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ABSTRACT 

B-trees are widely used in management of data to support good performance for storage, 

retrievals and updates. Many excellent implementations of B-tree exist in industry and 

academia. However, it is hard to find one that is easily configurable for clients who need 

to create and use B-trees. In this work, we undertake implementation of B-trees as a 

utility. The utility absorbs most of the logistical support needed in creation and 

maintenance of a B-tree leaving only tasks that can only be performed by the clients to 

them. For exchange of data a two ended iterator-based framework called PTC, short for 

produce, transform, consume, is offered that produces one record at a time, the record is 

optionally processed, and then consumed. The PTC-based exchange is quite versatile. For 

example, it can be used in generating data and storing it in a file, converting data from 

text (resp. binary) to binary (resp. text) formats, creating a B-tree by inserting one tuple at 

a time or bulk loading, and out streaming the data from a B-tree to a destination such as 

query processor.  XML is used to describe essential configuration settings for B-trees, 

records, and keys. A Java class file is automatically generated from the record 

configuration to provide support to upper level modules such as page-based storage and 

comparisons of keys needed by B-tree algorithms. 
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CHAPTER 1.    INTRODUCTION 

In this chapter, we will cover disk system, file system, database management system 

and I/O Paging. Then we will introduce what are B-trees, and why B-trees are import.  

Disk System 

Computer disk storage is a general category of storage mechanisms where data are 

persistently recorded onto a surface layer of one or more rotating disks, by different optical, 

electronic, magnetic, or mechanical changes. Disk drives are devices that designed and 

implemented following this mechanism. Nowadays, popular disk types are the hard disk 

drive (HDD) containing a non-removable disk, the floppy disk drive (FDD) [2] with its a 

removable floppy disk, and the optical disk drive (ODD) with an associated optical disk. 

 

Figure 1 Cylinder-Sector-Header Structure[1] 
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Modern digital disk drives are designed as block storage devices. In an entire disk 

drive, multiple logical blocks are divided, and they are also called collection of sectors. 

Blocks are located by their logical block address (LBA). Read and write operations on a disk 

happen at the granularity of blocks. In the early stage of disk storage, the capacity was quite 

low and has been improved in several ways. For example, developments of mechanical 

design and manufacture permit smaller and more precise disk headers, which means that 

more tracks can be recorded on each of the disks. Also, improvements in data compression 

technologies have enlarged the data volume to be stored in each of the individual sectors. 

Data is stored on cylinders, heads and sectors by the disk drive. For each file, the 

sectors unit is the smallest size of data to be stored in a hard disk drive. Usually, one file will 

have multiple sectors units assigned to it. The smallest unit entity in a CD is called frame, it 

is combined of 33 bytes, which is divided 24 bytes to store 16-bit stereo samples (2 bytes * 2 

channels * 6 samples = 24 bytes), and 9 bytes to store 8 bytes CIRC error-correction bytes 

and another byte sub-code for control and display. 

File System 

As we already introduced the physical firmware of data storage, another important 

concept is file system. In computing, data is stored, retrieved and controlled through a file 

system. By separating data into various pieces and assigning each piece an unique 

identification, the operating system could easily manage a large volume of data. Also, the 

information is uniquely indicated and isolated, which brings some safety naturally. As many 

physical storage pieces are assigned together to be a group, we could name each group of 

data to be a “file”. And a “file system” is a collection of the structure and logic rules used to 

manage those groups of information in some physical storage drives. 
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Many different kinds of file systems have been proposed. Each one has different 

design principle and structure, speed, extensibility consideration, security and size and more. 

Some file systems are designed for specific academic or industry scenarios. For example, the 

ISO 9660 file system is proposed and implemented specifically for optical discs. 

Apparently, we have numerous types of storage devices as physical infrastructures for 

multiple file systems. Those storage devices are using different categories of media. The 

most widely used physical storage device is HDD. Other kinds of media that are served as 

physical devices include optical discs, magnetic tapes, and solid state drive (SSD). In some 

cases, the computer’s main memory (random-access memory, RAM) is served for a 

temporary file system for in-session usage. 

Regarding computer networks and distributed systems, some file systems are not only 

used on local data storage devices, but also provide data access through a network protocol, 

such as NFS [3], and SMB [4]. Some file systems are supporting virtual files [5] which are 

computed on request or are merely a mapping into a different file system served as a storage 

bank. The core of file system manages access to both the content of files and the metadata. It 

can handle storage space arrangement, reliability, efficiency. 

Modern file systems usually consist of two or three layers. For interaction with the 

user application, the logical file system provides the application program interface (API) for 

file operations, including OPEN, READ, WRITE, CLOSE, and so on. It passes users’ 

requests to the lower layer for processing. The logical file system manages a table of entries 

for opened files and all preprocessed file descriptors. Generally, it provides directory access, 

file operations and security protection. 
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The one below logical layer is called virtual file system. It interacts with the upper 

layer, and provides support for multiple thread physical file operations and data concurrency. 

The third layer is called physical file system, which directly interacts with storage devices via 

physical operations. It operates physical blocks with reading or writing tasks. It contains a 

buffer and provides memory management. In most cases, physical operations are conducted 

with the help of the device driver or the channel to drive the storage device. 

Database Management System 

The need of maintaining a group data reliable and reusable keeps growing, and we are 

having a huge demand for data creation, update, retrieving and deletion. Sometimes, we also 

want the system to support data range query, join, grouping and so on. Also, we are 

expecting data management can be related with the concept of object-oriented design. 

Nowadays, a high demand for massively distributed databases [6] is raising up… As we look 

backward, the concept of database management system is keep developing, and also new 

techniques are brought onto the table as different demands come out. 

The introduction of the term database started with the need of direct-access storage 

from mid-1960s [9]. Edgar Codd described a new system for storing and working with large 

database [7]. He brought up the idea of “table” of fixed-length records, with different types 

of attributes being included in each record. IBM started working on Codd’s concepts of 

relational database. And the first version was born in 1975, it started on multi-table system 

where data could be split into multiple tables, so that the relation did not have to be in a big 

chunk of single table. And in 1978, they added a standardized query language (SQL) into the 

system. Based on IBM’s research, Larry Ellison started Oracle Database, and finally defeated 

IBM to the market in 1979 with Oracle Database Version 2. 
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I/O Paging 

As the file systems have been deeply merged into modern operating systems [8], we 

will discuss its paging property under the framework of the operating system. Paging is the 

memory management scheme, in order to store, retrieve, and communicate between the main 

memory (RAM) and the external storage (usually SSD or HDD). In a paging framework, 

both memory and disk are logically divided into multiple same-size blocks called pages. For 

example, under a 4 kilobytes page size setting, an 8GB memory will be divided into 2 million 

pages, and a 512GB external storage device will be divided into 128 million pages. This idea 

is fundamental in order to support virtual memory, which is using SSD or HDD as external 

memory, to let programs exceed the size of real physical memory. 

When we create a new file in the disk, we are actually assigning a series of pages for 

this file. The critical paging information, like privilege,  is included in the metadata. some 

other information, like next page, is usually contained within each page header itself. And all 

the OPEN, READ, WRITE, CLOSE operations, are conducted through the process of page 

retrieving, main memory loading, operations and writing back to disk, according to the page 

address. 

B-tree 

Trees are widely used in file system and database, dynamic search trees include 

binary search tree, balanced binary search tree, red-black tree, B-tree/B+tree [10, 11]. While 

the first three trees are typical binary structure, their search time complexity is O(logN), 

linear to the tree’s depth. So one optimization idea could be very straightforward: increasing 

efficiency by decreasing depth of the tree. 

As we know that disk I/O is much slower than operations inside memory. In practical, 

binary search trees or balanced binary search trees suffer from a larger depth and more disk 
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I/Os. In order to overcome the disadvantage of binary search trees, researchers tried to 

increase the fan-out of internal node in each level. In 1970, Rudolf Bayer and Edward M. 

McCreight proposed a new balanced tree data structure [12]. 

B-tree is a N-ary structure which is designed for disks and other external storage 

devices. Different from binary search trees, its fan-out is larger, and it is self-balanced. As 

the following figure shows a B-tree of depth equals to 3: 

 

Figure 2  An example of B-tree 

According to Knuth’s definition, a B-tree of order m show satisfies the following 

properties:  

Every node has at most m children (m >= 2). 

Every index node (except root) is required to be half-full at least [ceil(m/2)]. 

The root has more than one children if it does not serve as a leaf node. 

An index node keeps k records in order, and it has k+1 children. 

