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ABSTRACT

In this thesis we study the interaction between algorithmic randomness and math-

ematical analysis. In particular, we focus on the connection between analysis and the

fields of effective dimension and resource bounded randomness.

We begin with the effective dimension of Euclidean points. We show that the

techniques from algorithmic information can be used successfully to study problems

in fractal geometry. Specifically, we investigate the Hausdorff of projections of Eu-

clidean subsets. Using Kolmogorov complexity, we give a new proof of the celebrated

Marstrand projection theorem. We also prove, using similar methods, two new lower

bounds on projections. The first shows that Marstrand’s theorem holds for more

general subsets of Rn. The second gives a lower bound on the packing dimension of

projections for arbitrary sets.

Our next work is on the algorithmic dimension spectra of lines in the Euclidean

plane. Given any line L with slope a and vertical intercept b, the dimension spectrum

sp(L) is the set of all effective Hausdorff dimensions of individual points on L. We

use Kolmogorov complexity and geometrical arguments to show that, if the effective

Hausdorff dimension dim(a, b) is equal to the effective packing dimension Dim(a, b),

then sp(L) contains a unit interval. We also show that, if the dimension dim(a, b) is

at least one, then sp(L) is infinite. Together with previous work, this implies that

the dimension spectrum of any line is infinite.

Our last topic is on the connection between polynomial space randomness and a

fundamental result of analysis, the Lebesgue differentiation theorem. We generalize
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Ko’s framework for polynomial space computability in Rn to define weakly pspace-

random points, a new variant of polynomial space randomness. We show that the

Lebesgue differentiation theorem characterizes weakly pspace random points. That is,

a point x is weakly pspace random if and only if the Lebesgue differentiation theorem

holds for a point x for every pspace L1-computable function.
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CHAPTER 1. INTRODUCTION

What does it mean for a mathematical object to be intrinsically random? Until

the middle of the 20th century, the notion of an object having randomness would seem

paradoxical. However, the theory of computing enables a mathematically meaningful

way of measuring the randomness of an object. Kolmogorov [22], and, independently

Solomonoff [48] and Chaitin [9], gave the first measure of the intrinsic randomness of

finite binary strings, now known as Kolmogorov complexity. Under this definition, the

randomness inherent to a finite string x is the length of the shortest algorithm which

outputs x (for a formal definition see Chapter 2). Martin-Löf [36] used computability

theory to give an effective version of measure theory. We say that a sequence A

is (Martin-Löf) random if the singleton {A} is not of effective measure zero. Since

the work of Kolmogorov and Martin-Löf, the field of algorithmic randomness has

expanded to include a hierarchy of notions of randomness, all of which make essential

use of the theory of computing. In this dissertation, we will focus on two areas

of algorithmic randomness, effective (algorithmic) dimension and resource bounded

randomness, and their connection with mathematical analysis.

Algorithmic dimension was developed by J. Lutz [26, 27] as an effectivization of

Hausdorff dimension, a fundamental tool of fractal geometry (see Chapter 2 for pre-

liminary definitions). Although originally used to study complexity classes [26, 2, 40],

effective dimension has proven to give geometrically meaningful information about

Euclidean points [12, 18, 30, 31]. The connection between algorithmic dimension and
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analysis was further deepened in the recent work of J. Lutz and N. Lutz. They proved

that the Hausdorff and packing dimensions of a set can be characterized by the effec-

tive dimension of its points [29]. This allows techniques of algorithmic randomness

to be applied to problems in analysis. Although this method has only recently been

established, there have been several results showing the usefulness of this approach.

In the same paper that introduced the point-to-set principle, J. Lutz and N. Lutz

applied it to give a new proof of Davies’ theorem [10] settling the Kakeya conjecture

in the plane. Subsequently, N. Lutz and Stull [33] applied the principle to the dimen-

sions of points on lines in the plane to give improved bounds on Furstenberg sets.

The point-to-set principle also allowed N. Lutz [32] to show that the fundamental

product inequality for Hausdorff dimension holds for arbitrary sets.

In Chapter 3, we use the point-to-set principle to study the fractal dimensions of

projections, a fundamental problem in fractal geometry. We show that algorithmic

randomness can be successfully applied to this problem. Our first result gives a new,

entirely information theoretic, proof of the celebrated Marstrand projection theorem.

Our second main theorem shows that the conclusion of Marstrand’s theorem holds

for a different class of sets than those Marstrand considered. As a corollary, we

strengthen Marstrand’s projection theorem. In our third main theorem of Chapter 3,

we prove a new bound on the packing dimension of projections of arbitrary sets.

We continue our investigation of effective dimension and analysis in Chapter 4.

Given the pointwise nature of effective Hausdorff dimension, it is natural to investigate

the dimension spectrum of a set E ⊆ Rn, i.e., the set of all dimensions of points in E.

In this chapter, motivated by questions of fractal geometry, we study the (effective)

dimension of points on a given line in the Euclidean plane. Our first main result gives

sufficient criterion for the dimension spectrum of a line to contain a unit interval. Our
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second main theorem shows that, for any line in the plane, the dimension spectrum

of that line is infinite.

The second part of this thesis studies resource bounded randomness through the

lens of analysis. With the prominence of complexity theory in computation, a natural

step is to impose resource bounds on the computation in algorithmic randomness.

Resource bounded randomness studies the different notions of what it means for an

object to be random” relative to a resource bounded observer. Investigation into

resource bounded randomness began in earnest with Lutz’s development of resource

bounded measure, a resource bounded effectivization of Lebesgue measure theory [25].

Recent research has used computable analysis to study the connection between

randomness and classical analysis [3, 15, 16, 41, 42, 46, 47]. With the rise of measure

theory, many fundamental theorems of analysis have been “almost everywhere” re-

sults. Theorems of this type state that a certain property holds for almost every point;

i.e., the set of points that does not satisfy the property is of measure zero. However,

almost everywhere theorems typically give no information about which points satisfy

the stated property. By adding computability restrictions, tools from algorithmic

randomness are able to strengthen a theorem from a property simply holding almost

everywhere, to one that holds for all random points. In this thesis, we are inter-

ested in the connection between resource bounded randomness and analysis. While

there has been work on this interaction [6, 28, 44], the interplay of resource bounded

randomness and analysis is still poorly understood.

In Chapter 5, we define weak resource bounded randomness, a new notion of re-

source bounded randomness. Using ideas from Ko’s framework [21] for computational

complexity in Rn, we define weak randomness using resource bounded null covers. We

show that, in the polynomial space setting, weak randomness is strictly weaker notion

of randomness than that of Lutz. In Chapter 6 we investigate weak randomness in
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the context of measure theoretic analysis. We show that the Lebesgue differentiation

theorem, a fundamental theorem of analysis, characterizes weak polynomial space

randomness. With this result, we generalize the work of Pathak, Rojas and Simpson

[46], who previously characterized Schnorr randomness with Lebesgue’s theorem.
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CHAPTER 2. EFFECTIVE DIMENSION IN

EUCLIDEAN SPACE

In this chapter we review the key definitions and theorems of effective dimension

that will be used in Chapters 3 and 4. We begin in Section 2.1 with the definition

of Kolmogorov complexity for discrete objects. We then leverage this definition to

give the Kolmogorov complexity of Euclidean points. In Section 2.2 we review Lutz’s

notions of effective dimension, and their characterization using Kolmogorov complex-

ity. In Section 2.3 we state the point-to-set principles of J. Lutz and Hitchock, and

J. Lutz and N. Lutz.

2.1 Kolmogorov Complexity in Discrete and Continuous

Domains

The conditional Kolmogorov complexity of binary string σ ∈ {0, 1}∗ given a binary

string τ ∈ {0, 1}∗ is the length of the shortest program π that will output σ given τ

as input. Formally, the conditional Kolmogorov complexity of σ given τ is

K(σ|τ) = min
π∈{0,1}∗

{`(π) : U(π, τ) = σ} ,

where U is a fixed universal prefix-free Turing machine and `(π) is the length of π.

Any π that achieves this minimum is said to testify to, or be a witness to, the value

K(σ|τ). The Kolmogorov complexity of a binary string σ is K(σ) = K(σ|λ), where λ
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is the empty string. These definitions extend naturally to other finite data objects,

e.g., vectors in Qn, via standard binary encodings; see [24] for details.

One of the most useful properties of Kolmogorov complexity is that it obeys the

symmetry of information. That is, for every σ, τ ∈ σ ∈ {0, 1}∗,

K(σ, τ) = K(σ) +K(τ |σ,K(σ)) +O(1) ,

Kolmogorov complexity can be naturally extended to points in Euclidean space,

as we now describe. The Kolmogorov complexity of a point x ∈ Rm at precision r ∈ N

is the length of the shortest program π that outputs a precision-r rational estimate

for x. Formally, this is

Kr(x) = min {K(p) : p ∈ B2−r(x) ∩Qm} ,

where Bε(x) denotes the open ball of radius ε centered on x. The conditional Kol-

mogorov complexity of x at precision r given y ∈ Rn at precision s ∈ Rn is

Kr,s(x|y) = max
{

min{Kr(p|q) : p ∈ B2−r(x) ∩Qm} : q ∈ B2−s(y) ∩Qn
}
.

When the precisions r and s are equal, we abbreviate Kr,r(x|y) by Kr(x|y). As

a matter of notational convenience, if we are given a nonintegral positive real as a

precision parameter, we will always round up to the next integer. For example, Kr(x)

denotes Kdre(x) whenever r ∈ (0,∞).

The following lemma, due to Case and J. Lutz and J. Lutz and N. Lutz, shows

that the Kolmogorov complexity of a point is linearly sensitive to its inputs.

Lemma 2.1 (Case and J. Lutz [8], J. Lutz and N. Lutz [29]). Let x ∈ Rm and y ∈ Rn.

For all r, s, r′, s′ ∈ N,

1. Kr′(x) = Kr(x) +O(|r′ − r|) +O(log r).
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2. Kr′,s′(x|y) = Kr,s(x|y) +O(|r′ − r|+ |s′ − s|) +O(log rs).

We will often use the following result which shows that symmetry of information

holds for Kolmogorov complexity in Rn. The proof may be found in [33].

Lemma 2.2 (J. Lutz and N. Lutz [29], N. Lutz and Stull [33]). Let x ∈ Rm and

y ∈ Rn. For all r, s ∈ N with r ≥ s,

1. Kr(x, y) = Kr(x|y) +Kr(y) +O(log r).

2. Kr(x) = Kr,s(x|x) +Ks(x) +O(log r).

The following lemma states that, if at some precision r, a point x gives little

information about a point z, then x gives little information about z for all precisions

s ≤ r. The proof is deferred to Appendix .

Lemma 2.3. Let m,n ∈ N, x ∈ Rm, z ∈ Rn, ε > 0 and r ∈ N. If Kx
r (z) ≥ Kr(z)−εr,

then the following hold for all s ≤ r.

(i) |Kx
s (z)−Ks(z)| ≤ εr −O(log r) .

(ii) |Ks,r(x | z)−Ks(x)| ≤ εr −O(log r) .

2.2 Effective Hausdorff and Packing Dimensions

J. Lutz [26] initiated the study of algorithmic dimensions by effectivizing Hausdorff

dimension using betting strategies called gales, which generalize martingales. Sub-

sequently, Athreya, et al., defined effective packing dimension, also using gales [2].

Mayordomo showed that effective Hausdorff dimension can be characterized using

Kolmogorov complexity [39]. Mayordomo and J. Lutz then showed that effective

packing dimension can also be characterized in this way [30]. In this paper, we use
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these characterizations as definitions. The effective Hausdorff dimension and effective

packing dimension of a point x ∈ Rn are

dim(x) = lim inf
r→∞

Kr(x)

r
and Dim(x) = lim sup

r→∞

Kr(x)

r
.

Intuitively, these dimensions measure the density of algorithmic information in the

point x. J. Lutz and N. Lutz [29] generalized these definitions by defining the lower

and upper conditional dimension of x ∈ Rm given y ∈ Rn as

dim(x|y) = lim inf
r→∞

Kr(x|y)

r
and Dim(x|y) = lim sup

r→∞

Kr(x|y)

r
.

2.3 The Point-to-set Principle

By letting the underlying fixed prefix-free Turing machine U be a universal oracle

machine, we may relativize the definitions in this section to an arbitrary oracle set

A ⊆ N. The definitions of KA(σ|τ), KA(σ), KA
r (x), KA

r (x|y), dimA(x), DimA(x)

dimA(x|y), and DimA(x|y) are then all identical to their unrelativized versions, except

that U is given oracle access to A. We will frequently consider the complexity of a

point x ∈ Rn relative to a point y ∈ Rm, i.e., relative to a set Ay that encodes the

binary expansion of y is a standard way. We then write Ky
r (x) for K

Ay
r (x).

The following point-to-set principles show that the classical notions of Haudorff

and packing dimension of a set can be characterized by the effective dimension of its

points. The first point-to-set principle, for a restricted class of sets, was implicitly

proven by Lutz [26] and Hitchcock [19].

Theorem 2.4. Let E ⊆ Rn be a a Fσ set, and A ⊆ N be an oracle such that E is a

Σ0
2 set relative to A. Then,

dimH(E) = sup
x∈E

dimA(x).
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Recently, J. Lutz and N. Lutz [29] improved this result to show that the Hausdorff

and packing dimension of any set is characterized by their corresponding (relativized)

effective dimensions.

Theorem 2.5 (Point-to-set principle). Let n ∈ N and E ⊆ Rn. Then

dimH(E) = min
A⊆N

sup
x∈E

dimA(x), and

dimP (E) = min
A⊆N

sup
x∈E

DimA(x),
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CHAPTER 3. PROJECTION THEOREMS AND

EFFECTIVE DIMENSION

In this chapter we use the point-to-set principles stated in Section 2.3 to study

the Hausdorff and packing dimension of projections. This chapter is joint work with

Neil Lutz.

Given a set E ⊆ Rn and e ∈ Sn−1, the projection along e is the function Pe :

Rn → R by

Pe(x) = e · x.

Determining how the dimension of a set is changed by a projection is an important

problem in fractal geometry[14, 38]. As a projection is Lipschitz continuous, the

Hausdorff dimension of the projection Pe(E) is at most the Hausdorff dimension of

E. A natural question is whether the Hausdorff dimension of a projection is equal to

the dimension of E. Basic examples from fractal geometry show that this is not true

in general [14]. However, a fundamental theorem due to Marstrand [35] shows that,

if E is analytic, then for most e ∈ Sn−1, the projection of any set along e is maximal.

Theorem 3.1. [Marstrand’s Projection Theorem] Let E ⊆ R2 be an analytic set with

dimH(E) = s ≤ 1. Then for almost every e ∈ S1,

dimH(Pe(E) = s.
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Subsequently, Mattila [37] showed that Marstrand’s theorem holds for all n ≥ 2.

In this chapter, we use techniques from algorithmic information to study the Haus-

dorff and packing dimension of projections. Our first main theorem gives a new proof

of Theorem 3.1. In addition, we prove two new generalizations of Marstrand’s pro-

jection theorem. An immediate question is whether we can remove the requirement

that the set be analytic. Unfortunately, Davies [11] showed that, assuming the con-

tinuum hypothesis, there are nonanalytic sets for which Marstrand’s theorem fails1.

However, our second main theorem shows that we can remove the assumption that

E is analytic, assuming the Hausdorff and packing dimensions of E agree.

Theorem 3.2. Let E ⊆ Rn be any set with dimH(E) = dimP (E) = s ≤ 1. Then for

almost every e ∈ Sn−1,

dimH(Pe(E) = s.

This result therefore shows that the conclusion of Marstrand’s theorem holds for

a broader class of sets.

Our final main theorem is on the “size” of the projection of arbitrary sets. Due

to Davies’ construction, we cannot give a lower bound on the Hausdorff dimension of

the projection. However, we are able to give a lower bound on the packing dimension

of the projection of arbitrary sets.

Theorem 3.3. Let E ⊆ Rn be any set with dimH(E) = s ≤ 1. Then for almost every

e ∈ Sn−1,

dimP (Pe(E) ≥ s.

1Indeed, Davies constructed a set in the plane of Hausdorff dimension 2 whose projection has
dimension 0 for almost every e ∈ S1
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3.1 Bounding the Complexity of Projections

In this section, we will focus on bounding the Kolmogorov complexity of a pro-

jected point at a given precision. In Sections 3.2 and 3.3, we will use these results in

conjunction with the point-to-set principle to prove our main theorems.

We begin by giving intuition of the main idea behind this lower bound. We will

show that under certain conditions, given (an approximation of) the projection Pe(z)

and e, we can compute an approximation of the original point z. Informally, these

conditions are the following.

1. The complexity, Kr(z), of the original point is small.

2. If Pe(w) = Pe(z), then either Kr(w) is large, or w is close to z.

Assuming that both conditions are satisfied, we can recover z from Pe(z) by enumer-

ating over all points u of low complexity such that Pe(u) = Pe(z). By our assumption,

any such point must be close z; i.e., u is a good approximation of z. We now formalize

this intuition.

Lemma 3.4. Suppose that z ∈ Rn e ∈ Sn−1, r ∈ N, δ ∈ R+, and ε, η ∈ Q+ satisfy

r ≥ log(2‖z‖+ 5) + 1 and the following conditions.

(i) Kr(z) ≤ (η + ε) r.

(ii) For every w ∈ B1(z) such that Pe(w) = Pe(z),

Kr(w) ≥ (η − ε) r + δ · (r − t) ,

whenever t = − log ‖z − w‖ ∈ (0, r].

Then for every oracle set A ⊆ N,

KA,e
r (Pe(z)) ≥ KA,e

r (z)− nε

δ
r −K(ε)−K(η)−Oz(log r) .
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Proof. Suppose z, e, r, δ, ε, η, and A satisfy the hypothesis.

Define an oracle Turing machine M that does the following given oracle (A, e) and

input π = π1π2π3π4π5 such that UA(π1) = q ∈ Q, U(π2) = h ∈ Qn, U(π3) = s ∈ N,

U(π4) = ζ ∈ Q, and U(π5) = ι ∈ Q.

For every program σ ∈ {0, 1}∗ with `(σ) ≤ (ι+ζ)s, in parallel, M simulates U(σ).

If one of the simulations halts with some output p = (p1, . . . , pn) ∈ Qn∩B2−1(h) such

that |Pe(p)− q| < 2−s, then MA,e halts with output p. Let cM be a constant for the

description of M .

Let π1, π2, π3, π4, and π5 testify to KA,e
r (Pe(z)), K1(z), K(r), K(ε), and K(η),

respectively, and let π = π1π2π3π4π5. Let σ be a program of length at most (η + ε)r

such that ‖p − z‖ ≤ 2−r, where U(σ) = p. Note that such a program must exist by

condition (i) of our hypothesis. Then it is easily verified that

|Pe(z)− Pe(p)| ≤ 2−r+cz ,

for some fixed constant cz depending only on z. Therefore MA,e is guaranteed to halt

on π.

