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ABSTRACT

Asynchronous systems with message-passing communication paradigm have made major

inroads in many application domains in service-oriented computing, secure and safe operating

systems and in general, distributed systems. Asynchrony and concurrency in these systems

bring in new challenges in verification of correctness properties. In particular, the high-level

behavior of message-passing asynchronous systems is modeled as communicating finite state

machines (CFSMs) with unbounded communication buffers/channels. It has been proven

that, in general, state-space exploration based automatic verification of CFSMs is undecidable–

specifically, reachability and boundedness problems for CFSMs are undecidable. In this context,

we focus on an important path-based property for CFSMs, namely well-formedness–every

message sent can be eventually consumed. We show that well-formedness is undecidable as well,

and present decidable sub-classes for which verification of well-formedness can be automated.

We implemented the algorithm for verifying the well-formedness for the decidable subclass, and

present our results using several case studies such as service choreographies and Singularity OS

contracts.
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CHAPTER 1. INTRODUCTION

Distributed Systems are becoming increasingly popular in most of the computing platforms

and business areas, owing to its advantages with high processing power, increased reliability, huge

storage and increased scalability. It has indeed become a basis for most of the modern applications.

Some of its application areas include Telecommunications, Peer to Peer Networks, Parallel

computation and Real-time processing. According to Coulouris et al. (2011), a distributed

system is one in which components located at networked computers communicate and coordinate

their actions only by passing messages. Given its significant usage and applications in vast areas

of business and technology, it becomes imperative to study and analyze the properties of such

systems to avoid system failures and any unwanted behavior.

Message based communication is one of the widely used ways in which the hardware or

software components in a distributed system communicate with each other. However, the peers

or components in a system can sometimes become busy serving other requests and sometimes,

there can be delay in the message transmission. Hence, the peers in a system should be tolerant

enough in processing and communicating messages. This is usually achieved via asynchronous

communication. Asynchronous systems with message-passing communication paradigm have

made major inroads in many application domains–in service-oriented computing WS-CDL (2006),

in secure and safe operating systems Singularity (2004); Fähndrich et al. (2006) and in general

distributed systems Armstrong (2002). The Web Services Choreography Description Language

(WS-CDL) is an XML based language that defines and describes peer-to-peer collaborations

of participating peers and their observable behavior in which communication is achieved via

message exchanges. The specification is targeted at providing collaborations between peers

irrespective of the hosted platforms and programming models of the individual peers. Singularity

is aimed at building architecture, services and applications that are highly dependable. One of
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the important features of Singularity OS is process isolation to guarantee that a process cannot

access or corrupt code or data of another process. The inter-process communication is achieved

via message passing. Armstrong (2002) proposes a new scheme of Universal Binary Format

(UBF) for exchange of messages in distributed systems instead of the traditional method of

XML based communication scheme.

At a high-level, the dynamics of such systems are captured using communicating finite-state

machines (CFSM) Brand and Zafiropulo (1983), where the behavior of each component referred

to as machine, peer or agent is described using a finite state machine. The exchange of messages

between each of these machines is performed through channels. One of the ways in which a

channel can be seen is as a FIFO queue where the size of the queue indicates the maximum

number of messages that the channel can hold before the receiver is ready to consume. In

this interpretation, it can also indicate the maximum delay that the channel can induce on a

message. A channel can also be represented as a queue with no ordering of messages involved

and a message can be consumed randomly if it is available in the queue. In this work, we

consider FIFO ordering of messages in the queue. As per the CFSM description, the peer

evolves from one state to another via a directed transition resulting from production (sending)

or consumption (receiving) of message(s). A sent-message is appended to the channel which

is a buffer or queue of the receiver, and the receiver consumes a message if it is available in

its channel. Hence, a system can be seen as a set of communicating finite state machines, in

which each machine communicates with the other by sending a message to the channel of the

receiving machine.

1.1 Verification of Well-formedness in an asynchronous communication

Given a model of the asynchronous system and a set of properties, model checking determines

whether the given model satisfies the specified properties. However, if the state space of the

system is not finite, model checking is undecidable in general owing to the infinite state space.

One of the primary factors influencing the size of the state space in asynchronous communication

is the size of the channels used by the peers; which is not known a priori. In Brand and

Zafiropulo (1983), the authors established that two important decision problems related to
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CFSMs (with channels modeled as queues) is undecidable—boundedness: does the size of queues

in the CFSMs always remain within some finite bound, and reachability: can one compute the

reachable state-space of any CFSMs. This makes automatic verification of many important

properties including deadlock-freedom undecidable. In Yu and Gouda (1982); Gouda et al.

(1987), the authors further discuss the boundaries of decidability of deadlock-freedom based on

the type and number of buffers in communication paradigm. On the other hand, the authors, in

Gouda and Chang (1986); Gouda et al. (1984), considered liveness properties described in terms

of infinitely often occurrences of states in the machines. These properties are undecidable, in

general, as they depend on the state-space computation as well. As a result, research has focused

on identifying either a sub-class of CFSMs (i.e., sub-class of message-passing asynchronous

systems) for which verification becomes decidable, or the sufficient conditions for deciding

satisfiability of properties, or a class of property, whose conformance is still automatically

verifiable in general asynchronous systems.

In our thesis, we define the property ”Well-formedness”, which states that every message

that is produced should be eventually consumed; i.e as a system evolves by means of sending a

message M from a peer P1 to another peer P2; the system should also be able to eventually reach

a future configuration where the message M is consumed by P2. As the peers in an asynchronous

system communicate over unbounded receive-queues, it is not guaranteed that every message

sent by a peer will be eventually consumed by the receiving peer. This may be because the

receiving peer is never ready to consume the message, which may result in deadlock and/or

lead to an unwanted behavior of the asynchronous system. Hence, well-formedness becomes

one of the important property for asynchronous communication to ensure a safe behavior in its

evolution.

However, verification of well-formedness can be challenging. Well-formedness check requires

that at every configuration in the state space, every peer in the current configuration will be

able to consume the messages in its queue in the near future. However, the size of the state

space or computation of the reachable state space was previously proved to be undecidable

by Brand and Zafiropulo (1983). So, that leaves us with the question on whether verifying

well-formedness for asynchronpus systems is decidable or undecidable. And how does the results
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vary for various types of asynchronous communication; for example, the messages in the queue

can be ignored or deferred by the receiving peer Desai et al. (2013) or the messages can be

consumed by the receiving peer in a random order.

We prove that verifying well-formedness property in asynchronous systems is undecidable in

general. The proof relies on simulation of Turing machine by asynchronous CFSMs and reduction

of the famous Halting problem to the problem of verifying well-formedness in asynchronous

systems.

We also identify two important sub-classes of asynchronous systems for which well-formedness

can be automatically tested. These sub-classes have been extensively studied in the existing

literature in the context of message-passing systems in different domains, and are determined in

terms of the observable interactions or sequence of send actions. The consumption of messages

(receives) are typically viewed as local to the receiving peers and are not considered observable.

Hence, in Web service choreography language, the behavior of the services are often described in

terms of the messages being sent by the participating peers/services WS-CDL (2006). Similarly,

the specifications of desired interactions in Singularity OS communication contracts Singularity

(2004) and UBF(B) communication contracts in distributed Erlang programs Armstrong (2002)

are described using interactions between (messages being sent by) participating entities.

One of the sub-classes is referred to as synchronizable Fu et al. (2005). Systems are

synchronizable if and only if the interactions resulting from asynchronous communication over

unbounded queues can be captured by the interactions resulting from synchronous communication

(where every sent-message is immediately consumed). We prove that synchronizable systems

are well-formed. Another sub-class (a superset of synchronizable sub-class) is referred to

k-send-bounded. Systems are k-send-bounded if and only if the interactions resulting from

asynchronous communication over unbounded queues can be captured by the interactions

resulting from asynchronous communication over k-bounded queues. We prove that for systems

in k-send-bounded sub-class, well-formed property can be automatically verified. Membership

(of asynchronous systems two peers) in synchronizable and k-send-bounded sub-classes has been

shown to be decidable in Basu and Bultan (2011, 2014).
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1.2 Contributions

1. Decidability of well-formedness property We will prove that verification of well-

formedness property in asynchronously communicating CFSM is undecidable. The proof

involves the construction of asynchronous system that simulates a Turing machine and on

the reduction of halting problem to the testing of the system’s well-formedness.

2. Identifying sub-classes of systems We present two interesting sub-classes of asyn-

chronous systems for which well-formedness can be automatically tested: Synchronizable

sub-class and k-send-bounded sub-class. Checking whether an asynchronous system over

two peers belongs to one of these sub-classes is already proven to be decidable Basu and

Bultan (2011, 2014)

3. Case Studies We present the experimental results of running our implementation tech-

nique on various service contracts like Reservation Session, Metaconversation, etc. and

Singularity OS contracts like TpmContract, TcpContract and KeyboardContract.

1.3 Outline

The rest of the thesis is organized as follows. Chapter 2 presents various formalisms

for asynchronous systems as communicating finite state machines. Chapter 3 discusses the

contributions of this work in light of the existing work in verification of properties in asynchronous

message-passing systems. Chapter 4 discusses the Turing machine simulation and presents the

proof of undecidability for the well-formedness property. Chapter 5 discusses and presents the

well-formedness characteristics for the identified sub-classes. Chapter 6 discusses the result

of applying our technique on several case studies. Finally, Chapter 7 summarizes the future

avenues of research.
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CHAPTER 2. BACKGROUND

This chapter discusses various formalisms and definitions for asynchronous systems modeled

as communicating state machines and their behavior in the presence of bounded buffers and

unbounded buffers. We illustrate the behavioral semantics using examples of asynchronous

systems. These definitions follow the ones presented in Basu and Bultan (2014) in the context

of developing sub-classes of asynchronous systems for which automatic verification is feasible.