All leaves are in the same level. 
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B+tree 

A B+tree is also an N-ary tree but keep all integrated tuples in leaf nodes. It usually 

has a variable but often larger fan-out of internal nodes, comparing with B-tree. Also, 

different from B-tree, the root may be either as a leaf node, or a node with at least two fan-

outs. Briefly speaking, the B+tree can be taken as a B-tree where each internal only contains 

keys, rather than entire tuples, and leaf node contains all tuples at the most bottom level. 

Given the following simple example, we can see how a relation Employee is 

organized as a B+tree. 

 

Figure 3 An Example of B+tree 

In the relation Emp, all records are organized according to the key Emp_Name 

attribute. The height of this B+tree is 3. Each time, when user want to retrieve any record in 

this relation, it requires 3 page accesses, which is the height of B+tree. Sequential traversal 

can be done with the help of this structure, as long as the program keep the first sequence 

page at the right place. 

The excellent property of B+tree, such as larger fan-out, smaller height, and better 

time complexity in keep data sorted, make it widely used in block-oriented storage context, 
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in particular, file systems, and database management systems. With the fan-out advantage, it 

can reduce the number of I/O operations required to find an element significantly. Since 

B+tree is more widely used than B-tree, sometimes, we are calling B+tree to be B-tree if 

there is no need to differentiate. In the following paragraphs and chapters, the words B-tree 

are actually referring to B+tree if no specification. 

In order to take an overview of B-tree’s efficiency analysis, we can name the order, or 

branching factor of this B-tree as b. It indicates how many children nodes can be linked in an 

internal node (including root node). Assume the actual number of children nodes to be m. 

There is a constraint for all internal nodes except root node, [b/2] <= m <= b, as we allow 

root have at least two children. If the order of a B-tree is 9, then all internal node, except the 

root node, should have 5-9 children. There is no constraint of children number of leaf node, 

but the leaf node itself, should have at least [b/2]-1 but at most b-1 records. In the case where 

B-tree is almost empty, it only occupies one root page, and serving as leaf node. Then, there 

is no bottom constraint for the root node, but it should not break the page size rule. 

Table 1 Math property of B-tree nodes 

Node Type Children 
Type 

Min Number 
of Children 

Max Number 
of Children 

Example b 
= 9 

Example b 
= 100 

Root (Only 
one node) 

Records 1 b-1 1-8 1-99 

Root Internal or 
Leaf Nodes 

2 b 2-9 2-100 

Internal 
Node 

Internal or 
Leaf Nodes 

[b/2] b 5-9 50-100 

Leaf Node Records [b/2]-1 b-1 4-8 49-99 
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Here is some other characteristics of B-tree with an order of b, and height of h from 

the root. 

Table 2 B-tree extremes and time complexities 

Maximum number of records 𝑏" − 𝑏"$% 

Minimum number of records 2[b/2]"$% − 2[𝑏/2]"$+ 

Minimum number of keys 2[b/2]"$% − 1 

Maximum number of keys 𝑏" − 1 

Space complexity O(n) 

Time complexity of inserting one record O(𝑙𝑜𝑔4n) 

Time complexity of searching one record O(𝑙𝑜𝑔4n) 

Time complexity of removing one record O(𝑙𝑜𝑔4n) 

Time complexity of range query for k elements O(𝑙𝑜𝑔4n + k) 
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CHAPTER 2.    BACKGROUND 

CyDIW is abbreviation of Cyclone Database Implementation Workbench [13, 14], 

which can be used to implement new database prototypes, using existing command-based 

system, and conduct experiments. As CyDIW serves as a database workbench, the demand of 

B-tree utility is very natural, just like any other common database system that requires a 

better performance on data indexing and storing. Previous researchers and programmers have 

proposed and published many B-tree implementations. However, due to their 

incompatibilities to our workbench, we can not directly apply those elegant implementations 

onto our system. Therefore, we started to think about designing and implementing a CyDIW 

based B-tree utility for our users. 

CyDIW Storage System 

As we planned to build a series of B-tree APIs that serves CyDIW as an utility. We 

need to apply CyDIW storage system to be our implementation infrastructure, especially for 

page allocation, deallocation, read and write. 

CyDIW storage system is fully user configurable, and it is self maintained via a 

catalog file. Here is an example of CyDIW storage configuration: 

<?xml version="1.0" encoding="UTF-8"?> 
<RawStorageParameters> 

<SmallestRawGranule Size="16" Unit="MBytes"/> 
 <JavaRandomAccessFileSize NofRawGranules="1"/> 
 <StoragePaths Unit="MBytes"> 
  <Path Location="H:/CanStoreXStorage/300M" Size="300" Volume="A"/> 
 </StoragePaths> 

<PageSize Unit="KBytes" Value="16"/> 
<BufferNumber Value="6"/> 

</RawStorageParameters> 

This is an xml file for storage configuration. It indicates that under path 

“H:/CanStoreXStorage”, we create a folder named 300M to store raw storage granules as our 
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storage devices. Each granule has a size of 16 megabytes (the last one might be smaller than 

16 MB). In this storage, the page size is set to be 16 kilobytes, and buffer number is 6. 

In our B-tree implementation, we are using CyDIW storage. Here are some storage 

commands that we are using and their related APIs. 

Create Storage  

The create storage is done by a public boolean method in storagemanager. 

StorageUtils class. This method receives two parameters. The first one is the storage config 

which is original from the user storage configure file, and then a boolean tag which indicates 

to format the storage or not. 

Load storage 

Load storage is executed by a public method in storagemanager.StorageUtils, whose 

parameter only contain a storage config. The storage config is instantiated from the user’s 

storage config file, just like what create storage did. 

Allocate a page 

The public method allocatePage in storagemanager.StorageManagerClient is the API 

for clients to allocate a page from the physical storage. And it will increase client’s page 

allocated count by 1 for each execution. 

Deallocate a page 

The public method deallocatePage in storagemanager.StorageManagerClient is the 

API for clients to deallocate a page from the physical storage. And it will increase client’s 

page deallocated count by 1 for each execution. 

Read a page 

In CyDIW environment, we apply a storage buffer for page I/Os. Page reading is 

done by the public method readPageWithoutPin in storagemanager. StorageManagerClient 
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class. It will return a reference to byte array, which is pointing to a block in storage buffer. It 

is not sure whether page allocated count will be increased or not, but client page request 

count and client page request will be increased by 1 after each execution. 

Write a page 

Similar to page reading in CyDIW, page writing is done by the public method 

writePageWithoutPin in storagemanager. StorageManagerClient class. The first parameter is 

page id to be written, and the second parameter is the buffer pointer. 

Storage catalog 

CyDIW storage is maintaining a storage catalog file under the storage path folder. 

Each record inside the catalog file indicates one file in the storage. The record contains id, 

name, root page id, and size. In our B-tree utility implementation, we also take care of this 

catalog file, even though we already have our own configuration file to store critical 

informaiton, like root page id, sequence page id, which means there will be a duplicate 

information of B-tree’s name and root page id. 

CyDIW Client System 

In this paper, we are not only show how we created and implemented B-tree utility 

based on CyDIW storage, but also represent how it was registered in CyDIW client system. 

The CyDIW platform consists of two major parts: CyDIW central services and various client 

systems. CyDIW central services include CyDIW user interface, CyDIW command parser, 

clients manager, clients interface, and storage services. In order to add new functionalities, 

each client needs to provide an adapter which can be used as a bridge between CyDIW 

platform and the client APIs. 

All clients and their corresponding adapters information are located in 

SystemConfig.xml file under CyDIW root. Here is an example: 
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<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<RegistrationRoot> 

<DefaultSystemRegistration> 
<Element Name="CyDIW" Prefix="CyDB" 
ClassPath="" 
LibraryPath="lib" 
WorkspacePath="CyWorkspace" /> 

</DefaultSystemRegistration> 
<ExternalSystemRegistration> 

<Client Name="OS" Prefix="OS" Enabled="yes" 
ClassPath="" LibraryPath="" 
ClientAdapter="cysystem.clientsmanager.clients.OSAdapter" /> 

<Client Name="MySQL" Prefix="$MySQL" Enabled="yes" 
ClassPath="" 
LibraryPath="cyclients\sql\drivers" 
ClientAdapter="cyclients.sql.adapter.SQLClientAdapter" 
DriverClass="com.mysql.jdbc.Driver" 
ConnectionString="jdbc:mysql://csdb.cs.iastate.edu:3306/xfwangDB" 
Username="xfwang" Password="xfwang-12" /> 

</ExternalSystemRegistration> 
</RegistrationRoot> 

DefaultSystemRegistration 

The <DefaultSystemRegistration> is where CyDIW main program get registered. The 

path can be modified by the user. 

The type of each attribute in the "Element" element is defined as follows: 

Name  

"CyDIW" is a reserved keyword. The value of this attribute cannot be modified by 

the user. 

