
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2015

Automated blackbox GUI specifications
enhancement and test data generation
Mohammad Ali Darvish Darab
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Darvish Darab, Mohammad Ali, "Automated blackbox GUI specifications enhancement and test data generation" (2015). Graduate
Theses and Dissertations. 14351.
https://lib.dr.iastate.edu/etd/14351

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14351&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14351&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F14351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/14351?utm_source=lib.dr.iastate.edu%2Fetd%2F14351&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Automated blackbox GUI specifications enhancement and test data generation

by

Ali Darvish

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:

Carl K. Chang, Major Professor

Morris Chang

Samik Basu

Simanta Mitra

Xiaoqiu Huang

Iowa State University

Ames, Iowa

2015

Copyright c© Ali Darvish, 2015. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGEMENTS . viii

ABSTRACT . x

CHAPTER 1. INTRODUCTION . 1

CHAPTER 2. BACKGROUND . 5

2.1 Event-Driven GUIs . 5

2.2 Model-based GUI Testing Using Graph Models 6

2.2.1 Infeasible Test Cases . 8

2.3 Covering Arrays . 9

CHAPTER 3. GUI INVARIANT DISCOVERY AND VALIDATION FRAME-

WORK . 13

3.1 Constraint Discovery and Validation Framework 13

3.1.1 GUIDiVa . 13

3.1.2 Initialization and Test Case Replaying 14

3.1.3 Validity Weight Calculation . 16

3.1.4 Removing Conflicts . 18

3.1.5 Updating Test Suite . 18

3.1.6 Stopping Criteria . 18

3.2 Complexity Analysis . 19

3.3 Example . 19

iii

CHAPTER 4. EXPERIMENTAL STUDIES WITH GUIDiVa 22

4.1 Experiment Setup and Assumptions . 22

4.2 Experiments . 23

4.2.1 UNL.TOY.2010 . 23

4.2.2 Non-trivial Applications . 24

4.3 Research Questions . 25

4.3.1 RQ I . 25

4.3.2 RQ II . 27

4.3.3 RQ III . 29

4.4 Threats to Validity . 30

CHAPTER 5. BLACKBOX TEST DATA GENERATION FOR GUI TEST-

ING . 31

5.1 Motivation . 31

5.2 Blackbox Test Data Generation . 33

5.2.1 Identify parameterized widgets . 34

5.2.2 Extract key identifiers . 34

5.2.3 Processing key identifiers . 35

5.2.4 Finding valid and invalid test data . 36

5.3 Evaluation . 37

5.3.1 Experiment Setup and Assumptions . 37

5.3.2 Preliminary Experiment and Results . 38

CHAPTER 6. RELATED WORK . 41

6.1 GUI Testing Tools . 41

6.2 GUI-level System Testing . 42

6.3 Avoiding/Repairing Infeasible GUI Tests . 43

6.4 Combinatorial GUI Testing . 44

6.5 Automated Data Generation for Software Testing 44

iv

CHAPTER 7. FUTURE WORK . 46

7.1 GUI Specifications and Test Suite Enhancement 46

7.2 Test Data Generation for GUI Testing . 47

CHAPTER 8. CONCLUSION . 49

CHAPTER 9. BIBLIOGRAPHY . 50

v

LIST OF TABLES

Table 2.1 Full and intermediate-level coverage CAs with and without constraints 10

Table 3.1 Input test suites (failed event in bold font) 21

Table 4.1 Experiment results on UNL.TOY.2010 artifacts 23

Table 4.2 Non-trivial applications and event groups 25

Table 4.3 (D)isabled, (R)equires, (N)on-Consecutive, (I)nvalid, #(M)issed. #M

is the number of constraints found by human oracle that were not dis-

covered by the framework . 26

Table 4.4 Average results of five runs . 27

Table 4.5 GUIDiVa v.s. AutoInSpec . 29

Table 5.1 Subject applications . 38

Table 5.2 Results of the Blackbox-Random approach 39

Table 5.3 Results of the Random approach . 39

vi

LIST OF FIGURES

Figure 2.2 Edit menu snapshot . 12

Figure 2.4 EFG model for the edit menu . 12

Figure 2.5 Edit menu in a sample text editor application and corresponding graph

models . 12

Figure 3.1 GUI Constraints Discovery and Validation Framework 14

Figure 4.1 (T)otal: Total number of test cases in the test suite. (F)easible: Number

of feasible test cases in the test suite 28

Figure 5.1 Registration form . 32

Figure 5.2 Event Listener of the Submit Button 33

vii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincere gratitude to those who helped

me during the course of my PhD studies. First and foremost, I would like to thank my major

advisor Dr. Carl K. Chang for his guidance, patience and support throughout my research and

the writing of this dissertation. His insights and words of encouragement have often inspired

me and renewed my hopes for completing my graduate education.

I would also like to thank Dr. Simanta Mitra who not only provided insightful comments

on my research work, but also taught me a lot about teaching and mentorship; I had the

chance to assist him in a number of courses at ISU and I learned many things from him. I

thank Dr. Samik Basu for agreeing to write a recommendation letter for me and always being

supportive and understanding. His office door was always open to me and he provided me with

many helpful hints and guidance about my career plans. I had a number of fruitful technical

discussions with Dr. Morris Chang and I would like to thank him for his constructive comments

and constant support. I also extend my gratitude to Dr. Xiaoqiu Huang, another invaluable

member of my PhD committee.

My acknowledgement section would be incomplete without mentioning Dr. Myra Cohen

of the University of Nebraska-Lincoln. She was the one who initially taught me the basics

of GUI testing and search-based software engineering research during the time I spent at the

ESQuaRed laboratory at UNL. This dissertation is largely based on that training. So, thank

you very much Dr. Cohen.

Last but not least, I would like to thank my dad, my sister, and my mom whom I lost

forever while I was thousands of miles away from home. Mom, you were, are and will remain

the dearest in my heart. Dad, you are my hero. Words cannot express what you have done for

me and the family; thanking you here is the least of things I can do.

viii

There are many other people and organizations who have helped me over the years to get

to where I am today. While their names do not appear here, I would still like to express my

sincere gratitude to them.

ix

ABSTRACT

Applications with a Graphical User Interface (GUI) front-end are ubiquitous nowadays.

While automated model-based approaches have been shown to be effective in testing of such

applications, most existing techniques produce many infeasible event sequences used as GUI

test cases. This happens primarily because the behavioral specifications of the GUI under test

are ignored. In this dissertation we present an automated framework that reveals an important

set of state-based constraints among GUI events based on infeasible (i.e., unexecutable or

partially executable) test cases of a GUI test suite. GUIDiVa, an iterative algorithm at the

core of our framework, enumerates all possible constraint violations as potential reasons for

test case failure, on the failed event of an infeasible test case. It then selects and adds the most

promising constraints of each iteration to a final set based on the Validity Weight of constraints.

The results of empirical studies on both seeded and nine non-trivial open-source study subjects

show that our framework is capable of capturing important aspects of GUI behavior in the

form of state-based event constraints, while considerably reducing the number of insfeasible

test cases. The second part of this dissertation deals with the problem of automatic generation

of relevant test data for parameterized GUI events (i.e., events associated with widgets that

accept user inputs such as textboxes and textareas). Current techniques either manipulate the

source code of the application under test (AUT) to generate the test data, or blindly use a

set of random string values. We propose a novel way to generate the test data by exploiting

the information provided in the GUI structure to extract a set of key identifiers for each

parameterized GUI widget. These identifiers are used to compose appropriate online search

phrases and collect relevant test data from the Internet. The results of an empirical study

on five GUI-based applications show that the proposed approach is applicable and results in

execution of some hard-to-cover branches in the subject programs. The proposed technique

works from a black-box perspective and is entirely independent from GUI modeling and event

x

sequence generation, thus it does not require source code access and offers the possibility of

being integrated with existing GUI testing frameworks.

1

CHAPTER 1. INTRODUCTION

Most modern software systems, including web and mobile applications, have a Graphical

User Interface (GUI) front-end. Automated functional system testing [1] of these applications

presents new challenges to software testing community. One of the primary challenges to

deal with is the huge, undetermined and complex input space of such systems. Model-based

approaches [2] have put forward a practical solution for automated GUI testing and have

been shown more efficient and cost-effective compared to the traditional capture-then-replay

techniques [3]. The primary idea [4] in model-based approaches is to create a model of the GUI

under test and use it for GUI testing purposes.

A GUI test case is a sequence of events to be run on GUI widgets. This, in fact, corresponds

to the way a human user interacts with a GUI by invoking sequences of events on the widgets.

GUITAR [5] is a notable work in this area that facilitates the testing process in four steps: 1)

capturing the entire GUI structure 2) constructing graph models from the GUI structure 3) test

case generation from the constructed models, and 4) test case replaying (i.e., execution). In the

GUITAR approach, test case generation is achieved by walking on Event Flow Graph models

(EFGs) where vertices of the graph correspond to GUI events and edges correspond to flow

among the events. These graphs provide lightweight approximations of the GUI under test,

compared to bulkier models such as Finite State Machines (FSMs). However, a primary issue

with these models is that they do not fully capture the dynamics and run-time characteristics

of the GUI. A GUI is a stateful and context-sensitive system where changes can occur during

the course of its execution depending on the user actions and inputs. But, these models are

constructed based on limited runs of the GUI, they are unable to capture a comprehensive

picture of the GUI input space. As a result, the search for executable paths within static

models such as EFGs (i.e., test case generation) typically leads to deficient test generation.

2

Furthermore, not only do executable event sequences have to be generated, but also appro-

priate input test data has to be supplied for parameterized events (i.e., the events associated

with widgets that accept input values such as textboxes and textareas). Failing to generate

relevant test data also hinders exercising crucial parts of the business logic code, degrading the

overall testing adequacy as well as the fault detection capability.

In this dissertation, we deal with two problems in GUI testing: 1) ruling out infeasible (i.e.,

unexecutable or partially executable) test cases in GUI test suites, and 2) generating relevant

test data. A test case is infeasible if an event in the event sequence is not available at some

point during execution based on the state of the GUI. The point and the event at which an

infeasible test case fails are referred to as “failure point” (denoted by fp) and “failed event”

(denoted by fe), respectively.

Infeasibility of a test case can be due to different reasons such as faults in the application

under test (AUT) or violation of some constraint among GUI events (i.e., event constraints).

In this work, we propose a new way of discovering event constraints. Examples of common

event constraints are when a certain widget is always disabled making all its associated events

inaccessible or when an event requires another event before it can be run (e.g., Redo operation

typically requires an Undo operation before it). Knowing about these constraints not only

enhances our understanding of how different parts of a GUI work, but also are helpful to

exclude infeasible test cases during test case generation.

We devise a “GUI Invariant Discovery and Validation” framework that detects common

types of state-based event constraints [6] which occur frequently in many GUI applications. The

novelty of our approach lies in the fact that we accomplish this using an iterative algorithm,

called GUIDiVa1, assuming we are only provided with a combinatorially coverage-adequate

test suite2[7]. In each iteration, GUIDiVa finds the most promising constraints on failed events

of the test suite and adds them to a final set of event constraints. For each infeasible test case,

all possible constraint violations (from among the considered constraint types) on the failed

event are enumerated as potential causes of failure. Next, each enumerated constraint receives

1GUI Invariant Discovery and Validation
2Although we use t-way covering test suites to discover the constraints more efficiently, GUIDiVa can take

any GUI test suite as input consisted of feasible and infeasible test cases.

3

a validity weight representing its potential validity level. This number is calculated using two

other numbers: 1) number of test cases that fail at an identical event and violate a certain

event constraint, and 2) number of feasible test cases in the test suite that include the failed

event and violate the same constraint. The infeasible test cases with event combinations that

violate the final discovered constraints are excluded from the test suite and new test cases are

generated and added to achieve feasible desired coverage. The new test suite is used in the next

iteration of the algorithm. GUIDiVa stops when there are either no more infeasible/new test

cases left in the test suite or the algorithm has iterated for a user-specified number of times.

We report on the effectiveness, accuracy, and efficiency of GUIDiVa framework by conduct-

ing a set of experiments on both seeded and non-trivial subject projects. The results show

that our approach is capable of revealing all seeded constraints with no error and only misses

a total of seven unseeded constraints in nine real-world study subjects. Furthermore, we are

able to considerably reduce the number of insfeasible test cases when we take the discovered

constraints into account for test generation.

To address the second problem (i.e., generating relevant test data for parameterized widgets)

discussed above, we propose a novel blackbox approach that makes use of the information

exposed to the user in the GUI to produce suitable data for testing. We extract a set of key

identifiers for each parameterized event from relevant parts of the GUI structure and use them

to find and collect concrete string values from the web. The identifiers extracted from the GUI

structure provide us clues about the type of values a parameterized event expects as input. We

use the extracted identifiers to find appropriate regular expressions as well as valid and invalid

concrete values.

