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ABSTRACT

Due to the increasing popularity of online social networking services, more and more

people have been outsourcing their personal data to these service providers. Data pri-

vacy has gradually become a big concern. Decentralized social network proposed in

recent researches has been a promising alternative. But there lacks an e�cient system

of decentralized social network with complete social networking functions. In this thesis,

we design a new framework of decentralized social network and implement the proto-

type. Our experiments shows that our design protects data privacy as well as achieve

communication e�ciency.
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CHAPTER 1. INTRODUCTION

Online social networking services have been very popular during recent years. They

have provided online platforms for users to maintain personal profiles and to share mes-

sages among them. As people have enjoyed the benefits brought up by these service

providers, some issues have come to surface. Since users keep outsourcing their personal

data to provider servers, these providers can take full control of the way data is used.

For example, they may sell data to merchants to produce customized advertisements or

to dictatorial governments to monitor antigovernment activities. Data to some degree

no longer belongs to owners, bringing in data privacy concerns.

As an alternative approach, decentralized social network helps users protect their

data security and privacy by allowing users to choose their own data servers at will.

The control of data could be transferred from any central social networking server to

the hands of users themselves. Diaspora [Diaspora (2010)] is a widely used decentralized

social network. However its property that each server is public in the social network might

make it vulnerable to be attacked. Also it lacks of ways to make users know each other.

There have been research works studying on di↵erent aspects of decentralized social

network. PrPl[Seong (2010)] proposed the design of personal cloud bulters over personal

servers, but their performance was not promising. Vis-a-Vis[Shakimov (2011)] focused

only on location-based decentralized social networking instead of providing a complete

solution tousers to know each other. Works in [Jahid (2012); Nilizadeh (2012); Buchegger

(2009); Cutillo and Strufe (2009)] have studied problems such as data confidentiality, data

availability and server location privacy, in decentralized social networks with distributed
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hash table as a backbone. However the reliance on DHT could limit the social functions,

making it more blog-like wall, and also less communication e�ciency.

In general some problems remain unsolved in current proposals of decentralized social

network: (1) Some social functions have not been provided e↵ectively in decentralized

social network which impedes it from being applied and popularized in real life. For

instance, searching people based on some keywords is an important feature of state-of-the-

art social networks. This function, however, is di�cult to implement in a decentralized

social network due to the lack of central machine serving as a host for all users. (2) As

most individual servers holding personal data are public in the social network, they could

be very vulnerable to attacks. Also, it would pose a big challenge to require regular users

of a social network to take care of their servers’ security configuration. (3) Some works

lack of e�cient performance as they depend on complex network architecture such as

Chord Stoica (2001).

In order to resolve the above problems and to achieve data confidentiality that pro-

tects personal data from unauthorized access, this thesis proposes a new framework of

decentralized social networking system. We introduce three components in the system:

personal servers, client agents, and a relay server. Each personal server where personal

data is stored can run in any subnet behind a firewall such that it can be protected from

some outside attacks. To enable users to access data in personal server at any time, users

can use portable client agents to conduct some social actions, such as posting messages.

As data is encrypted and transferred between personal servers and client agents via a

relay server, the relay server plays an important role of routing messages in the system.

Moreover, the relay server can be used as a central platform to store public information

of users and to facilitate socialization. Under such an architecture, this project develops

protocols to realize common social networking functions, including profile management,

people search, contact management, and information sharing. And then it implements

the prototype of the system with these essential functions. Evaluations based on the pro-
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totype, using response time of message sharing as the major performance measurement,

have been carried out. The results shows that this design achieves good communication

e�ciency.

The rest of the thesis is organized as follows:

• Chapter 2 introduces recent related work in decentralized social network;

• Chapter 3 elaborates problems to be resolved;

• Chapter 4 presents our system design and protocols;

• Chapter 5 gives some details about the system implementation;

• Chapter 6 shows the results of experiments;

• Chapter 7 concludes the thesis.
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CHAPTER 2. RELATED WORKS

In the recent years, there have been various research works that have studied di↵erent

architectures of decentralized social network, such as, unstructured peer-to-peer(P2P)

architecture, or structured: distributed hash table (DHT) [Stoica (2001)] architecture.

Some researchers have studied the trade-o↵s between privacy, cost and availability of

di↵erent personal data server choices.

Diaspora [Diaspora (2010)] is a decentralized social network in widely use for the

purpose that user data can be protected from monitoring and analyzing. It adopts and

unstructured P2P architecture where each user can choose an existing server (called pod)

or set up its own host server for data storage. When a post is made by one user, the

post is saved into the local database and sent to contacts on di↵erent servers.Data is

stored without encryption and a certain degree of access control is enforced by pods.

Compared to our work, Diaspora is di↵erent in: (1) It requires storage servers to be

in the public network (instead of private subnets), which needs more careful security

protection. (2) Personal data is not encrypted. (3) The adoption of unstructured P2P

architecture requires each server to maintain the IP addresses of other servers that host

its contacts, which may pose a higher management cost. (4) it doesn’t support user

search based on keywords. Users can find a contact on the condition that they need to

know the id of the contact.

PrPl [Seong (2010)] is a decentralized social networking prototype that aims at en-

abling users to control their own data. It allows users to store data in their own preferable

devices, e.g., home server, or paid vendor, and to use social applications across di↵erent
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domains while preserving data security. Upon this, a layer called personal-cloud butlers

was proposed to keep meta-data such as index of personal data, and access control poli-

cies for personal data and user ID management. A database query language SocialLite

is also proposed to enable access data from di↵erent Butlers, which makes it easier for

a developer to develop social applications. Their experiments showed that query results

can be obtained within a couple of seconds. Unlike PrPl, our work protects data servers

from disclosure to the public network and due to our simpler architecture, query results

can be obtained within milliseconds.

Vis-a-Vis [Shakimov (2011)] proposes a design of a decentralized social network frame-

work based on virtual individual servers. By enabling various degrees of location sharing

among di↵erent groups, VIS preserves privacy of location information. Due to the fo-

cus on location-based applications, the work lacks of solution to address other social

networking functions such as the support for users to get to know each other.