Prefix 

"CyDB" and "OS" are reserved prefixes in CyDIW. Any other clients could not use 

those two prefix keywords. 

ClassPath 

the relative path which contains CyDIW system class files. For instance, if the current 

path for CyDIW (set in the startDIW.bat file) is "D:\CyDIW_Root\", and the class files of 
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CyDIW reside at "D:\CyDIW_Root\SystemCalssPath\", then the value of the "ClassPath" 

attribute should be set as "SystemClassPath". 

LibraryPath 

the relative path to external library files of CyDIW system. 

ExternalSystemRegistration 

The <ExternalSystemRegistration> is where client systems being registered. A 

<Client> element is used to register each client. Only clients with the Enabled = "yes" is 

loded when CyDIW is started. No validity check is done for settings of clients with Enabled 

= "yes". The type of each attribute in the <Client> element is defined as follows: 

Name  

A string consisting of alphanumeric characters denotes the name of the client. 

Prefix  

A string consisting of alphanumeric characters denotes the prefix in commands for 

CyDIW parser. The prefixes must be unique accorss client systems for both lower can upper 

cases. For example, there will be a confliction if “mesql” and “MeSQL” both registered by 

the user.  

Type "local": The client system is located in a local directory. 

Type "remote": The client system is located in a remote location, such as a SQL 

database server. It also includes a username and password setting. 

ClassPath 

The absolute path which contains the class files of the client system. 

LibraryPath 

The absolute path which contains the library files of the client system. 
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ClientAdapter 

The full class name including package information of the client adapter. The client 

adapter is responsible for certain commands which start with the prefix.  

Enabled 

Value of enabled "yes" means The current "Client" entry is enabled, and the client 

will be loaded. Otherwise, "no" means The current "Client" entry is disabled, and its 

information is ignored. 

An example: CyDIW Client Registration for NC94 

We have an example about an external client registration entry for NC94. After 

registering the following entry into the client system. The CyDIW system will dispatch all 

commands started with “$NC94:>” to the NC94Adapter. 

<Client Name="NC94" Prefix="NC94" Enabled="yes" 
ClassPath="E:\workspace\CyDIW_v0.0"  
LibraryPath="cyclients\nc94\lib"  
WorkspacePath="cyclients\nc94\workspace" 
ClientAdapter="cyclients.nc94.commandparser.NC94Adapter" /> 

The NC94Adapter will be responsible for parsing the rest commands to its relating 

API to be executed. The first argument denotes the NC94 command name, and the rest of 

strings are parameters in the prompt commands. The NC94Adapter will call corresponding 

API in NC94 package. 

B-tree Utility Registration 

Our B-tree utility is part of Cy utilities, so we put all the code, configurations and data 

under cyutils folder, and name an CyUtilsAdapter to handle all commands starting with 

“$CyUtils:>”. The CyUtils client registration are given as follows: 

<Client Name="CyUtils" Prefix="CyUtils" Enabled="yes" 
ClassPath="" 
LibraryPath="" 
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WorkspacePath="" 
ClientAdapter="cyutils.parser.CyUtilsAdapter" /> 

 
As we can see from this registration entry, the ClientAdapter is 

CyDIW_Root/cyutils/parser/CyUtilsAdapter. It will be able to enable all commands like 

“$CyUtils:> some commands” to be executed. Also, CyUtilsAdapter class will call B-tree 

API during the execution of B-tree commands. 

User Configuration 

As we can see from the previous introduction to CyDIW platform, its storage and 

client system are fully user configurable. And in our implementation of B-tree utility, we also 

want to keep everything to be user configurable. 

A user configurable tuple 

The first thing came to our mind is the tuple definition in a relational database. A user 

configurable tuple definition is critical for database utilities implementation. Otherwise, user 

will have to change some setting that hardcoded in the implementation program, which does 

not sound attractive to users. Previous B-tree utility on CyDIW ignored this, and some of 

them used some static variables in class files to indicate tuple definition. However, it still 

required users to change the code if they want to configure tuples by their own. 

In the following paragraphs, we are going to show our configurable tuple design and 

implementation. We believe that every tuple contains several elements, which could be a 

string or an integer. For an integer, we know that its corresponding bytes length is 4, but for a 

string, we need to specify the maximal length of the string, thus we know its corresponding 

bytes length is the string maximal length. As we know each element’s length, we can easily 

calculate the entire tuple length by adding up them. The next thing matters is the order of 

those elements. The solution for this issue, is adding an attribute name id to each element. 
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Also, we need a name attribute, so that the user will have a better identification and 

understanding to all elements. The last thing that we want to take care about, is the primary 

key of this tuple. For example, suppose we have the tuple being composed of A, B, C, D, 

four elements, and the key is C, D, A. Our solution is to add an another attribute named key 

order to each element. Key orders start from 1, and will increase by 1 for the next element, 

the key order for non-key elements are -1. So, in the given example, A.keyorder = 3, 

B.keyorder = -1, C.keyorder = 1, D.keyorder = 2. In this example, let us complete other 

attributes for A, B, C, D, and write a configuration xml file as a conclusion. We suppose: 

A is employee id, an integer, length is 4 

B is department name, a string, length is 5 

C is employee name, a string, length is 10 

D is employee salary, an integer, length is 4 

So the tuple configuration file looks like: 

<?xml version="1.0" encoding="UTF-8"?> 
<TupleConfiguration Name="Emp"> 
 <Attribute id="1" name="Id" type="Integer" length="4" keyorder="3"></Attribute> 
 <Attribute id="2" name="DName" type="String" length="5" keyorder="-
1"></Attribute> 
 <Attribute id="3" name="Name" type="String" length="10" 
keyorder="1"></Attribute> 
 <Attribute id="4" name="Salary" type="Integer" length="4" 
keyorder="2"></Attribute> 
</TupleConfiguration> 
 

Our user configurable tuple definition is general, and can be applied to some other 

utilities, like linear hashing, internal sorting and so on. Details about how tuple class is being 

created and tuple comparison methods, will be introduced in the next chapter. 
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A user configurable B-tree 

Similar to the tuple definition, we also want B-tree to be a user configurable concepts. 

Since B-tree is required to be persistent in storage, we need to keep track of B-tree’s name, 

root page id, sequence page id. Also, for demoing a depth over 5 with less data, we should 

add a concept of used page size of B-tree nodes. At last, in order to track of how many pages 

being allocated for B-tree, we can have an element called number of pages. Here is the B-tree 

configuration file looks like: 

<?xml version="1.0" encoding="UTF-8"?> 
<BTreeConfiguration Name="BTreeEmpConfig"> 
 <RootPageId>-1</RootPageId> 
 <SequencePageId>-1</SequencePageId> 
 <BTreeName>BTreeEmp</BTreeName> 
 <PageSizeUsed>256</PageSizeUsed> 
 <NumberOfPages>0</NumberOfPages> 
</BTreeConfiguration> 

There are two modes in B-tree’s initialization, the first one is initialization of an 

empty B-tree, in this case, we are only using BTreeName and PageSizeUsed information in 

the B-tree configuration file. The second one is initialization of an existed B-tree, therefore, 

we are all elements information from this configuration file. 
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CHAPTER 3.    IMPLEMENTATION DETAILS 

CyUtils B-tree Commands 

As we already introduced how to register CyUtils commands in CyDIW system 

configuration. Now, we want to illustrate how those commands being parsed and processed. 

In order to recognize and handle all commands starting with the prefix “CyUtils”, we need a 

specific adapter class and make an incremental compilation into the CyDIW system. In 

CyUtilsAdapter class, the constructor is receiving CyDIW gui instance as a parameter. Since 

we need to use CyDIW storage, so we make a method call of CyDIW gui in order to get the 

storageutils instance. By doing so, we are connected with CyDIW storage, and could interact 

with CyDIW GUI panel. 

In the adapter class, we are separating commands into a string list by spaces. The first 

parameter in the string list denotes what utility function will be called. For example, in 

CyDIW panel, if we typed: 

$CyUtils:> CreateBTreeEmpty <BTreeConfigFile> <TupleConfigFile>; 

In this case, the first parameter is CreateBTreeEmpty, and the B-tree constructor will 

be called, then the newly created B-tree will be initialized as an empty B-tree. After all 

creating and initializing are done, the store B-tree information methods will be called, and B-

tree’s information will be backed up into BTreeConfigFile and storage catalog file. 

In CyUtils, we have designed the following commands, majorly for B-tree utilities: 

List commands 

$CyUtils:> list commands; 

List all commands for all CyUtils commands. 
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BTreeCreateEmpty 

$CyUtils:> BTreeCreateEmpty <BTreeConfigXmlFile> <TupleConfigXmlFile>; 

Create and initialize an empty B-tree. The rest two parameters are B-tree 

configuration file and tuple configuration file. 