We conduct a preliminary experiment on five GUI-based applications and report on the

effectiveness and efciency of our approach. The results show that our approach is capable of

improving the code coverage compared to using random values, a commonly used approach

in the GUI testing research community. Also, it is shown that the amount of time required

to produce the test data is easily negligible compared to the test execution time. The main

contributions of this dissertation can be listed as follows:

4

• GUIDiVa: We design and implement a GUI Invariant Discovery and Validation framework

to automatically detect common types of state-based event constraints in order to enhance

both the GUI specifications and the quality of generated test suites.

• Empirical evaluation of GUIDiVa: We evaluate the GUIDiVa framework by running a

set of experiments on both seeded and non-trivial subjects and report the results.

• Automated blackbox test data generation for GUI testing: As opposed to mainstream

approaches for test data generation, such as symbolic execution [8] and meta-heuristics [9]

which manipulate the source code of the AUT, we propose to make use of the information

provided in the GUI to generate relevant test data. We discuss a novel way of producing

test data for parameterized GUI widgets based on extracting and refining keywords from

GUI structure and using them in an online search to collect the required data from the

Internet.

• Preliminary empirical study of the proposed test data generation approach: We carry

out a preliminary empirical evaluation of the proposed test data generation approach in

regard to source code coverage metrics by running an experiment on five small to medium

sized GUI applications. .

5

CHAPTER 2. BACKGROUND

2.1 Event-Driven GUIs

A modern GUI system is an instance of event-driven software [10], where it has the ability

to detect and react to events. An event is a change in the state of the system that deserves

attention. It is a specific signal triggered by an external pulse [11]. In event-driven GUIs,

this external pulse typically corresponds to user interactions such as mouse clicks or keyboard

strokes. A GUI is a hierarchical, graphical front-end to a software system that accepts as

input user-generated and system-generated events from a fixed set of events and produces

deterministic graphical output [10].

GUIs are comprised of a set of visual objects called widgets (a.k.a controls). A widget is

a building block for a GUI, and it corresponds in appearance to a visual object that can be

manipulated by the user [12]. Windows, labels, menu bars, menu items, toolbars, buttons and

textboxes are among common GUI widgets. Features of a widget can be adjusted through

a set of properties associated with it. Each of these properties accepts a certain value from

a predefined range of values at a specific state during GUI execution. For instance, width,

height, color, text color and enable are all among properties of a button widget that can

change throughout the GUI execution time. Furthermore, each widget has zero or multiple

events associated with it. Window-close, window-minimize and maximize are examples of

events associated with a window where button-click is the most common event of a button.

Label has no events associated with it. Every widget has a boolean property called “enable”.

Only the events of an enabled widget (i.e., enable=true) can be triggered.

6

2.2 Model-based GUI Testing Using Graph Models

Different approaches to model-based GUI testing have been proposed over recent years [13]

[14][15]. But, because of the focus of this work, we limit ourselves to GUI testing based on

graph models using GUITAR [16], a framework consisted of four basic tools that facilitate

automatic model-based GUI testing.

The primary step in model-based testing is to extract a model that approximates the system

under test (SUT) [4]. From this extracted model, abstract test cases can be generated. GUITAR

utilizes graph models as an intuitive way to model user-interaction with a GUI; GUI test cases

are then generated from these graph models. A GUI test case is a sequence of events to be run

on the widgets.

Take an example scenario in a graphical text editor application as shown in Figure 2.2.

First, a user Types in Hello World! into the editor and highlights it, then opens the Edit

menu from the menu bar, selects Copy, opens the Edit menu again, selects Paste, and finally

closes the window. This scenario corresponds to the event sequence <Type In “Hello World!”,

Select “Hello World!”, Edit, Copy, Edit, Paste, Close>, which can be run as a test case.

The first step in the GUITAR approach is to “rip” a GUI using the GUITAR GUI Ripper

tool. Ripping is the reverse engineering process of discovering the entire GUI structure by

opening and recording all the GUI windows, the widgets, and their associated properties and

values at the time of execution [3]. From the output of the ripping phase, “GUITAR Model

Constructor” builds an Event Flow Graph (EFG). In an EFG, each vertex corresponds to a GUI

event while directed edges between the vertices determine the temporal flow among the events.

Thus, an edge in an EFG between two events, say e1 and e2, implies that e2 is executable

immediately after e1. Figure 2.4 shows the EFG model for the Edit menu of the text editor

application.

7

Formally, an EFG is defined as a 4-tuple < V,E,B, I > where:

1. V is a set of vertices representing all the events. Each v ∈ V represents an event.

2. E ⊆ V × V is a set of directed edges between vertices. Event vj follows vi iff vj may

be performed immediately after vi. An edge (vx, vy) ∈ E iff the event represented by vy

follows the event represented by vx.

3. B ⊆ V is a set of vertices representing events that are available to the user when the

GUI is first invoked.

4. I ⊆ V is the set of restricted-focus events. A restricted-focus event opens another window

which monopolizes the user’s focus [3]. (i.e. user cannot interact with any other window

while the window is open)

If vertices that represent structural events, used solely to open and close menus and win-

dows, are removed from the EFG, the resulting graph model is called Event Interaction Graph

(EIG) [17] (i.e., a graph model that only includes events that interact with the underlying appli-

cation’s code). An EFG can be transformed into an EIG following a set of graph-rewriting rules

presented in [18]. EIGs provide a more compact and efficient model and test cases generated

from them are shown to be more effective in revealing system faults [18]. Figure 2.5a shows

the EIG model for the Edit menu of the text editor application, where the vertex representing

Edit is removed from the graph. Events excluded from the EIG-based test cases are later on

added to make them executable [18].

From the constructed graph models, GUITAR Test Case Generator generates sequences of

events as test cases. An event sequence of length l is defined as a vector of events (e0, e1,

e2, . . . , el−1) where l > 0 and e0, e1, e2, . . . , el−1 are all vertices in an EFG or EIG model.

The number of events in a sequence es, determined by l(es), is the event sequence length.

For instance, l(<File, New, File>)=3. GUITAR test case generator can be asked to generate

event sequences of different lengths (e.g., l=3, l=5, l=10, etc) as test cases for a GUI under

test. It does this by applying graph traversal algorithms on the graph model [19]. For example,

enumerating vertices and edges generate test cases of length-1 and length-2, respectively.

8

Finally, GUITAR Test Case Replayer tool runs the generated test cases on the GUI one by

one. For each test case, the test case replayer launches the application, runs the event sequence

on the GUI, records the results and closes the application.

2.2.1 Infeasible Test Cases

Many of test cases generated using the graph models can be infeasible. These models

are built only based on a single run of AUT and do not capture all dynamics and run-time

characteristics of a GUI. A test case is infeasible if one of the events in the event sequence fails

during execution by the test case replayer such that no subsequent events can be run on the

GUI. For example, <Undo, Copy, Paste> event sequence in the text editor application shown

in Figure 2.5 is an infeasible test case because Undo is disabled when the application is launched

first; the Undo operation requires an undoable operation like TypeInText or Cut before it. For

each infeasible test case, two values are recorded:

1. Failure Point [fp]: the index (zero-based) of the last event in an event sequence which

has successfully been executed by the test case replayer. Failure point of event sequence

es is determined by fp(es). For example, fp(<Undo, Copy, Paste>) = 0 in Figure 2.5,

because the sequence fails at the first event. A feasible event sequence has a failure point

equal to its length. (i.e., fp(es)=l(es))

2. Failed Event [fe]: the event in an event sequence that the test case replayer fails to run.

Failed event of event sequence es is determined by fe(es). For example, fe(<Undo, Copy,

Paste>) = Undo in Figure 2.5, because the sequence fails at the first event.

Huang et al. in [20] identify four types of state-based event constraints. Currently, our

framework is limited to discovering constraints of these four types. These constraint classes

are:

1. Disabled: It occurs when an event is always disabled. A menu item or widget exists for

the event, but it will never be accessible.

9

2. Requires: It indicates that some event needs another event to be executed before it is

enabled. An example is Undo operation in an editor application. One needs to carry out

an undoable operation before being able to execute Undo.

3. Non-Consecutive: It means that a certain event has to be non-consecutive with a

specific sequence of events. In other words, a sequence of events makes another event

inaccessible. The disabled event is re-enabled if another event occurs between the dis-

abling sequence and the disabled event. An example would be doing two Save operations

in a row. After one does a Save, a change should occur before another Save, making

<Save, Save> an infeasible sequence.

4. Exclusive: It is similar to the last one, with the difference that once a particular event

or sequence of events are run, it disables a specific set of events permanently.

There are several constraints among the events of Edit menu in Figure 2.5. 1) Undo and

Redo cannot be the first event in an event sequence (i.e. they are disabled when the application

is launched first). 2) Redo cannot be the second event in an event sequence. 3) Undo requires

an undoable operation (e.g., Paste). 4) Paste and Cut cannot be followed by Redo. 5) Redo

requires Undo. These constraints make abstract test cases <Undo, Copy>, <Redo, Undo>,

<Copy, Undo, Copy>, <Copy, Paste, Redo>, and <Copy, Cut, Paste, Cut, Redo> infeasible,

all generated using the EIG model.

2.3 Covering Arrays

The number of generated event sequences grows rapidly as the sequence length and number

of events in a GUI increase. For example, a GUI with 10 events has 105 length-5 test cases alone.

Needless to say, real-world GUIs include a much greater number of events. This brings about

the need for sampling techniques. A well-known sampling technique called covering array (CA),

mainly used for combinatorial software testing, has been successfully applied to GUI test case

generation [21]. Moreover, previous research has shown that longer event sequences generated

by CAs are capable of detecting more faults compared to shorter exhaustive sequences [22].

10

Table 2.1: Full and intermediate-level coverage CAs with and without constraints

row# CA(27; 3, 3, 3) row# CA(9; 3, 3, 2) row# CA(9; 3, 3, 2)
1. e1 e1 e1 1. e1 e1 e1 1. e1 e2 e3
2 e1 e1 e2 2. e1 e2 e3 2. e1 e2 e1
3. e1 e1 e3 3. e1 e3 e2 3. e2 e1 e1
4. e1 e2 e1 4. e2 e1 e2 4. e2 e3 e2
5. e1 e2 e2 5. e2 e2 e1 5. e2 e3 e1
6. e1 e2 e3 6. e2 e3 e3 6. e2 e1 e2
7. e1 e3 e1 7. e3 e1 e3 7. e2 e1 e3
. 8. e3 e2 e2 8. e2 e3 e3
27. e3 e3 e3 9. e3 e3 e1 - -

A CA, written as CA(N ; t, k, v)), is a N × K array on v symbols with the property that

every N × t sub-array contains all ordered subsets of size t of the v symbols at least once [23].

These parameters are defined as follows:

1. k: is the CA degree. It corresponds to the number of columns in the array.

2. v: is the number of possible values each element in the array can take. In the GUI testing

context, v corresponds to the number of events.

3. t: is the CA or test strength. t = 0 means no coverage, while t = k means full coverage.

When any of t of the k columns are chosen, all vt of the possible t-tuples must appear

among the rows. In other words, any sub-set of t-columns of the array must contain all

t-way combinations of the symbols.

We use CAs to generate so-called coverage-adequate GUI test suites; test suites comprising

event sequences that satisfy a certain CA strength. For instance, if we were to generate event

sequences of length-3 for a GUI with three events e1, e2, e3, we would get a total of 27 test

sequences. However, for strength 2 (t=2), this number can be reduced to 9, where all 2 -way

combinations in all locations are still covered at least once. These are shown as the first and

second arrays in Table 2.1.

Furthermore, CA constraints provide a way to exclude invalid combinations from the re-

sulting arrays [24]. We use ACTS CA generator [24] in this work from the National Institute of

Standards and Technology (NIST). Constraints in ACTS are specified in the form of restricted

11

first-order logical formulas1. These formulas are taken into account during test generation such

that the resulting testset would cover combinations that satisfy these constraints. We trans-

late our event constraints discussed in section 2.2.1 into CA constraints and input them to

ACTS. In our three-event GUI, suppose we had two constraints: 1) <e2, e2> is an infeasible

sequence (i.e., e2 and e2 cannot run consecutively), and 2) e3 requires e2. These constraints

are translated into CA constraints using boolean and relational operators as follows:

1) !((C1=e2 && C2=e2) ‖ (C2=e2 && C3=e2))

2) !(C1=e3) && (C2=e3 =⇒ C1=e2) && (C3=e3 =⇒ (C1=e2 ‖ C2=e2))

where C1, C2, and C3 refer to the first, second and third columns (i.e., parameters) of the

array, respectively. The first constraint expresses that either the first and second or the second

and third columns cannot take the value e2 in one row. The second constraint says that if

there is an e3 in a row, there must be an e2 before it. The resulting array that satisfies these

two constraints is the right-most array in Table 2.1.

1Boolean, relational and arithmetic operations are supported, but not quantification.