Let MA,e(π) = p = (p1, . . . , pn) ∈ Qn. Another routine calculation (Observation

A.6) shows that there is some

w ∈ B2γ−r(p) ⊆ B2−1(p) ⊆ B20(a, b)

such that Pe(w) = Pw(z), where γ is a constant depending only on z, e. Then,

KAe
r (w) ≤ |π|

≤ KA,e
r (Pe(z)) +K1(z) +K(r) +K(ε) +K(η) + cM

= KA,e
r (Pe(z)) +K(ε) +K(η) +O(log r),

Rearranging this yields

KA,e
r (Pe(z)) ≥ KA,e

r (w)−K(ε)−K(η)−O(log r). (3.1)
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Let t = − log ‖z − w‖. If t ≥ r, then the proof is complete. If t < r, then B2−r(p) ⊆

B21−t(z), which implies that KA,e
r (p) ≥ KA,e

t−1(z). Therefore,,

KA,e
r (w) ≥ KA,e

r (z)− n(r − t)−O(log r). (3.2)

We now bound r − t. By our construction of M ,

(η + ε)r ≥ K(p)

≥ Kr(w)−O(log r).

By condition (ii) of our hypothesis, then,

(η + ε)r ≥ (η − ε)r + δ(r − t),

which implies that

r − t ≤ nε
δ
r +O(log r).

Combining this with inequalities (3.1) and (3.2) concludes the proof.

With the above lemma in mind, we wish to give a lower bound on the complexity

of points w such that Pe(w) = Pe(z). Our next lemma gives a bound based on the

complexity, relative to z, of the direction e ∈ Sn−1. This is based on the observation

that we can solve for e = (e1, . . . , en) given w, z and e3, . . . , en. This follows from

solving the system of two equations

(z − w) · e = 0

e21 + . . . e2n = 1.

This suggests that

Kz,e3,...,en
r (e) ≤ Kz,e3,...,en

r (w).
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However, for our purposes, we must be able to recover (an approximation of) e given

approximations of w and z. Intuitively, the following lemma shows that we can

algorithmically compute an approximation of e whose error is linearly correlated with

distance between w and z. We can then bound the complexity of w using a symmetry

of information argument.

Lemma 3.5. Let z ∈ Rn, e ∈ Sn−1, and r ∈ N. Let w ∈ Rn such that Pe(z) = Pe(w).

Then there are numbers i, j ∈ {1, . . . , n} such that

Kr(w) ≥ Kt(z) +K
e−{ei,ej}
r−t,r (e | z) +O(log r),

where t = − log ‖z − w‖.

Proof. Let z, w, e, and r be as in the statement of the lemma. We first choose i so

that |zi − wi| is maximal. We then choose j so that

sgn((zi − wi)ei) 6= sgn((zj − wj)ej), and

|zj − wj| > 0,

where sgn denotes the sign. Note that such a j must exist since (z − w) · e = 0. For

the sake of removing notational clutter, we will assume, without loss of generality,

that i = 1 and j = 2.

We first show that

Ke3,...,en
r−t,r (e2 | z) ≤ Kr(w | z) +O(1). (3.3)

As mentioned in the informal discussion preceding this lemma, note that

e2 =
−b+ (−1)h

√
b2 − 4ac

2a
, (3.4)

where
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• h ∈ {0, 1},

• a = (z1 − w1)
2 + (w2 − z2)2,

• b = 2(w2 − z2)
∑n

i=3(wi − zi)ei, and

• c = (
∑n

i=3(wi − zi)ei)2 + (z1 − w1)
2
∑n

i=3 e
2
i − 1.

With this in mind, letM be the Turing machine such that, whenever q = (q1, . . . , qn) ∈

Qn and U(π, q) = p = (p1, . . . , pn) ∈ Q2 with p1 6= q1,

M e3,...,en(π, q, j) = −b′+(−1)h
√
b′,2−4a′c′

2a′
,
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where

• h ∈ {0, 1},

• a′ = (q1 − p1)2 + (p2 − q2)2,

• b′ = 2(p2 − q2)
∑n

i=3(pi − qi)di, and

• c′ = (
∑n

i=3(pi − qi)di)2 + (q1 − p1)2
∑n

i=3 d
2
i − 1., and

• d = (d3, . . . , dn) ∈ Qn−2 is an nr-approximation of (e3, . . . , en).

Let q ∈ B2−r(z)∩Qn, πq testify to K̂r(w | q). It tedious, but straightforward (Lemma

A.5), to verify that

|M e3,...,en(πq, q, h)− e2| ≤ 2α+t−r,

where α is a constant depending only on e. Hence, inequality (3.3) holds. Since

Ke3,...,en
s (e2) = Ke3,...,en

s (e) +O(1)

holds for every s, we see that

Ke3,...,en
r−t,r (e | z) ≤ Kr(w | z) +O(1). (3.5)

To complete the proof, we note that

Kr(w | z) ≤ Kr,t(w | z) +O(log r)

= Kr,t(w |w) +O(log r)

= Kr(w)−Kt(w) +O(log r)

= Kr(w)−Kt(z) +O(log r).

The lemma follows from rearranging the above inequality, and combining inequality

(3.5).
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Finally, to satisfy the condition that Kr(z) is small, we will “artificially” decrease

the complexity of z at precision r. We will achieve this by using the following lemma

due to N. Lutz and Stull [33]. For completeness, we provide of proof in Appendix .

Lemma 3.6. Let n, r ∈ N, z ∈ Rn, and η ∈ Q ∩ [0, dim(z)]. Then there is an oracle

D = D(n, r, z, η) and a constant k ∈ N depending only on n, z and η satisfying

(i) For every t ≤ r, KD
t (z) = min{ηr,Kt(z)}+ k log r.

(ii) For every m, t ∈ N and y ∈ Rm, KD
t,r(y|z) = Kt,r(y|z) +O(log r) and Kz,D

t (y) =

Kz
t (y) + k log r.

The previous results gave us sufficient conditions for strong lower bounds on the

complexity of Pe(z) at a given precision, and methods to ensure that the conditions

are satisfied. The following theorem encapsulates these results so that we may apply

them in the proof of our main theorems. Informally, it states that if

• e has high complexity, and

• (A, e) does not significantly change the complexity of z,

then the complexity of PA,e
e (z) is roughly Kr(z).

Theorem 3.7. Let z ∈ Rn, e ∈ Sn−1, A ⊆ N, η′ ∈ Q ∩ (0, 1) ∩ (0, dim(z)), ε′ > 0,

and r ∈ N. Assume the following are satisfied.

1. For every s ≤ r, Ke3,...,en
s (e) ≥ s− log(s).

2. KA,e
r (z) ≥ Kr(z)− ε′r.

Then,

KA,e
r (Pe(z)) ≥ η′r − ε′r − (n+1)ε′

1−η′ r −K(2ε′)−K(η′)−Oz(log r).
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Proof. Assume the hypothesis, and let η = η′, ε = 2ε′ and δ = 1 − η′. Let Dr =

D(n, r, z, η) be the oracle as defined in Lemma 3.6, relative to A.

First assume that the conditions of Lemma 3.4, relative to (A,Dr), hold for z, e,

r, η, ε and δ. Then we may apply Lemma 3.4, which, combined item (2) and Lemma

3.6, yields

KA,Dr,e
r (Pe(z)) ≥ KA,Dr,e

r (z)− 4ε

δ
r −K(ε)−K(η)−Oz(log r)

≥ KDr
r (z)− ε′r − 4ε

δ
r −K(ε)−K(η)−Oz(log r)

= η′r − ε′r − (n+ 1)ε′

1− η′
r −K(ε′)−K(η′)−Oz(log r).

Therefore, to complete the proof, it suffices to show that the conditions of Lemma

3.4 hold.

Item (i) of Lemma 3.4 holds by our construction of Dr. To see that condition (ii)

holds, let w ∈ B1(z) such that Pe(w) = Pe(z). By Lemma 3.5 and condition (1) of

the present lemma,

KDr
r (w) ≥ KDr

t (z) +KDr,e3,...,en
r−t,r (e | z) +O(log r), (3.6)

where t = − log ‖z − w‖. By Lemma 3.6,

KDr
t (z) +KDr,e3,...,en

r−t,r (e | z) ≥ η′t+ r − t− ε′r −O(log r)

= t(η′ − 1) + r(1− ε′)−O(log r)

≥ (η − ε)r + δ(r − t),

Hence, the conditions of Lemma 3.4 are satisfied and the proof is complete.

3.2 Marstrand’s Projection Theorem

We begin with a new proof of Marstrand’s projection theorem. Recall that
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Theorem 3.1. Let E ⊆ Rn be analytic with dimH(E) = s ≤ 1. Then for almost

every e ∈ Sn−1, dimH(Pe(E)) = s.

Note the order of the quantifiers. To use the point-to-set principle, we must first

choose a direction e ∈ Sn−1. We then must show that for every oracle A and ε > 0,

there is some z ∈ E such that

dimA(Pe(z)) ≥ dimH(E)− ε .

In order to apply Theorem 3.7, we must guarantee that (A, e) does not significantly

change the complexity of z. To ensure this, we will first use the point-to-set principle

of Lutz and Hitchcok (Theorem 2.4). While less general than the principle of J. Lutz

and N. Lutz, it has be nice property that it specifies the oracle characterizing the

dimension of a Fσ set.

To take advantage of this, we use the following lemmas.

Lemma 3.8. Let E ⊆ Rn be analytic with dimH(E) = s. Then there is a Fσ set

F ⊆ E such that dimH(F ) = dimH(E).

Proof. It is well known that if E ⊆ Rn is analytic, then for every s′ < dimH(E)

there is a compact subset F ⊆ E such that dimH(F ) = s′ (see e.g. Bishop and Peres

[4]).

Lemma 3.9. Let E ⊆ Rn be a Fσ set, and A ⊆ N be an oracle such that E is a Σ0
2

set relative to A. Then for every e ∈ Sn−1, Pe(E) is a Σ0
2 set relative to (A, e).

Finally, we must ensure that e does not significantly change the complexity of z.

For this, we will use the following definition and theorem due to Calude and Zimand

[7]. We rephrase their work in terms of points in Euclidean space. Let n ∈ N ,

z ∈ Rn and e ∈ Sn−1. We say that z and e are independent if, for every r ∈ N,

Ke
r (z) ≥ Kr(z)−O(log r) and Kz

r (e) ≥ Kr(e)−O(log r).



21

Theorem 3.10. For every x ∈ Rn, the set of all e ∈ Sn−1 such that z and e are

independent is of measure 1.

With these ingredients we can formally reprove Marstrand’s projection theorem

using algorithmic information theory.

Proof of Theorem 3.1. Let E ⊆ Rn be analytic with dimH(E) = s ≤ 1. By Lemma

3.8, there is a Fσ set F ⊆ E such that dimH(F ) = s. Let A ⊆ N be an oracle such

that F is Σ0
2 relative to A. Using the Fσ point-to-set principle (Theorem 2.4), for

every k ∈ N we may choose a point zk ∈ F such that

dimA(zk) ≥ s− 1/k.

Let e ∈ Sn−1 be a point such that, for every k ∈ N, the following hold.

• For every r and s < r, KA,zk,e3...,en
s (e) ≥ s−O(1).

• For every r, KA,e
r (zk) ≥ KA

r (zk)−O(log r).

Note that the set of points e satisfying the first item is of measure one. By Theorem

3.10, the set of points satisfying the second item is also of measure one. So almost

every e satisfies these requirements.

Fix k ∈ N. Let η′ ∈ Q ∩ (0, dimA(zk)) and ε′ > 0. We claim that, so long as r is

sufficiently large, the conditions of Theorem 3.7, relativized to oracle A, are satisfied

by these choices of zk, e, ε
′, and η′.

Let r ∈ N and s ≤ r. Then, by our choice of e and zk, we have

KA,e3...,en
s,r (e | zk) ≥ KA,zk,e3...,en

s (e)−O(log r)

≥ s− 1/k −O(log r)

≥ s− εr,
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for sufficiently large r, and so condition (1) is satisfied. By our choice of e, condition

(2) of Theorem 3.7 is also satisfied.

We may therefore apply Theorem 3.7, resulting in

KA,e,Dr
r (Pe(zk)) ≥ ηr − εr − nε

δ
r −K(ε)−K(η)−Oz(log r).

Hence,

dimA,e(Pe(zk)) = lim inf
r→∞

KA,e
r (Pe(zk))

r

≥ lim inf
r→∞

KA,e,Dr
r (Pe(zk))

r

≥ lim inf
r→∞

ηr − εr − nε
δ
r −K(ε)−K(η)−Ozk(log r))

r

= η − ε− nε

δ
.

Since both η and ε were arbitrary, we see that

dimA,e(Pe(zk)) ≥ dimA,e(zk)

≥ s− 1/k.

As k was chosen arbitrarily,

sup
z∈F

dimA,e(Pe(z)) = s.

Therefore, by the Fσ point-to-set principle, the proof is complete.

3.3 Projection Theorems For Non-Analytic Sets

In the proof of Theorem 3.1 of the previous section, we took advantage of the

fact that E was analytic by using the weaker point-to-set principle to get a specific

oracle characterizing the dimension of the projected set Pe(E). We would like to

prove similar results about projections of more general sets.
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Our second main theorem shows that if the Hausdorff and packing dimensions of E

are equal, the conclusion of Marstrand’s theorem holds. Essentially, this assumption

guarantees, for every oracle, direction pair (A, e), the existence of a point z ∈ E such

that dimA,e(z) ≥ dimH(E) − ε; that is, (A, e) does not change the complexity of z.

This allows us to use Theorem 3.7 in a similar manner as before.

Theorem 3.2. Let E ⊆ Rn be any set with dimH(E) = dimP (E) = s ≤ 1. Then for

almost every e ∈ Sn−1,

dimH(Pe(E) ≥ s.

Proof. Let E ⊆ Rn be any set with dimH(E) = dimP (E) = s ≤ 1. By the point-

to-set principle, there is an oracle B ⊆ N testifying to dimH(E) and dimP (E). Let

e ∈ Sn−1 be any point which is random relative to B. Note that the points satisfying

this requirement is of measure 1. Let A ⊆ N be the oracle testifying to dimH(Pe(E)).

Then, by the point-to-set principle, it suffices to show that for every ε > 0 there is a

z ∈ E such that

dimA(Pe(z)) ≥ s− ε.

To that end, let η ∈ Q∩ (0, s) and ε > 0. By the point-to-set principle, there is a

z ∈ E such that

s− ε

4
≤ dimA,B,e(z) ≤ dimB(z) = DimB(z) ≤ s. (3.7)

We now show that the conditions of Theorem 3.7 are satisfied for these choices,

relative to B, for all sufficiently large r ∈ N. We first note that, by inequality (3.7),
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and the definition of effective dimension,

sr − ε

4
r − ε

4
r ≤ KA,B,e

r (z)

≤ KB
r (z) +O(1)

≤ sr +
ε

2
r,

for all sufficiently large r. Therefore, for all such r,

KA,B,e
r (z) ≥ KB

r (z)− εr. (3.8)

By inequality (3.8),

KA,B,e
r (z) ≥ KB

r (z)− εr,

and so, by Lemma 2.3(ii), property (1) is satisfied. Property (2) follows from inequal-

ity (3.8).

Therefore, we may apply Theorem 3.7, resulting in

KA,B,e
r (Pe(z)) ≥ ηr − εr − 4ε

δ
r −K(ε)−K(η)−Oz(log r).

Hence,

dimA(Pe(z)) ≥ dimA,B,e(Pe(z))

= lim inf
r→∞

KA,B,e
r (Pe(z))

r

≥ lim inf
r→∞

ηr − εr − 4ε
δ
r −K(ε)−K(η)−Oz(log r))

r

= η − ε− 4ε

δ
.

Since both η and ε were arbitrary, we see that

supz∈E dimA(Pe(z)) = s.

By the point-to-set principle, the conclusion follows.
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Our last main theorem gives a lower bound for the packing dimension of a projec-

tion for general sets. The proof of this theorem again relies on the ability to choose,

for every (A, e), a point z whose complexity is unaffected relative to (A, e). This can-

not be assumed to hold for every precision r. However, by the point-to-set principle,

we can show that this can be done for infinitely many precision parameters r.

Theorem 3.3. Let E ⊆ Rn be any set with dimH(E) = s ≤ 1. Then for almost every

e ∈ Sn−1,

dimP (Pe(E) ≥ s.

Proof. Let E ⊆ Rn be any set with dimH(E) = s ≤ 1. By the point-to-set principle,

there is an oracle B ⊆ N testifying to dimH(E) and dimP (E). Let e ∈ Sn−1 be any

point which is random relative to B. Note that the points satisfying this requirement

is of measure 1. Let A ⊆ N be the oracle testifying to dimP (Pe(E)). Then, by the

point-to-set principle, it suffices to show that for every ε > 0 there is a z ∈ E such

that

DimA(Pe(z)) ≥ s− ε.

To that end, let η ∈ Q ∩ (0, s) and ε > 0. By the point to set principle, there is a

z ∈ E such that

s− ε

4
≤ dimA,B,e(z) ≤ dimB(z) ≤ s. (3.9)

We now show that the conditions of Theorem 3.7 are satisfied for these choices,

relative to B, for infinitely many r ∈ N. We first note that, by equation (3.9),

sr − ε

4
r − ε

4
r ≤ KA,B,e

r (z)

≤ KB
r (z) +O(1)

≤ sr +
ε

2
r,
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for infinitely many r. Hence, for all such r,

KA,B,e(z) ≥ KB(z)− εr. (3.10)

By inequality (3.10),

KA,B,e
r (z) ≥ KB

r (z)− εr,

and therefore property (1) holds by Lemma 2.3(ii). Property (2) follows from inequal-

ity (3.8).

Therefore, we may apply Theorem 3.7, resulting in

KA,B,e
r (Pe(z)) ≥ ηr − εr − 4ε

δ
r −K(ε)−K(η)−Oz(log r),

for infinitely many r ∈ N. Hence,

DimA(Pe(z)) ≥ DimA,B,e(Pe(z))

= lim sup
r→∞

KA,B,e
r (Pe(z))

r

≥ lim sup
r→∞

ηr − εr − 4ε
δ
r −K(ε)−K(η)−Oz(log r))

r

= η − ε− 4ε

δ
.

Since both η and ε were arbitrary, we see that

supz∈E DimA,e(Pe(z)) ≥ s.

By the point-to-set principle, the conclusion follows.
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CHAPTER 4. DIMENSION SPECTRA OF LINES IN

THE PLANE

In this chapter, we study the spectra of possible dimensions of points on a line in

the Euclidean plane. This chapter is joint work with Neil Lutz and some portion of

it have appeared in [33] and [34].

Given the pointwise nature of effective Hausdorff dimension, it is natural to in-

vestigate not only the supremum supx∈E dim(x) but the entire (effective Hausdorff)

dimension spectrum of a set E ⊆ Rn, i.e., the set

sp(E) = {dim(x) : x ∈ E} .

The dimension spectra of several classes of sets have been previously investigated.

Gu, et al. studied the dimension spectra of randomly selected subfractals of self-

similar fractals [17]. Dougherty, et al. focused on the dimension spectra of random

translations of Cantor sets [12]. In the context of symbolic dynamics, Westrick has

studied the dimension spectra of subshifts [50].

