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ABSTRACT

The study of computational complexity investigates the role of various computational re-

sources such as processing time, memory requirements, nondeterminism, randomness, nonuni-

formity, etc. to solve different types of computational problems. In this dissertation, we

study the role of randomness in two fundamental areas of computational complexity: NP-

completeness and space-bounded computations.

The concept of completeness plays an important role in defining the notion of ‘hard’ prob-

lems in Computer Science. Intuitively, an NP-complete problem captures the difficulty of solv-

ing any problem in NP. Polynomial-time reductions are at the heart of defining completeness.

However, there is no single notion of reduction; researchers identified various polynomial-time

reductions such as many-one reduction, truth-table reduction, Turing reduction, etc. Each such

notion of reduction induces a notion of completeness. Finding the relationships among various

NP-completeness notions is a significant open problem. Our first result is about the separation

of two such polynomial-time completeness notions for NP, namely, Turing completeness and

many-one completeness. This is the first result that separates completeness notions for NP

under a worst-case hardness hypothesis.

Our next result involves a conjecture by Even, Selman, and Yacobi [ESY84, SY82] which

states that there do not exist disjoint NP-pairs all of whose separators are NP-hard via Turing

reductions. If true, this conjecture implies that a certain kind of probabilistic public-key cryp-

tosystems is not secure. The conjecture is open for 30 years. We provide evidence in support

of a variant of this conjecture. We show that if there exist certain secure one-way functions,

then the ESY conjecture for the bounded-truth-table reduction holds.

Now we turn our attention to space-bounded computations. We investigate probabilistic

space-bounded machines that are allowed to access their random bits multiple times. Our main

conceptual contribution here is to establish an interesting connection between derandomization
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of such probabilistic space-bounded machines and the derandomization of probabilistic time-

bounded machines. In particular, we show that if we can derandomize a multipass machine

even with a small number of passes over random tape and only O(log2 n) random bits to

deterministic polynomial-time, then BPTIME(n) ⊆ DTIME(2o(n)). Note that if we restrict

the number of random bits to O(log n), then we can trivially derandomize the machine to

polynomial time. Furthermore, it can be shown that if we restrict the number of passes to O(1),

we can still derandomize the machine to polynomial time. Thus our result implies that any

extension beyond these trivialities will lead to an unknown derandomization of BPTIME(n).

Our final contribution is about the derandomization of probabilistic time-bounded machines

under branching program lower bounds. The standard method of derandomizing time-bounded

probabilistic machines depends on various circuit lower bounds, which are notoriously hard to

prove. We show that the derandomization of low-degree polynomial identity testing, a well-

known problem in co-RP, can be obtained under certain branching program lower bounds.

Note that branching programs are considered weaker model of computation than the Boolean

circuits.
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CHAPTER 1. INTRODUCTION

Solving ‘hard problems’ has been one of the important measures of developments of human

knowledge since ancient times. The notion of this ‘hardness’ is informally characterized by the

number of serious but futile attempts by problem-solvers over many years. A problem such as

Fermat’s last theorem is considered to be a hard problem, as it resisted any solution for nearly

350 years, until mathematician Andrew Wiles finally solved it in 1994. Similarly, Goldbach’s

conjecture is also considered to be a hard problem as it has been open for over a quarter of

a millennium. However, in the computational world, there is a formal way to characterize

the computational difficulty of a problem through the study of computational complexity. In

particular, given a problem, we ask the following questions: how much processing time does it

take to solve the problem, or how much memory does it require, or can we solve it faster if we

introduce randomness in the computation or if nondeterminism is used? Thus the objective of

computational complexity is to determine the necessary and sufficient resources (such as time,

memory, randomness, etc.) required to solve computational problems.

Problems in computer science are classified into various complexity classes based on the

amount of resources required to solve them. Two problems are said to be computationally

equivalent if they belong to the same complexity class and thus require similar amount of re-

sources. Arguably, the two most important complexity classes in computer science are P and

NP. P represents the set of problems that can be solved by deterministic Turing machines in

polynomial time and NP is the set of problems whose solutions can be verified by determin-

istic Turing machines in polynomial time. Analogous to the above time-complexity classes, L

(deterministic logspace) and NL (nondeterministic logspace) are defined for the space-bounded

computations to classify problems based on their memory requirements.

Processing time and memory requirements (space) have been considered important re-
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sources since the early days of computation. However, the formal study involving randomness

in computation is relatively new. In 1977, Gill [Gil77] introduced a new model of computa-

tion called probabilistic Turing machines which are Turing machines with the ability to toss

an unbiased coin. Naturally, these machines are allowed to make mistakes in their computa-

tions. Based on their error probability, Gill formulated several polynomial-time randomized

complexity classes such as BPP, RP, and ZPP. Since then there has been a plethora of work

in complexity theory involving randomness [MR96, MU05, AB09, MM11]. New areas of study

inside complexity theory have evolved: randomness extraction, pseudorandomness, derandom-

ization to name a few. The area of cryptography, sampling, probabilistic proof systems, and the

interactive proof systems solely depend on the existence of randomness in computation. Today

randomness is considered an essential resource in the study of computational complexity.

The focus of this dissertation is to investigate the role of randomness as a computational

resource in the study of two specific areas of complexity theory: NP-completeness and space-

bounded computations.

NP-completeness

The notion of NP-completeness, introduced in early seventies by Cook [Coo71], Karp [Kar72],

and Levin [Lev73], is central to understanding the nature of hard problems in NP. Intuitively,

they capture the computational difficulty of all problems in NP. If we can solve any NP-

complete problem in polynomial time, the entire NP class collapses to the “easy” class P.

However, there is no single notion of NP-completeness and this makes it even more interesting.

The key concept in defining the NP-completeness is the notion of polynomial-time reductions.

Informally, reductions translate instances of one problem to instances of another problem; a

problem A is polynomial-time reducible to a problem B if A can be solved in polynomial-time

by making queries to problem B. By varying the manner in which the queries are made, we

obtain a wide spectrum of reductions. At one end of the spectrum is Cook/Turing reduction

where multiple queries are allowed and a query may depend on answers to previous queries. On

the other end is the most restrictive reduction, Karp-Levin/many-one reduction, where each

positive instance of problem A is mapped to a positive instance of problem B, and so are the
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negative instances. In between are truth-table/non-adaptive reductions, and bounded truth-table

reductions. It is easy to see that the many-one reduction implies truth-table reduction and the

truth-table reduction implies the Turing reduction.

With the above polynomial-time reductions at hand, we can now formally define various

notions of NP-completeness. A language L is called NP-hard via many-one reduction if every

language in NP many-one reduces to L. The language L is called many-one complete for NP if L

is also in NP. Even though it is standard to define completeness using many-one reductions, one

can similarly define completeness using Turing, truth-table, or bounded truth-table reductions.

Note that the seminal paper of Cook used Turing reduction to define NP-completeness, whereas

the works of Karp and Levin used many-one reductions. Turing reductions are arguably more

appropriate to define completeness to capture the intuition that if a complete problem for NP

is “easy” then the entire class is easy. However, all known natural languages, like traveling

salesperson problem or Hamiltonian circuit problem, turn out to be complete under many-

one reductions. At this point, it is natural to ask: What is the relationship between many-

one completeness and Turing completeness for NP? Since many-one reduction implies Turing

reduction, any many-one complete language for NP, like the above two mentioned, is also a

Turing complete language for NP. Does the converse hold? What is the relationship between

NP-hardness via many-one reduction and NP-hardness via Turing reduction?

In the first part of this dissertation, we use randomness as a tool to investigate the relation-

ships among various notions of NP-completeness and NP-hardness. Note that the definition of

NP-completeness does not involve randomness in any way. Polynomial-time randomized reduc-

tions play an important role in all of these proofs. We would like to mention that randomized

reductions have been used in some of the seminal results in complexity theory since early days;

for example to show that interactive protocol is same as polynomial space [Sha92, LFKN92],

worst-case hardness reduces to average-case hardness for EXP [BFL91, BFNW93, IW97], and

a problem in polynomial hierarchy can be solved in polynomial-time given access to #SAT

oracle [Tod91b].
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Probabilistic Space-bounded Computations

The next part of this dissertation is focused on the study of probabilistic space-bounded

computations and the derandomization (removing randomness from computation). Our main

objective is to investigate the different types of access-mechanisms of the random tape by

the probabilistic machines and how it affects their computations. In the traditional definition

of probabilistic space-bounded computations, a probabilistic machine can access its random

tape in a one-way, read-only manner and the random tape does not count towards the space

complexity of the probabilistic machine. In particular, the machine cannot reread the random

bits unless they are stored in its work tapes. This access mechanism is the most natural

one as it corresponds to modeling probabilistic machines as coin-tossing machines, originally

defined by Gill [Gil77]. The complexity class BPL is the class of languages accepted by such

bounded-error probabilistic machines that use logarithmic space and halt in polynomial time.

Note that we only consider probabilistic machines that halt on all inputs on all settings of

the random tape. If we do not require the machines to halt, then we get a potentially larger

class of languages [KV85, Sak96]. The class RL is the one-sided error counterpart of BPL.

Whether BPL or even RL can be derandomized to deterministic logspace is one of the central

questions in the study of space-bounded computation. In spite of clear and steady progress in

space-bounded derandomization, this question is far from settled [Nis92, INW94, SZ99, RR99,

RTV06, Rei08, CRV11].

On the other extreme, there are two-way probabilistic space-bounded machines that have

two-way access to the random tape. Two-way machines are considered to be significantly

more powerful than their one-way counterpart [BCP83]. For example, Nisan [Nis93] showed

that a two-way zero-error probabilistic logspace machine can simulate a one-way two-sided

bounded error probabilistic logspace machine, but the reverse is not known to hold. Similarly,

BPL is known to be in logspace with a linear amount of advice [FK06], whereas the best

we know about the 2-wayBPL machine is that they can be simulated by a logspace machine

with polynomial amount of advice [Adl78]. In between the standard one-way model and the

two-way access model are the multipass models, where the machines make multiple passes
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over the random tape and in each pass they access their random tape in a traditional one-

way manner. Clearly, the number of passes in the multipass machines act as a parameter to

move from the one-way access to the two-way access models. This model was first considered

by David, Papakonstantinou, and Sidiropoulos [DPS11]. We investigate the consequences of

derandomizing both the multipass machines and the two-way machines. Our motivation is the

following: Is there any implication of derandomizing these machines to the derandomization of

the probabilistic time-bounded classes?

Given a t(n) time-bounded probabilistic Turing machine, a deterministic machine can sim-

ulate it by cycling through all possible random strings of length at most t(n) and taking the

majority vote. Such trivial way of derandomizing any probabilistic machine takes exponentially

more time than the time taken by the original probabilistic machine. The natural question is:

Is there a way to simulate probabilistic time-bounded machines deterministically without an

exponential blow-up in time? This is one of the central open questions in complexity theory. In

complexity-theoretic terms, this question can be phrased as whether BPP (or Promise-BPP)

is in deterministic subexponential time. It has been established that existence of problems (in

exponential time) with high circuit complexity (intuitively, this means the size of the Boolean

circuit to compute that language is large) can be used to obtain a faster deterministic simulation

of probabilistic time-bounded computations. The celebrated result of Impagliazzo and Wigder-

son [IW97] states that if there are languages in E with 2εn circuit complexity, then Promise-BPP

is in P. Weaker circuit complexity hardness assumptions yield weaker simulations. For exam-

ple, if EXP does not have polynomial-size circuits, then BPP is in sub-exponential time. These

“hardness versus randomness” trade-offs [BFNW93, NW94, Uma03, ISW06, KvMS11] cru-

cially rest on the notion of efficient pseudorandom generator—easily computable functions that

stretch short random seeds to long seeds that appear random to time-bounded machines.

Though the existence of problems in EXP with high circuit complexity is a believable and

well accepted hypothesis, we are far from proving such circuit lower bounds. For example,

even showing that NEXP has languages that do not have polynomial-size circuits will be a

major breakthrough. Given this, it is natural to ask if there are alternate routes to achieve

derandomization that do not involve proving circuit lower bounds. This is exactly where the
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derandomization of the aforementioned multi-access probabilistic space-bounded models come

into play.

Now we provide a summary of the main results in this dissertation.

Summary of Results

Our first contribution in this dissertation is to address the following question from the pre-

vious discussion: Is there a Turing complete language for NP that is not many-one complete

for NP? This will separate Turing and many-one completeness for NP. This question was first

raised by Ladner, Lynch, and Selman [LLS75] in their seminal paper where they introduced

several polynomial time reductions such as truth-table reduction, bounded-truth-table reduc-

tions, etc. It is easy to see that a positive answer to the question will separate P from NP, the

most outstanding question in computer science. They conjectured that the reverse also holds,

i.e., if P 6= NP, then Turing and many-one completeness are different for NP. The question

remained open nearly for two decades. The first major progress was made by Lutz and May-

ordomo [LM96] who showed that Turing and many-one completeness are different for NP if a

stochastic property about NP (called measure hypothesis) holds. Since then, efforts have been

made [ASB00, PS02, PS04, HPV08, GHP11] to prove the separation between these complete-

ness notions in NP under a weaker hypothesis. However, all of these hypotheses involved either

the almost-everywhere hardness of NP (which says that NP is hard on all but finitely many

inputs) or a combination of average-case hardness and worst-case hardness. But the natural

problems are believed to be worst-case hard or average-case hard (for example, satisfiability is

believed to be average-case hard). Thus the question of whether we can separate many-one and

Turing completeness for NP only under a worst-case hardness hypothesis still remained open.

We resolve this question in Chapter 3.

Our next result is about an interesting conjecture about promise problems. A promise

problem is a disjoint pair—a pair of disjoint sets (Πy,Πn), Πy is called the set of “yes” instances

and Πn is the set of “no” instances. Their union Πy ∪ Πn is called the promise. For a

promise problem (Πy,Πn), one is interested in the following computational question: Is there

an efficient algorithm that tells whether an instance x lies in Πy or not, under the promise
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that x is in Πy ∪ Πn. The algorithm may give an arbitrary answer if the promise does not

hold, i.e., x /∈ Πy ∪ Πn. More formally, a solution/separator of a promise problem is any

set S that includes Πy and is disjoint from Πn. A promise problem is considered easy if it

admits a solution in P and is hard if every solution is computationally difficult. The ESY

conjecture, due to Even, Selman, and Yacobi, concerns the computational difficulty of disjoint

NP-pairs. They conjectured that there do not exist promise problems all of whose solutions

are NP-hard [SY82, ESY84] via Turing reductions. If true, the ESY conjecture implies that

NP 6= co-NP and NP 6= UP 1, and this is one reason obtaining evidence for the ESY conjecture

has been hard for the last 30 years. In Chapter 4, we consider variants of the ESY conjecture

and show that under some reasonable hypotheses these variants follow.

Our first result in the domain of space-bounded computations involves an interesting con-

nection between the derandomization of the multipass machines and the derandomization of the

linear probabilistic time-bounded machine. As our main result in Chapter 5, we show the follow-

ing (informally): If every language decided by a bounded-error probabilistic logspace machine

that uses O(log2 n) random bits and makes a non-constant number of passes over its random

tape is in deterministic polynomial time, then linear probabilistic time can be derandomdized

to deterministic sublinear exponential time. Our main conceptual contribution is that deran-

domizing such probabilistic space-bounded machines leads to derandomization of probabilistic

time-bounded classes. There are two reasons why we think this is a fruitful avenue to explore.

First, the pseudorandom generators for the space-bounded computations [Nis92, INW94, NZ96]

are unconditional compared to the pseudorandom objects for the time-bounded classes whose

existence depends on the hard-to-prove circuit lower bounds. Second, the logspace probabilistic

machine can be derandomized to an O(log3/2 n)-space-bounded deterministic machine [SZ99]

and the belief in the theory community is actually that BPL = L.

Our final contribution in this dissertation (in Chapter 6) is the derandomization of proba-

bilistic time-bounded classes under branching program lower bounds (instead of circuit lower

bounds). In particular, we show that if the linear exponential time E does not have 2εn-size

branching programs, then a particular problem in co-RP, low-degree polynomial identity test-

1UP stands for Unambiguous nondeterministic polynomial-time.
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ing over the field Q, can be solved deterministically in time nO(logn). The motivation is that

branching programs are believed to be weaker nonuniform model than Boolean circuits and

thus showing lower bounds against them should be easier.
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CHAPTER 2. PRELIMINARIES

In this chapter, we introduce the notation and terminology used throughout the rest of this

dissertation. We also review few basic concepts, computational models, and the complexity

classes from computational complexity. We assume the familiarity with the standard notation

and definitions in complexity theory [Pap94, Gol08, AB09, MM11].

2.1 Languages and Basic Model of Computation

All languages are defined over the the binary alphabet Σ = {0, 1}, Σn denotes the set of

all binary strings of length n. We use |x| to denote the length of a string x. We assume the

standard lexicographic order on strings. We use x− 1 to denote the immediate predecessor of

x in this order. Given a language L and a string x, L(x) denotes the characteristic function of

L, and L|x is defined as L(λ)L(0)L(1) · · ·L(x− 1).

We also assume that the computations are done using floor function of x, bxc, wherever

necessary. All the time functions t : N→ N we consider are time-constructible and all the space

functions are assumed to space-constructible. Further, logc n or polylog(n) represents (log n)c

for some integer c > 0.

We use both uniform and nonuniform models of computation. Turing machine is the choice

of our uniform model of computation. We use deterministic, nondeterministic, and probabilis-

tic Turing machines both for time- and space-bounded computations. Boolean circuits and

branching programs are considered the nonuniform models of computation and used through-

out this dissertation. An O-oracle circuit C, denoted by CO, is a Boolean circuit with access

to oracle O. We assume the familiarity with these standard models of computation [AB09].

Non-deterministic double-exponential time is defined by NEEXP =
⋃
c>1 NTIME(22n

c

)
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and co-NEEXP is its complement class. We say that a nedeterministic machine is a NEEXP

machine, if its runtime is bounded by 22n
c

for some c > 1. A language L is in ZPTIME(t(n)),

if there is a probabilistic machine Z running in time O(t(n)) such that for every x, Pr[Z(x) =

L(x)] is atleast 1/4, and the probability that Z outputs an incorrect answer is zero. The

machine Z may output ⊥ with certain probability (at most 3/4).

The class QuasiNP is the set of languages that can be accepted by nondeterministic Turing

machines running in quasi-polynomial-time, i.e., QuasiNP = ∪c>0NTIME(2logc n).

The following machine is a variant of standard definition of Turing machine and computes

a function rather than behaving as a decider.

Definition 2.1. Suppose N is a nondeterministic machine accepting a language S. We say

that a t(n)-time bounded, zero-error, probabilistic machine computes accepting computations of

N if there exists a probabilistic machine Z such that

(a) For every x ∈ S, for every choice of random bits Z(x) either outputs a string from Σ∗ or

outputs the special symbol ⊥.

(b) for every x ∈ S, Pr[Z(x) is an accepting computation of N(x)] > 1/4, and

(c) for every x ∈ S, Pr[Z(x) 6= ⊥ and is not an accepting computation of N(x)] = 0.

2.2 Polynomial-time Reductions

Consider two languages A and B. A is polynomial-time Turing reducible to B, denoted by

A ≤P
T B, if there is a polynomial-time oracle Turing machine M such that A = L(MB). Note

that M can make at most polynomially many queries to B and they can be adaptive. The

language A is polynomial-time truth-table reducible to B, denoted by A ≤P
tt B, if there is a pair

of polynomial time computable functions 〈f, g〉 such that for every x ∈ Σ∗, (1) f(x) is query

set Q = {q1, q2, · · · , qk} and (2) x ∈ A ⇐⇒ g(x,B(q1), B(q2), · · · , B(qk)) = 1. We call f the

query generator and g the truth-table evaluator. Given a polynomial time reducibility ≤P
r , a

set B is ≤P
r -complete for NP if B is in NP and for every set A ∈ NP, A is ≤P

r reducible to B.
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A language A is k-truth-table reducible to a language B (denoted A ≤P
ktt B) if there exist

two polynomial-time computable functions f and t such that for every x,

f(x) = 〈q1, · · · , qk〉 and t(x,B(q1), · · · , B(qk)) = A(x).

We say that A is bounded-truth-table reducible to B (denoted A ≤P
btt B) if there exists an integer

k > 0 such that A ≤P
ktt B.

Definition 2.2. A function f : Σ∗ → Σ∗ is SNP computable if there is a nondeterministic

polynomial-time bounded Turing machine M such that for every x at least one path of M(x)

outputs f(x) and no path outputs a wrong answer. Some paths may output ⊥.

We will also consider strong nondeterministic reductions. These reductions were originally

defined by Adleman and Manders [AM77]. We slightly modify their definition to suit our

purposes.

Definition 2.3. Let A and B be two languages. We say that A is strong nondeterministic

k-truth-table reducible to B (denoted A ≤SNP
ktt B), if there is a polynomial-time computable

function f and an SNP computable function t such that for every x, f(x) = 〈q1, · · · , qk〉, and

t(x,B(q1), · · · , B(qk)) = A(x). We say that A is strong nondeterministic bounded-truth-table

reducible to B (A ≤SNP
btt B) if there exists a k > 0 such that A ≤SNP

ktt B.

Remark. Note that in this definition, the reduction does not use nondeterminism to produce the

queries. The original definition of Adleman and Manders [AM77] allows the query generator

f also to be SNP computable. Similarly, we can define the notion of strong nondeterministic

quasi-polynomial-time reductions.

Definition 2.4. We say that A is reducible to B via length-increasing, strong nondeterministic,

k-truth-table reductions (denoted ≤SNP
ktt,li) if A ≤SNP

ktt B and the length of every query is bigger

than the length of the input.

Notions of length-increasing are defined similarly for ≤P
ktt, ≤P

btt, and ≤SNP
btt -reductions.
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2.3 P-selective Sets

We use the notion of P-selective sets introduced by Selman [Sel79].

Definition 2.5. A set S ⊆ Σ∗ is P-selective if there is a polynomial time computable function

f : Σ∗ × Σ∗ → Σ∗ such that for all strings x, y ∈ Σ∗, (1) f(x, y) ∈ {x, y}, and (2) If either of x

and y is in S, then f(x, y) is in S. The function f is called the P-selector of S.

The well-known example of P-selective sets are the left-cut sets L(r) = {x | x < r}, where r

is an infinite binary sequence, and < is the dictionary order with 0 < 1. The following lemma

is due to Toda [Tod91a].

Lemma 2.1. For every P-selective set L, there is a polynomial time algorithm that given any

finite set of strings Q as input, outputs a sequence x1, · · · , xm such that {x1, · · · , xm} = Q,

such that for some integer p, 0 ≤ p ≤ m, Q ∩ L = {xi | i ≤ p} and Q ∩ L̄ = {xi | i > p}.

2.4 Unpredictability

Now we define the notion of unpredictability which is similar to the notion of genericity

considered elsewhere in the literature.

Definition 2.6. We say that a nondeterministic machine M is strong if for every input x,

exactly one of the following conditions hold:

1. at least one path of M accepts x and no path rejects,

2. at least one path of M rejects x and no path accepts.

Some paths of the machine may output ⊥.

Definition 2.7. Let M be a strong nondeterministic machine and L be a language. We say

that M is a predictor for L if for every x ∈ L, M accepts 〈x, L|x〉 and for every x /∈ L, M

rejects 〈x, L|x〉.

Definition 2.8. Let t(n) be any time bound. We say that a language L is SNTIME(t(n))-

unpredictable if for every strong nondeterministic machine M that predicts L, every path of M

runs for more than t(n) time for all but finitely many inputs of the form 〈x, L|x〉.
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Definition 2.9. Let A and L be two languages. We say that L is SNTIME(t(n))-unpredictable

within A if L ⊆ A and for every strong nondeterministic machine M that predicts L, for all

but finitely many x from A, M runs for more than t(n) time on inputs of the form 〈x, L|x〉.

