrate it in the context of a concurrent langauage,

consider Figure 4.5 that declares a variation of Client that, unlike Figure 4.2, declares a local and non

shared instance c of Counter, in its design declaration on line 2. In Panini, a local capsule instance is

declared in a design declaration.

1 capsule Client { ..
2 design {Counter c; }

4 //@ requires true;
5 //@ ensures v2 == v1 + 1; Φ

6 void main() {
7 v1 = c.val () ;
8 c. inc () ;
9 v2 = c.val () ;

10 }
11 }

Figure 4.5 Incompatible interface behavior breaks sequential modular reasoning.

Using G1, the procedure main in Client is atomic because there is no procedure invocation on a shared

capsule instance in its body anymore. In the absence of a subcapsule CxCounter, one can verify the new
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assertion Φ by constructing the following Hoare triple HΦ:

HΦ : Γ |= {true}

v1 = c.val();

κ(c,Counter)= /0︷ ︸︸ ︷
no interference

c.inc(); no interference

v2 = c.val(); no interference

{v2 == v1+1} 3

Γ ` c : @local Counter

The procedure main is atomic and therefore the interference closure κ(c,Counter) and its behavior

are trivially empty. Atomicity of main allows the use of standard sequential reasoning [77] for the

verification of HΦ. HΦ and consequently Φ holds because specifications of inc and val in Counter say

that they only increase the counter by one or not change it.

However, after the addition of CxCounter in Figure 4.3, the incompatibility between interface be-

haviors of CxCounter and Counter invalidates the assertion Φ. This is because unlike the behavior

(true,c.val() == old(c.val())+ 1) of inc in ι(c,Counter) which increases the counter, the behavior

(true,c.val() == 0) of inc in ι(c,CxCounter) resets the counter.

4.3 Concurrent Subtyping

Concurrent subtyping holds if both interference and interface behaviors of a subtype σ are com-

patible with interference and interface behaviors of its supertype τ . Concurrent subtyping addresses

incompatible interference and interface behavior problems and enables modular reasoning. In this sec-

tion, we formalize concurrent subtyping.

4.3.1 Formalization of Concurrent Subtyping

Concurrent subtyping defines behavioral subtyping as the combination of interference and interface

subtyping. Definition 7 and Definition 8 define interference closure and concurrent subtyping.

Definition 7 (Interference closure) Let C be a capsule type with procedures T1 p1 (x1) .. Tn pn (xn)

in its interface, including procedures inherited from its supercapsules. Let c be a capsule instance with
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the static type C, i.e. Γ ` c : C, and a possibly different dynamic type C′. Then, the interference closure

of c, written as κ(c,C), is the Kleene closure of sequential composition ; of any number of invocations

of all procedures in the interface of its static type C in any arbitrary order:

κ(c,C) = {c.p1(_),c.p2(_), ..,c.pn(_)}∗

The notation _ denotes an unspecified arbitrary value which is of the expected type of the procedure

argument and does not invalidate the procedure specification.

The closure κ(c,C) denotes an upper bound on the interference on an instance c that a concurrently

running instance of D can cause.

Definition 8 (Concurrent subtyping) Let C′ and C be two capsule types in a Panini program where C′

is a subcapsule of C in its inheritance hierarchy, written as C′ ≺C. Let c be a capsule instance of static

type C in a static typing environment Γ, i.e. Γ ` c : C, and of dynamic type C′ in the dynamic typing

environment Π, i.e. Π ` c : C′. Let ep1 and ep2 be atomic specification predicates. Let the closure

κ(c,C) be the interference closure of C. Then, C′ is a concurrent subtype of C iff:

1 C′ is an interference subtype of C:

∀ep1,ep2 ∈ ep . Γ ` {ep1} κ(c,C) {ep2} ⇒ Γ ` {ep1} κ(c,C′) {ep2}

2 C′ is an interface subtype of C:

∀p ∈P,ep1,ep2 ∈ ep, override([C′,T p(x){e′}], [C,T p(x){e}]) .

Γ ` {ep1} e {ep2} ⇒ Γ ` {ep1} e′ {ep2}

A subcapsule C′ is a concurrent subtype of its supercapsule C if C′ is the interference subtype and inter-

face subtype of C. C′ is an interference subtype of its supercapsule C only if the interference behavior

of C′ is compatible with the interference behavior of C. Similarly, C′ is an interface subtype of C if the
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interface behavior of C′ is compatible with the interference behavior of C. Similar to standard behav-

ioral subtyping [9, 44, 96, 104], concurrent subtyping does not provide any guarantees about program

termination. The function override checks if a procedure p in C′ is overriding the procedure p in C.

An oracle knows the behavior (ep1,ep2) of an interference closure κ(c,C) of a type C. The behavior

(ep1,ep2) for an overridden procedure of C can be its behavior spec specified by its programmer.

4.3.1.1 Interference Subtyping

In Definition 8, the subcapsule C′ is an interference subtype of its supercapsule C if the interference

behavior of its interference closure κ(c,C′) is compatible with the behavior of the interference closure

κ(c,C) of its supercapsule C:

∀ep1,ep2 ∈ ep .

Γ ` {ep1} κ(c,C) {ep2} ⇒ Γ ` {ep1} κ(c,C′) {ep2}

To be compatible, the interference closure κ(c,C′) of the subcapsule C′ should preserve any behavior

(ep1,ep2) that the interference closure κ(c,C) of the supercapsule C satisfies. The Hoare judgement

Γ ` {ep1} κ(c,C) {ep2} above denotes the satisfaction of the interference behavior (ep1,ep2) by the

interference closure κ(c,C) in the static typing environment Γ [77]. The interference closure κ(c,C)

satisfies its behavior (ep1,ep2) if the execution of the closure starts in a program state that satisfies ep1,

and it terminates, then it terminates in a state that satisfies ep2.

To illustrate, the subcapsule CxCounter in Figure 4.3 is not the interference subtype of its supercap-

sule Counter:

Γ ` {true} κ(c,Counter) {c.val()>= old(c.val())}

6⇒

Γ ` {true} κ(c,CxCounter) {c.val()>= old(c.val())}

This is because the behavior (true,true) of κ(c,CxCounter)= {c.inc(),c.val(),c.dec()}∗ of CxCounter

is not compatible with the behavior (true,c.val()>= old(c.val())) for κ(c,CxCounter)= {c.inc(),c.val()}∗

of its supercapsule Counter.
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However, the subcapsule CxCounter in Figure 4.6 is an interference subtype of Counter. This is

because both interference closures κ(c,Counter) and κ(c,CxCounter) have the same and therefore

trivially compatible behaviors (true,c.val()>= old(c.val())):

Γ ` {true} κ(c,Counter) {c.val()>= old(c.val())}

⇒

Γ ` {true} κ(c,CxCounter) {c.val()>= old(c.val())}

It is interesting to see that CxCounter is an interference subtype of Counter while their inc procedures

have different behaviors. inc in CxCounter increases the counter by 2 whereas inc in Counter increases

the counter by 1.

22 capsule CxCounter extends Counter { ..
23 void inc () { r = r + 2; }
24 }

Figure 4.6 CxCounter is an interference subtype of Counter.

4.3.1.2 Interface Subtyping

In Definition 8, the subcapsule C′ is an interface subtype of its supercapsule C if the behavior of

the body e′ for each of its overriding procedures is compatible with the behavior of the body e of the

procedure it overrides:

∀p ∈P,ep1,ep2 ∈ ep, override([C′,T p(x){e′}], [C,T p(x){e}]) .

Γ ` {ep1} e {ep2} ⇒ Γ ` {ep1} e′ {ep2}

The Hoare judgement Γ ` {ep1} e {ep2} above denotes satisfaction of the procedure behavior (ep1,ep2)

by the expression e in the static typing environment Γ. The expression e satisfies the behavior (ep1,ep2)

if its execution starts in a program state that satisfies ep1, and it terminates, then it terminates in a

program state that satisfies ep2. Interface subtyping, similar to the methods rule in standard behav-

ioral subtyping [9, 44, 104] relates the explicit preconditions and postconditions of an overriding and

overridden procedure in a subtype and its supertype by requiring a contravariance and covariance re-

lations between preconditions and postconditions respectively. Variations of interface subtyping [96]

with weaker covariance requirements for postconditions can also be used.
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To illustrate, the subcapsule CxCounter in Figure 4.4 is not the interface subtype of its supercapsule

Counter:

override([CxCounter,void inc(){r = 0}],

[Counter,void inc(){r = r+1}]) . Γ ` {true} r = r+1 {c.val() == old(c.val())+1}

6⇒

Γ ` {true} r = 0 {c.val() == 0}

This is because the behavior (true,c.val() == 0) of the overriding procedure inc in CxCounter is not

compatible with the behavior (true,c.val == old(c.val())+ 1) of its overridden procedure inc in its

supercapsule Counter.

However, the subcapsule CxCounter in Figure 4.3 is an interface subtype of Counter trivially because

it does not override any procedure of Counter.

Neither interference nor interface subtyping alone are sufficient for concurrent subtyping A sub-

capsule C′ can be an interference subtype of its supercapsule C but not its interface subtype. Similarly,

C′ can be an interface subtype of C but not its interference subtype. This shows that neither interference

subtyping nor interface subtyping alone is sufficient to guarantee concurrent subtyping.

To illustrate, the subcapsule CxCounter in Figure 4.6 is an interference subtype of its supercapsule

Counter but is not its interface subtype. Similarly, the CxCounter in Figure 4.3 is an interface subtype of

Counter but not its interference type.

4.3.2 Sound Modular Reasoning

Now we show a Hoare-style logic [77] that uses concurrent subtyping to enable modular supertype

abstraction reasoning [97] in the presence of interference and inheritance. In supertype abstraction

reasoning, an invocation of a procedure is understood using the static type C of its receiver capsule

instance and independent of its possibly different dynamic type C′ used to dispatch the invocation.

Figure 4.7 shows select rules in our Hoare logic. The reasoning rules for atomic expressions that are

free from interference are similar to sequential reasoning rules in previous work [3,77] and are omitted.

In the reasoning rules, the judgement Γ ` {ep1} e {ep2} denotes that the Hoare triple {ep1} e {ep2}

is provable using the static typing environment Γ. The reasoning rules use a fixed capsule table CT
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(V-PROC INVOC)
Γ ` c : C capsule C extends .. {.. spec T p (x){e} .. } ∈ CT

spec = requires ep1 ensures ep2 ep′1 = ep1[v/x,c/self ]
ep′2 = ep2[v/x,c/self ] Γ ` {ep′2} κ(c,C) {ep′′2} Γ ` {ep′1} c.p(v);κ(c,C) {ep′′2}

Γ ` {ep′1} c.p(v)α {ep′′2}

(V-SELF INVOC)
Γ ` self : C capsule C extends ..{.. spec T p (x){e} .. } ∈ CT

spec = requires ep1 ensures ep2 ep′1 = ep1[v/x] ep′2 = ep2[v/x]

Γ ` {ep′1} self .p(v) {ep′2}

(V-SUPER INVOC)
Γ ` self : C′ Γ `C′ ≺C capsule C extends ..{.. spec T p (x){e} .. } ∈ CT

spec = requires ep1 ensures ep2 ep′1 = ep1[v/x] ep′2 = ep2[v/x]

Γ ` {ep′1} super.p(v) {ep′2}

(V-CONSEQUENCE)
ep1⇒ ep′1 ep′2⇒ ep2 Γ ` {ep′1} e {ep′2}

Γ ` {ep1} e {ep2}

Figure 4.7 Select rules for Panini’s Hoare logic.

which is a set of program’s capsule declarations [82]. The notation ep[v/x] denotes replacing variables

x with values v.

The inference rule (V-PROC INVOC) reasons about the invocation of a procedure on a capsule in-

stance c with the static type C and a possibly different dynamic type. The rule says that the behavior of

the invocation of a procedure p is the behavior (ep′1,ep′2) of the procedure combined with the behavior

(ep′2,ep′′2) of the interference closure κ(c,C) for its receiver c. This is because in Panini interference can

happen after each procedure invocation point α and the interference behavior is bound by the behavior

of the interference closure κ(c,C). (ep′1,ep′2) is the behavior (ep1,ep2) of the procedure p after substi-

tutions for its parameters and the pseudo-variable self . The key in this rule is that, independent of the

dynamic type of the receiver which maybe different from C, the rule uses the static type C of the receiver

c to retrieve the behavior (ep′1,ep′2) of the procedure p and compute the interference behavior (ep′2,ep′′2)

of the receiver. Reasoning about the procedure invocation using the static type and independent of the

dynamic type of its receiver is sound only because concurrent subtyping guarantees both interference
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and interface subtyping.