BTreeShowRootAndSequencePageId 

$CyUtils:> BTreeShowRootAndSequencePageId <BTreeConfigXmlFile>; 

Print an existed B-tree’s root page id and sequence page id. 

BTreePrepareSortedData  

$CyUtils:> BTreePrepareSortedData <TupleConfigXmlFile> <TupleTxtFile>; 

Prepare sorted tuples according to tuple configuration file. All data will be stored in 

the tuple txt file. The prepared data will be used in B-treeBulkLoad 

BTreeBulkLoad  

$CyUtils:> BTreeBulkLoad <BTreeConfigXmlFile> <TupleConfigXmlFile> 

<TupleTxtFile>; 

Perform bulk loading for an empty B-tree. In order to bulk load sorted data into a B-

tree. Frist, we need to create and initialize an empty B-tree according to the tuple 

configuration and B-tree configuration files. Then load data from tuple txt file by our data 

reading iterator. This iterator will produce a byte array for each tuple. Our B-tree bulk 

loading method will take the iterator, and load all tuples into the B-tree eventually. 

BTreeInsert  

$CyUtils:> BTreeInsert <BTreeConfigXmlFile> <TupleConfigXmlFile> [OneTuple]; 

B-tree insertion is conducted by this command in our CyDIW environment. In order 

to successfully insert one tuple into our B-tree. We need to offer B-tree configuration file and 

tuple configuration file, and load the existing B-tree according to those configuration files. 
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CyUtilsAdapter class will parse [OneTuple] to be a string array, then convert the string array 

to be a byte array which represents the tuple in a binary format. Eventually, the tuple (binary 

array) will be inserted through B-tree class’s insertion method. 

BTreeSequenceScan  

$CyUtils:> BTreeSequenceScan <BTreeConfigXmlFile> <TupleConfigXmlFile>; 

In some cases, we want to take a quick look at B-tree data in text format. For 

example, we insert several unsorted tuples into the B-tree, and want to examine whether B-

tree is organized in a sorted order. To use B-tree sequential scan, we need to add B-tree 

configuration and tuple configuration files, so that we can load the existed B-tree by its 

configuration, then sequentially visit each page, and print tuples in a text format. 

BTreeSecondaryBulkLoad 

$CyUtils:> BTreeSecondaryBulkLoad <BTreeConfigXmlFile> <TupleConfigXmlFile> 

<SecondaryBTreeConfigXmlFile> <SecondaryTupleConfigXmlFile>; 

 We assume that index and sequence nodes in a secondary B-tree use the same size 

pages, and the secondary B-tree is built from the primary B-tree, with a given secondary 

tuple configuration and B-tree configuration. The BTreeSecondaryBulkLoad command 

invokes the primary B-tree to produce records iteratively, then transform them according to 

the secondary tuple configuration, with an origin page pointer, which will be eventually 

loaded into the secondary B-tree. 

BTreeSecondarySequenceScan 

$CyUtils:> BTreeSecondarySequenceScan <BTreeConfigXmlFile> <TupleConfigXmlFile> 

<SecondaryBTreeConfigXmlFile> <SecondaryTupleConfigXmlFile>; 

In order to examine the correctness of the secondary B-tree, we can iteratively visit 

every tuple (with the page pointer), then search the primary tuple with the given secondary 



22 

key inside the specific page (by the page pointer). Those primary tuples will be printed after 

being transformed from binary format to text format. 

BTreeDelete 

$CyUtils:> BTreeDelete <BTreeConfigXmlFile> <TupleConfigXmlFile>; 

Sometimes we want to delete the entire B-tree to free some space for the future usage. 

The BTreeDelete command calls the delete method which will go through all the index and 

sequence nodes from top to bottom, and de-allocate all those nodes. The BTreeDelete should 

de-allocate exactly the same number of pages as the B-tree has. 

Tuple Compare 

$CyUtils:> TupleCompare [TupleOne] [TupleTwo] <TupleConfigXmlFile>; 

As we mentioned previously, our tuple definition is fully configurable. In our 

implementation, we allow Tuple class to do the comparison on the flyer, which means all 

comparison with tuples inside the storage, will be conducted in the buffer memory. It 

significantly saves time and space wasted in generating keys from tuples. 

Tuple Comparison 

The logic of tuple comparison on the flyer is to create a key bytes array, and use it as 

an index when we are trying to compare two tuples. Let us take the tuple configuration in 

chapter 2, and explain our tuple comparison algorithm based on this example. 

<?xml version="1.0" encoding="UTF-8"?> 
<TupleConfiguration Name="Emp"> 
 <Attribute id="1" name="Id" type="Integer" length="4" keyorder="3"></Attribute> 
 <Attribute id="2" name="DName" type="String" length="5" keyorder="-
1"></Attribute> 
 <Attribute id="3" name="Name" type="String" length="10" 
keyorder="1"></Attribute> 
 <Attribute id="4" name="Salary" type="Integer" length="4" 
keyorder="2"></Attribute> 
</TupleConfiguration> 
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According to this configuration file, the tuple is composed of [A, B, C, D], where A 

takes 4 bytes, B takes 5 bytes, C takes 10 bytes, and D takes 4 bytes. So we could easily 

know that: bytes[0-3] represents A, bytes[4-8] represents B, bytes[9-18] represents C, and 

bytes[19-22] represents D. Consider the key [C, D, A], it actually is bytes[9-18], followed by 

bytes[19-22], followed by bytes[0-3]. 

If we using an array (key importance array) to indicate the importance of each byte in 

the key definition, then we will have: 

[14,15,16,17, -1,-1,-1,-1,-1, 0,1,2,3,4,5,6,7,8,9, 10,11,12,13] 

Here, -1 means non-key bytes, 0 means the most import byte, 1 means the second 

import byte, and so on. We can see, The first ten import bytes are actually attribute C, then 

attribute D, then attribute A. If we convert the key importance array to the keyr order array, 

we will have: 

[9,10,11,12,13,14,15,16,17,18,19,20,21,22,0,1,2,3,-1,-1,-1,-1,-1] 

the first element 9 means the most import byte is the 9th one, then 10th, and so on. If 

we encounter -1, that means there is no key bytes any more. 

In tuple comparison, the key order serves like a ruler. In this example, each time 

when we want to compare two tuples, we first check byte 9, then byte 10, then byte 11, and 

so on. If at somewhere, two bytes are not equal, we could immediately determine what to 

output. If we encounter a -1 in key order array (the ruler), then we simply return 0, since two 

tuples are equal from the key perspectives.  

B-tree parsing and storing 

B-tree is configurable and persistent in our storage, since we are using both storage 

catalog file and B-tree configuration file to store critical information, such as root page id, 

sequence page id, B-tree name and so on. Compare to tuple definition, our B-tree parsing and 
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storing are pretty simple and straightforward. We created a class to be responsible for 

information parsing and storing, and defined two modes for initializations of B-tree. 

The first mode is initialization of an empty B-tree. Under this mode, we first create an 

empty B-tree, with a system allocated root page id (it is also a sequence page id). Then we 

load B-tree name and pageSizeUsed information from parsing the B-treeConfiguration file. 

After everything has been done, we update both B-treeConfiguration file and storage catalog 

file. 

The second mode is initialization of an existed B-tree. Under this mode, we first 

create an empty B-tree without root page or sequence page information. After that, we load 

B-tree name, page id, numberOfPages and pageSizeUsed information from parsing the B-

treeConfiguration file. After current command session is done, we update both B-

treeConfiguration file and storage catalog file. 

B-tree Insertion 

Our B-tree insertion algorithm starts with two parameters, the first one is B-tree root 

page id, the second one is the byte tuple. We are using B-tree search algorithm to find an 

insertion point, and it will return us a parent path. There are three scenarios might occur: 

 

Figure 4 B-tree insertion, leaf node is not full 
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The best case we could encounter is the leaf node is not full at the bottom, we can 

directly insert the given tuple into the leaf node. 

 

Figure 5 B-tree insertion, recursively split and insert bottom-up 

Another scenario is the leaf node is not full, so that we need to split and insert 

bottom-up, until one internal index node is not full. During the split procedure, we divide 

current node into two halves, and create a new node to store the right half. A key-pointer pair 

will be generated after splitting. The key in the mid of the previous node, the left pointer is 

the previous node id, and the right pointer is the newly created node id. After current level 

splitting is done, insert this key-pointer pair into the upper level along the parent path. 