12

Figure 2.2 Edit menu snapshot

Figure 2.4 EFG model for the edit menu
(a) EIG model for the edit menu

Figure 2.5: Edit menu in a sample text editor application and corresponding graph models

13

CHAPTER 3. GUI INVARIANT DISCOVERY AND VALIDATION

FRAMEWORK

In this chapter, we present our framework and GUIDiVa to discover a set of state-based

event constraints.

3.1 Constraint Discovery and Validation Framework

Figure 3.1 shows the overall structure of our framework. GUI application, its ripped struc-

ture and constructed graph models, as well as appropriate values for CA parameters are inputs

to the framework. Main Coordinator is responsible for orchestrating the entire process by

interacting with different components of the framework. Based on supplied values of t (test

strength), k (test case length), and v (number of events), the CA generator is asked to put

together a coverage-adequate array. Test Case Assembler interfaces with the CA generator by

passing the CA parameters and constraints into it. It then maps the generated arrays (i.e.,

abstract test sets) into concrete test suites by replacing array symbols with GUI events. After-

wards, the test suite is passed on to GUIDiVa, which runs the set of generated test cases on the

GUI using the GUITAR Test Case Replayer to determine the feasibility or infeasibility of each

test case. Then, in each iteration, GUIDiVa outputs a set of event constraints. These event

constraints are translated into first-order logical formulas, readable by the ACTS tool, through

Constraint Translator unit. The detailed procedure is described in the following section.

3.1.1 GUIDiVa

Algorithm 21 shows GUIDiVa pseudocode. A t-way covering GUI test suite (i.e., TSt) is

input to the algorithm and the output is a final set of possible state-based event constraints

14

Figure 3.1: GUI Constraints Discovery and Validation Framework

(i.e., Π) as well as an updated test suite (i.e., TS′) that satisfies the constraints in Π. Now,

we describe the algorithm in details:

3.1.2 Initialization and Test Case Replaying

TS′ is initialized with the input test suite TSt, and Π is initialized as an empty constraint

set. All new test cases in TS′ are replayed on the GUI to decide failure point and failed event

of each test case. In the first iteration, this includes all test cases in TS′ since they have not

been replayed before. If there are no infeasible test cases in the test suite (i.e., ∀ tc ∈ TS′,

fp(tc)=l(tc)), the algorithm returns. We use combinatorially coverage-adequate test suites to

include all possible t-way event combinations in the input test suite.

15

Input : TestSuite TSt (t-way covering test suite)

Output: Set Π (set of constraints)

TestSuite TS′ (test suite that satisfies

constraints in Π)

1 TS′ = TSt

2 Set Π = ∅
3 while true do

4 replay newly added test cases in TS′ to decide their fp and fe

5 if no infeasible or new test cases in TS′ then

6 return;

7 end

8 repeat

9 π = ∅
10 TC = next set of infeasible test cases in TS′ with an identical fe e

11 foreach test case tc ∈ TC do

12 π = π ∪ (consViolations(tc, fp(tc)) - Π)

13 end

14 foreach constraint c ∈ π do

15 calculate vw(c) based on values of s(c) and r(c)

16 end

17 add constraint(s) in π with a positive maximum vw value to Π

18 until all infeasible test cases in TS′ are visited ;

19 remove conflicts from Π

20 remove test cases of TS′ that violate constraints in Π and add new test cases to

achieve feasible t-way coverage
21 end

Algorithm 1: GUIDiVa Algorithm

16

This maximizes the chances of revealing infeasible combinations, hence constraints among

the events. However, any GUI test suite can be used as input.

3.1.3 Validity Weight Calculation

In each iteration of the repeat loop, a set of test cases with an identical failed event (i.e., all

test cases that fail at a certain event) are selected from TS′ and added to a test case set named

TC. For each of the test cases in TC, all possible constraint violations on the failed event,

which could potentially have caused the test case failure, are enumerated. Note that this is

limited to the 2-way and 3-way constraint types discussed in section 2.2.1. consViolations()

auxiliary function on line 12 enumerates all these possible constraint violations given a test

case and its failure point. It does so by considering all the present as well as missing event

combinations (from among a predefined events set) in a given event sequence up to its failure

point. Then, all the enumerated constraints, excluding those that are already in the final

constraints set Π, are added to the constraints set π. Note that we only need to enumerate the

constraint violations on the failed event up to the test case failure point (i.e., fp(tc)). This is

because events after the the failed event do not get to execute, thus they can have no influence

on the failure of the test case. Afterwards, for each enumerated constraint c on the failed event

e in the set π, two numbers are calculated:

• Support [s(c)]: Number of infeasible test cases that fail at e and violate c. Thus,

∀ c ∈ π, 1 ≤ s(c) ≤ |TC|.

• Reject [r(c)]: Number of feasible test cases in TS′ that include e and violate c. Thus,

∀ c ∈ π,

0 ≤ r(c) ≤ |feasible test cases in TS′ that include e|.

The idea is, the higher the number of event sequences that fail at e and violate c, the more

likely c is valid. On the other hand, the higher the number of times e successfully executes while

violating c, the more likely c is invalid. Using values of s and r, a so-called Validity Weight (vw)

value is calculated for each constraint in π. vw value for a constraint provides a measure on

17

how valid the constraint is w.r.t. relevant feasible and infeasible test cases across a test suite.

Validity weight for a constraint c is defined as:

vw(c) =



s(c)
|TC| if

r(c)
s(c)

< δ

0 if
r(c)
s(c)

≥ δ

where δ is an adjustable error threshold value. By definition, vw(c) ∈ [0, 1] , because vw(c) is

either 0 or
s(c)
|TC| , where ∀ c, 0 ≤ s(c) ≤ |TC|. The s(c) numerator gives higher validity weights

to constraints that have more infeasible test cases to support them and no (or very few) feasible

test cases to reject them. Ideally, if r(c) > 0 for a constraint c, we would want to discard c

(i.e., set vw(c) to 0), because an event constraint is a GUI invariant that must always hold.

However, in practice, due to timing and replayer-related issues [6], we might have few feasible

test cases that violate a valid constraint. This is why we allow a small amount of error using δ.

One might think it is more efficient to consider all infeasible test cases with an identical

failed event together for the purpose of generating candidate constraints. The reason GUIDiVa

considers each infeasible test case individually is that it can be the case that there are more

than one constraint on a specific event, which means a single constraint violation may not be

sufficient to justify all the failures on an event in an iteration. For this reason, the s(c) value

for a constraint c is not decreased if the infeasibilty is not justifiable by c.

After calculating the validity weights of all constraints in π, the one(s) with a positive

maximum vw value is/are added to Π.

We follow these rules to decide if a feasible test case violates a constraint:

1. ei is disabled: the event sequence includes ei.

2. ei requires ej: the first occurrence of ei in the event sequence is before the first occurrence

of ej , if any. Note that “requires” constraints on a certain event are disjunctive. For

instance, in the editor example, the “Undo requires TypeInText, Cut, or Paste” constraint

makes any sequence that has any of TypeInText, Cut, or Paste before Undo a feasible test

18

case. Thus, a feasible event sequence rejects either all the requires constraints in π or

none.

3. ei cannot run after <es>: the event sequence includes the sequence <<es>, ei>.

3.1.4 Removing Conflicts

If there are conflicts between any two constraints in Π, the one with a lower vw value is

removed from Π. If they have equal vw values, both are removed from Π and recorded in

an external log file with their associated vw values. This is done to minimize the chances

of excluding new feasible combinations; infeasible combinations may always be detected and

removed in subsequent iterations of the algorithm. From our experience, conflicts occur rarely

but they may happen due to coverage inadequacies of the input test suite, which adversely

affect the s(c) and r(c) scores. Examples for conflicting constraints are “ei requires ej and ej

requires ei”, or “ei requires ej and ej is always disabled”.

3.1.5 Updating Test Suite

Once the new constraints with the maximum vw value on each failed event are added to

Π, all constraints in Π are translated into first-order logical formulas and are fed into the

CA generator1. All constraints in Π are conjunctive except “requires” constraints on identical

events which are disjunctive.

3.1.6 Stopping Criteria

There are three stopping conditions. The first condition is that there are no infeasible

test cases left in TS′. The second condition is that there are no new test cases to replay.

This situation happens when no new constraints is added to Π in an iteration, leaving TS′

unchanged. This means there are no more constraints that can effectively justify failure of

infeasible test cases in the test suite. The third one is when the algorithm has iterated for a

user-specified number of times.

1In our current implementation, we use the “extend” mode of ACTS. It automatically removes test cases
that violate the given constraints from the existing test set and adds new ones to achieve the feasible desired
test strength.

19

3.2 Complexity Analysis

Let n be the number of test cases in TSt, l the length of test cases, ef the number of unique

failed events, a the considered constraint arity2 (for non-consecutive and exclusive constraints),

and f the number of feasible test cases.

First, we replay all the new test cases to record fp and fe and decide if there are any

infeasible test cases (O(n)). In practice, this is the most time-consuming step, since for each

test case the replayer tool launches the application to run the event sequence on it. Afterwards,

for each group of infeasible test cases (i.e., TC), we enumerate all possible constraint violations

by making at most n calls to consViolations. In the worst case, consViolations performs

(2+l+(e-1)+2a) operations (O(e) + O(l)). All constraint types except requires take constant

time (i.e., 2 for disabled and a for either non-consecutive or exclusive). Generating all possible

requires constraints has an upper bound of (l+e), since we go over the sequence up to its failure

point (fp ≤ l) and generate at most e−1 requires constraints. Calculating vw for each generated

constraint in π needs (|TC| * l) + (f * l) operations. To calculate s(c) for a constraint, we go

over all infeasible test cases in a certain group (|TC|) and check each for the possible violations

(l). Similarly, we need to check the possible violations in each feasible test case (f * l) in

order to calculate r(c). Thus, the validity weight calculation step is done in O(n*l) since both

|TC| and f are bounded by n. Removing possible conflicts is also upper bounded by O(ef
2).

Finally, the constraint translation time complexity for each constraint is O(l). Putting all these

together, GUIDiVa is a polynomial algorithm linear to the number of test cases (O(n)), and

quadratic (O(ef
2)) to the number of unique failed events in the worst case.

3.3 Example

Take the example from section 2.3. Assume there are three events e1, e2, and e3 and two

constraints: 1) <e1, e1> is infeasible, and 2) e1 requires e2. Now, suppose we input a length-3

strength-2 test suite into the algorithm. It is the left array in Table 3.1. For the purposes of

simplicity, we do not consider >2-way constraints in this example.

2As explained earlier, we consider constraints with arities of up to 3.

20

First, all 9 test cases are replayed on the GUI application using the GUITAR replayer tool

to decide failure point and failed event of each test case. Test cases #4, #5, #6 and #8 are

identified as the feasible ones. In the first iteration of the repeat loop, test cases #1, #2, #3,

#7, and #9, which all fail at e1, are selected and added to TC. Thus, |TC| = 5. Then, all

possible constraint violations (i.e., possible reasons for failure) are enumerated for each test

case in TC. For instance, for test case #1, constraints “e1 is disabled”, “e1 requires e2” and

“e1 requires e3” are generated, and for test case #9 constraints “e1 is disabled”, “e1 requires

e2” and “<e3, e1> infeasible” are generated. Note that “e1 requires e3” is not generated for

#9, since there is an e3 before e2. These give s(“e1 requires e2”) = 5 because it is supported

by all the (infeasible) test cases in TC, and s(“<e3, e1> infeasible”) = 1 because it is only

supported by test case #9. On the other hand, r(“e1 requires e2”) = 0 because there is no

feasible test case that rejects this constraint, while r(“e1 is disabled”) = 2 as the feasible test

cases #4 and #5 include e1. At the end of the first foreach loop, we have:

π = {e1 is disabled, e1 requires e2, e1 requires e3, <e3, e1> is infeasible}

Next, validity weight of each enumerated constraint in π is calculated:

vw(e1 requires e2) =
s(“e1 requires e2”)

|TC| = 5
5 = 1

vw(e1 requires e3) =
s(“e1 requires e3”)

|TC| = 3
5 = 0.60

vw(<e3, e1> infeasible) =
s(<e3, e1> infeasible)

|TC| = 1
5 = 0.20

vw(e1 is disabled) = 0, (i.e., r(e1 is disabled) = 2)

Thus, in the first iteration of the algorithm for the failed event e1, the constraint “e1 requires

e2” with the highest vw value of 1 is added to Π. Next, the CA generator is asked to remove

test cases that violate this constraint and add new test cases to cover missing feasible 2-way

combinations (the array shown on the right side of Table 3.1). The first four test cases are the

21

Table 3.1: Input test suites (failed event in bold font)

row# First Iter row# Second Iter
1. e1 e1 e1 1. e2 e1 e2
2. e1 e2 e3 2. e2 e2 e1
3. e1 e3 e2 3. e2 e3 e3
4. e2 e1 e2 4. e3 e2 e2
5. e2 e2 e1 5. e3 e3 e2
6. e2 e3 e3 6. e2 e1 e1
7. e3 e1 e3 7. e2 e3 e1
8. e3 e2 e2 8. e2 e1 e3
9. e3 e3 e1 9. e3 e2 e3
10. - 10. e3 e2 e1

feasible ones from the initial test suite, but test cases #5−#10 are new. After replaying the

newly generated test cases, only test case #6 fails at event e1. The same procedure as iteration

1 is followed in the second iteration, resulting in:

Π = {(e1 requires e2, 1), (<e1, e1> infeasible, 1)}

Thus, test case #6 gets removed from the test suite. The algorithm terminates at the

beginning of the third iteration after successfully finding both constraints. The algorithm stops

because there are no more infeasible test cases left in the test suite.