We use the following theorem from [HPRS12] concerning the existence of unpredictable sets

within SAT.

Theorem 2.1. For every k > 0, there is a set R such that R is SNTIME(2logk n)-unpredictable

within SAT.

2.5 Secure One-way Functions and Cryptographic Generators

In this section, we define the notions of secure one-way functions against O-oracle Boolean

circuits and cryptographically-secure pseudorandom generators.

Definition 2.10. A family of functions {f} : Σn → Σ`(n) is one-way, s(n)-secure against oracle

O, if the function f is uniformly computable in time polynomial in n and for every non-uniform

circuit CO of size at most s(n) and for sufficiently large n,

Pr
x∈Σn

[CO(f(x)) ∈ f−1(f(x))] ≤ 1

s(n)
.

Given any function f : {0, 1}∗ → {0, 1} and oracle O, the circuit complexity of f relative

to O-oracle at length n, denoted by COf (n), is the size of the smallest O-oracle circuit that

computes f on every input of size n. We say that a function f : {0, 1}∗ → {0, 1} has circuit

complexity s(n) relative to an oracle O, if for all but finitely many n, COf (n) ≥ s(n).

Definition 2.11. A pseudorandom generator is a function G : Σm(n) → Σn such that for every

circuit C of size at most O(n),

∣∣∣ Pr
x∈Σn

[C(x) = 1]− Pr
y∈Σm(n)

[C(Gn(y)) = 1]
∣∣∣ ≤ 1

8
.

Given an oracle O, G is said to be secure against O-oracle if the above inequality holds for all

O-oracle circuits CO of size at most O(n), for almost all n.
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All known constructions of the cryptographically-secure pseudorandom generators are based

on some hardness assumptions on the circuit complexity of a function. We need the following

result due to Klivans and van Melkebeek [KvM02] (Theorem 3.4 in their paper.)

Theorem 2.2 ([KvM02]). There exists a positive constant c such that the following holds for

any oracle O, any function f ∈ EXP, and any time constructible function ` : N → N: If

for every n, the O-oracle circuit complexity of f at length `(n) is at least nc, then there is a

pseudorandom generator G : ΣO(`2(n)) → Σn that is secure against O-oracle. The running time

of G is 2`
2d(n) for some constant d > 0.

We use the following instantiation of the above result obtained by taking `(n) to be

(c log n)1/ε.

Theorem 2.3 ([KvM02]). Let O be any language. If there is a constant ε > 0 and a function f

in EXP with circuit complexity at least 2n
ε

relative to O-oracle, then there is a constant a > 0

and a pseudorandom generator G : Σloga n → Σn that is secure against O-oracle. The running

time of G is 2logb n for some constant b > 0.

2.6 Multipass Machines

In the last two chapters of this dissertation, we study the probabilistic space-bounded

machines that can access random bits multiple times. For such machines, (often called offline

model) the random bits appear on a special read-only tape called the random tape. In addition

to the random tape, these machines have one read-only input tape and few read-write work

tapes, as standard in space-bounded machine models. The total space used by the work tapes

signify the space bound of such a machine. We also assume that all the probabilistic space-

bounded machines halt in time at most exponential in their space bounds. Thus, the number

of random bits used by them is at most exponential in their space-bounds. More formally, our

multipass machines are defined as follows:

Definition 2.12. A language L is in k(n)-pass BPSPACE[s(n), r(n)] if there exists an O(s(n))-

space bounded probabilistic Turing machine M such that on any input x of length n:
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(a) M makes k(n) passes over the random tape, during each pass it accesses the contents of

random tape in a one-way manner,

(b) M uses at most O(r(n)) random bits, and

(c) the probability that M incorrectly decides x is at most 1/3.

In our notation, BPL = 1-pass BPSPACE[log n, nO(1)]. In Chapter 5, we observe that a

constant factor in the number of passes does not add power to the model and hence in our

notation, O(1)-pass BPSPACE[log n, nO(1)] is also same as BPL. Also, the result of Nisan and

Zuckerman [NZ96] can be stated as BPSPACE[s(n), sO(1)(n)] = DSPACE(s(n)).

Since we assume that every space-bounded probabilistic machine halts on all settings of

random tape on all inputs, the running time of the multipass machine is bounded by 2O(s(n))

where s(n) is the space bound. Thus, this machine can only access random tape of length

2O(s(n)). Indeed, when the number of random bits is exponential in space, i.e., r(n) = 2O(s(n)),

we simply write the above class as k(n)-pass BPSPACE(s(n)). Further, when the the space

of the k(n)-pass BPSPACE machine is bounded by O(log n), we simply write the class as

k(n)-pass BPL[r(n)].

2.7 Expander Graphs

Definition 2.13. An undirected multigraph GN on N vertices is called a γ-expander if for

every set of vertices S of size at most N/2, it has at least (1 + γ)|S| neighborhood vertices. We

define a family of γ-expanders by {GN}N≥1, where each GN is a γ-expander. We say that an

expander is d-regular, if there exist a constant γ > 0 such that GN is γ-expander and every

vertex in GN has degree d. We index each of the d neighbors for each node by the integers

from 1 to d.

We will use the following constant-degree expander construction due to Margulis [Mar75]

and Gabber-Galil [GG81].

Theorem 2.4. Let N be an integer, Zm be the set of integers modulo m, and m =
√
N .

Consider an undirected multigraph GN whose vertices and edges are defined as follows:
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• each vertex is represented by a pair (x, y) ∈ Zm × Zm and

• each vertex (x, y) is connected to only five other vertices: (x, y), (x, x + y), (x, x + y +

1), (x+ y, y), (x+ y + 1, y) (under modulo m operations).

Then GN is a 5-regular expander.

2.8 Arithmetic Circuits and Polynomial Identity Testing

Now we define arithmetic circuits as another model of computation and the corresponding

polynomial identity testing problem. Let R denote a ring, Z denote the set of integers, and Q

denote the set of rationals.

Definition 2.14. An arithmetic circuit C with `-inputs over R, denoted C`, is a labeled,

directed acyclic graph such that

(a) there exist exactly one node whose out-degree is zero (output node),

(b) there exist at least ` nodes whose in-degree is zero (input nodes),

(c) all other nodes are labeled with operations + and ×, and

(d) input nodes are labeled either by x1, · · · , x` or by constants from R.

Size, Degree, and Depth

The size of an arithmetic circuit is the size of the underlying labeled graph consisting of the

nodes and edges. An arithmetic circuit C` naturally and succinctly represents a multivariate

polynomial p(x1, · · · , x`). An important parameter is its degree. In general, the degree of

the polynomial represented by C` could be exponential in size of C`. We consider arithmetic

circuits that represent low-degree polynomials. We say an arithmetic circuit C` of size n has

low-degree if the polynomial represented by C` has total degree at most n.

Let C` be an arithmetic circuit of size n, that has ` ≤ n inputs. Even though the polynomial

represented by C` is over ` variables, we can also view it as the following n-variate polynomial:

p(x1, · · · , x`)×(x`+1 · · ·xn)0. Thus, from now onward, we will assume that n represents both the
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size of the arithmetic circuit Cn as well as the number of variables in the n-variate polynomial

represented by it.

Depth of an arithmetic circuit is the length of the longest path from any input gates to

the output gate. Fan-in of a gate g is the number of input gates to g. We are interested in

arithmetic circuits with bounded depth and unbounded fan-in. Let k > 0 be a constant and Cn

be an unbounded fan-in arithmetic circuit with depth k. By our notation, Cn is a circuit of size

n representing an n-variate polynomial p(x1, · · · , xn). Note that the degree of p(x1, · · · , xn) is

bounded by a polynomial q(n) (q(n) may depend on k). By padding Cn with few additional

gates (for example, considering a circuit representing an identically zero polynomial and feeding

it to an addition gate), we can obtain a circuit D of size q(n) that is equivalent to the circuit Cn.

This padding can be done in logspace. Thus Cn is equivalent to an arithmetic circuit D of size

q(n) and degree q(n). Hence D represents a low degree polynomial. Even though D represents

a polynomial over n variables, we can still view it as a polynomial over q(n)-variables. Thus,

without loss of generality, we make the following assumption in the rest of this dissertation: A

depth-k arithmetic circuit C of size n has low-degree and represents an n-variate polynomial.

Definition 2.15. Low-degree Polynomial Identity Testing (PIT) over ring R is the following

computational problem: Given a low-degree arithmetic circuit over R, determine if the mul-

tivariate polynomial represented by it is identically zero. Let k > 0 be a constant. Depth-k

PIT over R is the problem of determining whether the polynomial represented by a depth k,

arithmetic circuit (over R) is identically zero.

2.9 Hitting Sets and Black-box Derandomization

We use two different notions of hitting sets for the space-bounded probabilistic class C in

this dissertation.

Definition 2.16. We say that C has polynomial-time computable hitting sets if for every ma-

chine M in C, there exists a constant c > 0 and a family of functions {fn}n≥1, fn : Σc logn → Σn,

uniformly computable in time polynomial in n, such that for every n ≥ 0 and for every x ∈ Σn,

x ∈ L⇔ ∃s ∈ {0, 1}c log r(n) so that M(x, fr(n)(s)) = 1



18

where r(n) denotes the number of random bits used by M on inputs of length n.

The above type of derandomization applies to a complexity class and is standard in the

study of derandomization. The next definition, due to Agrawal and Vinay [AV08], applies to

the specific problem PIT defined in the previous section.

Definition 2.17 ([AV08]). Let k > 0 be a constant. Depth-k, PIT over ring R has a

polynomial-time computable hitting set if there exists a family of functions {gn}n≥1 : N→ (Rn)∗

uniformly computable in time polynomial in n such that for every depth-k arithmetic circuit

Cn (over R) of size n, Cn is identically zero if and only if Cn(a1, · · · , an) = 0, for every tuple

(a1, · · · , an) in the range of gn(1n).

Next, we define what we mean by black-box derandomization for the complexity class C.

Definition 2.18. We say that C has polynomial-time black-box derandomization if for every

machine M in C, there exists a constant c > 0 and a family of functions {fn}n≥1, fn : Σc logn →

Σn uniformly computable in time polynomial in n, such that for every n ≥ 0 and for every

x ∈ Σn, ∣∣∣∣ Pr
r∈Ur(n)

[M(x, r) = 1]− Pr
s∈Uc log r(n)

[M(x, fr(n)(s))] = 1

∣∣∣∣ ≤ 1

n
,

where r(n) denotes the number of random bits used by M on inputs of length n and Um denotes

the uniform distribution over Σm.

The family of functions {fn} in the above definition is called the pseudorandom generator

for the complexity class C.
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CHAPTER 3. SEPARATION OF NP-COMPLETENESS NOTIONS

The concept of NP-completeness plays a pivotal role in understanding the computational

difficulty of various problems that arise in practice. The notion of polynomial-time reductions

is at the heart of defining whether a problem is NP-complete or not. Interestingly, there is

no single notion of polynomial-time reduction. There is a wide spectrum of such notions, for

example, many-one reduction, bounded truth-table reduction, truth-table reduction, Turing

reduction, etc. Each of these polynomial-time reductions defines a notion of completeness.

Given a polynomial-time reduction r, a language L is called r-complete for NP if the language

L is in NP and every language in NP r-reduces to L. Whether these reductions, particularly

many-one reduction and Turing reduction, are different in NP has drawn a keen interest in

the complexity theory community. Ladner, Lynch, and Selman [LLS75] showed that if the two

completeness notions arising from the many-one and Turing reductions are different in NP then

the complexity class P is different from its non-deterministic counterpart NP. They famously

conjectured that if P 6= NP, then the Turing and many-one completeness notions are different

in NP. Their conjecture prompted a large body of research on differences among completeness

notions for various complexity classes.

Understanding the differences between many-one reductions and Turing reductions is one

of the fundamental problems in complexity theory. Compared to many-one reductions, our

knowledge about Turing reductions is limited. Extending certain assertions that are known

to be true for many-one reductions to the case of Turing reductions yield much sought af-

ter separation results in complexity theory. For example, it is known that polynomial-time

many-one complete sets for EXP are not sparse [TFL93]. Extending this result to the case of

Turing reductions implies that EXP does not have polynomial-size circuits. In the context of

resource-bounded measure, it is known that “small span theorem” holds for many-one reduc-
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tions. Establishing a similar result for Turing reductions separates EXP from BPP [JL95]. In

addition, Turing reductions are crucial to define the polynomial-time hierarchy.

Before we mention the progress on the aforementioned conjecture, it is important to un-

derstand the differences between separating various polynomial-time reductions in NP and

separating various NP-completeness notions. Simon and Gill [SG77] showed that if P 6= NP,

there is a language in NP that is hard for NP via Turing reductions, but is not hard for

NP via many-one reductions. Thus the conjecture of Ladner, Lynch, and Selman holds for

NP-hardness, but is not known to hold for NP-completeness. Further, Selman [Sel79] showed

that if NE ∩ co-NE does not equal E, then there exist languages A and B in NP such that A

polynomial-time Turing reduces to B, but does not polynomial-time many-one reduce to B.

Aida, Schuler, Tsukiji, and Watanabe [ASTW01] showed a similar result for the average-case

world; if P does not equal NP, then there are distributional problems (A,µA) and (B,µB) in

DistNP such that (A,µA) Turing reduces to (B,µB) but does not many-one reduce to (B,µB).

Pavan and Selman [PS04] showed that even under a weaker hypothesis, that is, existence of tally

languages in UP− P, it’s possible to separate truth-table reduction from bounded truth-table

reduction and Turing reduction from truth-table reduction in NP. Moreover, the differences be-

tween Turing and truth-table reductions have been studied extensively in the context of random

self-reductions and coherence [FFLS92, FFLN96, HNOS96, BL99]. For example, Feigenbaum,

Fortnow, Lund, and Spielman [FFLS92] showed that if nondeterministic triple exponential time

is not in bounded-error, probabilistic triple exponential time, there exists a function in NP that

is Turing random self-reducible, but not truth-table random-self reducible.

Previous Work

It is interesting to note that the question whether many-one completeness and Turing

completeness are different has been completely resolved for the complexity classes EXP and

NEXP. Works of Ko and Moore [KM81] showed that there is a language that is Turing

complete for EXP, but not many-one complete for EXP. Watanabe [Wat87] went one step

further and showed that each of the 1-truth-table, bounded truth-table, truth-table, and Turing

completeness notions are different from each other for EXP. On the contrary, Homer, Kurtz,
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and Royer [HKR93] showed that the completeness notions induced by many-one and 1-truth-

table reductions are in fact identical for EXP. Separation results similar to Watanabe’s were

obtained for the complexity class NEXP as well by Buhrman, Homer, and Torenvliet [BHT91].

Survey articles [BT94, Hom97] contain the details and proof ideas of these results.

The progress towards separating Turing and many-one completeness for NP, however, has

been very slow. One of the early results in this direction was by Longpre and Young [LY90]

who showed that for every polynomial t(n), there is a Turing complete language in NP that is

not many-one complete via a t(n) time many-one reduction. However, this still does not solve

the aforementioned problem as the definition of many-one reduction allows it to run for time

any polynomial in n. The first result that achieved a separation between Turing and many-one

completeness for NP, under a reasonable hypothesis, is due to Lutz and Mayordomo [LM96].

They showed that if NP does not have P-measure 0 (known as measure hypothesis), then

Turing completeness for NP is different from many-one completeness 1. Subsequently, com-

pleteness notions under other polynomial-time reductions too were shown to be different under

even weaker hypotheses. Ambos-Spies and Bentzien [ASB00] achieved a finer separation (by

separating almost all of the bounded truth-table completeness notions from each other and

truth-table completeness) for NP under a weaker hypothesis known as genericity hypothesis,

which states that NP has a P-generic language. This is still the weakest known hypothesis

that separates each of the k-truth-table completeness notions for NP. Both the above hy-

potheses involve the stochastic properties of NP. Pavan and Selman [PS02] showed that the

separations can be achieved under combinatorial properties of NP as well. They separated

Turing and many-one completeness for NP under the assumption that NP ∩ co-NP contains a

2n
ε
-bi-immune language 2 (called NP machine hypothesis). Pavan and Selman [PS04] showed

that the existence of a 2n
ε
-bi-immune language in NP suffices to separate 3-truth-table from

many-one completeness for NP. The separation between any two adaptive reductions under

combinatorial hypotheses were still open, until they further separated truth-table completeness

1In fact, they achieved a stronger result: Under measure hypothesis, 3-truth-table reduction is different form
many-one reduction for NP.

2An infinite language L is called 2n
ε

-immune if no infinite subset of L belongs to DTIME(2n
ε

). A language
L is called 2n

ε

-bi-immune if both L and L are 2n
ε

-immune.
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from Turing completeness for NP under the hypothesis that UP ∩ co-UP has a 2n
ε
-bi-immune

language (called UP machine hypothesis). They also improved their previous result to show

that NP machine hypothesis is able to separate 1- and 2-truth-table completeness for NP as

well. For the interesting relationships among the aforementioned hypotheses, refer to the survey

of Pavan [Pav03] and in-depth study by Hitchcock and Pavan [HP08].

Our Contribution

All of the above mentioned hypotheses are known as almost everywhere hardness hypotheses.

Informally, these hypotheses assert that there exists a language in NP such that every algorithm

that decides L must take more than subexponential time on all but finitely many inputs. Even

though we believe that NP is subexponentially hard, we do not have any candidate languages

in NP that are almost everywhere hard. All known natural problems have an infinite set

of instances that can be decided in polynomial time. Thus these hypotheses are considered

“strong hypotheses”. It was open whether a separation among NP-completeness notions can be

achieved using a worst-case hardness hypothesis (such as P 6= NP, or NE 6= E) or average-case

hardness hypothesis (such as the existence of one-way functions). The first work in this direction

was by Hitchcock, Pavan, and Vinodchandran [HPV08] who showed the separation between

Turing and many-one completeness for NP under two certain average-case hardness hypotheses

called partial bi-immunity hypothesis and scaled dimension hypothesis. Later, Gu, Hitchcock,

and Pavan [GHP11] used a combination of average-case and worst-case hardness hypotheses

to separate Turing completeness from truth-table completeness for NP. The average case

hypothesis is “there exist one-way permutations” and the worst case hypothesis is “there exists

a language in NEEE∩ co-NEEE that cannot be solved in deterministic triple exponential time

with logarithmic advice”. But the separation between any two polynomial-time completness

notions for NP purely under worst-case (in uniform setting) hardness hypothesis was still open.

The main contribution in this chapter is a separation of Turing completeness from truth-

table completeness (hence, many-one completeness) for NP under only a worst-case hardness

hypothesis. This is the first result of this nature.
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Organization of this Chapter

The rest of this chapter is organized as follows. We formally state the main theorem of this

chapter in the next section. Section 3.2 provides the proof of the main theorem. Section 3.3

explains the power of our hypothesis by relating it to the previously studied hypotheses, men-

tioned before. Finally, Section 3.4 concludes this chapter with future direction on this work.

Notation

The functions of the form 22f(n) , that are used in many places throughout this chapter, are

not visually appealing; from now we represent such functions as τ(f(n)). Let τ : N → N be

a function defined as τ(n) = 22n . Then τ(δf(n)) represents 22δf(n) . We use τ ε(n) to denote

(τ(n))ε.

3.1 Separation Theorem

First, we formally state our hypothesis.

Hypothesis W. There exist a constant δ > 0 and an NEEXP machine N1 accepting Σ∗ that

runs in time t(n) such that no 2t(n)δ -time bounded, zero-error, probabilistic machine can com-

pute the accepting computations of N1. Here t(n) = 22n
c

for some constant c > 1.

In this chapter we prove the following main result.

Theorem 3.1. If Hypothesis W holds, then there is a Turing complete language for NP that

is not truth-table complete for NP.

Before we provide a formal proof, we first describe a proof outline.

Proof Sketch

Our proof proceeds in four steps. Note that Hypothesis W is a “worst-case hardness hy-

pothesis”. This means that for every probabilistic, 2t(n)δ -time bounded, machine Z1 there exists

infinitely many inputs x such that the probability that Z1(x) computes an accepting computa-

tion of N1(x) is very small. This is equivalent to the following: there exist infinitely many input
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lengths n for which there exists at least one string x of length n so that the probability that

Z1(x) is an accepting computation of N1(x) is very small. In the first step (Section 3.2.1), we

amplify the hardness of N1 and obtain an NEEXP machine N2 with the following property: For

every 2t(n)δ -time bounded, probabilistic machine Z2, there exist infinitely many input lengths n

at which for every string x of length n the probability that Z2(x) is an accepting computation

of N2(x) is small.

In the second step (Section 3.2.2), we first define a padding function pad : Σ∗ → N. Via

standard padding arguments we obtain an NP-machine N running in time p(n) that accepts a

tally set T = {0pad(x) | x ∈ Σ∗}. For ` ≥ 0, let T` = {0pad(x) | x ∈ Σ`}. The NP-machine N has

the following hardness property: For every f(n)-time bounded, probabilistic machine Z (for

an appropriate choice of f) there exist infinitely many integers ` such that Z fails to compute

accepting computations on every string from T`.

Using the NP-machine N , we define the Turing complete language L in step three (Sec-

tion 3.2.3). The language L is formed by taking disjoint union of two NP languages L1 and

L2. The language L1 consists of tuple of the form 〈x, a〉 so that x ∈ C (for some NP-complete

language C), and a is an accepting computation of N(0n) (for some n that depends on x). In

L2, we encode accepting computations of N using a P-selective set. It follows that C can be

Turing reduced to L by first obtaining an accepting computation of N (by making queries to

L2) and then by making one query to L1. The idea of forming L1 is borrowed from [PS02], and

encoding accepting computations of an NP-machine as a P-selective sets is well known. For

example see [HNOS96].

Finally, in step four (Section 3.2.4), we show that if L is truth-table complete, then there

is a probabilistic machine Z such that for every ` there exists atleast one string in T` so that

Z computes an accepting computation of N on that string with high probability. Using this,

we in turn show that there exists a probabilistic machine Z2 so that for every input length `,

there exists atleast one string x ∈ Σ` such that Z2(x) outputs an accepting computation of

the NEEXP machine N2(x). This will be a contradiction. Technically, this step is the most

challenging part of the proof.
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3.2 Proof of Main Theorem

This section provides the proof of the main theorem in this chapter. The first step is to

amplify the hardness of the NEEXP machine N1 from the hypothesis to obtain a new NEEXP

machine N2.

3.2.1 Hardness Amplification

Lemma 3.1. Suppose that the hypothesis W holds. Then there exist an NEEXP machine

N2 accepting Σ∗ and running in time O(2nτ(nc)) and a constant β < δ such that for every

probabilistic machine Z2 that runs in time τ(β2n
c
), there exist infinitely many input lengths

n > 0 such that for every x ∈ Σn,

Pr[Z2(x) = an accepting computation of N2(x)] ≤ 1/4.

Proof. Let N1 be the nondeterministic machine from Hypothesis W whose running time is

bounded by O(t(n)), where t(n) = τ(nc) (for some c > 1). Length of every accepting compu-

tation of N1(x) is bounded by O(t(|x|)). Consider a machine N2 that behaves as follows: On

an input x of length n, it runs N1(y) on every string y of length n (in a sequential manner).

The running time of N2 is O(2n× t(n)). Since N1 accepts Σ∗, the machine N2 also accepts Σ∗.

We claim that N2 has the required property.

Suppose not. Then there is a probabilistic machine Z2 that runs in time O(τ(β2n
c
)) (for

some β < δ) such that for for all but finitely many n, there exists a string yn ∈ Σn such that

Pr[Z2(yn) = an accepting computation of N2(yn)] > 1/4.

