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ABSTRACT

Machine learning has become a popular technology that has not only turbo-charged the

existing problems in the AI but it has also emerged as the powerful toolkit to solve some of the

interesting problems across the various interdisciplinary domains.

The availability of food is the biggest problem of the 21st century and many experts have

raised their concerns as we continue to see a rise in the global human population. There have

been many efforts in this direction which include but not limited to improvement in the seeds

quality, good management practices, prior knowledge about the expected yield, etc.

In this work, we propose a data-driven approach that is ‘gray box’ i.e. that seamlessly

utilizes expert knowledge in constructing a statistical network model for corn yield forecasting.

Our multivariate gray box model is developed on Bayesian network analysis to build a Directed

Acyclic Graph (DAG) between predictors and yield. Starting from a complete graph connecting

various carefully chosen variables and yield, expert knowledge is used to prune or strengthen

edges connecting variables. Subsequently, the structure (connectivity and edge weights) of the

DAG that maximizes the likelihood of observing the training data is identified via optimization.

We curated an extensive set of historical data (1948− 2012) for each of the 99 counties in Iowa

as data to train the model. We discuss preliminary results, and specifically focus on (a) the

structure of the learned network and how it corroborates with known trends, and (b) how

partial information still produces reasonable predictions (predictions with gappy data), and

show that incorporating the missing information improves predictions.
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CHAPTER 1. INTRODUCTION AND RELATED WORK

1.1 Introduction

The United Nations in 1948 recognized the Right to Food in the declaration of human rights

and formed the Food and Agriculture Organization on Food security which defined the food

security as the condition in which all the people at all time have1:

• Physical

• Social

• Economical, access to sufficient safe and nutritious food

But since last few years experts have raised their concerns over the factors (not limited to)

that will have significant yet highly uncertain impacts on food security:

• Population growth

• Global water crisis

• Land degradation

• Climate change

• Agricultural diseases

• Dictatorship and kleptocracy

• Food sovereignty

There have been many efforts to protect the food security and various approaches have

been adopted in this direction which includes but not limited to improvement in the seeds
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quality, good management practices, prior knowledge about the expected yield, etc. There are

strong, direct relationships between agricultural productivity, hunger, poverty, and sustainabil-

ity1. Therefore, it’s important to increase the agricultural productivity such that the demand

and supply can be met. But, making changes as increasing productivity in areas dependent

on rainfall; soil quality; expanding cropped areas; improving irrigation techniques; increasing

agricultural trade between countries; and reducing gross food demand by influencing diets and

reducing post-harvest losses1.

Agricultural or Crop insurance allows deprived farmers to compensate for their unexpected

losses by contributing premium to an insurance fund. This approach reduces the risk for an

individual by spreading the risk across multiple fund allocations.

The United State of America, is the largest producer of corn in the world and produces on

averag around 15,000 million busels per year. It has a market worth $80 billion and is roughly

0.1% of the total GDP. Corn is not only used for food but it has various other uses such as:

• Ethanol (in oil)

• Plastic production

• Gas industry

• Animal bedding

On the other hand, Iowa is the largest producer of corn in USA. Since, corn has such a

huge market because of it the government is forced to make and formulate good agricultural

policies that will benefit the farmers and overall production of the corn. Moreover, people also

trade corn as a commodity in the share market and make profit out of it.

This requires one to have strong knowledge of the market trend and historical data. But,

it’s not possible for everyone to make the prediction of the future corn prices, analysis of the

market and ability to recover from losses. This has allowed private players to create information

asymmetry in the market by making better prediction model and selling it further to make

profit. In this work, our goal is to build a publically available county level corn yield prediction

model at par with private players.
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1.2 Related Work

Crop yield forecasting is the methodology of predicting crop yields prior to harvest. The

availability of accurate yield prediction frameworks have enormous implications from multiple

standpoints, including impact on the crop commodity futures markets, formulation of agricul-

tural policy, as well as crop insurance rating. The focus of this work is to construct a corn

yield predictor at the county scale. Corn yield (forecasting) depends on a complex, intercon-

nected set of variables that include economic, agricultural, management and meteorological

factors. Conventional forecasting is either knowledge-based computer programs (that simulate

plant-weather-soil-management interactions) coupled with targeted surveys or statistical model

based. The former is limited by the need for painstaking calibration, while the latter is lim-

ited to univariate analysis or similar simplifying assumptions that fail to capture the complex

interdependencies affecting yield.