2.1 Peers & Systems

A peer or machine in an asynchronous system is represented as a communicating Finite State

Machine (CFSM). The communication between the peers is modeled as sending or receiving of

messages between the CFSMs. Each state in a peer is capable of doing a send (produce) action

or receive (consume) action or both. A send action would result in addition of a message to the

receiving peer’s buffer and a receive action would result in consumption of a message from its

buffer. We formally define the Peer behavior in 1.

Definition 1 (Peer Behavior) A peer behavior (or simply a peer), denoted by P, is a finite

state machine (M,S, s0, δ) where M is the union of input (M in) and output (Mout) message

sets, S is the finite set of states, s0 ∈ S is the initial state, and δ ⊆ S × (M ∪ {ε})× S is the

transition relation.

A transition τ ∈ δ can be one of the following three types:

1. a send-transition of the form (s1, !m1, s2) which sends out a message m1 ∈Mout,

2. a receive-transition of the form (s1, ?m2, s2) which consumes a message m2 ∈M in from

its input queue, and
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Figure 2.1 (a–e) Peers; (f-i) Partial View of I composed of P1,P2; (f-ii) I0 composed of P3, P2

3. an ε-transition of the form (s1, ε, s2). We write s
a−→ s′ to denote that (s, a, s′) ∈ δ.

We will focus on deterministic peer behaviors, where ∀s1, s2 : s
a−→ s1 ∧ s

a−→ s2 ⇒ (s1 = s2).

Peer behaviors can be made deterministic by following standard methods for translation of

non-deterministic state machines to deterministic ones. Figure 2.1 presents CFSM behavioral

representation of peers. The initial states are sub-scripted with 0.

Figures 2.1(a, b) presents CFSM behavioral representation of two peers P1 and P2. The

initial states are sub scripted with 0.

An asynchronous system usually consists of multiple peers. The system behavior is composed

of message exchanges between these peers in the system. We now formally define System Behavior

in 2

Definition 2 (System Behavior) A system behavior (or simply a system) over a set of peers

〈P1, . . . ,Pn〉, where Pi = (Mi, Si, s0i, δi) and Mi = M in
i ∪Mout

i , is denoted by a state machine
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(possibly infinite state) I = (M,C, c0,∆), where M is the set of messages, C is the set of

configurations, c0 is the initial configuration, and ∆ is the transition relation defined as:

1. M = ∪iMi

2. C ⊆ S1 ×Q1 × S2 ×Q2 × . . .× Sn . . .Qn such that ∀i ∈ [1..n] : Qi ⊆ (M in
i )∗

3. c0 ∈ C such that c0 = (s01, ε, s02, ε, . . . , s0n, ε); and

4. ∆ ⊆ C ×M × C,

for c = (s1, q1, s2, q2, . . . sn, qn) and c′ = (s′1, q
′
1, s
′
2, q
′
2, . . . s

′
n, q
′
n)

(a) c
!m−→ c′ ∈ ∆ if ∃i, j ∈ [1..n] : m ∈Mout

i ∩M in
j ,

(i) si
!m−→ s′i ∈ δi, (ii) q′j = qjm,

(iii) ∀k ∈ [1..n] : k 6= j ⇒ qk = q′k and (iv) ∀k ∈ [1..n] : k 6= i⇒ s′k = sk

(b) c
?m−−→ c′ ∈ ∆ if ∃i ∈ [1..n] : m ∈M in

i

(i) si
?m−−→ s′i ∈ δi, (ii) qi = mq′i,

(iii) ∀k ∈ [1..n] : k 6= i⇒ qk = q′k and (iv) ∀k ∈ [1..n] : k 6= i⇒ s′k = sk

(c) c
ε−→ c′ ∈ ∆ if ∃i ∈ [1..n]

(i) si
ε−→ t′i ∈ δi, (ii) ∀k ∈ [1..n]qk = q′k and (iii) ∀k ∈ [1..n] : k 6= i⇒ s′k = sk

In summary, a state in the system is described by the local states of the participating peers

and their respective receive queues. At each transition, one of the peers can update its local

state by sending or receiving messages. The messages sent are added to the tail of the receive

queue of the receiver, while messages consumed are removed from the head of the receive queue.

The sending of the messages are never blocked. The receiving of messages can be blocked if the

message to be consumed is not present at the head of the queue.

Figure 2.1(f-i) presents a partial view of a system I resulting from the asynchronous

communication between peers P1 and P2. The messages in the respective queues of the

participating peers is enclosed by [ . ], where the left-most entity is at the head of the queue.

Each action of sending or receiving a message results in a new transition. Each state in such
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a system is referred to as a configuration. The initial configuration of the system has the

local start states from each of the participating peers, in this example, s0t0. s0 cannot make a

transition as it is waiting for message a to be sent by t0 in P2. P2 makes a transition from t0 to

t1 by sending message a to P1. The new resulting configuration is s0t1[a][]. Note that in its

current configuration, either P1 can consume the message resulting in a new configuration s1t1[][]

or P2 can make a send transition resulting in the configuration s0t2[aa][]. As discussed earlier,

the send transitions are never blocked and the system will be able to evolve by sending messages

as long as there are send transitions available with the local states in the individual peers. Note

that, the system in this example has unbounded number of configurations as every time P2

completes a cycle in its local transitions, it adds the message a to P1’s buffer twice; however, P1

can consume only one a every time in the cycle of its local transitions. Thus, the number of

messages pending to be consumed by P1 can increase in an unbounded fashion (production of

messages outruns the consumption of messages) and eventually leads to an infinite state space.

In the above example, we have seen an asynchronous system with unbounded buffer space

that has the capability of growing its space space by sending messages in an unbounded fashion.

The buffer space available for the peers in an asynchronous system can also be bounded in order

to limit the behavior of the system. Here, we provide a formal definition for a k − bounded

system in 3

Definition 3 (k-bounded System Behavior) A k-bounded system (denoted by Ik) is a sys-

tem where the receive queue capacity for any peer is at most k. The k-bounded system behavior

is, therefore, defined by augmenting condition 4(a) in Definition 2 to include the condition

|qj | < k, where |qj | denotes the length of the queue for peer j.

In k-bounded system Ik, the send actions are blocked when the corresponding receive queue,

where the sent message is supposed to be buffered, is full (i.e., it already contains k messages

pending to be consumed by the receiver). Therefore, Ik has a finite state-space. Hence, in the

above example Figure 2.1(f-i), P2 can no longer send messages to P1 once P1’s receive buffer is

filled with k a’s. P2’s send actions will be blocked until P1 consumes a message from its buffer

which provides buffer space for P2 to send messages to P1.
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The above definition 3 also gives us an interesting observation. The number of configurations

in a system Ik+1 (bound k + 1) can be more than the number of configurations in Ik; i.e. Ik+1

can have additional configurations along with the configurations that are present in Ik. Let’s

consider the systems P1 and P2 from the example Figure 2.1(f-a,f-b,f-i). Consider systems I2

and I1. I2 having a buffer bound of two can make a send transition from the configuration

s0t1[a][] to a new configuration s0t2[aa][]. I1 having a buffer bound of 1 cannot reach this

configuration as the send transition by P2 will be blocked as P1’s buffer is already full in s0t1[a][].

However, it should be noted that Ik+1 contains all the configurations that are available in Ik as

in the above example.

Definition 4 (Synchronous System Behavior) A synchronous system over a set of peers

〈P1, . . . ,Pn〉, where Pi = (Mi, Si, s0i, δi) with Mi = M in
i ∪ Mout

i and ∀i, j : i 6= j,M in
i ∩ M in

j =

Mout
i ∩ Mout

j = ∅, is denoted by a finite state machine I0 = (M,C, c0,∆), where M is the set

of messages, C is the set of states, c0 is the initial state, and ∆ is the transition relation defined

as

1. M = ∪iMi

2. C ⊆ S1 × S2 × . . .× Sn

3. c0 ∈ C such that c0 = (s01, s02, . . . , s0n)

4. ∆ ⊆ C ×M × C for c = (s1, s2, . . . sn) and c′ = (s′1, s
′
2, . . . s

′
n) c

!m−→ c′ ∈ ∆ if

∃i, j ∈ [1..n] : m ∈ Mout
i ∩M in

j , such that si
!m−→ s′i ∈ δi and sj

?m−−→ s′j ∈ δj; and

∀k ∈ [1..n] : k 6∈ i, j ⇒ s′k = sk

In a synchronous system, a sender can only send a message when the receiver is ready to consume

the message, and the act of sending and receiving messages is synchronized. Figure 2.1(f-ii)

presents a synchronous system. Each transition is labeled with the send action; however, note

that for synchronous systems, the corresponding receive action also happens with the same

transition. In Figure 2.1(f-ii), every send transition implies a send transition followed by an

immediate receive (consumption) transition.
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2.2 System Behavior modeled as a language

The interaction between peers in an asynchronous system can be modeled as a sequence of

message exchanges. The sequence of message exchanges lets the system evolve into different

configurations. Below, we provide a formal notation of modeling the interactions in a system as

language and also define Language Equivalence.

Definition 5 (Language Model and Language Equivalence) Given a system I = (M,C, c0, F,∆)

over a set of peers 〈P1, . . . ,Pn〉, a path π is a finite or infinite sequence of configuration of the

form

c0
a1−→ c1

a2−→ c2
a3−→ . . .

where ai ∈M . We say that m is a send if ∃k : !m = ak. Furthermore, mj is the j-th send in

the path π if !mj = ai and there are j − 1 sends in π’s prefix: c0
a1−→ c1

a2−→ c2 . . .
ai−1−−−→ ci−1.

Given a path π in a system I = (M,C, c0, F,∆), a send sequence in π is m1m2m3 . . . such

that mj is the j-th send in the π.

The language of I = (M,C, c0, F,∆), denoted by L(I), is the set of sequences of send

actions on any (finite or infinite) path in I. Systems I and I ′ are languageequivalent if and

only if L(I) = L(I ′). Some examples of send sequences for the system in Figure 2.1(f-i) are

aabaabaab.., ababaa.., ababab...