There are several projects of distributed social network systems which have benefited

from distributed hash table (DHT-based) [Stoica (2001)] architecture due to decentral-

ization and high scalability of DHT. For the purpose of protecting the confidentiality and

availability of user content and privacy of user relationships, DECENT [Jahid (2012)] is

an architecture that uses DHT to store user data and utilizes attribute-based encryp-

tion(ABE) to realize access-control policy and protect data confidentiality. To improve

the query e�ciency on DECENT, Cachet [Nilizadeh (2012)] maintains continuous con-

nections with online friends to receive updates directly instead of retrieving after the

data is posted in DHT. The dependence on DHT makes systems more suitable to pro-

vide blog-like services rather than messaging-like ones.

PeerSoN [Buchegger (2009)] aims at maintaining OSN fectures as well as protecting

data privacy and realizing communication even in poor Internet connectivity. It proposes

an architecture of decentralized social network with two-tier system. The first tier is DHT

which can provide look-up service and the other consists of peers representing users who
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communicate with each other directly. They propose direct exchange in real-life physical

social network without Internet connectivity, however this is not the usual case because

most friends might be long distance away. Protocols on how to make friends in the social

network has been omitted.

Safebook [Cutillo and Strufe (2009)] is a distributed social network scheme based on

DHT as a peer-to-peer substrate and on a special structure named Matryoshka which

is built on the trust relation between friends. The main objective is to protect pri-

vacy of users. The component Matryoshka helps achieve anonymity and untraceability

of user communications and encryption enforces data confidentiality, but compromises

communication e�ciency.

Shakimov et al.[Shakimov (2009)] compare three schemes for decentralized social

network on the basis of virtual individual servers: cloud computing virtual machine,

home desktop machines and hybrid of desktop for normal operation and cloud virtual

machine when failure of the former. Normally, a personal server could be a desktop

machine that is always running or a virtual machine in the cloud. Desktop machines

that can keep alive always can also meet the same level of availability of cloud virtual

machines.

Richter and Koch [Richter and Koch (2008)] have identified six basic functionalities

of social networking services. There are identity management where users can manage

personal profiles, expert finding which provides a way to enable users to search other

users who have interests in common, contact management where users can make friends

and separate friends into di↵erent groups which can be enhanced by access controls,

context awareness presenting the ability to be aware of other people who have a common

context, network awareness being the capability to be notified of activity updates from

contacts, and exchange where users can exchange information directly or indirectly.
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CHAPTER 3. PROBLEM DEFINITION

3.1 System Model

We consider a system that is composed of one routing server (called relay server) in

the cloud, and of multiple personal servers in di↵erent domains which can be protected

by firewalls, and of client agents which can be in mobile devices or web browsers. A

personal server is the place where personal data is stored. For personal servers, users

can choose their home machines, rent cloud machines, or share machines with friends or

family members. A user can install a client agent in a mobile device, laptop or desktop.

The client agent can retrieve personal information from personal servers via the relay

server. The relay server plays the role of multiplexing messages among personal servers

and client agents. Each personal server keeps a long-term connection with the relay

server.

3.2 Threat Model

Regarding the threat model, we make the following assumptions:

• The relay server is honest but curious. In other words, it will always obey the

regulations, honestly routing requests and responses to target machines. But it

can be curious about the real content in messages routed.

• A personal server is trustworthy. It always behave normally.



8

Besides, we also consider the following two types of adversaries: (1) outsider adversaries

who want to eavesdrop communication between viewers and personal servers or even

tamper messages sent over connections; (2) inside-network machines which might be

corrupted by malicious ones, aiming at attempting to get data from target users who

don’t authorize them to access.

3.3 Design Goal

The design goal we try to achieve is made up of the goal in social networking func-

tionality and that in data security and privacy:

3.3.1 Functionality goal

With the functionalities introduced by [(Richter and Koch, 2008)] in mind, we make

e↵orts to realize these social functions: profile management, contact management, peo-

ple searching, friend making, activity awareness(notification) and information sharing

consisting of posting and retrieval of messages. The first two functions allow users to

manage own profiles and friends, such as grouping friends with di↵erent labels. The next

two functions provide means to know contacts with something in common. The last ones

enable users to share data with whom they authorize to access in a cost-e↵ective way.

3.3.2 Security goal

Firstly, we let owners take control of personal data and make decision they can share

data with. Secondly, we should prevent personal servers from disclosing publicly and

being attacked easily. And more, we need to ensure the confidentiality and integrity

of personal data from unauthorized parties, including the relay server, outsiders, and

malicious insiders.
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CHAPTER 4. SYSTEM DESIGN

4.1 System Overview

The system consists of three major components: personal servers(PSes), client agents(CLs)

and a relay server(RS). The basic system model with one PS and one CL and the one RS,

is in Figure 4.1. PSes are hidden in private subnets behind firewalls and host personal

data for users. Client agents can be portable such that users can access their data at any

place. It’s accomplished by RS that stands in between. PSes can establish long-term

connections with RS, which also can be connecting with CLs. Meanwhile PS and CL can

be movable without concerning about notifying others to its new address, as RS is the

only one that needs to be notified. RS is the proper place to hold public profiles from

users, as it’s very convenient for users to search people with keywords from RS.

4.2 Security Overview

To prevent outsiders from eavesdropping data exchange between CL and RS and

between PS and RS, we deploy Secure socket layer protocol(SSL) for all connections. To

prevent RS from learning content of messages posted by CLs and sent by PSes, such

type of messages are encrypted with secret keys shared between contacts. Public key

encryption is utilized in scenarios where identity verification is in need. We assume that

all the underlying encryption mechanisms are secure such as SSL, symmetric encryption

and public key encryption. Access control is enforced by PS to prevent personal data

from being accessed by unauthorized parties.
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Figure 4.1: Basic system model

4.3 System Components

4.3.1 Personal server

Personal server(PS), can be a home server or a cloud machine in a subnet behind a

firewall. The main functions of a Personal Server are: (1) hosting personal data for a

owner or a group of owners; (2) setting up a long-term secure connection with the Relay

Server; (3) accepting requests from clients or other Personal Servers via Relay Server;

(4) processing requests and producing responses; (5) sending response to requester via

Relay Server.