 

Figure 6 B-tree insertion, all nodes in the insertion way are full, create a new root node 
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Under the worst case of B-tree insertion, all nodes along the parent path are full, so 

that we have to keep splitting and inserting along the way, and create a new root node 

eventually. In this case, times of splitting equal to the previous height of the tree, say h, and it 

requires 2*h, and data transferring during splitting is linear against page size used at each 

level. 

Full details about B-tree insertion are in the algorithm pseudo code below. 

B-tree insertion algorithm pseudo code 

B-treeInsert(b, x){ 
 [parent_stack] = B-treeSearch(b, x) 
 pageId(leaf) = parent_stack.pop() 
 offset = bisect_leaf(pageId, x) 
 if(!isPageFull(pageId)){ 
  addOneTupleToSortedLeafPage(pageId, offset, x) 
 }else{ 
  //consider the leaf node split 
  take pageId[:offset]+x+pageId[offset:] as a whole sequence WS 
  in WS find mid 
  pageId <- WS[:mid+1] 
  new_pageId <- WS[mid+1:] 
  (leftPtr, key, rightPtr) <- (pageId, midTuple, new_pageId) 
  while(parent_stack != NULL){ 
   pageId(index) = parent_stack.pop() 
   offset = bisect_index(index, key/midTuple) 
   if(!isPageFull(pageId)){ 
    addOneIndexToSortedIndexPage(pageId, offset, key, rightPtr) 
    return true //call a end of B-treeInsert, since everything has 
been completed! 
   }else{ 
    //need to split index page 
    take pageId[:offset] + key + pageId[offset:] as a whole index 
WI 
    in WI find mid 
    pageId <- WI[:mid+1] 
    new_pageId <- WI[mid+1:] 
    (leftPtr, key, rightPtr) <- (pageId, midTuple, new_pageId) 
   } 
  } // end while 
  // split root b(), make a new root b' to replace the original b, then return true 
  take pageId[:offset] + key + pageId[offset:] as a whole index WI 
  in WI find mid 
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  pageId <- WI[:mid+1] 
  new_pageId <- WI[mid+1:] 
  (leftPtr, key, rightPtr) <- (pageId, midTuple, new_pageId) 
  b' = createNewIndex() 
  set b' to be B-tree's new root page id 
  addOneIndexToEmptyIndexPage(b', leftPtr, key, rightPtr) 
  return true 
 } 
 return false 
} 

B-tree Bulk Loading 

Bulk loading is used when we have an empty B-tree and a sorted dataset, we can load 

all those tuples in an efficient way comparing with insert them sequentially. The major 

difference between insertion and bulk loading is how tuples get added into the B-tree. In B-

tree insertion, a tuple is inserted in somewhere in the leaf. However, in B-tree bulk loading, 

since all tuples are sorted according to the primary key, we can keep track of all appending 

position at each level of B-tree. If current level node is not full, we directly append data at the 

place, otherwise, we create a new node and add the data, then keep appending on the upper 

level until one internal index node is not full, or a new root node is being created. 

This is called B-tree bulk loading in a pyramid way. In the loading procedure of each 

tuple, there are also three major scenarios we need to consider. 

1. The leaf node is not full. We can directly append tuple into it. 

2. The leaf node is full. We should keep creating new node and appending until one 

internal index node is not full.  

3. Under the worst case, the root node is also full. We need to create a new root node, 

and insert key-pointer pair into it. 

Here is a figure of showing how B-tree bulk loading is done. 
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Figure 7 B-tree bulk loading in a pyramid style 

The following algorithm pseudo code shows up more details about B-tree bulk 

loading. 

B-tree bulk loading algorithm pseudo code 

B-treebulkloading() { 
 stk += [root, page_header_size], 
 for (x : X) { 
  pageId, offset = stk.pop() 
  if (offset + len(x) < sizeof(page)) { 
   // Leaf node is not full, can directly insert tuple into leaf page 
   addToLeaf(pageId, offset, x) 
   offset += len(x) 
   stk += [pageId, offset], 

} else { 
 new_leafPageId <- [x] 
 (leftPtr, key, rightPtr) <- (pageId, generateKey(x), new_leafPageId) 
 tmp_stk = [new_leafPageId, page_header_size+len(x)] 
 while (stk != NULL) { 
  indexId, offset = stk.pop() 
  if (indexId not full) { 

 addToIndex(indexId, offset, key, rightPtr) 
     offset += len(key) + len(rightPtr) 
     tmp_stk += [indexId, offset], 
     while tmp_stk: 
      stk += tmp_stk.pop(), 
     continue // go to next element x 

} else { 
 // add a new index 
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 new_indexId <- (leftPtr, key, rightPtr) 
 (leftPtr, key, rightPtr) <- (indexId, key,new_indexId) 

     tmp_stk += [new_indexId, 
default_offset+len(key+2*ptr)] 

} 
} 
// add a new root 

   new_indexId <- (leftPtr, key, rightPtr) 
   set new_indexId to be B-tree’s new root page id 
   tmp_stk += [new_indexId, offset+len(key+2*ptr)], 
   while tmp_stk: 
    stk += tmp_stk.pop(), 

} 
} 

} 

PTC Framework 

In order to make a clear division on data operations between user and client, a two 

ended iterator-based framework called PTC, short for produce, transform, consume, is 

offered that produces one record at a time, the record is optionally processed, and then 

consumed. 

PTC framework allows everyone works individually under a clear division, and they 

can collaborate with each other to perform the whole data operation process. More 

specifically, P concentrates on producing records iteratively on some given datasets. T plays 

a role on each record’s operations, such as selection and projection. And C works as a 

consumer which can iteratively take the transformed records from T, and consume them to 

perform the entire process. For example, in database queries, we usually encounter some 

operations that require to print projected data on some attributes for a dataset. It can be 

translated into a producer iteratively produce data from the existing dataset, then the 

transformer makes a projection on each produced data, finally the consumer take each 

transformed data into next operation, here it is printing. 
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Our B-tree implementation is following PTC framework, here are two examples 

about PTC usage of B-tree on both sides: bulk loading and sequential printing. In our B-tree 

bulk loading demos, users are only concern how dataset is given, they just need to provide 

the P iterator that can produce text record from the given dataset. T is responsible for 

transforming text record to binary format. Eventually, our B-tree servers as the C side, which 

iteratively takes sorted binary records and appending them into the B-tree. In sequential 

printing, our B-tree is the P side, the P iterator produces binary records, and T transforms a 

binary record to text, which is then consumed by C, that simply prints it. 
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CHAPTER 4.    EXPERIMENTS 

Experiment Settings 

Our B-tree experiments are organized in a demos folder. The relative path is 

CyDIW_root/cyutils/B-tree/demos. All user configuration and data files are organized in a 

workspace folder. The relative path is CyDIW_root/cyutils/B-tree/workspace. Experiments 

are loaded into CyDIW commands panel, and runned with CyDIW GUI. 

Tuple Comparison 

In this experiment, we want to examine the functionality of our tuple class and 

general tuple comparison idea. Here, in the first sub-experiment, we keep using the same 

tuple configuration as what we showed in chapter 2 and chapter 3. In the second sub-

experiment we change the key order settings to test the configurability of our general tuple 

definition. 

First sub-experiment: 

According to the following tuple configuration: 

<?xml version="1.0" encoding="UTF-8"?> 
<TupleConfiguration Name="Emp"> 
 <Attribute id="1" name="Id" type="Integer" length="4" keyorder="3"></Attribute> 
 <Attribute id="2" name="DName" type="String" length="5" keyorder="-
1"></Attribute> 
 <Attribute id="3" name="Name" type="String" length="22" 
keyorder="1"></Attribute> 
 <Attribute id="4" name="Salary" type="Integer" length="4" 
keyorder="2"></Attribute> 
</TupleConfiguration> 

We are trying to compare the relationship between two tuples: 

[1, EE, Jack, 80000] and [2, COMS, Tom, 90000] 

As we known, in this tuple configuration, the key is Name, followed by Salary, then 

followed by Id. So [1, COMS, Jack, 80000] is apparently smaller than [2, EE, Tom, 90000]. 
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The commands output should be -1 which represents the first tuple is smaller than the second 

tuple. 

Afterwards, we try to switch two tuples, make [2, EE, Tom, 90000] to be the first 

tuple, and [1, COMS, Jack, 80000] to be the second tuple. Then the commands output should 

be 1 which represents the first tuple is larger than the second tuple. 

Then we compare two tuples that are exactly the same on key attributes. The 

comparison results for [1, EE, Jack, 80000] and [1, COMS, Jack, 80000] should be 0 since 

they are equal from the key perspective. 

After that, we want to modify the key order of tuple configuration a bit. As showed in 

the following, we make the key to be DNAME, followed by Salary, then followed by Id. 