(V-SELF INVOC) reasons about the invocation of a procedure of a capsule itself. The rule says

that the behavior of the self invocation of a procedure p of a capsule C is the same as the behavior

(ep′1,ep′2) of the procedure, after appropriate substitutions. Unlike (V-PROC INVOC), the behavior of the

self invoked procedure does not need to be combined with any interference behavior. This is because

the invocation of a self procedure is executed synchronously. Similarly, (V-SUPER INVOC) reasons about

the invocation of a procedure in a supercapsule. The rule says that the behavior of the invocation of a

procedure p of a supercapsule C is the same as the behavior (ep′1,ep′2) of the procedure, after appropriate

substitutions. Again there is no combination of the procedure behavior with any interference behavior.

This is because in Panini a capsule owns and controls access its supercapsule, similar to its local capsule

instances, and can access its supercapsule’s state free from interference. by its (V-CONSEQUENCE) is the

standard consequence rule [77].

4.3.2.1 Soundness

Modular reasoning using the Hoare logic in Figure 4.7 is sound because:

• the behavior of a capsule C is divided into interference and interface behaviors; and

• concurrent behavioral subtyping guarantees that a subcapsule C′ is both interference and interface

subtype of its supercapsule C; and consequently

• interference behaviors of C and C′ are compatible for a capsule D that C interfers with and in-

terface behaviors of C and C′ are compatible for a capsule D that interact with C by invoking its

procedures.

Therefore, any property Φ reasoned about and verified using the behavior of the supercapsule C and the

rules in Figure 4.7 will not be invalidated by any of its existing subcapsules C′ or any subcapsules C′

added in the future. Theorem 9 formalizes soundness of our reasoning Hoare logic.

Theorem 9 (Soundness of reasoning) The reasoning Hoare logic in Figure 4.7 is sound. That is, any

Hoare tripe provable using this Hoare logic, written as Γ ` {ep1} e {ep2}, is a valid Hoare triple,

written as Γ |= {ep1} e {ep2}.
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Proof Sketch: The proof is based on the induction over the expressions in the syntax in Figure 4.1

and uses interference and interface subtyping guarantees of concurrent subtyping. The judgement Γ |=

{ep1} e {ep2} denotes that the provable triple {ep1} e {ep2} is valid in Γ if for every state ∫ that agrees

with type environment Γ, if ep1 is true in a program state ∫ , i.e. ∫ |= ep1, and if the execution of e

terminates in a state ∫ ′, then ∫ ′ |= ep2. The validity is for partial correctness and does not say anything

about the termination [153].

4.4 Proving Concurrent Subtyping

To prove that a subcapsule C′ is a concurrent subtype of its supercapsule C requires the following

proofs according to Definition 8:

1 Interference subtyping: all overriding and extra procedures of C′ provide a proof that C′ is an

interference subtype of C; and

2 Interface subtyping: every overriding procedure of C′ provides a proof that C′ is an interface

subtype of C.

The following key observations allow for an alternative way to prove concurrent subtyping:

O1 in the presence of type encapsulation [117] and encapsulated inheritance [155], to prove that C′ is

an interference subtype of C it is sufficient to prove that C′ is a standard interface subtype [45,104]

of C.

O2 consequently and more importantly, to prove that C′ is a concurrent subtype of C it is sufficient

to prove that C′ is an interface subtype of C.

The standard interface subtyping and its variations [10,104] relate behaviors of an overriding procedure

in a subtype and the procedure it overrides in the supertype by requiring contravariance and covariance

relations on their preconditions and postconditions respectively. Variations of interface subtyping [44,

96] weaken the covariance rule for postconditions.

Using O2, in a concurrent language with type encapsulation and encapsulated inheritance, a pro-

grammer can simply prove the standard interface subtyping and in return reap the benefits of concurrent
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subtyping without the need to be worried about interference and interference subtyping. This in turn

could help foster concurrent programming languages in which behavioral subtyping is the norm.

4.4.1 Encapsulated Inheritance

Encapsulated inheritance makes the state and its representation of a supercapsule C accessible to

its subcapsule C′ only through invocations of procedures of C [155]. This is in contrast to standard

inheritance mechanisms in languages such as Java in which a subclass can directly access fields of its

superclass. Definition 11 defines encapsulated inheritance. Definition 10 defines extended state of a

capsule used in Definition 11.

Definition 10 (Extended state) Let C′ be a capsule with the declaration capsule C′(import) extends C

{design state proc}. The extended state of C′, written as XState(C′), is a set of memory locations

including its state state and its representation, extended state of its supercapsule C′ and extended states

of local non shared capsule instances declared in its design declaration.

A locally declared instance G g in C′ is not shared if there is no wiring declaration h(g) in design

declaration of C′ that exports g to h. Extended state of C′ is the set of memory locations that are not

shared by C′ and can be accessed by the capsule without any interference. Imported or exported capsule

instance of C′ are shared and therefore are not part of its extended state.

To illustrate, the extended state of the capsule Client in Figure 4.2 includes its states v1 and v2 but

does not include states of its imported counter instance c. However, the extended state of Client in

Figure 4.5, in addition to v1 and v2, includes the states of the locally declared counter instance c.

Definition 11 (Encapsulated inheritance) Let C′ and C be two capsule types where C′ is a subtype

of C, i.e. C′ ≺ C. Let XState(C) be the extended state of C. Then, C′ is a subcapsule of C over an

encapsulated inheritance hierarchy, written as C′ ≺E C, iff there is no direct access in procedures of C′

to the extended state of C.

4.4.2 Proving Interference Subtyping

In the presence of type encapsulation and encapsulated inheritance, a subcapsule C′ is the interfer-

ence subtype of its supercapsule C if C′ is an interface subtype of C. Theorem 12 formalizes this.
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Theorem 12 (Interference subtyping is guaranteed by encapsulated inheritance and interface sub-

typing) Let C′ and C be two capsule types where C′ is a subtype of C over its encapsulated inheritance

hierarchy, i.e. C′ ≺E C; Let C′ be an interface subtype of C. Then C′ is an interference subtype of C.

Proof : Let c be a capsule instance of static type C, i.e. Γ ` c : C and dynamic type C′, i.e. Π ` c : C′.

According to Definition 8, to prove that C′ is an interference subtype of C we need to prove that:

∀ep1,ep2 ∈ ep . Γ ` {ep1} κ(c,C) {ep2} ⇒ Γ ` {ep1} κ(c,C′) {ep2}

Recall that the interference closure κ(c,C′) of C′ is a set of sequential compositions of any number of in-

vocations of the procedures of C′ in any order. A procedure in the interface of the subcapsule C′ can be:

(1) a procedure p declared in its supercapsule C and not overridden in C′ or (2) an overrding procedure

po′ in C′ or (3) an extra procedure px. For (1), an invocation of p dispatched to C′ is included in κ(c,C)

that satisfies the behavior (ep1,ep2) and therefore such invocation cannot invalidate (ep1,ep2). For (2),

the assumed interface subtyping guarantees that the behavior of po′ in C′ is compatible with the behavior

of the procedure po it overrides in C and therefore an invocation of po′ preserves the behavior (ep1,ep2)

that κ(c,C) satisfies. For (3), encapsulated inheritance guarantees that to access the extended state

XState(C) of the supercapsule C, px must go through procedures of C where invocations of these pro-

cedures is included in κ(c,C) which satisfies (ep1,ep2). px can directly access XState(C′)\XState(C),

however, Lemma 5 shows that XState(C) is disjoint from XState(C′)\XState(C) and therefore any

modifications to XState(C′)\XState(C) by invocation of px does not invalidate the behavior (ep1,ep2)

over XState(C).

A downcall from a supertype to an overriding procedure of its subtype via the pseudo-variable self

is not allowed.

Lemma 5 (Disjoint extended states) Let C and C′ be two different capsule types with extended states

XState(C) and XState(C′). If C and C′ do not belong to the same inheritance hierarchy, i.e. C 6≺E C′

and C′ 6≺E C, then their extended states are disjoint, written as XState(C) # XState(C′). Otherwise, if

they are on the same inheritance hierarchy, i.e. C′ ≺E C, then the extended state C is disjoint from the

extended state of C′ minus the extended state of C, i.e. XState(C) # (XState(C′)\XState(C)).

Proof Sketch: The proof is based on type and inheritance encapsulation of capsules.
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4.4.3 Proving Concurrent Subtyping

In the presence of type encapsulation and encapsulated inheritance, a subcapsule C′ is the concurrent

subtype of its supercapsule C iff C′ is an interface subtype of C. Theorem 13 formalizes this.

Theorem 13 (Concurrent subtyping is guaranteed by encapsulated inheritance and interface subtyp-

ing) Let C′ and C be two capsule types where C′ is a subcapsule of C over its encapsulated inheritance

hierarchy, i.e. C′ ≺E C. Let C′ be an interface subtype of C. Then C′ is a concurrent subtype of C.

Proof : The proof is straightforward using Theorem 12 and Definition 8.

Proving interface subtyping To prove that a subcapsule C′ is an interface subtype of its sueprcap-

sule C one can use various techniques proposed by previous work [9, 104] including specification in-

heritance [45]. Specification inheritance combines behaviors of C and C′ by disjoining preconditions

and conjoining postconditions of an overriding procedure and the procedure it overrides. The combined

specification becomes the new specification of the subcapsule C′. The key in enforcing interface sub-

typing using specification inheritance is that specification inheritance automatically guarantees that C′

is an interface subtype of C. This in turn may help more in making behavioral subtyping in concurrent

languages prevalent. Supporting specification inheritance for capsules is straightforward, especially

since their procedure specifications are atomic.

4.5 Semantics

4.5.1 Static Semantics

Figure 4.8 adds capsule subtyping to Panini’s type system. with most other rules being straightfor-

ward and similar to rules without capsule subtyping discussed in Chapter 3.

4.5.2 Operational Semantics

Figure 4.9 shows dynamic semantics of Panini. The new rule (SUPER INVOC) delegates an invoca-

tion to a supercapsule as an asynchronous invocation and in turn guarantees encapsulated inheritance.