Data Model As PS o↵ers a platform to store data content, it needs to keep various

data. We categorize into the following groups:

• PS’s own data. This includes its unique ID and a public key pair that are needed to

set up connection with relay server. In the setup, the ID is determined and returned

by Relay Server and then can be used for future connections when disconnected.
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• Basic information of PS’s owners. For each registered owner, it stores the net-

work name, the email address and password which can be used by the owner to

authenticate and log in locally. Moreover it needs to have the information for client

agent to make connection with Relay Server. It contains the unique user identi-

fier determined by Relay Server(during the first registration), public key pair for

authentication with relay server in the future, and a symmetric key for encrypting

requests from the agent to its own PS.

• Social contacts of owners. This involves three aspects of information: contacts,

which includes the user and PS identifier of each contact, public key pair and a

secret key for communication, groups which are labels that contacts can be assigned

to, and membership where the mappings of contact and group is stored.

• Data content of owners. There are two types of data content: owner’s profiles and

owner’s posts.

1. owner’s profiles Users can use some predefined attributes to describe them-

selves. Thus we use a pair of key and value(K, V) to define the attributes.

For instance, there is a user named Alice, then the pair is (network name,

Alice). The profile can have multiple records of the pairs. For each record,

the user can specify which group of users can access. And group ’0’ means

that the information is public to anyone. Each user can publish its public

profile (containing records with group ’0’) onto open social platform which is

introduced in Relay Server such that he/she can be searched by others.

2. owner’s posts Posts have two types: one is root message that is posted by

the owner, and the other is comment posted by contacts of the owner whom

have the access right to make comment on the root message. The common

properties of these posts are that they have title, text content and media, the

time when the post is made and the time when it expires. The di↵erence
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relies in the privilege format of the post. The owner of the root message can

indicate the group number as the privilege information such that users of that

group can access the root message. However, the group number doesn’t work

in the comments as the comment owner has no idea of the group number of the

root owner. One neat turn-around is that the comment owner can attach to

the comment with a bloom filter where e�ciently stores information of users

whom he/she authorizes to access. As a result, contacts who are both in the

group of the root message and in the bloom filter can access the comment.

3. owner’s notifications Notifications are meta data of contacts’ updates, like

whose update it is and when it happens. PS can help owners store notifications

from their contacts when their client agent are o✏ine.

Security Design To prevent outsiders from eavesdropping the communication be-

tween PS and relay server, each PS maintains SSL socket with RS. To prevent relay

server from learning the data content from posts, posts are encrypted with secret keys

when published and retrieved. Moreover to e�ciently protect PS from replay attacks of

posts retrieval and publishing by relay server(as these two types of messages are main

ones in social networking), we propose that each initialization vector of the symmetric

encryption(256-bits) over the request of posts(either publishing or retrieval) consists of

two parts: the current timestamp of long type and 8 bytes of random data. When the

PS retrieves such a kind of request from a specific client at first time (via RS), it records

the timestamp in the request. The next time it again gets the request from the client,

it checks if the timestamp in the current request is larger than the one in record, if yes,

then updates the new timestamp with the old one in record and proceeds.
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Normal Status In order to respond requests from client agents at any time, PS

needs to keep running and keep connecting to Relay Server. When the connection inter-

rupts unexpectedly, it needs to be reconnected.

4.3.2 Relay server

Intuitively, Relay Server(RS) plays an important role of bridge that connects client

agents to PSes and PS to PS, as in most cases PSes are in private subnets behind

firewalls. RS can help deliver requests from client agents to PSes and the other way

back, and messages from one PS to another PS. To realize the goal, RS needs to keep

track of the currently alive and secure connections from client agents and from PSes such

that it can route messages correctly.

Data Model RS needs to store each PS’s information that includes PS id and its

public key and all registered users of each PS including user id and the public key and

the user’s PS.

Again we consider that SSL connections from PS keeps alive for a long time and those

from client agents might be torn down intermittently. Each time the client agent or a

registered PS tries to establish a SSL connection, RS uses the public key of the user to

verify the identity. Besides routing messages, RS also provides an platform for strange

users to get chance to know each other.

Open socialization platform (OSP) OSP can hold public profiles of users so

that other users can retrieve them in order to make friends. When a user create profiles

onto his/her own PS, the PS chooses the public items and post them to OSP. When

a user wants to retrieve some profiles back with some preferences, OSP can help filter

these profiles out and return to the user. More details are introduced in Section 4.3.
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4.3.3 Client agent

By design, Client agent is supposed to work as a local mini-web server for browser.

Due to time and work limit, we simplify it as an remote end that can send requests

to and receive response from PS via RS. In order to fulfill the functionality, it should

store some credentials locally and do some encryption over requests and decryption over

responses. It always uses SSL socket to connect with RS.

4.4 Initialization

4.4.1 Initialization of relay server

Relay server starts running by listening on connections from client agents or personal

servers.

4.4.2 Initialization of personal server

The initialization can be divided into two parts:

• Owners(Users) registration on PS. Before PS registers to RS, owners of PS can

be enrolled locally into PS, by generating a public/private key pair which is used

to verify owners to RS during connection to RS, and a secret key used to encrypt

request/response during communication with PS.

• PS registration on RS. PS generates its own public/private key pair, and uses such

key pair to be authenticated by RS, such that PS start to establish a long-time

connection to RS. After that, PS registers all owners that have been enrolled on

itself to RS. RS responds with a global unique user id for each owner.
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4.4.3 Initialization of client agent

First of all, basic information including user id, public key pair and secret key needs

to be extracted from PS and transferred via a secret channel onto the client agent. Then

the client agent can use the user id and the public key pair to authenticate with RS that

the user of the client agent is registered in order to make secure connection with RS and

make requests to PS.