This work concerns the dimension spectra of lines in the Euclidean plane R2.

Given a line La,b with slope a and vertical intercept b, we ask what sp(La,b) might be.

It was shown by Turetsky [49] that, for every n ≥ 2, the set of all points in Rn with

effective Hausdorff 1 is connected, guaranteeing that 1 ∈ sp(La,b).

In recent work [33], N. Lutz and Stull showed that the dimension spectrum of a

line in R2 cannot be a singleton. By proving a general lower bound on dim(x, ax+ b),
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which is presented as Theorem 4.3 here, we demonstrated that

min{1, dim(a, b)}+ 1 ∈ sp(La,b) .

Together with the fact that dim(a, b) = dim(a, a2 + b) ∈ sp(La,b) and Turetsky’s

result, this implies that the dimension spectrum of La,b contains both endpoints of

the unit interval [min{1, dim(a, b)},min{1, dim(a, b)}+ 1].

Here we build on that work with two main theorems on the dimension spectrum

of a line. Our first theorem gives conditions under which the entire unit interval must

be contained in the spectrum. We refine the techniques of [33] to show in our main

theorem (Theorem 4.7) that, whenever dim(a, b) = Dim(a, b), we have

[min{1, dim(a, b)},min{1, dim(a, b)}+ 1] ⊆ sp(La,b) .

Given any value s ∈ [0, 1], we construct, by padding a random binary sequence, a

value x ∈ R such that dim(x, ax + b) = s + min{dim(a, b), 1}. Our second main

theorem shows that the dimension spectrum sp(La,b) is infinite for every line such

that dim(a, b) is at least one. Together with (a corollary of) Theorem 4.3, this shows

that the dimension spectrum of any line has infinite cardinality.

4.1 Background and Approach

In this section we describe the basic ideas behind our investigation of dimension

spectra of lines. We briefly discuss some of our earlier work on this subject, and we

present two technical lemmas needed for the proof our main theorems.

The dimension of a point on a line in R2 has the following trivial bound.

Observation 4.1. For all a, b, x ∈ R, dim(x, ax+ b) ≤ dim(x, a, b).
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In this work, our goal is to find values of x for which the approximate converse

dim(x, ax+ b) ≥ dima,b(x) + dim(a, b) (4.1)

holds. There exist oracles, at least, relative to which (4.1) does not always hold. This

follows from the point-to-set principle of J. Lutz and N. Lutz [29] and the existence of

Furstenberg sets with parameter α and Hausdorff dimension less than 1+α (attributed

by Wolff [51] to Furstenberg and Katznelson “in all probability”). The argument is

simple and very similar to our proof in [33] of a lower bound on the dimension of

generalized Furstenberg sets.

Specifically, for every s ∈ [0, 1], we want to find an x of effective Hausdorff dimen-

sion s such that (4.1) holds. Note that equality in Observation 4.1 implies (4.1).

Observation 4.2. Suppose ax+ b = ux+ v and u 6= a. Then

dim(u, v) ≥ dima,b(u, v) ≥ dima,b

(
b− v
u− a

)
= dima,b(x) .

In our previous work [33], we used an argument of this type to prove a general

lower bound on the dimension of points on lines in R2:

Theorem 4.3. For all a, b, x ∈ R,

dim(x, ax+ b) ≥ dima,b(x) + min{dim(a, b), dima,b(x)} .

The strategy in that work is to use oracles to artificially lower Kr(a, b) when

necessary, to essentially force dim(a, b) < dima,b(x). This enables the above argument

structure to be used, but lowering the complexity of (a, b) also weakens the conclusion,

leading to the minimum in Theorem 4.3.

4.1.1 Technical Lemmas

In the present work, we circumvent this limitation and achieve inequality (4.1)

by controlling the choice of x and placing a condition on (a, b). Adapting the above
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argument to the case where dim(a, b) > dima,b(x) requires refining the techniques

of [33]. In particular, we use the following two technical lemmas, which strengthen

results from that work. Lemma 4.4 weakens the conditions needed to compute an

estimate of (x, a, b) from an estimate of (x, ax+ b).

Lemma 4.4. Let a, b, x ∈ R, k ∈ N, and r0 = 1. Suppose that r1, . . . , rk ∈ N, δ ∈ R+,

and ε, η ∈ Q+ satisfy the following conditions for every 1 ≤ i ≤ k.

1. ri ≥ log(2|a|+ |x|+ 6) + ri−1.

2. Kri(a, b) ≤ (η + ε) ri.

3. For every (u, v) ∈ R2 such that t = − log ‖(a, b)−(u, v)‖ ∈ (ri−1, ri] and ux+v =

ax+ b, Kri(u, v) ≥ (η − ε) ri + δ · (ri − t).

Then for every oracle set A ⊆ N,

KA
rk

(a, b, x |x, ax+ b) ≤ 2k
(
K(ε) +K(η) +

4ε

δ
rk +O(log rk)

)
.

Proof. Let a, b, x ∈ R. We proceed by induction on k. By Corollary A.8, the conclu-

sion holds for k = 1. Assume the conclusion holds for all i < k. Let r1, . . . , rk, δ, ε,

η, and A be as described in the lemma statement.

Define an oracle Turing machine M that does the following given oracle A and

input π = π1π2π3π4π5 such that UA(π1) = (q1, q2) ∈ Q2, U(π2) = (s1, . . . , sk) ∈ Nk,

U(π3) = ζ ∈ Q, U(π4) = ι ∈ Q and UA(π5, q1, q2) = h ∈ Q2

For every program σ ∈ {0, 1}∗ with `(σ) ≤ (ι + ζ)sk, in parallel, M simulates

U(σ). If one of the simulations halts with some output (p1, p2) ∈ Q2 ∩ B2−rk−1 (h)

such that

|p1q1 + p2 − q2| < 2−s2(|p1|+ |q1|+ 3) ,

then M halts with output (p1, p2, q1). Let cM be a constant for the description of M .
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Now let π1, π2, π3, π4, and π5 testify to KA
r (x, ax+ b), K(r1, . . . , rk), K(ε), K(η),

and Krk−1,rk(a, b |x, ax+ b) respectively, and let π = π1π2π3π4π5.

By condition 2, there is some (p̂1, p̂2) ∈ B2−rk (a, b) such that K(p̂1, p̂2) ≤ (η+ε)rk,

meaning that there is some σ̂ ∈ {0, 1}∗ with `(σ̂) ≤ (η+ ε)rk and U(σ̂) = (p̂1, p̂2). By

Observation A.9(1),

|p̂1q1 + p̂2 − q2| < 2−rk(|p̂1|+ |q1|+ 3) ,

for every (q1, q2) ∈ B2−rk (x, ax+ b), so M is guaranteed to halt on input π.

Hence, let (p1, p2, q1) = M(π). By Observation A.9(2), there is some

(u, v) ∈ B2γ−rk (p1, p2) ⊆ B2−rk−1 (a, b)

such that ux+ v = ax+ b, where γ = log(2|a|+ |x|+ 5). We have

‖(p1, p2)− (u, v)‖ < 2γ−rk

and |q1 − x| < 2−rk , so

(p1, p2, q1) ∈ B2γ+1−rk (u, v, x) .

It therefore follows that

KA
rk−γ−1,rk(u, v, x |x, ax+ b) ≤ K(p1, p2, q1)

≤ `(π1π2π3π4π5) + cM

≤ `(π5) +K(r1, . . . , rk) +K(ε) +K(η) + cM

= `(π5) +K(ε) +K(η) +O(log rk) .

Applying Lemma 2.1 yields

KA
rk

(u, v, x |x, ax+ b) ≤ `(π5) +K(ε) +K(η) +O(log rk). (4.2)
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By our inductive hypothesis, we have that

`(π5) = Krk−1,rk(a, b |x, ax+ b)

= Krk−1
(a, b |x, ax+ b) +O(log rk−1)

≤ 2k−1
(
K(ε) +K(η) +

4ε

δ
rk−1 +O(log rk−1)

)
. (4.3)

To complete the proof, we bound KA
rk

(a, b, x |u, v, x). If t > rk, then

KA
rk

(a, b, x |u, v, x) ≤ log(rk) .

Otherwise, when t ≤ rk, by our construction of M and Lemma 2.1,

(η + ε)rk ≥ K(p1, p2)

≥ Krk−γ(u, v)

≥ Krk(u, v)−O(log rk) .

Combining this with condition 3 in the lemma statement and simplifying yields

rk − t ≤
2ε

δ
rk +O(log rk) .

Therefore, by Lemma 2.1, we have

Krk(a, b, x |u, v, x) ≤ 2(rk − t) +O(log rk)

≤ 4ε

δ
rk +O(log rk) , (4.4)

for every t ∈ N.

Combining inequalities (4.2), (4.3) and (4.4) gives

Krk(a, b, x |x, ax+ b) ≤ Krk(u, v, x |x, ax+ b) +Krk(a, b, x |u, v, x)

≤ Krk(u, v, x |x, ax+ b) +
4ε

δ
rk +O(log rk)

≤ `(π5) +K(ε) +K(η) +
4ε

δ
rk +O(log rk)

≤ 2k
(
K(ε) +K(η) +

4ε

δ
rk +O(log rk)

)
.
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The following lemma, first proven in [33], provides a lower bound on the complexity

of any line (u, v) intersecting (a, b) at x. Intuitively, this shows that, when x is chosen

to be of high complexity, Kr(u, v) > Kr(a, b) unless (u, v) is very close to (a, b). As

Kr(u, v) is upper semicomputable, this is algorithmically useful: We can enumerate

all pairs (u, v) whose precision-r complexity falls below a certain threshold. If one

of these pairs satisfies, approximately, ux + v = ax + b, then we know that (u, v) is

close to (a, b). Thus, an estimate for (x, ax+ b) algorithmically yields an estimate for

(x, a, b).

Lemma 4.5 (N. Lutz and Stull [33]). Let a, b, x ∈ R. For all (u, v) ∈ R2 such that

ux+ v = ax+ b and t = − log ‖(a, b)− (u, v)‖ ∈ (0, r],

Kr(u, v) ≥ Kt(a, b) +Ka,b
r−t(x)−O(log r) .

Proof. Fix a, b, x ∈ R. By Lemma 2.2(i), for all (u, v) ∈ B1(a, b) and every r ∈ N,

Kr(u, v) ≥ Kr(u, v|a, b) +Kr(a, b)−Kr(a, b|u, v)−Oa,b(log r) . (4.5)

We bound Kr(a, b) −Kr(a, b|u, v) first. Since (u, v) ∈ B2−t(a, b), for every r ≥ t

we have Br(u, v) ⊆ B21−t(a, b), so

Kr(a, b|u, v) ≤ Kr,t−1(a, b|a, b) .

By Lemma 2.2(ii), then,

Kr(a, b)−Kr(a, b|u, v) ≥ Kr(a, b)−Kr,t−1(a, b|a, b)

≥ Kt−1(a, b)−Oa,b(log r) .

Lemma 2.1 tells us that

Kt−1(a, b) ≥ Kt(a, b)−O(log t) .
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Therefore we have, for every u, v ∈ B1(a, b) and every r ≥ t,

Kr(a, b)−Kr(a, b|u, v) ≥ Kt(a, b)−Oa,b(log r) . (4.6)

We now bound the term Kr(u, v|a, b). Let (u, v) ∈ R2 be such that ux+v = ax+b.

If t ≤ r < t+ |x|+ 2, then r− t = Ox(1), so by Lemma 2.1, Kr−t,r(x|a, b) = Ox(1). In

this case, Kr(u, v|a, b) ≥ Kr−t,r(x|a, b) − Oa,b,x(log r) holds trivially. Hence, assume

r ≥ t+ |x|+ 2.

Let M be a Turing machine such that, whenever q = (q1, q2) ∈ Q2 and U(π, q) =

p = (p1, p2) ∈ Q2, with p1 6= q1,

M(π, q) =
p2 − q2
p1 − q1

.

For each q ∈ B2−r(a, b) ∩Q2, let πq testify to K̂r(u, v|q). Then

U(πq, q) ∈ B2−r(u, v) ∩Q2 .

It follows by a routine calculation that

|M(πq, q)− x| =
∣∣∣∣p2 − q2p1 − q1

− b− v
a− u

∣∣∣∣ < 24+2|x|+t−r .

Thus, M(πq, q) ∈ B24+2|x|+t−r(x) ∩Q2. For some constant cM , then,

K̂r−4−2|x|−t(x|q) ≤ `(πq) + cM

= K̂r(u, v|q) + cM .

Taking the maximum of each side over q ∈ B2−r(a, b) ∩Q2 and rearranging,

Kr(u, v|a, b) ≥ Kr−4−2|x|−t,r(x|a, b)− cM .

Then since Lemma 2.1 implies that

Kr−4−2|x|−t,r(x|a, b) ≥ Kr−t,r(x|a, b)−Ox(log r) ,
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we have shown, for every (u, v) satisfying ux+ v = ax+ b and every r ≥ t,

Kr(u, v|a, b) ≥ Kr−t,r(x|a, b)−Oa,b,x(log r) . (4.7)

The lemma follows immediately from (4.5), (4.6), and (4.7).

Lemma 4.6 strengthens the oracle construction of [33], allowing us to control

complexity at multiple levels of precision.

Lemma 4.6. Let z ∈ Rn, η ∈ Q ∩ [0, dim(z)], and k ∈ N. For all r1, . . . , rk ∈ N,

there is an oracle D = D(r1, . . . , rk, z, η) such that

1. For every t ≤ r1, KD
t (z) = min{ηr1, Kt(z)}+O(log rk)

2. For every 1 ≤ i ≤ k,

KD
ri

(z) = ηr1 +
i∑

j=2

min{η(rj − rj−1), Krj ,rj−1
(z | z)}+O(log rk) .

3. For every t ∈ N and x ∈ R, Kz,D
t (x) = Kz

t (x) +O(log rk).

Proof. We define the sequence of oracles recursively. Let D1 = A(r1, z, η), as defined

in Lemma 3.6, and for every 1 < i ≤ k, let

Di =

 Di−1 if K
Di−1
ri (z) < ηri

〈Di−1, A
Di−1(ri, z, η)〉 otherwise .

Notice that, for every 1 ≤ i ≤ k, Di is a finite oracle, so dimDi(z) = dim(z) and

η ∈ [0, dimDk(z)].

We now show via induction on k that the lemma holds for all k ∈ N. For k = 1,

all three properties hold by Lemma 3.6. Fix j > 1, assume the properties hold for

k = j − 1.
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We first show that property 1 holds for k = j. Let t ≤ r1. It follows from the

definition of the oracle Dj and Lemma 3.6, relative to Dj−1, that

K
Dj
t (z) = min{ηrj, K

Dj−1

t (z)}+O(log rj) .

By the induction hypothesis, K
Dj−1

t (z) = min{ηr1, Kt(z)}+O(log rj−1). Thus,

K
Dj
t (z) = min{ηrj,min{ηr1, Kt(z)}+O(log rj−1)}+O(log rj)

= min{ηr1, Kt(z)}+O(log rj) .

We now show the property 2 holds for k = j. Suppose that i < j. Then by the

definition of Dj,

KDj
ri

(z) = min{ηrj, KDj−1
ri

(z)}+O(log rj) ,

and by the induction hypothesis,

KDj−1
ri

(z) = ηr1 +
i∑
l=2

min{η(rl − rl−1), Krl,rl−1
(z | z)}+O(log rj−1) .

Since

ηr1 +
i∑
l=2

min{η(rl − rl−1), Krl,rl−1
(z | z)} ≤ ηri ,

we have

KDj
ri

(z) = ηr1 +
i∑
l=2

min{η(rl − rl−1), Krl,rl−1
(z | z)}+O(log rj)
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Now suppose that i = j. If K
Dj−1
rj (z) < ηrj, then, by our induction hypothesis and

Lemma 3.6,

KDj
ri

(z) =KDj−1
ri

(z)

=KDj−1
ri−1

(z) +KDj−1
ri,ri−1

(z | z)−O(log rj)

=ηr1 +
i−1∑
l=2

min{η(rl − rl−1), Krl,rl−1
(z | z)}+O(log rj)

+Kri,ri−1
(z | z) +O(log rj−1

=ηr1 +
i∑
l=2

min{η(rl − rl−1), Krl,rl−1
(z | z)}+O(log rj) .

If instead K
Dj−1
ri (z) ≥ ηri, then K

Dj
ri (z) = ηri − O(log ri) by Lemma 3.6, relative to

Dj−1. Since K
Dj−1
ri (z) ≥ ηri implies that Kri,ri−1

(z | z) ≥ η(ri − ri−1),

K
Dj
ri (z) = ηr1 +

∑i
l=2 min{η(rl − rl−1), Krl,rl−1

(z | z)}+O(log ri)

Therefore property 2 holds for all 1 ≤ i ≤ k.

To complete the proof we show that property 3 is satisfied for k = j. Let t ∈ N

and y ∈ Rm. By Lemma 3.6, relativized to Dj−1, and our induction hypothesis,

K
z,Dj
t (y) = K

z,Dj−1

t (y) +O(log rj)

= Kz
t (y) +O(log rj−1) +O(log rj)

= Kz
t (y) +O(log rj) .

Thus, by mathematical induction, the lemma holds for all k ∈ N.

4.2 Main Theorems

We are now prepared to prove our two main theorems. We first show that, for

lines La,b such that dim(a, b) = Dim(a, b), the dimension spectrum sp(La,b) contains

the unit interval.
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Theorem 4.7. Let a, b ∈ R satisfy dim(a, b) = Dim(a, b). Then for every s ∈ [0, 1]

there is a point x ∈ R such that dim(x, ax+ b) = s+ min{dim(a, b), 1}.

Proof. Every line contains a point of effective Hausdorff dimension 1 [49], and by

the preservation of effective dimensions under computable bi-Lipschitz functions,

dim(a, a2 + b) = dim(a, b), so the theorem holds for s = 0. For s = 1, we may

choose an x ∈ R that is random relative to (a, b). That is, there is some constant

c ∈ N such that for all r ∈ N, Ka,b
r (x) ≥ r − c. By Theorem 4.3,

dim(x, ax+ b) ≥ dim{ a, b}(x) + min{dim(a, b), 1}

= min{dim(a, b), 1}+ lim inf
r→∞

Kr(x)

r

= min{dim(a, b), 1}+ 1,

and the conclusion holds.

Now let s ∈ (0, 1) and d = dim(a, b) = Dim(a, b). Let y ∈ R be random relative to

(a, b). Define the sequence of natural numbers {hj}j∈N inductively as follows. Define

h0 = 1. For every j > 0, let

hj = min

{
h ≥ 2hj−1 : Kh(a, b) ≤

(
d+

1

j

)
h

}
.