Charles L. Hornbaker2 have built a spatial model of maize yields in the US Corn Belt that

uses the Bayesian prior estimation method for every state in the belt region which induces

spatial smoothness among the regression coefficients to mitigate the effects of noisy data across

regions and to improve yield forecasting. This helps in formulating an in-season forecasting

model.

Nathaniel Newlands3 have shown that the crop yield is strongly coupled to climate and soil

environmental variables. The planting date and harvesting date also plays a significant role

and have an appreciable impact on optimal annual yield as the efficiency that crops can use

available water. This work is highly focused towards the soil texture and formulates a model

to track sensitivity of yield to this variable.
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CHAPTER 2. A BAYESIAN NETWORK APPROACH TO

COUNTY-LEVEL CORN YIELD PREDICTION USING HISTORICAL

DATA AND EXPERT KNOWLEDGE

This chapter is an article titled“A Bayesian Network approach to County-Level Corn Yield

Prediction using historical data and expert knowledge ” published In Proceedings of the 22nd

ACM SIGKDD Workshop on Data Science for Food, Energy and Water, San Francisco, CA,

2016 authored by V. Chawla, H. Naik, A. Akintayo, D. Hayes, P. Schnable, B. Ganapathysub-

ramanian, S. Sarkar4.

2.1 Abstract

Crop yield forecasting is the methodology of predicting crop yields prior to harvest. The

availability of accurate yield prediction frameworks have enormous implications from multiple

standpoints, including impact on the crop commodity futures markets, formulation of agricul-

tural policy, as well as crop insurance rating. The focus of this work is to construct a corn

yield predictor at the county scale. Corn yield (forecasting) depends on a complex, intercon-

nected set of variables that include economic, agricultural, management and meteorological

factors. Conventional forecasting is either knowledge-based computer programs (that simu-

late plant-weather-soil-management interactions) coupled with targeted surveys or statistical

model based. The former is limited by the need for painstaking calibration, while the latter

is limited to univariate analysis or similar simplifying assumptions that fail to capture the

complex interdependencies affecting yield. In this paper, we propose a data-driven approach

that is ‘gray box’ i.e. that seamlessly utilizes expert knowledge in constructing a statistical

network model for corn yield forecasting. Our multivariate gray box model is developed on
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Bayesian network analysis to build a Directed Acyclic Graph (DAG) between predictors and

yield. Starting from a complete graph connecting various carefully chosen variables and yield,

expert knowledge is used to prune or strengthen edges connecting variables. Subsequently the

structure (connectivity and edge weights) of the DAG that maximizes the likelihood of observ-

ing the training data is identified via optimization. We curated an extensive set of historical

data (1948− 2012) for each of the 99 counties in Iowa as data to train the model. We discuss

preliminary results, and specifically focus on (a) the structure of the learned network and how

it corroborates with known trends, and (b) how partial information still produces reasonable

predictions (predictions with gappy data), and show that incorporating the missing information

improves predictions.

2.2 Introduction and Related Work

Crop yield forecasting is the methodology of predicting crop yields (at various scales: from

farms to counties, to countries and to global scale) prior to harvest. Accurate crop yield

predictions have enormous implications from multiple standpoints. These include: the impact

on the crop commodity futures markets, timely interventions for crop management, unraveling

genetic-environment interactions (GxE) for plant breeding, and appropriate policy decisions in

both developing countries where food shortages remain a threat and in US where improved

yield forecasting can improve targeting of conservation funding from major federal programs

such as the Conservation Reserve Program.