4.5 People Search

The design of profile in the form of key and value can facilitate fine grained people

search. Users who want to search people with some specific value for an attribute can

express the search query in the formula: “key = ? AND value = ?”, and then client agent

can submit the query to OSP. OSP can search the result based on the specification. This

can be easily extended into complex logic expressions. For example, querying profiles

one of which should satisfy several pairs of key and value restriction can be done by: first

search out the profiles that satisfy the first requirement, and then for each profile from

the result, iteratively check if it satisfies all the other requirements.

4.6 Friend Making

This work emphases on mutual friend relationship. The Procedure of making a friend

can be illustrated in Figure 4.2. The setting is: user B likes to add user A as his contact

after he reviews A’s profile. All messages are first forwarded to RS and then forwarded

by RS to the destination.

• B’s client agent will send a request of adding A as a contact to PS B, the request

contains user id and PS id of A;
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• PS B will locally record the request for B and then prepare a formal friend request

to PS A. The request has B’s user id, PS id, public key, and a signature over user

id and PS id.;

• Once PS A receive the request, first it verifies the signature, If the request is new

and correct, PS A saves the request to wait for A’s client agent to retrieve;

• Later on when A’s client agent gets online, and retrieves the recent friend request

from PS A, user A can make decision to accept or deny the request. If accepts, A’s

client agent signals PS A of the decision;

• After PS A receives the signal from client agent A, PS A creates a secret key for

the new contact for future communication, and encrypts it with the public key of

the new contact, and then delivers it to PS B;

• PS B first checks previous records to verify that client B has sent such a friend

request, and use B’s private key to decrypt the message, and then restore A’s

information alongside the secret key into contact list.

Figure 4.2: Making Friend Procedure
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4.7 Contact Management

A user can create groups at will to manage their contacts. By default, each contact

forms a group just with one member. A contact can be added into a group defined by the

user and also can be removed from the group. A contact can belong to multiple groups.

Access control of a message by the user is enforced on one group or multiple groups.

4.7.1 Adding a group

With the input of group name from the user, the client agent encrypts the request of

adding group with the secret key shared with the user’s PS and with the initialization

vector mechanism, and sends the encrypted request to the PS via RS. PS first verifies the

initialization vector and then deciphers the request, stores the new group information

for the user, and returns the new generated group id (encrypted with the secret key) to

the user via RS.

4.7.2 Managing a contact

The user specifies the contact id and group id along with the action(adding or re-

moving), the client agent encrypts the request as above and sends to PS via RS. PS

deciphers the request as above and proceeds correspondingly.

4.8 Message sharing

4.8.1 Building block

Bloom Filter Bloom filter [Bloom (1970)] is a memory-e�cient data structure that

stores a set S and supports membership queries. Let S be a set of size N and T be a bit

set of size M (N >> M), then pick k hash functions uniformly at random, h1, h2, ..., hk.

To create the bloom filter in T for S, for each x 2 S, all T [h1(x)], T [h2(x)], ..., T [hk(x)]

are set to true; To check if y belongs to S or not, then check if T [h1(x)], T [h2(x)], ...,
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T [hk(x)] are all true. If no, it’s for sure that y is not in S. If yes, y is considered in S

with high probability. The false positive can be proven to be (1� e�kN/M)k.

We utilize bloom filter in access control of comments because: (1) as comment owners

have no idea of group settings, one naive way for comment owners is to specify a list of

users that can access in comments, which is expensive in aspects of communication and

storage overhead; (2) By choosing parameters M and k properly, we can make the false

positive lower that fits in our application.

4.8.2 Posting a message

Message could be a root message by a owner or a comment message associated to a

root message by a contact of the owner. When routed via RS, the message is enciphered

with secret key (the one shared between the owner and the owner’s PS or the one shared

between two contacts). A message might contain a title, a text content and a media

file(e.g, image or video), and the access right information. It could be any existing

group id for a root message and a bloom filter which stores a set of user identifiers for

a comment. Comment message should have reference of root message. After receiving

and deciphering a post request, PS stores the post for the requester.

4.8.3 Retrieving a directory of meta data of messages

Considering that there are many messages that users are not interested but have

large size of data, it is a very beneficial function for users to retrieve a directory of meta

data of messages first. The meta data includes the title, the author, the time when the

message created.

The requester at client agent needs to specify whose meta data of messages are

queried. There are two cases. The requester can be the data owner or the contact of the

data owner. If the user is the data owner, additional parameters are needed, query time

range(start time, end time). The request is encrypted with the secret key shared with
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the own PS and sent to the PS. PS discovers the directory query with the time range

from its one of owners, and it searches the owner’s posts (root messages by the owner

and comments by contacts) whose creation times meet the requirement and encrypts

them to return.

If it’s the second case, as for the parameters to be transferred, it’s not of necessity

to indicate end time, as the target PS regards timestamp of the retrieval of the request

as end time. start time is optional as PS can use the last directory retrieval time of the

contact if it’s not indicated. The request is encrypted with the contact secret key and

sent over to the target PS. The PS reveals the request, and figures out the query time

range. PS filters out posts based on the following procedure:

• For each root message of the target owner, check if it satisfies the time range of the

request and if its access group includes the requester identifier. If both are true,

PS add the meta data of the message into result set;

• For each comment for the target owner, first check if it satisfies the time range and

if the requester is included in the access group of the root message of the comment

as well as in the bloom filter associated to the comment. If all are true,PS add the

meta data of the message into result set.