Note that hj always exists. For every r ∈ N, let

x[r] =


0 if r

hj
∈ (s, 1] for some j ∈ N

y[r] otherwise

where x[r] is the rth bit of x. Define x ∈ R to be the real number with this binary

expansion. Then Kshj(x) = shj +O(log shj).
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We first show that dim(x, ax+ b) ≤ s+ min{d, 1}. For every j ∈ N,

Khj(x, ax+ b) = Khj(x) +Khj(ax+ b |x) +O(log hj)

= Kshj(x) +Khj(ax+ b |x) +O(log hj)

= Kshj(y) +Khj(ax+ b |x) +O(log hj)

≤ shj + min{d, 1} · hj + o(hj) .

Therefore,

dim(x, ax+ b) = lim inf
r→∞

Kr(x, ax+ b)

r

≤ lim inf
j→∞

Khj(x, ax+ b)

hj

≤ lim inf
j→∞

shj + min{d, 1}hj + o(hj)

hj

= s+ min{d, 1} .

If 1 > s ≥ d, then by Theorem 4.3 we also have

dim(x, ax+ b) ≥ dim{ a, b}(x) + dim(a, b)

= dim(x) + d

= lim inf
r→∞

Kr(x)

r
+ d

= lim inf
j→∞

Khj(x)

hj
+ d

= s+ min{d, 1} .

Hence, we may assume that s < d.

Let H = Q∩ (s,min{d, 1}). Let η ∈ H, δ = 1− η > 0, and ε ∈ Q+. We now show

that dim(x, ax + b) ≥ s + η − αε
δ

, where α is some constant independent of η and ε.

Let j ∈ N and m = s−1
η−1 . We first show that

Kr(x, ax+ b) ≥ Kr(x) + ηr − cε
δ
r − o(r) , (4.8)
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for every r ∈ (shj,mhj]. Let r ∈ (shj,mhj]. Set k = r
shj

, and define ri = ishj for

all 1 ≤ i ≤ k. Note that k is bounded by a constant depending only on s and η.

Therefore a o(rk) = o(ri) for all ri. Let Dr = D(r1, . . . , rk, (a, b), η) be the oracle

defined in Lemma 4.6. We first note that, since dim(a, b) = Dim(a, b),

Kri,ri−1
(a, b | a, b) = Kri(a, b)−Kri−1

(a, b)−O(log ri)

= dim(a, b)ri − o(ri)− dim(a, b)ri−1 − o(ri−1)−O(log ri)

= dim(a, b)(ri − ri−1)− o(ri)

≥ η(ri − ri−1)− o(ri).

Hence, by property 2 of Lemma 4.6, for every 1 ≤ i ≤ k,

|KDr
ri

(a, b)− ηri| ≤ o(rk). (4.9)

We now show that the conditions of Lemma 4.4 are satisfied. By inequality (4.9), for

every 1 ≤ i ≤ k,

KDr
ri

(a, b) ≤ ηri + o(rk) ,

and so KDr
ri

(a, b) ≤ (η + ε)ri, for sufficiently large j. Hence, condition 2 of Lemma

4.4 is satisfied.

To see that condition 3 is satisfied for i = 1, let (u, v) ∈ B1(a, b) such that

ux + v = ax + b and t = − log ‖(a, b) − (u, v)‖ ≤ r1. Then, by Lemmas 4.5 and 4.6,

and our construction of x,

KDr
r1

(u, v) ≥ KDr
t (a, b) +KDr

r1−t,r1(x|a, b)−O(log r1)

≥ min{ηr1, Kt(a, b)}+Kr1−t(x)− o(rk)

≥ min{ηr1, dt− o(t)}+ (η + δ)(r1 − t)− o(rk)

≥ min{ηr1, ηt− o(t)}+ (η + δ)(r1 − t)− o(rk)

≥ ηt− o(t) + (η + δ)(r1 − t)− o(rk) .
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We conclude that KDr
r1

(u, v) ≥ (η − ε)r1 + δ(r1 − t), for all sufficiently large j.

To see that that condition 3 is satisfied for 1 < i ≤ k, let (u, v) ∈ B2−ri−1 (a, b) such

that ux+ v = ax+ b and t = − log ‖(a, b)− (u, v)‖ ≤ ri. Since (u, v) ∈ B2−ri−1 (a, b),

ri − t ≤ ri − ri−1 = ishj − (i− 1)shj ≤ shj + 1 ≤ r1 + 1 .

Therefore, by Lemma 4.5, inequality (4.9), and our construction of x,

KDr
ri

(u, v) ≥ KDr
t (a, b) +KDr

ri−t,ri(x|a, b)−O(log ri)

≥ min{ηri, Kt(a, b)}+Kri−t(x)− o(ri)

≥ min{ηri, dt− o(t)}+ (η + δ)(ri − t)− o(ri)

≥ min{ηri, ηt− o(t)}+ (η + δ)(ri − t)− o(ri)

≥ ηt− o(t) + (η + δ)(ri − t)− o(ri) ,

We conclude that KDr
ri

(u, v) ≥ (η − ε)ri + δ(ri − t), for all sufficiently large j. Hence

the conditions of Lemma 4.4 are satisfied, and we have

Kr(x, ax+ b) ≥ KDr
r (x, ax+ b)−O(1)

≥ KDr
r (a, b, x)− 2k

(
K(ε) +K(η) +

4ε

δ
r +O(log r)

)
= KDr

r (a, b) +KDr
r (x | a, b)

− 2k
(
K(ε) +K(η) +

4ε

δ
r +O(log r)

)
≥ sr + ηr − 2k

(
K(ε) +K(η) +

4ε

δ
r +O(log r)

)
.

Thus, for every r ∈ (shj,mhj],

Kr(x, ax+ b) ≥ sr + ηr − αε

δ
r − o(r) ,

where α is a fixed constant, not depending on η and ε.
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To complete the proof, we show that (4.8) holds for every r ∈ [mhj, shj+1). By

Lemma 2.2 and our construction of x,

Kr(x) = Kr,hj(x |x) +Khj(x) + o(r)

= r − hj + shj + o(r)

≥ ηr + o(r) .

The proof of Theorem 4.3 gives Kr(x, ax + b) ≥ Kr(x) + dim(x)r − o(r), and so

Kr(x, ax+ b) ≥ r(s+ η).

Therefore, equation (4.8) holds for every r ∈ [shj, shj+1), for all sufficiently large

j. Hence,

dim(x, ax+ b) = lim inf
r→∞

Kr(x, ax+ b)

r

≥ lim inf
r→∞

Kr(x) + ηr − αε
δ
r − o(r)

r

≥ lim inf
r→∞

Kr(x)

r
+ η − αε

δ

= s+ η − αε

δ
.

Since η and ε were chosen arbitrarily, the conclusion follows.

Theorem 4.8. Let a, b ∈ R such that dim(a, b) ≥ 1. Then for every s ∈ [1
2
, 1] there

is a point x ∈ R such that dim(x, ax+ b) ∈
[
3
2

+ s− 1
2s
, s+ 1

]
.

Proof. Let s ∈ [1
2
, 1] and y ∈ R be random relative to (a, b). That is, there is some

constant c ∈ N such that for all r ∈ N,

Ka,b
r (y) ≥ r − c.

Define sequence of natural numbers {hj}j∈N inductively as follows. Define h0 = 1.

For every j > 0, define

hj = min

{
h ≥ 2hj−1 : Kh(a, b) ≤

(
dim(a, b) +

1

j

)
h

}
.
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Note that hj always exists. For every r ∈ N, let

x[r] =


0 if r

hj
∈ (1, 1

s
] for some j ∈ N

y[r] otherwise

Define x ∈ R to be the real number with this binary expansion. Then,

Khj(x) = hj +O(log hj) .

We first show that dim(x, ax+ b) ≤ s+ 1. For every j ∈ N,

Khj/s(x, ax+ b) = Khj/s(x) +Khj/s(ax+ b |x) +O(log hj/s)

= Khj(x) +Khj/s(ax+ b |x) +O(log hj)

≤ hj + 1 · hj/s+ o(hj).

Therefore,

dim(x, ax+ b) = lim inf
r→∞

Kr(x, ax+ b)

r

≤ lim inf
j→∞

Khj/s(x, ax+ b)

hj/s

≤ lim inf
j→∞

shj + hj + o(hj)

hj

= s+ 1.

Let H = Q ∩ (s, 1), and η ∈ H. Let η′ ∈ Q ∩ (0, s], δ = 1 − η > 0, and ε ∈ Q+.

Let j ∈ N. We first show that

Kr(x, ax+ b) ≥ sr + ηr − cε
δ
r − o(r), (4.10)

for every r ∈ (hj, 2hj]. Let r ∈ (hj, 2hj]. Let r1 = hj, r2 = r, and Dr =

D(r1, r2, (a, b), η) be the oracle defined in Lemma 4.6. We first note that, by our
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construction of x,

Kr,r1(a, b | a, b) = Kr(a, b)−Kr(a, b) +O(log r)

≥ Kr(a, b)− dim(a, b)r1 − hj/j +O(log r)

≥ dim(a, b)r − dim(a, b)r1 − hj/j +O(log r)

≥ dim(a, b)(r − r1)− hj/j +O(log r)

> η(r − r1)− hj/j +O(log r).

Hence, by property 2 of Lemma 4.6

ηr − hj/j −O(log r) ≤ KDr
r (a, b) ≤ ηr +O(log r). (4.11)

We now show that the conditions of Lemma 4.4 are satisfied. By Lemma 4.6, for

each i ∈ {1, 2},

KDr
ri

(a, b) ≤ ηri +O(log r2) .

Hence, condition 2 of Lemma 4.4 is satisfied.

To see that condition 3 is satisfied for i = 1, let (u, v) ∈ B1(a, b) such that

ux + v = ax + b and t = − log ‖(a, b) − (u, v)‖ ≤ r1. Then, by Lemmas 4.5 and 4.6,

and our construction of x,

KDr
r1

(u, v) ≥ KDr
t (a, b) +KDr

r1−t,r1(x|a, b)−O(log r1)

≥ min{ηr1, Kt(a, b)}+Kr1−t(x)− o(rk)

≥ min{ηr1, dim(a, b)t− o(t)}+ (η + δ)(r1 − t)− o(rk)

≥ min{ηr1, ηt− o(t)}+ (η + δ)(r1 − t)− o(rk)

≥ ηt− o(t) + (η + δ)(r1 − t)− o(rk)

≥ (η − ε)r1 + δ(r1 − t)

for all sufficiently large j.
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To see that that condition 3 is satisfied for i = 2, let (u, v) ∈ B2−r1 (a, b) such that

ux+ v = ax+ b and t = − log ‖(a, b)− (u, v)‖ ≤ r2. Since (u, v) ∈ B2−r1 (a, b),

r2 − t ≤ r2 − r1

≤ 2r1 − r1

= r1.

Therefore, by Lemmas 4.5 and 4.6, inequality (4.11) and our construction of x,

KDr
r2

(u, v) ≥ KDr
t (a, b) +KDr

r2−t,r2(x|a, b)−O(log r2)

≥ min{ηr2, Kt(a, b)}+Kr2−t(x)− o(r2)

≥ min{ηr2, ηt− hj/j − o(t)}+ (η + δ)(r2 − t)− o(r2)

≥ ηt− hj/j − o(t) + (η + δ)(r2 − t)− o(r2)

= ηr2 − hj/j − o(t) + δ(r2 − t)− o(r2)

≥ ηr2 − r2/j − o(t) + δ(r2 − t)− o(r2)

≥ (η − ε)r2 + δ(r2 − t),

for all sufficiently large j. Hence the conditions of Lemma 4.4 are satisfied, and we

have

Kr(x, ax+ b) ≥ KDr
r (x, ax+ b)−O(1)

≥ KDr
r (a, b, x)− 4

(
K(ε) +K(η) +

4ε

δ
r +O(log r)

)
= KDr

r (a, b) +KDr
r (x | a, b)

− 4

(
K(ε) +K(η) +

4ε

δ
r +O(log r)

)
≥ sr + ηr − 4

(
K(ε) +K(η) +

4ε

δ
r +O(log r)

)
.
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Hence, for every r ∈ (hj, 2hj],

Kr(x, ax+ b) ≥ sr + ηr − αε

δ
r − o(r)

≥ sr + ηr − αε

δ
r − o(r)

where α is a fixed constant, not depending on η and ε.

To complete the proof, it suffices to show that Kr(x, ax+b) ≥ r(3
2

+s− 1
2s
−ε), for

every r ∈ (2hj, hj+1]. Let r ∈ (2hj, hj+1]. Then by Lemma 2.2 and our construction

of x,

Kr(x) = Kr,hj/s(x |x) +Khj/s(x) +O(log r)

= r − hj/s+ hj +O(log r).

The proof of Theorem 4.3 shows that

Kr(x, ax+ b) ≥ Kr(x) + η′r − o(r)

≥ r − hj/s+ hj + η′r − o(r)

≥ r(
3

2
+ s− 1

2s
− ε)

for sufficiently large j.

Since η, η′ and ε were chosen arbitrarily, the conclusion follows.

Corollary 4.9. Let La,b be any line in R2. Then the dimension spectrum sp(La,b) is

infinite.

Proof. Let (a, b) ∈ R2. If dim(a, b) < 1, then by Theorem 4.3 and Observation 4.1,

the spectrum sp(La,b) contains the interval [dim(a, b), 1]. Assume that dim(a, b) ≥ 1.

By Theorem 4.8, for every s ∈ [1
2
, 1], there is a point x such that dim(x, ax + b) ∈

[3
2

+ s − 1
2s
, s + 1]. Since these intervals are disjoint for sn = 2n−1

2n
, the dimension

spectrum sp(La,b) is infinite.
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CHAPTER 5. WEAK RANDOMNESS IN EUCLIDEAN

SPACE

In this chapter, we extend the notion of weak randomness to Euclidean space.

This chapter is joint work with Xiang Huang and some portions of it have appeared

in [20].

Martin-Löf’s original notion of randomness was defined using effective null cov-

ers; that is, a descending sequence of uniformly c.e. open sets whose intersection

is of measure zero. Null covers are now fundamental in the theory of algorithmic

randomness, and almost every significant notion has a null cover characterization.

Null covers have not had the same prominence in resource bounded randomness.

One of the main obstacles in generalizing null cover definitions from the computable

setting is the difficulty in imposing resource bounds on the concept of enumerability. A

much more natural concept for resource bounded computation is decidability. In this

chapter, we use concepts from computable analysis to give a new notion of resource

bounded randomness, weak polynomial space randomness.
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5.1 Preliminaries

5.1.1 Resource Bounded Randomness Using Martingales

A martingale is a function d : {0, 1}∗ → [0,∞) satisfying

d(w) =
d(w0) + d(w1)

2
, (5.1)

for every finite string w ∈ {0, 1}∗. A martingale can be thought of as a strategy for

betting on successive bits of an infinite binary sequence. The quantity d(w) is, then,

the amount of “money” the martingale has after betting on the first |w| bits of the

sequence with prefix w. The martingale condition (eq. (5.1)) ensures that the payoffs

are fair. We say that a martingale d succeeds on an infinite binary sequence A if

lim sup
n→∞

d(A[0 . . . n− 1]) =∞.

The success set of a martingale d is the set

S∞(d) = {A ∈ C | d succeeds on A}.

Lutz [25] used resource bounded martingales to define an effective notion of

Lebesgue measure theory, and showed this could be used to study complexity theory.

As noted by Ambos-Spies, et al. [1], Lutz’s resource bounded measure implicitly

defines a notion of resource bounded randomness.

For any function t : N → N1, we say that a martingale d is computable in time

(resp. space) t(n) if there is a t(n)-time (resp. space) computable function f :

Σ∗ × N→ Q such that

|d(w)− f(w, r)| ≤ 2−r.

1We will only consider resource bounds t which are time constructible. That is, functions t such
that t(n) ≥ n and the function f : Σ∗ → N, defined by f(w) = t(|w|), is computable.
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Definition 5.1. For a function t : N→ N, we say that an infinite sequence A is t(n)-

time (-space) random if no t(n)-time (-space) martingale succeeds on A. We denote

the set of t(n)-time and -space random sequences by RANDt(n) and RANDt(n)−space,

respectively.

While specific time and space bounds provide a fine grain definition of random-

ness, we are also interested in sequences which are random with respect to classes of

functions. The two most prominent are the classes of polynomial time and polynomial

space functions.

Definition 5.2. An infinite sequence A is polynomial time (space) random if no nk-

time (resp. space) martingale succeeds on A, for any k ∈ N. We denote the set of

polynomial time and polynomial space random sequences by RANDp and RANDpspace,

respectively.

It is often the case that defining a single martingale which “bets” on all of the

conditions we care about becomes too technical. In this case, we may simplify the

analysis by defining a sequence of martingales, each betting on a single condition. As

long as the sequence is uniformly computable, there is a single martingale, computable

in almost the same time, which succeeds on the union of the component success sets.

Lemma 5.3. If a set of t(n)-time computable martingales {dn} is t(n)-time uniformly

computable, then there is a (nt(n))-time computable martingale d such that

S∞(d) = ∪nS∞(dn).

5.1.2 Resource Bounded Randomness in Euclidean Space

Lutz and Lutz recently adapted resource-bounded randomness using martingales

to Euclidean space [28]. In this section, we review their definition of polynomial space

randomness in Rn.
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A dyadic rational number d is a rational number that has a finite binary expansion;

that is d = m
2r

for some integers m, r with r ≥ 0. We denote the set of all dyadic

rational numbers by D. We denote the set of all dyadic rationals d of precision r by

Dr. Formally,

Dr = {m
2r
|m ∈ Z}.

We denote the set of dyadic rationals in the interval [0, 1] by D[0, 1]. We denote the

set of dyadic rationals of precision r in the interval [0, 1] by Dr[0, 1]. An open dyadic

cube of precision r is a subset Q ⊆ Rn such that

Q = (
a1
2r
,
a1 + 1

2r
)× . . .× (

an
2r
,
an + 1

2r
),

where ai ∈ Z, and r ∈ N. We say that the points {a1
2r

, a1+1
2r
, . . . an

2r
, an+1

2r
} are the

endpoints of Q. In the same manner, we define closed dyadic cubes, and half-open

dyadic cubes. Define the family

Qr = {Qr(u) | u ∈ {0, . . . , 2r − 1}n}.

So then Qr is a partition of the unit cube [0, 1)n. The family

Q =
∞⋃
r=0

Qr,

is the set of all half-open dyadic cubes in [0, 1)n.

A (dyadic) martingale on [0, 1)n is a function d : Q → [0,∞) satisfying

d(Qr(u)) = 2−n
∑

a∈{0,1}n
d(Qr+1(2u + a)), (5.2)

for all Qr(u) ∈ Q. We may think of a martingale d as a strategy for placing successive

bets on which cube contains x. After r bets have been placed, the bettor’s capital is

d(r)(x) = d(Qr(u)),
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where u is the unique element of {0, . . . , 2r − 1}n such that x ∈ Qr(u). A martingale

d succeeds at a point x ∈ [0, 1)n if

lim sup
r→∞

d(r)(x) =∞.

Let

J = {(r,u) ∈ N× Zn |u ∈ {0, . . . , 2r − 1}n}.