By the definition of N2, the accepting computation of N2(x) encodes the accepting computation

of N1(y) for every y whose length is same as the length of x. Consider a machine Z1 that on

any input x of length n behaves as follows:

It runs Z2(y) on every y of length n. It verifies that the output of Z2(y) is an

accepting computation of N2(y), and if the verification succeeds, then it extracts

the accepting computation of N1(x) and outputs it. If Z2(y) does not output an

accepting computation of N2(y), then Z1 outputs ⊥.
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Let x be any input of length n. By our assumption, there exists a yn ∈ Σn such that Z2(yn)

outputs an accepting computation of N2(yn) with probability at least 1/4. The above machine

clearly runs Z2(yn) on input x. Since an accepting computation of N1(x) can be retrieved from

an accepting computation of N2(yn), the above machine outputs an accepting computation of

N1(x). Thus for all but finitely many n, for every x ∈ Σn, Z1 outputs an accepting computation

of N1(x) with probability at least 1/4. The running time of Z1 is clearly O(2n×τ(β2n
c
)), which

is less than τ(δ2n
c
) (as β < δ). This contradicts Hypothesis W.

3.2.2 Defining an NP Machine

Now we define an NP machine N from the above NEEXP machine N2. Fix ε < β. Consider

the following padding function pad : Σ∗ → N, defined by

pad(x) = bτ ε(logc rx)c,

where rx is the rank of string x in the standard lexicographic order of Σ∗, so that 2`−1 ≤ rx ≤

2`+1 − 2, for every x ∈ Σ`. Note that pad is 1-1 and so pad−1(n) (if exists) is well defined. To

keep the calculation simple, we drop the floors henceforth. Now we define the following tally

language based on the padding function:

T =
{

0pad(x) | x ∈ Σ∗
}
,

Our NP machine N that accepts a tally language behaves as follows: On input 0m, it

computes x = pad−1(m). Upon finding such x, it runs N2(x). If no such x is found, then N

rejects. Note that |x| < (log logm2/ε)1/c. So running time of N is bounded by m3/ε. Thus N

is an NP machine. Note that N accepts the tally language T .

3.2.3 Turing-complete Language

At this point, we are ready to define the language L in NP that we prove to be Turing

complete, but not truth-table complete for NP.

Let LT be the range of the padding function pad.

LT = {τ ε(logc i) | i ∈ N}.
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By definition, N accepts only those tally strings whose length is in the set LT . We use ni to

denote pad(i). Given a length n ∈ LT , define an to be the lexicographically maximum accepting

computation of N(0n). Let a be the infinite binary string an1an2an3 · · · where ni ∈ LT and

n1 < n2 < n3 < · · · . Let |an| denotes the length of the accepting computation an. Let SAT′

consist of the SAT formulas with lengths only in LT , i.e.,

SAT′ = SAT ∩ {x ∈ Σ∗ | |x| ∈ LT }.

Since there exists a polynomial p such that ni+1 ≤ p(ni), it can be shown via padding that

SAT many-one reduces to SAT′ and thus SAT′ is NP-complete.

We define L1 and L2 as follows.

L1 =
{
〈φ, u〉 | |φ| = n, u is an accepting computation of N on 0n, φ ∈ SAT′

}
L2 = L(a) = {z | z < a} ,

where < is the dictionary order with 0 < 1. Then our Turing-complete language L is the

disjoint union of L1 and L2, i.e.,

L = L1 ⊕ L2 = 0L1 ∪ 1L2.

Note that both L1 and L2 are in NP, and so is L.

Lemma 3.2. L is ≤P
T -complete for NP.

Proof. Reduce SAT′ to L: On input φ of length n, make adaptive queries to L2 to find an.

Accept φ if and only if 〈φ, an〉 ∈ L1.

3.2.4 L is Not Truth-table Complete

Now we show that L is not truth-table complete for NP. Before we proceed with the proof,

we provide the intuition behind the proof.

Proof Sketch

Suppose that L is truth-table complete. We achieve a contradiction by exhibiting a proce-

dure to compute accepting computations of NEEXP machine N2. Since the NP-machine N is
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padded version of N2, it suffices to compute the accepting computations of N . We partition T

into sets T1, T2, · · · , where T` = {0pad(x) | x ∈ Σ`}. Clearly, |T`| = 2` and T =
⋃
` T`. Note that

an accepting computation of N2(x) can be computed by computing an accepting computation

of N(0pad(x)), and if |x| = `, then 0pad(x) ∈ T`.

Recall that N2 has the following property: For every probabilistic machine Z2 that attempts

to compute its accepting computations, there exist infinitely many input lengths ` and Z2 fails

on every string at those lengths. Informally, this translates to the following hardness property of

N : For every probabilistic machine Z that attempts to compute accepting computations of N ,

there exist infinitely many integers ` such that Z fails on every string from T`. Thus to achieve

a contradiction, it suffices to exhibit a probabilistic procedure Z such that for all but finitely

many `, Z outputs an accepting computation of N(0n) for some 0n ∈ T`, with non-negligible

probability. We will now (informally) describe how to compute accepting computations of N .

For the sake of simplicity, let us first assume that the NP machine N has exactly one

accepting computation on every input from T . The first task is to define a set S that encodes

the accepting computations of the machine N . One way to define S as

S = {〈0n, i〉 | ith bit of accepting computation of N(0n) is 1} .

Since we assumed that N has exactly one accepting computation, deciding S is equivalent to

computing accepting computations of N . Since S is in NP, there is a truth-table reduction

from S to L. We make another simplifying assumption that all queries are made to L1 part of

L. Consider an input 〈0n, i〉 where 0n ∈ T` (for some ` > 0). All the queries produced on this

input are of the form 〈φ, u〉. It is easy to check if u is an accepting computation of N(0m) for

some m. If u is not an accepting computation, then 〈φ, u〉 does not belong to L, and thus it is

easy to decide the membership of 〈0n, i〉 in S. Suppose that u is an accepting computation of

N(0m) for some m. Then there are two cases. First case is the “short query” case, where m is

much smaller than n. In this case 〈φ, u〉 is in L1 only when |φ| equals m and φ ∈ SAT′. Since

m << n, we can decide whether φ ∈ SAT′ using a brute force algorithm in time O(2m), this in

turn enables us to decide the membership of 〈0n, i〉 in S. Thus if all the queries are small, we

can decide the memberships of 〈0n, i〉 (for all i), and thus can compute accepting computation



29

of N(0n). The second case is the “large query” case: Suppose that for some query, m is not

much smaller than n. In this case, we are in the following scenario: The reduction outputs

accepting computation of N(0m) and m is somewhat large. In this case, we argue that for

an appropriate choice of n, 0m also lies in T`. This will enable us to design a procedure that

outputs accepting computation of some string from T`. This is the gist of the proof.

The above argument assumed that N has exactly one accepting computation, which may

not be true in general. We get around this problem by applying Valiant-Vazirani lemma [VV86]

to isolate one accepting computation. Thus the definition of our language S will involve the

use of isolation lemma. It is also very much possible that the reduction makes queries to L2

also. Recall that L2 is a P-selective set and it is known that if an NP-language A reduces to

a P-selective set, then A must be “easy” [Tod91a, Sel79]. We use this in combination with

the above mentioned approach. A technically involved part is to define the correct notion of

“small” and “large” queries. There is a delicate interplay among the choice of pad function,

notion of small query, and the runtime of probabilistic machine that computes the accepting

computations of N .

Formal Proof

We now formalize the above intuition into the following lemma.

Lemma 3.3. L is not ≤P
tt-complete for NP.

Proof. For the sake of contradiction, assume that L is truth-table complete for NP. Consider

the following set S.

S = {〈0n, k, r1, r2, . . . , rk, i〉 | n ∈ LT , 1 ≤ k ≤ |an|, ri ∈ Σ|an|, there is a u such that u is an

accepting computation of N(0n), u · r1 = u · r2 = · · · = u · rk = 0, and the ith bit of u = 1},

where u · ri denotes the inner product over GF[2].

It is easy to see that S is in NP. Since L is ≤P
tt-complete for NP, S is ≤P

tt reducible to L

via polynomial time computable functions 〈g, h〉, where g is the query generator and h is the

truth-table evaluator. Since g is polynomial-time computable, there exists a constant b > 0

such that every query generated by it is of length at most nb.
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At this point, our goal is to compute an accepting computation of N . We start with the

following algorithm A that classifies all the queries of the query generator into two sets, “Large

Query” and “Small Query”.

Procedure A

1: Input 0n, where n = τ ε(logc i) for some i ∈ N. Clearly, n ∈ LT .

2: For 1 ≤ j ≤ n2 repeat the following:

- Pick kj uniformly at random from {1, · · · , |an|}.

- Pick each of rj1, r
j
2, . . . , r

j
kj

uniformly at random from Σ|an|.

3: Let Qj be the set of queries generated by g on inputs 〈0n, kj , rj1, · · · , r
j
kj
, i〉, 1 ≤ i ≤ |an|.

Compute Qj for 1 ≤ j ≤ n2 and set Q =
⋃
j Q

j . Note that the length of each query is

bounded by nb.

4: Partition Q into two sets Q1 and Q2 such that Q1 is the set of all queries to L1 and Q2 is

the set of all queries to L2.

5: If Q1 contains a query 〈φ, ut〉 for some t, where ut is an accepting computation of N(0t)

and

t > τ ε(((log log nb/ε)1/c − 1)c),

then print ut, output “Large Query”, and halt.

6: Otherwise, output “Small Query” and halt.

It is clear that the algorithm A runs in time polynomial in n.

Before we give our probabilistic algorithm to compute the accepting computations of N , we

bound the probabilities of certain events of interest. T is partitioned into sets T1, T2, · · · each

of cardinality 2`, where

T` =
{

0τ
ε(logc rx) | x ∈ Σ`

}
.

Fix ` > 0. For a fixed 0n ∈ T` and j, 1 ≤ j ≤ n2, let En,j denote the following event:

There exists exactly one u such that

- u is an accepting computation of N(0n),
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- u · rj1 = u · rj2 = · · · = u · rjkj = 0.

By Valiant-Vazirani, we have that Pr[En,j ] ≥ 1
n2 . Let En denote the event that for some j,

1 ≤ j ≤ n2, En,j occurs. The probability of En is at least 1 − 1

2n2
. Finally, let E` denote the

event that for every 0n ∈ T`, the event En occurs. Again, we have that Pr[E`] ≥ 1− 1
2`

.

Thus for every `, the probability that the event E` occurs is very high. Fix an `. From now

on, we assume that the event E` has occurred.

Now our goal is to arrive at the machine that computes an accepting computation of atleast

one string from T`. For this we will analyze the behavior of the above algorithm on a specific

string 0V` ∈ T`, where

V` = τ ε/b(logc(2`+1 − 2)).

We stress that this unique string 0V` depends only on the length `. When we run algorithm A

on 0V` , either it outputs “Large Query” on it, or it outputs “Small Query”.

Lemma 3.4 (Key Lemma). One of the following holds.

1. If A outputs “Small Query” on 0V`, then there is an algorithm B1 that on input 0V`

runs in time polynomial in τ(ε2((log log V`
b/ε)1/c−1)c), and correctly outputs an accepting

computation of N(0V`).

2. If A outputs “Large Query” on 0V`, there exist an algorithm B2 such that for every string

in T` it runs in time polynomial in V`, and there exists a 0t ∈ T` for which B2(0t) outputs

an accepting computation of N(0t).

We defer the proof of this lemma to the end of this section and complete the proof of main

theorem. Next, we describe a probabilistic machine that computes accepting computation of

the NEEXP machine N2 with non-trivial probability, with the help of B1 and B2.

Consider the probabilistic machine Z2 that does the following on input x ∈ Σ`:
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Procedure Z2

1: Compute V`. Run A on 0V` .

2: If A(0V`) outputs “Small Query”,

- Verify if x = pad−1(V`). If it is, then run B1 on 0V` and if it outputs an accepting

computation of N(0V`), then output that accepting computation. This is also the

accepting computation of N2(x).

3: If A(0V`) outputs “Large Query”, do the following:

- For every string 0i in T`, run the algorithm B2 on it. If it outputs the accepting

computation of N(0t) for some 0t, then verify if x = pad−1(0t). If it is, then output

that accepting computation. This is also the accepting computation of N2(x).

We analyze the behavior of Z2 under the assumption that the event E` happens. Recall

that this happens with very high probability. If A(0V`) outputs “Small Query”, then by part

(1) of Lemma 3.4, B1 outputs an accepting computation of N(0V`). Note that every accepting

computation of N(0V`) is an accepting computation of N2(0pad
−1(V`)). Since pad−1(V`) is of

length `, there exists a string x ∈ Σ`, on which Z2 outputs an accepting computation of N2(x).

Now consider the case where A(0V`) outputs “Large Query”, then by part (2) of Lemma 3.4,

there exists a 0t ∈ T` such that B2(0t) outputs an accepting computation of N(0t). Thus Z2

will find that 0t through iteration. Similarly, pad−1(0t) ∈ T` is of length `, thus there exists a

x in Σ` on which Z2 outputs an accepting computation of N2(x). Thus Z2 always outputs an

accepting computation of atleast one string x from Σ`.

We will now bound the runtime of Z2. This is bounded by runtime of A(0V`), plus the

runtime of B1(0V`), and the time taken in step 3 of the above algorithm. By part (1) of

Lemma 3.4, the runtime of B1(0V`) is τd(ε2((log log V`
b/ε)1/c−1)c) for some constant d > 0, which

is bounded by

τd(ε2((log log V`
b/ε)1/c−1)c) = τd(ε2((logc(2`+1−2)1/c−1)c) = τd(ε2((log(2`−1))c) < τd(ε2`

c
).

Let p be a constant such that A(0V`) runs in time V p
` and B2(0i), 0i ∈ T`, runs in time V p

` .
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Step 3 runs B2 on every string from T`, and there are 2` strings in T`. Thus the combined

runtime of A(0V`) in step 1 and step 3 is bounded by

2`+1V p
` = 2`+1τpε/b(logc(2`+1 − 2)) ≤ 2`+1τpε/b((`+ 1)c) ≤ τ q((`+ 2)c)

for some constant q > p. Thus the total running time of Z2 is bounded by τ(β2`
c
), as β > ε.

Thus for all but finitely many `, the machine Z2 computes an accepting computation of

N2(x) for atleast one string x from Σ` with non-trivial probability. This contradicts the hard-

ness of NEEXP machine N2 in Lemma 3.1. This completes the proof of Lemma 3.3.

This also completes the proof of the main theorem.

3.2.5 Proof of Key Lemma

We prove the two parts of the Lemma 3.4 separately.

Proof of Part 1. Fix the input 0V` from the hypothesis. Since we are operating under the

assumption that the event E` has occurred, there is a j, 1 ≤ j ≤ V`
2, such that EV`,j has

occurred.

Recall that Qj is the set of all queries made by the truth-table reduction 〈g, h〉 on inputs

〈0n, kj , rj1, · · · , r
j
kj
, i〉 for 1 ≤ i ≤ |aV` |. Let Qj1 be the set of all queries made to L1 and let Qj2

be the set of all queries made to the set L2.

We will now describe how to decide answers to queries from Qj1. Note that each query

q ∈ Qj1 is of the form 〈φ, z〉, where φ is of length t. If z is not an accepting computation of

N(0t), then 〈φ, z〉 in not in L1. Suppose z is an accepting computation of N(0t). Then it must

be the case that t ≤ τ ε(((log log V`
b/ε)1/c − 1)c). Now 〈φ, z〉 is in L1 if and only if φ ∈ SAT′.

Since |φ| = t, this can be tested in time 2t. Thus we can decide the membership of all queries

from Qj1 in time polynomial in τ(ε2((log log V`
b/ε)1/c−1)c).

Now we deal with the queries to L2; we cannot hope to decide membership of queries in Qj2

in L2 in general. However, note that L2 is P-selective. Thus by Toda’s lemma (Lemma 2.1)

all elements of Qj2 can be ordered as q1, q2, · · · , qm and for some r, 1 ≤ r ≤ m, all of q1, · · · , qr

are in L2 and none of qr+1, · · · , qm are in L2. This ordering can be done in time polynomial
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in m. We do not know the value of r. However, there are only m possibilities for r. For each

i ∈ [1,m] we set r as i and determine the possible membership of queries in L2.

We are now in the following situation: For every query in Qj1 we know the membership

in L1, and for every query in Qj2 we know candidate memberships in L2. Using these and

evaluating h, we obtain a candidate for the ith bit of u, for 1 ≤ i ≤ |aV` |. From this we

construct a string û and if û is an accepting computation of N(0n) we output it. If u is not

an accepting computation of N(0n), we proceed with next choice for r. By our assumption,

there is an accepting computation of N(0V`) that is isolated. Thus this process will find that

accepting computation. Note that the total time taken by this process is still some polynomial

in τ(ε2((log log V`
b/ε)1/c−1)c).

Finally, we do not know the value of j for which the isolation occurs. We repeat the above

process for every possible choice of j, and there are only n2 choices for j. Thus the total time

taken by this algorithm is still a polynomial in τ(ε2((log log V`
b/ε)1/c−1)c).

Proof of Part 2. The length of every query generated by A(0V`) is at most V`
b. Then it can

be seen from algorithm A that on input 0V` , when it outputs “Large Query”, it outputs an

accepting computation ut of N(0t) such that

τ ε(((log log V`
b/ε)1/c − 1)c) < t < V`

b.

Now if we can show that 0t lies in T` for all possible values of t for such a V`, then there is at

least one 0t in T` whose accepting computation can be computed from a string 0V` in T`. Here

V` = τ ε/b(logc(2`+1 − 2)). Recall that T` = {0τε(logc rx) | 2` − 1 ≤ rx ≤ 2`+1 − 2}. Then it’s

easy to verify that the upper and lower bounds on t gives the last and the first strings in T`,

respectively. We use this observation to construct B2:

On input 0t ∈ T`, run A(0V`) to get ut. Then verify if ut is an accepting computation

of N(0t). If it is, then output ut.

The above observation implies that there is such a 0t in T` on which B2 outputs ut. The

algorithm runs in time polynomial in V`.



35

3.3 Power of The Hypothesis

In this section, we establish some results that explain the power of Hypothesis W and

also compare it to some of the previously studied hypotheses that are used to separate NP-

completeness notions.

Even though Hypothesis W talks about the difficulty of computing accepting computa-

tions of NEEXP machines, our first result states that it can be related to the hardness of the

complexity class NEEXP ∩ co-NEEXP.

Hypothesis 2. There exist c > 1 and δ < 1 such that for every fully time-constructible t(n) =

22n
c

,

NTIME(t(n)) ∩ co-NTIME(t(n)) * ZPTIME(2t(n)δ).

Now we show that our hypothesis follows from this worst-case separation hypothesis.

Proposition 3.1. Hypothesis 2 implies Hypothesis W.

Proof. Suppose L is a language that satisfies the hypothesis. Let N1 and N2 be two machines

that witness that L and L are in NTIME(t(n)). Consider the following machine N : On input x,

guess b ∈ {1, 2} and run Nb. Clearly, N is an NTIME(t(n)) machine and accepts Σ∗. Suppose

there is a probabilistic machine M running in time 2t(n)δ , such that for all but finitely many x,

M(x) outputs an accepting computation of N(x) with probability at least 1/4. Note that by

looking at an accepting computation of N(x), we can decide whether x ∈ L or not. Consider

a machine Z that on input x does the following:

Run M(x). If the output of M(x) is an accepting computation of N1, then Z

accepts x. If the output of M(x) is an accepting computation of N2, then Z rejects

x. Otherwise, Z outputs ⊥.

Clearly, Z is a zero-error machine whose running time is O(2t(n)δ) and for every x, Z correctly

decides L with probability at least 1/4. By running this machine O(1) times, we obtain that

L is in ZPTIME(2t(n)δ). This contradicts Hypothesis 2.

Pavan and Selman [PS02] showed that the NP-completeness notions differ under the fol-

lowing hypothesis.
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Hypothesis 3. (NP-machine Hypothesis) There exist an NP machine N accepting 0∗ and β > 0

for every 2n
β
-time bounded deterministic algorithm M , M(0n) does not output an accepting

computation of N(0n) for all but finitely many n.

Note that the hypothesis requires that every machine that attempts to compute accepting

computations of N must fail on all but finitely many inputs. This type of hardness hypothesis

is called “almost every hardness hypothesis”. In contrast, Hypothesis W requires that every

machine that attempts to compute accepting computations of the NEEXP machine must fail

on only infinitely many strings.

Ideally, we would like to show that NP-machine hypothesis implies Hypothesis W. However,

NP-machine hypothesis concerns with hardness against deterministic algorithms whereas Hy-

pothesis W concerns with hardness against probabilistic algorithms. If we assume well-accepted

derandomization hypotheses, we can show Hypothesis W is weaker than the NP-machine hy-

pothesis.

Proposition 3.2. Suppose that ZPP = P. If NP-machine hypothesis holds, then Hypothesis W

holds.

Proof. Consider the NP machine N from the NP-machine hypothesis that runs in time nd for

some d > 0. Define a padding function pad : Σ∗ → N by

pad(x) = τ((log rx − 1)2),

where c > 1, and rx is the lexicographic rank of x in Σ∗. Now define the NEEXP machine N1

as follows: On input x, compute m = pad(x) and run N(0m). Clearly, N accepts Σ∗ and runs

in time τd(n2), for x ∈ Σn (so rx ≤ 2n+1 − 2). Assume t(n) = τd(n2).

Suppose there is a probabilistic machine Z1 running in time 2t(n)δ , such that for all but

finitely many x, Z1(x) outputs an accepting computation of N1(x) with probability atleast 1/4.

Consider a machine Z that on input 0m does the following: Compute x = pad−1(m) and run

Z1(x). Clearly, Z is a zero-error machine that runs in time

O(2t(n)δ) = τ(δd2n
2
) < τ(β2n

2
) = 2m

β
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for some appropriate β > δd. Note that for every n, this time bound holds for the last string

in Σn and does not hold for the first string in Σn. Clearly, there are infinitely many 0m where

Z correctly computes the accepting computation of N(0m) in time 2m
β
. If we assume that full

derandomization is possible, then we can replace Z by a deterministic machine M that runs in

time poly((2m
β
)) which is 2m

ε
for an appropriate ε > β. Hence contradiction.

Lutz and Mayordomo [LM96] achieved the separation of NP-completeness notions under

the Measure hypothesis. Hitchcock and Pavan [HP08] showed that Measure hypothesis implies

the NP-machine hypothesis. Thus we have the following.

Proposition 3.3. Suppose that ZPP = P. Measure hypothesis implies Hypothesis W.

Pavan and Selman [PS04] showed that if NP-contains 2n
ε
-bi-immune sets, then completeness

in NP differ. Informally, the hypothesis means the following: There is a language L in NP

such that every 2n
ε
-time bounded algorithm that attempts to decide L must fail on all but

finitely many strings. Thus this hypothesis concerns with almost-everywhere hardness, whereas

Hypothesis W concerns with worst-case hardness. We are not able to show that the bi-immunity

hypothesis implies Hypothesis W (even under the assumption ZPP = P). However, we note

that if NP∩ co-NP has bi-immune sets, then Hypothesis W follows. Pavan and Selman [PS02]

showed that if NP ∩ co-NP has a DTIME(2n
ε
)-bi-immune set, then NP-machine hypothesis

follows.

Proposition 3.4. Suppose that ZPP = P. If NP ∩ co-NP has a DTIME(2n
ε
)-bi-immune set,

then Hypothesis W holds.

3.4 Conclusions

This result, for the first time, shows that Turing completeness for NP can be separated

from many-one completeness under a worst-case hardness hypothesis. Our hypothesis concerns

with hardness of nondeterministic, double exponential time. An obvious question is to further

weaken the hypothesis. Can we achieve the separation under the assumption that there exists

a language in NE that cannot be solved in deterministic or probabilistic time O(2δ2
n
)?
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CHAPTER 4. THE ESY CONJECTURE ABOUT PROMISE

PROBLEMS

Even, Selman, and Yacobi [SY82, ESY84] conjectured that there do not exist certain promise

problems all of whose solutions are NP-hard via Turing reductions. When phrased in the

language of disjoint pairs, this statement means that there do not exist disjoint NP-pairs all

of whose separators are NP-hard via Turing reductions. This conjecture has fascinating (and

largely believable) consequences, including that NP differs from co-NP and NP is not equal to

UP. Even though this conjecture is 30 years old, we do not have any concrete evidence neither

in support of the conjecture nor against it. In this chapter, we report some exciting progress on

this conjecture. We consider variants of the conjecture and show that under some reasonable

hypotheses, these variants of the conjecture hold.