4.8.4 Retrieving posts

Retrieving messages is similar to retrieving a directory of meta data, except for:

• The time range (starting time and end time) of the query creation time is set by

the requester at the client agent;

• Content of posts are retrieved, including text content and media data, along with

meta data.
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4.9 Activity awareness

A notification contains three basic pieces of data: receiver id, sender id and notifica-

tion creation time. A basic model of notification flow is depicted in Figure 4.3. When

there is a notification from PS of owner A for user B to read, the notification is trans-

ferred to RS. If there is live connection from user B’s client agent, RS forwards it to

the client agent. Otherwise, RS sends it to PS of owner B to save it for user B. One

question arises, i.e, when is notification generated? The easy solution is that each time

the new post comes, for each member in the access group, PS generates the notification

and sends out. But this would cause much network tra�c. We improve it by recording

the last notification time delivered to the contact along with last retrieval time of meta

data directory of the contact. Before sending out notifications for each contact in the

access group, PS compares the last notification time to the last retrieval time. If the

retrieval time is older than the notification time, which means the contact didn’t respond

to the last notification, PS holds back the notification for the contact. Otherwise, PS

sends out the newest notification and updates the last notification time in record.

Figure 4.3: Notification Flow From PS of owner A to user B
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CHAPTER 5. IMPLEMENTATION

5.1 Communication

5.1.1 SSL socket

SSL(Secure socket layer) is a cryptographic protocol for providing communication

security over TCP connections between a server and a client. Not only can it protect

data confidentiality and ensure data integrity, but also it provides peer authentication.

This is done due to handshaking.

Overview The handshaking can be depicted in Figure 5.1. The handshake starts

when client requests a secure connection and presents a list of cipher suites; After receiv-

ing the request, the server chooses a cipher and hash function that it supports to return

to client alongside with server’s certificate; Then the client verifies server’s certificate and

exchanges session key with server. The session key is usually generated by server and

client separately with the same random number that is chosen by client and transferred

to the server.

In our case, we regard RS as the server and PSes and CLes as clients in the clien-

t/server model. To be authenticated by clients, RS needs to maintain a certificate that

can be uploaded and verified during the handshaking; we provide public key cryptog-

raphy to RS to authenticate clients as it would be expensive for each client to apply

a certificate. The implementation of creating a SSLSocket at client side in Java is as

follows:
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Figure 5.1: SSL Handshaking

• Create a TrustManager object trustManager that can authenticate the remote

server for the client;

• Create a SSLContext object sslContext by calling SSLContext.getInstance(“TLS”)

and initialize it with trustManager;

• Use sslContext to create a SSLSocketFactory object sslSF that is used to create

a socket with the server by taking the server IP address and port number, and

returns a SSLSocket object sslSocket;

• The handshaking is initialized by using sslSocket.startHandShake(). In this call,

server authentication is done and cipher suites and session key are determined.

• Data exchanged via sslSocket is encrypted and secure after handshaking.

The authentication of client is explained in the security section as it involves en-

cryption. Initially the server should obtain a certificate from trusted authorities. For

convenience, in our experiment we generate the certificate by using a key and certificate
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management tool keytool in Java, which can manage certificate and public key pair into

file keystore.jks. The steps involved in creating a SSLServerSocket at the server side in

Java are as follows:

• Load keystore.jks file that contains private key and public key and certificate

information into a KeyStore object keyStore;

• Create a KeyManagerFactory object keyFac initialized with keyStore.

• Use keyFac created the above step to initialize a SSLContext object sslContext

of TLS;

• sslContext is used to create a SSLServerSocketFactory object that calls method

createServerSocket() with parameter the port number to generate a SSLServer-

Socket object sslServerSocket;

• sslServerSocket can listen on the port and accept connection requests from clients.

• sslContext helps the server handshake with client in the backend.

5.1.2 Message types

As there are various types of messages that RS needs to route around, we describe

the header format of messages as in Figure 5.2. We generalize five types of messages:

Request, Response, FriendRequest, FrienConfirm and Notification.

1. Request is sent from client agent to personal server. The data part is encrypted

parameters that is transparent to relay server. There are 12 types of requests: Ad-

dGroup, AddProfiles, AddContact, RetrieveFriendRequest, AcceptFriendRequest,

ManageContact, PostMessage, RetrieveOwnMessage, RetrieveContactMsgDirec-

tory, RetrieveContactMessage, CommentContactMessage and RetrieveNotifications.

Personal server discovers the parameters in the encrypted data and proceeds cor-

respondingly.
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2. Response is sent from personal server to client agent. The data part is encrypted

result that corresponds to a query from the client agent.

3. FriendRequest is sent from a personal server to another personal server. Based on

our model of Friend making, the first personal server sends message FriendRequest

on behalf of its owner. The second personal server is the one that the future contact

owns. The data part contains a secret key encrypted with the public key of the

contact, owner’s profile encrypted with the secret key, and a signature over the

encrypted profile. The signature can be used to verify that the owner of the profile

is as declared. The FriendRequest is saved by the second personal server so that

later it can be retrieved by the owner on the client agent.

4. FriendConfirm is sent in the reverse direction compared to FriendRequest. The

data part in the message includes a secret key encrypted with the public key of

the friend request initializer, that is the communication key between the pair of

contacts, and a signature of the former part. The receiving personal server first

verifies the signature and then decipher the secret key and keep it for the owner.

5. Notification is sent from the personal server when receiving a PostMessage request

to a client agent (if it’s online) or a personal server. The relay server makes the

decision of whom to deliver based on the connection status of the client agent. The

data part is simple just containing the timestamp of the message posted.

Figure 5.2: Message Header
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5.2 Security

5.2.1 Encryption

In this thesis we employ two cryptographic methods symmetric encryption and public

key encryption. Symmetric encryption is used in situations where data exchange between

PS and client agents of its one owner or contact of one owner and where long messages

need encryption, and public key encryption in situations where verification is in need

and where communication occurs before two users become contacts, e.g, a user wants to

add another as a contact.

Symmetric Encryption We use Advanced Encryption Standard (AES) encryp-

tion method and choose Cipher Block Chaining (CBC) as the mode of operation. The

encryption needs a initialization vector (IV) besides a secret key. Both IV and secret key

have 16 bytes. Before encryption takes place each time, IV is initialized to the concate-

nation of 8 bytes of current timestamp and 8 bytes of random data. This guarantees that

IV has randomness as well as timestamp. The timestamp can protect attacks of replay

e�ciently as it can be compared to the last timestamp. The IV can be transferred with

the encrypted data as it’s secure and necessary for the other side to do the decryption.