We say that a martingale d : Q → [0,∞) is computable if there is a computable

function d̂ : N× J → Q ∩ [0,∞) such that for all (s, r,u) ∈ N× J ,

|d̂(s, r,u)− d(Qr(u))| ≤ 2−s. (5.3)

A martingale d : Q → [0,∞) is p-computable (resp. pspace-computable) if there is a

function d̂ : N×J → Q∩[0,∞) that satisfies (5.3) and is computable in (s+r)O(1) time

(resp. space). A point x ∈ Rn is p-random (resp. pspace-random) if no p-computable

(resp. pspace-computable) martingale succeeds at x.

5.1.3 Resource Bounded Computation in Euclidean Space

In this section, we review Ko’s framework for complexity theory in Rn [21]. For

the remainder of the chapter, we include the write tape when considering polynomial

space bounds of Turing machines.

An infinite sequence {Sm}m∈N of finite unions of open boxes is polynomial space

computable if there exists a polynomial space TM M such that for all m > 0, and all

d ∈ Dn,

M(0m, d) =


1 if d ∈ Sm

−1 if d is a boundary point of Sm

0 otherwise
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A set S ⊆ [0, 1]n is polynomial space approximable if S is measurable and there exists

a polynomial space computable sequence of sets {Sm}m∈N such that, for every m > 0,

1. there is a polynomial p such that all endpoints of Sm are in Dn
p(m) and

2. µ(S∆Sm) ≤ 2−m.

Note that we may assume that the polynomial p is increasing; that is p(i) ≤ p(i+ 1),

for all i ∈ N.

5.2 Uniformly Approximable Sequences

We now generalize Ko’s definition of approximable sets to approximable arrays

of sets. We follow Ko in first defining computability, then leveraging this to define

approximability.

An infinite array {Skm}k,m∈N of finite unions of open boxes is uniformly polynomial

space computable if there exists a polynomial space TM M such that for all k,m > 0,

and all d ∈ Dn,

M(0m, 0k, d) =


1 if d ∈ Skm

−1 if d is an boundary point of Skm

0 otherwise

If {Skm} is uniformly polynomial space computable and M is a TM satisfying the

definition, we say M computes {Skm}.

A sequence of sets {Um}m∈N is uniformly polynomial space approximable if there

exists a uniformly polynomial space computable array of sets {Skm} and a polynomial

p such that

1. all endpoints of Skm are in Dn
p(m+k) and
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2. µ(Um∆Skm) ≤ 2−k.

If a polynomial p and a uniformly polynomial space computable sequence {Skm} satis-

fies (1) and (2), we say that {Skm}k,m∈N approximates {Um} at precision p. Note that

we may assume that the polynomial p is increasing.

We now show that we can construct uniformly pspace computable sequences from

pspace computable sequences. This lemma will be useful, as polynomial space com-

putability is an easier property to verify than its uniform counterpart.

Lemma 5.4. Let {Ti}i∈N be a pspace computable sequence, and q1, q2 be polynomials.

For every k, m > 0, define the set Skm by

Skm =

q2(k)⋃
i=q1(m)

Ti.

Then the array {Skm} is uniformly polynomial space computable.

Proof. It is clear that Skm is a finite union of open boxes for each k and m > 0. Let

M ′ be the polynomial space TM computing {Ti}. For every k, m > 0, and d ∈ Dn,

define the TM M by

M(0m, 0k, d) =


1 if M ′(0i, d) = 1 for any q1(m) ≤ i ≤ q2(k)

−1 else, if M ′(0i, 02k+2, d) = −1 for any q1(m) ≤ i ≤ q2(k)

0 otherwise

.

Clearly, M is computable in polynomial space. Hence, {Skm}k,m∈N is uniformly

polynomial space computable.

Similarly, we are able to construct uniformly pspace approximable sequences from

other uniformly approximable sequences.
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Lemma 5.5. Let q be a polynomial, j ∈ N, and {Vi}i∈N be a uniformly pspace ap-

proximable sequence, such that µ(Vi) ≤ 2−i+j. Define the sequence {Um}m∈N by

Um =
∞⋃

i=q(m)

Vi.

Then {Um}m∈N is a uniformly pspace approximable sequence.

Proof. Let {Vi} be a uniformly approximable sequence, approximated by the uni-

formly pspace computable array {T si } at precision p. For each k, m > 0, define the

set

Skm =

k+j+1⋃
i=q(m)

T 2k+2
i .

It is clear that {Skm}k,m∈N is a array of finite unions of open boxes. Let M ′ be the

polynomial space TM computing {T si }. For every k, m > 0 and d ∈ Dn, define the

TM M by

M(0m, 0k, d) =


1 if M ′(0i, 02k+2, d) = 1 for any q(m) ≤ i ≤ k + j + 1

−1 else, if M ′(0i, 02k+2, d) = −1 for any q(m) ≤ i ≤ k + j + 1

0 otherwise

.

It is easy to see that M is a polynomial space TM. Hence, {Skm}k,m∈N is a uniformly

pspace computable sequence. Recall that we are able to assume that the polynomial

p is increasing. Therefore, all endpoints of Skm are in Dn
p(3k+3). Finally, we have
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µ(Um∆Skm) = µ(
∞⋃

i=q(m)

Vi ∆

k+j+1⋃
i=q(m)

T 2k+2
i )

≤ µ(

k+j+1⋃
i=q(m)

Vi ∆

k+j+1⋃
i=q(m)

T 2k+2
i ) + µ(

∞⋃
i=k+j+2

Vi)

≤
k+j+1∑
i=q(m)

µ(Vi∆T
2k+2
i ) +

∞∑
i=k+j+2

µ(Vi)

≤
k+1∑

i=q(m)

2−2k−2 +
∞∑

i=k+j+2

2−i+j

≤ 2−k.

So then {Skm}k,m∈N approximates {Um}m∈N at precision p, and therefore {Um}m∈N is

a uniformly polynomial space approximable sequence.

5.3 Weak Polynomial Space Randomness in Euclidean

Space

Using uniformly polynomial space approximable sequences, we give an open-cover

definition of polynomial space randomness.

Let a, b ∈ Z. An infinite sequence of open sets {Um}m∈N ⊆ [a, b]n is a polynomial

space W-test (pspace W-test) if the following hold.

1. For every m, µ(Um) ≤ 2−m.

2. There is a uniformly pspace computable array {Skm} approximating {Um} such

that, for all m,

Um ⊆ lim inf
k→∞

Skm,
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A point x passes a polynomial spaceW-test {Um}m∈N if x /∈
∞⋂
m=1

Um. We say that

x is weakly pspace random if x passes every polynomial space W-test.

The approximability of pspace W-tests allows us to estimate the measure of the

open covers in polynomial space.

Lemma 5.6. If {Um}m∈N is a pspace W-test, then there exists a polynomial space

TM M such that for every s, r, m ∈ N and u ∈ {0, . . . , 2r − 1}n

|M(0s, 0r,u, 0m)− µ(Um ∩Qr(u))| ≤ 2−s.

Proof. Let p be a polynomial, and {Um}m∈N be a pspaceW-test, approximated by the

uniformly pspace computable array {Skm} at precision p. Let M ′ be the polynomial

space TM computing {Skm}k,m∈N. For every s, r, m ∈ N and u ∈ {0, . . . , 2r − 1}n,

define the TM M by,

M(0s, 0r,u, 0m) = µ(Ssm ∩Qr(u)).

Then,

|M(0s, 0r,u, 0m)− µ(Um ∩Qr(u))| = |µ(Ssm ∩Qr(u))− µ(Um ∩Qr(u))|

≤ µ((Ssm∆Um) ∩Qr(u))

≤ 2−s.

It remains to be shown that M is a polynomial space machine. To compute µ(Ssm ∩

Qr(u)), M enumerates over all dyadic cubes Q of precision p(s + m). For each

Q, M computes the center of Q, the dyadic rational dQ of precision p(s + m) + 1.

If M ′(0m, 0s, dQ) = 1, then M adds µ(Q ∩ Qr(u)) to the current measure. After

enumerating over all Q ∈ Bp(s+m), M outputs the total measure. Hence, M is a

polynomial space machine, and the proof is complete.
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We are now able to relate weakly polynomial space randomness with Lutz’s pspace

randomness. The following lemma shows that pspace randomness implies weakly

pspace randomness.

Theorem 5.7. Let {Um}m∈N be a polynomial space W-test. Then there exists a

pspace martingale d succeeding on all points x ∈
∞⋂
m=1

Um
⋂

[0, 1]n.

Proof. Let {Um}m∈N be a polynomial space W-test. For each m > 0, define the

function dm : Q → [0,∞) by

dm(Qr(u)) =
1

µ(Qr(u))
µ(Um ∩Qr(u)).

We then have

2−n
∑

a∈{0,1}n
dm(Qr+1(2u + a)) = 2−n

∑
a∈{0,1}n

1

µ(Qr+1(2u + a))
µ(Um ∩Qr+1(2u + a))

= 2rn
∑

a∈{0,1}n
µ(Um ∩Qr+1(2u + a))

= 2rnµ(Um
⋂

(
⋃

a∈{0,1}n
Qr+1(2u + a)))

= 2rnµ(Um ∩Qr(u))

=
1

µ(Qr(u))
µ(Um ∩Qr(u))

= dm(Qr(u)),

and so dm is a martingale. Define the function d : Q → [0,∞) by

d(Qr(u)) =
∞∑
m=1

dm(Qr(u)).
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Then,

d(Q0(0)) =
∞∑
m=1

dm(Q0(0))

≤
∞∑
m=1

2−m

≤ 1,

and since each dm is a martingale, d is a martingale. We now show that d is a pspace

martingale by constructing a polynomial space TM M computing d̂. By Lemma 5.6,

there exists a polynomial space TM M ′ such that

|M ′(0s, 0r,u, 0m)− µ(Um ∩Qr(u))| ≤ 2−s.

For every s ∈ N and (r,u) ∈ J , define the TM M by

M(0s, 0r,u) =
s+nr+1∑
m=1

1

µ(Qr(u))
M ′(0s+nr+2, 0r,u, 0m)

=
s+nr+1∑
m=1

2nrM ′(0s+nr+2, 0r,u, 0m)

Clearly, M runs in polynomial space. Moreover,

|M(0s, 0r,u)− d(Qr(u))| = |M(0s, 0r,u)−
∞∑
m=1

dm(Qr(u))|

≤ |M(0s, 0r,u)−
s+nr+1∑
m=1

dm(Qr(u))|+
∞∑

m=s+nr+2

dm(Qr(u)).

By the definition of M ,

|M(0s, 0r,u)−
s+nr+1∑
m=1

dm(Qr(u))| = 2nr|
s+nr+1∑
m=1

M ′(0s+nr+2, 0r,u, 0m)− µ(Um ∩Qr(u))|

≤ 2nr
s+nr+1∑
m=1

2−s−nr−2

≤
s+nr+1∑
m=1

2−s−2

≤ 2−s−1.
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Combining the two inequalities, we have

|M(0s, 0r,u)− d(Qr(u))| ≤ 2−s−1 +
∞∑

m=s+nr+2

dm(Qr(u))

≤ 2−s−1 +
∞∑

m=s+nr+2

2nr 2−m

≤ 2−s−1 + 2nr2−s−nr−1

≤ 2−s.

Therefore, d is a pspace martingale.

Assume x ∈
∞⋂
m=1

Um
⋂

[0, 1]n. Let i > 0. Then, since Ui is an open set, there

exists an N such that for all r ≥ N , Qr(u) ⊆ Ui, where Qr(u) is the unique dyadic

cube containing x. Hence, for all r ≥ N , di(Qr(u)) = 1. Therefore,

lim
r→∞

d(r)(x) =∞,

and so d succeeds on x.

5.4 Weak Resource Bounded Randomness of Sequences

In this section we give the equivalent definition of weak randomness for infinite

sequences, rather than Euclidean points. In so doing, we generalize weak randomness

to arbitrary time and space bounded computation.

Definition 5.8. A sequence of open sets {Un} is polynomial time (space) approx-

imable if there is an array {Skn}k,n∈N, Skn ⊆ Σ∗, such that the following hold.

1. There is a polynomial time (space) computable function f : N × N → N such

that, for every k and n,

max{|w| : w ∈ Skn} ≤ f(k, n).
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2. The language L = {〈w, 0k, 0n〉 |w ∈ Skn} is decidable in polynomial time (space).

3. For every n, Un =
⋃
k≥1

[Skn].

4. For every n and k, µ(Un −
⋃
k≥1

[Skn]) ≤ 2−k.

Definition 5.9. A weak polynomial time (space) test is a polynomial time (space)

approximable sequence of descending open sets {Un} such that µ(Un) ≤ 2−n. An

infinite sequence A passes a weak polynomial time (space) test if A /∈ ∩nUn. An

infinite sequence A is weakly polynomial time (space) random if A passes every weak

polynomial time (space) test.

In the polynomial space setting, we are able to compute, using property (1) of

Definition 5.8, the measures of Un uniformly. The proof is nearly identical to that in

the previous section.

Proposition 5.10. Let {Un} be a weak polynomial space test. Then the function

f : Σ∗ × N→ [0, 1] defined by f(w, n) = µ(Cw ∩ Un) is polynomial space computable.

This proposition allows us to show that weak polynomial space randomness is no

stronger than polynomial space randomness.

Lemma 5.11. RANDpspace is a subset of RANDW−pspace.

We now show that weak polynomial space randomness is, in fact, strictly weaker

than polynomial space randomness. We also show that there is a sequence which is

weakly polynomial time random, yet not polynomial time random.

Lemma 5.12. There is a sequence A such that A is weakly polynomial time random

and there is a O(n)-time martingale d succeeding on A.
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Proof. Let B be Martin-Löf random, and define the sequence A by

A[n] =


B[n] if n = 22m for some m ∈ N

0 otherwise

It is easy to construct an O(n)-time martingale d succeeding on A. We now show that

if A is not weakly polynomial time random, then B is not ML random, contradicting

our assumption.

Assume that A fails a weak polynomial time test {Un}. Let {Skn} be the com-

putable array approximating {Un} and let nr be its associated polynomial. For every

string w, define the set

N(w) = {x ∈ Σ∗ |x[n] = w[n] for every n 6= 22m}.

Note that, for every w ∈ Σ∗, |N(w)| ≤ log |w|. For every n ∈ N inductively define

the sets T kn by

T 1
n = {w | (∃j ≤ 2n) w ∈ Sjn}

T k+1
n = {w | (∃j ≤ 2(k + 1)n) w ∈ Sjn} − ∪i≤kT kn .

Note that, for every k > 1, ∑
w∈Tkn

2−|w| ≤ 2−2(k−1)n.

For each n, let

Un = {x ∈ Σ∗ | (∃k) x ∈ N(w) and ∈ T kn}.
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It is clear that Un is c.e. and that B ∈ ∩nUn. Furthermore, for every n,

µ(Un) =
∑
k

∑
w∈Tkn

|N(w)| 2−|w|

=
∑
k

∑
w∈Tkn

log |w| 2−|w|

≤
∑
k

log(2kn)r
∑
w∈Tkn

2−|w|

≤
∑
k

log(2kn)r2−2(k−1)n.

By the ratio test this sum converges. Therefore {Un} is a Martin-Löf test covering

B, contradicting our hypothesis. Hence A is weakly polynomial time random.

Combining Lemmas 5.11 and 5.12 shows that weak polynomial space randomness

is, in fact, weaker than polynomial space randomness.

Corollary 5.13. The set RANDW−pspace is a (strict) subset of RANDpspace.

Unfortunately, we do not know if Proposition 5.10 holds in the polynomial time

setting, so the method of Lemma 5.11 cannot be used. Lemma 5.12 shows that either

weak polynomial time - and polynomial time -randomness are independent, or weak

polynomial time randomness is strictly weaker. We conjecture that the latter holds.

Conjecture 5.14. The set RANDW−p is a (strict) subset of RANDp.
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CHAPTER 6. RESOURCE BOUNDED RANDOMNESS

AND THE LEBESGUE DIFFERENTIATION THEOREM

In this chapter, we use the Lebesgue differentiation theorem, a fundamental theo-

rem of analysis, to characterize the notion of weak randomness given in the previous

chapter. This chapter is joint work with Xiang Huang and some portions of it have

appeared in [20].

Recently, research in algorithmic randomness has used computable analysis to

study the connection between randomness and classical analysis [3, 15, 16, 41, 42, 47].

With the rise of measure theory, many fundamental theorems of analysis have been

“almost everywhere” results. Theorems of this type state that a certain property holds

for almost every point; i.e., the set of points that does not satisfy the property is of

measure zero. However, almost everywhere theorems typically give no information

about which points satisfy the stated property. By adding computability restrictions,

tools from algorithmic randomness are able to strengthen a theorem from a prop-

erty simply holding almost everywhere, to one that holds for all random points. For

example, an important classical result of analysis is Lebesgue’s theorem on nonde-

creasing functions. Lebesgue showed that every nondecreasing continuous function

f : [0, 1] → R is differentiable almost everywhere. Brattka, Miller and Nies charac-

terized computable randomness using Lebesgue’s theorem by proving the following

result [5].
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Theorem 6.1. Let z ∈ [0, 1]. Then z is computably random if and only if f ′(z) exists

for every nondecreasing computable function f : [0, 1]→ R.

This paper concerns a related theorem, also due to Lebesgue [23].

Theorem 6.2. For each f ∈ L1([0, 1]n),

f(x) = lim
Q→x

∫
Q
fdµ

µ(Q)

for almost every x ∈ [0, 1]n. The limit is taken over all open cubes Q containing x as

the diameter of Q tends to 0.

Pathak first studied the Lebesgue differentiation theorem in the context of Martin-

Löf randomness [45]. Under the assumption that the function is L1-computable,

Pathak showed that the Lebesgue differentiation theorem holds for every Martin-Löf

random point. Subsequently, Pathak, Rojas and Simpson improved this theorem [46].

They showed that the Lebesgue differentiation theorem holds at a point z for every

L1 computable function if and only if z is Schnorr random [46]. Independently, and

using very different techniques, Rute also showed that the Lebesgue differentiation

theorem holds for Schnorr random points [47].

This chapter concerns the connection between resource-bounded randomness and

analysis. While there has been work on this interaction [6, 28, 44], resource-bounded

randomness in analysis is still poorly understood. Recently, Nies extended the result

of Brattka, Miller and Nies to the polynomial time domain [44]. Specifically, Nies

characterized polynomial time randomness using the differentiability of nondecreas-

ing polynomial time computable functions. We extend this research of the Lebesgue

differentiation theorem to the context of resource-bounded randomness. We show

that the Lebesgue differentiation theorem characterizes weak polynomial space ran-

domness. That is, we prove that a point x is weakly polynomial space random if and
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only if the Lebesgue differentiation theorem holds at x for every polynomial space

L1-computable function.

6.1 Preliminaries

Throughout this chapter, µ will always denote the Lebesgue measure on Rn. We

denote the set of all Lebesgue integrable functions f : [0, 1]n → R by L1([0, 1]n). A

dyadic rational number d is a rational number that has a finite binary expansion;

that is d = m
2r

for some integers m, r with r ≥ 0. We denote the set of all dyadic

rational numbers by D. We denote the set of all dyadic rationals d of precision r by

Dr. Formally,

Dr = {m
2r
|m ∈ Z}.