22

CHAPTER 4. EXPERIMENTAL STUDIES WITH GUIDiVa

We conduct a set of experimental studies to determine the applicability of our approach.

Our goal is to answer three research questions:

Research Question I (RQ I): Is our framework capable of discovering constraints with pre-

formulated templates among events of a GUI effectively and efficiently?

Research Question II (RQ II): How useful are the set of discovered constraints for gener-

ating test suites with a smaller number of infeasible test cases?

Research Question III (RQ III): How does our framework perform compared to alterna-

tive approaches?

4.1 Experiment Setup and Assumptions

In order to answer these questions, we perform three experiments discussed in the subse-

quent sections. Our framework interfaces with ACTS-2.8 through ACTS API and executes

the GUITAR-1.1.1 replayer tool externally. The models used are built using GUITAR-1.1.1

ripper and model constructors. An application is said to have passed a test case if it did not

crash (unexpected termination or uncaught exceptions) [25]. For this purpose, we developed

a crash monitor to record the result of each replayed test case. Also, the unique event IDs

generated by the ripper are used instead of the event names to prevent any confusions. In all

experiments, we have considered 2-way requires and both 2-way and 3-way non-consecutive and

exclusive constraints. The δ (i.e., error threshold value) is set to 0.05 for all experiments. The

experiments are done on a 32-bit machine equipped with an Intel 2.4GHz-4MB cache dual-core

processor and 4GB of physical memory running Ubuntu 12.10 and Java 1.6.

23

Table 4.1: Experiment results on UNL.TOY.2010 artifacts

CA params
Artifact #e k t |CA| Constraint Description #i #t #M #I T(sec)

1. Dis 3 2 2 9 e1 is always disabled 1 9 0 0 64.42
2. Req 3 2 2 9 e2 requires e1 1 9 0 0 66.66
3. Con2 3 2 2 9 <e2,e3> infeasible 1 9 0 0 71.12
4. Exc2 3 2 2 9 e1 disables e2 permanently 1 9 0 0 56.64
5. Con3 4 3 3 64 <e1,e2> disables e3 1 64 0 0 443.36
6. Exc3 5 3 3 125 <e1,e2> disables e3 permanently 1 125 0 0 821.21
7. Com 5 3 3 125 Constraints 2, 3, and 5 1 125 0 0 903.31

4.2 Experiments

In this section, we conduct a set of experimental studies on both seeded and non-trivial

applications in order to answer the three research questions.

4.2.1 UNL.TOY.2010

First, we experiment with a set of synthetic applications with seeded constraints. For this

study, we use UNL.TOY.2010 from COMET group1[26]. All the artifacts are non-faulty and

the set of constraints are known beforehand. Table 4.1 shows the results. All artifacts include

one constraint, except “Compound” which has three constraints of different types. |CA| is the

size of initial test suite. For the first four artifacts length-2 strength-2 test suites are used, and

length-3 strength-3 test suites are used for the last three ones. This is to make sure that all

3-way combinations are included in the initial test suite, otherwise the 3-way constraints might

go undetected.

For this experiment, we do not manually specify any maximum value for the number of

iterations allowed, so GUIDiVa stops when there are no more infeasible test cases left in the

test suite. #i shows the number of iterations GUIDiVa takes to finish. #t shows the total

number of test cases executed. #M shows the number of valid constraints that GUIDiVa

cannot find (i.e., missed constraints), and #I is the number of invalid constraints found.

In all the artifacts, the framework discovers all the exact constraints without any misses or

1Community Event-based Testing (COMET) is a joint effort between E2 laboratory at UNL and EDSL group
at UMD.

24

errors. The most time consumed is slightly above a total of 15 minutes for “Compound”. In

all cases, the bulk of time is spent by the replayer tool to run the test cases. The results of this

experiment show that our approach is effective and accurate in finding seeded constraints.

4.2.2 Non-trivial Applications

As a second case study, we experiment with five real-world Java GUI applications that are

categorized into nine study subjects. Unlike the seeded applications, the constraints among

GUI events are unknown this time. The five selected applications are:

• TerpWord [27]: TerpWord is a word processing application and part of an office appli-

cation developed at UMD.

• TerpPresent [27]: TerpPresent is a slide presentation application and part of an office

application developed at UMD.

• CrosswordSage [28]: CrosswordSage is a crossword building and solving application.

• Freemind [29]: FreeMind is a mind-mapping application. A mind-mappinf application

is useful to represent information in form of diagrams that shows relationships between

concepts, ideas or other information.

• Rachota [30]: Rachota is a time-tracking tool with the ability to record tasks, times

spent on those tasks and setting reminders for them.

Given the large number of events in these applications, the events are categorized into a

set of groups based on their functionality [22]. For example, all events related to manipulating

tables in TerpWord application fall within the Table Operations group. This would include

events like Insert Table, Insert Row, Delete Column, etc. Since a group of events include all

events that contribute to a specific functionality, a single event might be part of multiple event

groups. For each of the five applications, we focused on specific functionalities to form event-

groups that are likely to involve different types of constraints. Table 4.2 shows the specifications

of these applications as well as the event groups studied for each of them.

25

Table 4.2: Non-trivial applications and event groups

GUI Application Name LOC #events
Group

Description #events

1
TerpWord 3.0 22933 157

File Operations 8
2 Clipboard Operations 9
3 Table Operations 14
4 TerpPresent 3.0 45201 322 Content 14
5 CrosswordSage 0.35 3220 98 Preference Settings 9
6

FreeMind 0.80 24689 973
Clipboard Operations 10

7 Map Operations 11
8

Rachota 2.4 14330 168
System Settings 18

9 Task Manipulations 19

4.3 Research Questions

In this section, we answer the three research quesions we had devised given the experiments

results.

4.3.1 RQ I

We use length-5 test cases (k=5) with strength-3 (t=3) for all the nine subjects. We find

these values adequate enough to discover constraints effectively and efficiently2. Also, the

maximum number of iterations allowed for GUIDiVa is set to 10 for all the subjects.

First, a skilled human oracle is asked to extract as many constraints as possible for each

studied event-group. The human oracle only extracts the constraint types that are considered

in our framework. Afterwards, for each subject, we run the framework five times to discover

and output a set of constraints for that event-group and we record the intersection of all the five

runs in Π. Note that for each run, a different initial test suite generated by the CA generator

is used, otherwise the results would be the same. In the end, the oracle is asked to verify the

validity of the constraints in Π by sorting out valid constraints from the invalid ones for each

event-group.

Table 4.3 shows the outcome of this study. An excerpt of constraints found by the framework

for each subject is shown as well as the number of constraints that the human oracle finds,

but are missed by the framework (#M). No constraints of type exclusive is found in any of the

2In our side experiments, we also examined k=10, k=20, and t=4 for several subjects, but no significant
improvements were observed.

26

Table 4.3: (D)isabled, (R)equires, (N)on-Consecutive, (I)nvalid, #(M)issed. #M is the number

of constraints found by human oracle that were not discovered by the framework

Constraints Discovered By The Framework #M

1

D) Save disabled at index 0
R) Save requires TypeInText
N) <Close All, Close All>, <New, Save>, <Save, Save> infeasible & 6 more 0
I) Save requires Open, <Close, Close, Close>infeasible

2

D) Undo & Redo disabled at index 0, Redo disabled at index 1
R) Redo requires Undo,Undo requires TypeInText
N) <TypeInText, Redo>, <Cut,Redo>, <Paste, Redo> infeasible 1
I) <Select All, Paste, Redo> infeasible

3

D) Undo and Redo disabled at index 0, Redo disabled at index 1
R) Redo requires Undo,Undo requires InsertTable & 12 more 3
N) <InsertTable, Redo>, <InsertRow, Redo> <DeleteRow, AppendRow> infeasible
14 more
I) -

4

D) -
R) -
N) <Open, Open>,<Open, Save>, <Save, Save>, <Redo, Save> infeasible & 2 more 0
I) -

5

D) Proxy Address, Proxy Port, User Name & Password disabled at index 0
R) Proxy Address, Proxy Port, User Name, & Password requires Use Proxy Server 1
N) -
I) <Use Proxy Server, Use Proxy Server, Proxy Address> infeasible

6

D) Undo, Redo disabled at index 0, Redo disabled at index 1
R) Undo requires either Paste Format, Cut, Paste or 2 more, Paste Format requires
Copy Format,Redo requires Undo 1
N) <Paste, Redo>,<Cut, Redo> infeasible
I) -

7

D) Undo, Redo disabled at index 0, Redo disabled at index 1
R) Undo requires Show Icon, Automatic Layout, Blinking Node & 5 more, Redo
requires Undo 0
N) <Automatic Layou, Redo>, <Blinking Node, Redo > infeasible & 1 more
I) -

8

D) proxy server, port, inactivity time, & inactivity action disabled at index 0
R) proxy server and port requires Report weekly activity, inactivity time,
inactivity action requires inactivity detection 0
N) -
I) -

9

D) Hour increase, Hour decrease, Min increase, Min decrease, Start automatically
disabled at index 0
R) Hour increase, Hour decrease, Min increase, Min decrease, Start automatically
requires Notification of task, Edit, Select, Remove requires Task selection, and 1
3 more
N) <Select, Select> and <Remove, Remove> infeasible
I)<Notification of task at, Notification of task at, Start Automatically> infeasible

27

Table 4.4: Average results of five runs

#iter #executed tc Time(h)
1 6 1215 6.18
2 5.2 1598.2 7.61
3 6 5421 19.61
4 3.2 4682.5 16.71
5 3.8 1491 6.76
6 5.6 1962 10.45
7 5.8 3379.4 14.91
8 1 8299.2 36.42
9 8.8 13411.6 52.98

subjects. In four of the subjects, one or more invalid constraints are found. These happen in

cases where there are only one or two infeasible test cases that support the constraints, whereas

no feasible test cases exist to reject them. In fact, except for “Save requires open” in subject

#1, all invalid constraints have only 1 infeasible test case to support them and no single feasible

test case to reject them. Moreover, in four of the subjects no single constraint is missed. The

other five subjects miss constraints, all due to the fact that there are no infeasible test cases

at the intersection of the five initial test suites that fail due to violation of any of the missed

constraints.

Table 4.4 shows the average results of the five runs. For each subject, the number of

iterations, the number of executed test cases, and the amount of time consumed (in hours) is

reported. Subject #9 takes the most amount of time and number of iterations since it includes

19 events with 13 constraints on 8 of them. Also, it is interesting to see that subject #8 finishes

in only one iteration in all the five runs. This is because there are only 4 “requires” constraints

on 4 events out of 18, and all of them can be discovered in a single iteration. Putting together

the outcome of this and previous experiments, we can answer RQ I: our framework is effectively

capable of discovering both seeded and unseeded pre-formulated state-based constraints.

4.3.2 RQ II

To answer RQ II, for subject studies #1−#9, we compared the number of feasible test cases

against the total test suite size in both initial test suites and final test suites, where the final

test suites satisfy all the discovered constraints in Π. The initial test suites (TSt) consist of

28

Figure 4.1: (T)otal: Total number of test cases in the test suite. (F)easible: Number of feasible

test cases in the test suite

length-5 strength-3 test cases. The final test suites (TS′) also use the same parameters, except

that event combinations that are not allowed by the discovered constraints are excluded, and

new combinations are added to meet the feasible desired coverage criteria.

Figure 4.1 shows the average results of the five runs for this study. As can be seen, the

number of feasible test cases in each test suite is increased considerably for all subjects when

the discovered constraints are taken into account. In all cases, the number of feasible test cases

is increased by at least more than 16%. In fact, subject #8 sees an improvement of about

37%, leaving only 44 infeasible test cases in a test suite of size 8198. With these results, we

answer RQ II: Discovered event constraints using GUIDiVa can improve generated test suites

by significantly reducing the number of infeasible test cases in them compared to when no event

constraints are assumed.

29

Table 4.5: GUIDiVa v.s. AutoInSpec

GUIDiVa AutoInSpec
#cons #M #I #cons #M #I

0 9 0 0 8 1 NA
3 31 3 0 23 11 NA
4 6 0 0 4 3 NA
5 4 1 1 4 0 NA
6 9 1 0 7 2 NA
7 12 0 0 9 1 NA

4.3.3 RQ III

To answer this research question, we compare our results with those of AutoInSpec [6],

which is based on [20]. AutoInSpec uses Prolog queries to infer GUI invariants based on

missing coverage in a combinatorially-adequate feasible test suite.