The implementation of AES algorithm is based on package javax.crypto provided on

Java. It implements various classes that supports cryptographic functions. These are

important and useful classes:

• SecretKeySpec is the class that defines a secret key. It has a constructor that takes

the bytes of secret key and the encryption method name as inputs.

• IVParameterSpec is the one that defines an IV. The constructor needs the input

of bytes of an IV.
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• Cipher is the class that defines the encryption method and mode. It can be ini-

tialized with an object of SecretKeySpec, one of IVParameterSpec and a static

variable of Cipher that indicates if it’s encryption or decryption.

• SealedObject can encapsulate the content of a serialized object with encryption

algorithm. It can also retrieve the original object from encrypted object for de-

cryption.

Public key encryption The public key encryption method has two keys, private

key and public key. Private key is merely held by the key owner, and public key can be

public to others. Both keys can be used upon encryption and decryption. When private

key is applied in encryption, it’s often called signature generation, and in this case public

key is used to verify the signature. In the other case, when one party needs to verify that

a user is the one that holds the public key, it can use public key to encrypt and make

the user apply the corresponding private key to decipher.

We use RSA as the public key cryptosystem. Like symmetric encryption, the imple-

mentation of RSA algorithm relies on package javax.crypto.

• PrivateKey and PublicKey are classes that define private key and public key.

• Class Signature provides the functionality of a digital signature. Three phases are

involved in signing a Signature object or verifying: Firstly, initialize a Signature

Object with a PrivateKey object by calling initSign() or with a PublicKey object

by calling initV erify(); Then method of the signature update() can be used to

update bytes of data to be signed or verified; Last sign() and verify() can sign

and verify the updated bytes respectively.
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• Cipher class defines the encryption method. In RSA, a Cipher object can be initial-

ized with a PublicKey (or PrivateKey) object and the static variable ENCRYPT MODE

or DECRYPT MODE. When calling doF inal() with the target bytes, it can enci-

pher the bytes with the public key or decipher the bytes with the private key.

5.2.2 Verification process

This thesis considers verification process in cases where PS (or Client Agent) needs

to reestablish a connection with RS. It can be explained in Figure 5.3. As RS has the

public key of PS (or Client Agent), it can encrypts some data with the public key. The

encrypted data can only be decrypted with the correspondingly right private key. In

such way it can verify the requesting side in order to prevent unauthorized parties from

connecting.

When the client side receives verification data, it utilizes the private key of the user

to reveal the plain bytes. Then it generates 10 bytes of random data, concatenated with

the revealed 10 bytes, and then encipher them all with the private key. RS use the public

key to decipher the new combined data and compares the first 10 bytes data with the

10 bytes generated. If they match, RS can realize that the client is authenticated.

5.2.3 Access control

We have two mechanisms to enforce access control over messages. A root message

have a specific group of whose members can access and a comment have a bloom filter

that e�ciently stores the authorized users information.

Group Membership The membership of a user who belongs to a group is saved

into a MySQL database table named Membership during request ManageContact. When

the contact comes to request posts, PS makes a JOIN SQL query of table posts and

membership and contacts to check if access groups of posts include the contact.
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Figure 5.3: Verification Process

Bloom Filter In our implementation, we use BitSet to represent the data stored

of the bloom filter. The false positive rate is (1 � e�kN/M)k, where k is the number of

hash functions, and N is the number of integers added into the bloom filter and M is the

number of bits in the bloom filter . It can be shown that the probability is minimized

when we take e�kN/M = 1/2, then k, the number of hash functions, can be set up to be

M
N ln2. Now the false positive rate is 1

2
M
N ln2

. According to Dunbar’s number, that is, the

number of social friends that a person can maintain is around 150. If we choose 10 bits

for a number, the size of the BitSet is around 187 bytes.
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Algorithm 1 getFNV64

1: Input: A string s;
2: Constant FNVPRIME = 1099511628211;
3: Constant FNVINT = 14695981039346656037;
4: digest = FNVINT.
5: for each i from 0 to s.size()� 1 do
6: digest = digest XOR s[i];
7: digest = (digest ⇥ FNVPRIME) mod 264

8: end for
9: Output digest.

To implement k random hash functions, we use deterministic function FNV-64 hash

function described in Pseudocode 1 and add some randomness in the hash function

to get k di↵erent hash values. In Java, class Object has a method hashCode(). The

formula(5.1) is to compute ith hash function. Bloom filter supports two methods.

hi(s) = (getFNV 64(s) + i⇥ s.hashCode()) >>> 1 (5.1)

• add(String s): This method is to add a string s into the bloom filter. For each i

(1 < i < k), it computes its the ith hash function hi(s)based on the above formula,

and then set the index hi(s) of BitSet to true.

• appear(String s): This method is to check if the input string s is contained in the

bloom filter or not. Like method add(Strings), it computes hi(s) and check if the

hi(s)th index of the BitSet is true or false. That all h1(s), h2(s), ..., hk(s) indexes

of BitSet are true concludes that s is in the set with large probability.

5.3 Personal Server

5.3.1 Overview of initialization

When PS starts, it makes a SSL connection request to RS and proceeds handshaking

with RS. If it passes, PS checks if this is the first time connecting to RS , if yes, PS
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registers itself and all its owners onto RS. Otherwise, it’s its turn to be authenticated

by RS via verification process. After registration or successful verification, PS is ready

to wait on the established socket for requests from others. When there comes a request,

PS main thread spawns a new thread to handle it and then comes back to wait on the

socket again. The steps can be illustrated in Figure 5.4.