When we consider bounded buffer systems, the send actions are usually restricted by the

capacity of the receiver buffer and as a result, the behavior of a system with smaller capacity

buffers is smaller (in terms of sequences of send actions) than the ones with larger capacity

buffers. Formally, we say that

Proposition 1 ∀k ≥ 0 : L(Ik) ⊆ L(Ik+1) ⊆ L(I).

Based on the notion of language equivalence and synchronous behavior discussed above 4

and 5, synchronizability is defined as follows.

Definition 6 (Synchronizability) A system I over a set of peers is said to be synchronizable

when its language resulting from the asynchronous composition of peers is identical to the language

resulting from the synchronous composition of the same set of peers. That is, L(I) = L(I0).
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When a system is synchronizable, its properties (with respect to send actions) can be automati-

cally verified by verifying the same properties for the corresponding synchronous system, whose

behavior can be expressed in finite state-space. In Basu and Bultan (2011), the authors proved

that synchronizability is a decidable property and presented an efficient method for the decision

procedure.

Proposition 2 (Deciding Synchronizability (Basu and Bultan (2011))) A system I is

synchronizable if and only if L(I0) = L(I1).

The above results hold for two-peer asynchronous systems. Note that, I0 and I1 are finite

state machines and, therefore, their language equivalence can be automatically determined.

While synchronizability is an important sub-class of asynchronous systems (it was reported that

over 90% of Singularity OS channel contracts are synchronizable), there are still asynchronous

systems, which are not synchronizable, but whose behavior may be represented using bounded

capacity queues. In Basu and Bultan (2014), the authors presented the condition under which

asynchronous system’s behavior (with respect to send-sequences) can be captured using finite

capacity queues. Note that, this does not imply boundedness of asynchronous system (which is

undecidable); instead, our results simply state that send-sequences of an asynchronous system

with unbounded queues can be captured using finite capacity queues. Once the condition is

satisfied, one can compute the necessary queue capacity using the following proposition. The

following is generalized version of the above proposition in the context of two-peer asynchronous

system.

Proposition 3 (Finding k-send-boundedness (Basu and Bultan (2014))) ∀k : L(Ik) =

L(I)⇔ L(Ik) = L(Ik+1).

When a system I is k-send-bounded, then the properties in terms of send-sequences can be

verified by verifying the same properties using Ik.
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CHAPTER 3. LITERATURE REVIEW

In this chapter, we discuss some of the important works that have been done previously in

modeling and auto verification of properties in asynchronous systems. Different approaches

were taken to address the verification problem in asynchronous systems. As the verification

problem for these systems is undecidable in general, researchers have focused on identifying

sub-classes of the systems and in some cases, sufficient conditions which when satisfied, makes

the verification of these properties decidable.

3.1 Asynchronous Systems as Communicating finite state machines

Brand and Zafiropulo (1983) models processes in an asynchronous communication as explicit

communicating finite state machines and uses implicit queues to represent channels; the queues

are modeled to have unbounded capacity in order to support channels with arbitrary varying

capacities. The processes communicate by sending messages to one another over the channels.

The protocol model used by the work defines the properties of the system in terms of execution

of the model which is a sequence of global states, where each global state represents the current

state of all individual processes and their queue content. The execution starts from the initial

global state which contains all the initial states of each process. The execution proceeds further

in terms of steps where each step involves either sending a message or consumption of a message.

In our work we refer to these each of these global states as a configuration. A global state is

reachable if there exists a sequence of steps starting with the initial global state that eventually

leads to the target global state. Also, a protocol can be deadlocked if it eventually reaches a

global state where the channels of all processes are empty and there are no transmissions from
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any individual peers in that global state. All the states that are reachable were referred to as

N -tuple stable states, where N represents the number of processes.

The work focuses on a problem statement which is to find all the executable receptions and

all the stable states for a given system. An executable reception is a pair (s, x), s is a state

in a peer and x is a message to be consumed, leads to a reachable global state. It proves that

finding the reachable state space and identifying all the stable states is undecidable in general.

Further, it also discusses that boundedness, whether or not the queue-sizes in all the reachable

configurations in a CFSM remains within some finite bound is undecidable; however, when the

channels are bounded, finding the global reachable state space and stable states is decidable.

It also shows that the problem is decidable for systems having two processes when any one

channel is unbounded. But it unsolvable if any system with more than 2 processes has any

channel unbounded. The proposed solution consists of considering N executions of N process

separately. It builds N trees, one for each process that represents all possible executions for

each process. Each state that is reached multiple times in a tree is given a different name;

similarly, each message that is transmitted or received more than once uses a different name to

distinguish different possible states and possible transitions in this tree protocol. The conditions

for communicating CFSMs to be identified as a tree protocol can be referred from Brand and

Zafiropulo (1983).

The solution approach reduces the original problem statement into 2 subproblems: first,

to solve the same problem for tree protocols and second, to decide when to terminate the

growing of trees, without missing any stable states or possible receptions. The work Brand and

Zafiropulo (1983) solves the first subproblem; however, the second subproblem is unsolvable in

general and a partial solution is proposed. The partial solution works by checking if further

expansion of tree uncovers new receptions or stable states in the general graph. The solution

marks the states dead that satisfies the type 0 or type 1 dead criteria. The type 0 dead criteria

is similar to the methods used in perturbation method used in West (1978); it ignores any

newly generated global state that is already previously generated. The type 1 dead criteria

states that the sub-tree of a state ti can be ignored if any message sent from ti can only be

received at dead states. The expansion of the tree terminates when new transmissions can



15

only be appended below the dead states. The limitation of the approach is that termination is

not guaranteed for all protocols with unbounded channels; they guarantee termination only in

bounded channels and also in systems with 2 processes with only one unbounded channel. In

other cases, the solution recommends the use of a natural parameter by the user based on the

protocol that limits the search for a solution and also mentions it as one of the future work

areas.

3.2 Verification via Synchronizability

We now discuss some of the works that have tried to address the verification problem

using Synchronizability property. Simply stated, if the interaction behavior of the peers in

a system remains the same when asynchronous communication is replaced with synchronous

communication, it is said to satisfy the Synchronizability property. A formal definition for

Synchronizability property is provided at 6. Below we discuss the works and results of Basu

and Bultan (2011), Fu et al. (2004), Fu et al. (2005).

Fu et al. (2004) discusses the techniques for analyzing interactions of composite web services

specified in BPEL (Business Process Execution Language) that interact through XML messages.

The work presents the tool set framework that translates BPEL specifications to intermediate

representation consisting of guarded automata consisting of unbounded queues made of XPath

expressions which is finally translated to a verification language. For verification, they use

Promela (SPIN model checker) as the language. As SPIN is a finite state verification tool, it

can allow for a partial verification by bounding the queue size. The work addresses the problem

of partial verification by introducing synchronization which checks that if the conversation set

remains same when asynchronous communication is replaced with synchronous communication,

then the composite web service is synchronizable. The work proposes three necessary and

sufficient conditions for a composition to be synchronization which are Synchronous compatibility,

Autonomy and Loss-less composition. Synchronous compatibility states that any synchronous

composition constructed does not contain a state where a peer pi is ready to send message to

peer pj but pj is not ready to consume the message. Autonomy states that in a composite

system, every state in a peer can have only one type of transitions : either send or receive
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including states reachable via ε transitions; else the state is a final state or reaches a final state

through ε transitions. Loss-less composition states that if a Cartesian product of the peers is

constructed by making the initial states in each peer as final states; then the projection of the

Cartesian product to each peer should be equivalent to the original skeleton where the initial

state is marked as final state. The authors prove in this paper that if the above three conditions

are satisfied, then the composite system is synchronizable.

Now we will discuss work done in Fu et al. (2005). This work focuses on conversations which

are the global sequence of messages exchanged among web services. The paper attempts to

check whether a LTL property will be satisfied by the conversations of a composite web-service.

It shows that this problem is undecidable when dealing with systems with unbounded queues

and proposes synchronizability technique in order to solve it. If a composite web-service falls

into synchronizable subclass, then the conversation set remains the same when the asynchronous

communication is replaced with synchronous communication. The authors present sufficient

conditions that guarantee synchronizability and also show that synchronizability analysis can be

used to check the realizability of top-down conversation specifications. They initially prove that

synchronous communication is always a subset of asynchronous communication by checking the

synchronization send sequences; the converse does not hold true. The conditions proposed are

the synchronous compatibility and Autonomous conditions that are discussed earlier in Fu et al.

(2004). The complexity of checking whether both the conditions are satisfied is exponential

in the size of the peers. Then, they prove that if a composite web-service satisfies both these

conditions, then for every conversation generated by the composite system, there exists a run

having immediate receive actions followed by send actions that generate the same conversation

and that the composite web-service is synchronization.

The conditions proposed in this paper only ensure that the languages resulting from

asynchronous interactions and synchronous counterpart are similar. Below we further discuss

Basu and Bultan (2011) that proposes conditions and criteria which ensures that any property,

either linear or branching time satisfied by the asynchronous composite system is also satisfied

by its synchronous counterpart. Also, the autonomy condition can be easily violated by systems

when a peer contains a state with both send and receive actions out of it.
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Basu and Bultan (2011) tries to address the problem of Choreography conformance, which

is to identify if a set of given services adhere to a given choreography specification. The problem

falls in the area of service oriented computing and is undecidable in general; and the work

tries to identify a class of asynchronous systems for which this problem can be efficiently

checked; this class of systems must follow the synchronization property. The results of this

work could be applied to various types of asynchronous systems that interact via message

based communication such as Singularity Channel contracts and BF contracts where message

interactions need to adhere to given contract specifications. The Synchronizability problem has

been an open problem for several years and the authors in this paper provide an algorithm to

determine the synchronization of a set of asynchronously communicating peers with unbounded

queues and hence, solves dependability of synchronization problem. The algorithm works by

comparing the behavior of peers with synchronous communication and peers with asynchronous

communication bounded by a queue size of one. Since both of them result in finite state spaces,

the comparison can be easily done using finite state verification tools. The authors prove that

if the interaction behavior of peers are same for synchronous and one-bounded asynchronous

communication, then it is also the same for unbounded asynchronous communication.