Other rules are similar to Panini’s operational semantics without capsule inheritance.
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(T-PROC INVOC)
Γ,Π ` c : C T ′ p(T x){e}= procBody(C, p) ∀xk ∈ x,Tk ∈ T . Γ,Π ` xk : Tk

Γ,Π ` c.p(x) : T ′

(T-RESOLVE)
Γ,Π ` e : T T = Π(l)

Γ,Π ` resolve(l,e, id, p) : T

(T-SELF INVOC)
Γ,Π ` self : C

capsule C(..) extends D{.. T ′ p(T x){e} ..}= CT(C) ∀xk ∈ x,Tk ∈ T . Γ,Π ` xk : Tk

Γ,Π ` self .p(x) : T ′

(T-SUPER INVOC)
Γ,Π ` super : C

capsule C(..) extends ..{.. T ′ p(T x){e} ..}= CT(C) ∀xk ∈ x,Tk ∈ T . Γ,Π ` xk : Tk

Γ,Π ` super.p(x) : T ′

(T-SUB VAR)
Γ,Π ` e : T ′ T ′ <: T

Γ,Π ` e : T

(T-SUB CAP)
Γ,Π ` c : C′ C′ ≺C

Γ,Π ` c : C

(T-CAP EXTEND)
capsule C′(..) extends C{.. T ′ p(T x){e} ..}= CT(C′)

Γ,Π `C′ ≺C

(T-SUPER ST READ)
Γ,Π ` self : C capsule C(..) extends D{..T s..}= CT(C)

Γ,Π ` self .s : T

(T-SUPER ST ASGN)
Γ,Π ` self : C Γ,Π ` x : T capsule C(..) extends D{..T s..}= CT(C)

Γ,Π ` self .s := x : T

(T-DEREF)
Γ,Π ` x : ref(T )
Γ,Π ` deref x : T

(T-REFERENCE)
Γ,Π ` x : T

Γ,Π ` ref x : ref(T )

(T-ASSIGN)
Γ,Π ` x : T Γ,Π ` e : T

Γ,Π ` x := e : T

(T-LET)
Γ,Π ` e1 : T Γ,Π ` e2 : T
Γ,Π ` let x : T be e1in e2 : T

(T-IF)
Γ,Π ` x : int Γ,Π ` e1 : T Γ,Π ` e2 : T

Γ,Π ` if x then e1 else e2 : T

(T-2)
CT ` T

CT `2 : T

(T-ε )
CT ` T

CT ` ε : T

(T-PROC DECL)
Γ,Π `C ≺ D

Γ,Π,x : T ,self : C,super : D ` e : T ′ Γ,x : T ` spec : int Γ,Π ` T ′ ∀T ∈ T . Γ,Π ` T
Γ,Π `C [spec] T ′ p(T x){e}

(T-WIRING DECL)
Γ,Π ` c : C capsule C(G g) extends D{..}= CT(C) G = Γ(g)

Γ,Π ` c(g)

(T-CAPSULE DECL)
∀proc ∈ proc . g : G, h : H,self : C,super : D `C proc

∀wire ∈ wire . g : G, h : H ` wire ∀G ∈ G . ` G ∀H ∈ H . ` H ` D ∀T ∈ T . ` T

` capsule C(G g) extends D{ design{H h wire} T s proc }

Figure 4.8 Panini’s select typing rules.
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Local evaluation relation;: 〈id,E [e].Q,S,r, I〉; 〈id,E [e′].Q′,S′,r, I〉

(STATE READ)
〈id,E [self . f ].Q,S[l = v], [C.F [ f = l]], I〉; 〈id,E [v].Q,S, [C.F ], I〉

(STATE ASGN)
〈id,E [self . f = v].Q,S, [C.F [ f = l]], I〉; 〈id,E [v].Q,S[l := v], [C.F ], I〉

(SELF INVOC)
capsule C(..) extends C′ {.. T p(T x){e} ..}= CT(C)

〈id,E [self .p(v)].Q,S, [C.F ], I〉; 〈id,E [e [v/x]].Q,S, [C.F ], I〉

(REF)
fresh(l)

〈id,E [ref v].Q,S,r, I〉; 〈id,E [l].Q,S[l := v],r, I〉

(DEREF)
v 6= ε

〈id,E [deref l].Q,S[l = v],r, I〉; 〈id,E [v].Q,S,r, I〉

(REF ASGN)
〈id,E [l := v].Q,S[l 6= ε],r, I〉; 〈id,E [v].Q,S[l := v],r, I〉

(LET)
〈id,E [let x be v in e].Q,S,r, I〉; 〈id,E [e[v/x]].Q,S,r, I〉

(FIFO DEQUEUE)
〈id,v.e.Q,S,r, I〉; 〈id,e.Q,S,r, I〉

Global evaluation relation ↪→: K || 〈id,E [e].Q,S,r, I〉 ↪→K ′ || 〈id,E [e′].Q′,S′,r, I〉

(PROC INVOC)
id′ = I(i) Σ

′ =
〈
id′,e′.Q′,S′, [C′.F ′], I′

〉
∈K capsule C′(D j) extends .. {.. T p(T x){e} ..} ∈ P

e′′ = e [v/x, I′( j)/ j] R = reach(v,S) R′ =
⋃

l′∈dom(F)

reach(l′,S)

R∩R′ = /0 fresh(l) K ′ = K ]
〈
id′,e′.Q′.resolve(l,e′′, id, p),S′⊕R, [C′.F ′], I′

〉
K || 〈id,E [i.p(v)].Q,S, [C.F ], I〉 ↪→K ′ || 〈id,E [l].Q,S[l := ε]	R, [C.F ], I〉

(RESOLVE)
R = reach(v,S) R′ =

⋃
l′∈dom(F)

reach(l′,S)

R∩R′ = /0 Σ = 〈id,e.Q,S[l = ε],r, I〉 ∈K K ′ = K ]〈id,e.Q,S[l := v]⊕R,r, I〉
K ||

〈
id′,resolve(l,v, id, p).Q′,S′, [C′.F ′], I′

〉
↪→K ′ ||

〈
id′,v.Q′,S′	R, [C′.F ′], I′

〉
(SUPER INVOC)

id′ = I(super)
Σ
′ =
〈
id′,e′.Q′,S′, [C′.F ′], I′

〉
∈K capsule C′(D j) extends ..{.. T p(T x){e} ..}= CT(C′)

e′′ = e [v/x, I′( j)/ j] R = reach(v,S) R′ =
⋃

l′∈dom(F)

reach(l′,S)

R∩R′ = /0 fresh(l) K ′ = K ]
〈
id′,e′.Q′.resolve(l,e′′, id, p),S′⊕R, [C′.F ′], I′

〉
K || 〈id,E [super.p(v)].Q,S, [C.F ], I〉 ↪→K ′ || 〈id,E [l].Q,S[l := ε]	R, [C.F ], I〉

Figure 4.9 Local and global operational semantics with capsule inheritance.
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Table 4.1 Number of supertypes accessing their supertypes’ states.

Akka
revisions pairs subtypes %accessing accesses writes %writing Total%

1-5 354 30 8.47 81 29 35.80 3.02
6-11 163 9 5.52 28 7 25.00 1.38

12-24 249 33 13.25 51 18 35.29 4.67
25-49 212 15 7.08 110 42 38.18 2.70
50-99 75 3 4.00 6 2 33.33 1.33
>=100 274 25 9.12 92 34 36.96 3.37
Total 1327 115 8.67 368 132 35.87 3.11

Java
revisions pairs subtypes %accessing accesses writes %writing Total%

1-5 2,452,901 589,050 24.01 7348,741 25,77,021 35.07 8.42
6-11 846,579 197,856 23.37 2551,068 915,763 35.9 8.39

12-24 992,184 234,234 23.61 3015,861 1,039,681 34.47 8.13
25-49 822,406 207,718 25.26 2624,272 968,774 36.92 9.32
50-99 963,136 235,178 24.42 3,038,645 111,4326 36.67 8.95
>=100 4,488,687 1,057,102 23.55 13,072,998 4,911,229 37.5 8.84
Total 2,521,138 105,658 23.68 31,651,585 11,526,794 36.42 8.69

4.6 Evaluation

One of our key findings is that in the presence of type encapsulation and encapsulated inheritance,

the standard interface subtyping alone is sufficient to guarantee concurrent subtyping. To evaluate the

usefulness of such finding we study:

E1 the extent to which interface subtyping can be used to guarantee concurrent subtyping, which in

turn is determined by

E2 the prevalence of encapsulated inheritance and type encapsulation.

Dataset We measure violations of encapsulated inheritance and type encapsulation in a large set of

randomly chosen Akka and Java projects from GitHub. Out data set includes 416 Akka and 554,864

Java projects. We consider a Java project that uses uses Akka’s Java library [8] as an Akka project.

There are 2003 actors in our Akka projects in addition to non actor classes and 21,320,654 Java classes

in our Java projects.

Encapsulated inheritance We use two proxies to measure violations of encapsulated inheritance:

M1 actual violation of encapsulated inheritance by a subtype σ that accesses fields of its immediate

or transitive supertype τ directly without using their methods; and
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M2 possible violation of visibility-based encapsulated inheritance [155] in a type τ if it has non

private or non static fields that could be accessible to any potential subtype σ .

In visibility-based encapsulation, private fields of a supertype τ are not directly accessible to its sub-

types σ . Visibility-based encapsulation only encapsulates and protects the state of a type and not its

representation. However, in languages like Java and Akka that do not check for encapsulation by de-

fault, programmers are taught to use visibility-based encapsulation to guarantee encapsulation [27,156].

Visibility-based encapsulation is not sufficient to guarantee encapsulation, however, may be a good

starting measure to understand programmer’s intent.

Type encapsulation We use the following proxy to measure the violation of type encapsulation:

M3 possible violations of visibility-based encapsulation [89] in a type τ if it has non private or non

protected or static fields that could be accessible to any potential type η that may interact with τ .

In visibility-based encapsulation, private and protected fields of a type τ are not directly accessible to

another type that interacts with τ .

Granularity We measure violations of encapsulated inheritance and type encapsulation for two

type and project granularity levels. A project breaks encapsualted inheritance if there is at least one pair

of supertype τ and σ in the project that break encapsulated inheritance. Similarly, the project breaks

type encapsulation if there is at least one type C that its type encapsulation can be broken.

Maturity We divide the projects of our study into revision categories based on the number of their

revisions. These include a category for projects with 1 to 5 revisions, and categories for 6–11, 12–24,

25–49, 50–99 and more than 100. Revision categories allow us to understand our findings for both more

mature and less mature projects. We consider a project with more revisions to be more mature [122].

Boa We use Boa [51,52,55,143] to conduct our studies. Boa is a data mining infrastructure that in-

cludes an ultra-large corpus of open source projects and an infrastructure for mining and understanding

software repositories.

Figure 4.1 shows our measurements for M1. In this figure the column pairs denotes the number

of supertype and subtype pairs; subtypes denotes the number of subtypes that access their supertypes

and %accessing shows the percentage of subtypes to pairs. The column accesses is the total number of

accesses from subtypes to supertypes with the number of writes accesses specified and the remaining
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are the read accesses. %writing shows the percentage of write accesses to the total accesses. %Total is

the multipication of %accessing and %accessing.

4.6.1 Akka

Akka [8, 166] is a popular concurrent message passing framework in which a sequential actor en-

capsulates its state and communicates by other concurrently running actors by messages.

4.6.1.1 Encapsulated Inheritance

Type level M1 shows that about 8.67% of subactors access fields of their superactors from which

about 35.87% access a superactor to write its fields and the remaining accesses are read. A read access

can be automatically refactored to an invocation of a side effect free and pure accessor method added

to the superactor to preserve encapsulated inheritance. The addition of these accessor methods does

not change the interference closure and the interference behavior of the superactor. Therefore, only

about 3.11% of subactors may break the encapsulated inheritance of their superactors. The 3.11% is

the product of percentage of subactors that may access their superactors (8.67%) and the percentage of

such accesses being a write access (35.87%).

M2 shows that at most 3.94% (79 out of 2003) of subactors can break encapsulated inheritance of

their superactors by having non-private non-static fields that can be accessed and modified by a subactor.

M1 is lower than M2 because M1 measures the actual violations that happen in the code whereas M2

measures an upper bound on the possible that may happen in the future as well.

Project level Using M1 there are 11 out of 416 projects that violate encapsulated inheritance

in their types. Using M2 there are at most 38 out of 416 projects that could possibly violate the

encapsualted inheritance.

4.6.1.2 Type Encapsulation

Similar to M2, M3 measures an upper bound on the number of type encapsulation violations.

Type level Type encapsulation of at most 2.65% (53 out of 2003) of actors can be broken by directly

accessing their public or protected non static fields.

Project level At most 24 projects out of 416 can violate type encapsulation.
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Queries The Boa programs for encapsulated inheritance and type encapsulation measurements can

be found at http://boa.cs.iastate.edu/boa/?q=boa/ job/public/34857 and http://boa.cs.iastate.edu/boa/?q=boa/

job/public/34861.

4.6.2 Java

We conduct a similar study of measuring M1–M3 on our set of Java projects.

4.6.2.1 Encapsulated Inheritance

Type level About 23.68% of subclasses access fields of their superclass among which about 36.42%

of their accesses are write. Therefore, about 8.69% of subclasses actually break the encapsulated inher-

itance of their superclasses.

Project level Using M1 there are 90,567 projects out of 554,864 that actually violate their en-

capsulated inheritance. Using M2 there are at most 131,104 projects that could possibly violate the

encapsulated inheritance.

4.6.3 Type Encapsulation

Type level Type encapsulation of at most 11.8% (2,521,138 out of 21,320,654) can be violated by

directly accessing their public or protected fields non static fields.

Project level At most there are 105,707 projects out of 554,864 that can violate type encapsulation.