Figure 2.1 Schematic of the yield prediction workflow
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The United States is the largest producer of corn in the world. Exports of corn alone ac-

count for approximately 10-20% of annual revenue in the trade market. In the United States

corn is grown nationwide, but production is mainly concentrated in the heartland region which

includes Iowa and Illinois. Government and insurance companies have established a compen-

sation system that insures farmers to support them against natural causes that have adverse

effects on yield, but their premium rates are reported to be too high5; 6. On the other hand, any

fluctuations in the corn futures market can have a debilitating impact on farmers. Therefore,

the U.S. Department of Agriculture (USDA) invests an enormous amount of time and financial

resources to making periodic county level yield predictions. This helps keep market participants

equally informed about events that influence cash and futures prices for major commodities in

an effort to prevent market failure due to non-participation by uninformed groups. The intel-

lectual foundation behind this effort, described in a Nobel Prize winning paper on “The Market

for Lemons” by George Akerlof, is that markets will fail if one set of participants have more

information than other participants. Recent developments in the way agricultural information

is collected and shared suggests that companies and big data firms may now be able to beat

the USDA at this activity leading to detrimental asymmetric markets. A publicly available

high quality yield prediction tool will enable the producers to make informed decisions thereby

ensuring a symmetrical market. This is the motivation for the current work.

Conventional crop forecasting relies on a combination of knowledge-based computer pro-

grams (that simulate plant-weather-soil-management interactions) along with soil and environ-

ment data and targeted surveys or is based on statistical black-box approaches. The former is

limited by the need for painstaking calibration, while the latter is limited to univariate analysis

or similar simplifying assumptions that fail to capture the complex interdependencies affect-

ing yield7; 8; 9. In this paper, we tread a middle ground between so-called ‘black-box’ and

‘white-box’ approaches. We present a novel, knowledge-based statistical forecasting approach

to predict county-wide corn yield in the state of Iowa. Our multivariate ‘gray box’ model

is based on Bayesian Networks and is utilized to build a Directed Acyclic Graph (DAG) be-

tween predictors and yield. This mathematical construct is implemented in a freely available

reasoning engine for graphical models, SMILE, along with its graphical user interface (GUI),
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GeNIe10. We curated an extensive set of historical data (1948− 2012) for each of the 99 coun-

ties in Iowa for use as training data for the model. This historical weather data (1948− 2012)

was tediously collected from several public sources such as the National Agricultural Statistics

Service (NASS), and included weather, topographic/soil, and some management traits. We

utilize expert knowledge for variable selection and for graph pruning, and present promising

initial results. Results include yield forecasts for all counties and a discussion of prediction

accuracy; an illustration of how prediction is possible with incomplete information, and the

possibility of a probabilistic graphical model to perform what-if scenario analysis.

2.3 Methodology

Corn yield depends on a complex set of economical, meteorological, agricultural and finan-

cial inputs. These inputs are most likely interdependent. Formulating a ‘mechanistic model

’(i.e. ‘knowledge–based’ models, or those based on mathematically defined equation(s)) re-

lating inputs with output seems (currently) intractable. However, there is a large amount

of historical data across geographical regions available that can be used to make future yield

prediction. The availability of a corpus of historical data along with advances in ‘gray box’

machine learning models motivate us to utilize this approach to yield prediction. Probabilistic

graphical models (PGM’s) are an example of such ‘gray box’ machine learning (ML) models

that are helpful in capturing conditional and causal dependencies; spatially, temporally and

spatial-temporally. PGM’s naturally allow for incorporation of expert knowledge and derive

scientific understanding form the learnt models. Inference process in such Bayesian networks

can be used for prediction and also for exploring What-if scenarios; thus allowing us to perform

inference on specific explanatory variables and observing changes in trends. PGM’s are also

scalable and are capable of handling large data sets. More attractively, they are capable of

working with missing and conflicting data, and can inherently handle uncertainty. We outline

a schematic of our workflow in Figure. 2.1.
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2.3.1 Data collection and curation

The focus of the data collection was getting a historical record of various explanatory

variables and county yields for the 99 counties of the state of Iowa. We divided this task into

two stages: 1) Collecting raw data from a variety of sources, and 2) Data curation, to organize

the collected raw data in a form that is compatible with the machine learning framework, GeNIe.