The paper further discusses different variations of conditions for synchronizability based

on different types of expressivity of the choreography specification. Some examples are if

the choreography specification is expressed using some desired sequencing of send actions as

linear time temporal logic or regular expressions, then synchronizability is based on language

equivalence; however, if it expresses using desired branching of send actions as in CTL or ACTL

or ACTL∗, then it is based on bisimulation equivalence or simulation equivalence. It provides

definitions and notions of language equivalence, Simulation Pre-order, Bisimulation equivalence

and relates them with synchronizability. Refer to Basu and Bultan (2011) for definitions.

Bisimulation equivalence ensures that the branching behavior of interactions between two

systems is same and is also known that it preserves all temporal logic properties including

branching time temporal logic properties Clarke et al. (1999). It follows that if a system

is bi-simulation synchronizable, then it is also language synchronizable; hence, providing a

more strict notion to verify synchronizability. In summary, the verification of conformance



18

of a system to a choreography specification is addressed by - bi simulation synchronizability

works for specifications expressed in any temporal logic; simulation synchronizability works for

specifications expressed in universal fragment of temporal logic and language synchronizability

works for specifications expressed as FSA or LTL temporal logic properties.

3.3 General boundedness in Asynchronous Systems

We now discuss another interesting property in asynchronously communicating systems:

Unboundedness. When peers in an asynchronous communication interact, they store their

messages pending to be consumed in their queues. Verification of properties in such systems is

challenging as the message queues can grow arbitrarily large and often lead to infinite state

space behavior making auto verification of properties undecidable. Many works handle this

problem by bounding the queues in some cases and identifying sub-classes of systems for which

verification become decidable or propose verification techniques that are sound but incomplete.

We will initially discuss the work of Cécé and Finkel (2005) that deals with verification of

communicating finite state machines with unbounded channels. Specifically, it considers the

analysis of infinite half-duplex systems made of finite systems communicating over unbounded

channels. The half-duplex property for two machines and two channels says that each reachable

configuration should have at most one channel non-empty. The authors prove that half-duplex

systems have a recognizable reachability set. It then shows that the symbolic representation of

this reachability set can be computed in polynomial time and uses the results to solve several

other verification problems. It also proves that membership in half-duplex class is decidable.

Further, it shows that it becomes Turing powerful for a more generalized system with more

than 2 machines and proves that the verification of Propositional Linear Time Logic (PLTL) or

Computation Tree Logic (CTL) properties for these systems is undecidable.

The paper initially discusses concepts around finite state machines, then define seven

problems that are of specific interest: the reachability problem, the deadlock problem, the

unspecified reception problem, the executable transition problem, the weak boundedness and

the strong boundedness problem and the recognizable computation problem. It then discusses

half-duplex systems consisting of two machines and two channels; it shows that each reachable
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configuration of the half-duplex systems of two machines is reached by a specific execution

that is used in computing the channel-recognizable reachability set. The idea is to split the

sequence of actions leading to a configuration into 2 sets: a). 1 − bounded execution which

ensures that that the number of messages available in both the channels is atmost one and

b).send actions that use only one machine and one channel. This type of transmission is always

available for half-duplex systems with two machines and two channels and finally, they obtain a

channel- recognizable set. The authors then prove that the reachability set can be computed

in polynomial time and deduce that the seven verification problems mentioned above are also

decidable for half-duplex systems of two machines. It presents the conditions to be checked

for systems to be half-duplex and then proves that the half-duplex property is decidable in

polynomial time. Though a recognizable representation of reachability set could be constructed

in polynomial time, it shows that verifying properties expressed in CTL and PLTL for these

half-duplex systems is undecidable. Finally, it shows that for half-duplex systems having more

than two machines, the systems become Turing powerful and computing the reachability set is

also undecidable for such machines.

Basu and Bultan (2014) proposes necessary and sufficient conditions under which asyn-

chronously communicating systems with unbounded queues (let’s call it as A) exhibit behavior

that is equivalent to the those systems with finitely bounded queues (let’s call it as B). The be-

havior is modeled as a global sequence of send actions over the communicating peers. When the

condition holds, A becomes automatically verifiable as B will have a finite state space because

of bounded queues leading to it becoming automatically verifiable and all the verification results

produced for B still remain valid for A. Also, once the condition is satisfied, the work proposes

to find the bound by iteratively checking the interaction behavior equivalence between systems

with queue sizes k and k + 1 starting with k=1. The paper starts with defining formalisms

of asynchronous systems and their behavior, then defines k − boundedsystem and language

equivalence which we have used in our current work.

In this paper, the properties are modeled as temporal ordering of send sequences expressed

in LTL. The authors provides the first condition and prove that if a composite asynchronous

system with buffer bound of k and another with same peers and unbounded queues are language
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equivalent, then the systems with buffer bound of k and k + 1 are also language equivalent and

it holds both ways. The second condition is that for two asynchronous systems I and I
′
, if L(I)

= L(I
′
) ; then for any LTL property Ψ over the send actions, I satisfies Ψ ⇔ I

′
satisfies Ψ. The

third condition is the major one which when actually satisfied guarantees the existence of bound

k such that L(Ik) = L(I). The authors define an unbounded send sequence which if satisfied in

any configuration of system I (system with unbounded queues), then the interaction behavior

cannot be represented by the peers in any Ik (k-bounded system); as it leads to the receiving

peers to have an infinite receive queue. Similarly, if a peer can consume all the messages from its

buffer to reach state si′ from state si, and si is not send-simulated by si′ , then also it requires

the peer to have infinite receive queues. Hence, if a composite system can be verified that they

do not satisfy these above two qualities, then there exists a bound. The paper presents an

algorithm that checks for above qualities and also provide proof of correctness for the algorithm.

The paper claims the results of this technique can be applied on wide variety of composite

systems and presents the results of the experimental runs. The major contribution of this paper

is that it present the sufficient conditions which when satisfied by a composite system with

unbounded queues has the same interaction behavior as of that of a bounded system that allows

for the auto verification of the properties in the unbounded system.

3.4 Restricted Communication Models

In addition to the above properties and verification techniques discussed so far, several

techniques have been previously used to handle the state space explosion problem in verification

of concurrent systems. Some approaches include partial order reduction methods (POR),

program slicing, data abstraction and state compression technique. However, to reduce the

generality of the systems, certain works have also focused on restricted communication models.

One of the interesting area is the domain specific approach that leverages the restrictions

imposed by the programming domain in order to achieve greater reductions. We now discuss one

such class of works in the context of verification of MPI (Message Passing Interface) programs.

Below we discuss the works and contributions of Siegel (2005), Manohar and Martin (1998)

and Vakkalanka et al. (2010) in this area.
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Siegel (2005) focuses on the domain of parallel programs that employ MPI programs. The

paper tries to verify halting properties, properties specific to states in a program where execution

halts. Some halting properties are freedom from deadlock and assertion of values in variables

after the termination of a program. It discusses certain basic semantics of the MPI programs.

The function MPI SEND is used to send a message to another process, one must specify the

destination process and a message tag to use it. The function MPI RECV is used to receive

messages. This function can also specify its source process, or may use the wild card value

MPI ANY SOURCE which indicates that the message can be accepted from any source process.

It may also specify the tag of the message it wishes to receive, or may use the wild card value

MPI ANY TAG. A receive operation that uses either or both of these wildcards is called a

wildcard receive.The use of wildcards and tags allows for a great flexibility in how the messages

are selected for reception into a process. Prior works have already proved that if a program

does not contain wild card receives, then for a model M of the program, M is deadlock free ⇔

no synchronous execution of M can deadlock and there was no state explosion problem. The

state explosion problem occurs because of the need to represent all message channels in the

presence of wild card receives.

An MPI program basically consists of a fixed number of concurrent processes each executing

its own code, with no shared variables and communicate only through the MPI functions.

Unlike several other programs that usually bound their channels to block send actions, the

MPI standard does not bound its channels. The send action may block at any time unless the

receiving process is at a state from which it can receive the sent message synchronously. A

receive statement is blocked if there are no messages that match the statement parameters. A

state in a model for a concurrent system can be potentially halted if either of the send, receive

or synchronous actions are available. This work shows that the hypothesis on wild card receives

may be relaxed to allow the use of MPI ANY TAG and still be able to verify different properties.

It also expands the range of properties to include all halting properties. Further, it provides a

model checking algorithm that handles MPI ANY SOURCE by moving back and forth between

a synchronous and buffering mode as state space progresses. The authors claim that though the
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approach is similar to the partial order reduction (POR) method, the number of states explored

is much less and the method also works in certain cases where POR techniques do not work.

Manohar and Martin (1998), on the other hand presents conditions under which the

slack of a channel in a distributed system can be changed without affecting its behavior, and

such a distributed system is said to be slack elastic. The paper also discusses some program

transformations that can be used in the design in the concurrent systems the correctness of

which depends on the conditions presented. Vakkalanka et al. (2010) extends the work of

Manohar and Martin (1998) and Siegel (2005) further by focusing on adding buffering into

the MPI sends with out introducing deadlocks or other safety assertion violations. While

adding additional buffer usually improves the performance of the programs; if the programs

contain non-deterministic behavior such as a wild card receive as discussed earlier in Siegel

(2005), then it can lead to issues as deadlocks or assertion violations. This paper introduces

Lamport’s happens-before relation which is generally used in studying concurrency and partial

order semantics for MPI programs and provides a precise characterization of slack elasticity

based on the formulation of the happens-before relation. It discusses on how to identify the

code patterns of the culprit sends in slack inelastic programs that has the potential to increase

non-determinism in the program and introduce new bugs. The authors present this algorithm

to identify culprit sends incorporated into their dynamic verifier that can verify larger MPI

programs.