Queries The Boa programs for encapsulated inheritance and type encapsulation measurements can

be found at http://boa.cs.iastate.edu/boa/?q=boa/ job/public/34857 and http://boa.cs.iastate.edu/boa/?q=boa/

job/public/34859.

4.6.4 Findings

Akka At the project level, using M1 and M3, there are at most 62 (38+24) Akka projects out of 416

that can violate either encapsulated inheritance or type encapsulation. This in turn means 354 (85.10%)

projects abide by encapsulated inheritance and type encapsulation and therefore their concurrent sub-

typing can be guranteed using only standard interface subtyping. If we use M2, instead of M1, then

there are 35 (11+24) projects (instead of 52) that actually violate their encapsulated inheritance or type

http://boa.cs.iastate.edu/boa/?q=boa/job/public/34857
http://boa.cs.iastate.edu/boa/?q=boa/job/public/34861
http://boa.cs.iastate.edu/boa/?q=boa/job/public/34861
http://boa.cs.iastate.edu/boa/?q=boa/job/public/34857
http://boa.cs.iastate.edu/boa/?q=boa/job/public/34859
http://boa.cs.iastate.edu/boa/?q=boa/job/public/34859
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encapsulation and therefore the remaining 381 (91.6%) are abiding. At the type level 3.11% of types

can violate either encapsulated inheritance or type encapsulation and the remaining 96.89% of types

abide by both type and inheritance encapsulation.

Different distribution of types among projects causes different outcomes in the percentages of

projects and type that violate encapsulated inheritance or type encapsulation.

Java At the project level, using M1 and M3, there are at most 236,811 (131,104+105,707) projects

out of 554,864 that can violate either encapsulated inheritance or type encapsulation. This in turn

means that 318,053 (57.32%) projects abide by encapsulated inheritance and type encapsulation and

therefore their concurrent subtyping can be guranteed using only standard interface subtyping. If we

use M2, instead of M1, then there are 196,274(90,567+105,707) projects, instead of 236,811, that

violate encapsulated inheritance or type encapsulation and therefore the remaining 358590 (64.63%) are

abiding. At type level 8.69% of types can violate either encapsulated inheritance or type encapsulation

and the remaining 91.31% abide by them.

Summary More than three quarters of Akka projects and more than half of Java projects in our

study abide by encapsualted inheritance and type encapsulation and their concurrent subtyping can

be guranteed using interface subtyping. Interestingly, trends of our findings regarding violations of

encapsualted inheritance and type encapsulation stay stable and do not fluctate a lot between more

mature and less mature projects.

4.6.4.1 Threats to Validity

Similar to other experimental analysess there are threats to the validity of our findings. Our dataset

includes a large set of randomly chosen Java and Akka projects not implemented by authors, however,

it may not be representative of all concurrent programs that could be written in all mainstream lan-

guages that allow concurrent programming. Not all Java programs in our study are concurrent programs.

Our analysis using visibility-based encapsulated inheritance and visibility-based type encapsulation is

mostly syntactic and does not completely take into account aliasing semantics of Java programs.
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4.7 Related Work

Previous work studies behavioral subtyping for sequential and concurrent programming languages.

Sequential Previous work [36, 49, 96, 130] in sequential languages guarantees behavioral subtyp-

ing by relating behaviors of overriding and overridden procedures in a subtype σ and its supertype

τ through standard interface subtyping by enforcing contravariance and covariance requirements on

preconditions and postconditions of these procedures. There is no interference during execution of a

sequential program and therefore previous work in this category is not directly applicable to concurrent

programming langauges.

Concurrent One category of previous work [148] extends behavioral subtyping of sequential lan-

guage to programs in concurrent languages in which both procedures of a type and their specifications

are atomic and free from interference. Another category of previous work [45, 95, 117] uses history

constraints [9, 104] to take the interference into account and relate history constraints and invariants

of the supertype τ and its subtype σ to gurantee behavioral subtyping. Other previous work [67] uses

rely-guarantee [87] or its reformulation in deny-guarantee reasoning [48] in which the interference

caused by one type on another is encoded as an environment specification in a rely predicate. An-

other category of previous work [47] extends concurrent separation logic [127] with specifications that

specify shared resources and the interference behavior on the resource as its invariant. Some work in

this category [88, 165] specify the access protocol of a shared resource in terms of permissible order

of operations instead of the interference behavior. These specifications are fine-grained enough to talk

about memory locations and read and write permissions for these locations. This chapter is complemen-

tary and adds to previous work its novelty that it separates the interference behavior and the interface

behavior of a type and distinguishes between interference and interface behavior compatibility and sub-

typing. Another novelty of this chapter is that it uses encapsulation and encapsulated inheritance to

reduce behavioral subtyping in a concurrent language to the standard interface subtyping [9].

Integration into program logics and languages Some previous work integrates variations of be-

havioral subtyping mentioned above into sequential or concurrent programming languages and tools

such as Eiffel [110, 124], Java [63, 96], JML [95], ESC/Java [69] and Spec# [22].
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CHAPTER 5. ORDER TYPES

The concurrency revolution [158] has renewed interest in message passing concurrency (MPC) [4,

43,81,115,120,169] because of its modularity [5,18,80,98,99] and scalability [168] benefits [8,12,74].

A significant challenge in MPC program design is reasoning about message orders. Message races and

their nondeterministic message orders make reasoning about message orders intractable [29,41,93,105,

108, 161] and lead to bugs that are hard to find and fix.

In this chapter, we develop order types, a novel type system to modularly detect message races and to

explain their causes. The order type of a process is a local and descriptive causal type [123] that encodes

its messaging behavior in terms of asynchronous message it sends and their happens-before relations.

Compared to the rich body of previous work on session types [25,26,28,40,43,79–81,119,120,160,178],

discussed in Section 5.5, that focuses on specification and verification of system-level coordination

properties, order types focus on process-level interactions aimed at facilitating bottom-up MPC program

design. Our calculus, Panini, introduces three innovations in type system design for MPC programs. A

Panini capsule is equivalent of a process that runs concurrently with other processes.

Bottom-up MPC program design through existential typing In bottom-up MPC program design

processes are designed, coded and tested independently, and then composed to form the complete pro-

gram. Programmers relies on the interfaces (types) of other processes that the process communicates

with, but not on the concrete process instance. Order types facilitate this design style. The order type of

the process can encode its dependency on a process instance with an unknown value via the introduction

of an existentially quantified process variable. An existential process variable is eliminated statically

when the process is composed with other processes and values of its composing processes are known.

Inter-process communication abstraction and abstraction eligibility Order type abstraction can

decrease complexity by abstracting away inter-process communication that is local to a process. A

local process instance is encapsulated by its enclosing process which controls access to it [38,118,136].
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Naive abstraction can allow message races to hide behind abstraction. Abstraction of the order type of

a process is sound if the process is abstraction-eligible. A process is abstraction-eligible if order types

of sequential compositions of invocation of any of its two procedures are well-formed, i.e. do not lead

to any message race. Two messages are racy if they are sent directly or transitively from a process

and arrive at another process without any happens-before relation between them. Abstraction improves

information hiding by preventing the exposure of local messaging behavior and increases the scalability

of the type checking by decreasing the number of messages and their happens-before relations in an

order type.

Blame Assignment for MPC Programs A message race in a process happens because of bad

composition of messages and processes, each of which can happen at different processes. An ill-formed

order type properly blames the process that causes the race and is responsible for bad composition of

processes or messages as the supplier of bad values. or the process at which the race happens is not

blamed because it is the users of the bad value and not its supplier. Blame assignment in order types

is similar to higher order contract [62, 173] in which the blame lays with the provider of the bad value

independent of who invokes the first-class function.

Contributions In summary, this chapter makes the following contributions:

• order types to enable modular reasoning about messaging behavior in a compositional bottom-up

program design;

• well-formedness of order types to disallow message races; and

• abstraction of order types to soundly hide local messaging behavior of abstraction-eligible pro-

cesses and improve information hiding and the scalability of type checking;

• blame assignment to properly blame a process responsible for process composition or message

composition as the supplier of bad values; and

• type checking rules for an asynchronous concurrent process model with encapsulation [38] and

structured sharing [118].
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5.1 Motivation

Order types enable the modular detection of a message race in bottom-up program design and proper

blame assignment to explain its cause. Abstraction hides the local messaging behavior.

5.1.1 Modular Message Race Detection

A message race happens when a process receives two messages from another process with no

happens-before relation [91] between them. The happens-before relation is a partial order that or-

ders messages within and between processes. Message races and their nondeterministic message orders

make reasoning about message orders intractable [29, 41, 93, 105, 108, 161] and lead to subtle bugs that

are hard to find, reproduce and fix.

The order type of a process can detect and disallow message races in bottom-up program design and

construction. The order type of a process is a local descriptive type that encodes its messaging behavior.

The messaging behavior of a process includes the messages it directly sends and their happens-before

relations. A process is well-formed if the order types of its procedures are well-formed. The order type

of a procedure is well-formed if the messages it sends directly or transitively do not lead to a message

race. The following steps check the well-formedness of the order type of a procedure:

1 a constraints set of happens-before relationships between messages that the procedure directly or

transitively sends is constructed;

2 the constraint set is checked to be well-formed and thus free from message races.

1 capsule Server() {
2 /* σ3 = • */
3 void save() { /* no message send */ }
4 /* σ4 = • */
5 void kill () { /* no message send */ }
6 }

Figure 5.1 Well-formed process Server with empty order types for its procedures.

To illustrate, consider a bottom-up program design which starts off with the declaration of a Server

process in Figure 5.1. The server declares two procedures save and kill to save its client’s work and

shutdown, respectively. Order types σ3 = • and σ4 = • of save and kill are the empty order type •
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because these procedures do not send any messages in their implementations. Types σ3 and σ4 are

trivially well-formed and therefore free from message race. This is because there is no message send in

these types and therefore their constraint sets ∆3 = • and ∆4 = • are empty messages. The order type

of a procedure can be easily constructed by exposing the message sends in its implementation.

Server is written in an asynchronous concurrent programming model with encapsulation [38, 118,

136], structured sharing [136] and transitive inorder delivery and processing [8, 80, 105]. A program

in this model is a set of concurrently running processes that communicate by sending messages asyn-

chronously. Procedures of a process denote type-safe messages that the process can receive and a proce-

dure invocation is the equivalent of a message send [8,14,86]. A process encapsulates its local processes

and controls access to them. Sharing is structured around importing and exporting process instances.

Messages are delivered and processed in the same order they are sent. This process model overlaps

with the underlying models for variations of active objects [38], actors [118] and Panini [18, 136, 138]

message passing concurrency models.

7 capsule Proxy(Server sv) {
8 /* σ1 = ∃sv : Server . sv!save */
9 void save() { sv.save(); }

10 /* σ2 = ∃sv : Server . sv!kill */
11 void kill () { sv. kill () ; }
12 }

Figure 5.2 Well-formed process Proxy with existential quantification for sv in its type.

To continue the bottom-up program design, consider the declaration of a Proxy process in Figure 5.2.

The proxy uses Server and acts an interface to it, according to the Proxy design pattern [71]. The proxy

declares the same procedures save and kill as the server and relays the client’s messages to the server.

On line 7, the proxy imports the Server process instance sv that it is dependent on and uses. The proxy

does not know the value of the process variable sv. The order type σ1 = ∃sv : Server . sv!save for

the procedure save describes its messaging behavior in which it sends a save message to the server sv.

The existentially quantified process variable sv encodes the fact that the proxy does not know the value

of the process variable sv that it is using. The type σ1 is well-formed and free from message races

because its constraint set ∆1 = ∃sv : Server . sv!save�• is well-formed. The constraint set ∆1 contains

happens-before relations between messages that save directly or transitively sends. Order type σ1 shows
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that save sends a ∃sv : Server . sv!save message directly. Receipt of this message by Server process sv

causes the execution of its procedure save with the order type σ3 = •. The procedure save in Server

does not send any messages and its constraint set ∆3 = • is empty, as discussed previously. That is,

the direct message send ∃sv : Server . sv!save in proxy’s save leads to a transitive message send • in

server’s save. In the semantics of a message passing program, a message send always happens-before its

receipt and processing. Therefore, the message send ∃sv : Server . sv!save in proxy happens-before its

receipt in server with the message send •. This leads to the existentially quantified semantic constraint

∃sv : Server . sv!save�•. This is the only constraint caused by the proxy’s save and forms its constraint

set ∆1 = ∃sv : Server . sv!save�• which is trivially well-formed. Construction of ∆1 for σ1 is modular.