The weather data is taken from the Global Historical Climatology Network (GHCN) database

which is hosted by the National Climatic Data Center (NCDC). We chose to utilize weather data

from the months of May - September. This choice simply tracks the corn growing season over

most of the corn belt region across Iowa. We assume that explanatory variables of time periods

outside the growing season have negligible effect on end-of-season yield harvest. Relaxation

of such assumptions will be explored in the future. The county scale soil data is taken from

the Soil Survey Geographic (SSURGO) database that is hosted by the USDA. The collected

data was then post-processed into expert knowledge derived variables – specifically, aggregating

daily temperatures into monthly averages, converting daily temperature into Growing Degree

Days (GDD), an agronomic means of keeping track of heat. Further details of the data set,

along with descriptions of each derived variable are provided later in the text. Data is curated

for 99 counties over a time period of 64 years (1948 to 2012). The total dataset collected has an

approximate size of 500 MB and is stored in comma-separated values (CSV) file format. Our

preliminary results are based on a subset of this data. We focus on a recent six year duration

of 2005–2010, with 5 years used as training data, and the data from 2010 used as testing data

to explore the model’s predictive capability.

2.3.2 Variable selection and preprocessing

Variable selection is critical to the construction of a viable yield predictor. We utilize expert

knowledge (via agronomic arguments) to chose a subset of all possible inputs affecting yield in

order to construct our probabilistic graphical model. We detail each variable and the rationale

for the specific choice next.
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2.3.2.1 Growing Degree Days (GDD) or Heat Units

The growth rate of corn is highly dependant on temperature. Ideal temperature conditions

for robust growth is between a minimum temperature of 50◦F (10◦C), upto an optimum tem-

perature of 86◦F (30◦C). Growth rates have been observed to decline if temperatures do not fall

within this range. The Growing Degree Days (GDD) is an agronomic variable that represents

the relationship between temperature and growth rate11. GDD is a heuristic tool in phenology

that measures heat accumulation to predict development rates. GDD is given by

GDD = (Tmax + Tmin)/2− Tbase

where,

• Tmax is the maximum daily temperature or equal to 86◦F (30◦C) when temperature

exceed beyond 86◦F (30◦C).

• Tmin is the minimum daily temperature or equal to 50◦F (10◦C) when temperature falls

below 50◦F (10◦C).

• Tbase is the base temperature required to trigger the optimum growth.

An additional motivation to choose this variable is the possibility of integrating seed type as

an explanatory variable in the future. Seed companies typically report hybrid maturity in

days and in terms of GDD. These reports are linked to the expected number of days necessary

to reach enough GDD (about 2700 to 3100 GDD to reach R6 (physiological maturity)) to

complete growth and development. For example, the commonly used 111 day hybrid requires

approximately 111 days to attain enough GDD for harvest maturity.

2.3.2.2 Palmer Drought Severity Index (PDSI)

Drought has a critical impact on farming and yield. The Palmer Drought Severity In-

dex (PDSI) measures the availability of moisture after precipitation and recent temperature

changes. It is based on the supply and demand concept of the water balance equation and

considers multiple meteorological parameters (including water content in the soil, rate of evap-

otranspiration, soil recharge and moisture loss from the surface layer). The PDSI has also been
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used to perform spatial, and temporal correlations analysis12. The PDSI 1 takes a value of 0

to indicate the normal conditions, negative values indicate drought severity and positive values

indicate wetland or flooded conditions.

2.3.2.3 Corn Suitability Rating (CSR2)

Soil type impacts productivity potential, and combined with weather conditions, is con-

sidered a dominant factor influencing yield. Corn Suitability Rating (CSR2) is an integrated

measure based on soil mineral content, topographic features like slope gradient and slope length

that indicate the suitability of the soil to grow corn. CSR2 ratings 1 varies minimally over time

and usually range from 5 - 100, with higher ratings correlating to better growing conditions.