Figure 5.4: Flow chart of PS initialization
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5.3.2 Request handling

As indicated in Figure 5.4, a thread of handling request is created when the request

comes. In Table 5.1, requests that can be handled by PS are categorized based on request

sent by whom: owner client agent, or contact client agent or contact personal server. PS

can recognize request because each request has di↵erent request type id.

Table 5.1: Summary of requests handled by PS

Requester Actions
Owner client agents EditGroup, EditProfile, AddContact, RetrieveContactRe-

quest, AcceptContact, ManageContact, PostMessage, Com-
mentMessage

Contact client agents RetrieveMessageDirectory, RetrieveMessage, CommentMes-
sage

Contact PS SendContactRequest, SendContactConfirm, SendNotification

5.3.3 Profile definition

Profile is itemized into (key, value) pairs that can facilitate users to search and come

to know people. This thesis currently allows the following keys: 0 (client name), 1

(gender), 2 (birth year), 3 (birth month), 4 (birth day), 5 (hobby), 6 (profession), 7

(college). Keys can be extended in future and kept known to all clients.

In order to enforce fine-grained access control over profile, each item is associated

with an access group id so that members of that group can access the key and value. Id

0 is reserved for public sharing.
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5.3.4 Data structure

We use MySQL database to store data. We group data in PS into three categories:

basic information about owners, contact management and posts of owners. All tables

are shown in Figure 5.5.

• Basic information includes information of owners and owners’ profiles.

• Contact management includes contact information and groups defined by owners

and membership.

• Posts contains root messages of owners and comments from contacts, and their

access privileges respectively. Media from root messages and from comments are

stored together in table Media.

Figure 5.5: Database tables at Personal Server

We use SQL to create tables in MySQL database. Below is an example of creating

table Owners.
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CREATE TABLE ‘profiles‘ (

‘id‘ INT NOT NULL AUTO_INCREMENT,

‘owner_id‘ INT NOT NULL,

‘key_id‘ INT NOT NULL,

‘value‘ VARCHAR(60) NOT NULL,

‘group_id‘ INT NOT NULL,

PRIMARY KEY (‘id‘)

)

Query PS connects to MySQL database when storing/retrieving data is required.

We use PreparedStatement in Java to represent SQL statements. A SQL statement with

unknown parameters can be precompiled and stored in a PreparedStatement object.

Later values of parameters can be set up into the statement by using setter methods

of PreparedStatement on the condition that setters should specify the compatible types

with ones defined in the statement. Below is an example of using PreparedStatement

to execute SQL query of selecting private key and encryption key from owners with a

specific owner id.

St r ing query = ‘ ‘SELECT privkey , enc key FROM owners WHERE us e r i d = ?” ;

/⇤ User In fo i s a c l a s s to d e f i n e a owner ⇤/

User In fo usr = ( User In fo ) input ;

/⇤ Connection dbConn i s an a c t i v e connect ion ⇤/

PreparedStatement preStatement = dbConn . prepareStatement ( query ) ;

preStatement . s e t I n t (1 , usr . ge tCl i ent ID ( ) ) ;

Resu l tSet r e s u l t = preStatement . executeQuery ( ) ;

5.4 Relay Server

When Relay Server starts running, the main process creates four threads, each of

which listens on a port and waits for requests from others. The first thread listens
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on port 9780 for connections from client agents to transmit messages; the second on

port 9781 for connections from personal servers to registration and deliver messages;

the third on port 9782 for connections from personal servers to publish profiles on open

socialization platform and the last one on port 9783 for request of profiles from client

agents.

5.4.1 Data structure

Hash table Because of the role of routing messages between client agents and

personal servers, relay server needs to memorize somehow output stream of each socket

connection with client agent or personal server in order to search quickly. We use two

hash tables to store them respectively, one for storing key (client id) and value (its

output stream) , the other for key (personal server id) and value (its output stream). As

Hashtable in Java is thread-safe, it allows two hash tables to be shared by the first two

threads. When a connection with port 9780 from a client agent is established, the first

thread stores client id and the output stream of the socket connection into the first hash

table; when the connection gets lost, the pair of the key and value is removed from the

hash table.

When there is a request message from a client agent to a personal server, the relay

server can e�ciently find out the output stream of the personal server in the hash table.

Database Tables To allow personal servers and client agents to make connections

again after connection failure, the relay server should store information of registered per-

sonal servers and of clients (owners of personal servers) so that it can retrieve information

in database to verify the requester, e.g, public key of the requester. On the other hand it

needs to store public profiles from clients as it’s open socialization platform. All tables

in relay server are defined in Figure 5.6.
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Figure 5.6: Database tables at Relay Server
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CHAPTER 6. EVALUATION

In this section, we report some evaluations of the implemented social network proto-

type. We focus on evaluating the response time elapsed from when a client agent sends

out a request to when it receives the response in four di↵erent scenarios, as detailed

below. The results show that the prototype has good performance in terms of social

functions.

6.1 Scenario One

It measures the response time of querying messages by a contact in di↵erent cases

where the owner’s “posts” table size varies. This scenario involves two personal servers,

two client agents and one relay server.

6.1.1 Settings

Environment setting The relay server runs at an EC2 machine. We put client

agent into the same machine of the personal server. A MacBook Pro laptop plays one

personal server and its client agent, and a virtual machine created by VirtualBox in the

same MacBook Pro, plays the other pair of personal server and client agent. The specific

configurations of these three machines in terms of Operating System, CPU, Memory and

Storage Space, are shown in Table 6.1.

Parameter setting The number of posts in database varies: 200, 400, 800 and

1600. There are 100 posts that satisfy a query from the client agent, and each post
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Table 6.1: Configuration details

EC2 machine MacBook Pro Virtual Machine
Ubuntu-14.04-LTS OS X 10.11.1 Ubuntu-14.04-LTS
2.5 GHz Intel Xeon 2.5 GHz Intel i5 with 1 processor 2.5 GHz Intel i5 with 1 processor

1GB 16 GB 2 GB
10 GB 240 GB 10 GB

with 200 bytes of text. For each number setting, the client agent conducts 100 times of

queries. The response time is calculated as the average value of all query time intervals.