This is because Proxy uses its implementation and the order type σ3 (interface) of the Server that it

refers to and not its implementation. In modular reasoning, a module is understood using only its

implementation and the interfaces (not implementations) of other modules it refers to [132]. Similarly,

proxy’s kill is well-formed.

13 capsule Client() {
14 design { Server s; Proxy r; r (s) ; }
16 /* σ = r!save;s!kill */
17 void main() { r .save(); s. kill () ; }
18 }

Figure 5.3 Ill-formed process Client causes a message race in Server.

To continue the bottom-up program design, consider the declaration of a Client process in Figure 5.3

that uses both Proxy and Server processes. On line 15, the client instantiates local server and proxy

instances s and r that it uses and exports s to the import sv of the proxy. The export of s to proxy

assigns s to its import sv and shares the server s between the client and the proxy. The client declares a

procedure main that intends to save the client’s work in the server s and then shut down the server. The

procedure main sends a save message to the proxy r followed by a kill message to the server s. The order

type σ = r!save;s!kill of main reflects the sequence of these message sends. Proxy in turn sends a save

message to the server s. Client, proxy and server processes run concurrently. Unlike existential order

types σ2 and σ3 in Proxy, σ is not existential. This is because the client instantiates process variables s

and r and knows their concrete values.

Due to asynchrony of message sends and concurrent execution of client, proxy and server processes,
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Figure 5.4 Nondeterministic messages save and kill cause a race.

messages save and kill sent from client can arrive at the server s at any order and with no happens-before

relation between them. In other words, these messages are racy. Depending on the arrival order of save

and kill , the client can have two different behaviors:

1 Desirable behavior: with message ordering save�kill in which the save message arrives at the

server before the kill message, the server correctly saves the client’s work before it shuts down;

2 Undesirable behavior: with the opposite ordering kill�save the server incorrectly shuts down

before saving client’s work.

To reason about message ordering in this program, one should consider both (i.e. 2!) message orders

save�kill and kill�save before they can understand the program behavior. In general, in a program

with a message race involving n messages, there are n! message orderings that should be understood,

which is intractable [162].

Because of the message race, the order type σ = r!save;s!kill of client and its constraint set ∆

are not well-formed. Construction of ∆ proceeds as the following. First, the message send r!save

in σ causes the invocation and execution of the proxy’s procedure save with the order type σ1 =

∃sv : Server . sv!save and its corresponding constraint set ∆1 = {∃sv : Server . sv!save�•}. The client

knows the value of existentially quantified process variable sv in σ1 because it instantiates the server

instance s and exports and assigns it to sv in proxy r. This allows for the elimination of existential

quantifier for sv and replacing it its known value s in the context of client. After quantification elimi-

nation, σ1 = s!save and ∆1 = {s!save�•}. Second, the message send s!kill in σ causes the invocation

and execution of the server’s procedure kill with its order type σ4 = • and corresponding constraint set

∆4 = •. Third, due to the inorder delivery, sending of r!save of σ in client happens before sending of

s!kill and causes the constraint ∆0 = {r!save�s!save} in the client. Putting ∆0–∆2 together through
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their union we arrive at the constraint set ∆ below:

∆ = ∆4∪∆1∪∆0 =

{r!save� s!save , s!save�•, s!kill�•, r!save� s!kill }

∆ is not well-formed because there exists two messages s!save and s!kill (in gray) in it with no happens-

before relation between them. Consequently, the order type σ of main in Client is not well-formed. The

ill-formedness of σ detects and avoid this message race without any global or local specifications

written by programmers [80]. Detection of this race is modular because in its type checking Client uses

its implementation and the order types σ1 and σ4 of the Proxy and Server processes and is independent

from their implementations.

5.1.2 Abstraction and Abstraction-eligibility

Order type abstraction can decrease complexity by abstracting away local messaging behavior of a

process. This is sound because a local process instance is encapsulated by its enclosing process which

controls access to it [38, 118, 136].

7 capsule Proxy1(Server sv) {
8 design { Logger l; }
9 /*σ ′1 = ∃sv : Server . l!log ;s!save*/

10 void save(){ l . log () ; sv.save(); }
11 /* σ2 = ∃sv : Server . s!kill */
12 void kill () { sv. kill () ; }
13 }
14 capsule Client() {
15 design { Server s; Proxy1 r; r (s) ; }
16 /* σ ′ = r!save;s!kill */
17 void main() { r .save(); s. kill () ; }
18 }

Figure 5.5 Abstraction of messaging behavior for local logger l .

To illustrate abstraction, consider a variation of Proxy in Figure 5.5 called Proxy1. Proxy1’s proce-

dure logs bookkeeping information by sending a log message to an instance of a Logger process before

relaying the save message to the server s. The order type σ ′1 = ∃sv : Server . l!log;sv!save reflects this

messaging behavior. Unlike the server sv which is imported with an unknown value the logger l is

locally declared in Proxy1 and its value is known.
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The addition of the invocation l . log () in Proxy1’s save procedure adds the message send l!log to

its order type σ ′1 = ∃sv : Server . l!log;sv!save. The order type σ ′1 with l!log is larger than the order

type σ1 = ∃sv : Server . sv!save for save in Proxy without it. To check the well-formedness of σ ′1

the constraint set ∆′1 = {l!log�•,∃sv : Server . sv!save�•,∃sv : Server . l!log�sv!save} should be

constructed and checked for well-formedness. The constraint set ∆′1 with three happens-before relations

is larger than ∆ = {∃sv : Server . sv!save�•} with only one happens-before relation and consequently

its construction and checking takes more time.

Similarly, to check the well-formedness of σ ′ in the Client that uses Proxy1 the following constraint

set ∆′ should be constructed and checked for well-formedness:

∆′ = { r!save� l!log , l!log�• , r!save� s!save , s!save�•,

l!log�s!save ,s!kill�•,r!save� s!kill }

There is a race between s!save and s!kill (in gray) in ∆′ for Proxy1 and therefore σ ′ is ill-formed.

However, the same race exists in ∆ and σ for Proxy without the logger. Compared to Proxy, sending a

log message to the local logger l in Proxy1 and consequently in σ ′ and its corresponding happens-before

relations in ∆′ does not contribute to any more races. Therefore the local process instance l , its messages

and its happens-before relations can be abstracted away from the order type of the procedures of Proxy1.

Server s

Proxy r

Client c

save save

kill

Logger l

log

Abstracted away

After abstraction σ ′=∃s : Server . s!save (equal to σ in Proxy) and ∆′= {r!save�s!save,s!save�•,

s!kill�•,r!save�s!kill} (equal to ∆ in Proxy). Abstraction decreases size of σ ′ by reducing the num-

ber of its messages and decreases the size of ∆′ by reducing the number of its happens-before relations.

Construction and checking of abstracted ∆′ takes less time than the original ∆′ without abstraction.

Abstraction only applies to local process instances and not imported process instances such as sv.

Abstraction-eligibility A naive abstraction can hide message races. To illustrate, consider a varia-

tion of Client declared in Figure 5.7 called Client1. On line 14, Client1 locally declares server and proxy

process instances s and r. By abstracting the local process instance, the order type σ0 = r!save of the
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procedure rSave becomes σ0 = •. Similarly, σ = s!kill for sKill becomes σ = • after abstraction. Now

consider a process using an instance c of Client1 in an invocation sequence c.rSave();c. sKill () . Using or-

der types σ0 = r!save and σ = s!kill before the abstraction one can conclude that there is a race between

save and kill messages sent to the server. However, this race will not be detected and the invocation will

be well-formed using the abstracted order types σ0 = • and σ = • are used. Here abstraction of local

process instances s and r hides the race, which is unsound.

13 capsule Client1() {
14 design { Server s; Proxy r; r (s) ; }
15 /*σ0 = r!save becomes σ0 = • after abstraction*/
16 void rSave(){ r .save(); }
17 /* σ = s!kill becomes σ = • after abstraction */
18 void sKill () {s. kill () ; }
19 }

Figure 5.6 Naive order type abstraction in Client1.

Similarly, abstraction of local process instance r in Client2 is not sound. This is because, in process

using an instance c2 of Client2 with access to s the invocation sequence c2.rsave() ; s. kill () will be ill-

formed before the abstraction of Client2 and well-formed after. The local proxy instance r cannot be

abstracted away because the shared imported server instance s flows to it. Flowing of an imported share

process into a local process taints the local and prevents its abstraction. This is because the local can

directly or indirectly send messages to the shared process which will be hide by abstraction.

13 capsule Client2(Server s) {
14 design { Proxy r; r (s) ; }
15 /*σ0 = r!save becomes σ0 = • after abstraction*/
16 void rSave(){ r .save(); }
17 }

Figure 5.7 Unsound abstraction of the tainted local process instance r.

Order type abstraction is sound if the following conditions hold:

1 abstraction only abstracts aways message sends and their happens-before relations to untainted

local process instances; and

2 the enclosing process is abstraction-eligible.

An untainted local is a local process instance with no import process instance or untainted local instance
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exported to it. The abstraction is sound because an untainted locally declared process and its local

processes instances are encapsulated by its enclosing process and are not directly accessible to the

outside processes. These processes are only accessible through procedures of the enclosing process.

A process is abstraction-eligible if the following conditions hold:

1 the order types of its procedures are well-formed before abstraction;

2 a sequence composition ; of invocations of any of its two procedures before abstraction does not

lead to message races.

To illustrate, Client1 is not abstraction-eligible. Both procedures rSave and sKill are well-formed. The

invocation sequence c. sKill () ; c.rSave() leads to the constraint set {c!sKill�s!kill,c!rSave�r!save,

r!save�s!save,c!sKill�c!rSave} which is well-formed in the presence of transitive inorder delivery

and processing. However, the invocation sequence c.rSave();c. sKill () leads to a race and is not well-

formed. Unlike Client1, Proxy1 is abstraction-eligible. This is because order types σ ′1 = l!log;s!save and

σ2 = s!kill of its procedures save and kill are well-formed. And sequences of invocations of these two

procedures lead to well-formed constraint sets. Similarly, Server is abstraction-eligible. Client is not

abstraction-eligible because its procedure main leads to a race and its order type is not well-formed.

5.1.3 Proper Blame Assignment

Proper blame assignment enables programmers to quickly ascertain racy processes to be fixed or

replaced. A message race in a process happens because of bad composition of messages and processes,

each of which can happen at different processes. An ill-formed order type properly blames the process

that causes the race and is responsible for bad composition of processes or messages as the supplier of

bad values.

To illustrate, consider the previous Client process in Figure 5.3. The bad composition of messages

r .save() and s. kill () on line 15 in client’s procedure main leads to a race in Server process s. That is, the

race happens in the server but we blame the client. The bad message composition in client contributes

to the race but it is not the true reason behind the race. The main reason for the race is the bad process

composition Proxy r(s) in Client. This process composition shares the server s between the Client and
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Proxy process r by exporting client’s s to proxy’s imported sv. The bad process composition is blamed

for the race because it is the supplier of the bad value.

13 capsule Client3(Server s, Proxy r) {
14 /* σ = ∃s : Server,r : Proxy . r!save;s!kill */
15 void main() { r .save(); s. kill () ; }
16 }

Figure 5.8 A message composition that could lead to a race with bad composition.

To illustrate the difference between bad message and process compositions, consider a variation of

the client called Client3 in Figure 5.8. Procedures main in both Client and Client2 compose r .save() and

s. kill () messages similarly. However, while Client is ill-formed and causes a race in the server, Client3

is well-formed. The difference between these two is their process compositions. The constraint set ∆ =

{∃r : Proxy . r!save�∃sv : Server . sv!save, ∃sv : Server . ,sv!save�•,∃s : Server . s!kill�•, ∃r : Proxy,

s : Server . r!save�s!kill} for Client3 is well-formed unless r.sv is equal to s. That is, ∆ is well-formed

if server sv of proxy r is not the same as the server s in the client. Client3 does not provide such process

composition and therefore is well-formed whereas Client provides such composition and is ill-formed.