We denote the set of dyadic rationals in the interval [0, 1] by D[0, 1]. We denote the

set of dyadic rationals of precision r in the interval [0, 1] by Dr[0, 1]. An open dyadic

cube of precision r is a subset Q ⊆ Rn such that

Q = (
a1
2r
,
a1 + 1

2r
)× . . .× (

an
2r
,
an + 1

2r
),

where ai ∈ Z, and r ∈ N. We say that the points {a1
2r

, a1+1
2r
, . . . an

2r
, an+1

2r
} are the

endpoints of Q. In the same manner, we define closed dyadic cubes, and half-open

dyadic cubes. We denote the set of all open dyadic cubes of precision r by

Br = {Q |Q is an open dyadic cube of precision r}.

For an open set Q ⊆ Rn and t ∈ Rn, define the translation of Q by t to be the set

t+Q = {t+ x |x ∈ Q}.
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6.1.1 Polynomial Space Computability in Euclidean Space

In this section, we review Ko’s framework for complexity theory in Rn [21]. For

the remainder of the chapter, we include the write tape when considering polynomial

space bounds of Turing machines.

We first introduce the polynomial space L1-computable functions, the class of

functions we will be using in the proof of the Lebesgue differentiation theorem. This

definition is equivalent to Ko’s notion of pspace approximable functions. It is a direct

analog of the L1-computable functions used in computable analysis.

A function f : [0, 1]n → R is a simple step function if f is a step function such

that

1. f(x) ∈ D for all x ∈ [0, 1]n and

2. there exists a finite number of (disjoint) dyadic boxes Q1, . . . , Qk and dyadic

rationals d1, . . . , dk such that f(x) =
k∑
i=1

diχQi(x), where χQ is the characteristic

function of a set Q.

A function f ∈ L1([0, 1]n) is polynomial space L1-computable if there exists a

sequence of simple step functions, {fm}m∈N, and a polynomial p such that for all

d ∈ Dn,

1. fm(x) =
k∑
i=1

diχQi(x), such that the endpoints of each Qi are in Dn
p(m),

2. there is a polynomial space TM M computing fm in the sense that

M(0m, d) =


fm(d) if d is not a breakpoint of fm

# otherwise

3. ‖f − fm‖1 ≤ 2−n .
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Note that we may assume that the polynomial p is increasing. We will frequently

use the following nice property of polynomial space L1-computable functions. If

f ∈ L1([0, 1]n) is approximated by sequence of simple step function {fm} at precision

p, then for every i > 0, fi is a constant function on every Q ∈ Bp(i).

6.2 Weak Randomness and the Lebesgue Differentiation

Theorem

In this section we prove our main theorem, that the Lebesgue differentiation the-

orem characterizes weakly pspace-randomness. Recall the statement of Lebesgue’s

theorem.

Theorem 6.3. For each f ∈ L1([0, 1]n),

f(x) = lim
Q→x

∫
Q
fdµ

µ(Q)

for almost every x ∈ [0, 1]n. The limit is taken over all open cubes Q containing x as

the diameter of Q tends to 0.

A point x that satisfies the Lebesgue differentiation theorem is called a Lebesgue

point. We will prove the following theorem,

Theorem 6.4. A point x is weakly pspace-random if and only if for every polynomial

space L1-computable f ∈ L1([0, 1]n), and every polynomial space computable sequence

of simple functions {fm}m∈N approximating f ,

lim
m→∞

fm(x) = lim
Q→x

∫
Q
fdµ

µ(Q)
(6.1)

where the limit is taken over all cubes Q containing x as the diameter of Q tends to

0.
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We first make several remarks regarding the form of our main theorem. The use of

polynomial space L1-computability is not simply for the sake of generality. It is well-

known that if a function is continuous, the Lebesgue differentiation theorem holds for

every point. Thus, to get a non-trivial randomness result, we must allow the function

to be discontinuous. Our second remark concerns the limit of the approximating

functions. In the statement of the classical theorem, the integral limit is equal to

f(x); whereas in our main theorem, it is equal to limm→∞ fm(x). This concession is

necessary. For any point x, it is trivial to construct a polynomial space L1-computable

function f such that

f(x) 6= lim
Q→x

∫
Q
fdµ

µ(Q)
.

Consider the function f which is 0 for all points, except at the given point x, f(x) = 1.

Clearly, f is polynomial space L1-computable, but x does not satisfy the Lebesgue

differentiation theorem.

6.2.1 Random points satisfy the Lebesgue differentiation theorem

The outline of our proof roughly follows that of the classical proof of the Lebesgue

differentiation theorem [46]. However, the restriction to polynomial space computa-

tion significantly changes the internal methods. We first show that if a point x ∈ [0, 1]n

is weakly pspace-random, then it must be contained in an open dyadic cube. This is

a useful property of weakly pspace-random points that we take advantage of in later

theorems.

Lemma 6.5. Let x = (x1, . . . , xn) ∈ [0, 1]n be weakly pspace-random. Then, for every

i, xi is not a dyadic rational.

Proof. Let x = (x1, . . . , xn) ∈ [0, 1]n be weakly pspace-random. We show that x1

cannot be a dyadic rational, the proof for the other components is similar. For every
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i > 0, define the set

Si =
⋃

d∈Di[0,1]

(d− 2−2i−2, d+ 2−2i−2)× (0, 1)× . . .× (0, 1).

For every m > 0, define the set

Um =
∞⋃
i=m

Si.

We now prove that the sequence {Um}m∈N is a pspace W-test. It is clear that for

every m > 0, Um is an open set. Let m > 0, then,

µ(Um) = µ(
∞⋃
i=m

Si)

≤
∞∑
i=m

µ(Si)

≤
∞∑
i=m

2i2−2i−1

≤ 2−m.

It remains to be shown that {Um}m∈N is uniformly pspace approximable. For every

k, m > 0, define the set

T km =
k−1⋃
i=m

Si.

It is easy to verify that {Si} is a polynomial space computable sequence. Hence, by

Lemma 5.4, {T km} is a uniformly polynomial space computable sequence. Finally, for

every k, m > 0,

µ(Um∆T km) = µ(
∞⋃
i=k

Si)

≤
∞∑
i=k

µ(Si)

≤ 2−k,
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and so the sequence {Um} is uniformly polynomial space approximable. It is clear that

for every m, and all x ∈ Um, x ∈ lim infk T
k
m. Therefore, {Um}m∈N is a polynomial

space W-test. By assumption x /∈ ∩Um, therefore x1 is not a dyadic rational.

Using a similar argument we see that, for all 1 ≤ i ≤ n, xi is not a dyadic

rational.

Let f be a polynomial space L1-computable function, approximated by the pspace

computable sequence of simple step functions {fm}m∈N. We now show that for every

weakly pspace-random point x, the limit lim
m→∞

fm(x) exists. We will need the following

inequality due to Chebyshev. For every f ∈ L1([0, 1]n) and ε > 0, define the set

S(f, ε) = {x | |f(x)| > ε}.

Lemma 6.6. Let f ∈ L1([0, 1]n) and ε > 0. Then µ(S(f, ε)) ≤ ‖f‖1
ε

.

Lemma 6.7. Let f ∈ L1([0, 1]n) be polynomial space L1 computable, approximated

by the polynomial space computable sequence of simple step functions {fm}m∈N. If x

is weakly pspace-random, the limit lim
m→∞

fm(x) exists.

Proof. Let p be a polynomial and f ∈ L1([0, 1]n) be polynomial space L1 computable,

approximated by the polynomial space computable sequence of simple step functions

{fm}m∈N at precision p. Recall that we may assume that p is increasing. For each

i ≥ 1, define the set

Si = (S(f2i−1 − f2i, 2−i) ∪ S(f2i − f2i+1, 2
−i)) ∩ (

⋃
Q∈Bp(2i+1)

Q).

We intersect with the open dyadic cubes of precision p(2i+ 1) to ensure that Si is an

open set. For each m ≥ 1 define the set

Um =
∞⋃

i=m+4

Si.
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We now prove that the sequence {Um}m∈N is a pspace W-test. Using the properties

of simple step functions, it is routine to verify that, for every i > 0, Si is the union

of all open dyadic cubes Q ∈ Bp(2i+1), such that either

|f2i−1(Q)− f2i(Q)| > 2−i, or

|f2i(Q)− f2i+1(Q)| > 2−i.

Therefore, for every m > 0, Um is an open set. By Chebyshev’s inequality,

µ(Si) ≤ 2i(‖f2i−1 − f2i‖+ ‖f2i − f2i+1‖)

≤ 2i(2−2i+2 + 2−2i+1)

≤ 2−i+3.

Using this upper bound on the measure of Si we obtain

µ(Um) ≤
∞∑

i=m+4

µ(Si)

≤
∞∑

i=m+4

2−i+3

≤ 2−m.

It remains to be shown that the sequence {Um}m∈N is uniformly polynomial space

approximable. For every k, m > 0, define the set

T km =
k+3⋃

i=m+4

Si.
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It is clear that {Si} is a polynomial space computable sequence. Hence, by Lemma

5.4, {T km} is a uniformly pspace computable array. Finally, we have

µ(Um∆T km) = µ(Um∆(
k+3⋃

i=m+4

Si))

≤ µ((
∞⋃

i=k+4

Si))

≤
∞∑

i=k+4

µ(Si)

≤
∞∑

i=k+4

2−i+3

≤ 2−k.

Finally, it is clear that, for every m ∈ N and all x ∈ Um, x ∈ lim infk T
k
m. Hence,

{Um}m∈N is a pspace W-test.

Assume x is weakly pspace-random. Then there exists an N such that for all

m > N , x /∈ Um, and therefore x /∈ Si, for all i > N + 4. By Lemma 6.5, x

cannot have any dyadic rational components; i.e., x ∈ Q, for some Q ∈ B2i+1.

Hence, |f2i−1(x) − f2i(x)| ≤ 2−i and |f2i(x) − f2i+1(x)| ≤ 2−i. Let j > 2N + 8, then

|fj(x)− fj+1(x)| ≤ 2−
j
2 . Therefore, the limit lim

m→∞
fm(x) exists.

We now focus on the limit

lim
Q→x

∫
Q
fdµ

µ(Q)

on the right hand side of our main theorem (equation (6.1)). The restriction to poly-

nomial space computation creates difficulties in considering arbitrary open cubes.

Intuitively, we overcome this obstacle through the use of translations of dyadic cubes,

which are more amenable to polynomial space computation. Formally, for t ∈

{−1
3
, 0, 1

3
}n, define the set

Bt
r = {I tr | I tr = t+Q, where Q ∈ Br}.
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That is, Bt
r is the set of all translations of dyadic cubes of precision r by points

t ∈ {−1
3
, 0, 1

3
}n. For every x ∈ [0, 1]n, let I tr(x) denote the (unique) element of Bt

r

containing x. The following theorem of Rute [47], using results due to Morayne and

Solecki [43], shows that it suffices to prove that the right hand limit of equation (6.1)

exists for these translations.

Theorem 6.8 ([47]). Let f ∈ L1([0, 1]n), and x ∈ [0, 1]n. Then the following are

equivalent,

1. the limit lim
Q→x

∫
Q fdµ

µ(Q)
exists, where the limit is taken over all cubes containing x,

as the diameter goes to 0

2. the limit lim
k→∞

∫
It
k
(x)

fdµ

µ(Itk(x))
exists, for all t ∈ {−1

3
, 0, 1

3
}n.

We now show that the limit

lim
m→∞

∫
Itr(x)
|f − fm|dµ
µ(I tr(x))

exists, for every t ∈ {−1
3
, 0, 1

3
}n and r > 0. We will need the following inequality due

to Hardy and Littlewood. For every f ∈ L1([0, 1]n) and ε > 0, define the set

T (f, ε) = {x | sup
r,t

∫
Itr(x)

fdµ

µ(I tr)
> ε},

where the supremum is taken over all r > 0 and t ∈ {−1
3
, 0, 1

3
}n.

Theorem 6.9. There is a constant c such that, for every f ∈ L1([0, 1]n) and ε > 0,

µ(T (f, ε)) ≤ c‖f‖1
ε

.

Lemma 6.10. Let f ∈ L1([0, 1]n) be polynomial space L1 computable, approximated

by the polynomial space computable sequence of step functions {fm}m∈N. If x is weakly

pspace-random, then

lim
m→∞

∫
Itr(x)
|f − fm|dµ
µ(I tr(x))

= 0,

for every t ∈ {−1
3
, 0, 1

3
}n and r > 0.
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Proof. Let p be a polynomial, and f ∈ L1([0, 1]n) be polynomial space L1 computable,

approximated by the polynomial space computable sequence of simple step functions

{fm}m∈N at precision p. For every i > 0, define the set

Ti = T (f2i−1 − f2i, 2−i) ∪ T (f2i − f2i+1, 2
−i).

For every m ≥ 1 define the set

Um =
∞⋃

i=m+4+c

Ti.

We now prove that the sequence {Um}m∈N is a pspace W-test. Clearly, for every

m > 0, Um is an open set. By the Hardy/Littlewood inequality,

µ(Ti) ≤ 2i c (‖f2i−1 − f2i‖+ ‖f2i − f2i+1‖)

≤ 2i c (2−2i+2 + 2−2i+1)

≤ c 2−i+3.

Using this upper bound on the measure of Ti we obtain

µ(Um) ≤
∞∑

i=m+4+c

µ(Ti)

≤
∞∑

i=m+4+c

c 2−i+3

< 2−m.

It remains to be shown that the sequence {Um}m∈N is uniformly polynomial space

approximable. By Lemma 5.5, it suffices to prove that the sequence (Ti) is uniformly

polynomial space approximable. For every k, i, define the sets

V k
i = {I tr | r ≤ p(2i+ 1) + k + 2, t ∈ {−1

3
, 0,

1

3
}n, and

∫
Itr(x)
|f2i−1 − f2i|dµ
µ(I tr(x))

> 2−i},

W k
i = {I tr | r ≤ p(2i+ 1) + k + 2, t ∈ {−1

3
, 0,

1

3
}n, and

∫
Itr(x)
|f2i − f2i+1|dµ
µ(I tr(x))

> 2−i},
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and

Aki = W k
i

⋃
V k
i .

We now show that µ(Ti∆A
k
i ) ≤ 2−k. Intuitively, we bound the measure using

the property that simple step functions are constant on dyadic cubes. Let I tr ⊆ Q,

for some Q ∈ Bp(2i+1); i.e., I tr is fully contained in an open dyadic cube of precision

p(2i+ 1). Assume ∫
Itr
|f2i−1 − f2i|dµ
µ(I tr)

> 2−i.

Since |f2i−1−f2i| is a simple step function whose break points are in Dn
p(2i+1), |f2i−1−

f2i| must be a constant function on Q. Thus, |f2i−1(Q) − f2i(Q)| > 2−i, and so

I tr ⊆ Q ⊆ A1
i . Similarly, if ∫

Itr
|f2i − f2i+1|dµ
µ(I tr)

> 2−i,

then I tr ⊆ Q ⊆ A1
i . So then, the set of points in Ti − Aki must be contained in some

translate I tr that is not contained in a dyadic cube of precision p(2i+ 1); that is,

Ti − Aki ⊆
∞⋃

r=p(2i+1)+k+3

Nr. (6.2)

We now bound the measure of these points. For r ∈ N define the set

Nr = {I tr | t ∈ {−
1

3
, 0,

1

3
}n, and I tr * Q for any box Q of precision p(2i+ 1)}.

If I tr is not contained in a dyadic cube of precision p(2i+ 1), then I tr must contain at

least one dyadic rational of precision p(2i+ 1). Hence,

|Nr| ≤ 3n2np(2i+1) (6.3)

and so,

µ(Nr) ≤ 3n2np(2i+1) 2−rn. (6.4)
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By equation (6.2) and inequality (6.4), we obtain

µ(Ti − Aki ) ≤ µ(
∞⋃

r=p(2i+1)+k+3

Nr)

≤
∞∑

r=p(2i+1)+k+3

µ(Nr)

≤
∞∑

r=p(2i+1)+k+3

3n 2np(2i+1) 2−rn

≤ 3n 2np(2i+1)

∞∑
r=p(2i+1)+k+3

2−rn

≤ 2−k−1.

We would like {Aki } to be a uniformly polynomial space computable sequence.

However, there is a minor technical detail which complicates the argument. The

definition of uniformly pspace computable sequences requires the endpoints to be

dyadic rationals. Unfortunately, translating the dyadic cubes by t ∈ {−1
3
, 0, 1

3
}n

violates this requirement. In order to overcome this, we will approximate {Aki } by

boxes with dyadic endpoints. For any open cube Q, define Dk
i (Q) to be the open

dyadic box containing Q such that

µ(Dk
i (Q)−Q) < 2−n(p(2i+1)+2k+3).

Formally, if Q = (a1, b1)× . . .× (an, bn), let

Dk
i (Q) = (d1, d

′
1)× . . .× (dn, d

′
n)

where di, d
′
i are dyadic rationals at precision p(2i+1)+2k+n+3, and di ≤ ai < bi ≤ d′i.

Define the set

Ski =
⋃
Q∈Aki

Dk
i (Q).

It is easy to verify that {Ski } is a uniformly pspace computable array such that the

endpoints of Ski are in Dn
p(2i+1)+2k+n+3, and µ(Ti∆S

k
i ) ≤ 2−k for every i, k > 0. It
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is clear that, for every i and all x ∈ Ti, x ∈ lim infk S
k
i . Hence, {Ti} is a uniformly

polynomial space approximable sequence, and {Um}m∈N is a pspace W-test.

Assume x is weakly pspace-random. Then there exists an N such that for all

m > N , x /∈ Um. Let i > 2N + 8 + 2c, t ∈ {−1
3
, 0, 1

3
}n and r > 0. Choose j > rn+ i.

Then, ∫
Itr(x)
|f − fi|dµ

µ(I tr(x))
≤

∫
Itr(x)
|f − fj|dµ

µ(I tr(x))
+

∫
Itr(x)
|fj − fi|dµ

µ(I tr(x))

≤ 2rn 2−j +

∫
Itr(x)
|fj − fi|dµ

µ(I tr(x))

≤ 2−i +

j−1∑
m=i

∫
Itr(x)
|fm − fm+1|dµ
µ(I tr(x))

≤ 2−i +

j−1∑
m=i

2−
m
2

≤ 2−i + 2−
i
2
+2

< 2−
i
2
+3.

Since t ∈ {−1
3
, 0, 1

3
}n and r > 0 were arbitrary,

lim
m→∞

∫
Itr(x)
|f − fm|dµ
µ(I tr(x))

= 0,

for every t ∈ {−1
3
, 0, 1

3
}n and r > 0.

We are now able to prove that weakly pspace random points satisfy the Lebesgue

differentiation theorem.

Theorem 6.11. If x is weakly pspace-random, then for every polynomial space L1-

computable f ∈ L1([0, 1]n), and every polynomial space computable sequence of simple

functions {fm}m∈N approximating f ,

lim
m→∞

fm(x) = lim
Q→x

∫
Q
fdµ

µ(Q)
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where the limit is taken over all cubes Q containing x as the diameter of Q tends to

0.