Table 4.5 summarizes the results of this study3. #0 refers to UNL.TOY.2010. Also, since

five of the non-trivial subjects (#3−#7) are the same in both studies and the constraints

types considered are similar, it is straightforward to compare the results. However, it is not

possible to do a comprehensive comparison because the oracles used in the two studies are not

synchronized and no numbers are reported by AutoInSpec for invalid constraints found in each

subject. Thus, we only report the number of missed (#M) and invalid (#I) constraints for each

framework. Also, a technical comparison of the two approaches is given in section 6. Our results

show that for all subjects, GUIDiVa is able to discover all constraints that AutoInSpec does.

Moreover, it finds 1 seeded constraint and 15 extra valid constraints in subjects #0, #3, #4,

#6 and #7 which AutoInSpec misses. All the 15 unseeded constraints found by GUIDiVa are

valid but are missed by AutoInSpec. An interesting observation is that GUIDiVa finds several

3-way non-consecutive constraints in subject #3 which not only are missed by AutoInSpec,

but also by the human oracles in both studies. These constraints correctly suggest that no

table operations can follow the <Select All, Cut> sequence. The outcome of this comparative

study enhances our confidence that GUIDiVa can effectively discover state-based constraints

and confirms that it outperforms, or at least performs as good as, alternative approaches.

3“disabled at index 0 or 1” is not counted as an individual constraint since it is a product of the “requires”.

30

4.4 Threats to Validity

We identify a number of factors as potential threats to the validity of the results. To reduce

the human oracle bias, we asked two persons who were not involved in this research work to

extract the constraints and used the intersection of their outputs. They were both conversant

with using the subject applications and were familiar with the constraint classes. Moreover, we

did all the experiments on non-trivial subjects using k=5 t=3 test suites. We found these values

adequate to show the effectiveness of our proposed approach. To better evaluate GUIDiVa,

we incorporated the invalid constraints (as determined by the oracle) and their implications

on the final test suites. The invalid constraints are either the product of the event-groupings

or insufficiencies in the initial test suites, and may prevent inclusion of new feasible event

combinations. We are working to eliminate the event-groupings and use larger values of t and

k, if needed, in our further studies. Also, to make sure that all the results are consistent and

reproducible, we ran each experiment five times and reported the average results.

We implemented the proposed framework and made use of ACTS and GUITAR tools. We

made changes to the replayer tool to record failure point and failed event of each test case.

We also developed a customized crash monitor to record the results of the replayed test cases.

We tested our implementations by manual and run-time checks, but we cannot be certain that

they are all fault-free. Finally, a threat to external validity is that we only experimented with

limited parts of five Java applications. These applications have been used in other studies and

we think they are reasonable representatives for mainstream GUIs.

31

CHAPTER 5. BLACKBOX TEST DATA GENERATION FOR GUI
TESTING

In this chapter, we present our novel way of producing relevant test data for GUI testing [31].

5.1 Motivation

In recent years, there has been a noticeable amount of work on devising various automated

techniques to 1) capture and model all events of the GUI under test, and 2) generate feasible

event interactions to detect faults effectively and efficiently [32][33][34][35][36][37][22][15][38][39]

[14]. However, these approaches act naively or inefficiently on generating relevant input data for

the parameterized events. The two prevalent strategies are 1) to use a constant set of random

strings (e.g., {negative number, real number, zero, long random string, empty string, string with

special characters}) for all parameterized events of a GUI, and 2) to manipulate the underlying

code using symbolic execution (SE) [15] or search-based [34] techniques and generate data for

structural coverage (e.g., branch coverage). The first approach is very unsophisticated due to

a very limited set of values it offers and the latter ones are inefficient due to the complexity

and scalability issues as well as their known limitations on handling complex constraints and

operations of string data type. In fact, finding test data that achieves structural coverage under

all circumstances is still an open research avenue [40].

Take the example shown in Figure 5.1, a user registration form which collects and registers

user information. Eleven of the widgets in the GUI window are textboxes which accept input

values. Such windows that include a number of parameterized widgets can be encountered in

most GUI-based applications. Unfortunately, applying existing GUI testing techniques that

mainly focus on generating feasible event combinations and neglect test data generation are

unable to get important parts of the application’s code to run. For instance, it seems sensible

to test both valid and invalid values for each of the email address, zip code, date of birth,

32

Figure 5.1: Registration form

User ID, phone number, and website fields in the example shown in Figure 5.1. There exist

complex formatting restrictions as well as limitations on the range of possible values for each of

these fields; sophisticated checks are carried out at the business logic layer (i.e., application’s

code), oftentimes with the help of third-party libraries [41]. To fully exercise these parts of

the code, we need to be mindful of the input values we use when testing at the GUI/system

level. Figure 5.2 shows the associated code that checks the validity of the email address field

using Apache Common Validator library [41] when the Submit button is pressed. The naive

approach of using a set of random strings and the techniques based on SE/search all fail to get

the true branch of the if condition to execute.

The key idea here is to make use of the information exposed to the user, instead of using

random values blindly or manipulating the source code, to produce suitable test data. We

propose a novel way to generate the data for GUI testing by borrowing some of the ideas

from [42]. We devise a novel black-box approach and implement it as a prototype which extracts

33

Figure 5.2: Event Listener of the Submit Button

a set of key identifiers for each parameterized event from relevant parts of the GUI structure

and uses those keywords to find and collect concrete values from the web. The identifiers

extracted from the GUI structure provides us clues about the type of values a parameterized

event expects as input. We use the extracted identifiers to find appropriate regular expressions

as well as valid and invalid concrete values. For instance, the labels on the left side of the

textboxes in Figure 5.1 instantly reveal what are expected inside the boxes. Valid and invalid

values based on the kind of values expected inside each box seem to be very reasonable test

data choices and very likely to get the corresponding parts of the source code to execute.

5.2 Blackbox Test Data Generation

Unlike the approach presented in [42] which manipulates the source code of the AUT to

identify and extract the key identifiers, we make use of the GUI structure file produced by

GUITAR ripper. The GUI structure file records all the GUI windows, widgets, their type,

their properties (e.g., background-color, opaque), and values (e.g., blue, false). We utilize this

rich file to locate all the parameterized widgets and extract a set of corresponding identifiers

for each of them.

Our approach takes the the following steps: A) identify parameterized widgets of the GUI,

B) extract key identifiers for each parameterized widget, C) conduct a set of processing steps

on the extracted identifiers D) Using the refined identifiers, find valid and invalid test data.

34

Parts of our process replicates the approach presented in [42]. Here we only provide an

overview of each step and highlight the modifications and adjustments we have made. We refer

the interested readers to [42] for detailed explanations.

5.2.1 Identify parameterized widgets

Information about each widget, including its type, is recorded in the GUI structure file.

In this work, we consider all subclasses of JTextComponent of Java Swing as text-dependent

widgets except JPasswordField. This includes JTextField, JFormattedTextField, JTextArea,

JEditorPane and JTextPane classes. We scan the GUI structure file and record the widget ID

of all the text-dependent widgets with their associated set of property names and values.

5.2.2 Extract key identifiers

For each text-dependent widget, we extract information from the GUI that can potentially

provide useful clues about the type of values the widget expects:

• Name of the widget: The value of this property is set by calling “setName” method

of the widget class to give the widget an identification. The words used in this string can

be highly related to the type of contents expected in the widget.

• Tooltip: The tooltip property gives hints about a widget [43]. This is the piece of text

that gets shown when the user hovers the mouse cursor over a widget. The words used in

a tooltip can be a useful source of information about the widget and the type of expected

values.

• Default text: Sometimes, text-dependent widgets are initialized with a default piece of

text. Usually, this string is an instance of a valid input for the box and can be used as a

concrete test value.

• Descriptive label: It is a common practice in GUI design to place a label adjacent to

textboxes/textareas to indicate what is expected inside them [43]. We call such labels

“descriptive labels”, because they make a description about the text-dependent widget

in front of them. The caption value of these labels provide invaluable information about

35

the widgets and the type of data they expect. In the example shown in Figure 5.1, each

textbox has a label to its left which provides a direct reference to the type of values

expected inside the box.

All the above information are directly available from the GUI structure file except the

descriptive label. Finding the descriptive label for a given text-dependent widget is an instance

of a polynomial-time problem called nearest neighbor problem (NNP), also known as post office

problem [44]. Coordinates of each widget in the GUI are recorded in the GUI structure file.

To find the descriptive label, we need to locate all the labels that share the same top-level

container1with the widget and are positioned in its proximity. For each such neighboring label,

we calculate the Euclidean distance between the positions of the widget and the label using the

Pythagorean metric (i.e.,
√

(∆X)2 + (∆Y)2 where ∆X and ∆Y refer to the differences between

X and Y axes of the widget and those of the label, respectively. The closest label, if any, with

a distance of less than an adjustable number is regarded as the “descriptive label” for that

widget. Our current implementation uses a linear search to find the descriptive label which

runs in O(n) time, where n is the number of widgets in the container; it is possible to improve

this time complexity by utilizing other methods such as the ones using space partitioning [44].

5.2.3 Processing key identifiers

The extracted identifiers from previous section are first tokenized since they are sometimes

formed from concatenation of a number of words. In addition to camel-case and underscore

tokenization, we also do dash tokenization. Underscore and camel-case concatenations are

popular naming conventions at the source code level, but dash concatenation is more used at

the GUI level. Underscores and dashes are replaced with whitespaces. Also, a whitespace is

inserted before each upper letter word. The complete tokenization step is only done for “name

of the widget”. For the values of the other properties, only dash tokenization is done if needed.

The value of the default text property is an exception to the discussed procedure. Oftentimes,

1In Java Swing, every GUI widget has to be part of a containment hierarchy [45]. There are three container
classes in Java Swing: JFrame, JDialog, and JApplet. In this work, we consider JFrame (the frame that contains
the widgets, if any) and JDialog (the window that contains the widgets) classes.

36

the default text value is a concrete example for a valid test data and can be directly used in

the testing process.

In the second phase of the processing step, Part-of-Speech tagging is done to remove articles

(e.g., a, an, the, to) and non-nouns (e.g. verbs, adverbs). We do this step with the help of

Stanford Log-linear Part-Of-Speech Tagger [46] tool using its default settings. Finally, non-

words (e.g., numbers, special characters, abbreviations) are removed from the set of extracted

key identifiers by JAZZY [47] tool and looking up SCOWL word list [48]. Detailed explanations

about each of these steps can be found in [42].

5.2.4 Finding valid and invalid test data

Once the key identifiers are tokenized and refined, they are used to find appropriate regular

expressions. We use the processed identifier names as search phrases to find relevant regular

expressions by looking up RegExLib [49]. RegExLib is an online website indexing about 4000

regular expressions for different string types. The regular expressions are rated from 0 (poor)

to 5 (excellent). We make HTTP requests to the website and download the results. We only

consider regular expressions with a rating of 4 and above. All the regular expressions found

are validated by making a call to Pattern.Compile() method of Java and the malformed ones

are discarded. For each regular expression, RegExLib also provides two example sets called

“Matches” and “Non-matches”, corresponding to the valid test data and invalid test data,

respectively.

As an example, for the identifier “Email”, we search the RegExLib to find and download the

top-rated regular expressions with their associated “Matches” and “Non-Matches” examples.

These examples are used directly in the testing process as valid and invalid test data.

To generate an invalid value using the default text property, we replace at most three

characters of the string value: 1) if there are any special characters, we replace one of them

randomly with an alphabetical or numerical character, 2) if there exist any numbers in the

string, we replace one of them randomly with a special or an alphabetical character, and 3) if

there are any alphabetical characters, we replace one of them randomly with a number or a

special character.

37

5.3 Evaluation

We experiment with five Java GUI-based applications to evaluate the effectiveness and

efficiency of our approach. The subject applications used in this study and their specifications

are listed in Table 5.1. ’#w’ denotes the number of windows/tabs in the GUI. ‘#e’ and ‘#p’

refer to the total number of events and the total number of text-dependent events in the GUI

of the subject application, respectively. These numbers are derived from the EFG models and

the GUI structure files of these applications which are constructed using the GUITAR ripper

and model constructor tools. ‘text types’ refers to the types of strings expected inside the

text-dependent widgets of each study subject. If there is no specific and well-defined type for

a widget, it is listed with its more general type (e.g., alphabetical, alpha-numeric).

User Registration and MyFinance are developed by the authors of the paper. The other

three subjects are open-source projects obtained from Github [50]. User Registration is the

application used in the example shown in Figure 5.1. It collects users information and writes

them into a database. MyFinance is an application that allows its users to organize and

maintain their creditcard and banking information in a secure way. FTPClient is a simple FTP

client. ImageGetter is used to download images in batches from given URLs, and Addressbook

allows its users to sort, write, delete, and update their contacts information.