Now we discuss another interesting area that has been significantly focusing on interactions

between asynchronously communicating systems: session types. Session types are used in

modeling communication centered applications, where the interacting set of peers follow behavior

specified in the protocols. One of the basic observations in such communication centered

applications is that they exhibit a highly structured sequence of interactions involving branching

and recursion, which as a whole form a session. This structure of a conversation is abstracted as

a type using operational syntax and then used as a basis for validating and verifying programs

that fall in those disciplines. Some of the properties of the session types being are: a).Interactions

within a session never induce any communication error referred to as communication safety, b).

Channels are used linearly and are deadlock free in a single session referred to as linearity and
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progress, and c). the communication sequences in a session follow the specifications declared in

the session type referred to as session predictability. Below we discuss some of the works that

have been focusing on using session types for verification.

We will initially discuss the work Bocchi et al. (2013) that focuses on assuring safe interactions

in large-scale distributed systems. Previous methods were based on centralized verification or

restricted specification methods and have limited applicability. This work proposes monitored

π−calculus with dynamic usage of multiparty session types that enables safety assurance of

asynchronously communicating distributed components. The framework allows for both static

and dynamic verification of components. Asynchrony in the system was added through the

means of explicit routers and global queues. The basic idea was to capture the decentralized

nature of distributed application development and provide better support for heterogeneous

distributed systems by allowing components to be independently implemented, using different

languages, libraries and programming techniques; allow for being independently verified, either

statically or dynamically and also retain the strong global safety properties of statically verified

homogeneous systems. The authors initially discuss various formalisms related to multiparty

session types, global types and local types with assertions to build the protocols and then provide

the interaction semantics for processes over a network in the presence of session environment.

The work also introduces a behavioral theory over monitored networks that allows com positional

reasoning over trusted and untrusted components.

On the other hand, Honda et al. (2008) focuses on extending the work on binary session

types involving two processes to multiparty asynchronous sessions. Multiparty session types

(MPST) is a typing discipline for communication programming that was originally developed in

the πcalculus for verification of distributed software. When communication between multiple

peers (more than two) is abstracted as binary sessions between every pair of communicating

peers, the abstraction tends to lose essential sequencing information for the interactions and

hence, the whole conversation needs to be represented as a single session. The work presents two

major challenges involved in extending it to multiparty systems: duality and linearity analysis.

Unlike in binary sessions, where a peer behavior is a dual type to the other peer’s behavior,

when there are multiple peers involved, the whole conversation cannot be constructed from
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behavior of one single peer. Similarly, linearity analysis of channels that ensure safety and

progress is another challenge because with the combination of multiparty and asynchrony, a

conflict of actions can arise more easily and correct sequencing of interactions among these

multi-peers need to be ensured. The authors introduce global types that can abstract intended

conversation structure among multiple parties and is also used a basis of efficient type checking

through its projection onto individual peers. The work discusses the fundamental properties of

session types such as communication safety, progress, session fidelity and establishes them for

the multiparty asynchronous interactions.

3.5 Progress and Liveness in communicating Finite State Machines

In this section, we will discuss some of the previous works that have focused on liveness and

progress properties in CFSMs. On these lines, we discuss the works and results of Gouda et al.

(1984), Gouda and Chang (1986) and Deniélou and Yoshida (2012).

Gouda et al. (1984) focuses on the general problem of communication progress between

two finite state machines and discusses its relationship to properties such as boundedness,

freedom from deadlocks and unspecified receptions. It tries to find if for any two finite state

machines that exchange messages through two uni-directional channels, whether there exists a

positive integer K such that the communication between these peers over K-capacity channels

is guaranteed to progress indefinitely. In such a communication, all the states with buffer size

less than or equal to K for both peers, referred to as K-reachable states are expected to be

progress states. A progress state is one that is not deadlocked, free from unspecified reception

and not an overflow state. The authors prove that the problem of finding whether such bound

K exists is undecidable. They also present a practical class of systems called as alternating

communicating machines for which the problem is shown to be decidable. In an alternating

communicating machine, each sending edge is followed only by a receiving edge and as a result,

its buffer size is always bounded by two. It can also be seen that it is a subclass of half-duplex

machines for 2 peers discussed in the previous section. The authors also provide two sufficient

conditions that can ensure indefinite progress - a) Compatible communication with no mixed

nodes (every node in a peer can either send or receive but not both) and b) Deadlock freedom
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for an abstracted system with reduced number of message types ensures the original system is

also deadlock-free.

Gouda and Chang (1986) on the other hand focuses on defining and proving liveness

properties for networks of communicating finite state machines. Liveness of a node in a machine

is usually measured by the occurrence of the respective node infinitely often during the course

of communication, which necessitates a fairness strategy in how the peers communicate. The

authors define three degrees of fairness: Node, Edge and Network fairness. A communication

sequence is said to be node-fair if and only if every node that is enabled infinitely often is

executed infinitely often; edge-fair if and only if every edge that is enabled infinitely often is

executed infinitely often; network-fair if and only if every node or edge that is encountered

infinitely often is executed infinitely often. Every edge-fair sequence is node-fair and every

network-fair sequence is edge-fair. The authors further define three degrees of node liveness

based on the respective fairness assumption. They provide sufficient conditions to verify liveness

under each of the above fairness assumptions that are also shown to be effective when the

system is composed of infinite reachable states. Unlike some of the earlier works that construct a

temporal or classic system for proving liveness for general systems, this work proves the liveness

for a network of communicating finite state machines by constructing a closed cover graph based

on the directed graph representations of the individual peers in the system. On similar lines,

Deniélou and Yoshida (2012) focuses on multiparty systems relating them to the communicating

finite state machines and defines a subclass of CFSMs called as Multiparty Session Automata

(MSA) that automatically satisfies distributed safety and progress properties. It also presents

a new type system for multiparty session mobile processes and proves that typed processes

conform to the safety and liveness properties defined in CFSMs.

Thus, as we have seen from the existing work of different contributions, they have not

directly considered whether or not messages are always consumed. In some of the existing work

Gouda and Chang (1986) and Gouda et al. (1984), progress and/or liveness property have been

considered, which includes consumption of messages as one of the desired behavior. However,

the liveness properties described for the systems are in terms of state-space of the system.
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In contrast, our work solely focuses on sequences of message exchanges to define well-formed

property.
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CHAPTER 4. DECIDABILITY OF WELL-FORMED PROPERTY IN

ASYNCHRONOUS SYSTEMS

In this chapter, we discuss the characterizations of well-formed behavior, fairness require-

ment and then prove our result that the well-formed property for asynchronous systems with

unbounded queues is undecidable. In 4.1, we define well-formed behavior and discuss its

characterizations along with the fairness requirement. In 4.2, we construct an asynchronous

system that can simulate a Turing machine; we then show that it is undecidable by reducing

the Halting problem to the testing of system’s well-formedness.

4.1 Well-formed Behavior

As noted in the Definition 2, the peers in an asynchronous system communicate by sending

and receiving messages over unbounded receive-queues. As a result, in general, it is not

guaranteed that every message sent by one peer will be eventually consumed by the receiver.

This may be because the receiver is never ready to consume the message, which may result

in deadlock and/or lead to unwanted behavior of the asynchronous system. We define the

well-formed behavior as follows.

Definition 7 (Well-formed Behavior) An asynchronous system is said to be well-formed if

and only if along all evolutions of the system, every message sent is eventually consumed.

We will denote a well-formed system I (Ik) as wf(I) (wf(Ik), resp.). An important aspect

come into consideration in the context of well-formed behavior. The well-formed behavior is

a liveness behavior and liveness conformance in distributed/concurrent systems rely on the

concept of fairness.
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In a typical distributed system, scheduling of peers depends on the computing environment

where the system is deployed. Fairness, in this context, refers to the fairness of the scheduler

and its associated scheduling algorithm. Fairness amounts to ensuring or imposing the condition

that each peer is scheduled infinitely often, if the peer has some enabled moves. We will refer to

this as global fairness or simply fairness. For instance, under fairness, the system resulting from

P4 and P5 (Figures 2.1(d, e)) is well-formed. On the other hand, consider the system resulting

from P2 and P3 (Figures 2.1(b,c)). Even under global fairness, this system is not well-formed.

This is because the branch in P3 that corresponds to consuming a may not be scheduled. One

can further refine the notion of fairness to include the constraint that every enabled branch in

every peer must not be ignored by the scheduler forever. We refer to this as global-local fairness.

We will consider well-formedness in the context of global-local fairness.

Verifying well-formedness. In order to precisely describe the condition for well-formedness,

we will use the following notations. For a system I = (M,C, c0,∆) with n peers 〈P1,P2, . . . ,Pn〉

and a configuration c = (s1, q1, s2, q2, . . . , sn, qn) of the system, we use

c↓st = (s1, s2, . . . , sn) projection of configuration to local states

c↓stPi
= si projection of configuration to Pi’s local state

c↓quPi
= qi projection of configuration to receive queue of Pi

For any peer P, Path(s) denotes the set of paths starting from the state s present in the

behavior of P. Each path is described using a sequence of send or receive actions in the

path. For instance, in Figure 2.1, for s0 in P1, Path(s0) = {〈?a !b ?a !b . . .〉}; for r0 in P3,

Path(r0) = {〈?a ?a ?a . . .〉, 〈?a !b?a !b . . .〉, . . .}. For any path π in a peer, we denote the

sequences of receives in that path as recvseq(π). For instance, for any π ∈ Path(s0), the

recvseq(π) = 〈a a a . . .〉.

For any queue, the messages in the queue can be consumed by the sequence of receive

actions by the appropriate peer, where the ordering of the messages in the queue matches with

the ordering of the corresponding receives in the sequence of receive actions. The sequence of

messages in a queue is denoted by seq(q) (for empty queue, the sequence is ε).
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Therefore, determining well-formedness of a system will require verifying that for every

configuration c of the system reachable from its start configuration, the following condition holds

for all i: if c↓quPi
= qi 6= ∅, then seq(qi) is a prefix of recvseq(π) for some π ∈ Path(c↓stPi

). In

other words, for every non-empty queue, the peer responsible for consuming messages from that

queue must have a path to consume the messages. For instance, in the system (Figure 2.1(f-i)),

the queue corresponding to the peer P1 contains [aa] at the configuration c := s0[aa]t2[ ]. The

above condition is satisfied because: seq(c↓quP1
) = 〈a a〉 and it is prefix of the receive sequence

recvseq(π), where π = Path(s0).