2.3.2.4 Rainfall

Precipitation is a factor that strongly affects yield. During the growing season, moisture

requirements have to be met by rainfall, or through water held within the soil prior to growing

season. High yield harvest within the corn belt region of the US has been due to the amount

of precipitation available (>45cm) throughout the growing season. The demand for water

utilization increases when the corn plant nears the tasseling stage, usually around mid-July,

extending to mid-August. Note that both inadequate as well as over abundant rainfall reduce

corn yields.

2.3.2.5 Data Discretization

Before any network or structure is learnt, the available dataset is first categorized into a set

of bins. This data transformation is necessary since our model is based on discrete Bayesian

networks where modeling of the relationship is required in a parsimonious manner. The goal is

to retain the underlying relationship between the variables while reducing the effects of external

disturbances that may distort the relationship. We chose to use a hierarchical discretization14

over uniform width or uniform count. This enables automatic determination of the optimal

number of bins and their widths, given the multivariate distribution of the variables.

1 In Figure. 2.2 and 2.3, “DI Avg” represent annual average PDSI values12 and “Soil WA” represent weighted
average CSR2 ratings13 for each of the 99 counties in Iowa.
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2.3.2.6 Incorporating Background Knowledge

The ability to include domain knowledge in the construction of a model is one of the

strong points for the probabilistic graphical modeling technique. This allows domain experts

to provide quality input regarding known correlations between variables, as connections (or

edges) in the graph. Domain expertise enabled us to specify a strong link between rainfall

and yield. This approach also allowed domain experts to forbid connections between specific

variables (either through intuition or where such lack-of-correlation has been previously shown).

This is extremely useful when working with temporally-sensitive data, allowing one to forbid

connections from future observations to past observations. It is also important for the scalability

of the structure learning stage. Furthermore, it allows the sorting of variables in temporal tiers,

which also forbids future to past connections. Figure. 2.2 displays the implemented background

knowledge for our model.
Temporal tier 1 Temporal tier 2 Temporal tier 3 Temporal tier 4 Temporal tier 5 Temporal tier 6 Temporal tier 7

Figure 2.2 Tiering and partial enforcing of Bayesian Network Structure with Prior Back-

ground Knowledge

2.3.3 Learning and inference

Learning and inference are the two main steps associated with graphical models such as

Bayesian networks. Learning refers to training the probabilistic graphical model with the train-

ing data and the inference step involves decision making using the trained model and testing
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Figure 2.3 Illustration of the learnt Bayesian Network Structure based on Background knowl-

edge

data/evidence. Learning/training involves identifying the structure (the DAG, or the edges

of the graph) and learning the parameters (the edge weights), i.e., the conditional probability

densities. The goal is to identify the structure and the associated parameters that best explain

the given training data.

Given a Markovian set of variables x := (x1, · · · , xl), a DAG, G = (V, E) and a Pθ where V

describes the set of nodes in the model, E gives the edges connecting nodes. Pθ(x) represents

the joint probability distribution factored on the variables given their parent nodes and θ

describes the parameters learnt in the factoring process. More detailed descriptions of such

models are available in vast amount of literature15; 16. Mathematically, the aim of the learning

task is to determine the optimal set of (V, E) as well as θ that describes the relationship

embedded in the factors and the class variable (in this case, yield). Finding the optimal

Bayesian network structure is an NP-hard problem, but efficient algorithms are available that

often yield near optimal solutions17. Bayesian networks support learning in supervised as well

as in unsupervised settings, and thereby can be used with both labeled and unlabeled data sets

(such as for knowledge discovery).