Consequences of the ESY Conjecture

The ESY conjecture has numerous interesting consequences in various areas of complexity

theory. For example, it has some interesting implication regarding the hardness of public-key

cryptosystems. Even, Selman, and Yacobi [ESY84] observed that the problem of cracking a

public-key cryptosystem may not formalize as a straightforward decision problem, and it is more

natural to formulate it as a promise problem. They associated a promise problem (Πy,Πn) to

a model of public-key cryptosystems such that both Πy and Πn are in NP. Then they showed

that a public-key cryptosystem that fits the model cannot be deemed secure if the underlying

promise problem admits at least one efficient (polynomial-time computable) solution. On the

other hand, if every solution is NP-hard via Turing reduction then the system is NP-hard to

crack. Thus the ESY conjecture implies that public-key cryptosystems that fit the model are

not NP-hard to crack.
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The ESY conjecture is also related to the study of propositional proof systems [Raz94,

Pud01]. Razborov observed that every propositional proof system f can be identified with

a canonical disjoint NP-pair (SAT∗,REFf ) where REFf is the set of all Boolean formulas

that have short proofs of unsatisfiability with respect to f . Conversely, Glaßer, Selman, and

Zhang [GSZ07] showed that for every disjoint NP-pair (A,B) there is a proof system f such that

(A,B) is many-one equivalent to (SAT∗,REFf ). Because of this equivalence between proposi-

tional proof systems and disjoint NP-pairs, several interesting questions regarding propositional

proof systems are related to the structure of disjoint NP-pairs. One of the open questions on

propositional proof systems is whether optimal proof systems exist and the belief is that they

do not exist. This question is related to the ESY conjecture. It is known that if optimal proof

systems do not exist, then a variant of the ESY conjecture holds [GSSZ04a].

In addition to connections with public-key cryptosystems and propositional proof systems,

the ESY conjecture has several believable consequences in complexity theory. It is known

that this conjecture implies the following results in complexity theory: NP differs from co-NP,

NP differs from UP, and satisfying assignments of Boolean formulas cannot be computed by

single-valued NP machines (NPSV) [ESY84, GS88]. However, we do not know yet if any of

these consequences hold unconditionally. This is one of the reasons why the ESY conjecture is

difficult to prove.

Our Contribution

Given its relation to public key cryptosystems, propositional proof systems, and complexity

theory, it is important to understand the power of the ESY conjecture. Is there a reasonable

hypothesis that implies the conjecture? To date, we do not know any reasonable hypothesis

that implies the ESY conjecture. However, it is interesting to note that the analogue of the

ESY conjecture to the computational world, that is for the computationally enumerable sets,

is a known theorem [Sch60]. It seems difficult to formulate reasonable hypotheses that imply

the ESY conjecture due to its wide range of consequences. Any hypothesis that implies the

ESY conjecture immediately implies the aforementioned results in complexity theory. On the

other hand, none of the standard hypotheses used in complexity theory, such as PH is infinite,
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E has high circuit complexity, the measure of NP is not zero, etc. are known to imply all of

the above mentioned consequences. This seems to be the root difficulty in proving the ESY

conjecture.

The original ESY conjecture states that every disjoint NP-pair has a solution that is not

NP-hard via Turing reductions. We can obtain variants of the conjecture by replacing Turing

reductions with less restrictive adaptive and non-adaptive reductions. Given a reduction type

r, the ESY-r conjecture states that every disjoint NP-pair has a solution that is not NP-hard

via r-reductions. We know already that if we take r to be many-one reductions, then the

ESY-≤P
m conjecture is equivalent to NP 6= co-NP [GSSZ04a]. What if we take r to be truth-

table reductions or bounded-truth-table reductions? In this chapter, we address the above

question. More formally, we prove the following main theorem in this chapter: If there exist

one-one, one-way functions that are hard to invert via circuits with an NP∩co-NP-oracle, then

the ESY conjecture for ≤P
btt reductions holds.

Organization of this Chapter

The rest of the chapter is organized as follows. First, we provide the formal definition of the

ESY conjecture and some of its properties in the next section. Rest of the chapter is devoted to

the proof of the main theorem. The starting point is the following theorem by Hughes, Pavan,

Russell, and Selman [HPRS12]: If NP 6= co-NP, then every disjoint NP-pair has a solution that

is not NP-hard via length-increasing bounded-truth-table reductions (i.e., the ESY conjecture

for btt length-increasing reductions holds). For completeness, we reproduce the proof of this

theorem in Section 4.2. The main idea behind the proof of the above theorem is that by using

a stronger hypothesis than that of Hughes et al., we remove the length-increasing restriction

from their hypothesis. Our hypothesis concerns with the existence of cryptographic one-way

functions. This is the focus of Section 4.3 and Section 4.4. Finally, Section 4.5 concludes this

chapter with references to future direction.
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4.1 ESY Conjecture

The ESY conjecture concerns about the disjoint NP pairs. A disjoint NP-pair is a pair

(A,B) of non-empty, disjoint sets A and B such that both A and B belong to NP. Let DisjNP

denote the collection of all disjoint NP-pairs. We say that a set S is a separator or solution for

the disjoint NP-pair (A,B) if A ⊆ S and B ⊆ S. Intuitively, the solution set S separates A

from B.

We now state the original conjecture of Even, Selman, and Yacobi [ESY84].

ESY Conjecture. For every disjoint NP-pair, there is a separator that is not Turing hard for

the complexity class NP.

Although the original conjecture talks about Turing hardness, we can generalize it to ar-

bitrary polynomial-time reductions. Let r be a polynomial-time reduction. Then the ESY

conjecture for this reduction can be stated as follows.

ESY-r Conjecture. For every disjoint NP-pair, there is a separator that is not r-hard for

NP.

In this chapter, we take r to be bounded-truth-table reduction and prove evidence for the

ESY-≤P
btt conjecture.

Although the ESY conjecture stipulates a condition about arbitrary pairs of sets in NP,

the following observation from [HPRS12] tells us that we can always take one of the sets to be

SAT.

Observation 4.1. The ESY-r conjecture is equivalent to the following statement: For every

set B in NP that is disjoint from SAT, there is a separator of (B, SAT) that is not r-hard for

NP.

Further, given any two types of reductions, if one reduction is stronger than the other, then

there is a simple relation between the ESY conjecture for those two reductions.

Observation 4.2. Let r and r′ be two polynomial-time reductions such that r′-hardness for

NP implies r-hardness for NP. If the ESY-r conjecture holds then the ESY-r′ conjecture holds.
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This observation implies that if the ESY conjecture for Turing reduction holds, then so does

the ESY conjecture for the truth-table reduction, bounded-truth-table reduction, or many-one

reduction.

The next observation from [HPRS12] is crucial. It says that the ESY-≤P
tt conjecture has

the same set of consequences as the original ESY conjecture. We reproduce below the proof

for completeness.

Observation 4.3. The ESY-≤P
tt conjecture implies the following:

(a) NP 6= UP,

(b) NP 6= co-NP, and

(c) satisfying assignments of Boolean formulas cannot be computed by single-valued NP ma-

chines.

Proof. Assume that NP = UP. Thus SAT is in UP and so let R be a relation that witnesses

that SAT is in UP. Consider the following two disjoint languages in NP:

A = {〈x, i〉 | ∃w R(x,w) = 1 and the ith bit of w is 1}

and

B = {〈x, i〉 | ∃w R(x,w) = 1 and the ith bit of w is 0}.

Let S be any separator for (A,B). Then below is a truth-table reduction from SAT to S.

On input x, produce queries 〈x, 1〉, · · · , 〈x,m〉 (where m is the number of Boolean

variables in the propositional formula x). If 〈x, i〉 ∈ S, then set ai = 1, else set

ai = 0. Accept x if and only if R(x, a1a2 · · · am) = 1.

Therefore SAT is ≤P
tt-reducible to every separator of (A,B), so the ESY-≤P

tt conjecture does

not hold.

A similar proof shows that if the ESY-≤P
tt conjecture holds, then satisfying assignments of

Boolean values cannot be computed by single-valued NP-machines.

Lastly, assume that NP = co-NP. Then it follows that the ESY-≤P
m conjecture does not

hold [GSSZ04b], so the ESY-≤P
tt conjecture also does not hold, by Observation 4.2.
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The observation suggests that providing evidence for even ESY-≤P
tt conjecture could be as

difficult as providing evidence for the original conjecture. Here we provide the evidence for the

ESY-≤P
btt conjecture.

4.2 ESY Conjecture for Length-increasing Bounded-truth-table

Reductions

In this section we prove that if NP does not equal co-NP, then the ESY conjecture holds

for length-increasing bounded-truth-table reductions. In fact, we will show that the conjecture

holds even for reductions that use nondeterminism. Before we present the proof, we describe

the ideas and intuition behind our proofs.

Proof Sketch

Let (B, SAT) be a disjoint NP-pair. Our goal is to exhibit a separator S that is not NP-

hard. One trivial way to achieve this is by making S to be an easy set—a set in P. However,

this approach is not feasible because if NP differs from UP or P does not equal NP ∩ co-NP,

then (B, SAT) does not have separators in P (for some B ∈ NP) [GS88]. Thus we look for a

separator that is not in P. Our first observation is that there exist “computationally difficult”

sets that are not NP-hard, thus we can achieve our goal by taking S to be a difficult set.

It is known that if H is an unpredictable set, then H does not reduce to H ∪ B [LM96,

ASB00, PS04]. This suggests that we can take H ∪ B as our separator and claim that it is

not NP-hard. However, we run into at least two major problems. The set H ∪ B may not be

disjoint from SAT and thus cannot be a separator. In fact, one can show that an unpredictable

set H must have an infinite intersection with SAT. We get around this problem by taking H

as an unpredictable set within SAT. This ensures that S is a separator.

The second and the more serious problem is that showing H is not reducible to H ∪B does

not imply that H ∪ B is not NP-hard, as the set H may not be in NP. Instead of working

with H, we will argue that SAT does not reduce to S. This argument makes a critical use

of nondeterminism. We will show that if SAT does reduce to S, then either we can get a

predictor for H, or by making use of nondeterminism, we can reduce the number of queries.
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Our first observation is that any reduction from SAT to S must infinitely often produce relevant

queries—these are queries whose answers, given answers to all other queries, uniquely determine

the output of the reduction. We then show that these relevant queries must lie outside the set

B∪SAT. If not, we can reduce the number of queries by making use of strong nondeterminism.

Next we argue that if a query q is relevant, then knowing answers to all other queries help us

determine the membership of q ∈ S, and if q lies outside of B ∪ SAT, then this contradicts the

unpredictability of the set H.

Formal Proof

Now we formalize the above intuition.

Theorem 4.1. If NP 6= co-NP, then the ESY-≤SNP
btt,li conjecture is true.

Proof. Suppose NP 6= co-NP, but the ESY-≤SNP
btt,li conjecture is false. Let (B, SAT) be a disjoint

NP-pair. By Observation 4.1, every separator of (B, SAT) is ≤SNP
btt,li-hard for NP. Let Q1 and

Q2 be two polynomial-time computable relations for SAT and B respectively. Assume that

the length of witnesses (for positive instances in SAT and in B) is bounded by nr, r > 0. By

Theorem 2.1 there is a set R that is SNTIME(2log2r n)-unpredictable within SAT. Consider the

separator S = R ∪ B. Suppose that S is ≤SNP
ktt,li-hard for NP for some k ≥ 0. We will achieve

a contradiction to our hypothesis NP 6= co-NP and to the fact that R is SNTIME(2log2r n)-

unpredictable within SAT. This will give us that S is not ≤SNP
ktt,li-hard for any k ≥ 0 and

therefore not ≤SNP
btt,li-hard for NP.

We prove this by induction. The base case is when the number of queries is zero. This

means that there is an SNP computable function t such that t(x) = SAT(x). This implies that

NP = co-NP, a contradiction.

As the inductive hypothesis, assume that S is not ≤SNP
(`−1)tt,li-hard. Now assume that SAT

≤SNP
`tt,li-reduces to S via 〈f, t〉, for contradiction. Given x, let f(x) = 〈q1, · · · , q`〉. We assume

that q` is the largest query and denote it with bx. We say that a query qi is relevant if the

following holds:

t(x, S(q1), · · · , S(qi), · · · , S(q`)) 6= t(x, S(q1), · · · , S(qi), · · · , S(q`)).
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In other words, if qi is relevant then knowing answers to all the other queries still does not help

us determine SAT(x). Then the following observation is easy to see.

Observation 4.4. There exist infinitely many x such that bx is relevant.

Proof. Suppose not. Then for all but a finite number of x we can remove bx from the list

of queries, giving an ≤SNP
(`−1)tt,li-reduction from SAT to S, and this contradicts the induction

hypothesis.

Now let’s define a set T for the largest query bx such that

T = {x | bx is relevant}.

Then we prove the following result on the size of T .

Lemma 4.1. There exist infinitely many x ∈ T such that bx /∈ B ∪ SAT.

Proof. Suppose not. For all but finitely many x ∈ T , the query bx is relevant and belongs to

B ∪ SAT. Now consider the following reduction 〈f ′, t′〉 from SAT to S: on input x, f ′ will first

compute f(x) = 〈q1, q2, · · · , q`−1, bx〉 and outputs the queries 〈q1, · · · , q`−1〉. We now describe

t′:

Procedure t′

1: Let b1 = S(q1), · · · , b`−1 = S(q`−1).

2: Determine whether each bx is relevant or not by comparing t(x, b1, · · · , b`−1, 0) with

t(x, b1, · · · , b`−1, 1). If bx is not relevant, then output t(x, b1, · · · , b`−1, 0).

3: Guess a witness w ∈ Σnr . If Q1(bx, w) holds, then output t(x, b1, · · · , b`−1, 0).

4: If Q1(bx, w) does not hold, then guess a witness u ∈ Σnr . If Q2(bx, u) holds then output

t(x, b1, · · · , b`−1, 1), else output ⊥.

We claim that the above is an ≤SNP
(`−1)tt,li-reduction from SAT to S. Clearly, f ′ produces only

`−1 queries. If bx is not relevant, then the reduction is correct. Suppose that bx is relevant. By

our assumption bx ∈ B ∪ SAT. If bx ∈ SAT, then bx /∈ S. Thus t(x, b1, · · · , bk−1, 0) = SAT(x).



46

If bx ∈ B, then bx ∈ S. Thus t(x, b1, · · · , bk−1, 1) = SAT(x). Thus the reduction is always

correct.

It remains to show that this is an SNP-reduction. Clearly all queries are produced by a

deterministic polynomial-time process. Step 2 computes the function t. However t is SNP

computable. So this step can be done via an SNP-machine. Suppose bx ∈ SAT. Then there

is a w ∈ Σnr such that Q1(bx, w) holds, and thus this path outputs the correct answer. Since

SAT is disjoint from B, for every u ∈ Σnr , Q2(bx, u) does not hold. Thus no path outputs the

wrong answer. A similar argument shows that when bx ∈ B, at least one path outputs the

correct answer and no path outputs the wrong answer.

Thus SAT ≤SNP
(`−1)tt,li-reduces to S. This contradicts our induction hypothesis. This com-

pletes the proof of the lemma.

Now, we return to the proof of the theorem. Lemma 4.1 has the following corollary.

Corollary 4.1. There exist infinitely many y /∈ B ∪ SAT with the following property: There

exists an x, |x| < |y| such that y = bx and y is relevant.

This enables us to build the following predictor for R. Let M be a strong nondeterministic

algorithm that decides R.
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Procedure M

1: Input 〈y,R|y〉.

2: If y ∈ B ∪ SAT, then run M(y) and output the result.

3: Search for an x such that |x| < |y| and bx = y. If no such x is found run M(y) and output

the result.

4: Let f(x) = 〈q1, · · · , q`−1, y〉. Compute bi = S(qi), 1 ≤ i ≤ `− 1, by the following:

(a) Decide the membership of qi ∈ B by running a brute force algorithm for B.

(b) Decide the membership of qi ∈ R by looking at R|y.

5: Check if y is relevant or not by comparing t(x, b1, · · · , b`−1, 0) and t(x, b1, · · · , b`−1, 1). If y

is not relevant, then run M(y) and output the result.

6: Now we know that y is relevant. Compute SAT(x). Find the unique bit b such that

SAT(x) = t(x, b1, · · · , b`−1, b).

7: Accept if and only if b equals 1.

Then we make the following claim.

Claim 4.1. The above predictor correctly predicts R and for infinitely many strings from SAT

runs in time 2log2r n .

Proof. Let I be the set of all y for which the conditions of Corollary 4.1 holds. The above pre-

dictor runs M(y) on any y that is not in I and thus is correct on all such y. Let y ∈ I. We know

that SAT(x) = t(x, b1, · · · , b`−1, S(y)). Since y is relevant SAT(x) 6= t(x, b1, · · · , b`−1, S(y)).

Thus b = S(y). Since y /∈ B ∪ SAT, y ∈ S if and only if y ∈ R. Thus the above predictor

correctly decides every y in I.

Now we will show that for every y ∈ I, the above predictor halts in quasi-polynomial time.

Let |y| = m, note that the length of x found in step 3 is at most m. Checking for membership

of y in B ∪ SAT takes O(2m
r
) time. Since y = bx is the largest query produced, |qi| ≤ m,

1 ≤ i ≤ ` − 1. Since B can be decided in time 2n
r
, Step a takes O(2m

r
) time. Since y > qi,

1 ≤ i ≤ ` − 1, Step b takes polynomial time. Computing SAT(x) takes O(2m) time. The
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predictor computes the function t. However, t is SNP computable. Thus the total time taken

is O(2m
r+1

). Note that the run time of the predictor is measured in terms of length of 〈y,R|y〉

which is at least 2m. Thus for every y ∈ I, the predictor runs in time 2log2r n time. Since I is

an infinite set and by definition it is a subset of SAT, the claim follows.

We have shown that S is not ≤SNP
`tt,li-hard for NP. This completes the induction step. Thus

S is not ≤SNP
btt,li-hard for NP. This completes the proof of the Theorem.

The following corollary of the above theorem is straightforward.

Theorem 4.2. NP 6= co-NP if and only if the ESY-≤P
btt,li conjecture holds.

Proof. Suppose NP 6= co-NP. Since every length-increasing bounded-truth-table reduction is

trivially an ≤SNP
btt,li-reduction, by Theorem 4.1 our result holds.

Suppose NP = co-NP. Then (CNFSAT,CNFSAT) ∈ DisjNP. The only separator is

CNFSAT. We know that CNFSAT is ≤P
m-li-complete for NP. This can be shown via the

Cook-Levin reduction, which given input x outputs a formula φ of length Θ(pi(|x|) log pi(|x|)),

where pi is the runtime of Ni from the standard enumeration of NP machines. Therefore the

ESY-≤P
m-li conjecture doesn’t hold, so the ESY-≤P

btt,li conjecture also doesn’t hold by Obser-

vation 4.2.

4.3 Proof of Main Theorem

In this section, our goal is to prove the following main theorem of this chapter:

Theorem 4.3. Suppose that there exist an ε > 0 and a one-one, one-way function that is

2n
ε
-secure against NP ∩ co-NP oracle circuits. Then the ESY-≤P

btt conjecture holds.

First, we extend the notion of SNP-reductions from Chapter 2 to strong, nondeterministic,

quasi-polynomial-time reductions. We call a function polynomially-bounded if the length of the

output of the function is bounded by a polynomial in input length.

Definition 4.1. Let A and B be two languages. We say that A is strong, nondeterministic,

quasi-polynomial k-truth table reducible to B (denoted A ≤SNQP
ktt B) if there is a polynomially-
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bounded, quasi-polynomial-time computable function f and a strong nondeterministic quasi-

polynomial-time computable function t such that for every x,

f(x) = 〈q1, · · · , qk〉 and t(x,B(q1), · · · , B(qk)) = A(x).

We call a ≤P
ktt-reduction weakly-length-increasing, if for every input x, the reduction outputs

at least one query whose length is larger than the length of x. Suppose every language that is

≤SNP
ktt -hard for NP is hard via weakly-length-increasing ≤SNP

ktt -reductions. We first observe that

under this assumption, the ESY-≤P
btt conjecture holds if NP differs from co-NP.

Observation 4.5. Suppose that every set A that is ≤SNP
ktt -hard for NP is hard for NP via

weakly-length-increasing ≤SNP
ktt -reductions. Then co-NP is a not a subset of NP if and only if

the ESY-≤P
btt conjecture holds.

Proof. Consider the proof of Theorem 4.1. The only places where we require the length-

increasing part of the ≤SNP
`tt,li-reduction are in the proof of Lemma 4.1 and in the runtime

analysis of Claim 4.1. Suppose we have a ≤SNP
`tt -reduction from SAT to set S. Then by our

assumption, since S is ≤SNP
`tt -hard for NP, we have a weakly-length-increasing ≤SNP

`tt -reduction

〈f, t〉 from SAT to S, such that f is a query generator that generates ` queries. Let f ′ be the

query generator that produces all queries of f except the largest query. Thus, there is a t′, as

described in the proof of Lemma 4.1, such that 〈f ′, t′〉 is an ≤SNP
`−1tt-reduction from SAT to S.

However, in this case 〈f ′, t′〉 is not necessarily a weakly-length-increasing reduction, but is still

an ≤SNP
(`−1)tt-reduction. This gives us that S is ≤SNP

(`−1)tt-hard for NP. By our assumption, there

must exist another ≤SNP
(`−1)tt-reduction 〈f ′′, t′′〉, where f ′′ produces at least one query whose size

is larger than the input size. Then with these changes, the proof of Lemma 4.1 goes through,

the statement of Corollary 4.1 still holds, and the runtime analysis of predictor M holds in

Claim 4.1.

Our next observation is the following. The proof of Observation 4.5 goes through if we

replace strong nondeterministic polynomial-time reductions with strong nondeterministic quasi-

polynomial-time reductions and strengthen the hypothesis to include co-NP is not a subset of

QuasiNP.
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Observation 4.6. Suppose that every set A that is ≤SNQP
ktt -hard for NP is hard for NP via

weakly-length-increasing ≤SNQP
ktt -reductions, and suppose that co-NP is not a subset of QuasiNP,

then the ESY-≤P
btt conjecture holds.

Next we will show that assuming the existence of a certain kind of one-way function implies

both the hypotheses of Observation 4.6 hold.

Observation 4.7. Suppose that there exist an ε > 0 and a one-one, one-way function that is

2n
ε
-secure against NP ∩ co-NP oracle circuits, then co-NP is not a subset of QuasiNP.

Proof. Every one-way function can be trivially inverted in polynomial-time with an NP-oracle.

Suppose that co-NP is a subset of QuasiNP, then NP is a subset of both QuasiNP and

co-QuasiNP. Thus every one-way function can be inverted in polynomial-time with a QuasiNP∩

co-QuasiNP oracle. We now use a padding argument to show that every one-way function can

be inverted by quasi-polynomial size circuits with an NP ∩ co-NP oracle. Let f be a one-way

function and M be a polynomial-time algorithm that inverts f with access to a language O

that is in QuasiNP∩ co-QuasiNP. Let r be a constant such that both O and O can be decided

by nondeterministic algorithms running in time O(2logr n) time. Define

O′ = {〈x, 0m〉 | |x| = n,m = 2logr n, and x ∈ O}.

Clearly O′ is in NP ∩ co-NP. Consider the following algorithm M ′ with O′ as oracle: On any

input y, simulate M(y). When M makes a query q (of length m) to O, make a query 〈q, 02log
r m〉

to oracle O′. Note that the time taken to form this query is O(2logrm), since m is polynomial

in the input length and M makes at most polynomially many queries, thus the total running

time of M ′ is O(2logr
′
n) for some constant r′ > r. We can convert this algorithm into a circuit

of size O(2logr
′′
n) for some constant r′′ > r′. This contradicts the hypothesis.