5.3.1 Experiment Setup and Assumptions

The experiments are carried out on a 32-bit machine equipped with an Intel 2.4GHz-4MB

cache dual-core processor and 4GB of physical memory running Ubuntu 12.10 and Java 1.6.

We use GUITAR-1.1.1 ripper, models constructor and replayer tools. The maximum distance

to locate the descriptive labels is set to 50 pixels on a “1280 × 1024” screen resolution. We

correctly locate the descriptive labels using this value 100% of the time for all the subjects. To

measure the code coverage, Cobertura [51] tool is used. For each identifier, up to three regular

expressions with their associated sets of “matches” and “non-matches” are downloaded from

RegExLib. For each downloaded regular expression, one instance of valid and invalid strings

are used in the testing.

38

Table 5.1: Subject applications

Subject LOC #w #e #p text types
alphabetical, email,

phone, URL,
User Registration 462 1 17 9 US zip, address,

date, integer
creditcard no.,
US account no.
CVC, US zip,

MyFinance 1425 3 36 12 US state, address,
alphabetical,
RTN, integer
integer, IPv4,

FTPClient 3238 2 16 3 alpha-numeric
integer, URL,

ImageGetter 5412 4 32 11 alpha-numeric, date
alphabetical, email

Addressbook 8210 1 51 10 US state, US zip,
phone

5.3.2 Preliminary Experiment and Results

First, for each study subject, the GUI structure file and the EFG model are constructed

using GUITAR. Further, for each subject, length-2 test cases from the EFG model are gen-

erated. The choice of length-2 test cases is motivated by previous works in this area [21][35].

The GUI structure file and the EFG models are next taken by our prototype implementation

as input to extract text-dependent widgets and find concrete test data values for them based

on the presented approach. The values produced for each text-dependent event are stored into

a file which is accessed and read by the GUITAR test case replayer tool when executing the

test cases.

For the random approach, one random string is generated for each of the elements of the

following set: {negative real number, positive real number, negative integer, positive integer,

zero, empty string, alpha-numeric string, string with special characters, long string with alpha-

betical characters}. The choice of these elements is also motivated by previous works [21][33].

It may happen that no identifiers are extracted for a text-dependent widget because there is

no relevant information available in the GUI (i.e., all the relevant property values are null or

non-existent) or no regular expressions can be found for the identifiers. For such cases, we also

39

use the random values. This is why we call the first approach “Blackbox-Random”. Note that

the same initial test suites (i.e., EFG-based length-2 test cases) are used for both approaches,

thus the only difference between the results in code coverage stems from the string values used

with each test suite. Also, note that the textboxes that expect a password or a filename are

excluded from this study. Such data have to be provided by the test engineer.

Table 5.2: Results of the Blackbox-Random approach

Blackbox-Random
Subject Coverage Time

#tc-EFG #tc-EX line% branch% t1 t2 v
User Registration 200 2201 99 96 17s 3.8h 10.2
MyFinance 424 3891 69 63 19s 5.5h 8.2
FTPClient 172 944 51 43 5s 2.3h 14
ImageGetter 428 2702 58 56 21s 4.7h 7
Addressbook 841 6952 57 47 24s 10.4h 11

Table 5.3: Results of the Random approach

Random
Subject Coverage Time

#tc-EFG #tc-EX line% branch% t2 v
User Registration 200 1970 81 79 3.2h 9
MyFinance 424 4012 43 32 6.2h 9
FTPClient 172 680 45 39 1.8h 9
ImageGetter 428 3320 59 58 5.4h 9
Addressbook 841 6456 52 38 10.1h 9

Tables 5.2 and 5.3 show the results of this experiment. ‘#tc-EFG’ shows the size of the

initial parameterized test suite which includes EFG-based length-2 test cases. ‘#tc-EX’ refers to

the number of test cases actually executed using the produced test data for the text-dependent

events. ‘t1’ reports the amount of time taken to produce the test data using our approach and

‘t2’ is the amount of time the test case replayer takes to replay all the instantiated test cases on

the GUI. As can be seen, the time spent to produce the test data is negligible compared to the

amount of time it takes to execute the test suite. Note that ‘t1=0’ for the random approach,

since it takes less than a second to generate the random data. The line and branch coverages

are reported for each approach as well.

40

‘v’ refers to the average number of concrete test data values produced by each approach for

the text-dependent widgets of each subject (i.e., v = the total number of values produced
the number of text−dependent widgets). ‘v’ is

9 for all the subjects using the random approach, since a fixed set of test data values is used.

However, it varies for the blackbox-random approach because depending on the number of

identifiers and regular expressions for each text-dependent widget, a different number of values

are produced.

In all the subjects except ImageGetter, both line and branch coverages achieved by the

blackbox-random approach are higher than the random approach. In MyFinance, the branch

coverage is improved by 31%, which is a considerable number. This happens because the

regular expressions that formalize a credit-card number, CVC, RTN, account number, and zip

code are successfully found in RegExLib. In ImageGetter, the random approach does slightly

better. The reason is that a number of identifiers are extracted for three textboxes, but the

regular expressions that are found using those identifiers do not match the format expected in

the application. For instance, one of the widgets expects a date in dd/mm/yy format, but the

regular expressions found only match mm/dd/yyyy, dd-mm-yy, and dd-mm-yy strings. Also,

for four of the widgets, no identifiers are extracted, thus the same random values are used.

41

CHAPTER 6. RELATED WORK

This chapter provides an overview of previous work on the general areas of GUI-level sys-

tem testing and automated test data generation. First, an overview of GUI testing tools are

provided. Next, the related works on GUI testing are presented. Finally, a review of previous

work on automated data generation for software testing is given.

6.1 GUI Testing Tools

A traditional approach to testing software systems at the GUI level (or GUI testing for

short) is based on capture then replay methods. The idea is to capture GUI events during

the capture phase and record them in a test script. Then, a test engineers can edit it and

paly it back to test the system. There are many tools and libraries out there (offered as both

free and commercial software) that provide various degrees of automation for GUI testing on

different platforms (e.g., web, mobile, desktop etc) such as JFCUnit [52], Abbot [53] Jemmy [54],

Pounder [55], Selenium [56], GUITAR [5], UISpec4J [57], Sahi [58], Squish [59], Marathon [60],

Rational Functional Tester [61], GUIdancer [62], IcuTest [63], iMacros [64], and Watir [65]

only to name a handful of them. JFCUnit, Abbot, Jemmy, UISpec4J and IcuTest are used

for unit testing of GUIs. Pounder and Marathon support the capture-then-replay style of GUI

testing. Selenium, Sahi, iMacros and Watir are browser automation tools used for web-based

GUI testing. Some frameworks such as Squish and Rational Functional Tester support both

functional and regression testing of GUIs on a variety of platforms. Although there are many

GUI testing tools available, there exist no single one that has been adopted universally by the

industry and the process is still carried out manually for the most part. Part of the reason

is testing of GUI-based applications is complex and costly by nature, compared to testing of

Command-Line-Interface-based systems. This is primarily due to the huge, undetermined, and

42

context-sensitive input space of non-trivial GUIs. There is no single testing tool avaible today

that is effective and efficient to reveal faults in, or even applicable to, all different types of GUI

applications and technologies. Another major challenge is automation of GUI oracles [25].

6.2 GUI-level System Testing

Over recent year, there has been a large body of research work to automate GUI test-

ing [5][14][15][66][67][68][69][70][71][72][34][73][74][75][36][76][32]. Among the proposed approaches,

model-based GUI testing [14][66][67][69][70][71][72][34][73][32] has gained the most attention.

The primary idea is to create a model that approximate the entire or some part of the GUI which

and use it for testing purposes. Finite States Machines [14][66][67][68], UML diagrams [69],

task models [70], use cases [71], semantic models [72] and graphs [5] are some of the models

that have been successfully used in the past. AutoBlackTest [36] and EXSYST [34] are two

interesting recent works in the area that in addition to creating static models, manipulate

the source code as well. AutoBlackTest [36] uses Q-Learning to learn how to interact with a

given GUI application and produces test cases. A test case selector then filters redundant test

cases following additional statement coverage prioritization approach. EXSYST uses a genetic

algorithm to evolve GUI test suites for branch coverage while incrementally creating a GUI

model based on state machines. Both of these approaches treat GUI test generation as an op-

timization problem and utilize FSM-based models. Bauersfeld et al. [75] utilize the ant colony

algorithm to derive test cases based on optimization of Maximum Call Tree metric. Schulz’s

work [76] builds on the EXSYST approach by hybridizing static slice analysis and the dynamic

evolutionary approach to generate minimized test suites for branch coverage; the result of the

static slice analysis is used in the mutation operation to include events that are more likely to

cover uncovered branches. Ganov et al. [15] identify and generate GUI event sequences as well

as input data by extracting event listeners from the source code based on symbolic execution

and branch coverage.

Perhaps graphs are the most well-known models used in automated GUI testing. The

primary idea of the GUITAR approach [5] revolves around creating an event-flow graph (EFG)

to approximate GUI events and the flow among them [77]. In an EFG, a node corresponds to

43

an event and an edge between two nodes corresponds to the temporal flow between them. Due

to the fast explosion of the number of possible test cases generated using event-flow models

and to improve the results, various techniques have been proposed to identify/refine test cases

for higher fault detection capabilities [22][38][35][33]. Yuan et al. [38] proposed to create event

semantic interaction (ESI) relationships based on run-time effects of event executions on GUI

widgets properties. In [22], ideas of combinatorial testing to include unique event combinations

in a test suite were successfully applied to GUI test case generation. In [35], a lightweight static

analysis of the bytecode was carried out to determine data-dependency between event listeners

and the results were used to create event dependency graph (EDG) models. The test cases

generated using EDGs were shown to be more effective and efficient at revealing faults. In a

recent work, Boa et al. [33] extended the GUI model construction phase to test execution; they

iteratively incorporated the results of test executions into the initial model in order to develop

a carry out a more complete and accurate testing of the GUI.

6.3 Avoiding/Repairing Infeasible GUI Tests

Many of the model-based approaches may generate infeasible (i.e., unexcecutable or par-

tially executable) test cases, becuase they take a static/blackbox perspective on the GUI. In

general, a test case is infeasibile if it does not comply with the specifications of the software

under test. Infeasible test cases are regarded as invalid since they may trigger false failures [34].

Previous research works have been done on avoiding or repairing infeasible GUI test cases [78]

[79][80][20][81]. In [80], a prediction technique is proposed to classify test cases automatically

into feasible and infeasible classed based on two supervised machine learning methods. Zhang

et al. [81] use dynamic profiling, static analysis, and random testing to repair infeasible test

workflows. Memon [78] and Grachanik et al. [79] propose automated approaches to repair

test GUI suites and scripts in the context of regression testing. Huang et al. [20] propose a

framework based on genetic algorithms to repair infeasible test cases [20]. They also identify

several classes of state-based event constraints which we used in GUIDiVa framework. Au-

toInSpec [6] uses a by-product of the repair tool (i.e., missed coverage) to infer the constraints

using Prolog queries. The work is different from ours in that AutoInSpec needs missing t-sets

44

as input, thus it is dependent on both combinatorially-adequate test suites and the repair pro-

cess [20]. GUIDiVa, however, can improve any GUI test suite and discover the constraints

at the same time. Moreover, AutoInSpec does not report on its performance to compute the

missed coverage. This is why we unfortunately could not compare the efficiency of the two

techniques.

6.4 Combinatorial GUI Testing

In this dissertation, we devised a black-box approach to detect a set of state-based GUI

invariants to enhance both GUI specifications and test suites. For better efficiency, we utilized

covering arrays (CAs) [24], commonly used mathematical objects in combinatorial software

testing, to include as many unique combinations as possible in the initial test suite. CAs have

been successfully applied to GUI testing [22] to show that longer combinatorially-adequate

event sequences have higher fault detection rate compared to shorter exhaustive ones.Covering

arrays have been successfully applied to GUI test generation [22]. In this work, we also made use

of covering arrays [24] to generate coverage-adequate GUI test suites that satisfy the discovered

event constraints [82]. We proposed an approach to discover possible state-based GUI event

constraints from infeasible test cases of a test suite. Related works [83][84] in the combinatorial

testing area identify and rank failure-inducing combinations (i.e., combinations that cause

failures) from among the set of present combinations in the failed test cases. Finding event

constraints in GUI test suites, however, not only depends on the present combinations, but

also on the missing ones. Furthermore, examining the failure point and failed event of a test

case is essential to generate and select the most promising constraints based on their validity

weight values.

6.5 Automated Data Generation for Software Testing

Test data generation is a central activity to software testing, and the adequacy of the test

data is oftentimes assessed by structural code coverage [85] and fault detection capability [86].

Current test data generation methods fall into two broad categories: static methods and dy-

namic methods. Static methods utilize static code analysis and may use Symbolic Execution

45

(SE) [87] to generate test data that achieves certain structural coverage (e.g., branch cover-

age). Dynamic methods, on the other hand, manipulate the information gained from program

execution and can be based on random [88] or search-based [9] testing.