In this study, after discretizing the training data, we learned a network structure (Directed

Acyclic Graph) that maximizes the likelihood of observing the training data. As mentioned

earlier, finding such a DAG is an NP-hard problem, hence we used efficient heuristics to ap-

proximate the underlying structure. Also, we sought expert knowledge in order to make the

structure search more efficient. This knowledge elicitation helps the algorithm to streamline
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its connectivity search since we forbid some unreasonable links and force links where we have

information related to conditional dependencies among variables. It is important to penalize

dense structures as they typically lead to over-parameterization and hence, over-fitting (bias-

variance tradeoff). To address this tradeoff, we track the Bayesian Information Criterion (BIC)

to drive our search for the best DAG. A set of scoring functions such as minimum description

length, MDL, Bayesian-Dirichlet functions and their variations3 for learning DAG structures

were introduced in18. Figure. 2.3 shows the Bayesian Network structure that was learned via

GeNIe toolbox on the so far curated training dataset. Note, the thickness of an edge between

a pair of nodes reflects the degree of statistical dependency between those nodes i.e., strength

of influence17.

Inference pertains to finding probabilistic answers to user specified queries. For example, a

user may seek the joint distribution of a subset of random variables given the observed values of

other independent subsets of the random variables. Since Bayesian networks only encode node-

wise conditional probabilities, finding answers to such queries is not straightforward. However,

efficient algorithms exist that allow one to find the exact answer to an arbitrary query using a

secondary structure (such as junction tree) and a message-passing architecture17.

GeNIe has in-built support for various learning algorithms. In this paper, we employed the

Bayesian search algorithm to train the model. It is a general purpose graph structure learning

algorithm that makes use of the Bayesian search procedure to explore the full space of graphs,

G. In this case, the posterior probability tables are filled out using expectation maximization

algorithm,

arg max
G

P (G|D)

given the data, D. The aim of the algorithm is to run partial search over Markov equivalence

class of the data instead of directly searching over the full DAGs space to reduce the com-

putation time. Note that a Markov equivalence class16 is a subset graph class that contains

both directed and undirected edges, i.e., it is a set containing all the DAGs that are Markov

equivalent to each other.

In the implementation of Bayesian search in GeNIe2, we added background knowledge by

2http://www.bayesfusion.com/

http://www.bayesfusion.com/
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forbidding 20 edges. The tiering edges (i− > tier) that associates nodes with particular tier in

the 7–tier model is shown in Figure. 2.2.

2.3.3.1 Expected yield prediction

Given that the model structure and the parameters of a DAG have been learnt, it is nec-

essary to make inferences on the model by getting forecast of yield in terms of expected yield.

Accuracy of the model is tested based on the available evidence to calculate the difference in

the predicted and actual yield. Given, historical values of yield Y (in bu/ac), we define Ŷ as

the expected yield prediction provided that we have computed the posterior distribution P (bn)

during the inference process where bn is the nth bin signifying a certain range of yield. With

this setup, we have

Ŷ =
∑
n

P (bn) · E(Y |bn)

where,

• n ∈ {1, · · · , 4} denotes the discrete bin for the yield variable.

• P (bn) denotes the probability of yield being in the range marked by bin bn.

• E(Y |bn) represents the expected yield in the bin bn computed based on the training data.

2.4 Results and Discussion

In this section, initial results are presented for the Bayesian network based county level

yield prediction approach. We used 2005–2009 data in this study and the data set was divided

into a training and testing set. While 75% of the data was used for learning the Bayes Net

structure and parameters, the remaining 25% was used to provide an in-sample validation for

the model. The validation set is used to determine the effectiveness of the model; to estimate

its accuracy and the confidence level; to analyze performance with incomplete and complete

evidence and to examine various ‘what-if’ scenarios as described below.
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2.4.1 Yield prediction

The effectiveness of our model is described using a confusion matrix shown in the Table 2.1.

It shows the overall capability of the model to correctly categorize predicted yields in the

validation set into the appropriate bins, i.e., yield prediction ranges.

Table 2.1 Confusion Matrix with four yield level classes

Predicted yield (in Bu/ac)

True yield

(in Bu/ac)

0–131 131–

149

149–

178

178–

Above

0–131 6 0 0 0

131–149 4 11 0 0

149–178 0 1 14 7

178–

Above

2 0 6 46

While most of the data is in the diagonal (i.e., correct prediction), some of the estimated

yields fall into the wrong bins. However, in most cases the miss-predictions fall into neighbor-

ing bins which suggests small errors. Moreover, this current study uses an incomplete set of

explanatory variables and we are currently expanding the set of variables to utilize cumulative

effects of temperature and localized effects of rainfall.