In the following, we will prove that well-formed behavior is undecidable, in general. We

will reduce the halting problem to verifying well-formed behavior. The reduction is based on

constructing an asynchronous system that simulates a Turing machine. The construction is

identical (modulo extensions for well-formed behavior) to the one presented in Akroun et al.

(2016) and follows from the one discussed in Finkel and McKenzie (1997).

4.2 Asynchronous Systems simulating TM

We use the standard definition of Turing machine–a finite state machine that moves from one

state to another as it reads and updates the symbols residing on a tape using a head (pointer

to a tape location). It is a tuple TM = (Q, q0,∆,Σ, {L,R, }), where Q is a finite set of states,

q0 ∈ Q is the start state and ∆ ⊆ (Q× Σ)→ (Q× Σ× {L,R, }) is a deterministic transition

relation. We will write (q, a)→ (q′, a′, L) to denote a transition, where the machine is at state

q, it reads the symbol a from the tape and evolves to state q′ but replacing a with a′ at the

tape location and moving the head to the left.

We consider a Turing machine TM which on accepting a string w halts; otherwise, it rejects

the string and initiates a loop. The loop proceeds by moving the head to the right. We will

assume that the alphabet Σ contains special symbols b (blank symbol), . (start-marker) and

# (end-marker). We will also assume that the string w contains symbols in Σ\{b, .,#} and is

delimited with the start-marker . and the end-marker #.

We will use two communicating peers P1 and P2 to capture the TM behavior. The message

exchanged by the peers correspond to the symbol set Σ. Following Akroun et al. (2016), we will
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use the superscript 1 to denote messages sent by P2 to be consumed by P1 and the superscript

2 to denote the messages sent by P1 to be consumed by P2. We also add a message h1 (to be

consumed by P1, sent by P2) and h2 (to be consumed by P2 and sent by P1). Furthermore, we

will add message accept that can be sent by P1 and consumed by P2; and a message halt that

can be sent by P1 and not consumed by P2. The reason for the inclusion of his, accept and

halt will be explained below.

Our construction of an asynchronous system relies on capturing the state-space of the Turing

machine using the peer P1 and replicating the corresponding tape contents using P ′1s queue.

Therefore, for every state q ∈ Q of TM , there is a corresponding state sq in P1. The tape is

modeled by the queue contents as follows. If the tape contains the strings u and v, where u is

to the left of the head and the head is pointing to the first symbol of v, then the queue contents

of P1 are arranged as uhv, i.e., the head is represented by a message h in the queue.

Construction of P2. The peer P2 has the following transition behavior:

s0
!.−→ s1

!h1−−→ s2
!m1

1−−→ . . .
!m1

n−−→ sn+1
!#1

−−→ srelay (Trans-P2-init)

where s0 is the start state of P2, the input string to the machine M is w = m1m2 . . .mn and

.,# are the start- and end-markers for the string. It is immediate that the P2 sets up the

queue for P1 in such a way that the queue content replicates the tape of TM with the head

(represented by the message h1) ready to “read” the first symbol of the input string w.

From the state srelay, the P2 consumes any message other than accept sent to it and relays

it back to P1.

srelay
?m2

−−→ srelay′
!m1

−−→ srelay ∀mi ∈ Σ ∪ {h2} (Trans-P2-relay)

On the other hand, on consuming accept, P2, moves from srelay to send2 , from where it consumes

all pending messages (from Σ) in the queue.

srelay
?accept−−−−→ send2

?m−−→ send2 ∀m ∈ Σ ∪ {h2} (Trans-P2-end)
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q0

q1

 |>/|>, R

q2

 x/|>, R

accept

 #/#, _

 x/x, R  y/y, R

q3

 #/#, L

q4

 y/#, L

 |>/|>, R

 x/x, L  y/y, L

sq0
?h1

−−→ �
?.1

−−→ �
!.2

−−→ �
!h2

−−→ sq1

sq1
?h1

−−→ s′q1

s′q1
?#1

−−→ �
!#2

−−→ �
!h2

−−→ saccept

s′q1
?x1

−−→ �
!.2

−−→ �
!h2

−−→ sq2

sq2
?h1

−−→ s′q2
?z1

−−→ �
!z2

−−→ �
!h2

−−→ sq2
where z is x or y

sq2
?z1

−−→ �
?h1

−−→ �
?b1−−→ �

!h2

−−→ �
!z2

−−→ �
!b2−−→ sq3

where z is x or y

sq3
?z1−−→ �

?h1−−→ �
?y1−−→ �

!h2−−→ �
!z2−−→ �

!#2

−−→ sq4
where z above is either x or y or b

sq4
?z11−−−→ �

?h1−−→ �
?z21−−−→ �

!h2−−→ �
!z12−−→ �

!z22−−→ sq4
where z1 is either x or y or b

and z2 is either x or y

sq4
?h1−−→ �

?.1−−→ �
!.2−−→ �

!h2−−→ sq1

srej
?h1−−→ �

?z1−−→ �
!z2−−→ �

!h2−−→ srej
where z is either x, y or b (blank)

srej
?h1−−→ �

?#1

−−→ �
!h2−−→ �

!b2−→ �
!#2

−−→ srej

Figure 4.1 Turing Machine and the corresponding Peer P1

Construction of P1. The peer P1 has five types of transition sequences. The first two

types of transition sequences correspond to the transition relation of the Turing Machine TM .

For the transition (q,m) −→ (q′,m′, R) in TM , P1 has

sq
?h1−−→ sq1

?m1

−−→ sq2
!m′2−−→ sq3

!h2−−→ s′q (Trans-P1-right)

Similarly, for the transition (q,m) −→ (q′,m′, L) in TM , P1 has

sq
?n1

−−→ sq1
?h1−−→ sq2

?m1

−−→ sq3
!h2−−→ sq4

!n2

−−→ sq5
!m′2−−→ sq3 (Trans-P2-left)

where m,m′, n ∈ Σ. Furthermore, for every state q in TM , the corresponding state sq in

P1 has the following transition sequences (loop), which allows P1 to send the queue contents
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(configuration of the tape) to P2.

sq
?m1

i−−→ sq1
!m2

i−−→ sq ∀mi ∈ Σ (Trans-P1-relay)

The above three transition sequences of P1 along with the transition sequences in P2 collectively

captures the evolution of TM , where P1 starts with the current configuration (state of TM

and next tape-configuration to P2, and P2 relays back the next tape-configuration to P1, which

appears in the queue corresponding to P1.

When the TM initiates a loop (input string w is not accepted by TM), it moves the head

to the right. The peer-moves simulate the movement of the head in the TM to the right till

it reaches the end-marker #. At this point, on reading the #, a new blank symbol is added

before #. This captures the “extension” of the tape as the TM moves (in a loop) the head to

the right of the tape. The transition sequence representing this starts from sq, where q in a

state in TM such that TM moves to state q when it does not accept the input string.

sq
?h1−−→ sq1

?#1

−−→ sq2
!h2−−→ sq3

!b2−→ sq4
!#2

−−→ sq (Trans-P1-blank)

When P1 moves to a state saccept corresponding to the accepting state in TM , it sends !accept

to P2, moves to send1 from where it consumes all pending messages and sends a halt message

to P2. That is,

saccept
!accept−−−−→ send1

?m−−→ send1
!halt−−−→ shalt ∀m ∈ Σ ∪ {h1} (Trans-P1-end)

Figure 4.1 presents a TM that halts on the input string of the form .xnyn#. From any

state of the form qi, the TM moves to a reject state (rej) if the head reads an unexpected

symbol. From the reject state, the TM moves the head to the right forever. The corresponding

transition system for P1 is presented on the right-hand side. From the srej state (corresponding

to the state of the TM from where it moves the head to the right forever), the peer P1 simulates

right move of the head till it reads #. At this point, a new blank symbol is added to the left of

#. (P1 also includes the moves from the saccept, as presented in Trans-P1-end.)

When P1 and P2 interacts, P2 never consumes the message halt. Therefore, whenever

TM moves to accepting state and halts, the peers simulating its behavior leads to a system
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configuration which is not well-formed (existence of message halt that is never consumed by

P2). On the other hand, if TM loops (does not accept the input string w), the peer-interaction

is well-formed. This is because from all states except saccept, P1 can move only by consuming

messages sent to it by P2, which, in turn, relays all messages sent to it. In other words,

we have reduced the halting problem to well-formed verification problem. If the system is

well-formed, then the TM must not halt (does not accept the input string); otherwise, TM

halts (by accepting the input string).

Theorem 4.2.1 It is undecidable to verify whether an asynchronous message-passing system

is well-formed.

It follows from the above simulation and reduction of the halting problem in Turing

machines that verification of well-formedness property in message-passing asynchronous systems

is undecidable.
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CHAPTER 5. VERIFYING WELL-FORMEDNESS FOR SUBCLASS OF

ASYNCHRONOUS SYSTEMS

In chapter 4, we have proved that verifying well-formedness property for asynchronous

systems is undecidable. In this chapter, we present two subclasses of asynchronous systems

for which well-formedness property can be automatically verified. One of the subclass is the k-

bounded subclass discussed in Basu and Bultan (2014). Another subclass is the Synchronizability

subclass discussed in Basu and Bultan (2011). In section 5.1, we will discuss the equivalence

properties for a k-bounded subclass and provide the well-formedness properties that hold when

an asynchronous system is k-send bounded; we also prove that well-formed behavior is auto

verifiable for this subclass. In section 5.2, we prove that when an asynchronous system is

synchronizable, then it is well-formed.

