
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2016

Mutual dimension, data processing inequalities,
and randomness
Adam Case
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Case, Adam, "Mutual dimension, data processing inequalities, and randomness" (2016). Graduate Theses and Dissertations. 15674.
https://lib.dr.iastate.edu/etd/15674

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15674&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15674&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F15674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/15674?utm_source=lib.dr.iastate.edu%2Fetd%2F15674&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Mutual dimension, data processing inequalities, and randomness

by

Adam Thomas Case

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:
Jack H. Lutz, Major Professor

Pavan Audri
Clifford Bergman

Timothy H. McNicholl
Giora Slutzki

Iowa State University

Ames, Iowa

2016

Copyright c© Adam Thomas Case, 2016. All rights reserved.

ii

DEDICATION

I dedicate this dissertation to my family and friends. Your love and support means

so much to me.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . vi

ABSTRACT . vii

CHAPTER 1. INTRODUCTION . 1

1.1 Notions of Dimension . 2

1.2 Betting Strategies and Constructive Dimension 2

1.3 Algorithmic Information Theory and Constructive Dimension 7

1.4 Applications of Effective Dimension . 9

1.4.1 Computational Complexity . 10

1.4.2 Fractal Geometry . 10

1.4.3 Other Applications . 11

1.5 Overview of Chapter 2 . 11

1.6 Overview of Chapter 3 . 13

1.7 Overview of Chapter 4 . 16

1.8 Overview of Chapter 5 . 19

CHAPTER 2. KOLMOGOROV COMPLEXITY AND MUTUAL IN-

FORMATION IN EUCLIDEAN SPACE 23

2.1 Preliminaries . 24

2.2 Layered Disjoint Systems and a Coding Theorem 25

2.3 Counting K-minimizers within Blocks of a LDS 28

iv

2.4 Counting K-minimizers within Cubes and Balls 29

2.5 Upper Bounds on Kr(x) and Kr+s(x) . 33

2.6 Algorithmic Mutual Information in Euclidean Space 36

2.7 Relating Ir(x : y) and Jr(x : y) . 38

2.8 Properties of Ir(x : y) . 42

CHAPTER 3. MUTUAL DIMENSION AND DATA PROCESSING

INEQUALITIES . 45

3.1 Mutual Dimension in Euclidean Space 46

3.2 Computable Functions in Euclidean Space 48

3.3 Data Processing Inequalities for Points in Euclidean Space 48

3.4 Reverse Data Processing Inequalities . 52

3.5 Data Processing Applications . 59

CHAPTER 4. BOUNDED TURING REDUCTIONS AND DATA PRO-

CESSING INEQUALITIES FOR SEQUENCES 61

4.1 Notation . 62

4.2 Relating the Kolmogorov Complexities of Sequences to the Kolmogorov

Complexities of Reals . 62

4.3 Relating the Dimensions of Sequences to the Dimensions of Reals 66

4.4 Relating the Mutual Information between Sequences to the Mutual Infor-

mation between Reals . 67

4.5 Relating the Mutual Dimensions between Sequences to the Mutual Di-

mensions between Reals . 70

4.6 Properties of Mutual Dimensions between Sequences 71

4.7 Turing Reductions and Functionals . 72

4.8 Turing Functionals with Bounded Use and Data Processing Inequalities . 73

4.9 Turing Functionals with Bounded Yield and Reverse Data Processing In-

equalities . 78

v

CHAPTER 5. COUPLED RANDOMNESS 83

5.1 Probability Measures on Alphabets and Sequences 83

5.2 Coupled Probability Measures . 84

5.3 Coupled Random Sequences . 86

5.4 Shannon Entropy Characterizations of the Dimensions of Random Sequences 87

5.5 Shannon Mutual Information Characterizations of the Mutual Dimensions

of Coupled Random Sequences . 88

5.6 The Mutual Dimension between Independently Random Sequences . . . 90

5.7 Dependent Sequences with Zero Mutual Dimension 90

5.8 Billingsley Dimension . 92

5.9 Billingsley Mutual Dimension . 93

5.10 A Mutual Divergence Formula . 94

5.11 Achieving Mutual Normalizability . 95

BIBLIOGRAPHY . 101

vi

ACKNOWLEDGMENTS

I would like to thank my mom, dad, sister, and brother for their loving support while

I’ve been away in Iowa working on my Ph.D. I am especially thankful to my parents for

instilling in me a healthy work ethic.

I would also like to thank Jack Lutz for his willingness to take me on as one of his

Ph.D. students. I can honestly say that it has been an honor (and a lot of fun!) working

with him over the past six and a half years. Much of what I have learned as both a

researcher and a teacher has come from him.

I have had the pleasure of working with several excellent researchers. Joshua Case,

Debasis Mandal, Titus Klinge, Don Stull, Xiang Huang, Samuel Eillis, Don Nye, Timothy

McNicholl, Jim Lathrop, Pavan Aduri, and Giora Slutzki have all been a great source of

intellectual stimulation. I’ve enjoyed the conversations we’ve had over the years, and I

hope that we will have many more!