Table 2.2 Difference between Predicted and Actual Yield at a county level

County Actual

Yield

Bu/ac

Predicted

Yield

(Bu/ac)

Difference

(%)

Shelby 171.6 171.71 0.06

Bremer 174.6 174.39 0.12

Palo Alto 174 174.39 0.22

Calhoun 173.3 174.39 0.63

Table 2.2 displays sample results of expected yield (as described in 2.3.3.1) obtained from

the model. The model was used to predict yield in all 99 counties of Iowa in 2010 and overall,

predicted yield for 70 out of the 99 counties had an accuracy of 80% or more. This illustrates the

yield prediction potential of a Bayesian Network model with reasonable explanatory variables
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and domain knowledge embedding. However, this is still an on-going effort and we are working

to include more key variables and domain knowledge for better prediction accuracy.

2.4.2 Prediction with partial and complete evidences

Table 2.3 Table showing the effects of gradual addition of evidence on selected counties yield

prediction accuracy

Evidences Time Period County Actual

Yield

(Bu/ac)

Predicted

Yield

(Bu/ac)

Difference

(%)

GDD & RF May–June Polk 139.40 167.91 30

GDD & RF May–July Polk 139.40 167.91 30

GDD & RF May–August Polk 139.40 167.91 30

GDD & RF May–

September

Polk 139.40 165.55 29

GDD, RF, PDSI &

CSR2

May–

September

Polk 139.40 140.88 2

The ultimate goal of this research is a publicly available high quality yield prediction tool

that will enable the producers to make informed decisions. From this perspective, the tool

needs to start predicting yield estimates from early part of the season and aim to improve

the prediction as season moves forward and more observations are used as evidence. In this

context, Bayesian network is an ideal inference framework as it can function with missing

variables/data unlike many other approaches such as standard regression. We investigated the

yield prediction performance in the absence of complete evidence–that is, before the end of the

growing season, where information on future weather conditions is unavailable. Note, in such a

scenario, a model can still use future weather predictions which can potentially help such a tool

positively. However, we did not consider availability of any such predicted weather conditions

in this study. In this case study, initial (incomplete) evidence includes only the growing degree

days (GDD) and rainfall (RF) for the months of May–June. Then as the season progresses,

we added evidence from months of July, August and September respectively. Furthermore, we

added key variables such as PDSI and CSR2 at the final stage to examine the improvement in

yield prediction performance.
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The effect of incomplete evidence for Polk county is shown in the Table. 2.3. With initial limited

evidence, the model is capable of providing a reasonable estimate of yield and as expected,

performance improves with added evidence and finally with complete evidence3, the computed

yield comes very close to the actual yield (lagging the actual by only ≈ 1(Bu/ac)). This is an

illustration of how a Bayesian Network based tool can be leveraged seamlessly for continuous

yield prediction throughout the growing season.

2.4.3 What-If Scenarios

Figure 2.4 Histogram of inference on expected yield of PDSI

Farmers and plant scientists are extremely interested in learning key driving variables and

parameters that affect yield. In this context, a probabilistic graphical model such as Bayesian

Network can be an effective tool to understand the impact of different variables (e.g., weather)

on a certain target variable (e.g., yield). Such an inference exercise is called simulation of

‘what-if’ scenarios and a few examples are provided below:

3Note that the term complete evidence in this case is based on the data available for this study which is far
from being exhaustive.
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Figure 2.5 Histogram of inference on expected yield of CSR2

It is known that a host of the climatic factors lead to drop in expected corn yields at

extreme conditions. A good example to support that is the effect that PDSI, described in

subsection 2.3.2.2, has on the estimated yield. Figure 2.4 shows the result of a ‘what-if’ scenario

simulation where bins 1 and 4 for PDSI lead to lower yield compared to bins 2 and 3. Note,

bins 1 and 4 suggest highly negative or highly positive PDSI values which indicate extreme

drought or extreme wet conditions respectively whereas bins 2 and 3 contain PDSI values that

are around zero which indicate a close to ideal condition. Thus the Bayes Net inference result

conforms with the scientific knowledge that extreme dry or extreme wet conditions are both

bad for corn yield.