Server s

Proxy r

Client1 c

save save

kill
User

RaceMessage compositionProcess composition

Blame

Bad process and message compositions may happen at different processes. To illustrate, consider

the process User in Figure 5.9. Client3 provides a bad message composition but not a process composi-

tion that leads to a race. User provides a bad process composition for its Client3 process c and will cause

a race. User is to blame for this race and not Client1.

17 capsule User() {
18 Design { Server s; Relay r; Client3 c, r (s) ; c(s, r ) ; }
19 }

Figure 5.9 Bad process composition in User and bad message composition in Client1.

A bad message composition and a bad process composition both are necessary to cause a race and

neither are sufficient alone. To illustrate, User in the absence of the procedure main in Client3 does not

lead to a race; similarly, main in Client3 in the absence of User does not lead to a race.



97

5.2 Process Model and Program Syntax

In the process model Panini, a concurrent message-passing program consists of a set of processes

that run concurrently with the following properties:

• a process communicates with another process by asynchronous invocations of its procedures. Pro-

cedures of a process denote the set of messages a process can receive and a procedure invocation

is the type-safe equivalent of a message send [86].

• a process is sequential [78] and owns its states and local process instances. A sequential process

has a single thread of execution that finishes the execution of one invoked procedure before staring

another. A process owns [38, 75] its state and local processes by controlling access to them and

make them accessible only through its procedures.

• a process can create other processes and share them in a structured way. Structured sharing is

built around exporting and importing process instances.

• messages are sent in the same order they appear in the program text and are processed in the same

order they are received [80];

This process model overlaps with the underlying models for variations of active objects [38] in Creol

[86] and JCoBox [151], actors [118] in ActorFoundry [13] and SALSA [170] and Panini [18, 136, 138]

message passing concurrency models. Unlike process models based on channels and sessions [43, 78,

81, 111, 120], this process model does not require neither channels for process communications nor

sessions to structure and isolate communications [80].

5.2.1 Program Syntax

Figure 5.10 shows the expression-based core syntax of our process model. In this figure term

denotes a sequence of zero or more terms.

A program is a set of process declarations. A process declares a set of local process instances

and states along with procedures to access them. A process imports a set of process instances that are

shared between the process and the outside world and exports a set of process instances that are shared

between the process and its local process instances. A local declaration instantiates a process instance
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prog ::= decl program
decl ::= capsule C(import) { design state proc } process declaration
import ::= D i imported instance
state ::= T s; state declaration
proc ::= T p ( T x ){ e } procedure declaration
design ::= design { ins wire } design declaration
ins ::= C i local instance declaration
wire ::= i j wiring declaration

e ::= expression:
| i.p(x) | self.p(x) procedure invocation
| self.s | self.s := x state access
| let x:T be e in e let
| if x then e else e conditional
| while x do e loop
| x variable
| () unit value
| n integer value

C, D ∈ C set of processes T ∈ T set of variable types
s ∈ F set of states p ∈P set of procedures
x ∈ X set of variables i,j,h ∈ I set of process instance

Figure 5.10 Core process syntax, inspired by [14, 18, 86].

and a wiring declaration composes it by exporting its composing process instances to its imports. The

local declaration can compose process instances. In a procedure, a process can asynchronously invoke a

procedure of another process or synchronously invoke a procedure of itself through the pseudo-variable

self . A let expression sequences two expressions. The let expression can compose message sends. Other

expressions are standard. A local process instance or state of a process cannot be accessed directly by

another process. A process instance cannot be an argument of a procedure or its return value and cannot

be assigned to its local variables.

To illustrate, in Figure 5.2, the declaration of the process Proxy imports a Server instance sv and

declares two procedures save and kill ; in Figure 5.3, Client instantiates Server process s and instantiates

and composes Proxy instance r by exporting s to the import sv of the proxy; in Figure 5.3, Client declares

a procedure main that sequences and composed to procedure invocations (message sends).
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5.3 Order Type Syntax

σ ::= order type:
| • empty
| τ singleton
| σ ;σ sequence
| [σ ]∗ recursive

τ ::= action:
| ζ i!p message

ζ ::= message modifier:
| ε none
| ∃i : C . existential

i,j ∈ I set of process instances p ∈M set of messages
C ∈ C set of process types γ ∈V set of type variables

Figure 5.11 Syntax of order types.

Figure 5.11 shows the syntax for order types. An order type can be empty, a singleton message

send, a sequence of two order types and a recursive order type. An empty order type encodes the type

of an expression that sends no messages. A singleton order type encodes the type of an expression

that sends a single message to a receiver i with an unknown or known concrete value. By existentially

qualifying the receiver process variable, an existential singleton order type encodes sending a message

to a receiver that its value is not known to the enclosing process. In contrast, in a regular singleton order

type, the concrete value of the receiver is known. A sequence order type encodes the order type of a

sequence of expressions as they appear in the program text. A recursive order type encodes the order

type of a recursive expression. We take the equirecursive view for recursive order types in which a type

and its unfolding are equal [133].

To illustrate, in Figures 5.1 and 5.2, the procedure save of Server has the empty order type empty

σ3 = •; save of Proxy has the existential order type σ1 = ∃sv : Server . sv!save; and in Figure 5.7, the

procedure sKill of Client1 has the regular order type σ = s!kill.



100

5.3.1 Type Attributes

Figure 5.12 defines the type attributes used in the type checking rules for order types.

θ ::= standard type:
| T variable type
|C process type

T ::= variable type:
| unit unit
| int integer
| T → T procedure type

Γ ::= /0 | Γ, x : T | Γ, i : η C typing environment
η ::= type qualifier:

|@local local
|@import import

Ψ ::= /0 | Ψ, i = j | Ψ, i. j = h aliasing environment

∆ ::= /0 | ∆, τ�τ constraint set

Γ ` e : σ θ typing judgement

Figure 5.12 Type attributes.

The type system distinguishes between a variable type T and a process type C. A variable type is

standard and can be a unit, integer or function type. A process type is a process declared in a program.

The typing environment Γ maps a variable to its type. A qualifier for a process type denotes if the

process variable is locally declared or imported. The aliasing environment Ψ maps a process variable to

its aliases. The constraint set ∆ is a set of happens-before relations between message sends. The typing

judgement Γ ` e : σ θ denotes that in the typing environment Γ the expression e has the order type σ

and the process or variable type θ .

5.4 Type System

The order type of a procedure encodes the messages a procedure sends directly and the textual or-

dering among them as they appear in the procedure text. The order type is well-formed if the messages
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Invocation
(T-PROC INVOC)
Γ ` i : • @local C ∀x ∈ x,T ′ ∈ T ′ . Γ ` x : • T ′

σ
T ′ → T = pType(C,p)

Γ ` i.p(x) : i!p T

(T-PROC INVOC-∃)
Γ ` i : • @import C ∀x ∈ x,T ′ ∈ T ′ . Γ ` x : • T ′

σ
T ′ → T = pType(C,p)

Γ ` i.p(x) : ∃i : C . i!p T

Composition

(T-LET)
Γ,x : T ` e′ : σ

′ T ′
Γ ` e′′ : σ

′′ T ′′
Ψ = aliasEnv(C) Γ,Ψ ` σ

′;σ
′′

Γ `C let x : T be e′ in e′′ : σ
′;σ
′′ T ′′

(T-WIRING DECL)
Γ ` i : • C capsule C(D h) {design state proc}= CT(C) ∀ jk ∈ j,Dk ∈ D . Γ ` jk : • Dk

p ∈ proc σ
T ′ → T = pType(C,p) Ψ = aliasEnv(G) Ψ

′ =↓i Ψ Γ,Ψ′ ` σ

Γ `G i( j)

Declaration (without abstraction)

(T-PROCESS DECL)
capsule C(import) {design state proc}= CT(C) ∀p ∈ proc . Γ ` p ∀i( j) ∈ wire . Γ `C i( j)

Γ `C

(T-PROC DECL)
Γ,x′ : T ′ ` e : σ

T

Γ `C T p(T ′ x′){e} : σ
T ′ → T

Conditional
(T-COND)
Γ ` x : • int

Γ ` e′ : σ
′ T

Γ ` e′′ : σ
′′ T

Γ ` if x then e′ else e′′ : σ
′;σ
′′ T

Subsumption
(T-SUB)
Γ ` e : σ

′ T ′
Γ ` σ

′ 4 σ Γ ` T ′ <: T

Γ ` e : σ
T

Well-formedness

(W-TYPE)
∆ = copy(σ ,Ψ′,Γ) τ1,τ2 ∈ dom∆∪ rng(∆)

τ1 = ζ1 i1!p1 τ2 = ζ2 i2!p2 ∀τ1,τ2,Ψ ` i1 = i2 . ∆ ` τ1�τ2 ∨ ∆ ` τ2�τ1

Γ,Ψ ` σ

Figure 5.13 Select type checking rules for order types.
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it sends transitively do not lead to a race. Messages that a procedure sends transitively and their se-

mantic happens-before relations are included in the constraint set of its order type. For an ill-formed

order type, blame assignment properly blames the supplier of bad values. Order type abstraction hides

local messaging behavior and improves the scalability of type checking. Figure 5.13 shows select type

checking rules for order types. The rest of more standard typing rules can be found in Figure 5.14.

(T-SELF INVOC)
Γ ` self : • C ∀x ∈ x,T ′ ∈ T ′ . Γ ` x : • T ′

σ
T ′ → T = pType(C,p)

Γ ` self .p(x) : σ
T

(T-LOOP)
Γ ` x : • int

Γ ` e : σ
T

Γ ` while x do e : [σ ]∗T

(T-VAR)
(x : T ) ∈ Γ

Γ ` x : • T

(T-STATE READ)
Γ ` self : • C

Γ `C f : • T

Γ ` self . f : • T

(T-STATE ASGN)
Γ ` self : • C

Γ `C f : • T
Γ ` x : • T

Γ ` self . f = x : • T

(T-UNIT)
Γ ` () : • unit

(T-INT)
Γ ` n : • int

(T-INST)
(i : η C) ∈ Γ

Γ ` i : • η C

Figure 5.14 Rest of type checking rules.

5.4.1 Declarations

A program type checks if its process declarations type check. Without abstraction, type checking of

a process declaration and its procedures are straightforward. In the rule (T-PROCESS DECL), a process

declaration type checks if its procedure and local process declarations type check. In (T-PROC DECL),

a procedure declaration type checks if its implementation type checks. Among the expressions in the

body of a procedure, type checking rules for a procedure invocation, let and conditional expressions are

more interesting.

5.4.2 Invocations

There are two rules for procedure invocations depending on if the concrete value of its receiver is

know in the enclosing process.

Known receiver value The rule (T-PROC INVOC) type checks an invocation with a known receiver

value. The enclosing process locally declares and instantiates the receiver i and therefore knows its

concrete value and dynamic type. The order type of a variable is the empty order type •. The type i!p T
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(AUX-aliasEnv)
capsule C(import) {D i( j) state proc}= CT(C)

Ψ = /0 ∀D i( j) ∈ local . capsule D(H h) {..}= CT(D), j ∈ j,h ∈ h . Ψ = Ψ, i.h = j
aliasEnv(C) = Ψ

(AUX-xAliasEnv)
capsule C(D i) {local state proc}= CT(C)

capsule D(G g) {..}= CT(C) ∀(D i( j)) ∈ local, isTainted(i) . Ψ = Ψ, i.g = j
xAliasEnv(C) = Ψ

(AUX-xTypeEnv)
capsule C(D i) {local state proc}= CT(C)

∀(D i) ∈ (D i) . Γ = Γ, i : @import D ∀(H h(g)) ∈ local, isTainted(h) . Γ = Γ,h : @local H
xTypeEnv(C) = Γ

(AUX-TYPEENV)
capsule C(D i) {local state proc}= CT(C)

Γ = /0 ∀(D i) ∈ (D i) . Γ = Γ, i : @import D ∀(H h(g)) ∈ (H h(g)) . Γ = Γ,h : @local H
typeEnv(C) = Γ

(AUX-IMPORTS)
capsule C(D i) {..}= CT(C)

imported(C) = i

Head

(EMP) head(•) = •
(SIN) head(i!p) = i!p
(SIN-∃) head(∃i : C . i!p) = ∃i : C . i!p
(SEQ) head(σ1;σ2) = head(σ1)
(REC) head([σ ]∗) = head(σ)

Tail

(EMP) tail(•) = •
(SIN) tail(i!p) = i!p
(SIN-∃) tail(∃i : C . i!p) = ∃i : C . i!p
(SEQ) tail(σ1;σ2) = tail(σ2)
(REC) tail([σ ]∗) = tail(σ)

Figure 5.15 Auxiliary functions.

encodes that (1) the invocation sends a message p to a receiver i and (2) the concrete value of the receiver

is known. T is the return type of the invocation. An invocation type checks if its invoked procedure p

type checks and its arguments and formal parameters are of the same type. The rule (SUB) allows for

subsumption among both variable and order types. The function pType returns the type of a procedure.
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Unknown receiver value The rule (T-INVC-∃) type checks an invocation with an unknown receiver

value. The enclosing process imports the receiver i and therefore does not know its concrete value

and dynamic type. The existential type ∃i : C . i!p T encodes that (1) the invocation sends a message

p to a receiver i of type C and (2) the concrete value of the receiver is unknown. Unknown value

of an imported process instance will be known and the existential quantifier will be eliminated when

processes are composed and its concrete value is exported.