Now we show that the existence of the above 2n
ε
-secure one-way functions implies the first

hypothesis of Observation 4.6.

Theorem 4.4 (Key Theorem). Suppose that there exist an ε > 0 and a one-one, one-way

function that is 2n
ε
-secure against NP∩co-NP oracle circuits. Then every ≤SNQP

ktt -hard language

for NP is hard for NP via weakly-length-increasing ≤SNQP
ktt -reductions.
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The above theorem is the heart of this section. It can be easily seen that the main theorem

(Theorem 4.3) of this chapter follows by Observations 4.6, 4.7 and Theorem 4.4.

The rest of this chapter is devoted to the proof of Theorem 4.4. Agrawal [Agr02] and

Agrawal and Watanabe [AW09] showed that if one-one, one-way functions exist, then all NP-

complete sets are complete via nonuniform, one-one, and length-increasing reductions. Our

proof heavily relies on the ideas in those papers. For the sake of simplicity, we prove the

theorem for polynomial-time reductions. It can be verified easily that the proof holds for

quasi-polynomial-time reductions.

4.4 Proof of Key Theorem

First, we give the proof ideas of Theorem 4.4 for polynomial-time many-one (≤P
m) reduc-

tions. The proof proceeds in three steps. Suppose fo is a 2n
ε
-secure one-way function from the

hypothesis and L is a ≤P
m-hard language for NP, via a ≤P

m reduction g. Let A be a language

in NP that reduces to L via g. Now informally, define a ≤P
m reduction to be “sparse” on a set

S if the number of strings that are mapped to any single string in L is sufficiently “small” (to

be defined formally later). In general, the ≤P
m reduction g need not be sparse. The first step in

our proof is to show that there is a sparse ≤P
m-reduction from A to L, for every language A in

NP. The notion of Goldreich-Levin hardcore bit [GL89] is critical in this proof. Next, we show

that there is a randomized length-increasing ≤P
m-reduction h from A to L, for every language

A in NP. To prove this, we pad every input string x with a randomly selected “sufficiently

large” (to be defined later) string r and apply the above sparse ≤P
m reduction on 〈x, r〉. The

sparsity of the ≤P
m reduction helps us to bound the number of random strings r for which the

reduction h(〈x, r〉) is not length-increasing for every input x. Finally, we derandomize this

reduction using an appropriate pseudorandom generator.

Now we give the proof details.

Proof of Theorem 4.4. Let {fo}n≥1 : Σn → Σ`(n) be a family of one-one, one-way functions from

the hypothesis. Let L be an ≤SNP
ktt -hard language for NP. We will view an ≤SNP

ktt -reduction 〈f, t〉

as a function from Σ∗ to (Σ∗)k × Tk, where Tk is the set of all truth-tables for k variables. Let
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us denote this function by Ff,t.

Definition 4.2. A truth-table-reduction 〈f, t〉 is α-sparse on a set S ⊆ Σn if for every x0 in S,∣∣∣{x ∈ Σn | Ff,t(x) = Ff,t(x0)}
∣∣∣ ≤ 2n

2nα
.

4.4.1 Sparse Reduction in NP

First, we will prove that from every language A in NP, there is a sparse ≤SNP
ktt -reduction to

L. Define An to be the set of strings of length n from the set A.

Lemma 4.2. There exists a γ > 0 such that for every language A in NP, there is an ≤SNP
ktt -

reduction from A to L that is γ-sparse on An for every n ≥ 0.

Proof. For the sake of simplicity, we assume that the language A is defined only on even length

strings. If that were not the case, then we can work with A′ = A·A. Using the one-way function

fo, we first define the hard-core function of Goldreich-Levin [GL89]. Given a 2n bit string xy

such that x, y ∈ Σn, fgl(xy) = 〈fo(x), y, x ⊕ y〉. Since fo is one-one, fgl is one-one. Then the

following lemma can be obtained by relativizing the hard-core bit theorem [GL89, HILL99] (In

particular, Proposition 4.5 from [HILL99]).

Lemma 4.3. There exists a γ (< ε) such that for every sufficiently large n, for every oracle O

in NP ∩ co-NP, and for every O-oracle circuit D of size at most 2n
γ
,∣∣∣ Pr

x,y∈Σn
[D(fo(x), y, x⊕ y) = 1]− Pr

x,y∈Σn,b∈{0,1}
[D(fo(x), y, b) = 1]

∣∣∣ ≤ 1

2(3n)γ
.

Let B = {fgl(w) | w ∈ A}. Since fgl is one-one and is length-increasing, we have that B

is in NP. Since B is in NP, there is an ≤SNP
ktt -reduction 〈g, t〉 from B to L. Thus 〈f, t〉 is a

reduction from A to L, where f = g ◦ fgl. Note that there is a language O in NP∩ co-NP such

that f can be computed in polynomial-time with oracle access to O.

Now we will establish that 〈f, t〉 is γ-sparse on A2n. Suppose not, then there exists a string

w0 ∈ A2n such that the size of the following set S is bigger than 22n

2(2n)
γ ,

S = {w ∈ Σ2n | Ff,t(w) = Ff,t(wo)}.

We make the following observation.
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Observation 4.8. Since fgl is one-one, |S| = |fgl(S)| and Fg,t(fgl(S)) = {Ff,t(w0)}.

Define an O-oracle circuit D that on an input string z of length `(n) + n + 1 behaves as

follows: If Fg,t(z) = Ff,t(w0) then accept, otherwise reject. The next observation follows from

the definition of S and Observation 4.8.

Observation 4.9. The circuit D accepts a string z ∈ Σ`(n)+n+1 if and only if z ∈ fgl(S).

By Observations 4.8 and 4.9,

Pr
x,y∈Σn

[D(fo(x), y, x⊕ y) = 1] = pn ≥
1

2(2n)γ
.

On the other hand,

Pr
x,y∈Σn,b∈{0,1}

[D(fo(x), y, b) = 1]

= Pr
x,y∈Σn,b∈{0,1}

[b = x⊕ y]× Pr
x,y∈Σn,b∈{0,1}

[D(fo(x), y, b) = 1 | b = x⊕ y)]

+ Pr
x,y∈Σn,b∈{0,1}

[b = x⊕ y]× Pr
x,y∈Σn,b∈{0,1}

[D(fo(x), y, b) = 1 | b = x⊕ y]

=
1

2
Pr

x,y∈Σn
[D(fo(x), y, x⊕ y) = 1] +

1

2
Pr

x,y∈Σn
[D(fo(x), y, x⊕ y) = 1]

=
1

2
pn.

The last equality is as follows: For every x and y, the tuple 〈fo(x), y, x⊕ y〉 does not belong

to fgl(Σ
∗) and hence does not belong to fgl(S). Thus, by Observation 4.8, Fg,t(〈fo(x), y, x⊕ y〉) 6=

Ff,t(w0). So D does not accept 〈fo(x), y, x⊕ y〉. Then

∣∣∣ Pr
x,y∈Σn

[D(fo(x), y, x⊕ y) = 1]− Pr
x,y∈Σn,b∈{0,1}

[D(fo(x), y, b) = 1]
∣∣∣ =

1

2
pn

≥ 1

2

1

2(2n)γ
.

Finally, note that D is a polynomial size circuit with access to NP ∩ co-NP oracle O. This

contradicts the hard-core bit Lemma 4.3.

4.4.2 Randomized Reduction

We will now show that for any set A in NP there is a randomized, weakly-length-increasing

≤SNP
ktt -reduction from A to L. Later we will derandomize this reduction.
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Claim 4.2. Let A be any language in NP. There is an ≤SNP
ktt -reduction 〈h, t〉 such that

1. For every x and r, if h(x, r) = 〈q1, · · · , qk, t〉, then x ∈ A if and only if t(L(q1), · · · , L(qk)) =

1.

2. For every x ∈ A of length n,

Pr
r∈Σm

[there is a qi ∈ Qx,r such that |qi| > n] ≥ 3/4,

where Qx,r is the set of all queries produced by h(x, r) and m > (nk)
1

1−γ .

Proof. By Lemma 4.2, there is an ≤SNP
ktt -reduction 〈h, t〉 from A× Σ∗ to L that is γ-sparse on

S = An × Σm (for every n and m). Clearly this reduction satisfies property 1. Let R be the

set of all tuples 〈q1, · · · , qk, t〉 where each qi is of length at most n and t is a truth-table over

k variables. The total number of such tuples is at most 2(n+1)k × 22k . For a string x of length

n, let us count the number of strings from {x} × Σm that are mapped to the elements of R.

Note that every tuple from {x} ×Σ∗ can be encoded as a string of length 2(n+m). Since h is

γ-sparse on S the total number of such strings is at most

22n+2m

2(2n+2m)γ
× 2(n+1)k × 22k < 2(2m+2m)1−γ+2nk < 26m1−γ

,

which is bounded by 2m/4 for sufficiently large n, m > (nk)
1

1−γ , and γ > 0. The first inequality

in the above equation is due to the fact that n < m and k + 2k < nk for large n. Thus for

every x, the cardinality of the set {r ∈ Σm | h(x, r) /∈ R} is at least 3
42m. Hence the claim

follows.

4.4.3 Derandomization

We will now derandomize the above reduction. Note that our hypothesis implies the exis-

tence of a hard language in EXP whose NP ∩ co-NP-oracle circuit complexity is 2n
δ

(for some

γ > δ > 0). Then Theorem 2.3 implies that we can construct a pseudorandom generator

G : Σlogam → Σm that is secure against NP ∩ co-NP-oracle circuits of size O(m). Thus for

every x ∈ A of length n, we have the following:

Pr
r∈Σloga m

[at least one query of h(x,G(r)) is of length bigger than n] ≥ 1/2. (4.1)
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The desired reduction from A to L works as follows: We describe the query generator. Given

an input x of length n, set m > (nk)
1

1−γ , cycle through all strings r of length logam and

compute h(x,G(r)) = 〈q1, · · · , q`〉. If at least one qi is of length bigger than n, then output

this tuple and stop. If for every r, every query of h(x,G(r)) is of length at most n, then by

inequality (4.1), it must be the case that x is not in A. In this case the reduction simply

outputs 〈0n+1, · · · , 0n+1, F 〉, where F is the truth-table that always evaluates to false. Note

that the running time of the query generator is deterministic quasi-polynomial. So this is a

strong nondeterministic, quasi-polynomial-time, k-tt reduction.

This completes the proof of Theorem 4.4.

4.5 Conclusions

In this chapter we provided the evidence that the ESY conjecture holds when we restrict the

power of the reduction. Hughes, Pavan, Russell, and Selman showed that the ESY-conjecture

for length-increasing, ≤P
btt-reductions is equivalent to NP 6= co-NP [HPRS12]. They also showed

that by using a stronger hypothesis, namely, if NP has SNTIME(n2) unpredictable set, we can

remove the length-increasing restriction. We provide further evidence in support of it, that

is, our Theorem 4.3 removes the length-increasing restriction by using a different but stronger

hypothesis that involves the existence of secure one-way functions.

An obvious question is whether we can weaken the hypotheses. The hypothesis of 4.3 re-

quires the existence of one-one, one-way functions that are hard for circuits with NP ∩ co-NP

oracles. The one-way functions studied in most of the literature (henceforth called “standard

one-way functions”) only require hardness against subexponential-size circuits (having no or-

acles). Can we show that if standard one-way functions exist, then the ESY-≤P
btt conjecture

holds? We note that this is unlikely. Recall that the ESY-≤P
btt conjecture implies NP 6= co-NP

(equivalently, NP differs from NP∩co-NP). Thus a positive answer to our question immediately

shows that if standard-one way functions exist, then NP differs from NP ∩ co-NP. Intuitively,

the existence of standard one-way functions imply that NP is hard against subexponential

time/circuits, not hard against NP ∩ co-NP. We cannot hope to prove that the existence of

standard one-way functions separates NP from co-NP.
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Note that the existence of one-way functions that are hard against NP ∩ co-NP-oracle

circuits, implies that NP is hard on average for NP∩co-NP. This raises the following interesting

question: If NP is average-case hard for NP∩ co-NP, then does the ESY-≤P
btt conjecture hold?

Another question is whether we can replace ≤P
btt-reductions with reductions that make O(log n)

(or nε) nonadaptive queries. We believe that the techniques used in this chapter can be extended

to work for O(log n) queries.
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CHAPTER 5. MULTIPASS PROBABILISTIC SPACE-BOUNDED

MACHINES

In this chapter, we investigate probabilistic space-bounded Turing machines that are allowed

to access their random bits multiple times. There are several ways to access the random tape

multiple times. We can restrict the number of access to any individual bit on the random tape;

such machines are called multi-read machines. Impagliazzo, Nisan, and Wigderson [INW94]

considered such machines and showed that their pseudorandom generator can fool any constant-

read probabilistic space-bounded machine. The second type is the two-way access to the random

tape where the tape head can move left or right based on the outcome of an unbiased coin toss.

This is the most unrestricted access to the random tape. We denote by 2-wayBPL the class

of languages that are accepted by bounded-error probabilistic logspace machines with two-way

access to the random tape. While we know that BPL is in deterministic polynomial time, it

is not known whether 2-wayBPL is even in deterministic sub-exponential time (it’s in BPP).

While one-way access machines can be characterized using certain graph reachability problem,

we do not have such a nice combinatorial characterization for two-way access machines.

Our focus in this chapter is a third type of multi-access which lies between one-way and

unrestricted two-way access to the random tape—we call such machines multipass machines,

where the machines make multiple passes over the random tape and in each pass the machines

can access the random tape only one-way.

Previous Work

Our understanding of multiple-access models is limited. While investigating deterministic

simulations of probabilistic space-bounded machines, Borodin, Cook, and Pippenger [BCP83]

raised the question whether two-way probabilistic s(n)-space-bounded machines can be sim-
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ulated deterministically in O(s2(n)) space. Karpinsky and Verbeek [KV85] showed that the

answer is negative in general. They showed that two-way logspace probabilistic machines that

are allowed to run for 2n
O(1)

time can simulate PSPACE with zero error probability. In another

relevant result, Nisan [Nis93] showed that BPL can be simulated by zero-error, probabilistic,

space-bounded machines that have a two-way access to the random tape. While investigating

the power of two-way machines, Nisan showed that 2-wayBPL is same as almost-logspace,

where almost-logspace is the class of languages accepted by deterministic logspace machines

relative to a random oracle.

It is also interesting to note that allowing two-way access to the random tape for a space-

bounded machine makes the corresponding nonuniform classes closer to randomized circuit

complexity classes. It is known that logspace uniform NC1 is in deterministic logspace, where

NC1 is the class of languages accepted by polynomial-size, bounded fan-in O(log n)-depth

circuits. However, a randomized version of this inclusion is not known to hold. That is, we

do not know whether (uniform) BPNC1 is contained in BPL. However, it is a folklore that

(uniform) BPNC1 is in 2-wayBPL (for example, see [Nis93]).

Probabilistic space-bounded machines that can make multiple passes over the random tape

was first considered by David, Papakonstantinou, and Sidiropoulos [DPS11]. They showed that

any pseudorandom generator that fools traditional k(n)s(n)-space bounded machines can also

fool k(n)-pass s(n)-space bounded machines. As a corollary, they obtain that polylog-pass,

randomized logspace is contained in deterministic polylog-space. David, Nguyen, Papakon-

stantinou, and Sidiropoulos [DNPS11] further considered probabilistic space-bounded machines

that have access to a stack and a two-way/multipass access to the random tape and compared

their power to the traditional deterministic and probabilistic classes.

Our Contributions

In this chapter, we prove results that indicate that it is fruitful to study multipass proba-

bilistic space-bounded machines. As our main result in this chapter, we connect derandomiza-

tion of multipass machines with the derandomization of time-bounded probabilistic complexity

classes. Showing that BPTIME(n) is a subset of DTIME(2o(n)) is a significant open problem.
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The best unconditional derandomization of BPTIME(n) till date is by Santhanam and van

Melkebeek [SvM05] who showed that any bounded-error linear time probabilistic machine can

be simulated in DTIME(2εn), where ε > 0 is a constant that depends on the number of tapes

and the alphabet size of the probabilistic machine. As the main result of this chapter, we

show that derandomizing an O(log(k) n)-pass probabilistic space-bounded machine that uses

only O(log n log(k+3) n) random bits to polynoimal time yields a non-trivial derandomization of

BPTIME(n). Our result is actually stronger. The theorem holds for any non-constant number

of passes. Notice that if we restrict the number of random bits from O(log n log(k+3)(n)) to

O(log n), then the corresponding set of languages is trivially in P. If we restrict the number of

passes from O(log(k) n) to O(1), we can still show that the set of languages accepted is in P.

Thus, the above theorem states that any extension of these simulations will lead to a non-trivial

and unknown derandomization of BPTIME(n).

Our next set of results reveal the connection between multipass machines and the traditional

probabilistic time- and space-bounded machines. First, we show that any k(n)-pass, s(n)-space,

probabilistic machine can be simulated by traditional k(n)s(n)-space bounded probabilistic

machines. Thus, in particular, a constant number of passes do not add power to the traditional

one-way machines. Using the well-known derandomization results of Saks and Zhou [SZ99], we

further show that the language from our hypothesis in the previous paragraph is contained in

DTIME(n(log logn)1/2+ε), which is slightly higher than our desired polynomial-time. Next we ask

the following question: Can we derandomize a logspace multipass machine to a deterministic

logspace machine along the line of Adleman [Adl78]? Adleman showed that 2-wayBPL can be

simulated by a deterministic logspace machine with a polynomial amount of advice. Fortnow

and Klivans [FK06] showed that if we restrict our attention to BPL, it can be simulated by a

deterministic logspace machine with only a linear amount of advice. We improve their result.

We show that even a probabilistic machine with polylog(n) number of passes on its random

tape can be simulated by the same deterministic logspace machine with linear advice.

Next, we focus on the randomness-efficient deterministic amplification of the multipass

probabilistic machines. Reducing the error probability of probabilistic machines is an impor-

tant problem and has applications in derandomization. One way to achieve this is to run the
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algorithm multiple times with fresh set of random strings and take the majority vote. How-

ever, this increases the number of random bits required for the computation. Is there a way

to reduce the error, while keeping the number of random bits used by the machine at check?

The method that achieves this is called the deterministic amplification. There are many de-

terministic amplification methods [AKS87, CW89, IZ89, Nis92] known for the time-bounded

probabilistic complexity classes. The basic idea is to use an expander graph whose each node

acts as a source of randomness and we can follow a random walk on the expander to pick

up those nodes. However, all of these methods use more computational space than we can

afford for the probabilistic space-bounded computations. Bar-Yossef, Goldreich, and Wigder-

son [BYGW99] provided a space-efficient encoding for the constant-degree expanders to obtain

a deterministic amplification of the space-bounded machines. Specifically, they showed that

any s(n)-space-bounded probabilistic machine that uses R(n) random bits and has an error

probability ε < 1/2 can be amplified deterministically to a O(t(n)s(n)) space-bounded proba-

bilistic algorithm that uses R(n) + O(t(n)) random bits and errs with probability εΩ(t(n)), for

any function t(n). We prove a similar theorem for multipass machines in this chapter.

Finally, we show a hierarchy theorem for the multipass machines using a result of Kinne and

van Melkebeek [KvM09]. Note that the hierarchy theorems for the time- and space-bounded

probabilistic machines are not known unconditionally and all the partial results require at least

one advice bit [Bar02, FS04, FS06, FS07, FST05]. Using this result we show that linear time

probabilistic class with a single bit of advice is a strict subset of O(log(3) n)-pass linear space

probabilistic class with a single bit of advice. This result can be compared with the seminal

result of Hopcroft, Paul, and Valiant that the DTIME(t(n)) is strictly in DSPACE(t(n)), for

any function t(n).

Organization of this Chapter

Rest of this chapter is organized as follows. We establish results that connect derandomiza-

tion of multipass machines to derandomization of probabilistic time classes in the next section.

In Section 5.2, we consider the problem of simulating multipass, probabilistic, space-bounded

machines with the traditional one-pass machines. Next, we provide a space-efficient determinis-
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tic non-uniform simulation of the multipass machines. In Section 5.4, we obtain a randomness-

efficient deterministic amplification for the multipass machines. Section 5.5 provides a hierarchy

theorem for the multipass machines. Finally, Section 5.6 concludes this chapter with the future

direction of this line of work.

5.1 Derandomization of Probabilistic Time

As our main result of this section, we show that a time-efficient derandomization of proba-

bilistic logspace machines that use very few random bits and make very few passes over their

random tape, yields a non-trivial derandomization of probabilistic time. In particular, we show

the following theorem.

Theorem 5.1. If for some constant k > 0, O(log(k) n)-pass BPL
[
log n log(k+3) n

]
is in P,

then BPTIME(n) ⊆ DTIME(2o(n)).

Remark 5.1. We use the iterated logarithmic function for simplicity, but the above theorem

can be proved with any “nice” slowly growing function f(n) ∈ ω(1).

We establish the theorem by first proving that every BPTIME(n) machine can be simulated

by a bounded-error probabilistic space-bounded machine that makes O(log(k) n) passes over the

random tape and uses o(n) space, on inputs of size n. There is a trade-off between the number

of passes and space used by the simulating machine and this trade-off is essential in the proof.

More formally, we prove the following theorem.

Theorem 5.2. For every constant k > 0,

BPTIME(n) ⊆ O(log(k) n)-pass BPSPACE
[
n/ log(k+3) n, n

]
.

Remark 5.2. The above theorem may be of independent interest. In a seminal result, Hopcroft,

Paul, and Valiant [HPV77] showed that DTIME(n) ⊆ DSPACE(o(n))1. The analogous inclu-

sion relationship for probabilistic classes is not known. That is, we do not know unconditionally

if BPTIME(n) is a subset of BPSPACE(o(n)) (see [LV03, KLV03] for conditional results in this

direction). The above theorem can be viewed as a partial solution in this direction; if we allow

1In fact, they showed that DTIME(t(n)) ⊆ DSPACE(t(n)/ log t(n)), for any time-constructible function t(n).
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the probabilistic space-bounded machine to have a slightly non-constant number of passes, then

BPTIME(n) can be simulated in o(n) probabilistic space.

We first give the proof of Theorem 5.1 assuming Theorem 5.2. The proof is trivial and uses

a simple padding argument.

Proof of Theorem 5.1. Let k > 0 be a constant for which the hypothesis in the statement of

Theorem 5.1 holds. Let L be a language in BPTIME(n). Then by Theorem 5.2, we know that

the language L is in O(log(k−1) n)-pass BPSPACE
[
n/ log(k+2) n, n

]
. Let

L′ =

{
〈x, 02n/ log(k+2) n−n〉 | x ∈ L, |x| = n

}
.

It is easy to see that L′ is in O(log(k) n)-pass BPL
[
log n log(k+3) n

]
. By our hypothesis, L′ is

in P. So L′ ∈ DTIME(n`) for some ` > 0. From this it follows that for some ` > 0, L is in

DTIME

(
2

`n

log(k+2) n

)
and thus in DTIME(2o(n)).

Now we move on to proving Theorem 5.2. The proof relies on the classical result of Hopcroft,

Paul, and Valiant [HPV77] who showed that every deterministic machine running in time O(n)

can be simulated by a deterministic machine that uses O(n/ log n) space. If we adopt their

proof to the case of probabilistic machines, we obtain that every bounded-error probabilistic

machine running in time O(n) can be simulated by a bounded-error, probabilistic machine

that uses space O(n/ log n); however, the simulating machine makes an exponential number of

passes over the random tape. We observe that the number of passes can be greatly reduced at

the expense of a little increase in space. This is essentially achieved by using a careful choice

of parameters than those used in [HPV77].