System testing of applications at the GUI level presents new challenges to software testing.

One such challenge is that the input spaces of GUI-based applications are undetermined, two

dimensional (i.e., event dimension and data dimension) and even infinite. Over recent years,

many approaches have been proposed to 1) capture and model this huge space, and 2) gener-

ate relevant event sequences as test cases. The problem of generating appropriate test data,

however, has gained less attention. SE-based [15] and search-based [34] techniques have been

successfully applied to GUI testing. However, both of these approaches have limited abilities

when handling the complex operations of the string data type. Moreover, it is not clear how

the proposed techniques perform on the data generation since they tackle both problems (i.e.,

event sequence and data generation) simultaneously.

The technique presented in this dissertation gets the branches that involve complex string

operations to execute by inferring input formats from identifier names (i.e., finding appropriate

regular expressions from the Internet). The produced test data using this approach are more

human-readable compared to the machine-generated values. Previous research has shown that

the human-readability of the test data considerably reduces the human oracle cost [89]. This is

specially important since devising full-fledged automated oracles for GUI testing is challenging

and costly [90]. Additionally, the test data generation is done completely independent from

GUI modeling and event sequence generation, thus the presented approach can be integrated

with the existing GUI testing models (e.g. ESIGs [38], EDGs [35], Covering Arrays [22]). In

fact, the idea of exploiting GUI information to generate the test data could be used in any GUI

testing process and on any platform (e.g., web and mobile platforms). Extracting and using

identifiers to search for relevant test data on the Internet was first proposed in [91] and further

refined in [42]. However, unlike those works which extract the identifiers from the source code

and use them to generate unit tests, we extract the key identifiers from the GUI and use them

to find relevant test data for GUI testing.

46

CHAPTER 7. FUTURE WORK

In this chapter, some possible directions for future work are discussed. First, the potential

improvements and further steps to event sequence generation and GUI specifications/test suite

enhancement are discussed. Then, the ideas related to automated blackbox test data generation

for GUI testing are given.

7.1 GUI Specifications and Test Suite Enhancement

GUIDiVa framework can be improved and extended along the following paths:

• Capturing more of GUI behavior: One way to acheive this is through identifying

relevant event interaction patterns and integrating more complex constraint types into

GUIDiVa: In this work, we only considered a limited number of constraint templates

given by [20]. We need more sophisticated and fine-grained constraint classes to enable

a more precise and thorough GUI modeling. As an example, in subjects II, IV, and V in

section 4.2.2 we have a constraint “Redo requires Undo”, which only partially expresses

how Redo and Undo events are related. In fact, the precise behavior is: “Each Redo

event requires one Undo and no undoable events should occur between the Undo and the

Redo”. Thus, <TypeInText, Undo, Redo, Redo> and <TypeInText, Undo, TypeInText,

Redo> test cases fail at their last event, although both of them satisfy the “Redo requires

Undo” constraint. Considering constraints that involve interaction of more than three

events is also something that can be considered.

• Compromised constraint v.s. fault: Infeasibility of a test case can be due to a fault

in AUT and not because of a compromised constraint. One way of improving the per-

formance and precision of GUIDiVa is to adopt the framework to carefully differentiate

47

between the two, possibly by leveraging the proposed notion of validity weight and GUI

fault models [92].

• Case Studies: Conducting larger case studies to further evaluate the performance of

GUIDiVa can result in new findings as well as higher confidence in the proposed method.

In particular, this can be done by either developing larger event-groups in each subject

or ideally eliminating them altogether.

• Code Coverage and/or Fault Detection Capability: For more grounded results, it

is possible to calculate the source code coverage when we take the constraints into account

for test generation. Even though our framework works from blackbox perspective com-

pletely, reflecting on the coverage of the underlying application’s source code provides

a more relaiable measure compared to blackbox measures such as CA coverage. Even

better is to compare the fault detection rate of test suites with and without considering

constraints. However, for the latter one, we need to devise appropriate oracles [25].

7.2 Test Data Generation for GUI Testing

In regard to the presented test data generation technique, we identify three immediate

routes for future work.

• Data Intensive GUI Testing: Constructing minimized parameterized test suites that

are suitable for data-intensive GUI testing seems a very promising path for further ex-

ploration. In particular, we feel that studying the actual user proles and/or an analysis

of data-dependency between the parameterized events and event listeners can be helpful.

• Further Experimental Studies Conducting larger case studies is desirable. Also, it

would be interesting to integrate the proposed approach with the existing GUI testing

frameworks that have limited test data generation abilities, and then measure the likely

improvements of code coverage and fault detection rates.

48

• Comparison with Alternative Approaches A comparative study between the pre-

sented approach and Symbolic-Execution-based/Search-based techniques in the context

of GUI testing is also an interesting direction for future work.

49

CHAPTER 8. CONCLUSION

Software testing is an integral part of software development process and accounts for more

than half of software development costs [93]. Studies show that software bugs cost the U.S

economy $59.5 billion annually and better software testing could save more than one third of

this cost [94]. Most modern software products nowadays come with a graphical user interface

(GUI) at their front-end and can run on a variety of platforms such as desktop, web, mobile etc.

Industrial-scale automated testing of such systems, however, still remains an ad-hoc process.

In recent years, model-based approaches have put forward a promising solution to automate

testing of GUI applications, but there are still limitations and challenges that prevent a high-

quality fully-automated testing cycle.

In this dissertation, we designed and implemented an automated framework to enhance

GUI specifications and test suites utilizing model-based GUI testing and combinatorial testing.

GUIDiVa at the core of our framework discovers and validates an important set of GUI invari-

ants (as part of GUI specificaitons) in the form of state-based event constraints. GUIDiV a

is an iterative algorithm that discovers the most promising constraints based on the proposed

notion of validity weight. The results of empirical studies on both seeded and five Java applica-

tions showed that GUIDiVa is effective and reasonably accurate in discovering GUI invariants.

GUIDiVa was able to find all seeded constraints and only missed seven unseeded ones among

about ninety constraints.

We also presented a novel blackbox approach to produce relevant test data for GUI testing.

Our approach used the GUI information to extract key identifiers for the parameterized widgets

(i.e., widgets that accept input values such as textboxes) and found appropriate valid and invalid

test data using an online search. The preliminary experiments with five applications showed

that the proposed technique is feasible and applicable.

50

BIBLIOGRAPHY

[1] B. Beizer, Software System Testing and Quality Assurance. Van Nostrand Reinhold Co.,

1984.

[2] S. Arlt, C. Bertolini, S. Pahl, and M. Schäf, “Trends in model-based gui testing,” Journal

of Advances in Computers, vol. 86, pp. 183–222, 2012.

[3] A. M. Memon, “A comprehensive framework for testing graphical user interfaces,” Ph.D.

dissertation, University of Pittsburgh, 2001, aAI3026063.

[4] M. Utting and B. Legeard, Practical Model-Based Testing - A Tools Approach. Morgan

Kaufmann, 2007.

[5] B. N. Nguyen, B. Robbins, I. Banerjee, X. Yuan, Q. Xie, and A. Nagarajan. (2001)

Guitar website. [Online]. Available: http://guitar.sourceforge.net

[6] M. B. Cohen, S. Huang, and A. M. Memon, “Autoinspec: Using missing test coverage to

improve specifications in guis,” in IEEE International Symposium on Software Reliability

Engineering, 2012, pp. 251–260.

[7] R. Kuhn, Y. Lei, and R. Kacker, “Practical combinatorial testing: Beyond pairwise,” IT

Professional, vol. 10, no. 3, pp. 19–23, 2008.

[8] J. C. King, “Symbolic execution and program testing,” Commun. ACM, vol. 19, no. 7, pp.

385–394, Jul. 1976.

[9] P. McMinn, “Search-based software test data generation: A survey: Research articles,”

Softw. Test. Verif. Reliab., vol. 14, no. 2, pp. 105–156, Jun. 2004.

http://guitar.sourceforge.net

51

[10] R. C. Bryce, S. Sampath, and A. M. Memon, “Developing a single model and test prioriti-

zation strategies for event-driven software,” IEEE Transactions on Software Engineering,

vol. 37, no. 1, pp. 48–64, 2011.

[11] L. P. F. M. Hugh Taylor, Angela Yochem, Event-Driven Architecture: How SOA Enables

the Real-Time Enterprise. Addison-Wesley Professional, 2009.

[12] R. E. Eberts, User interface design. Prentice Hall, 1994.

[13] P. Li, T. Huynh, M. Reformat, and J. Miller, “A practical approach to testing gui systems,”

Journal of Empirical Software Engineering, vol. 12, no. 4, pp. 331–357, Aug. 2007.

[14] F. Belli, “Finite-state testing and analysis of graphical user interfaces,” in IEEE Interna-

tional Symposium on Software Reliability Engineering. IEEE Computer Society, 2001,

pp. 34–43.

[15] S. Ganov, C. Killmar, S. Khurshid, and D. E. Perry, “Event listener analysis and symbolic

execution for testing gui applications,” in International Conference on Formal Engineering

Methods. Springer-Verlag, 2009, pp. 69–87.

[16] A. M. Memon and Q. Xie, “Studying the fault-detection effectiveness of GUI test cases for

rapidly evolving software,” IEEE Transactions on Software Engineering, vol. 31, no. 10,

pp. 884–896, 2005.

[17] Q. Xie and A. M. Memon, “Model-based testing of community-driven open-source gui

applications,” in nternational Conference on Software Maintenance. IEEE Computer

Society, 2006, pp. 145–154.

[18] X. Qing and A. Memon, “Using a pilot study to derive a gui model for automated testing,”

ACM Transactions on Software Engineering Methodology, vol. 18, pp. 7:1–7:35, 2008.

[19] D. R. Hackner and A. M. Memon, “Test case generator for guitar,” in IEEE International

Conference on Software Testing, Verification and Validation Companion, 2008, pp. 959–

960.

52

[20] S. Huang, M. B. Cohen, and A. M. Memon, “Repairing gui test suites using a genetic

algorithm,” in IEEE International Conference on Software Testing, Verification and Val-

idation. IEEE Computer Society, 2010, pp. 245–254.

[21] X. Yuan, M. Cohen, and A. Memon, “Covering array sampling of input event sequences for

automated gui testing,” in IEEE/ACM International Conference on Automated Software

Engineering. ACM, 2007, pp. 405–408.

[22] X. Yuan, M. B. Cohen, and A. M. Memon, “Gui interaction testing: Incorporating event

context,” IEEE Transactions on Software Engineering, vol. 37, pp. 559–574, 2011.

[23] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn, “Constructing test

suites for interaction testing,” in IEEE International Conference on Software Testing,

Verification and Validation. IEEE Computer Society, 2003, pp. 38–48.

[24] L. Yu, Y. Lei, R. Kacker, and R. Kuhn, “Acts: A combinatorial test generation tool,” in

IEEE International Conference on Software Testing, Verification and Validation. IEEE

Computer Society, 2013, pp. 370–375.

[25] Q. Xie and A. M. Memon, “Designing and comparing automated test oracles for gui-based

software applications,” ACM Trans. Softw. Eng. Methodol., vol. 16, no. 1, Feb. 2007.

[26] M. Cohen and A. Memon, “Comet website.” [Online]. Available: http://comet.unl.edu

[27] “Terpoffice website.” [Online]. Available: http://www.cs.umd.edu/∼atif/Benchmarks/

UMD2006b.html

[28] “Crosswordsage website.” [Online]. Available: http://crosswordsage.sourceforge.net

[29] “Freemind website.” [Online]. Available: http://freemind.sourceforge.net

[30] “Rachota website.” [Online]. Available: http://rachota.sourceforge.net

[31] A. Darvish and C. K. Chang, “Black-box test data generation for gui testing,” in QSIC

’14. IEEE Computer Society, 2014, pp. 133–138.

http://comet.unl.edu
http://www.cs.umd.edu/~atif/Benchmarks/UMD2006b.html
http://www.cs.umd.edu/~atif/Benchmarks/UMD2006b.html
http://crosswordsage.sourceforge.net
http://freemind.sourceforge.net
http://rachota.sourceforge.net

53

[32] A. Darvish and C. Chang, “Guidiva: Automated discovery and validation of state-based

gui invariants,” in COMPSAC ’14, 2014, pp. 65–74.

[33] B. N. Nguyen and A. Memon, “An observe-model-exercise* paradigm to test event-driven

systems with undetermined input spaces,” IEEE Trans. Softw. Eng., vol. 40, no. 3, pp.

216 – 234, 2014.

[34] F. Gross, G. Fraser, and A. Zeller, “Exsyst: Search-based gui testing (demo paper),” in

IEEE International Conference on Software Testing, Verification and Validation. IEEE

Press, 2012, pp. 1423 – 1426.