Finally, I’d like to thank the faculty in the Mathematics and Computer Science De-

partment at the University of Maine at Farmington for giving me an appreciation for my

field of study. Their enthusiasm and dedication to teaching is inspiring to me.

This research was supported in part by National Science Foundation Grants 1247051

and 1545028.

vii

ABSTRACT

This dissertation makes progress in the area of constructive dimension, an effectiviza-

tion of classical Hausdorff dimension. Using constructive dimension, one may assign a

non-zero number to the dimension of individual sequences and individual points in Eu-

clidean space. The primary objective of this dissertation is to develop a framework for

mutual dimension, i.e., the density of algorithmic mutual information between two infi-

nite objects, that has similar properties as those of classical Shannon mutual information.

Chapter 1 presents a brief history of the development of constructive dimension

along with its relationships to algorithmic information theory, algorithmic randomness,

and classical Hausdorff dimension. Some applications of this field are discussed and an

overview of each subsequent chapter is provided.

Chapter 2 defines and analyzes the mutual algorithmic information between two

points x ∈ Rn and y ∈ Rt at a given precision r ∈ N. In fact, we describe two plausible

definitions for this quantity, Ir(x : y) and Jr(x : y), and show that they are closely

related. In order to do this, we prove and make use of a generalization of Levin’s coding

theorem.

Chapter 3 defines the lower and upper mutual dimensions between two points in Eu-

clidean space and presents results on its basic properties. A large portion of this chapter

is dedicated to studying data processing inequalities for points in Euclidean space. Gen-

erally speaking, a data processing inequality says that the amount of information between

two objects cannot be significantly increased when one of the objects is processed by a

particular type of transformation. We show that it is possible to derive several kinds of

viii

data processing inequalities for points in Euclidean space depending on the continuity

properties of the computable transformation that is used.

Chapter 4 focuses on extending mutual dimension to sequences over an arbitrary al-

phabet. First, we prove that the mutual dimension between two sequences is equal to

the mutual dimension between the sequences’ real representations. Using this result, we

show that the lower and upper mutual dimensions between sequences have nice prop-

erties. We also provide an analysis of data processing inequalities for sequences where

transformations are represented by Turing functionals whose use and yield are bounded

by computable functions.

Chapter 5 relates mutual dimension to the study of algorithmic randomness. Specif-

ically, we show that a particular class of coupled random sequences, i.e., sequences gen-

erated by independent tosses of coins whose biases may or may not be correlated, can

be characterized by classical Shannon mutual information. We also prove that any two

sequences that are independently random with respect to computable probability mea-

sures have zero mutual dimension and that the converse of this statement is not true. We

conclude this chapter with some initial investigations on Billingsley mutual dimension,

i.e., mutual dimension with respect to probability measures, and prove the existence of

a mutual divergence formula.

1

CHAPTER 1. INTRODUCTION

In this introductory chapter, we provide an overview of the history of constructive

dimension. A brief intuition of the dimension of geometric objects in Euclidean space

is discussed along with Hausdorff’s notion of dimension. We then explore formal bet-

ting strategies for sequences, known as martingales, and describe how to characterize

randomness using constructive martingales.

In the early 2000’s, Lutz used s-gales, a more general betting strategy than a mar-

tingale, to characterize classical Hausdorff dimension. We discuss how Lutz developed

constructive dimension, an effectivization of classical Hausdorff dimension, by applying

certain computability restrictions to s-gales. Perhaps one of the most surprising conse-

quences of this effectivization is the ability to assign a non-zero dimension to an individual

sequence or an individual point in Euclidean space. This notion of dimension has been

shown to be geometrically meaningful and is useful in several areas of mathematics and

computer science.

An overview of algorithmic information theory is also given and includes a brief

discussion on the history and basic definitions of Kolmogorov complexity and algorithmic

probability. We also discuss how constructive dimension can be characterized in terms of

Kolmogorov complexity, and we end the section by providing an overview of each chapter

of this dissertation.

This chapter is a joint work with Jack H. Lutz and some portions of it have appeared

in [10, 9, 8].

2

1.1 Notions of Dimension

Until the end of the 19th century, mathematicians typically associated the dimension

of a geometric object with a non-negative integer {0, 1, 2, . . .}. It was generally accepted

that objects such as points were 0-dimensional (since they “lacked width and length”)

and curves were considered 1-dimensional (since they “lacked width”). However, in

1890, Giuseppe Peano constructed the first ever space-filling curve that is a continuous

function defined on the unit interval and goes through every point in the unit square.

This was considered a major accomplishment that went against commonly held intuitions

about geometry and dimension. Is this space-filling curve considered 1-dimensional or

2-dimensional?

In 1918, Felix Hausdorff developed a rigorous notion of dimension that not only

assigns a non-negative integer to simple geometric objects such as lines, squares, cubes,

etc., but also assigns a value greater than n − 1 and less than n to some of the more

complex objects in Rn. Indeed, it has been shown that the Cantor set C ⊆ R has

Hausdorff dimension dimH(C) = ln(2)
ln(3)
≈ 0.631 and the Sierpinski triangle S ⊆ R2 has

Hausdorff dimension dimH(S) = log(3)
log(2)

≈ 1.585. These strange, yet beautiful, sets were

first referred to as “fractals” by Benôıt Mandelbrot due to their fractional dimension

[49, 50, 19].