Proof. Let x be weakly pspace-random. By Theorem 6.8, it suffices to show that

lim
m→∞

fm(x) = lim
k→∞

∫
Itk(x)

fdµ

µ(I tk(x))

for all t ∈ {−1
3
, 0, 1

3
}n.

Let ε > 0. By Lemmas 6.7 and 6.10, there exists an N such that for all i > N ,

|fi(x)− lim
m→∞

fm(x)| < ε

2
, (6.5)

and ∫
Itk(x)
|f − fi|dµ

µ(I tk(x))
<
ε

2
, (6.6)

for every t ∈ {−1
3
, 0, 1

3
}n and k > 0. Let i > N . Then, using (6.5) we obtain

| lim
m→∞

fm(x)− lim
k→∞

∫
Itk(x)

fdµ

µ(I tk(x))
| < ε

2
+ |fi(x)− lim

k→∞

∫
Itk(x)

fdµ

µ(I tk(x))
|. (6.7)

By Lemma 6.5, for every r > 0, x ∈ Q for some Q ∈ Br. Since fi is a simple step

function, fi is constant on every Q ∈ Bp(i). So there exists an N ′ so that for all

r > N ′,

fi(x) =

∫
Itr(x)

fidµ

µ(I tr(x))
,

for every t ∈ {−1
3
, 0, 1

3
}n. Therefore, by inequality (6.6), for every r > N ′,

|fi(x)−

∫
Itr(x)

fdµ

µ(I tr(x))
| = |

∫
Itr(x)

fidµ

µ(I tr(x))
−

∫
Itr(x)

fdµ

µ(I tr(x))
| (6.8)

≤

∫
Itr(x)
|f − fi|dµ

µ(I tr(x))
(6.9)

<
ε

2
. (6.10)

Combining inequalities (6.7) and (6.10) we have

| lim
m→∞

fm(x)− lim
k→∞

∫
Itk(x)

fdµ

µ(I tk(x))
| < ε.

Since ε was arbitrary, the proof is complete.
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6.2.2 Non-random points are not Lebesgue points

We now show that converse of our main theorem holds. That is, we show that if

a point x is not weakly pspace random, the limit lim
Q→x

1
µ(Q)

∫
Q
fdµ does not exist. Our

approach is largely similar from the construction of Pathak, et al [46]. However, due to

the restriction of polynomial space computation, the implementation is significantly

different. To adapt the construction of Pathak et al, we first introduce a notion that

will partition a pspace W-test {Um} into a tree of dyadic cubes.

Recall that the level of a node in a rooted tree is the length of the (unique) path

from the root to the node. We denote the set of all nodes of a tree T at level i by

Leveli(T).

A dyadic tree decomposition of [0, 1]n is a tree T of dyadic cubes rooted at [0, 1]n

such that the following hold:

1. For every cube Q ∈ T, the children of Q, are subsets of Q.

2. For any two cubes Q1, Q2 ∈ T, either Q1 and Q2 are disjoint, or one contains

the other.

3. For any cube Q ∈ T,

µ(
⋃

B∈Child(Q)

B) ≤ µ(Q)

4
.

A dyadic tree decomposition T is polynomial space approximable if there exists

a polynomial p and uniformly pspace computable array {T km}k,m∈N such that the

following hold.

1. For every k,m ∈ N, T km is a finite union of disjoint dyadic cubes.

2. For every µ(Levelm(T)∆T km) ≤ 2−(k+m).
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Intuitively, for every k and m, T km is a good approximation of the mth level of the

tree T. The following technical lemma will be used to show that every pspaceW-test

admits a pspace approximable dyadic tree decomposition.

Lemma 6.12. For every uniformly pspace computable array {Rk
m}k,m∈N, there exists

a uniformly pspace computable array {Skm}k,m∈N such that

1. For every m, k, µ(∪i≤kRi
m∆ ∪i≤k Sim) = 0, and

2. For every m, ∪kSkm is a set of disjoint open dyadic cubes.

Proof. We can, and do assume that, for every k,m, Rk
m is a finite union of disjoint

open dyadic cubes, whose endpoints are dyadic rationals at precision p(k + m). For

every m, define S1
m = R1

m. Let m ∈ N and k > 1. Define the set

Akm = {Q ∈ Bp(k+m) | (∃i < k)Q ⊆ B where B ∈ Ri
m}.

That is, Akm is the set of all cubes in ∪i<kRi
m broken into dyadic cubes of precision

p(k +m). Define Skm = Rk
m − Akm.

It is clear that {Skm}k,m∈N satisfies both properties of the lemma. Note that

{Akm}m∈N,k>1 is a uniformly pspace computable array. It therefore follows that {Skm}k,m∈N

is pspace computable.

We now show that every pspaceW-test admits a pspace approximable dyadic tree

decomposition. We build the tree inductively, using the uniformly pspace computable

sequence of the previous lemma.

Lemma 6.13. Let {Um}m∈N be a pspace W-test. Then there exists a pspace approx-

imable dyadic tree decomposition T such that, for every non-dyadic x ∈
⋂
Um, x is

contained in an infinite path in T.



81

Proof. Let {Um}m∈N be a pspace W-test. Let {Rk
m}k,m∈N be a uniformly pspace

computable array approximating {Um}m∈N. We can and do assume that for all k,m ∈

N, µ(Um∆Rk
m) < 2−(k+m). Let {Skm}k,m∈N be the uniformly pspace computable array

of obtained from {Rk
m} satisfying the properties of Lemma 6.12. For every m, define

the set

Sm = {Q |Q ∈ Skm for some k ≥ 1}.

We define the dyadic tree decomposition T inductively. Define the first level of T

to be

Level1(T) = S1.

For i > 1, define level i as follows. For every Q ∈ Leveli−1(T), let m ∈ N be the

smallest integer such that 2−m < µ(Q)
8

. Define the set

Child(Q) = {B |B ∈ Sm and B ⊆ Q}.

Finally, define the ith level to be

Leveli(T) =
⋃

Q∈Leveli−1(T)

Child(Q).

We now prove that T is a dyadic tree decomposition of [0, 1]n. By our construction

of T, it is clear that for any Q ∈ T, the children of Q are subsets of Q. We prove

item (2) of the definition dyadic tree decompositions by induction on the level of the

tree. For the root [0, 1]n, the claim is immediate. Let i > 0. Let Q1, Q2 be dyadic

cubes at level i. If Q1 and Q2 have different parents, the claim holds by our inductive

hypothesis. Assume that Q1 and Q2 have the same parent. Then Q1, Q2 ∈ ∪kSkm for

some m ∈ N, and therefore Q1 and Q2 are disjoint. Let Q ∈ T and m be the smallest
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integer such that 2−m < µ(Q)
8

. By the construction of T,

µ(
⋃

B∈Child(Q)

B) ≤ µ(∪k≥1Skm)

≤
∞∑
k=1

µ(Rk
m)

≤ µ(Um) + µ(
⋃
k≥1

Um∆Rk
m)

≤ 2−m +
∞∑
k=1

2−(k+m)

= 2−m+1

≤ µ(Q)

4

We now show that T is pspace approximable. We define the array {T km}k,m∈N

inductively on m. For m = 1, set

T k1 =
k⋃
i=1

Si1.

Let m > 1 and k ∈ N. For every Q ∈ T km−1, let j ∈ N be the smallest integer such

that 2−j < µ(Q)
8

. Define the set

Ck
Q = {B ∈ Child(Q) |B ∈ Sij for some i ≤ k + 2}.

Since,

µ(
∞⋃

i=k+3

Sij) ≤
∞∑

i=k+2

µ(Sij)

≤
∞∑

i=k+2

µ(Ri
j −Ri−1

j )

≤
∞∑

i=k+2

(µ(Uj∆R
i
j) + µ(Uj∆R

i−1
j ))

≤
∞∑

i=k+2

(2−(j+i) + 2−(j+i−1))

≤ 2−(j+k
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we have

µ(Child(Q)− Ck
Q) ≤ µ(

∞⋃
i=k+3

Sij)

≤ 2−(j+k)

≤ µ(Q)

8
2−(k).

Finally, define

T km =
⋃

Q∈Tkm−1

Ck
Q.

We now show that {T km}k,m∈N approximates T by induction on the level m. It is

clear that for all k, µ(Level1(T)∆T k1 ) < 2−k. Let k,m ∈ N. Define the set

N = {Q |Q ∈ Levelm−1(T)− T km−1}.

Then,

µ(Levelm(T)∆T km) = µ(
⋃

Q∈Tkm−1

Child(Q)∆T km) + µ(
⋃
Q∈N

Child(Q))

≤
∑

Q∈Tkm−1

µ(Child(Q)− Ck
Q) +

∑
Q∈N

µ(Child(Q))

≤
∑

Q∈Tkm−1

(
µ(Q)

8
2−k) + 2−(k+3)

≤ 2−k.

Since {Skm}k,m∈N is pspace computable, {T km}k,m∈N is a uniformly pspace computable

array. Hence T is a pspace approximable dyadic tree decomposition.

Let x = (x1, . . . , xn) ∈ ∩m≥1Um be a point so that xi is not a dyadic rational.

We prove that there is an infinite path in T containing x by induction on the level

of T. By the definition of pspace W-tests, it is clear that there exists a dyadic cube

Q in S1 such that x ∈ Q. Hence Q ∈ Level1(T). Let i > 1. By our inductive
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hypothesis, there exists a dyadic rational cube Q ∈ Leveli−1(T) containing x. Let

m be the smallest integer such that 2−m < µ(Q)
8

. Since there exists a dyadic cube

Q ∈ Sm containing x, the conclusion follows.

We are now able to prove the converse of Theorem 6.11, thereby completing the

proof of our main theorem. The proof of this theorem involves constructing a function

that takes advantage of the dyadic tree decomposition of a pspace W -test succeeding

on x. We construct the function so that it assigns different values to alternating levels

of the tree. As we are guaranteed that x is in an infinite path of the tree, the function

oscillates around x.

Theorem 6.14. If x ∈ [0, 1]n is not weakly pspace random, then there exists a pspace

L1 computable function f such that the limit lim
Q→x

1
µ(Q)

∫
Q
fdµ does not exist.

Proof. We first assume that x = (x1, . . . , xn) so that some component xi of x is a

dyadic rational. Without loss of generality assume that x1 = d ∈ D. Define the

function f : [0, 1]n → R to be

f(y) =


1 if y ∈ [0, d]× [0, 1]× . . .× [0, 1]

0 otherwise

It is clear that f is pspace L1-computable, and that the limit lim
Q→x

1
µ(Q)

∫
Q
fdµ does

not exist.

Assume that x = (x1, . . . , xn) so that xi is not a dyadic rational for all i ≤ n. Let

{Um}m∈N be a pspaceW-test succeeding on x. Let T be a pspace computable dyadic

tree partition of {Um}m∈N given by Lemma 6.13. Define f : [0, 1]n → R as follows.

For every Q ∈ T,

f(Q−
⋃

B∈Child(Q)

B) =


1 if the level of Q in T is even

0 if the level of Q in T is odd
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It is clear that f is integrable and well defined for all points that are not in the

intersection
⋂
Um. We now show that f is pspace L1-computable. Let {T km}k,m∈N be

the uniformly pspace computable array approximating T. For every m ∈ N, define

Tm =
m⋃
i=1

Tm+2
i .

We can consider Tm as a finite subtree of T which well approximates T. For every

m ∈ N and every Q ∈ Tm, define the set of children of Q in the approximation Tm

by

Cm(Q) = Child(Q) ∩Tm.

For every m ∈ N, define fm : [0, 1]n → R as follows.

fm(Q−
⋃

B∈Cm(Q)

B) =


1 if the level of Q in Tm is even

0 if the level of Q in Tm is odd

It is clear that fm is a simple step function. Since the array {T km} approximating T is

uniformly pspace computable, on input (0m, d) we are able to compute the level of the

largest dyadic cube in T containing d in polynomial space. Therefore the sequence

of functions {fm} is pspace computable.

We now prove that {fm}m∈N approximates f . For m ∈ N, define the set A =

T − Tm, the set of all cubes in T that are not in the approximation Tm. We now

bound the error of our approximation Tm. From the definition of tree decompositions,
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we have

µ(A) = µ(T−Tm)

= µ(
m⋃
i=1

Leveli(T)− Tm+2
i ) + µ(

∞⋃
i=m+1

Leveli(T))

≤
m∑
i=1

µ(Leveli(T)− Tm+2
i ) +

∞∑
i=m+1

µ(Leveli(T))

≤
m∑
i=1

2−(i+m+2) +
∞∑

i=m+1

2−2i

≤ 2−m.

Therefore, we have

‖f − fm‖1 =

∫ 1

0

|f − fm|

=

∫
A

|f − fm|

≤ µ(A)

≤ 2−m.

Hence, f is a pspace L1 computable function.

Finally, we show that the limit lim
Q→x

1
µ(Q)

∫
Q
fdµ does not exist. We first show that

lim sup
Q→x

1
µ(Q)

∫
Q
fdµ ≥ 3

4
.

Let N ∈ N. By Lemma 6.13, x is contained in an infinite path of T. Choose a dyadic

cube Q ∈ T containing x so that µ(Q) < 2−N and the level of Q in T is even. Then,

by our construction of f ,

1

µ(Q)

∫
Q

fdµ ≥ 1

µ(Q)

∫
Q−Child(Q)

1dµ

=
1

µ(Q)
µ(Q− Child(Q))

≥ 3

4
. (6.11)
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Similarly, we show that lim inf
Q→x

1
µ(Q)

∫
Q
fdµ ≤ 1

4
. Let N ∈ N. Choose a dyadic cube

Q ∈ T containing x so that µ(Q) < 2−N and the level of Q in T is odd. Then, by

our construction of f ,

1

µ(Q)

∫
Q

fdµ ≤ 1

µ(Q)

∫
Child(Q)

1dµ

=
1

µ(Q)
µ(Child(Q))

≤ 1

4
. (6.12)

Combining the equalities (6.11) and (6.12), we see that the limit lim
Q→x

1
µ(Q)

∫
Q
fdµ

does not exist.

Finally, by Theorems 6.11 and 6.14, the Lebesgue differentiation theorem charac-

terizes weakly pspace randomness.
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[24] Ming Li and Paul M.B. Vitányi. An Introduction to Kolmogorov Complexity and

Its Applications. Springer, third edition, 2008.

[25] Jack H. Lutz. Almost everywhere high nonuniform complexity. J. Comput. Syst.

Sci., 44(2):220–258, 1992.

[26] Jack H. Lutz. Dimension in complexity classes. SIAM J. Comput., 32(5):1236–

1259, 2003.



91

[27] Jack H. Lutz. The dimensions of individual strings and sequences. Inf. Comput.,

187(1):49–79, 2003.

[28] Jack H. Lutz and Neil Lutz. Lines missing every random point. Computability,

4(2):85–102, 2015.

[29] Jack H. Lutz and Neil Lutz. Algorithmic Information, Plane Kakeya Sets,

and Conditional Dimension. In Heribert Vollmer and Brigitte Vallee, editors,

34th Symposium on Theoretical Aspects of Computer Science (STACS 2017),

volume 66 of Leibniz International Proceedings in Informatics (LIPIcs), pages

53:1–53:13, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik.

[30] Jack H. Lutz and Elvira Mayordomo. Dimensions of points in self-similar fractals.

SIAM J. Comput., 38(3):1080–1112, 2008.

[31] Jack H. Lutz and Klaus Weihrauch. Connectivity properties of dimension level

sets. Mathematical Logic Quarterly, 54:483–491, 2008.

[32] Neil Lutz. Fractal intersections and products via algorithmic dimension. Pro-

ceedings of the 42nd International Symposium on Mathematical Foundations of

Computer Science, MFCS 2017, to appear.

[33] Neil Lutz and D. M. Stull. Bounding the dimension of points on a line. Pro-

ceedings of the 14th Annual Conference on Theory and Applications of Models

of Computation, TAMC 2017, Bern, Switzerland, to appear.

[34] Neil Lutz and D. M. Stull. Dimension spectra of lines. Proceedings of the 13th

Annual Conference on Computability in Europe (CiE 2017), to appear.



92

[35] J. M. Marstrand. Some fundamental geometrical properties of plane sets of

fractional dimensions. Proc. London Math. Soc. (3), 4:257–302, 1954.
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APPENDIX . ADDITIONAL PROOFS

Kolmogorov Complexity Using Initial Segments

In this section we formalize the relationship between Kr(x) and the initial seg-

ment complexity K(x�r). The three lemmas in this section are proved by standard

techniques. We use these results elsewhere in the technical appendix, but not in the

body of the thesis.

For x = (x1, . . . , xn) ∈ Rn and r ∈ N, let x�r = (x1�r, . . . , xn�r), where each

xi�r = 2−rb2rxic, the truncation of xi to r bits to the right of the binary point. For

r ∈ (0,∞), let x�r = x�dre.

Lemma A.1. For every m,n ∈ N, there is a constant c such that for all x ∈ Rm,

p ∈ Qn, and r ∈ N,

|K̂r(x|p)−K(x�r | p)| ≤ K(r) + c .

Proof. Let m,n, r ∈ N, x ∈ Rm, and p ∈ Qn. Observe that x�r ∈ B2−r
√
m(x), and

therefore K(x�r | p) ≥ K̂r−log(m)/2(x|p). Thus, by Lemma 2.3, there exists c1 ∈ N

depending only on m such that

K̂r(x|p) ≤ K(x�r | p) +K(r) + c1 .

For the other direction, observe that for every q ∈ Qn ∩ B2−r(x), we have x�r ∈

B2−r(1+
√
m)(q), and that B2−r(1+

√
m)(q) contains at most (2(1+

√
m))m r-dyadic points,



95

i.e., points in the set

Qmt = {2−rz : z ∈ Zm} .

Let M be a Turing machine that, on input (π, p′) ∈ {0, 1}∗ ×Qn, does the following.

If π = π1π2π3, with U(π1, p
′) = q ∈ Qm, U(π2) = t ∈ N, and U(π3) = k ∈ N, then M

outputs the (lexicographically) kth point in Qmr ∩B2−t(1+
√
m)(q).

Now let πq testify to K̂r(x|p), let πr testify to K(r), and let q = U(πq, p). There

is some k ≤ (2(1 +
√
m))m such that x�r is the kth point in Qmr ∩ B2−r(1+

√
m)(q); let

πk testify to K(k). Then M(πqπrπk, p) = x�r, so there is some machine constant cM

for M such that

K(x�r | p) ≤ `(πq) + `(πr) + `(πk) + cM

= K̂r(x|p) +K(x) +K(k) + cM

It is well known (see, e.g., [13]) that there is some constant c2 such that

K(k) ≤ log k + 2 log log k + c2

≤ m log(2(1 +
√
m)) + 2 log(m log(2(1 +

√
m))) + c2 .

The above value depends only on m, as does cM ; let c3 be their sum. Then

K(x�r | p) ≤ K̂r(x|p) +K(r) + c3 ,

so c = max{c1, c3} affirms the lemma.