The order type of an invocation represents the message it sends.

5.4.3 Composition and Blame Assignment

Bad compositions of process and messages leads to a race. Processes can be composed in a local

process declaration and messages can be composed in a let expression.

5.4.3.1 Process Composition

The rule (T-WIRING DECL) type checks a local declaration in a process G. The declaration of a

process instance of type C type checks if the order types of its procedures are well-formed. An order

type is well-formed if its constraint set is well-formed, i.e. Γ ` ∆. A constraint set is well-formed if it is

free from message races. The auxiliary function copy constructs the constraint set of an order type. The

local declaration of i instantiates and then composes it by exporting composing process instances j to

its imports h. These exports make i.h and j aliases in the enclosing process G. The auxiliary function

aliasEnv constructs this aliasing environment. The aliasing environment is statically known because

of structured sharing that happens only through imports and exports during process compositions. The

projection auxiliary function ↓ makes the aliasing environment of the enclosing process G compatible

with the point of view of the process C. For an aliasing relation i.h = j in the aliasing environment of

G, its i-projection in C becomes h = j.

5.4.3.2 Semantics Happens-before Relations

The constraint set of an order type is a set of semantic happens-before relations between messages

that the order type sends transitively. Semantic happens-before relations stem from the following:
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R1 a message send in a sender process happens-before its receipt and processing in its receiver pro-

cess; and

R2 messages are sent in the same order they appear in the program text and they are delivered in the

same order sent. Messages are processed in the same order they are delivered. These happens-

before relations are guaranteed by inorder delivery and processing of messages.

Happens-before relations R1 and R2 are used in the construction of a constraint set and R2 relations

are used in checking its well-formedness.

(H-TRANS)
∆ ` τ1�τ2 ∆ ` τ2�τ3

∆ ` τ1�τ3

(H-INORDER)
∆ ` i!p1� i!p2 ∆ ` i!p1� j!q1 ∆ ` i!p2� j!q2

∆ ` j!q1� j!q2

(H-TRANS-INORDER)
∆ ` i!p1� j!q1 ∆ ` i!p2� ..� j!q2 ∆ ` i!p1� i!p2

∆ ` j!q1� j!q2

Figure 5.16 Happens-before rules for direct and transitive inorder delivery and processing.

Happens-before relations is a partial order with transitive antisymmetric properties. Figure 5.16

shows the rules for the happens-before relation. The standard rule (H-TRANS) encodes the transitivity

of the relation. The rule (H-INORDER) encodes direct inorder delivery and processing. Messages p1 is

sent to a receiver i followed by a message p2, i.e. i!p1� i!p2. Inorder delivery guarantees that i receives

p1 before p2. The process i processes message p1 during which it directly sends a message q1 to a

receiver process j. Sending of p1 message to i happens before its processing, i.e. i!p1� j!p1. Similarly,

i!p2� j!q2. Inorder processing guarantees that i processes p1 before p2. Therefore, message send j!q1

happens-before j!q2, i.e. j!q1� j!q2. The rule (H-TRANS-INODER) encodes transitive inorder delivery

and processing [8, 105]. (H-TRANS-INODER) is similar to (H-INORDER) except that i sends its message

q2 to j indirectly, i.e. i!p2� . . .� j!q2.
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5.4.3.3 Constraint Set

Figure 5.17 shows the function copy used to constructs the constraint set of an order type.

(EMP) copy(•,Ψ,Γ) = •
(SIN) copy(i!p,Ψ,Γ) = i!p � copy(σ ,Ψ′′,Γ′)

if Γ ` i : C
(SIN∃EM) copy(∃i : C . i!p,Ψ,Γ) = j!p�copy(σ ,Ψ′′,Γ′)

if Ψ′ ` i = j, Γ ` j : @local C
(SIN∃) copy(∃i : C . i!p,Ψ,Γ) = ∃i : C . i!p � copy(σ ,Ψ′′,Γ′)

if Ψ′ 6` i = j
(SIN∃AL) copy(∃i : C . i!p,Ψ,Γ) = ∃ j : C . j!p � copy(σ ,Ψ′′,Γ′)

if Ψ′ ` i = j, Γ ` j : @import C
(SEQ) copy(σ1;σ2,Ψ,Γ) = copy(σ1,Ψ,Γ) ∪ copy(σ2,Ψ,Γ)∪ (tail(σ1)� head(σ2))
(REC) copy([σ ]∗,Ψ,Γ) = copy(σ ,Ψ,Γ)

where
pType(p,C) : σ T ′ → T Ψ′ =↓i Ψ

Ψ′′ = Ψ′ ] xAliasEnv(C) Γ′ = Γ ] xTypeEnv(C)

Figure 5.17 Function copy for constraint set, inspired by copy rule [114].

The constraint set of an empty order type is just an empty order type with no happens-before rela-

tions. In (SIN), a singleton order type i!p is replaced by with an R1 happens-before relation between i!p

and the copy of the order type σ ′ of the invoked procedure p. In the recursive invocation of copy, the

input typing environment Γ is augmented with a typing environment that contains the externally visible

typing information of the recipient process C. The externally visible typing information of a capsule in-

clude its import declarations and tainted local declarations. Similarly, the input aliasing environment Ψ

is augmented with an aliasing environment that contains the externally visible aliasing information for

C. The auxiliary functions xTypeEnv and xAliasEnv constructs the externally visible typing and aliasing

environments of a process. The externally visible aliasing information of a capsule includes aliasing of

imported process instances and imports of its tainted local declarations.

In (SIN∃ELM), the concrete value of the existentially quantified process variable i is locally declared

in the aliasing environment and is known. The quantified variable is replaced by its concrete value.

Otherwise, in (SIN∃AL), the existential quantifier is replaced with its alias which could be a process

instance with an unknown imported value.

Constraints for a sequence order type σ1;σ2 is the union of constraints of its constituents types σ1
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and σ2. An R2 happens-before relation is added to denote that the last message send in σ1 happens-

before the first message send in σ2. Auxiliary functions head and tail return the first and last message

send in an order type. The constraint set for a recursive order type is equal to constraints of its once-

folding. In once folding a type variable of a recursive order type is replaced with the empty order type

•. This is because inorder delivery and processing guarantees that message in one unfolding of the

recursive order type are sent, delivered and processed before the messages in its next unfolding.

The function copy is similar to transitive application of the copy rule for method specifications

[114] in object-oriented programming models. The copy rule for method specifications replaces a

method invocation with the specification of the method, after proper substitutions of variables in the

specification with their known values.

5.4.3.4 Well-formedness and Blame

An order type is well-formed if its constraint set is well-formed with no message races. In the rule

(W-TYPE) a constraint set is well-formed if for any two messages τ1 and τ2 sent to the same process i,

there should be a happens-before relation � between them. That is, either τ1 happens-before τ2 or τ2

happens-before τ1. Note that these messages can be regular or quantified messages.

In rules (T-WIRING DECL) and (T-LET), if the constraint set of a not well-formed then the order type

is ill-formed because of a race in its implementation.

5.4.4 Abstraction

For an abstraction-eligible process, abstraction allows hiding of the local messaging behavior of its

procedures in their order types. Figure 5.18 shows typing rules for abstraction. Judgements Γ ` e : σ T

and Γ
a
` e : σ T denote type checking before and after abstraction.

Unlike Figure 5.13, the rule (T-PROCESS DECL) in Figure 5.18 type checks a procedure declaration

with abstraction. A process C type checks if it type checks in the absence of abstraction, i.e. Γ ` C,

and it is abstraction-eligible. A process is abstraction eligible if sequences of invocations of any of its

two procedures p1 and p2 are do not lead to a race. That is, order types of σ1;σ2 and σ2;σ1 of these

invocations are well-formed. The sequence order type σ1;σ2 is the type of a sequence of invocations in
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(T-PROCESS DECL)
Γ `C capsule C(import) {design state proc}= CT(C) p1, p2 ∈ proc

σ
T ′1 → T1

1 = pType(p1,C) σ
T ′2 → T2

2 = pType(p2,C) Ψ = aliasEnv(C) Γ,Ψ ` σ Γ,Ψ ` σ
′

Γ
a
`C

(T-PROC DECL)

Γ
abs
` C Γ `C T p(T ′ x′){e} : σ

T ′ → T
χ = imported(C)∪ tainted(C) σ

′ = hide(σ ,χ)

Γ
a
`C T p(T ′ x′){e} : σ

′ T ′ → T

Figure 5.18 Typing rules for abstraction-eligibility and abstraction

Hide

(EMP) hide(•,χ) = •
(SIN) hide(i!p,χ) = i!p if i ∈ χ

(SIN) hide(i!p,χ) = • if i 6∈ χ

(SIN-∃) hide(∃i : C . i!p,χ) = ∃i : C . i!p if i ∈ χ

(SIN-∃) hide(∃i : C . i!p,χ) = • if i 6∈ χ

(SEQ) hide(σ1;σ2,χ) = hide(σ1,χ);hide(σ2,χ)
(REC) hide([σ ]∗,χ) = [hide(σ ,χ)]∗

Tainted

(NON) tainted(i(),C) = /0
(COM) tainted(i(j),C) = i

if capsule C(G g) {design{ins wire} ..}= CT(C),
∃ j ∈ j . j ∈ g ∨
∃H j(k) ∈ wire . tainted(j(k,C) 6= /0

(ALL) tainted(wire,C) = ∀wire ∈ wire .
⋃

tainted(wire,C)

Figure 5.19 Abstraction function hide and taint function tainted.

which p1 is invoked before p2 is invoked. Similarly, σ1;σ2 denotes the type of the alternative invocation

sequence. For a process that is abstraction-eligible, order type of its procedures can be abstracted.

The rule (T-PROC DECL) type checks a procedure declaration in the presence of abstraction. The

order type of the procedure can be abstracted if its enclosing process is abstraction-eligible. Abstraction

hides the local messaging behavior of the procedure from its order type. The local messaging behavior

includes messages sent to untainted local process instances of the enclosing process. A local process

instance is untainted if it is composed of only untainted instance. A local process instance is tainted

if it is composed of an imported process instance or another tainted local instance. A process instance



109

is tainted if it is composed from an imported or tainted process instance. Auxiliary functions imported

and tainted return imported and tainted process instances of a process. The auxiliary function hide

exposes message sends of an order type to its imported and tainted process instances and hides the rest.

Figure 5.19 shows the definition of hide.

To illustrate, the local server process s in Client in Figure 5.3 is untainted because it is not composed

of any other process; the local proxy process r is untainted because it is composed of untainted server s.

However, the proxy r in Client2 in Figure 5.7 is tainted because it is composed of the imported server s.

5.4.5 Soundness of Abstraction

Abstraction of local messaging behavior of a process C is sound because if it cannot hide a message

race. Local messaging behavior includes message sends to locally declared process instances. There

are two types of local process instances: untainted and tainted. The abstractions hides message sends to

an untainted local process instance. Abstraction is sound because of the following:

1 Untainted: Encapsulation guarantees that untainted local process instance i and its composing

process instances j can only be accessed through the procedures of C.