Then the relationship between those two tuples: [1, EE, Jack, 80000] and [2, COMS, 

Tom, 90000]. We could easily know that the second one is smaller than the first one. So the 

commands output should be since [1, EE, Jack, 80000] is larger than [2, COMS, Tom, 

90000]. Then we switch the first tuple and the second tuple, our expecting output is -1. 

Finally we compare two modified tuples where they have the same key, we should get 0 from 

the CyDIW output panel. 

Comparison Experiment Commands: 

$CyUtils:> TupleCompare TupleConfig.xml [1, EE, Jack, 80000] [2, COMS, Tom, 90000]; 

Output is 1 

$CyUtils:> TupleCompare TupleConfig.xml [2, COMS, Tom, 90000] [1, EE, Jack, 80000]; 

Output is -1 

$CyUtils:> TupleCompare TupleConfig.xml [1, EE, Jack, 80000] [1, COMS, Jack, 80000]; 

Output is 0 
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B-tree Insertion 

In this experiment, we are going to create an empty B-tree, and insert several unsorted 

tuples into it. Before end this session, we call a sequential scan to print all tuples in text 

format onto the console. The output should be in an increasing order since B-tree can 

organize them to be sorted. Here are the tuple configuration and B-tree configuration we are 

using in this experiment. 

Insertion Experiment Tuple Configuration 

<?xml version="1.0" encoding="UTF-8"?> 
<TupleConfiguration Name="Emp"> 
 <Attribute id="1" name="Id" type="Integer" length="4" keyorder="1"></Attribute> 
 <Attribute id="2" name="Name" type="String" length="22" keyorder="-
1"></Attribute> 
 <Attribute id="3" name="DName" type="String" length="5" keyorder="-
1"></Attribute> 
 <Attribute id="4" name="Salary" type="Integer" length="4" keyorder="-
1"></Attribute> 
</TupleConfiguration> 

Insertion Experiment B-tree Configuration 

<?xml version="1.0" encoding="UTF-8"?> 
<BTreeConfiguration Name="BTreeConfigInsertion"> 
 <RootPageId>-1</RootPageId> 
 <SequencePageId>-1</SequencePageId> 
 <BTreeName>BTreeInsertion</BTreeName> 
 <PageSizeUsed>256</PageSizeUsed> 
 <NumberOfPages>0</NumberOfPages> 
</BTreeConfiguration> 

Insertion Experiment Commands: 

$CyUtils:> BTreeCreateEmpty BTreeConfig.xml TupleConfig.xml 

Output: Create an empty B-tree according to two user configuration files, and store the 

critical information of B-tree in BTreeConfig.xml. Deliver a message “Successfully create an 

empty B-tree” if no error prompt, otherwise deliver the error information. 

$CyUtils:> BTreeInsert BTreeConfig.xml TupleConfig.xml [1, EE, Jack, 80000] 
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Output: Convert the tuple from text format to binary format, then insert the binary tuple into 

B-tree, update BTreeConfig.xml if necessary. Deliver a message “Successfully insert a tuple 

into B-tree” if no error prompt, otherwise deliver the error information. 

$CyUtils:> BTreeSequenceScan BTreeConfig.xml TupleConfig.xml 

Output: Sequentially scan all B-tree leaf nodes, and print them onto console in text format, so 

that we could see if our B-tree could manage unsorted insertion data in a sorted order. 

Tuples to be inserted: 

[2, Michael, COMS, 100000] 

[3, Jack, EE, 90000] 

[7, Helen, PHYS, 80000] 

[8, Jeff, CHEM, 90000] 

[1, Kate, ENGL, 60000] 

[6, Kevin, ALG, 70000] 

[4, Osborn, ME, 80000] 

[5, Jason, SPORT, 120000] 

Sequentially scan output is: 

Id: 1, Name: Kate, DName: ENGL, Salary: 60000 

Id: 2, Name: Michael, DName: COMS, Salary: 100000 

Id: 3, Name: Jack, DName: EE, Salary: 90000 

Id: 4, Name: Osborn, DName: ME, Salary: 80000 

Id: 5, Name: Jason, DName: SPORT, Salary: 120000 

Id: 6, Name: Kevin, DName: ALG, Salary: 70000 

Id: 7, Name: Helen, DName: PHYS, Salary: 80000 

Id: 8, Name: Jeff, DName: CHEM, Salary: 90000 
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B-tree Bulk Loading 

In this experiment, we are going to generate 10000 sorted tuples, and save them into a 

txt file in the workspace. Afterwards, we create an empty B-tree according to our tuple and 

B-tree configurations, then bulk load all tuples in the data file to our B-tree in the storage. 

The bulk loading process are divided into two parts. First, we use a data generator to 

generate a sequence of sorted tuples to txt files in workspace folder. After data generation has 

been done, we can open an iterator which can read the data file and produce a byte tuple each 

time. Then, the B-tree bulkload method will take the iterator as the parameter, and iteratively 

load all tuples in the data file. A sequential scan can be called to test the correctness after 

bulk loading is done. 

Bulk Loading Experiment Commands: 

$CyUtils:> BTreeCreateEmpty BTreeConfigBulk.xml TupleConfigBulk.xml; 

Output: Create an empty B-tree, message is delivered accordingly. 

$CyUtils:> BTreePrepareSortedData TupleConfigBulk.xml Tuples.txt; 

Output: Generate a sorted dataset according to the given tuple configuration, and store the 

data in Tuples.txt file. 

$CyUtils:> BTreeBulkLoad BTreeConfigBulk.xml TupleConfigBulk.xml Tuples.txt; 

Output: A binary tuple generator will read Tuples.txt file line by line, and prompt binary 

arrays (binary tuple) iteratively. B-tree bulkload method takes the generator, and iteratively 

load all binary tuples into newly created B-tree. Deliver error messages if necessary. 

$CyDB:> getPageAllocatedCount; 

Output: get page allocated count for the B-tree utility client. 
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PageSizeUsed in B-tree bulk loading: 

In B-tree bulk loading experiment, we used page size used property, in order to get a 

small fan-out, so that we could have a large height without huge dataset. In the first bulk 

loading experiment, we set PageSizeUsed to be 256 bytes. It can help us get a B-tree of 

height 4 with 10000 tuples. We also conduct another bulk loading experiment with full page 

size, that one can give us a B-tree of height 2 with 10000 tuples when full page size is equal 

to 16 KB. The experiment where PageSizeUsed equals to 256, is using the same B-tree 

configuration. The bulk loading experiment of full page size is using the following B-tree 

configuration: 

<?xml version="1.0" encoding="UTF-8"?> 
<BTreeConfiguration Name="BTreeConfigBulkLoad"> 
 <RootPageId>-1</RootPageId> 
 <SequencePageId>-1</SequencePageId> 
 <BTreeName>BTreeBulkLoad</BTreeName> 
 <PageSizeUsed>16384</PageSizeUsed> 
 <NumberOfPages>0</NumberOfPages> 
</BTreeConfiguration> 

16KB size of page can significantly increases the fan-out of each node, and decrease 

the page allocated for loading the same data 

Secondary B-tree 

Tuples inside the secondary B-tree consist of two parts: the secondary key, and the 

page pointer where the primary tuple (denoted by the secondary key) exists. Ideally, the user 

should give an independent secondary key which can also uniquely identify full records in 

the primary B-tree. But here, we are using the same key of the primary B-tree as a secondary 

index. Configurations of the primary B-tree and tuple, and the secondary B-tree 

configuration, are similar to the previous insertion and bulk loading (PageSizeUsed equals to 
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256) experiment, but with a different BTreeName to differentiate with the previous created 

B-trees. The secondary tuple configuration is given as the following: 

<?xml version="1.0" encoding="UTF-8"?> 
<SecondaryTupleConfiguration Name="Secondary"> 
 <Attribute id="1" name="Id" type="Integer" length="4" keyorder="1"></Attribute> 
 <Attribute id="2" name="PagePointer" type="Integer" length="4" keyorder="-
1"></Attribute> 
</SecondaryTupleConfiguration> 

We divide this experiment into two major parts, in the first one, we create and load a 

secondary B-tree, then sequential scan the secondary B-tree. The creation of the secondary 

B-tree is just like normal B-tree creation, the system will allocate a new root page, and 

update with the secondary B-tree configuration file. Our secondary B-tree loading invokes 

the primary B-tree as the producer, which can iteratively produce records in a binary format. 