To proceed with the proof, we need the notions of block-respecting Turing machines and

pebbling games, introduced by [HPV77].

Definition 5.1. Let M be a multi-tape Turing machine running in time t(n). Let b(n) be a

function such that 1 ≤ b(n) ≤ t(n)/2. Divide the computation of M into a(n) time segments

so that each segment has b(n) = t(n)/a(n) steps. Also divide each tape of M into a(n) blocks

so that each block has exactly b(n) cells. We say that the machine M is b(n)-block respecting if
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during each time segment every tape head of the machine M visits cells of exactly one block.

I.e, a tape head can cross a block boundary only at time step c · b(n) for some integer c > 0.

Then it’s easy to see the following. Refer to their paper and text by Balcázar, Diaz, and

Gabarró [BDG90] for a proof.

Lemma 5.1. Every `-tape Turing machine running in time t(n) can be simulated by a (`+ 1)

tape b(n)-block respecting Turing machine running in time O(t(n)) for any b(n), 1 ≤ b(n) ≤

t(n)/2.

Definition 5.2 (Pebbling Game). Let G = (V,E) be a directed acyclic graph, w be a special

vertex of G, and P be a set of pebbles. We say a vertex u is a predecessor of vertex v in G if

there is an edge from u to v. Then the pebbling game is defined as the following optimization

problem: Place a pebble on the special vertex w such that the number of pebbles used from P

is minimized, subject to the following constraints:

1. Place a pebble on a vertex v only if all predecessors of v have pebbles on them and

2. A pebble can be removed from a vertex at any time.

Hopcroft, Paul, and Valiant showed (by means of a clever divide-and-conquer algorithm)

the following result about pebbling games. Refer to their paper and text by Balcázar, Diaz,

and Gabarró [BDG90] for a proof.

Lemma 5.2. Every bounded-degree graph with n vertices can be pebbled using O(n/ log n)

pebbles, and there is a deterministic algorithm S that does this pebbling in time O(2n
2
).

Now we are ready to prove the main theorem (Theorem 5.2) of this section.

Proof of Main Theorem

Proof. Fix k > 0, and set b(n) = n/ log(k+2) n. Let L be a language in BPTIME(n) and let M

be an `-tape, b(n)-block respecting probabilistic machine that accepts L in time t(n) = O(n).

Set a(n) = t(n)/b(n). Without loss of generality, we can assume that M reads the contents of

the random-tape in a one-way manner. The computation graph GM of M is an edge-labeled
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graph defined as follows. The vertex set is V = {1, · · · , a(n)}. For 1 ≤ i < a(n), 〈i, i+ 1〉 ∈ E

with label 0, implying the computation at time segment i+ 1 requires the computation of the

time segment i. Assume that the tape heads are numbered 1, · · · , `. We place an edge from

i to j with label h ∈ [1, `] if the following holds: Suppose that during the time segment i the

tape head h is in some block b and the next time segment that the tape head h revisits block

b is j (i.e., the computation at time segment j requires the content of the block b from the

time-segment i). This process defines a multigraph.

Given 1 ≤ i ≤ a(n), let B1(i), · · · , B`(i) be the blocks that each of the ` tape heads are

visiting during time segment i. Let C(i) be a string that describes the contents of blocks

B1(i), · · · , B`(i) and the state q at the end of time segment i. The following observation is

crucial.

Observation 5.1. Suppose a vertex j has predecessors i1, · · · , ir where 1 ≤ r ≤ `. Then we

can simulate the computation of M during time segment j by knowing C(i1), · · · , C(ir). Thus

we can compute C(j).

Using this observation, as in [HPV77], we simulate M by a machine M ′ as follows. We

describe a simulation algorithm that gets a bounded degree graph (degree ≤ `+ 1) G as input

and attempts to simulate M .

Call the pebbling algorithm S on graph G. If S places pebble on vertex i, then

compute C(i) and store C(i). If S removes pebble from a vertex i, then erase C(i).

Note that a priori, we do not know the correct computation graph GM . We will first assume

that the correct computation graph GM is known to us and thus can be given as input to the

above algorithm. Latter we will remove this restriction. By Observation 5.1, it follows that

the above algorithm correctly simulates M (under the assumption that GM is known). Now

we bound the space, time, number of passes, and number of random bits required by the above

simulation algorithm (under the assumption that GM is known). We start with the following

two claims.

Claim 5.1. The total space used by the above simulation is O
(
a(n)b(n)
log a(n) + 2a

2(n)
)

.
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Proof. We are assuming that the graph GM is known. Now the pebbling strategy places a

pebble on a vertex i only when all its predecessors have pebbles on them. Thus, by the

above observation, we can compute C(i) when a pebble is placed on vertex i. Note that

C(i) can be described using `b(n) bits. Since for each pebble we store C(i) (for some i), the

total space used is the number of pebbles times `b(n). Now the number of pebbles used is

O(a(n)/ log a(n)) as the size of the graph is a(n). So the total space used by the simulating

machine is O (a(n)b(n)/ log a(n)) plus the space needed by the pebbling strategy S. Since the

pebbling strategy runs in O(2a
2(n)) time, the space used by the pebbling strategy is bounded

by O(2a
2(n)).

Note that we can reuse the space for each graph, and thus the total space remains same

even when we remove our assumption.

Claim 5.2. The above simulation algorithm makes at most O(2a
2(n)) passes over the random

tape.

Proof. As before, we are assuming that the graph GM is known. Even though M reads the

contents of the random tape in a one-way manner, the simulating machine may have to read

some bits multiple times. Consider a block i on the random tape, the simulating machine

needs to access the contents of that block each time the pebbling algorithm S places a pebble

on vertex i. If block i is to the left of the current tape head position (of the random tape),

then the simulating machine can make a pass over the random tape and access block i. Since

the pebbling algorithm takes time O(2a
2(n)), the total number of times a pebble is placed on

any vertex is at most O(2a
2(n)). Thus the simulating machine makes at most O(2a

2(n)) passes

over the random tape.

Now we address the assumption that the computation graph GM is known.

Observation 5.2. Suppose that G is not the correct computation graph. If the above simulation

algorithm gets G as input, then it will discover that G is not the correct computation graph,

using O(a(n)b(n)
log a(n) + 2a

2(n)) space and by making O(2a
2(n)) passes over the random tape.
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Proof. We can discover whether a graph G is the correct computation graph or not as follows.

Observe that given any possible computation graph G, we can compute for each tape the block

number the tape-head visits after each time-segment. This information can be stored using

O(a(n) log a(n)) bits. Also note that any correct computation graph must have edges of the

form (i, i+ 1), 1 ≤ i < a(n). Thus, a pebble cannot be placed on vertex (i+ 1) before placing a

pebble on vertex i. This ensures that we will simulate (i+1)st time segment only after ith time

segment is simulated. Now if G is an incorrect computation graph, then the following scenario

happens: The tape-head positions computed based on G will claim that after time-segment i,

tape head h is in block b; however, while simulating M , this does not happen. At this point,

we will discover that G is not a correct computation graph.

So our final simulation of M proceeds as follows: Iterate through all possible computation

graphs; for each graph G, attempt to simulate M using the above algorithm. If it discovers

that G is not a correct computation graph, then proceed to next graph.

By Claim 5.1 and Observation 5.2, each iteration needs O(a(n)b(n)
log b(n) + 2a

2(n)) space. Since we

can reuse space from one iteration to the next iteration, total space is bounded by O(a(n)b(n)
log b(n) +

2a
2(n)). By Claim 5.2 and Observation 5.2, each iteration can be done making 2a

2(n) passes.

Since there are at most 2a
2(n) possible computation graphs, the total number of passes is 22a2(n).

By plugging in the values of a(n) and b(n) from above, we obtain that the space used by the

simulating machine is O(n/ log(k+3) n) and the number of passes is O(log(k) n). Finally, note

that the number of random bits used by the simulating machine remains same as the number

of random bits used by M , i.e., O(n). This completes the proof of the theorem.

5.2 Simulating Multiple Passes with Single Pass

An obvious question at this point is the following: Can we simulate multipass probabilistic

machines with traditional one-pass probabilistic space bounded machines? The main result of

this section shows that passes can be traded for space. This helps us to obtain an upper bound

on the deterministic space to simulate a multipass probabilistic space-bounded machine. We

first start with the following lemma.
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Lemma 5.3. If a language L is in k(n)-pass BPSPACE[s(n), r(n)], then there is a probabilistic

O(k(n)s(n))-space bounded machine N that has one-way access to the random tape and for

every x ∈ Σn,

Pr[N(x) = L(x)] ≥ 1

2
+

1

2O(k(n)s(n))
.

Moreover, N uses O(r(n) + k(n)s(n)) random bits.

Proof. Let M be a bounded-error, probabilistic, k(n)-pass, s(n)-space-bounded machine that

accepts L using r(n) random bits. Consider the following machine N :

Procedure N

1: Input x, |x| = n.

2: Let C0 be the initial configuration of M on input x.

3: Uniformly at random pick k(n)− 1 many configurations C1, C2, · · · , Ck(n)−1, and store the

configurations on the work tape.

4: For 0 ≤ i ≤ k(n)− 1, in parallel DO

(a) Simulate one pass of M with Ci as starting configuration.

(b) Let C ′i be the configuration after this pass.

5: If there exists an i, 0 ≤ i ≤ k(n) − 2, such that C ′i 6= Ci+1, then accept with probability

1/2 and reject with probability 1/2.

6: Otherwise, accept x if and only if C ′k(n)−1 is an accepting configuration.

Since each configuration of M is of length O(s(n)), the space needed to store all of Ci’s is

O(k(n)s(n)). Clearly, Step 4 can be done by accessing the random-tape in a one-way man-

ner. The total space needed for all k(n) simulations in Step 4 is O(k(n)s(n)). Thus N is an

O(k(n)s(n))-space bounded machine that reads the random tape in a one-way manner. Note

that the number of random bits used by the above machine is the number of random bits used

in Step 3 (which is O(k(n)s(n)) plus the number of random bits used by M . Thus N uses

O(r(n) + k(n)s(n)) random bits.
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Now we bound the success probability of N . Let x ∈ L. For a fixed random string r, let

Dr
1, D

r
2, · · · , Dr

k(n)−1 be the configurations of M(x) after each pass when r is written on the

random tape. Consider the behavior of N when r is written on its random tape. Note that

the behavior of N(x) coincides with the behavior of M(x) when for every 1 ≤ i ≤ k(n)− 2, Ci

equals Dr
i . The probability of this event happening is exactly 1/2O(k(n)s(n)). When this event

does not happen, N accepts x with probability 1/2. Thus

Pr[N accepts x] =
1

2r(n)

∑
r∈Σr(n)

Pr[ N accepts x with r on random tape]

=
1

2r(n)

∑
r∈Σr(n)

Pr[ N accepts x | ∀iCi = Dr
i ] · Pr[∀iCi = Dr

i ]

+ Pr[N accepts x | ∃iCi 6= Dr
i ] · Pr[∃i, Ci 6= Dr

i ]

=
1

2r(n)

∑
r∈Σr(n)

Pr[M accepts x with r on random tape] · 1

2O(k(n)s(n))

+
1

2

(
1− 1

2O(k(n)s(n))

)
=

1

2O(k(n)s(n))
Pr[M accepts x] +

1

2

(
1− 1

2O(k(n)s(n))

)
≥ 1

2
+

1

6 · 2O(k(n)s(n))

This completes the proof.

Using above Lemma, we obtain the following.

Theorem 5.3. k(n)-pass BPSPACE(s(n)) ⊆ BPSPACE(k(n)s(n)).

Proof. Let L be a language that is accepted by a k(n)-pass BPSPACE(s(n)) machine M . By

definition, this machine uses 2O(s(n)) random bits. Thus by Lemma 5.3, there is an O(k(n)s(n))-

space bounded, one-pass, probabilistic machine N that uses O(2O(s(n))+k(n)s(n)) random bits,

and

Pr[L(x) = N(x)] ≥ 1

2
+

1

2O(k(n)s(n))
.

We can amplify the success probability of N to 2/3 by simulating it 2O(k(n)s(n)) times and taking

the majority vote. This will use 2O(k(n)s(n)) random bits. Thus we obtain a O(k(n)s(n))-space

bounded machine that uses 2O(k(n)s(n)) random bits. Thus L is in BPSPACE(k(n)s(n)).
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Corollary 5.1. O(1)-pass BPL = BPL.

We relate the above lemma to the result of [DPS11].

Theorem 5.4. Let M be a k(n)-pass, s(n)-space bounded machine that uses r(n) random bits.

Any pseudorandom generator that fools k(n)s(n)-space bounded machines (that read their input

in a one-way manner) running on r(n)-bit input strings also fools M .

Their result states that to deterministically simulate k(n)-pass, s(n)-space bounded prob-

abilistic machines, a pseudorandom generator against standard O(k(n)s(n))-space bounded

probabilistic machine suffices. Lemma 5.3 can be interpreted as an explanation of their result,

as it shows that any k(n)-pass, s(n)-space bounded machine can indeed be simulated by a

standard O(k(n)s(n)) space bounded machine.

Next, we consider the main result of this section: a deterministic simulation of the proba-

bilistic class k(n)-pass BPSPACE(s(n)). This is a subclass of BPSPACE(k(n)s(n)) by Theo-

rem 5.3. By the celebrated results of Nisan [Nis92] and Saks and Zhou [SZ99], it follows that

this class is a subset of DSPACE(k3/2(n)s3/2(n)). Observe below that we can get rid of the

polynomial factor off the number of passes, more formally, we show the following.

Theorem 5.5. k(n)-pass BPSPACE(s(n)) ⊆ DSPACE(k(n)s3/2(n)).

Proof. Let L be a language that is accepted by a k(n)-pass BPSPACE(s(n)) machine M . Since

M halts in 2O(s(n)) time, k(n) is bounded by 2O(s(n)) and M uses 2O(s(n)) random bits. Thus,

by Lemma 5.3, there is an O(k(n)s(n))-space bounded, one-pass, probabilistic machine N that

uses 2O(s(n)) random bits and

Pr[L(x) = N(x)] ≥ 1

2
+

1

2O(k(n)s(n))
.

Saks and Zhou [SZ99], building on Nisan’s [Nis92] work showed that any language accepted

by a probabilistic machine using O(s(n))-space, 2O(r(n)) random bits, with success probability

as low as 1/2 + 1/2O(s(n)), is in deterministic space O(s(n)r1/2(n)). Applying this to our

case, we obtain that N can be simulated by a deterministic space-bounded machine that uses

O(k(n)s3/2(n)).
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Recall that our hypothesis in Theorem 5.1 states that for some k > 0 if the complexity class

log(k) n-pass BPL(log n log(k+2) n) is in P. We obtain the following upper bound for this class,

by applying Lemma 5.3 and the techniques of Saks and Zhou [SZ99].

Corollary 5.2. For any constants k ≥ 3 and ε > 0,

log(k) n-pass BPL[log n log(k+3) n] ⊆ DSPACE(log n(log log n)
1
2

+ε) ⊆ DTIME(n(log logn)1/2+ε).

Proof. Let L be a language that is accepted by a log(k) n-pass logspace machine M that uses

O(log n log(k+3) n) random bits. Thus, by Lemma 5.3, there is an O(log(k) n × log n) space-

bounded, one-pass, probabilistic machine N that uses O(log n log(k+3) n) random bits and

Pr[L(x) = N(x)] ≥ 1

2
+

1

2O(log(k) n×logn)
.

Using the result of Saks and Zhou [SZ99] from Theorem 5.5, we obtain that N can be simulated

by a deterministic space-bounded machine that uses space in the order of

log n× log(k) n× (log log n+ log log(k+3) n)1/2 ≤ log n(log log n)
1
2

+ε

for k > 3 and any ε > 0. The second inclusion is straightforward.

5.3 Deterministic Simulation of Multipass Machines with Linear Advice

Fortnow and Klivans [FK06] showed that standard (one-pass) randomized logspace ma-

chines (BPL) can be simulated by deterministic logspace machines that have access to a linear

amount of advice. I.e., they showed that BPL is a subset of L/O(n). On the other hand, using

Adleman’s technique [Adl78], it can be shown that randomized logspace machines with two-

way access to the random tape can be simulated in deterministic logspace using a polynomial

amount of advice [Nis93]. Thus, any multipass, randomized logspace machine can be simulated

in deterministic logspace with polynomial amount of advice. Can we bring down the advice to

linear? We first show that this is possible with a small increase in space.

Let M be an O(log n)-pass, randomized logspace machine. By Theorem 5.3, M can be

simulated by a one-pass randomized machine that uses O(log2 n) space, and by applying the

techniques of Fortnow and Klivans [FK06], it follows that M can be simulated in deterministic



71

space O(log2 n) with linear advice. Below we show that we can improve the space bound of

the deterministic machine to O(log n log logn). More formally, we prove the following general

theorem.

Theorem 5.6. For any k(n) ∈ ω(1), a k(n)-pass s(n)-space bounded randomized machine that

uses R(n) = 2r(n) random bits can be simulated by a deterministic machine that uses space

O(s(n) + r(n) log(k(n)s(n))) and an advice of size O(r(n)k(n)s(n) + n). I.e.,

k(n)-pass BPSPACE[s(n), 2r(n)] ⊆ DSPACE(s(n) + r(n) log k(n)s(n))/O(r(n)k(n)s(n) + n).

Before we prove the above theorem, we note some of its direct consequences. Since r(n) =

O(s(n)), the following is straightforward.

Corollary 5.3. O(1)-pass BPL ⊆ L/O(n).

This clearly improves the result of Fortnow and Klivans. The above corollary can also be

obtained by combining Fortnow-Klivans’ result with Corollary 5.1.

Corollary 5.4. For every constant k > 0, O(logk n)-pass BPL ⊆ DSPACE(log n log logn)/O(n).

That is, with the increase of only a factor of log log n in space by the simulating machine,

we can simulate a polylog-pass probabilistic logspace machine.

Corollary 5.5. For every 0 < ε < 1, nε-pass BPL ⊆ DSPACE(log2 n)/O(n).

Corollary 5.5 can be interpreted as follows: with the increase of only log n factor in space

compared to Fortnow-Klivans, we are able to accommodate nε many passes.

First, we provide the proof idea of Theorem 5.6, following Fortnow-Klivans.

Proof Sketch

For simplicity, suppose we have a log n-pass logspace probabilistic machine M that uses n2

random bits and has error probability 1/3. Our goal is to simulate it by an O(log n log logn)

space-bounded deterministic machine that uses advice of size only linear in n. Note that if

we convert M to a 1-pass O(log2 n) space-bounded machine using Theorem 5.3 and apply the

following method, we will get an O(log2 n) space-bounded machine instead.
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First, we apply Adleman’s technique on M ; on input of length n, reduce the error of the

machine to less than 1/2n by running M O(n) times, and then fix a “good” advice string that

works for all inputs. This requires a logarithmic space machine, but polynomial in n amount of

advice. To reduce the advice, we apply Fortnow-Klivans’ idea. Use the pseudorandom bits from

Nisan’s generator to reduce the error. To get n pseudorandom strings, we need n seeds, each

of length O(log3 n). This is because our generator needs to fool a log n-pass logspace machine,

and by Theorem 5.3, we can achieve this by fooling a one-pass O(log2 n)-space machine instead.

Since, we need to run M roughly n times to reduce the error down to 2n, we need O(n log3 n)

size seed, which again increases the advice size (we can actually do slightly better, we can run

for n/ log2 n times and still reduce the error exponentially, and thus, the advice length will be

O(n log n)). Clearly, we cannot store all the seeds. So the idea is to generate them online, only

when the generator needs them. So we perform a random walk (d1, d2, . . . , dn, v0) of length n

on a constant-degree expander with roughly 2log3 n many nodes and assume each vertex as the

seed of Nisan’s generator. In this case, we need to store only the initial vertex of size log3 n

bits and O(n)-length random walk. There is still one concern. Nisan’s theorem says that we

need O(log2 n) space to generate each pseudorandom bit, given the seed. We show that using

convolution family of 2-universal hash function, we can do it in O(log n log logn) space. The

idea is to compute each bit only when asked by Nisan’s generator.

Now the challenge is to generate each seed in a space-efficient manner from the random

walk and the advice. A special encoding of the expander of Margulis-Gaber-Galil comes handy.

Roughly speaking, we represent each vertex by an O(log n) length tuple whose each entry is an

integer modulo a prime number. The reason this representation is helpful is because each bit

of the neighborhood vertex can be computed in constant space by simple modular arithmetic,

given the encoding of the vertex and the index of the neighborhood vertex. But how do we

compute the bits of the vertex (seed) from the above encoding? The idea is to start the walk

every time from the first vertex (stored as advice) and redo the random walk (also stored as

advice) until now, once a bit of a vertex is expected by the generator. That’s why it’s necessary

to store them so that we can perform the same walk again and again. To successfully implement

this, we need to maintain a global index to count the number of walks already performed and an
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index of the vertex (seed) requested by Nisan’s generator, both of which take at most O(log n)

bits. This method requires multiple access to the advice, but can be performed in logspace.

This space-efficient random walk is due to Gutfreund and Viola [GV04].

However, our encoding of the expander graph does not directly provide the seed. During

the simulation, suppose Nisan’s generator requires the ith bit of the vertex vj of the expander

at the jth step of random walk. We use an O(log n) space-computable algorithm, obtained as

a consequence of a result of Chiu, Davida, and Litow [CDL01], to get each bit of the seed, But

this algorithm requires the encoding of the vertex vj . How does it get it? It basically starts

the random walk every time it needs to find a bit of a vertex. The details follow in the next

section.

Finally, note that since we store the seed, we can reuse the same random string for multiple

passes of the computation, and each time the actual computation space is just O(log n).

Now we give the proof details.

First, we provide some necessary technical background in this subsection. Below, we give

the formal definition of Nisan’s space-efficient pseudorandom generator and some of its key

properties. Then we give the space-efficient encoding of constant-degree expander graphs.

Nisan’s Generator

Suppose we have a one-way s(n)-space bounded probabilistic machine that usesR(n) = 2r(n)

random bits and we want to derandomize it using Nisan’s generator [Nis92]. The seed of Nisan’s

generator consists of a string x ∈ {0, 1}s(n) and r(n) many hash functions represented by

h1, h2, . . . , hr(n) where hi(x) ∈ {0, 1}s(n). Both x and each hi are picked uniformly at random.

Then the pseudorandom bits of Nisan’s generator can be represented by (in order)

x, h1(x), h2(x), h1h2(x), h3(x), . . . , h1h2 . . . hr(n)(x).

Each hash function (or, the composite hash function) generates s(n) bits, but we require only

the first bit from each of them. Now note that in order to get hold of the last bit of the

generator’s output, h1h2 . . . hr(n), we need to first compute y = hr(n)(x), store its value, and

then compute y′ = hr(n)−1(y), and so on until we have computed the entire composite function.
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Trivially, given x and the hash functions, we only need to store the intermediate computations

y, y′, etc. Since we can reuse the space, each of them consumes only s(n) space. Thus each

pseudorandom bit in Nisan’s generator can be computed in space s(n), given the seed. Note

that we need 2-way access to the seed. The first step in proving Theorem 5.6 is to show that

given multiple access to the seed, we can reduce the computation space of Nisan’s generator

(provided r(n) = O(s(n)).

Claim 5.3. Given seed of Nisan’s generator in a 2-way read-only tape, we can compute each

pseudorandom bit in space O(s(n) + r(n) log s(n)).