6.1.2 Result

The result is shown in Figure 6.1. The X-axis represents the changes in the table size

in the units of number of records, and the Y-axis shows the response time in units of

millisecond. The values from 200, 400, 800, 1600 forms are around 160 ms, forming the

trend that the change of database size doesn’t a↵ect the response time very much.

 0

 50

 100

 150

 200

 250

 300

 0  200  400  600  800  1000 1200 1400 1600 1800

R
es

po
ns

e 
tim

e 
(m

s)

Table size (# of records)

Figure 6.1: Response time of querying posts with di↵erent table sizes
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6.2 Scenario Two

It measures the response time of querying messages by a contact in di↵erent situations

where these messages have di↵erent sizes at owner’s personal server. As in the Scenario

One, it involves two personal servers and two client agents and one relay server.

6.2.1 Settings

Environment setting It’s the same in the Environment setting 6.1.1.

Parameter setting The size of each message retrieved varies from 1KB, 10KB,

100KB and 1MB. The size of table “posts” at owner’s PS side is fixed with 400 records.

There are 10 messages satisfying a query from client agent of the contact. For each

situation, the client agent conducts 100 times of queries sequentially after it gets the

result from the previous query. The response time is equal to the average time of all

query time intervals.

6.2.2 Result

The result is shown in Figure 6.2. The X-axis means the increasing values of post

size in unit of KB and Y-axis the response time in unit of millisecond in the log scale.

It shows that when post size is relatively small, like less than 200 KB, the response time

is less than 300 milliseconds, but when the size arises to 1MB, it needs several seconds

to go through the network tra�c.

6.3 Scenario Three

This scenario takes the notification scheme into consideration. The basic model

is that an owner client publishes a message onto the personal server, and the nearby

online contact, who satisfies the access control policy, tries to fetch it after receiving
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Figure 6.2: Response time for queries with di↵erent post sizes

the notification of the new message. The time interval is measured from the time when

the owner acts the posting in the client agent to the time when the contact receives the

message. As in the Scenario One, it involves two personal servers and two client agents

and one relay server.

6.3.1 Settings

Environment setting This is the same as the setting 6.1.1.

Parameter setting The owner client posts a 10KB message onto the personal

server with access setting that contains the contact nearby, which keeps an alive con-

nection with relay server. The personal server sends out a notification to the contact.

Contact receives it and then sends a message query to the owner’s personal server and

retrieve the message. This experiment is done 100 times.
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6.3.2 Result

The average time interval for the whole process is around 700 milliseconds. This

result is positive to make instant chat message possible.

6.4 Scenario Four

We measure the response time in the situations where three contacts simultaneously

query messages of a owner at one personal server. These three users are continuously

sending queries with a certain query frequency. In this scenario, four personal servers

and four client agents and one relay server are involved.

6.4.1 Settings

Environment setting In this experiment, we add two more virtual machines with

the same configuration of the virtual machine in 6.1.1, and other settings remain the

same. One personal server plays where messages of the owner are stored, and three

other client agents play where these of contacts send queries.

Parameter setting Each contact client has 100 queries for the target personal

server. The table “posts” has 400 records, and each post is 200 bytes. For each query,

there are 10 posts satisfied and returned. We change the time interval of these queries

at each contact client agent while time intervals at these agents are equal. The time

intervals are 1 second, 2 seconds, 4 seconds and 8 seconds. The response time for each

client agent is calculated as the average value among all query response times.

6.4.2 Result

The result is shown in Figure 6.3. The X-axis represents the query intervals in unit of

seconds, and Y-axis represents response time in unit of milliseconds with log scale. From
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this output, we can find that when the personal server serves many client agents, the

response time is approximately 130 milliseconds for each client. And the query interval

starting from 1 second doesn’t a↵ect the response time very much.
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Figure 6.3: Response time of di↵erent query intervals

6.5 Security Analysis

We can conclude that our system is secure against threats in Threat Model if the

underlying encryption mechanisms SSL and secret encryption are secure.

Let’s first look at outside adversaries who want to eavesdrop communication between

PSes or tamper communication data. They don’t have capabilities to do so as all of

communication channel between PS and RS are deployed with SSL. If SSL is secure

against these attacks, then outside adversaries can’t eavesdrop communication, not even

tamper communication data.
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Bad insiders might contain two parties, one is the honest but curious relay server and

the other is any other user. In our system the relay server can’t learn any information

about messages posted by users and shared among friends of users, yet it can know the

types of messages which it multiplexes, as we can see that messages transmitted in the

procedures of posting and retrieving are encrypted under symmetric encryption. If the

encryption is secure, then messages won’t be revealed to the relay server.

Now consider a bad user Alice who wishes to access data of user Bob. When Alice is

a friend of Bob, it’s inevitable for Alice to access friends’ data which she is able to. But

when Alice is not a friend, she can’t access any Bob’s messages which are enforced by

access control policy. Neither does she learn any communication between Bob and the

relay server, as SSL is deployed.
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CHAPTER 7. CONCLUSION

Online social networking services have been very popular in recent years. More and

more people spend a lot of time on posting data onto these service providers and receiving

information from them. Data privacy has become a serious concern. Decentralized social

network is a promising solution to the online central social networking systems. However,

many existing works employ heavy encryption operations or construct systems without

basic social networking functions. These would impede practical application in real life.

In this thesis we propose a new framework of decentralized social network. In order

to protect servers where personal data is stored from outside attacks to some degree, and

to make data accessible to users anywhere, we design three components, personal server

hiding behind a firewall, client agent and relay server. The relay server is the place

where client agent contacts in order to access data in personal server. Each personal

server keeps a long-term connection with the relay server. Data transmitted is encrypted

to protect the relay server from learning.

We design protocols to realize basic social networking function, which includes, mak-

ing friends in the system, managing friends, posting messages, retrieving messages, and

so on. We implement a prototype system. Evaluations have been conducted to test the

performance of social networking functions.
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