The transformer converts a full record into the secondary key format with a page pointer 

(which is an integer). Finally, those converted bytes are consumed by the newly created 

secondary B-tree via C. In the secondary B-tree sequential scan experiment, the 

SecondaryBTreeSequenceScan command calls secondary B-tree as an iterator to produce 

secondary key and page pointer iteratively, then the transformer will search the secondary 

key in the given page pointer, and convert a full record into text format sequentially, then 

consume by C, which simply prints it. 

Secondary B-tree Creation and Loading Commands: 

$CyUtils:> BTreeCreateEmpty SecondaryBTreeConfig.xml SecondaryTupleConfig.xml; 

Output: Create an empty B-tree, which is a secondary index of an existing dataset. 

$CyUtils:> BTreeSecondaryBulkLoad BTreeConfig.xml TupleConfig.xml 

SecondaryBTreeConfig.xml SecondaryTupleConfig.xml; 
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Output: Produce full records iteratively from the primary B-tree, bulk load secondary tuples 

and page pointers into the secondary B-tree. 

Secondary B-tree Sequence Scan Commands: 

$CyUtils:> BTreeSecondarySequenceScan BTreeConfig.xml TupleConfig.xml 

SecondaryBTreeConfig.xml SecondaryTupleConfig.xml; 

Output: Iteratively produce secondary keys with page pointers, search full tuples in the page 

pointers with the corresponding secondary keys. Simply convert the full tuples to text format 

and print them. 
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APPENDIX A.    B-TREE UTILITIES API 

TupleAttribute 

public class TupleAttribute{ 
 private String name; 
 private String type; 
 private int length; 
 private int keyOrder; 
 
 public void setName(); 
 public void setType(); 
 public void setLength(); 
 public void setKeyOrder(); 
 public String getName(); 
 public String getType(); 
 public int getLength(); 
 public int getKeyOrder(); 
} 
 

Tuple  

 
public class Tuple { 
 private int length; 
 private int keyLength; 
 private int[] keyBytes; 
 private int attributeNum; 
 private List<TupleAttribute> tupleAttributes; 
 
 // Constructor 
 public Tuple(String tupleConfigXmlFile); 
  
 // public methods 
 public int getLength(); 
 public int getKeyLength(); 
 public int getAttributeNum(); 
 public List<TupleAttribute> getTupleAttributes(); 
 public byte[] generateKey(byte[] record); 
 public byte[] geberateKey(byte[] buffer, int offset); 
 public int compare(byte[] one, byte[] two); 
 public int compare(byte[] buffer, byte[] record, int offset); 
 public int compareKey(byte[] buffer, byte[] record, int offset); 
} 
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B-tree 

public class BTree { 
 private String name; 
 private StorageUtils stoUtils; 
 private StorageManagerClient stoMgrClient; 
 private StorageDirectoryDocument xmlParser; 
 private int rootPageId = -1; 
 private int sequencePageId = -1; 
 private int pageSizeused = 256; 
 private Tuple tupleDefinition; 
 public StorageUtils getStorageUtils(); 
 public StorageManagerClient getStorageManagerClient(); 
 public int getRootPageId(); 
 public int getSequencePageId(); 
 public getName(); 
 public getTupleDefinition(); 
 public setRootPageId(int rootPageId); 
 public setSequencePageId(int sequencePageId); 

// constructor 
public BTree(StorageUtils stoUtils, Tuple tupleDefinition); 
// other methods 
public void initializeBTreeFromEmpty(String BTreeConfigXmlFile); 
public void initializeBTreeFromXml(String BTreeConfigXmlFile); 
public void storeB-treeToXml(String BTreeConfigXmlFile); 
public int bisect_leaf(int pageId, byte[] tuple); 
public int bisect_index(int pageId, byte[] key); 
public int bisect_pointer(int pageId, byte[] key); 
public void addOneTupleToSortedLeafPage(int pageId, int offset, byte[] 
tuple); 
public void addOneIndexToEmptyIndexPage(int pageId, int leftPtr, byte[] key, 
int rightPtr); 
public void addOneIndexToSortedIndexPage(int pageId, int offset, byte[] key, 
int rightPtr); 
public List<Integer> BTreeSearch(int rootpageId, byte[] record); 
public boolean isLeafPage(int pageId); 
public int createNewLeaf(); 
public int createNewIndex(); 
public boolean isPageFull(int pageId); 
private List<Object> splitLeafNode(int pageId, int offset, byte[] record); 
private List<Object> splitIndexNode(int pageId, int offset, byte[] key, int 
rightPtr); 
public void BTreeBulkLoad(Iterator iter); 
public void BTreeInsert(int rootPageId, byte[] record); 
public int printAllTuples(int pageId); 

} 
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APPENDIX B.    COMMANDS 

B-tree Insertion 

/* 
Step 0. Create and Load Storage 
*/ 
$CyDB:> createStorage QuickStorageConfig.xml; 
$CyDB:> loadStorage QuickStorageConfig.xml; 
 
/* 
Step 1. Dispaly configuration files 
*/ 
$CyDB:> displayXML  .\cyutils\btree\workspace\BTreeConfig.xml; 
$CyDB:> displayXML .\cyutils\btree\workspace\TupleConfig.xml; 
 
/* 
Step 2. Declare variables for btree and tuple configuration file names 
*/ 
$CyDB:> declare string 
$$BTreeConfigFileName := .\cyutils\btree\workspace\BTreeConfig.xml; 
$CyDB:> declare string 
$$TupleConfigFileName := .\cyutils\btree\workspace\TupleConfig.xml; 
$CyDB:> list variables; 
 
/* 
Step 3. Lookup for pageAccesses 
and list CyUtils commands 
*/ 
$CyDB:> resetPageAccessRelativeCount; 
$CyDB:> getPageAllocatedCount; 
$CyDB:> getPageDeallocatedCount; 
$CyUtils:> list commands; 
 
/* 
Step 4. Build an empty BTree, and show its root&sequence page Id 
*/ 
$CyUtils:> BTreeCreateEmpty $$BTreeConfigFileName $$TupleConfigFileName; 
$CyUtils:> BTreeShowRootAndSequencePageId $$BTreeConfigFileName; 
 
/* 
Step 5. Insert 4 tuples into storage, show its root&sequence page Id afterwards. 
Then sequencially visit all leaf page, print tupels in console. 
*/ 
$CyUtils:> BTreeInsert $$BTreeConfigFileName $$TupleConfigFileName 
[2,Michael,COMS,100000]; 
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$CyUtils:> BTreeInsert $$BTreeConfigFileName $$TupleConfigFileName 
[3,Jack,EE,90000]; 
$CyUtils:> BTreeInsert $$BTreeConfigFileName $$TupleConfigFileName 
[7,Helen,PHYS,80000]; 
$CyUtils:> BTreeInsert $$BTreeConfigFileName $$TupleConfigFileName 
[8,Jeff,CHEM,90000]; 
$CyUtils:> BTreeShowRootAndSequencePageId $$BTreeConfigFileName; 
$CyUtils:> BTreeSequenceScan $$BTreeConfigFileName $$TupleConfigFileName; 
 
/* 
Step 6. Insert another 4 tuples into storage, show its root&sequence page Id,  
and print tuples in console afterwards. 
This experiment is on purpose of showing btree page splitting ability. 
*/ 
$CyUtils:> BTreeInsert $$BTreeConfigFileName $$TupleConfigFileName 
[1,Kate,ENGL,60000]; 
$CyUtils:> BTreeInsert $$BTreeConfigFileName $$TupleConfigFileName 
[6,Kevin,ALG,70000]; 
$CyUtils:> BTreeInsert $$BTreeConfigFileName $$TupleConfigFileName 
[4,Osborn,ME,80000]; 
$CyUtils:> BTreeInsert $$BTreeConfigFileName $$TupleConfigFileName 
[5,Janathan,SPORT,120000]; 
$CyUtils:> BTreeShowRootAndSequencePageId $$BTreeConfigFileName; 
$CyUtils:> BTreeSequenceScan $$BTreeConfigFileName $$TupleConfigFileName; 
 
/* 
Step 7. Show Directory and Lookup for pageAccesses 
*/ 
$CyDB:> showdirectory; 
$CyDB:> getPageAllocatedCount; 
$CyDB:> getPageDeallocatedCount; 

B-tree Bulk Loading (PageSizeUsed Equals to 256) 

/* 
Step 0. Create and Load Storage 
*/ 
//$CyDB:> createStorage QuickStorageConfig.xml; 
$CyDB:> loadStorage QuickStorageConfig.xml; 
 
/* 
Step 1. Dispaly configuration files 
*/ 
$CyDB:> displayXML  .\cyutils\btree\workspace\BTreeConfigBulk1.xml; 
$CyDB:> displayXML .\cyutils\btree\workspace\TupleConfigBulk1.xml; 
 