[35] C. B. M. S. I. B. A. M. Stephan Arlt, Andreas Podelski, “Grey-box gui testing: Efficient

generation of event sequences,” in IEEE International Symposium on Software Reliability

Engineering. IEEE Computer Society, 2012, pp. 301–310.

[36] L. Mariani, M. Pezze, O. Riganelli, and M. Santoro, “Autoblacktest: Automatic black-box

testing of interactive applications,” in ICST ’12, 2012, pp. 81–90.

[37] S. Bauersfeld, S. Wappler, and J. Wegener, “A metaheuristic approach to test sequence

generation for applications with a gui,” in Symposium on Search-Based Software Engineer-

ing. Springer-Verlag, 2011.

[38] X. Yuan and A. M. Memon, “Generating event sequence-based test cases using gui runtime

state feedback,” IEEE Transaction on Software Engineering, vol. 36, no. 1, pp. 81–95, Jan.

2010.

[39] A. Memon, M. E. Pollack, , and M. L. Soffa, “”hierarchical gui test case generation using

automated planning”,” ”IEEE Transaction on Software Engineering.”, vol. 27, no. 2, pp.

144–155, 2001.

[40] I. Ghosh, N. Shafiei, G. Li, and W.-F. Chiang, “Jst: An automatic test generation tool for

industrial java applications with strings,” in ICSE ’13. IEEE Press, 2013, pp. 992–1001.

[41] Apache, “Apache common validator.” [Online]. Available: http://commons.apache.org/

proper/commons-validator/

http://commons.apache.org/proper/commons-validator/
http://commons.apache.org/proper/commons-validator/

54

[42] M. Shahbaz, P. McMinn, and M. Stevenson, “Automatic generation of valid and invalid test

data for string validation routines using web searches and regular expressions,” Elsevier

Journal of Science of Computer Programming, 2014.

[43] W. O. Galitz, The Essential Guide to User Interface Design: An Introduction to GUI

Design Principles and Techniques. Wiley, 2007.

[44] A. Andoni, “Nearest neighbor search: the old, the new, and the impossible,” Ph.D. dis-

sertation, Massachusett Institute of Technology, 2009.

[45] O. Corporation, “Java swing library documentation.” [Online]. Available: http:

//docs.oracle.com/javase/7/docs/technotes/guides/swing/

[46] K. Toutanova, “Stanford log-linear part-of-speech tagger.” [Online]. Available:

http://nlp.stanford.edu/software/tagger.shtml

[47] Jazzy, “Jazzy.” [Online]. Available: http://sourceforge.net/projects/jazzy

[48] K. Atkinson, “Spell checking oriented word lists (scowl).” [Online]. Available:

http://wordlist.sourceforge.net/

[49] RegExLib, “Regexlib library.” [Online]. Available: http://regexlib.com/

[50] “Github website.” [Online]. Available: https://github.com

[51] “Cobertura code coverage tool website.” [Online]. Available: http://cobertura.github.io/

cobertura/

[52] “Jfcunit website.” [Online]. Available: http://jfcunit.sourceforge.net/

[53] “Abbot website.” [Online]. Available: http://abbot.sourceforge.net/doc/overview.shtml

[54] “Jemmy website.” [Online]. Available: https://jemmy.java.net/

[55] “Pounder website.” [Online]. Available: http://pounder.sourceforge.net/

[56] “Selenium website.” [Online]. Available: http://www.seleniumhq.org/

http://docs.oracle.com/javase/7/docs/technotes/guides/swing/
http://docs.oracle.com/javase/7/docs/technotes/guides/swing/
http://nlp.stanford.edu/software/tagger.shtml
http://sourceforge.net/projects/jazzy
http://wordlist.sourceforge.net/
http://regexlib.com/
https://github.com
http://cobertura.github.io/cobertura/
http://cobertura.github.io/cobertura/
http://jfcunit.sourceforge.net/
http://abbot.sourceforge.net/doc/overview.shtml
https://jemmy.java.net/
http://pounder.sourceforge.net/
http://www.seleniumhq.org/

55

[57] “Uispec4j website.” [Online]. Available: http://www.uispec4j.org/

[58] “Sahi website.” [Online]. Available: http://www.sahipro.com

[59] “Squish website.” [Online]. Available: http://www.froglogic.com/squish/gui-testing/

[60] “Marathon website.” [Online]. Available: http://marathontesting.com/

[61] “Rational functional tester website.” [Online]. Available: http://www-03.ibm.com/

software/products/en/functional

[62] “Guidancer website.” [Online]. Available: http://www.bredex.de/guidancer jubula en.

html

[63] “Icutest website.” [Online]. Available: http://www.nxs-7.com/icu/

[64] “imacros website.” [Online]. Available: http://imacros.net/overview/web-testing

[65] “Watir website.” [Online]. Available: http://www.watir.com

[66] R. K. Shehady and D. P. Siewiorek, “A method to automate user interface testing using

variable finite state machines,” in FTCS ’97. IEEE Computer Society, 1997, pp. 80–.

[67] L. White and H. Almezen, “Generating test cases for gui responsibilities using complete

interaction sequences,” in ISSRE ’00. IEEE Computer Society, 2000, pp. 110–.

[68] L. White, H. Almezen, and N. Alzeidi, “User-based testing of gui sequences and their

interactions,” in ISSRE ’01. IEEE Computer Society, 2001, pp. 54–63.

[69] M. Vieira, J. Leduc, B. Hasling, R. Subramanyan, and J. Kazmeier, “Automation of gui

testing using a model-driven approach,” in AST ’06. ACM, 2006, pp. 9–14.

[70] J. L. Silva, J. C. Campos, and A. C. R. Paiva, “Model-based user interface testing with

spec explorer and concurtasktrees,” Electron. Notes Theor. Comput. Sci., vol. 208, pp.

77–93, Apr. 2008.

[71] P. L. M. Navarro, D. S. Ruiz, and G. M. Pérez, “A proposal for automatic testing of guis

based on annotated use cases,” Adv. Soft. Eng., vol. 2010, pp. 5:1–5:13, Jan. 2010.

http://www.uispec4j.org/
http://www.sahipro.com
http://www.froglogic.com/squish/gui-testing/
http://marathontesting.com/
http://www-03.ibm.com/software/products/en/functional
http://www-03.ibm.com/software/products/en/functional
http://www.bredex.de/guidancer_jubula_en.html
http://www.bredex.de/guidancer_jubula_en.html
http://www.nxs-7.com/icu/
http://imacros.net/overview/web-testing
http://www.watir.com

56

[72] N. R. Krishnaswami and N. Benton, “A semantic model for graphical user interfaces,”

SIGPLAN Not., vol. 46, no. 9, pp. 45–57, Sep. 2011.

[73] E. S. G. Hassan Reza, Sandeep Endapally, “A model-based approach for testing gui us-

ing hierarchical predicate transition nets,” in International Conference on Information

Technology : New Generations. IEEE Computer Society, 2007, pp. 366–370.

[74] T.-H. Chang, T. Yeh, and R. C. Miller, “Gui testing using computer vision,” in CHI ’10.

ACM, 2010, pp. 1535–1544.

[75] S. Bauersfeld, S. Wappler, and J. Wegener, “A metaheuristic approach to test sequence

generation for applications with a gui,” in SSBSE ’11, 2011, pp. 173–187.

[76] T. Schulz, “Automatic Evolutionary GUI Testing Assisted by Static Analysis,” Master’s

thesis, Hamburg University of Technology, Hamburg, Germany, 2013.

[77] A. M. Memon, “An event-flow model of gui-based applications for testing: Research arti-

cles,” Softw. Test. Verif. Reliab., vol. 17, no. 3, pp. 137–157, Sep. 2007.

[78] A. Memon, “Automatically repairing event sequence-based gui test suites for regression

testing,” ACM Trans. Softw. Eng. Methodol., vol. 18, no. 2, pp. 4:1–4:36, Nov. 2008.

[79] M. Grechanik, Q. Xie, and C. Fu, “Maintaining and evolving gui-directed test scripts,” in

ICSE ’09. IEEE Computer Society, 2009, pp. 408–418.

[80] R. Gove and J. Faytong, “Machine learning and event-based software testing: Classifiers

for identifying infeasible gui event sequences.” Advances in Computers, vol. 86, pp. 109–

135, 2012.

[81] S. Zhang, H. Lü, and M. D. Ernst, “Automatically repairing broken workflows for evolving

gui applications,” in ISSTA ’13. ACM, 2013, pp. 45–55.

[82] L. Yu, Y. Lei, M. Nourozborazjany, R. N. Kacker, and D. R. Kuhn, “An efficient algorithm

for constraint handling in combinatorial test generation,” in IEEE International Confer-

ence on Software Testing, Verification and Validation. IEEE Computer Society, 2013,

pp. 242–251.

57

[83] C. Nie and H. Leung, “The minimal failure-causing schema of combinatorial testing,”

ACM Transactoins on Software Engineering Methodology, vol. 20, no. 4, pp. 15:1–15:38,

Sep. 2011.

[84] L. S. G. Ghandehari, Y. Lei, T. Xie, R. Kuhn, and R. Kacker, “Identifying failure-inducing

combinations in a combinatorial test set,” in IEEE International Conference on Software

Testing, Verification and Validation. IEEE Computer Society, 2012, pp. 370–379.

[85] N. Tracey, J. Clark, K. Mander, and J. McDermid, “An automated framework for struc-

tural test-data generation,” in ASE ’98. IEEE Computer Society, 1998, pp. 285–288.

[86] R. A. DeMillo and A. J. Offutt, “Constraint-based automatic test data generation,” IEEE

Trans. Softw. Eng., vol. 17, no. 9, pp. 900–910, Sep. 1991.

[87] J. C. King, “A new approach to program testing,” SIGPLAN Not., vol. 10, no. 6, pp.

228–233, Apr. 1975.

[88] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated random testing,”

SIGPLAN Not., vol. 40, no. 6, pp. 213–223, Jun. 2005.

[89] S. Afshan, P. McMinn, and M. Stevenson, “Evolving readable string test inputs using a

natural language model to reduce human oracle cost,” in ICST ’13. IEEE Computer

Society, 2013, pp. 352–361.

[90] Q. Xie and A. M. Memon, “Designing and comparing automated test oracles for gui-

based software applications,” ACM Transactions on Software Engineering and Methodol-

ogy, vol. 16, no. 1, p. 4, 2007.

[91] P. McMinn, M. Shahbaz, and M. Stevenson, “Search-based test input generation for string

data types using the results of web queries,” in ICST ’12. IEEE Computer Society, 2012,

pp. 141–150.

[92] J. Strecker and A. M. Memon, “Accounting for defect characteristics in evaluations of

testing techniques,” ACM Trans. on Softw. Eng. and Method., vol. 21, no. 3, 2012.

58

[93] R. Patton, Software Testing (2Nd Edition). Indianapolis, IN, USA: Sams, 2005.

[94] NIST(Report), “The economic impacts of inadequate infrastructure for software testing,”

2002.

	2015
	Automated blackbox GUI specifications enhancement and test data generation
	Mohammad Ali Darvish Darab
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	2. BACKGROUND
	2.1 Event-Driven GUIs
	2.2 Model-based GUI Testing Using Graph Models
	2.2.1 Infeasible Test Cases

	2.3 Covering Arrays

	3. GUI INVARIANT DISCOVERY AND VALIDATION FRAMEWORK
	3.1 Constraint Discovery and Validation Framework
	3.1.1 GUIDiVa
	3.1.2 Initialization and Test Case Replaying
	3.1.3 Validity Weight Calculation
	3.1.4 Removing Conflicts
	3.1.5 Updating Test Suite
	3.1.6 Stopping Criteria

	3.2 Complexity Analysis
	3.3 Example

	4. EXPERIMENTAL STUDIES WITH GUIDiVa
	4.1 Experiment Setup and Assumptions
	4.2 Experiments
	4.2.1 UNL.TOY.2010
	4.2.2 Non-trivial Applications

	4.3 Research Questions
	4.3.1 RQ I
	4.3.2 RQ II
	4.3.3 RQ III

	4.4 Threats to Validity

	5. BLACKBOX TEST DATA GENERATION FOR GUI TESTING
	5.1 Motivation
	5.2 Blackbox Test Data Generation
	5.2.1 Identify parameterized widgets
	5.2.2 Extract key identifiers
	5.2.3 Processing key identifiers
	5.2.4 Finding valid and invalid test data

	5.3 Evaluation
	5.3.1 Experiment Setup and Assumptions
	5.3.2 Preliminary Experiment and Results

	6. RELATED WORK
	6.1 GUI Testing Tools
	6.2 GUI-level System Testing
	6.3 Avoiding/Repairing Infeasible GUI Tests
	6.4 Combinatorial GUI Testing
	6.5 Automated Data Generation for Software Testing

	7. FUTURE WORK
	7.1 GUI Specifications and Test Suite Enhancement
	7.2 Test Data Generation for GUI Testing

	8. CONCLUSION
	9. BIBLIOGRAPHY