5.1 Deciding Well-formed behavior for Subclass of Asynchronous Systems

As noted in Proposition 3, the condition under which a two-peer system behavior can be

captured using finite capacity queues is, L(Ik) = L(Ik+1) = L(I). First, we prove that when

L(Ik) = L(Ik+1), the verification result of well-formed behavior of Ik holds for Ik+1 as well.

Then, we use the 3 result to prove that the well-formed behavior of Ik holds for I

Theorem 5.1.1 ∀k : L(Ik) = L(Ik+1) ⇒ wf(Ik) ⇔ wf(Ik+1).

Proof 1 First, assume that L(Ik) = L(Ik+1) and wf(Ik), but ¬wf(Ik+1). This implies that

there exists a path πk+1 in Ik+1

ck+1
0

!m0=⇒ ck+1
1

!m1=⇒ . . . ck+1
n

!mn=⇒ ck+1
n+1 . . . (πk+1-path)
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such that mn is not consumed along any evolution of the system starting from ck+1
n+1. In the

above
!m

=⇒ denotes zero or more receive actions followed by !m action.

As L(Ik) = L(Ik+1), the sequence of send actions m0m1 . . .mn . . . is also present in the

behavior of Ik, which, in turn, implies the existence a path πk in Ik, where mn is always

eventually consumed along fair paths in the system. That is,

ck0
!m0=⇒ ck1

!m1=⇒ . . . ckn
!mn=⇒ ckn+1 . . . (πk-path)

mn is consumed starting from ckn+1.

WLOG, consider that P is responsible for consuming mn and all other peers are denoted by

P ′. Therefore, in πk+1, P moves along a path where it reaches a state (in configuration ck+1
n+1)

from where it cannot consume mn. On the other hand, in πk, P never reaches such a state. As

the peer behaviors are deterministic and the same sequence of send actions are present in both

πk and πk+1, P must have a choice point of the form:

s
!m−→ s1

?m′−−→ s2 is branch 1 and s
?m′−−→ s3

!m−→ s4 is branch 2.

and it moves along branch 1 in one path and along branch 2 in the other; otherwise, both Ik

and Ik+1 would be not well-formed. Note that, as the same sequence of send actions are present

in both πk+1 and πk, the P ′ can move along the same path in πk+1 and πk.

If the message sequence in paths πk+1 and πk contain m followed by m′, and P must move

along branch 1 in both πk and πk+1. This is because, m cannot be sent before m′ is sent (some

other peer) along branch 2. Therefore, Ik (as Ik+1 is not well-formed) is not well-formed

violating our assumption.

If the message sequence in paths πk+1 and πk contain m′ followed by m, and P moves along

branch 1 in πk (and P moves along branch 2 in πk+1), then the same sequence can be generated

in another π′k in Ik, where P moves along branch 2 (as in πk+1). This will violate well-formed

behavior in Ik, thus, contradicting our assumption as well.

Finally, if the message sequence in paths πk+1 and πk contain m′ followed by m, and P

moves along branch 2 in πk (and P moves along branch 1 in πk+1), then there also exists

different sequence generated by a path π′k in Ik, where m is followed by m′, and P moves along
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branch 1 (as in πk+1). This will violate well-formed behavior in Ik, thus, contradicting our

assumption as well.

Therefore, L(Ik) = L(Ik+1) ⇒ (wf(Ik) ⇒ wf(Ik+1)). Also, note that ¬wf(Ik) ⇒

¬wf(Ik+1) for all k. This follows from the Proposition 1: any behavior in terms of send

sequences in Ik is also present in Ik+1.

This concludes the proof. �

Corollary 1 ∀k : L(Ik) = L(Ik+1) ⇒ (wf(Ik) ⇔ wf(I)).

Proof 2 If ¬wf(I), then there exists some n, such that ¬wf(In). If n > k and L(Ik) =

L(Ik+1), then L(Ik) = L(In), which implies ¬wf(Ik) (from the above theorem). On the other

hand, if n < k and L(Ik) = L(Ik+1), then ¬wf(In)⇒ ¬wf(Ik) because L(In) ⊆ L(Ik) (from

Proposition 1). �

The above corollary, in essence, describes the subclass of two-peer message-passing asynchronous

systems (k-send-bounded) for which determining well-formed behavior is decidable. In Basu

and Bultan (2014), the authors have proved that the determining L(Ik) = L(Ik+1) is decidable

for two-peer asynchronous systems. This, in turn, allows us to decide well-formed behavior as

well.

5.2 Well-formedness behavior for Synchronizable subclass

In this section, we will discuss on verification of well-formedness properties for Synchronizable

systems. As discussed earlier, a system I over a set of peers is said to be synchronizable when

its language resulting from the asynchronous composition of peers is identical to the language

resulting from the synchronous composition of the same set of peers. We denote a synchronizable

system as I0 as synchronous action do not need a buffer to store the sent messages. Systems

belonging to synchronizable subclass have a definite behavior that every message that is sent is

immediately consumed, i.e. a send action is always accompanied by a corresponding receive

action unlike the general behavior where a message stays in the receiver’s buffer waiting for the

configuration to evolve into a state in which the message can be consumed. Figure 5.1 presents
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an example of a Synchronizable system with two peers. In the diagram, only send actions are

provided and it can be seen that every send action is always accompanied by a corresponding

receive action which makes it a Synchronizable.

Figure 5.1 Example of a Synchronizable system

Below, we discuss the well-formedness properties for class of systems belonging to the

Synchronizable subclass.

Corollary 2 (Guaranteed Well-formed Behavior) L(I0) = L(I1) ⇒ wf(I)

Proof 3 Using Corollary 1, we know that

L(I0) = L(I1) ⇒ wf(I0)⇔ wf(I)

In I0, every message is consumed immediately. Therefore, it is immediate that I0 is well-formed,

which, in turn, ensures that synchronizable system I is also well-formed. �

In short, synchronizable systems are well-formed and are a strict subclass of the k-send-bounded

class.
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CHAPTER 6. IMPLEMENTATION

In this chapter, we discuss the implementation details including finding language equivalence,

synchronizability and experiments to verify well-formedness behavior for various classes of

asynchronous systems. We initially discuss about the tool and various components of the tool;

then we present the experimental results on various case studies.

6.1 Tool Description

We have developed our tool using Java programming language with JDK 7. Figure 6.1

presents the architecture of the tool with its main components.

Figure 6.1 Tool Architecture

1. The tool initially takes as input, the asynchronous system representation that represents

the properties and interactions in an asynchronous system. The input is parsed and
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translated by the Translator module into an internal object representation that is used by

other modules.

2. Language equivalence check is now performed on the ASOR using the State Composer to

compute the next states. This step uses bi-simulation checking which has a stronger notion

than Language equivalence as it conforms to a broader range of branching and temporal

logic properties. The algorithm works in a depth-first fashion on the Ik+1 by simultaneously

checking that for every transition in Ik+1, there are corresponding transitions in atleast

one of its counter part Ik configurations. This module determines whether the system is

synchronizable or k-send bounded or if the two systems are not bi-simulation equivalent,

in which case we return the trace providing the necessary evidence.

3. Once we find that the system Ik is either synchronizable (k=0) or k-send bounded, we

check if Ik is well-formed. The inputs for this module are the asynchronous system I

and the value k that represents the bound found in the Language Equivalence module.

For synchronizable systems, well-formedness is automatically implied. For systems that

are not well-formed, a trace of the path that violates the well-formedness property is

presented.

4. The tool also provides the composite system behavior of synchronizable or k-bounded

systems in terms of a visualization graph.

Below is a description of each of the components in Figure 6.1.

1. ASR (Asynchronous System Representation) We use the language representation

presented in the tool developed in Basu and Bultan (2014). The transitions are represented

as ”ptrans” relations and the start states are specified by ”startPeer” relations.

%% reservation session

ptrans(p1, s0, in(req , p2), s1).

ptrans(p1, s1, in(cancel , p2), s2).

ptrans(p1, s1, out(succ , p2), s3).

ptrans(p1, s1, out(fail , p2), s4).
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ptrans(p1, s2, out(cancelled , p2), s5).

ptrans(p1, s3, in(cancel , p2), s5).

ptrans(p1, s3, in(conf , p2), s5).

ptrans(p1, s4, in(cancel , p2), s5).

ptrans(p1, s5, in(reset , p2), s0).

startPeer(p1, s0).

%%% other peer

ptrans(p2, t0, out(req , p1), t1).

ptrans(p2, t1, out(cancel , p1), t2).

ptrans(p2, t1, in(succ , p1), t3).

ptrans(p2, t1, in(fail , p1), t4).

ptrans(p2, t2, in(cancelled , p1), t5).

ptrans(p2, t3, out(cancel , p1), t5).

ptrans(p2, t3, out(conf , p1), t5).

ptrans(p2, t4, out(cancel , p1), t5).

ptrans(p2, t5, out(reset , p1), t0).

startPeer(p2, t0).

Listing 6.1 Representation of Reservation session system in ptrans relations

Listing 6.1 gives the representation for reservation protocol. It consists of two peers

communicating asynchronously. Each ptrans relation represents a transition which is

either a send or receive. For example, ptrans(p1, s0, in(req, p2), s1) indicates that there

is a transition in peer p1 from state s0 to s1 by consuming message req sent by peer p2.

The sending of message is indicated by out(< m >,< p >) where the message m is sent
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to peer p. Similarly, the consumption of message is indicated by in(< m >,< p >) where

the message m is received from peer p. The start state s0 in a peer p is indicated by

startPeer(p, s0). Figure 6.2 shows how the above representation is mapped to different

states and transitions between the peers in the Reservation protocol.

Figure 6.2 Peers and Transitions in Reservation Session

2. ASOR (Asynchronous System Object Representation) We parse the given ASR

to get an internal representation of given asynchronous system in Java objects. Each

state in a peer is represented as an object. A transition between two states in a peer is

formulated as an edge object having references to source state, target state and associated

message information. Then, each peer object consists of respective states and edges. A

static list of peer objects is created and made accessible to the program globally.