• if message sends to i or j lead to a race in a procedure of C, the race will manifest in type

checking of the procedure and the procedure does not type check.

• if message sends to i or j over multiple procedures of C lead to a race, the race will manifest

in checking for abstraction-eligibility and the process does not type check.

2 Tainted: Messaging behavior for the tainted local variable i and its imported process instances j

is not abstracted away.

• If message sends to shared j in procedures C and procedures of another process D lead to a

race, the race will manifest in a process that composes these together and the process does

not type check.

5.4.6 Discussion

Random delivery and processing Direct and transitive inorder delivery and processing are not

necessary and can be added or removed to support different delivery and processing models. Actors
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[6] usually support a random delivery and processing model in which messages can be delivered and

processed in any arbitrary order. To model random delivery and processing it is sufficient to remove

(H-INORDER) and (H-TRANS-INORDER) from the set of happens-before rules in Figure 5.16.

Conditionals The rule (T-COND) type checks an if expression. Similar to (T-LET), the order type of

the expression sequences the order type of its subexpressions e′ and e′′. This is an over-approximation

because the runtime evaluates either e′ or e′′ and not both. However, this over-approximation is neces-

sary to keep the type checking tractable. To illustrate, consider an alternative order type [σ ′,σ ′′] that

encodes σ ′ and σ ′′ as exclusive alternatives. To encode the exclusion between σ ′ and σ ′′, two sepa-

rate constraint sets should be constructed and checked to for the well-formedness of [σ ′,σ ′′]. In other

words, two (i.e. 21) constraint sets should be constructed and checked for well-formedness of the type.

In general, for an order type with n alternative order types in it, 2n constraint sets should be constructed

and checked, which is intractable.

Message receive A message receive ζ i?p can be encoded as a wait on the future result of a

message send ζ i!p. A message receive simply adds two happens-before relations to the constraint set

of its enclosing procedure. The first happens-before relation is ζ i!p� i?p which says that a message

send happens before a receive on that message. The second happens-before relation is tail(σ)�ζ i?p

which says that the processing of message p in process i with the order type σ happens before the

message receive. Addition of message receives are straightforward and thus are omitted.

Memory effects and benign races Precision of race detection can be improved by integrating

memory effects of messages into the type system. Using effects, a message race happens when a process

receives two messages with conflicting memory effects from another process with no happens-before

relations between them. Two memory access conflict if they both access the same memory location

and one of them is a write access [64]. Addition of an @benign annotation to a process which causes a

benign and harmless message race can allow the process to type check.

5.5 Related Work

Previous work in the following categories are related to this chapter.
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Behavioral session types and contracts Order types, similar to session types [25, 26, 28, 40, 43,

79–81, 119, 120, 160, 178] denote the messaging behavior of a process but explore a different design

space. A session type prescribes a global communication protocol [116] in a session-based top-down

programming model in which communication is carried over channels and is structured by sessions [79].

Addition of channels and sessions to structure communication over channels allows the application of

session types to a variety of multithreaded [43], message passing [115,120] and sequential [81,119,169]

programming models. Session types and their underlying session-based programming are also added

to languages like Erlang, Java and Python. However, an order type is a local type that describes the

abstracted messaging behavior of a process as specified by its program text in a bottom-up programming

model without channels and sessions. Prescriptive and global nature of session types and descriptive

and local nature of order types can complement each other.

State-space exploration Systematic verification and testing techniques explore the entire state-

space of a concurrent message-passing program including all ordering of its messages, which is in-

tractable. The exploration can be optimized and become tractable using partial order reduction tech-

niques [93, 161]. Previous work [162] uses message race relations to improve a partial reduction tech-

nique for dynamic testing of actor programs. Order types make modular reasoning about a message

passing program tractable by statically disallowing message races and explain their causes.

In dynamic testing of actor programs, previous work [162] uses message race relations to prune out

part of state-space. These techniques are usually global and any changes in a program may invalidate

their reasoning. Order types, unlike global state-space exploration techniques, are modular.

Multithreaded programming Previous work prevents low [64, 65] and high level data races [66,

171] in multithreaded programs and and guarantees its deterministic execution [29]. However, data race

detection techniques are not directly applicable to detect message races in message-passing models.
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CHAPTER 6. CONCLUSION AND FUTURE WORK

The concurrency revolution and the need for performant software requires sequentially trained soft-

ware engineers to write concurrent software. Engineering of concurrent software could be made easier

with modular reasoning. Using modular reasoning a system is understood one module at a time and

changes in implementations of other modules cannot invalidate the understanding about this module as

long as interfaces of those modules stay the same. This thesis identifies three challenges that can make

modular reasoning about a concurrent software difficult or intractable: arbitrary thread interference,

arbitrary module inheritance and arbitrary message orders. This thesis proposes and formalizes an im-

plicit concurrent message passing programming model with interference control, concurrent behavioral

subtyping and order types to enable modular reasoning about a concurrent software in the presence of

arbitrary interference, inheritance and message orders.

6.1 Interference Control Framework

The interference control framework enables modular reasoning by guaranteeing that in a concurrent

program interference happens only at explicitly specified program points and at each interference point

the interference behavior is known. This is in contrast to the state of the art programming models in

which interference can happen between any two instructions of a software and interference behaviors

are unknown. The interference control framework allows the standard and well-known Hoare-style [77]

modular reasoning for sequential programs to be adapted to understand a concurrent program in the

presence of interference. To reason about a concurrent program first its interference points and their

interference behaviors are computed syntactically and modularly; second interference is taken into ac-

count by inserting interference behaviors at their corresponding interference points; and third sequential

Hoare-style reasoning is applied to understand the behavior of the program. Our adaptation of standard
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Hoare-style reasoning could make it easier for developments tools, such as KeY [23], that integrate

construction of sequential software and formal verification [24], to adapt to concurrent software.

6.2 Concurrent Behavioral Subtyping

Concurrent behavioral subtyping enables modular reasoning by guaranteeing that the behavior of a

module is compatible with the behavior of the module it inherits from. This is in contrast to state of the

art where there is no relation between behaviors of two modules in an inheritance hierarchy. Concurrent

behavioral subtyping allows the standard modular supertype abstraction reasoning [97] to be adapted

to understand a concurrent program and specially its invocations in the presence of inheritance and

dynamic dispatch. In supertype abstraction reasoning, an invocation can be understood using the static

type of its receiver, independent of its dynamic types. Our adaptation of supertype abstraction reasoning

could make it easier for programming logics [23, 117, 128, 131, 134] that support supertype abstraction

reasoning for sequential software to adapt to concurrent software.

Concurrent behavioral subtyping provides a new definition for behavioral subtyping [103] using

standard behavioral subtyping and interference subtyping.

Our definition of concurrent behavioral subtyping allows concurrent behavioral subtyping to be

reduced to standard and well-known interface subtyping [45, 96, 104] in the presence of encapsulated

inheritance [155]. In encapsulated inheritance a module accesses the state of the module it inherits from

through its procedures and not directly. Our empirical studies of 554,864 Java and 416 Akka projects

in GitHub reveal that more than 90% of these projects respect encapsulated inheritance. This means for

majority of the projects in this study concurrent subtyping can be guaranteed using only standard inter-

face subtyping [96, 104]. Interface subtyping can be easily guaranteed syntactically using techniques

like specification inheritance [45] that automatically combine behavior specifications of modules in an

inheritance hierarchy.

6.3 Order Types

Order types guarantee that a well-formed concurrent program is free from message races. Freedom

from message races allows for tractable modular reasoning about message orders. Existential order type
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of a module allows encoding of its unknown dependencies and enables bottom-up program design and

construction. Abstraction decreases complexity by hiding local messaging behavior for abstraction-

eligible modules, which in turn could improve the scalability of type checking. Blame assignment

enables programmers to quickly ascertain racy modules to be fixed or replaced by properly blaming the

module responsible for a bad module composition or bad message composition and not the module in

which the race happens. Disallowing message races can not only enable modular reasoning but also

prevent bugs due to these races [93, 163] which are hard to find and fix.

6.4 Future Work

There are several avenues for future work that we would like to investigate.

6.4.1 Modular Reasoning about Traditionally Global Properties

In this thesis, we enable modular reasoning about concurrency, a property that is traditionally

thought to be global. An avenue of future work is to study how to enable modular reasoning about

other traditionally global properties. Security and privacy [149, 150, 164] and communication proper-

ties [80,121] are few examples of these properties. The challenge in reasoning about these properties is

that they could lead to global reasoning techniques and analyses that may not be as scalable as modular

reasoning techniques or lead to global specifications that may impede bottom-up software construc-

tion. To address this challenge we anticipate the use of linguistic constructs that allow security and

communication information of interest to be explicated in the interface of a module. Such interfaces

include sufficient information to allow sound modular reasoning about the property of interest and at the

same time not expose the unnecessary implementation details of a module. Abstraction could prevent

exposure of unnecessary implementation details and also decrease the complexity of checking these

properties. Construction of these interfaces should not extensively add to the burden of the programmer

of the module. Automatic inference of these interfaces along with light-weight programmer annotations

could be used to reduce the programmer’s burden.

Another way to address the reasoning challenge, in top-down software construction, is to integrate

local order types and global behavioral types (global specifications) such as session types [80, 116].
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Session types allow modular reasoning about communication properties for enforcing of communi-

cation protocols and prevention of deadlocks. The challenge in using session types is that they are

designed for channel-based programming using sessions that is not supported in mainstream program-

ming languages. To address this challenge we anticipate to support session-based programming in our

programming model. With addition of sessions, the global session type for participants of a protocol

can be automatically inferred using local order types of its participants [116].

6.4.2 Concurrent Behavioral Subtyping and Hoare-style Reasoning

Another avenue of future work is to study the expressiveness of concurrent behavioral subtyping.

We anticipate to investigate if concurrent subtyping is expressive enough to encode behavioral sub-

typing for both sequential and concurrent software with and without interference. Standard behavioral

subtyping [10], strong behavioral subtyping [104] and weak behavioral subtyping [44] are few examples

of behavioral subtyping for sequential and concurrent software.

Another avenue of future work is to study if our Hoare-style modular reasoning could be aug-

mented to encode previous reasoning techniques. Thread-modular [67], rely-guarantee [87], deny-

guarantee [48] and concurrent abstract predicates [47] are examples of these reasoning techniques. The

challenge in encoding these reasoning techniques is that some are built on top of low-level logics such

as concurrent separation logic [127] and use fine-grained access permissions [34] that are not supported

in our programming model and logic. To address this challenge we anticipate integrating concurrent

behavioral subtyping and separation logic using permissions.

6.4.3 Interference Closure and Interference Behavior

Another avenue of future work is to study the granularity of interference closure and its behavior.

One challenge is that the interference closure including all procedure of a module is coarse. To address

this challenge we anticipate the use of order types to know which procedures of the module may not

be invoked by other modules and therefore excluded from its interference closure. However, this could

lead to a reasoning in which to understand a module one need to look at the interface of all modules that

invoke the procedures of the module which may not be as desirable. Another challenge is the need for an

oracle that knows about the behavior of an interference closure. To address this challenge we anticipate
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to use techniques that automatically infer loop invariants using functional behaviors of procedures [70]

or ask programmers to specify the behavior of them interference closure.

6.4.4 Applicability

The last avenue of future work is to further study the integration of our proposed programming

model with programming languages and models for mobile programming such as Android, message

passing programming such as Message Passing Interface (MPI) [1] and actor programming such as

Akka [8]. The challenge is that our programming model requires typed messages, sequential process

execution and encapsulation. To address this challenge we anticipate to integrate these languages with a

light-weight ownership model to guarantee encapsulation and use variations of these models that do not

rely on ambiguous interfaces [72]. A module with ambiguous interface accepts a single message and

relies on its implementation to process the message differently based on its attributes. Ambiguous inter-

faces are popular in languages and models with event loops [74]. Another challenge is that the addition

of encapsulation may decrease the expressiveness of a programming model. We would like to study this

hypothesis by extending our experimental evaluation of encapsulated inheritance using visibility-based

encapsulation to include encapsulation in general. In this study we would like to consider semantic

features such as aliasing and global variables that may lead to violation of encapsulation.
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