Proof. Assume that the hash functions for the seed of Nisan’s generator are picked uniformly

at random from the following convolution family of hash functions:

H = {(a ∗ x)⊕ b | a ∈ {0, 1}2s(n)−1, b ∈ {0, 1}s(n)},

where x ∈ {0, 1}s(n), ith bit of (a ∗ x) is given by ci =
∑s

j=1 ai+j−1xj (mod 2), and c ⊕ b

represents the bitwise exclusive-or of two s(n)-length strings c and b. Suppose we want to

compute the last bit of Nisan’s generator h1h2 . . . hr(n) as before. The idea is to compute each

bit of hi(z) only when it is required by the computation of the hash function hi+1. We start

with the computation of hr(n). It requires the values ai’s and bi’s which are stored in the tape,

along with the value of hr(n)−1. But we have not computed this value yet. So we halt the

computation of hr(n), store its index, and pass the computation to hr(n)−1. Note that it takes

only log s(n) space to store the index. Similarly, the computation of hr(n)−1 has its ai’s and

bi’s stored in the tape, but the value of hr(n)−2 is missing. So we store its index as before

and pass the computation to the next hash function, and so on. Finally, h1 has both x and

its ai’s and bi’s stored in the 2-way read-only tape and can perform the computation. It only

takes constant space to compute a bit asked by h2 and passes the value to it, which again

completes its computation and passes the value asked by h3, and so on. Clearly, we need to

store r(n) many indexes, which is O(r(n) log s(n)) bits, to compute any pseudorandom bit in

Nisan’s generator. This, along with the computation space of the simulating machine, gives us

the required space bound.
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Space-efficient Expander Encoding

Remember the constant-degree expander of Margulis-Gaber-Galil from Section 2.7. We use

the following encoding of the expander [FK06]. We encode each node (x, y) of the expander

GN by O(logN) bits and the index of each of its neighbors by 3 bits. Then it’s easy to see that

given a vertex (x, y) and an index i of a neighbor (input), every bit of the neighborhood vertex

can be computed in constant space. Further, to make sure that the machine head run one-way

(and we assume, left-to-right) on the input tape while doing the neighborhood computation,

we need to make sure that the above modular arithmetic can be performed only with the one-

way access to the input tape. For this, we assume that the encoding for vertex (x, y) follows

bit-reversals, that is, 〈x1, y1, x2, y2, . . . , xlogm, ylogm〉, where x1 and y1 are the least significant

bits of x and y respectively.

We now define the following random walk on the expanders due to Ajtai, Komlos, and

Szemeredi [AKS87].

Definition 5.3. We define a random walk of length t(n), represented by 〈d1, d2, . . . , dt(n), v0〉,

on the expander graph such that the walk starts at vertex v0 and goes to the neighbor of it

indexed by d1 (say v1), then the neighbor of v1 indexed by d2, and so on.

Note that the order in which the sequence of a random walk is encoded is important. It

helps us to design a one-way machine that computes the neighborhood vertices efficiently.

Now assume that we have a constant-degree expander G = (V,E) of N vertices from

Theorem 2.4. Recall that we can describe each vertex (x, y) of G from a set Zm×Zm. Assume

`(n) = r(n)k(n)s(n) and N = 2`(n). Note that `(n) < n for k(n)s(n) << n and a polynomial

in n function R(n) = 2r(n). Our goal is to represent each vertex of the expander by the

residues of primes and perform the neighborhood computation using Chinese Remaindering

theorem. Consider the first c.k(n)s(n) many primes p1, p2, . . . , pc.k(n)s(n) (for sufficiently large

integer c) each of size O(r(n)) bits. Thus the primes together consumes O(`(n)) space. For

our choice of k(n), s(n), and r(n), we can enumerate these primes within the range of integers

[n] (by Prime Number theorem). Let m be the largest integer smaller than
∏c.k(n)s(n)
i=1 pi.

Then we can represent each vertex (x, y) of G by a pair of tuples (x1, x2, . . . , xc.k(n)s(n)) ×
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(y1, y2, . . . , yc.k(n)s(n)), where each xi, yi ∈ Zpi . Thus, each xi and yi can be represented by

O(r(n)) bits and each vertex consumes O(`(n)) space.

Proof of Main Theorem

Now we are ready to formally prove the main theorem of this section.

Proof. Assume `(n) = r(n)k(n)s(n). Suppose we have a k(n)-pass s(n) space-bounded prob-

abilistic machine that uses R(n) = 2r(n) random bits and errs with probability at most 1/3.

First, we convert the multipass machine to a one-pass k(n)s(n)-space machine A using Theo-

rem 5.3. Thus derandomizing A will automatically derandomize the multipass machine. Now,

uniformly at random pick a vertex v0 in G and the neighborhood indexes d1, d2, . . . , d2n for a

random walk of length 2n on G. Store v0, the indexes, and the prime numbers (to represent the

expander G) as advice, which consume O(`(n) + n) space together. Note that by storing these

information, we have fixed our random walk for successive computations. This is crucial as we

need to perform the same walk multiple times. Now given this advice, the one-pass machine

A, and the above encoding of the expander G, our goal is to simulate A by a deterministic

machine in O(s(n) + r(n) log k(n)s(n)) space.

The idea is to use Nisan’s generator 2n times and simulate A 2n times using those pseudo-

random strings and perform majority test on them. We keep a global counter (O(log n) space)

to count the number of times the simulation is performed. Suppose Nisan’s generator requires

a pseudorandom bit during jth run. It stores the index of the required bit (r(n) bits) and goes

on to compute it. Now given the seed, we can compute this bit in O(s(n) + r(n) log k(n)s(n))

space by Claim 5.3. Note that each vertex of the expander acts as a seed for Nisan’s generator.

But the vertices (and edges) of the expander are not stored in order to reduce the advice size.

So we start a random walk from v0 every time, follow the indexes {dj}’s stored as advice, while

computing the bits of the next vertices through efficient edge computation of Theorem 2.4, and

stop whenever we reach jth vertex in the walk and have computed the required pseudorandom

bit. To compute that bit, we need to know the bits of the vertex (seed). Suppose at some

point, we need the ith bit of the vertex vj . Now it needs to be recovered from the previously
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mentioned encoding of the expander. At this time we use the following theorem, which is a

consequence of a result of Chiu-Davida-Litow [CDL01].

Lemma 5.4. Suppose Nisan’s generator asks for the ith bit of a vertex vj on G. Then there is

an algorithm D such that on input the Chinese remaindering representation of the vertex vj:

(a1, a2, . . . , ac.k(n)s(n))× (b1, b2, . . . , bc.k(n)s(n)), primes p1, p2, . . . , pc.k(n)s(n), and the index i, D

outputs the ith bit of the vertex v in O(r(n) + log `(n)) space.

Now recall that we only store the initial vertex and hence we need to compute the residual

representation of the vertex vj . To compute each of these ai’s and bi’s for vertex vj , we follow

our previous strategy, i.e., we compute them only when they are required by the above lemma.

Note that each (ai, bi) for vj depends on the pair (ai−1, bi−1), initial vertex v0 and the index

j of the walk. So every time we need ai’s and bi’s, we store (ai−1, bi−1), start the walk from

the beginning using advice, compute this pair, and reuse it for next pair. This again requires

O(r(n) + log `(n)) space. So the total space required is bounded by O(log n + s(n) + r(n) +

log `(n) + r(n) log k(n)s(n)) = O(s(n) + r(n) log k(n)s(n)).

Finally, note that to fix an advice according to Adleman’s technique, we need to make sure

that error of the machine is reduced to 1/2n for any input string of length n . Here we have two

error components. First, the error due to t = 2n length random walk on the Expander G which

is 1/2t = 1/22n. The other one is due to Nisan’s generator which fools a O(k(n)s(n)) space

machine and thus has error 1/2O(k(n)s(n)). Since we apply the random walk on top of it, the

error becomes 1/2O(tk(n)s(n)) ≤ 1/22n. Thus, the total error is bounded by 1/2n for any fixed

string of length n, which by the union bound over all possible strings of length n is bounded

away from 1.

5.4 Deterministic Amplification in Multipass Machines

Deterministic amplification is the process of reducing the error probability of a randomized

algorithm by means of adding more randomness. The goal is to add as few randomness as

possible. Bar-Yossef, Goldreich, and Wigderson [BYGW99] showed that any probabilistic

algorithm that uses s(n) space, R(n) many random bits, and has an error probability ε < 1/2
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can be amplified deterministically to a probabilistic algorithm that uses O(t(n)s(n)) space,

R(n) + O(t(n)) random bits, and errs with probability εΩ(t(n)), for any function t(n). This

was the first result showing a non-trivial randomness-efficient deterministic amplification for

a space-bounded machine. We use their ideas in the multipass settings to prove the following

theorem:

Theorem 5.7. Any k(n)-pass s(n)-space bounded probabilistic algorithm that uses R(n) ran-

dom bits and errs with probability ε < 1/2 can be deterministically amplified to a k(n)-pass

O(t(n)s(n))-space probabilistic algorithm that uses R(n) + O(t(n)) random bits and has an

error probability εΩ(t(n)), for any function t(n).

As a straightforward corollary, we get the following randomness-efficient deterministic am-

plification for an O(log n)-pass BPL machine.

Corollary 5.6. For R(n) > log n, any O(log n)-pass BPL algorithm using R(n) random

bits can be deterministically amplified to an O(log n)-pass BPSPACE(log2 n) algorithm using

O(R(n)) random bits with error probability 1/poly(n).

Proof of Main Theorem

Before we prove the main theorem of this section, we discuss various properties of expander

graphs that are used in our proof. First, consider the expander encoding from Section 5.3.

With this encoding at hand, we perform the following space-efficient one-way random walk on

the expander, following Bar-Yossef et al [BYGW99].

Lemma 5.5. There is a family of 5-regular expanders {GN} such that given an initial node

(x, y) and a random walk of length t(n) on GN as input, there is an algorithm B that computes

each bit of the end-vertex of the random walk in O(t(n)s(n)) space with only one-way access to

the input.

Proof. Consider the 5-regular expander graph G with N nodes from Theorem 2.4. Also consider

the expander encoding scheme and the random walk on G from Section 5.3. Our goal is to com-

pute the bits of the end-vertex vt(n) at the end of t(n)-length random walk 〈d1, d2, . . . , dt(n), v0〉.
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Now recall that we can describe each vertex vi of G by a pair (x, y) from set Zm×Zm. Since

we are given the random walk of length t(n) as the input of B, its input tape will consist of

the tuple 〈d1, d2, . . . , dt(n), x1, y1, x2, y2, . . . , xlogm, ylogm〉 based on the aforementioned expander

encoding scheme and the random walk on G. Then the algorithm B works in two stages. First,

it scans through all the t(n) neighborhood indexes d1, . . . , dt(n) from left to right and store them

in a work tape (so as to access them multiple times in future), thus accumulating O(t(n) log 5)

space. The second step is the actual computation step where we read the bits of vertex (x, y)

only “on-demand” by the computation. We explain this in more detail in the next paragraph.

B starts computing the first bit of vt(n) with the last index in the sequence, dt(n). Whenever

it needs a bit of the previous vertex vt(n)−1, whose dt(n)th neighbor is vt(n), it halts the compu-

tation with dt(n), stores the configuration, and starts computing bits of vt(n)−1 with the index

dt(n)−1. Similarly, whenever it needs a bit of the previous vertex vt(n)−2, it halts the current

computation, stores the configuration, and starts computing the bits of vertex vt(n)−2 with

index dt(n)−2, and so on, until it reaches the point where it needs to compute a bit of the vertex

v1, which is the d1th neighbor of the starting vertex (x, y). At this point, the algorithm reads

the bits of (x, y) from input tape one-way, computes the bit of v1, resumes the computation of

v2, computes the bit of v2, resumes the computation of v3, and so on, until the bit for vt(n) is

computed.

We had to halt t(n) many computations in the process, thus storing t(n) many config-

urations, which accounts for O(t(n)s(n)) space. Recall that we made sure in the encoding

process that the neighboring vertices can be computed with only the one-way access to the

input tape.

We also need the following theorem by Ajtai-Komlos-Szemeredi [AKS87] in our final proof.

Theorem 5.8. If we perform a t(n)-length random walk on the above expander G, given in

Theorem 2.4, and use the vertices of it as the source of random bits to perform determinis-

tic amplification of a probabilistic algorithm A with error probability ε < 1/2, then the error

probability of the simulating probabilistic algorithm is εΩ(t(n)).

Now we provide the proof of the main theorem of this section.
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Proof of Theorem 5.7. Suppose A is a k(n)-pass s(n)-space probabilistic algorithm that uses

R(n) random bits during its computation and has error probability ε < 1/2. Suppose M is

a black-box simulator that given R(n) random bits as input, generates t(n) pseudorandom

strings {r1, r2, . . . , rt(n)} each of length R(n) from a random string of length `(n), runs A for

t(n) times using these pseudorandom strings, and outputs the majority vote.

First, we show that the simulator M uses a random string of length only O(R(n)+t(n) log d)

to generate those t(n) random strings each of length R(n). To start with, M picks up a sequence

〈d1, d2, . . . , dt(n), v0〉 of length O(R(n) + t(n)) uniformly at random from the expander G on

N vertices, given by the Theorem 2.4, and performs a random walk on it. Here N = 2R(n)

and let each node of the expander be represented by a string from {0, 1}R(n). Recall that our

encoding of the expander helps us to compute each bit of the neighborhood vertex in constant

space with only one-way access to the random tape. After each walk on G, we reach a vertex

of G, represented by R(n) bits. We use them as the random source ri for A, for each ith run.

Next, we show thatM is a k(n)-pass O(t(n)s(n))-space computable machine. First, consider

only the first pass of each of the t(n) runs of A. Consider the t(n)-length random walk of M on

G. By Lemma 5.5, we know that each bit of the end-vertex after the t(n)-length walk can be

computed in O(t(n)s(n)) space. Since A computes in space s(n), t(n) runs of A by M assumes

another t(n)s(n) space. In the process, M reads the random tape only once and one-way. Now

consider the second pass of each of the t(n) runs. Note that once M has picked the random

walk of length t(n), they are stored in the random tape and fixed. Thus, if M behaves similarly

as in the first pass, and goes over the random tape only once one-way again, it can generate

the same set of vertices of G as in the first pass. So M can simulate the behavior of A in

second pass exactly for all the t(n) runs. The only thing that we had to store to start each of

these computations is the configurations at the end of first pass of t(n) simulations. This again

requires O(t(n)s(n)) space. This same space can be reused for all the k(n) passes of A for t(n)

runs. Thus the total space used by M is O(t(n)s(n)) and it goes over the random tape only

k(n) times one-way.

Finally, we call the Theorem 5.8 to compute that the error probability of M . Since the

random strings {r1, r2, . . . , rt(n)} are fixed once M has picked the initial vertex and the t(n)-
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length random walk, and it simulates A exactly on those strings for all the k(n) passes, the

error probability of M is independent of the number of passes.

5.5 Space Hierarchy in Multipass Machines

One of the primary goals of this chapter is to explore the relationships between probabilistic

time and the probabilistic space. In particular, can we show that linear probabilistic time is a

strict subset of linear probabilistic space, analogous to the deterministic world [HPV77]? One

interesting inclusion result in this direction was shown in Section 5.1, where we showed that

BPTIME(n) is a subset of O(log(3) n)-pass BPSPACE(o(n)). Since there is no known hierarchy

theorem for the traditional probabilistic classes, we cannot say directly from this result that

linear probabilistic time is a strict subset of multipass linear probabilistic space. However,

with the help of a result by Kinne and van Melkebeek [KvM09], we show the following in this

section: If allowed a small number of passes, the linear probabilistic time is a strict subset of

the linear probabilistic space class under a single bit of advice. More formally,

Theorem 5.9. BPTIME(n)/1 ( log(3) n-pass BPSPACE(n)/1.

The first step in proving this theorem is to observe that Theorem 5.2 can be extended to

work even under a single bit of advice to both the simulating and simulated machines.

Observation 5.3. BPTIME(n)/1 ⊆ log(3) n-pass BPSPACE(n/ log(4) n)/1.

At this point, a tempting idea is to use the results of Nisan’s or Saks-Zhou to show

that for any constant c > 1 and s′(n) ≥ s(n)c, BPSPACE(s′(n)) cannot be simulated by a

BPSPACE(s(n)) machine. This result can also be extended under the same number of multi-

ple passes and the amount of advice for both the simulated and simulating machines. But for

our need, that is not sufficient. We need it under the condition s′(n) ∈ ω(s(n+ 1)). We adapt

the result of Kinne and van Melkebeek [KvM09] which gives us the required separation under

this weaker condition.

Theorem 5.10. For every k(n) ∈ ω(1), log n ≤ s(n) ≤ n, and s′(n) = ω(s(n+ 1)),

k(n)-pass BPSPACE(s(n))/1 ( k(n)-pass BPSPACE(s′(n))/1.
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Once we have Observation 5.3 and Theorem 5.10, the proof of the main theorem is straight-

forward. Hence for rest of this section, we focus on proving the above theorem.

The proof is similar to the exposition in [KvM09] and we provide only the proof sketch.

Proof Sketch of Theorem 5.10

For simplicity, we give the exposition for one-pass randomized machines. The first step is

to associate each randomized machine Mi with an interval of input lengths Ii = [ni, n
∗
i ]. These

intervals are disjoint so that each input length n belongs to only one interval. We show that

N differs from every randomized machine Mi on interval Ii on some length n ∈ [ni, n
∗
i ]. By

restricting the simulation of Mi’s to only s(n) space on input length n gives us the required

separation. Note that there are infinitely many possible intervals associated for each machine

Mi as there are infinitely many possible encoding of a machine Mi. This is necessary to deal

with the asymptotic behaviors of the functions s(n) and s′(n), as usual is the case for other

hierarchy theorems. The goal is to show the contradiction in at least one of these intervals for

each machine. We skip those details here and assume that we are given those “good” intervals

as Ii for each machine Mi.

Now recall the hierarchy theorems in the non-deterministic setting. For the sake of simplic-

ity, we work only with the tally strings. The (non-deterministic) universal simulator D goes

over every non-deterministic machine Ni and tries to complement its computation, thereby

showing the separation with each of them (given the time or space constraints). But it cannot

just complement its computation on every input, rather it selects a range of input lengths as

above for every machine Ni and input length and performs a delayed diagonalization. That

is, for every input length n ∈ [ni, n
∗
i ), D(n) simulates Ni(n + 1) and on input 0n

∗
i , D accepts

if and only if Ni rejects on input 0ni . Now D takes exponential time in ni and thus n∗i can

be chosen to be 2ani for some appropriate constant a > 0 to make it polynomial in n∗i . Now

the claim is that there is a length n ∈ [ni, n
∗
i ] where D and Ni behave differently. Indeed, if

D and Mi behave similarly on all input lengths in [ni, n
∗
i ], then by the way of construction

D(0n
∗
i ) = Ni(0

n∗i ) = D(0n
∗
i−1) = Ni(0

n∗i−1) = . . . = M(0ni), which is a contradiction. Note

that we exactly don’t know which length it is in the interval.
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We adapt the similar proof strategies in the probabilistic setting. But we need to address few

concerns. First, there is no known universal simulator for the randomized machines. Further,

how do we make sure that the enumerated randomized machines Mi satisfy the promise?

Finally, how do we contradict the output of a randomized machine on some input? To address

the second question, we assume that we have one single bit advice bn for each machine Mi for

each input length n that basically tells us if the machine Mi satisfies the promise on the input

length. If bn = 0, we say that Mi does not satisfy the promise, otherwise it does. Then our

strategy is the following. On input 0ni , N reduces the computation of Mi(0
ni) to an instance of

a hard language T of length mi, for every input length n ∈ [mi, n
∗
i ), N(n) simulates Ni(n+ 1),

and on input 0n
∗
i , N simulates L(0mi).

For the details of the proof, please refer to [KvM09].

5.6 Conclusions

This chapter established that time-efficient derandomization of probabilistic, logspace ma-

chines that make a non-constant passes over the random tape yields a new non-trivial de-

randomization of probabilistic time. This result suggests that it is fruitful to further study

multipass, probabilistic, space-bounded machines. There are many interesting questions to

solve involving multipass machines. Can we show that a multipass machine with linear pass

over its random tape can also be simulated by a deterministic logspace machine with linear ad-

vice? On the contrary, can we improve on the amount of advice bits of the simulating machine

while simulating a standard BPL class? Note that this potentially requires improvement over

the Adleman’s techniques.

Another interesting question that arises is on error reduction. Let M be a k(n)-pass,

s(n)-space bounded, bounded-error probabilistic space-bounded machine with error probability

less than 1/3. Can we reduce the error probability to 1/2e(n) for a polynomial e(n) without

substantial increase in passes and space used? Note that by increasing the number of passes to

O(k(n)e(n)) this is indeed possible. On the other hand, if we were not to increase the number

of passes, then by increasing the space to O(e(n)s(n)) we can achieve the same reduction in

error probability. Can we do better? Can we reduce the error probability to 1/2e(n) while
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keeping the number of passes to O(k(n)) and the space bound to O(s(n))?

Finally, can we prove the hypothesis of the main theorem of this chapter, Theorem 5.1?

This will have many interesting consequences in the field of derandomization.
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CHAPTER 6. DERANDOMIZATION UNDER BRANCHING

PROGRAM LOWER BOUNDS

Circuit lower bounds imply the existence of pseudorandom generators and the pseudo-

random generators can be used to derandomize various probabilistic time-bounded classes.

Given the connection between circuit lower bounds and derandomization, it is natural to ask

if we can derandomize a probabilistic algorithm without proving circuit lower bounds. In this

chapter, we address this question. In particular, we ask the following question: Is there a

constant δ > 0 such that BPTIME(t(n)) ⊆ DTIME(2t(n)δ) under the branching program lower

bounds? Or, is it even possible to show that BPTIME(t(n)) can be simulated deterministically

in time 2o(t(n)) under branching program lower bounds? Branching programs capture nonuni-

form space-bounded computations and are believed to be a weaker model of computation than

general Boolean circuits. For example, it is known that polynomial-size branching programs

can be simulated by polynomial-size, O(log2 n)-depth Boolean circuits. Hence the hardness

assumption on branching programs is believed to be a weaker condition than the typical circuit

complexity lower bound assumptions.

Previous Work

There are results indicating that circuit lower bounds may be necessary to achieve deran-

domization. Buhrman, Fortnow, and Thierauf [BFT98] showed that MAEXP does not have

polynomial-size circuits. From this it follows that if Promise-BPP can be simulated in de-

terministic polynomial time, then MAEXP is same as NEXP and thus, NEXP does not have

polynomial-size circuits. Hence a complete derandomization of Promise-BPP yields circuit lower

bounds. The natural question is: Can we prove a weak derandomization without proving cir-

cuit lower bounds? In a seminal work, Impagliazzo, Kabanets, and Wigderson [IKW02] showed
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that almost any derandomization of Promise-BPP implies the existence of languages in NEXP

that do not have polynomial-size circuits. For example, they showed that if Promise-BPP can

be simulated in nondeterministic subexponential time (even at infinitely many lengths), then

the circuit lower bounds against NEXP follows. We now know several results of the form that

“derandomization implies circuit lower bounds”. Kabanets and Imagliazzo [KI04] showed that

a nondeterministic subexponential simulation of BPP implies certain arithmetic circuit lower

bounds. This result has been improved by Kinne, van Melkebeek, and Shaltiel who showed

that even a “typically correct” nondeterministic simulation of BPP also implies circuit lower

bounds [KvMS11]. Similar results are also known for derandomization of other probabilistic

complexity classes such as AM and MA [KvM02, MV05].

There are few exceptions where we obtain derandomization without the circuit lower bounds.

From the result of Karakostas, Lipton, and Viglas [KLV03], we can obtain an interesting con-

nection between finding an efficient algorithm for the intersection of automata and derandom-

ization. Specifically, they showed the following: Suppose L is a language consisting of the tuples

〈F1, F2, . . . , Fk〉 such that each of the k automata Fk has size s and the intersection of these

automata is empty. Suppose there is a deterministic algorithm running in time s(k/f(k))+d for

an unbounded function f(·) dependent only on k and d > 0 that decides L. Then for any ε > 0,

NTIME(t(n)) (hence RTIME(t(n))) is in DTIME(2εt(n)). Note that L can be trivially decided

in time O(sk). We also know some unconditional derandomizations of time-bounded probabilis-

tic classes. For example, Santhanam and Melkebeek [SvM05] showed that any RTIME(t(n))

machine can be derandomized to a deterministic machine running in time o(2t(n)). Recently,

Williams [Wil13] proved that there is a constant δ > 0 such that any NTIME(t(n)) machine

can be simulated by a deterministic machine running in time 2(1−δ)t(n).