Observing that there exists a constant c0 such that, for all m ∈ N and qm ∈ Q,

|K(q)−K(q|0)| ≤ c0, we also have the following.

Corollary A.2. For every m ∈ N, there is a constant c such that for every x ∈ Rm

and r ∈ N,

|Kr(x)−K(x�r)| ≤ K(r) + c .
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Corollary A.3. For every m,n ∈ N, there is a constant c such that for all x ∈ Rm,

y ∈ Rn, and r, s ∈ N,

|Kr,s(x|y)−K(x�r | y�s)| ≤ K(r) +K(s) + c .

Proof. Let m,n, r, s ∈ N, x ∈ Rm, and y ∈ Rn. Let p ∈ Q2 ∩ B2−s(y) be such that

Kr,s(x|y) = K̂r(x|p). Since y�s ∈ B2−s
√
n(y), we have K̂r(x | y�s) ≥ Kr,s−log(n)/2(x|y).

Thus, by Lemma 2.3there is a constant c1 (depending on n) such that K̂r(x | y�s) ≥

Kr,s(x|y)−K(s)− c1. Lemma A.1 tells us that there is a constant c2 (depending on

m) such that K(x�r | y�s) ≥ K̂r(x | y�s)−K(r)− c2, so we have

Kr,s(x|y) ≤ K(x�r | y�s) +K(r) +K(s) + c1 + c2 .

For the other direction, we use essentially the same technique as in the proof

of Lemma A.1, and we describe a Turing machine M ′ that is very similar to the

machine M used above. On every input (π, p′) ∈ {0, 1}∗ ×Qn such that π = π1π2π3,

U(π1, p
′) = q ∈ Q, U(π2) = t ∈ N, and U(π3) = k ∈ N, M ′ outputs U(π1, q

′), where

q′ is the kth point in Qnt ∩B2−t(1+
√
n)(p

′).

Much as before, let πx testify to K(x�r | y�s), let πs testify to K(s), and let πk

testify to K(k), where y�s is the kth point in Qns ∩B2−t(1+
√
n)(p). Then

M ′(πx, πs, πk) = U(πx, y�s) = x�r ,

As k ≤ |Qns ∩ B2−t(1+
√
n)(p)| ≤ (2(1 +

√
n))n, there exist constants cM ′ and ck (de-

pending on n) such that

K(x�r | p) ≤ `(πx) + `(πs) + `(πk) + cM ′

= K(x�r | y�s) +K(s) +K(k) + cM ′

= K(x�r | y�s) +K(s) + ck + cM ′ ,
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Applying Lemma A.1 again, there is a constant c3 (depending on m) such that

K(x�r |p) ≤ K̂r(x|p) +K(r) + c3. We conclude that

K(x�r | y�s) ≤ K(r) +K(s) + ck + cM ′ + c3 ,

therefore c = max{c1 + c2, ck + cM ′ + c3} affirms the lemma.

Proofs from Chapter 2

Lemma 2.3. Let m,n ∈ N, x ∈ Rm, z ∈ Rn, ε > 0 and r ∈ N. If Kx
r (z) ≥ Kr(z)−εr,

then the following hold for all s ≤ r.

(i) |Kx
s (z)−Ks(z)| ≤ εr −O(log r) .

(ii) |Ks,r(x | z)−Ks(x)| ≤ εr −O(log r) .

Proof. We first prove item (i). By Lemma 2.2(ii),

εr ≥ Kr(z)−Kx
r (z)

≥ Ks(z) +Kr,s(z | z)− (Kx
s (z) +Kx

r,s(z | z))−O(log r)

≥ Ks(z)−Kx
s (z) +Kr,s(z | z)−Kx

r,s(z | z)−O(log r).

Rearranging, this implies that

Ks(z)−Kx
s (z) ≤ εr +Kx

r,s(z | z)−Kr,s(z | z) +O(log r)

≤ εr +O(log r),

and the proof of item (i) is complete.
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To prove item (ii), by Lemma 2.2(i) we have

εr ≥ Kr(z)−Kr(z |x)

≥ Kr(z)− (Kr(z, x)−Kr(x))−O(log r)

≥ Kr(z)− (Kr(z) +Kr(x | z)−Kr(x))−O(log r)

= Kr(x)−Kr(x | z)−O(log r).

Therefore, by Lemma 2.2(ii),

Ks(x)−Ks,r(x | z) = Kr(x)−Kr,s(x |x)− (Kr(x | z)−Kr,s,r(x |x, z))

≤ εr +O(log r) +Kr,s,r(x |x, z)−Kr,s(x |x)

≤ εr +O(log r),

and the proof is complete.

Proofs from Chapter 3

Here we construct the oracles used in the proof of Theorems 3.7 and Lemma 4.6.

Our proof of this lemma uses the fact that conditional Kolmogorov complexity is

essentially equivalent to Kolmogorov complexity relative to a finite oracle set.1

Observation A.4. For every k ∈ N and τ = (τ1, . . . , τn) ∈ {0, 1}k, define the oracle

set

C(τ) =
{
j ≤ 2k : τbj/2c = 1

}
∪ {2k + 1} ⊆ N .

Then there is a constant c such that for every σ, τ ∈ {0, 1}∗,

∣∣K(σ|τ)−KC(τ)(σ)
∣∣ ≤ c .

1In fact, [13] defines conditional Kolmogorov complexity in terms of a finite oracle, using a
construction similar to the one described here.
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Proof. Let π ∈ {0, 1}∗ be such that U(π, τ) = σ. Then given the oracle C(τ) and

input π, a machine can discern τ from 2`(τ)+2 queries to C(τ) and use it to simulate

U(π, τ). Let π ∈ {0, 1}∗ such that UC(τ)(π) = σ. Likewise, given input (π′, τ), a

machine can compute any bit C(τ) queried in a simulation of UC(τ)(π).

Lemma 3.6. Let n, r ∈ N, z ∈ Rn, and η ∈ Q ∩ [0, dim(z)]. Then there is an oracle

A = A(n, r, z, η) with the following properties.

(i) For every t ≤ r, KA
t (z) = min{ηr,Kt(z)}+O(log r).

(ii) For every m, t ∈ N and y ∈ Rm, KA
t,r(y|z) = Kt,r(y|z) +O(log r) and Kz,A

t (y) =

Kz
t (y) +O(log r).

Proof. Let s = max{t ≤ r : Kt−1(z) < ηr}. Observe that

ηr ≤ Ks(z) ≤ ηr +K(s) + c .

Let σ be the lexicographically first time-minimizing witness to K(z�r | z�s), and let

A = C(σ), as defined in Observation A.4.

Suppose s ≤ t ≤ r. Then applying a relativized version of Corollary A.2 and

Observation A.4,

KA
t (z) ≤ KA

r (z)

≤ KA(z�r) +K(r) +O(1)

≤ K(z�r |σ) +K(r) +O(1) .

There exists a Turing machine M1 that, on input (π, σ), for π ∈ {0, 1}∗, simulates

U(σ, U(π, σ)). If π is a witness to K(z�s |σ), then

M(π, σ) = U(σ, U(π, σ)) = U(σ, z�s) = z�r .
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Thus, K(z�r |σ) ≤ K(z�s |σ)+cM1 , where cM1 is a constant for the description length

of M1. We now have

KA
t (z) ≤ K(z�s |σ) +K(r) +O(1)

≤ K(z�s) +K(r)

≤ Ks(z) + 2K(r) +O(1)

≤ ηr + 2K(r) +K(s) +O(1) .

For the other direction, since KA
t (z) ≥ KA

s (z) whenever t ≥ s, it is sufficient to show

that KA
s (z) ≥ ηr. We use Corollary A.2, Observation A.4, and the symmetry of

information:

KA
s (z) ≥ KA(z�s)−K(s)−O(1)

≥ K(z�s |σ)−K(s)−O(1)

≥ K(z�r |σ)−K(s)−O(1)

≥ K(z�r)−K(σ)−K(s)−O(1)

= K(z�r)−K(z�r | z�s)−K(s)−O(1)

≥ K(z�r, z�s)−K(z�r | z�s,K(z�s))−K(K(z�s))− 2K(s)−O(1)

= K(z�s)−K(K(z�s))− 2K(s)−O(1)

≥ Kz(s)−K(K(z�s))− 3K(s)−O(1)

= Kz(s)−O(log r) .

Since Ks(z) ≥ ηr, property (i) holds in this case.
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Now suppose instead that t ≤ s ≤ r. We again use Corollary A.2, Observation A.4,

and the symmetry of information.

KA
t (z) =KA(z�t)−K(t)−O(1)

=K(z�t |σ)−K(t)−O(1)

≥K(z�t |σ,K(σ))−K(t)−O(1)

=K(σ | z�t,K(z�t)) +K(z�t)−K(σ)−K(t)−O(1)

≥K(σ | z�t)−K(K(z�t)) +K(z�t)−K(σ)−K(t)−O(1)

≥K(σ | z�s, t)−K(K(z�t)) +K(z�t)−K(σ)−K(t)−O(1)

≥K(z�t) +K(σ | z�s,K(z�s))−K(σ)−K(K(z�t))− 2K(t)−O(1)

=K(z�t) +K(z�s |σ,K(σ))−K(z�s)−K(K(z�t))− 2K(t)−O(1)

≥K(z�t) +K(z�s |σ)−K(z�s)−K(K(σ))−K(K(z�t))

− 2K(t)−O(1)

≥Kt(z) +KA
s (z)−Ks(z)−K(K(σ))−K(K(z�t))

− 3K(t)− 2K(s)−O(1)

=Kt(z) +KA
s (z)−Ks(z)−O(log r) .

As we have already shown that KA
s (z)−Ks(z) = O(log r), we conclude that property

(i) holds in this case as well.
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For property (ii), we again apply Corollary A.2, relativized to (z, A), and Obser-

vation A.4, relativized to z, to see that

Kz,A
t (y) ≥ Kz,A(y�t)−K(t)−O(1)

= Kz(y�t |σ)−K(t)−O(1)

≥ Kz(y�t)−Kz(σ)−K(t)−O(1)

≥ Kz
t (y)−Kz(σ)− 2K(t)−O(1)

≥ Kz
t (y)−K(σ | z�r)− 2K(t)−O(1) ,

where the last inequality is due to Lemma 2.3. We argue that K(σ | z�r) is at most

logarithmic in r.

K(σ | z�r) ≤ K(σ, s, `(σ) | z�r) +O(1)

≤ K(σ | s, `(σ), z�r) +K(s) +K(`(σ)) +O(1)

≤ K(σ | s, `(σ), z�r) +O(log r) .

To see that the first term is constant, define a Turing machine M2 that does

the following. Given input (j, k, x), M2 simulates, for every π ∈ {0, 1}k in parallel,

U(π, x�j). It outputs the first such π whose simulation halts with output x. We

defined σ in such a way that M z
2 (s, `(σ), z�r) = σ, so

K(σ | s, `(σ), z�r) ≤ cM2 ,

where cM2 is a constant for the length ofM2’s description. We conclude thatK(σ | z�r) =

O(log r), so Kz,A
t (y) ≥ Kz

t (y)−O(log r).
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The argument for conditional complexity is essentially identical. By a relativized

version of Corollary A.3 and Observation A.4,

KA
t,r(y|z) ≥ Kz,A(y�t | z�r)−K(t)−O(1)

= K(y�t | z�r, σ)−K(t)−O(1)

≥ K(y�t | z�r)−K(σ | z�r)−K(t)−O(1)

≥ Kt,r(y|z)−K(σ | z�r)− 2K(t)−O(1)

≥ Kt,r(y|z)−K(σ | z�r)−O(log r) ,

and we have already shown that K(σ | z�r) = O(log r).

Lemma A.5. Let z, w ∈ Rn, e ∈ Sn−1, and r ∈ N such that Pe(z) = Pe(w). Let

q = (q1, . . . , qn) ∈ Qn and p = (p1, . . . , pn) ∈ Qn be r-approximations of z and w,

respectively. Then

|−b+
√
b2−4ac
2a

− −b′+
√
b′,2−4a′c′
2a′

| ≤ 2−r+t+α,

where a, b, c, a′, b′ and c′ are as defined in Lemma 3.5, t = − log ‖z − w‖ and α is a

constant depending only on e.

Proof. We begin by recalling that |z1 − w1| is maximal and

sgn((zi − wi)ei) 6= sgn((zj − wj)ej), and

|zj − wj| > 0,

where sgn denotes the sign.

We now bound a, b and c. By our assumption of e1, e2, we have

|a| = (z1 − w1)
2 + (z2 − w2)

2

≥ (z1 − w1)
2

≥ 2−2t+α.
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Similarly, we have |a| ≤ 2−2t+α, resulting in

|a| = 2−2t+α (A.1)

It is routine, although tedious, to calculate the following bounds:

|b| ≤ 2−2t+α (A.2)

|c| ≤ 2−2t+α (A.3)

By our assumption and repeated use of the triangle inequality, we deduce the

following.

|a− a′| ≤|(z1 − w1)
2 − (q1 − p1)2|+ |(z2 − w2)

2 − (q2 − p2)2| (A.4)

=|(z1 − w1) + (q1 − p1)| |(z1 − w1)− (q1 − p1)| (A.5)

+ |(z2 − w2) + (q2 − p2)| |(z2 − w2)− (q2 − p2)| (A.6)

≤ 2|(z1 − w1)| |z1 − q1|+ |p1 − w1| (A.7)

+ 2|(z2 − w2)| |z2 − q2|+ |p2 − w2| (A.8)

≤2−t+1(2−r + 2−r) + 2−t+1(2−r + 2−r) (A.9)

=2−r−t+3. (A.10)

In a similar manner we can prove the following inequalities.

|b− b′| ≤ 2−r−t−α (A.11)

|c− c′| ≤ 2−r−t−α (A.12)

We now show that c < 0. This follows from

c = (
n∑
i=3

(wi − zi)ei)2 + (z1 − w1)
2

n∑
i=3

e2i − 1

= ((z1 − w1)e1 + (z2 − w2)e2)
2 + (z1 − w1)

2(−e21 − e22)

= (z1 − w1)(z2 − w2)e1e2 + e22((z2 − w2)
2 − (z1 − w1)

2)



105

Since e1, e2 > 0, |z1−w1| is maximal and sgn((z1−w1)e1) 6= sgn((z2−w2)e2), we see

that c < 0. Let e2 and e′2 be the two solutions to our quadratic formula. Then

e2e
′
2 =

c

a

|e2 − e′2| =
√
b2 − 4ac

|a|
.

The first equality implies that e′2 < 0. The second, in conjunction with equation

(A.1), implies that
√
b2 − 4ac = 2−2t+α|e2 − e′2|

Since e2 is positive and e′2 is negative,

2−2t+α|e2| ≤
√
b2 − 4ac ≤ 2−2t+α|e2 + 1|. (A.13)

Let α, β > 0. Then it can easily be seen that

|
√
α−

√
β| = α− β√

α +
√
β
.

Using this fact, and the bounds (A.10), (A.11), (A.12) and (A.13) we have

|
√
b2 − 4ac−

√
b′,2 − 4a′c′| = |b2 − 4ac− (b′)2 + 4a′c′|√

b2 − 4ac+
√
b′,2 − 4a′c′

≤ 2−r−3t√
b2 − 4ac+

√
b′,2 − 4a′c′

≤ 2−r−3t+α√
b2 − 4ac

≤ 2−r−3t+α

2−2t−α

≤ 2−r−t+2α.

Putting everything together, we therefore have

|e2 −−
−b′ +

√
b′,2 − 4a′c′

2a′
| ≤ 2−r+t+α (A.14)

and the proof is complete
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Observation A.6. Let z ∈ Rn, p ∈ Qn, e ∈ Sn−1, and r ∈ N such that |Pe(z) −

Pe(p)| ≤ 2−r. Then there is a w ∈ Rn such that ‖p− w‖ ≤ 2γ−r and Pe(z) = Pe(w),

for some constant γ depending only on z and e.

Proofs from Chapter 4

The following two lemmas from our previous work (stated in slightly different

forms here) are precursors to Lemmas 4.4 and 4.6. The proof of Lemma 4.4 is similar

to that of Lemma A.7, and the proof of Lemma 4.6 is an induction on Lemma 3.6.

Lemma A.7 (N. Lutz and Stull [33]). Suppose that a, b, x ∈ R, r ∈ N, δ ∈ R+, and

ε, η ∈ Q+ satisfy the following conditions.

1. r ≥ log(2|a|+ |x|+ 5) + 1.

2. Kr(a, b) ≤ (η + ε) r.

3. For every (u, v) ∈ R2 such that t = − log ‖(a, b)− (u, v)‖ ∈ (0, r] and ux+ v =

ax+ b, Kr(u, v) ≥ (η − ε) r + δ · (r − t).

Then for every oracle set A ⊆ N,

KA
r (x, ax+ b) ≥ KA

r (a, b, x)− 4ε

δ
r −K(ε)−K(η)−O(log r) .

For our purposes, we will need the following corollary to Lemma A.7. Informally,

that lemma gives conditions under which precision-r estimates for (x, ax + b) and

(a, b, x) contain similar amounts of information. This corollary shows that, under the

same conditions, those two approximations are furthermore nearly “interchangeable,”

in the sense that there is a short program which, given a precision-r estimate for

(x, ax + b) as input, will output a precision-r estimate for (a, b, x), and, as we argue

in the proof, vice versa.



107

Corollary A.8. If the conditions of Lemma A.7 are satisfied, then

KA
r (a, b, x|x, ax+ b) ≤ 4ε

δ
r +K(ε) +K(η) +O(log r) .

Proof. It is easy to see that Kr(x, ax+b|a, b, x) = O(log r): consider a constant-length

program that, given (u, v, y) ∈ Q3, outputs (y, uy+v). If (u, v, y) ∈ B2−r(a, b, x), then

(y, uy+v) ∈ B2c−r(x, ax+b), where c is constant in r, so Kr−c,r(ax+b|a, b, x) = O(1).

Thus, by Lemma 2.1, Kr(ax+ b|a, b, x) = O(log r).

Now suppose that the conditions of Lemma 6 are satisfied. Then by symmetry of

information and Lemma A.7,

KA
r (a, b, x|x, ax+ b) = KA

r (a, b, x)−KA
r (x, ax+ b) +KA

r (x, ax+ b|a, b, x)

= KA
r (a, b, x)−KA

r (x, ax+ b) +O(log r)

≤ 4ε

δ
r +K(ε) +K(η) +O(log r) .

We will also need the following pair of geometric facts.

Observation A.9 (N. Lutz and Stull [33]). Let a, x, b ∈ R and r ∈ N. Let (q1, q2) ∈

B2−r(x, ax+ b).

1. If (p1, p2) ∈ B2−r(a, b), then |p1q1 + p2 − q2| < 2−r(|p1|+ |q1|+ 3).

2. If |p1q1 + p2 − q2| ≤ 2−r(|p1| + |q1| + 3), then there is some pair (u, v) ∈

B2−r(2|a|+|x|+5)(p1, p2) such that ax+ b = ux+ v.
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