3. Translator The main job of the Translator is to convert the given ASR that represents

the asynchronous system into the ASOR format.

4. State Composer The state composer computes the next state for a given state configu-

ration. It will use the information from the current state configuration including the local

states of each peer, its corresponding message queues and the information from ASOR to
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determine the next state. It is used by the modules Language Equivalence Checker and

Well-formedness Verifier for generation of next states.

5. Language Equivalence Checker This module is used to determine whether the lan-

guages produced by two systems with bounds k and k + 1, i.e Ik and Ik+1 are equivalent.

As checking for language equivalence is computationally expensive, we use a polynomial

bi− simulationequivalence checking algorithm which is a stronger equivalence than lan-

guage equivalence. The algorithm starts by checking whether the start configurations

of the systems Ik and Ik+1 are bi-simulation equivalent. It then recursively computes

the bi-simulation equivalence of its next states. Checking for bi-simulation equivalence of

two systems require that the entire state space of the two systems is available and known

prior to equivalence checking which is challenging when behavior is not known and has

to be computed dynamically or when we are dealing with infinite state space systems.

Hence, we instead try to find an evidence to prove the non-bisimulation equivalence of

two systems. This algorithm computes the next states and checks for equivalence only

until the first evidence of non-bisimilarity is found. However, when the systems are indeed

bisimilar, it explores the entire reachable state space. We also produce the evidence which

is a path in the composed system behavior that supports the non-bisimulation result

when the systems are not bi-simulation equivalent. In our tool, we use the notion of weak

bi-simulation in checking the equivalence of two systems. Note that a possible downside

in using bi-simulation checking in place of language equivalence is that systems that are

language equivalent are not necessarily bi-simulation equivalent.

6. Synchronizable/ Bounded System (Ik)

If the two systems Ik and Ik+1 are bi-simulation equivalent, then I is either synchronizable

or k-bounded based on whether k is 0 or a value greater than 0 respectively. System Ik

with bound of k has the behavior and language sequence that is similar to an unbounded

version of Ik.

7. Local State DFS This module takes as input a local state and a message queue to

determine if all the messages in the queue can be consumed with out getting blocked. The
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algorithm operates in a dfs-mechanism by moving to a next state looking for a transition

that by doing zero or more sends, can consume the message at the head of the queue.

8. Well-formedness Verifier The well-formedness verifier module checks at each configu-

ration of the composed system behavior, whether all the messages available in the message

queues of each peer can be consumed. The algorithm marks all the configurations that

are visited to avoid duplicate or redundant computations. As a configuration is composed

of local states from each peer, the algorithm uses the Local State DFS module to verify

for each local state in its current configuration whether all the messages in its respective

queue at its current state can be consumed. If a configuration contains atleast one local

state that cannot consume its messages in any of its paths, then the algorithm returns

false indicating that the system is not well-formed.

9. Composed System Behavior If the system is synchronizable or k-bounded, we build

the composed system behavior which is a list of configuration and transition objects that

consists of the interactions between the configurations of the composite system.

10. Visualization Graph The Visualization Graph is a way of structuring the state config-

uration and transition objects into a format that can be displayed as diagrams of abstract

graphs and networks.

11. Output Modeler The Output modeler takes the composed system behavior and converts

into the format that can be used to generate the Visualization graph.

6.2 Experimental Results

Table 6.1 presents the experimental results for systems, that are synchronizable or k-send-

bounded. We have used case studies from the existing literature that ranges from service

contracts (Reservationsession, Metaconversation, etc.) to Singularity OS contracts (TpmCon-

tract, TcpContract, KeyboardContract).

For each example, the second column shows the number of peers participating in the

interaction. The third column shows the total number of states and transitions, and the value
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Figure 6.3 Trace of reservation session protocol : Not well-formed

of k for k-send-boundedness of the system. For the synchronizable systems, the corresponding k

value is 0. The fourth column indicates our finding—whether or not the system is well-formed.

The last column shows the time taken to find the k and the time for testing well-formedness.

For each system, we have verified either synchronizability or the k-send-boundedness condi-

tions to identify the bound. Once such a bound is obtained, we verified for well-formed behavior

for systems that are not synchronizable. Note that for synchronizable systems, well-formedness

is guaranteed; therefore, we do not report time for verifying well-formedness. Figure 6.4 shows

Table 6.1 Results: Well-formedness

Case study Peers S/T/k Well-Formed Time (sec)

ReservationSession 2 12/16/1 7 0.012/0.005

Metaconversation 2 8/12/1 7 0.038/0.004

TpmContract 2 10/14/2 7 0.016/0.004

TcpContract 2 8/8/0 3 0.020/-

KeyboardContract 2 8/14/0 3 0.036/-

News server

Ouederni et al. (2014) 2 9/9/3 7 0.020/0.005
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Figure 6.4 tcp protocol: Synchronizable and well-formed

the tcp contract system with two peers. The tcp contract system is synchronizable and the

figure shows the two peers along with its composite state behavior.

For the systems, that are not well-formed, we can automatically identify the path leading

to the configuration from where at least one peer cannot consume the messages present in its

queue. As an example, the reservationsession protocol is not well-formed. Figure 6.3 provides

a path trace for the reservationsession protocol resulting from our algorithm.

From figure 6.3, the configuration t2s3[[succ],[cancel]] is not well-formed as there is no

transition out of state t2 in zero or more send actions that can consume the message succ in its

current configuration. For two-peer systems, well-formedness is violated when the peers move

by sending each other messages and are not capable of consuming the messages sent to them.

We have also experimented with some Web services with more than two peers such as the

Running Example in Akroun et al. (2016) and the Client-Supplier example in Happe et al.

(2010). We converted the peers in these systems to form a network of communicating systems

where every peer sends messages to only one other peer in a ring topology. That is, with respect
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to each peer all other peers in the ring can be viewed as one peer, hence forming a two-peer

asynchronous system. The example in Akroun et al. (2016) has a queue-bound of 1 and we

have verified it to be well-formed. On the other hand, the example from Happe et al. (2010) is

synchronizable and therefore, well-formed.
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CHAPTER 7. CONCLUSION

7.1 Summary

In this work, our focus is on verification of well-formedness properties in asynchronous

message-passing systems. Well-formedness property states that every message that is produced

is eventually consumed. When peers in an asynchronous system communicate over their buffers,

it is not always guaranteed that a sent message is eventually consumed which can happen when

the receiving peer was never ready to receive the message leading to an unwanted behavior or a

deadlocked state. Hence, verification of well-formedness for asynchronous communications is

very important to ensure safe behavior in its evolution. However, verification of well-formedness

requires that at every configuration in the state space, every local peer will be able to consume

the messages in its buffer eventually. When the buffers are unbounded, computation of reachable

state space is undecidable as discussed in Brand and Zafiropulo (1983), which makes the

well-formedness verification problem challenging.

We prove in this thesis that verifying well-formedness in asynchronous systems with un-

bounded buffers is undecidable. The proof relies on simulation of Turing machine by asyn-

chronously communicating finite state machines and reduction of the Halting problem for Turing

machines to well-formedness verification problem in asynchronous systems. We also identify

two important sub-classes of asynchronous systems for which verification of well-formedness

can be automatically tested. These two sub-classes are the synchronizable subclass and the

k-bounded subclass. Systems are synchronizable if and only if the interactions resulting from

asynchronous communication over unbounded queues can be captured by the interactions

resulting from synchronous communication where every sent-message is immediately consumed.

We proved that synchronizable systems are implicitly well-formed. Another subclass is referred
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to as k-send-bounded. Systems are k-send-bounded if and only if the interactions resulting

from asynchronous communication over unbounded queues can be captured by the interactions

resulting from asynchronous communication over k-bounded queues. We prove that for systems

in k-send-bounded subclass, well-formedness property can be automatically verified.

We have built a tool to conduct experiments on various types of asynchronous systems

and verify their language equivalence and well-formedness properties. The tool takes as input

the asynchronous system represented as ptrans relations, translates into internal objects and

verifies the synchronizability or the k-send-boundedness conditions to identify a bound on the

system. If a bound is found, the tool verifies the well-formedness properties of the system.

It also provides a trace path of system behavior as a witness when it finds the system is not

well-formed. The tool can also be easily extended to work with different input representations

of the asynchronous specifications and also to add new modules to verify behavior under varied

conditions. We presented the results of verifying well-formedness properties for various case

studies. Our experiments show that systems in different domains fall within these sub-classes,

thus making automatic verification of well-formed behavior possible.

7.2 Future Work

We have proved that the well-formedness property is undecidable for message-passing

asynchronous systems that communicate by FIFO queue. One of the primary areas that we are

looking to focus is the verification of well-formedness property for different types of asynchronous

systems. A primary assumption in the model of systems that we considered is that the ordering

of the messages in the queue is first-in-first-out, where every peer in the composite system is

assumed to have a buffer to manage the incoming messages. However, there are other variations

of systems where in there is a channel for every sender-receiver pair as in Peer to Peer network

protocols. Another variation is a system in which all the peers share a single channel, all sending

peers send messages to the channel and receiving peers consume the messages from the channel.

In both the above types, verifying well-formedness is likely to remain undecidable as the behavior

is still equivalent in terms of message consumption. However, when we deal with systems where

messages from a channel can be consumed in any order or allow for ignoring messages or
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deferring message consumption (for example, systems with huge network transmission delays),

the well-formedness property may not remain undecidable. We want to investigate more on

different types of these systems and prove the verifiability of well-formedness in these systems.

Another area of our interest is to extend the work in the verification of well-formedness

properties for domain specific languages. We currently have built an interpreter that translates

a subset of Microsoft’s P language semantics into our system representation and verify the

well-formedness properties for certain programs in P. We would like to extend our interpreter

to handle a broader set of semantics from the language that add interesting behaviors to the

composite system; model the behavior and verify well-formedness properties for wider range of

programs.
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