In addition to PDSI, the effect of CSR2 on yield is examined and the result is shown in

Figure. 2.5. There is a reasonable positive correlation between the CSR2 values and expected

yield confirming the domain knowledge of farmers and plant scientists.

Another example is shown in Figure. 2.6 where increased rainfall in July tends to help

corn production slightly. In summary, a Bayesian Network model is not only useful for yield

prediction but also effective for understanding various causal effects (unlike different black box

models) that can enhance the scientific knowledge in this domain.
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Figure 2.6 Histogram of inference on expected yield of rainfall in july

2.5 Summary, Conclusions and Future Work

In this paper, we demonstrated a Bayesian Network approach in order to predict county-

wide yield in the corn belt state of Iowa, primarily utilizing historical weather data. Apart from

the yield prediction capability with incomplete and complete evidence, key advantages of such

an approach include ability to incorporate domain knowledge, enhance scientific understanding

via ‘what-if’ scenario simulation and naturally provide a prediction confidence. In the case

study presented here, the model performed reasonably well based on its validation accuracy.

Example ‘what-if’ scenarios involving PDSI, CSR2 and rainfall in July show effectiveness of

this approach in enhancing scientific understanding. We also demonstrated the capability of

yield prediction based on incomplete and complete evidence which makes it a useful tool for

continuous yield prediction throughout the season. While the main future goal of this research

is to be able to accurately predict yield within 5 Bu/ac of the actual yield in every county,

many other technical aspects are being pursued as well such as (i) incorporation of cumulative

weather variables, (ii) handling different time-scales of different explanatory variables and (iii)

establishing a model adaptation mechanism along with climate change patterns.
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CHAPTER 3. CONCLUSION AND FUTURE WORK

In this thesis, we have demonstrated a Bayesian network approach in order to predict

county-level yield in the corn belt state of Iowa by primarily utilizing the historical weather

data and expert knowledge. This approach has some key advantages:

• Ability to incorporate domain and expert knowledge:

Finding a solution to a graphical model is considered to be an NP-hard problem thus it’s

important to have a model (like Bayes net) which is capable enough to include the domain

specific knowledge prior to training the model. This not only optimizes the problem but

also improve the prediction accuracy.

• Enhance scientific understanding via what-if scenario inference:

Example what-if scenarios involving PDSI, CSR2, and rainfall in July show effectiveness

of this approach in enhancing scientific understanding.

• Naturally provide strength of influence between parameters:

The model not only predict the yield given other parameters but it also learns the weights

for each edge it draws between different nodes (i.e. variables). Higher the value of weight

shows the strong dependence of variables on each other and this gives us the information

about the parameters that has a strong influence on the yield prediction.

The future work is focused towards accurately predicting the yield for every county within

5 Bu/Ac of its actual value. Many other technical aspects are being pursued as well such as:

• Incorporation of cumulative weather variables. Some of the potential variables are:
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– Humidity:

The relative humidity can affect the flow of water through the plant and affect the

transpiration rate.

– Irradiation:

Different type of radiations also plays an important role in optimal plant growth.

– Wind speed:

Wind speed directly influences the kernel development in a corn plant. Extreme

conditions can not only destroy the plant but it also left ears partially filled with

ripe kernels.

– Snowfall:

The Amount of snowfall helps in determining the ground level water.

• Handling different time-scales of different explanatory variables

– Exploring Markov symbol dynamics

To study the dynamic nature of certain parameter (like hourly temperature) in order

to analyze the data often requires the need to study the topologically equivalent

system using symbol dynamics representing trajectories by infinite length sequences

using a finite number of symbols19. The state space is divided into different finite

bins and assigns a symbol to each one. This kind of transformation is known as

markov transformation.

• Establishing a model adaptation mechanism along with climate change patterns
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