/* 
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Step 2. Declare variables for btree and tuple configuration file names 
*/ 
$CyDB:> declare string 
$$BTreeConfigBulk1 := .\cyutils\btree\workspace\BTreeConfigBulk1.xml; 
$CyDB:> declare string 
$$TupleConfigBulk1 := .\cyutils\btree\workspace\TupleConfigBulk1.xml; 
$CyDB:> declare string $$TuplesDataBulk1 := .\cyutils\btree\workspace\tuples_bulk1.txt; 
$CyDB:> list variables; 
 
/* 
Step 3. Lookup for pageAccesses 
and list CyUtils commands 
*/ 
$CyDB:> resetPageAccessRelativeCount; 
$CyDB:> getPageAllocatedCount; 
$CyDB:> getPageDeallocatedCount; 
$CyUtils:> list commands; 
 
/* 
Step 3. Build an empty BTree, and show its root&sequence page Id 
*/ 
$CyUtils:> BTreeCreateEmpty $$BTreeConfigBulk1 $$TupleConfigBulk1; 
$CyUtils:> BTreeShowRootAndSequencePageId $$BTreeConfigBulk1; 
 
/* 
Step 4. Prepare sorted data for BTree 
*/ 
$Cyutils:> BTreePrepareSortedData $$TupleConfigBulk1 $$TuplesDataBulk1; 
 
/* 
Step 5. BulkLoad auto generated sorted data into btree 
, and show page ids 
*/ 
$CyUtils:> BTreeBulkLoad $$BTreeConfigBulk1 $$TupleConfigBulk1 
$$TuplesDataBulk1; 
$CyUtils:> BTreeShowRootAndSequencePageId $$BTreeConfigBulk1; 
/* 
$CyUtils:> BTreeSequenceScan $$BTreeConfigBulk1 $$TupleConfigBulk1; 
*/ 
 
/* 
Step 6. Show directory 
*/ 
$CyDB:> showdirectory; 
 
/* 
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Step 7. Lookup for pageAccesses 
*/ 
$CyDB:> getPageAllocatedCount; 
$CyDB:> getPageDeallocatedCount;  

B-tree Bulk Loading (Full Page) 

/* 
Step 0. Create and Load Storage 
*/ 
//$CyDB:> createStorage QuickStorageConfig.xml; 
$CyDB:> loadStorage QuickStorageConfig.xml; 
 
/* 
Step 1. Dispaly configuration files 
*/ 
$CyDB:> displayXML  .\cyutils\btree\workspace\BTreeConfigBulk2.xml; 
$CyDB:> displayXML .\cyutils\btree\workspace\TupleConfigBulk2.xml; 
 
/* 
Step 2. Declare variables for btree and tuple configuration file names 
*/ 
$CyDB:> declare string 
$$BTreeConfigBulk2 := .\cyutils\btree\workspace\BTreeConfigBulk2.xml; 
$CyDB:> declare string 
$$TupleConfigBulk2 := .\cyutils\btree\workspace\TupleConfigBulk2.xml; 
$CyDB:> declare string $$TuplesDataBulk2 := .\cyutils\btree\workspace\tuples_bulk2.txt; 
$CyDB:> list variables; 
 
/* 
Step 3. Lookup for pageAccesses 
and list CyUtils commands 
*/ 
$CyDB:> resetPageAccessRelativeCount; 
$CyDB:> getPageAllocatedCount; 
$CyDB:> getPageDeallocatedCount; 
$CyUtils:> list commands; 
 
/* 
Step 3. Build an empty BTree, and show its root&sequence page Id 
*/ 
$CyUtils:> BTreeCreateEmpty $$BTreeConfigBulk2 $$TupleConfigBulk2; 
$CyUtils:> BTreeShowRootAndSequencePageId $$BTreeConfigBulk2; 
 
/* 
Step 4. Prepare sorted data for BTree 
*/ 
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$Cyutils:> BTreePrepareSortedData $$TupleConfigBulk2 $$TuplesDataBulk2; 
 
/* 
Step 5. BulkLoad auto generated sorted data into btree 
, and show page ids 
*/ 
$CyUtils:> BTreeBulkLoad $$BTreeConfigBulk2 $$TupleConfigBulk2 
$$TuplesDataBulk2; 
$CyUtils:> BTreeShowRootAndSequencePageId $$BTreeConfigBulk2; 
/* 
$CyUtils:> BTreeSequenceScan $$BTreeConfigBulk2 $$TupleConfigBulk2; 
*/ 
 
/* 
Step 6. Show directory 
*/ 
$CyDB:> showdirectory; 
 
/* 
Step 7. Lookup for pageAccesses 
*/ 
$CyDB:> getPageAllocatedCount; 
$CyDB:> getPageDeallocatedCount; 

Secondary B-tree 

/* 
Step 0. Create and Load Storage 
*/ 
//$CyDB:> createStorage QuickStorageConfig.xml; 
$CyDB:> loadStorage QuickStorageConfig.xml; 
 
/* 
Step 1. Dispaly configuration files 
*/ 
$CyDB:> displayXML  .\cyutils\btree\workspace\BTreeConfigS.xml; 
$CyDB:> displayXML .\cyutils\btree\workspace\TupleConfigS.xml; 
 
/* 
Step 2. Declare variables for primary B-tree and tuple configuration file names 
*/ 
$CyDB:> declare string $$BTreeConfigS := .\cyutils\btree\workspace\BTreeConfigS.xml; 
$CyDB:> declare string $$TupleConfigS := .\cyutils\btree\workspace\TupleConfigS.xml; 
$CyDB:> declare string $$TuplesDataS := .\cyutils\btree\workspace\tuples_dataS.txt; 
$CyDB:> list variables; 
 
/* 
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Step 3. list CyUtils commands 
*/ 
$CyUtils:> list commands; 
 
/* 
Step 3. Build an empty BTree, and show its root&sequence page Id 
*/ 
$CyUtils:> BTreeCreateEmpty $$BTreeConfigS $$TupleConfigS; 
$CyUtils:> BTreeShowRootAndSequencePageId $$BTreeConfigS; 
 
/* 
Step 4. Prepare sorted data for BTree 
*/ 
$Cyutils:> BTreePrepareSortedData $$TupleConfigS $$TuplesDataS; 
 
/* 
Step 5. BulkLoad auto generated sorted data into btree 
, and show page ids 
*/ 
$CyUtils:> BTreeBulkLoad $$BTreeConfigS $$TupleConfigS $$TuplesDataS; 
$CyUtils:> BTreeShowRootAndSequencePageId $$BTreeConfigS; 
 
/* 
$CyUtils:> BTreeSequenceScan $$BTreeConfigS $$TupleConfigS; 
*/ 
 
/* 
Step 6. Show directory 
*/ 
$CyDB:> showdirectory; 
 
/* 
Step 7. Lookup for pageAccesses 
*/ 
$CyDB:> getPageAllocatedCount; 
$CyDB:> getPageDeallocatedCount; 
 
/* 
Step 8. Declare variables for secondary B-tree and tuple configuration file names 
*/ 
$CyDB:> declare string 
$$SecondaryBTreeConfigS := .\cyutils\btree\workspace\SecondaryBTreeConfigS.xml; 
$CyDB:> declare string 
$$SecondaryTupleConfigS := .\cyutils\btree\workspace\SecondaryTupleConfigS.xml; 
$CyDB:> list variables; 
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/* 
Step 9. Build an empty secondary B-tree, and show root&sequence page Id of both primary 
and secondary B-trees 
*/ 
$CyUtils:> BTreeCreateEmpty $$SecondaryBTreeConfigS $$SecondaryTupleConfigS; 
$CyUtils:> BTreeShowRootAndSequencePageId $$BTreeConfigS; 
$CyUtils:> BTreeShowRootAndSequencePageId $$SecondaryBTreeConfigS; 
 
/* 
Step 10. Load for secondary B-tree via a PTC framework 
*/ 
$CyUtils:> BTreeSecondaryBulkLoad $$BTreeConfigS $$TupleConfigS 
$$SecondaryBTreeConfigS $$SecondaryTupleConfigS; 
$CyUtils:> BTreeShowRootAndSequencePageId $$SecondaryBTreeConfigS; 
 
/* 
Step 11. Secondary B-tree scan 
*/ 
$CyUtils:> BTreeSecondarySequenceScan $$BTreeConfigS $$TupleConfigS 
$$SecondaryBTreeConfigS $$SecondaryTupleConfigS; 
 
/* 
Step 12. Show directory 
*/ 
$CyDB:> showdirectory; 
 
/* 
Step 13. Lookup for pageAccesses 
*/ 
$CyDB:> getPageAllocatedCount; 
$CyDB:> getPageDeallocatedCount; 
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