However, all of the above derandomizations are very weak in some sense.

Our Contributions

Our first result concerns the derandomization of low-degree polynomial identity testing, a

problem known to be in probabilistic class co-RP. Low-degree polynomial identity testing is

one of the central computational problems studied in time-bounded derandomization. Clearly,
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derandomizing RP will derandomize polynomial identity testing, but it requires circuit lower

bounds. Our main contribution in this chapter is to show that it suffices to derandomize

2-wayRL, a space-bounded subclass of RP, to derandomize low-degree polynomial identity

testing. Now, it is known that the existence of functions that are hard against branching pro-

grams can derandomize two-way space bounded machines. Klivans and Melkebeek [KvM02]

showed that if the linear space does not have 2εn-size branching programs, then RL can be de-

randomized to logspace. Koucký observed that this hardness hypothesis in fact derandomizes

2-wayRL to logspace [Kou03]. Thus, a branching program lower bound suffices for deran-

domizing low-degree polynomial identity testing. Note that the randomized circuit complexity

class (uniform) RNC1 is in 2-wayRL, and derandomization of 2-wayRL is at least as hard as

derandomizing (uniform) RNC1.

With the above result at hand, we ask if we can derandomize a probabilistic class, like BPP

or RP rather than a specific problem in them, under the branching program lower bounds.

As mentioned before, most of the known results in derandomization follows from circuit lower

bounds, except some weak derandomizations. With a reasonable branching program lower

bound, we prove the following: If E cannot be computed by a branching program of size 2αn

for some α > 0, then BPTIME(t(n)) is in deterministic time 2t(n)/ log t(n). Note that the same

hypothesis was used to derandomize the above polynomial identity testing problem. So a nat-

ural step forward is to weaken the hypothesis and ask for more. What happens if there is an

ε > 0 such that E does not have only 2n
ε
-size branching programs? We show that under a be-

lievable hypothesis, the entire two-sided bounded error probabilistic class BPP collapses to the

average complexity class Average-DTIME(2n
δ
) infinitely often, under a believable hypothesis.

We hereby mention that probabilistic space-bounded computations with two-way access to the

random tape plays a crucial role in all of our proofs in this chapter.

Organization of this Chapter

Rest of the chapter is organized as follows. Section 6.1 proves the derandomization of low-

degree polynomial identity testing problem under a branching program lower bound. The same

lower bound is used to prove a derandomization of the probabilistic class BPTIME(t(n)) in
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Section 6.2. The next section shows a derandomization of the class BPP. Finally, we conclude

this chapter with a possible future direction of this work.

6.1 Derandomization of Polynomial Identity Testing

The goal of this section is to prove that low-degree polynomial identity testing problem can

be derandomized under branching program lower bounds. More formally,

Theorem 6.1. If there exists an ε > 0 such that E does not have 2εn-size branching pro-

grams, then low-degree polynomial identity testing over Q can be solved deterministically in

time nO(logn).

While it is known that existence of languages in E that are hard for general Boolean circuits

implies a derandomization of low-degree polynomial identity testing, the above result states that

hardness against branching programs suffice to derandomize polynomial identity testing.

The heart of the proof of the above theorem is the following derandomization result. Let

2-wayRL denote the class of languages accepted by one-sided, bounded-error probabilistic-

space bounded machines that are allowed two-way access to their random tape. An interesting

question is whether we can derandomize 2-wayRL to P. Clearly, a generic approach towards

this question is to design time-efficient pseudorandom generators. We show that such “black-

box” derandomization will imply that low-degree polynomial identity testing can be solved in

O(nlogn) time.

Theorem 6.2. If 2-wayRL has a polynomial-time, black-box derandomization, then low-degree

polynomial identity testing over Q can be solved deterministically in time O(nlogn).

Assuming that the above theorem holds, let us first prove the main theorem of this section.

Proof of Theorem 6.1. Klivans and Melkebeek [KvM02] showed that if there exists an ε > 0

such that DSPACE(n) does not have 2εn-size branching programs, then there is a pseudorandom

generator that derandomizes RL to deterministic logspace. As observed by Koucký [Kou03], this

hypothesis is strong enough to yield efficient pseudorandom generators (and hence hitting sets)

for 2-wayRL machines. From their work it follows that the existence of a language in E with
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high branching program complexity implies that 2-wayRL has polynomial-time computable

hitting sets.

Rest of this section is focused to prove Theorem 6.2. The proof of this theorem uses a

combination of existing techniques. First, we give the proof idea. It is known that polynomial

identity testing (PIT) for general (any depth) arithmetic circuits over Z is in co-RP. We

observe that when the circuit is restricted to have constant-depth, PIT over Z can be solved

in co-2-wayRL. Then if 2-wayRL has polynomial-time computable hitting sets, it follows that

there is a polynomial-time computable hitting set for constant-depth PIT over Z. Next we

observe that, such hitting set generators exist even for arithmetic circuits over the field Q. We

then use a result of Agrawal and Vinay [AV08], who showed that the existence of polynomial-

time computable hitting sets for low-degree, bounded-depth, arithmetic circuits (over Q) implies

that low-degree, polynomial identity testing (over Q) can be solved in time nO(logn).

We now proceed to give details.

Proof of Main Theorem

The first step is to show that bounded-depth PIT over Z is in co-2-wayRL. The proof uses

the standard technique of Chinese remaindering.

Lemma 6.1. For any constant k > 0, depth-k PIT over Z is in co-2-wayRL.

Proof. Let Cn be an arithmetic circuit of depth k. By our notation the size of Cn is n, has

low-degree, and it represents an n-variate polynomial. Let p(x1, · · · , xn) be the polynomial

represented by Cn. Let S be a finite set of integers {1, 2, . . . , 2n}. By Schwartz-Zippel lemma,

if p is a non-zero polynomial, then

Pr
〈r1,··· ,rn〉∈Sn

[p(r1, · · · , rn) = 0] ≤ 1/2.

Given a n log 2n bit string x, let tuple(x) = 〈x1, · · · , xn〉 where each xi is a log 2n bit

string. Thus each xi is in the range [1, 2n]. Consider a 2-wayRL machine that behaves as

follows on input Cn: Let r be first n log 2n bits that appear on its random tape. The machine

checks if Cn(r1, · · · , rn) equals zero, where tuple(r) = 〈r1, · · · , rn〉. The machine accepts Cn
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if Cn(r1, · · · , rn) equals zero, otherwise it rejects. If the the polynomial represented by Cn is

identically zero, then the machine always accepts, otherwise by Schwartz-Zippel lemma, the

machine accepts with probability at most 1/2. This establishes the correctness of the algorithm.

Now we claim that the machine can check whether C(r1, · · · , rn) equals zero or not in

O(log n) space, given a two-way access to the random string r. In general, we cannot hope

to compute C(r1, · · · , rn) in logspace as the output of a gate could be exponentially large (in

n) and may need more than O(log n) bits to store such a value. We get around this problem

by appealing to the standard Chinese remaindering trick. Since the degree and the size of the

arithmetic circuit Cn are bounded by n, the output of the circuit is bounded by n(2n)n which

is less than 2n
2
.

Let p1, · · · , pn2 be the first n2 primes. By Chinese remainder theorem we have that

Cn(r1, · · · , rn) equals to zero if and only if Cn(r1, · · · , rn) ≡ 0 (mod) pi for 1 ≤ i ≤ n2.

Our 2-wayRL machine behaves as follows: For each prime pi, 1 ≤ i ≤ n2, it evaluates

Cn(r1, · · · , rn) mod pi. The machine accepts if Cn(r1, · · · , rn) mod pi equals zero for every

i, 1 ≤ i ≤ n2. Otherwise the machine rejects.

Consider a prime pi. We claim that Cn(r1, · · · , rn) mod pi can be evaluated in O(log n)

space. Consider a gate gu at level `, and let gu1 , · · · , gum are the input gates to it. By induction

hypothesis, assume that output value of each gate guj modulo pi, denoted by vgj , (1 ≤ j ≤ m)

can be computed in O(log n) space. Let gu be a multiplication gate. We compute the output

of gu modulo pi by the following algorithm A:

Procedure A

1: Set x = 1.

2: for j = 1 to m:

(a) x = x× vgj mod pi

3: vgu = x.

By prime number theorem, the value of the prime pn2 is at most n3, and thus each pi an

O(log n) bit prime. Thus all arithmetic operations over Zpi can be performed in O(log n) space.
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By our induction hypothesis vgj can be computed in O(log n) space. Thus the space needed

to compute C(r1, · · · , rn) mod pi by the above algorithm is given by the following recurrence

relation (expressed in terms of depth):

S(k) = S(k − 1) +O(log n).

Since k is a constant the total space used is O(log n). Note that two-way access to the random

tape is crucial for this algorithm.

Based on the above lemma, we claim that existence of polynomial-time computable hitting

sets for 2-wayRL implies the existence of polynomial-time computable hitting set for constant

depth, PIT.

Lemma 6.2. Suppose that 2-wayRL has polynomial-time computable hitting sets. Then, for

every k > 0, there exists a a polynomial-time computable hitting set for depth-k, PIT over Z.

Proof. Fix k and consider the 2-wayRL machine M that decides depth-k, PIT over Z given by

Lemma 6.1. Let Cn be a depth-k, arithmetic circuit input to M . Observe that the machine

M when given Cn as input uses n log 2n bits of randomness, treats it as a random n-tuple of

integers 〈r1, r2, · · · , rn〉 in the range 1 to 2n, and accepts if and only if Cn(r1, r2, · · · , rn) = 0.

By our hypothesis, 2-wayRL has polynomial-time computable hitting sets. Thus there exists

a function fn log 2n from c log(n log 2n)-bit strings to n log 2n-bit strings, for some absolute

constant c, such that

Cn is identically 0⇔ ∀s;M(Cn, fn log 2n(s) = 0

Consider the following set

H = {tuple(fn log 2n(s)) | s ∈ Σc log(n log 2n)},

where an element of H is an n-tuple 〈r1, · · · , rn〉 (each ri is interpreted as an integer in the

integer 1 to 2n). Clearly, H is computable in polynomial in n. Moreover, M(Cn, fn log 2n)(s) = 0

if and only if Cn(r1, · · · , rn) = 0. Thus H is a hitting set for depth-k PIT.

For our application, we require the existence of a hitting set for bounded-depth arithmetic

circuits over the field Q. The following fact can be proven.
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Proposition 6.1. For every s(n)-size, depth-k, arithmetic circuit C over Q, there exists a

O(s(n))-size, depth-2k arithmetic circuit D over Z such that for every tuple (a1, . . . , an) ∈ Zn,

C(a1, · · · , an) 6= 0 if and only if D(a1, · · · , an) 6= 0.

Combining the above proposition with Lemma 6.2 gives us a hitting set generator for

constant-depth PIT over the field Q, under the assumption that 2-wayRL has polynomial-time

computable hitting sets.

Lemma 6.3. Suppose that 2-wayRL has polynomial-time computable hitting sets. Then for

every k > 0, there is a polynomial-time computable hitting set for depth-k, PIT over Q.

The rest of the proof is based on the work of Agrawal and Vinay [AV08]. They define the

notion of an optimal pseudorandom generator for arithmetic circuits and show that a hitting

set for PIT implies optimal pseudorandom generator for arithmetic circuits. They then show

that if there is an optimal pseudorandom generator for depth four arithmetic circuits over a

field F , then low degree PIT over F can be solved in time nO(logn). The rest of this section

makes these statements formal.

Definition 6.1. [AV08] Let k be a constant. A function f : N → (Q[y])∗ is an optimal

pseudorandom generator against depth-k, arithmetic circuits (over Q) if

(a) f(n) = (pn1 (y), · · · , pn(y)) is computable in polynomial-time, each pni (y) is a univariate

polynomial over Q and the degree of each polynomial is bounded by a polynomial (in n).

(b) For any depth-k, arithmetic circuit C of size n that is computing a multi-variate polynomial

over Q, C(x1, x2, · · · , xn) = 0 if and only if C(pn1 (y), · · · , pnn(y)) = 0.

Theorem 6.3. [AV08]

(a) If there exists a polynomial-time computable hitting set for depth-k, PIT over Q, then there

exists an optimal pseudorandom generator against depth-k, arithmetic circuits.

(b) If there exist optimal pseudorandom generators against depth four arithmetic circuits over

Q, then low-degree, PIT over Q can solved in time nO(logn).
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Combining Lemma 6.3 with Theorem 6.3, we obtain that if 2-wayRL has a polynomial-

time computable hitting sets, then low-degree PIT over Q can be solved in time O(nlogn). This

completes the proof of Theorem 6.2.

6.1.1 Connections to Circuit Lower Bounds

Kabanets and Impagliazzo [KI04] showed that if polynomial identity testing over integers

can be solved in deterministic time O(nlogn), then either Permanent (of integer matrices)

does not have polynomial-size arithmetic circuits over Z, or NEXP cannot be computed by

Boolean circuits of size s(n). Since a polynomial-time, black-box derandomization of 2-wayRL

implies derandomization of low-degree PIT, it follows that our hypothesis also has the same

consequences. We now state this formally.

We use the following result (stated with our choice of parameters) due to Aaronson and

van Melkebeek [AvM11] which is a quantitative improvement over the result of Kabanets and

Impagliazzo. Let SIZE(s(n)) denote the class of languages accepted by circuits of size s(n).

Dvir, Shpilka, and Yehudayoff [DSY09] observed that a dichotomy similar to [KI04] holds even

for the bounded-depth arithmetic circuits.

Theorem 6.4. Suppose that low-degree, polynomial identity testing is in NTIME(nlogn). Then

one of the following must be true:

(a) NEXP ∩ co-NEXP 6⊆ SIZE(o(2n/n)).

(b) Permanent does not have low-degree arithmetic circuits of size O(nlogn).

Combining above with Theorem 6.1, we obtain a similar connection among derandomization

of 2-wayRL, the Boolean circuit complexity of NEXP ∩ co-NEXP, and the arithmetic circuit

complexity of Permanent (of a matrix).

Corollary 6.1. If 2-wayRL has polynomial-time, black-box derandomization, then one of the

following must be true:

(a) NEXP ∩ co-NEXP cannot be computed by Boolean circuits of size o(2n/n).

(b) Permanent over Z does not have low-degree arithmetic circuits of size O(nlogn) over Q.
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Note that 2-wayRL lies between uniform-RNC1 and uniform-RNC2.Thus derandomizing

2-wayRL is at least as hard as derandomizing uniform-RNC1 and perhaps easier than deran-

domizing uniform-RNC2. Kabanets and Impagliazzo showed that derandomizing RNC also

implies circuit lower bounds. The following result, attributed to Kabanets, is an improvement

over the original result of [KI04]. For a proof see cstheory stack exchange1.

Theorem 6.5. If uniform-RNC is in NTIME(nlogk n) (for some constant k > 0), then either

NEXP is not computable by Boolean circuits of size o(2n/n) or Permanent does not have

(division-free) arithmetic formulas over Z of size O(nlogn).

The above theorem concerns with the derandomization of (uniform) RNC, whereas Corol-

lary 6.1 concerns with derandomization of 2-wayRL which is a subclass of RNC. However, the

derandomization assumed in Corollary 6.1 is much stronger than the derandomization assumed

in the above theorem.

Agrawal [Agr05] showed that if there exist optimal pseudorandom generators against bounded-

depth arithmetic circuits, then there exist a class of polynomials computable in EXP that re-

quires bounded-depth, exponential-size, arithmetic circuits. Thus, as shown by Agrawal and

Vinay [AV08], existence of optimal pseudorandom generators against bounded-depth arith-

metic circuits implies that exponential time requires exponential-size arithmetic circuits. Thus

we obtain the following interesting corollary that connects branching program and arithmetic

circuits complexities of exponential time classes.

Corollary 6.2. If there exist a language in E that does not have 2εn-size branching programs,

then there exist class of multilinear polynomials {pn}n≥0 over Q that are (uniformly) computable

in EXP, and require arithmetic circuits of size 2δn-size for some δ > 0.

We conclude this section by observing that derandomization of (promise) 2-wayRL also

implies certain circuit lower bounds for NEXP. Consider the following promise problem:

Yes Instances: All NC1 circuits that accept at least 1/2 fraction of their inputs.

No Instances: All NC1 circuits that do not accept any input.

1http://cstheory.stackexchange.com/questions/18444/is-uniform-rnc-contained-in-polylog-space

http://cstheory.stackexchange.com/questions/18444/is-uniform-rnc-contained-in-polylog-space
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Since any circuit has two-way access to its input bits and NC1 circuits (over n inputs) can be

evaluated in O(log n) space, the above problem is in Promise-2-wayRL. Williams [Wil11, Wil13]

showed that any subexponential algorithm for the above promise problem implies that NEXP

is not in NC1. In our framework, his result can be restated as:

Theorem 6.6. If Promise-2-wayRL is in subexponential time, then NEXP is not in NC1.

6.2 Derandomization of BPTIME(t(n))

Now we move on to prove the derandomization results for the complexity classes, rather

than a specific problem. The goal of this section is to prove the following derandomization of

the bounded-error probabilistic time class under a branching program lower bound.

Theorem 6.7. If E cannot be computed by a branching program of size 2αn for some α > 0,

then for any time constructible function t(n) ≥ n,

BPTIME(t(n)) ⊆ DTIME(2t(n)/ log t(n)).

The proof of the above theorem consists of two parts. First, we show that “derandomization

of two-way, probabilistic space bounded computations yield derandomization of probabilistic

time”. Next, we use a known result by Klivans van Melkebeek [KvM02] which essentially states

that lower bounds against branching programs can be used to derandomize probabilistic space-

bounded computations even with two-way access to random tape. Now we give the details.

The first step is to see the following easy corollary of the celebrated result of Hopcroft,

Paul, and Valiant [HPV77] for the probabilistic classes.

Lemma 6.4. For any time constructible function t(n) ≥ n,

BPTIME(t(n)) ⊆ 2-wayBPSPACE(t(n)/ log t(n)).

Proof. Consider a language L ∈ BPTIME(t(n)) and suppose the probabilistic machine M

decides it. Our simulating machine N uses the offline model of computation and thus stores

the random string on a special two-way random tape. The random string r is of length at most

t(|x|) on input x. On input (x, r), the machine N can simulate M in space O(t(n)/ log t(n)),

by the results of [HPV77], given two-way access to the input.
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Klivans and van Melkebeek [KvM02] showed that if DSPACE(n) cannot be computed by a

branching program of size 2εn for some ε > 0, then 2-wayBPSPACE(log n) = L. We can follow

the same proof to show the following lemma.

Lemma 6.5. If E cannot be computed by a branching program of size 2εn for some ε > 0, then

2-wayBPSPACE(log n) ⊆ P.

A simple padding technique completes the proof of Theorem 6.7.

Lemma 6.6. If E cannot be computed by a branching program of size 2εn for some ε > 0, then

for any time constructible function t(n) ≥ n,

2-wayBPSPACE(t(n)/ log t(n)) ⊆ DTIME(2t(n)/ log t(n)).

Proof. By Lemma 6.5, we can assume 2-wayBPSPACE(log n) ⊆ P under the hypothesis. Now

suppose a language L ∈ 2-wayBPSPACE(t(n)/ log t(n)) and BPSPACE machine M decides L

in space t(n)/ log t(n). Define a new language

Lpad = {〈x, 02t(|x|)/ log t(|x|)−|x|〉 : x ∈ L}.

Then we claim that Lpad ∈ 2-wayBPSPACE(log n) and the machine M ′ that decides it is

the following: on input y, verify if there is a z such that y = 〈z, 02t(|z|)/ log t(|z|)−|z|〉 and reject

otherwise. Run M(z) and accept if and only if M(z) = 1. Suppose, |z| = n, implying

|y| = 2t(n)/ log t(n) = n′ (say). Clearly, M ′ takes t(n)/ log t(n) = log n′ space. Then by the

hypothesis, Lpad ∈ DTIME(nc) on input length n and some constant c > 0. Suppose N is

the DTIME(·) machine that decides Lpad. Now we show that L ∈ DTIME(2ct(n)/ log t(n)). We

define a machine M ′′ on input x as follows: pad with 02t(|x|)/ log t(|x|)−|x| and suppose the new

string is y. Then run N(y) and accept if and only if N(y) = 1. The machine M ′′ runs for time

(2t(n)/ log t(n))c.

6.3 Derandomization of BPP

Furst, Lipton, and Stockmeyer [FLS85] showed that any non-trivial simulation of determin-

istic time by deterministic space will automatically imply a non-trivial simulation of probabilis-

tic time by deterministic space. More specifically, they showed that under the assumption that



97

polynomially-expanding pseudorandom generator exists, for every ε > 0, if P is in DSPACE(nε)

then for every δ > 0, RP is in DSPACE(nδ).

We make a similar assumption in this section.

Hypothesis A. If there exists a constant c > 0 such that P ⊆ DSPACE(nc), then there exists

a constant d such that BPP ⊆ 2-wayBPSPACE(nd).

Given the above hypothesis, our goal is to prove the following theorem.

Theorem 6.8. Suppose that the Hypothesis A holds. If there is an ε > 0 such that E does not

have 2n
ε
-size branching programs, then for every δ > 0

BPP ⊆io Average−DTIME(2n
δ
).

Proof. If EXP 6⊆ P/poly, then by the well-known result of Babai, Fortnow, Nisan, and Wigder-

son [BFNW93], we have BPP ⊆io DTIME(2n
δ
), for every δ > 0. So the conclusion follows.

Now suppose EXP ⊆ P/poly, then there exists an absolute constant D > 0 such that P has

nD-size circuits. The tableau method [NW91] shows that P has fixed polynomial-size circuits.

Let L be a language in P and let M be a machine that decides L. Then consider the following

tableau function:

f(x, i, j) = Contents of cell j at time i when M(x).

Since L is in P, f is a function in P. Thus f has nC-size circuits for a fixed constant C.

Consider the following algorithm A to decide L.

Procedure A

1: Input x, |x| = n.

2: Cycle through all circuits of size nC . For each such circuit c,

(a) Check if it is a correct circuit for L, by performing consistency check.

(b) If c is a correct circuit, then accept x if and only if c(x, t(n), t(n)) contains accept

state.
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Number of circuits of size nC is at most 2n
2C

. Given a circuit, consistency check can be

performed in space O(log n). Thus the total space taken by the above algorithm is bounded

by n3C . So P is in DSPACE(n3C).

By our Hypothesis A, we have that BPP ⊆ 2-wayBPSPACE(nd) for a fixed constant d > 0.

Further, if there is an ε > 0 such that E does not have branching programs of size 2n
ε
, then for

any d > 0, 2-wayBPSPACE(nd) is in DTIME(2n
e
) for a fixed e [BFNW93, Nis93]. This implies

that EXP 6= BPP. Impagliazzo and Wigderson [IW98] showed that if EXP differs from BPP,

then for every δ > 0, for every language L in BPP, there exists a 2n
δ
-time bounded machine M

such that for infinitely many input lengths n > 0, M correctly decides L on more than 1 − 1
n

fraction of inputs. Thus the theorem follows.

6.4 Conclusions

In this chapter we studied the derandomization under branching program lower bounds,

rather than the standard circuit lower bounds. We showed that the well-known low-degree

polynomial identity testing can be derandomized under believable branching program lower

bounds, which was previously unknown. We further showed that the standard time-bounded

probabilistic complexity classes can also be derandomized, albeit weakly, under the hypotheses

involving branching program lower bounds. An obvious question at this point is if we can

prove the Hypothesis A. It will be interesting to see if we can obtain better unconditional

derandomization of BPTIME than Santhanam and Melkebeek [SvM05] with any of the ideas

mentioned in this chapter.
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