1.2 Betting Strategies and Constructive Dimension

In this section, we discuss some of the basic ideas from algorithmic randomness,

how Lutz originally defined constructive dimension using betting strategies, and how

constructive dimension is related to classical Hausdorff dimension.

For the following definitions, we write {0, 1}∗ for the set of all finite binary strings

and C for the set of all infinite binary sequences. We denote the empty string by λ.

3

A well-known formalization for betting on the bits of a sequence is to define a mar-

tingale, i.e., a function d : {0, 1}∗ → [0,∞) such that

d(w) =
d(w0) + d(w1)

2
,

where d(λ) = 1. Intuitively, we can think of d(w) as the amount of money we have after

betting on the bits of w, where we start with 1 dollar before we begin betting. If, for some

w ∈ {0, 1}∗, d(w) = 0 (i.e., we run out of money after betting on w), then we cannot win

any more money betting on any string that extends w, e.g., d(w0) = d(w1) = 0. Notice

that bets are “fair” in the sense that the amount of money we have after betting on the

bits of w is equal to the average amount of money we have after betting on w0 and w1.

For every sequence S ∈ C, a martingale d succeeds on S if

lim sup
n→∞

d(S � n) =∞, (1.2.1)

where S � n denotes the first n bits of S, i.e., we win an infinite amount of money when

using d as a strategy for betting on the bits of S. It is easy to see that, for any sequence

S ∈ C, we can define the following martingale,

d(w) =

 2|w| if w v S

0 if w 6v S
, (1.2.2)

for all w ∈ {0, 1}∗, that will succeed on S. However, d is not necessarily an effective

strategy since it may not be possible to compute an approximation of d(w), let alone

compute its actual value.

A function f : {0, 1}∗ → [0,∞) is called lower semicomputable if there exists a

computable function f̂ : {0, 1}∗ × N→ Q such that, for all (x, n) ∈ {0, 1}∗ × N,

f̂(x, n) ≤ f̂(x, n+ 1),

and, for all x ∈ {0, 1}∗, limn→∞ f̂(x, n) = f(x). A function is constructive if it is lower

semicomputable.

4

We call a sequence random if there exists no constructive martingale that succeeds

on it. The intuition here is that, if there exists no constructive martingale that succeeds

on a sequence, then the bits of this sequence are not predictable. Claus-Peter Schnorr

[58] showed that this notion of randomness is equivalent to Martin-Löf randomness [51].

In developing constructive dimension, Lutz defined a new kind of betting strategy

that generalizes the notion of a martingale. Let s ≥ 0. An s-supergale is a function

d : {0, 1}∗ → [0,∞) such that

d(w) ≥ d(w0) + d(w1)

2s
.

We say that d is an s-gale if the above inequality holds with equality. Observe that

a 1-gale is a martingale and, therefore, is fair. However, if s < 1, then the betting

environment becomes more hostile (less fair) since d(w0) + d(w1) becomes smaller. On

the other hand, if s > 1, then the betting environment becomes less hostile (more fair)

since d(w0) + d(w1) becomes larger.

As with martingales, an s-supergale d succeeds on a sequence S if (1.2.1) holds.

The set of all binary sequences C is a metric space with the metric

d(S, T) =

 2−r if S 6= T and r = min{n ∈ N |S[n] 6= T [n]}

0 if S = T
.

Therefore, we may reason about the Hausdorff dimension of any subset X ⊆ C. Lutz

proved the following characterization of Hausdorff dimension in [43].

Theorem 1.2.1. For all X ⊆ C,

dimH(X) = inf{s ≥ 0 | there exists an s-gale that succeeds on every S ∈ X}.

The classical Hausdorff dimension dimH(X) of a set X ⊆ Rn is defined in terms of set

covers, i.e., unions of balls that contain X. Another notion of dimension, called packing

dimension, was developed by Claude Tricot in 1982 [32]. The packing dimension of a

set X ⊆ Rn, denoted dimP (X), is similar to Hausdorff dimension but is defined using

5

unions of disjoint balls whose centers must be contained within X [19]. There are many

sets X where dimH(X) and dimP (X) differ, but in general

dimH(X) ≤ dimP (X).

In 2007, Athretya, et al. defined that an s-gale succeeds strongly on a sequence S ∈ C

if

lim inf
n→∞

d(S � n) =∞

and proved that the packing dimension of a set X ⊆ C may be characterized as follows

using s-gales [2].

Theorem 1.2.2. For all X ∈ C,

dimP (X) = inf{s ≥ 0 | there exists an s-gale that strongly succeeds on every S ∈ X}.

Intuitively, we can think of dimH(X) and dimP (X) as the most hostile betting en-

vironment s ≥ 0 such that, for every S ∈ X, an infinite amount of money can be won

by betting on the bits of S using some s-gale betting strategy. Since these are charac-

terizations of classical Hausdorff and packing dimension, there exist no computability

restrictions on the gales.

In [44], Lutz effectivized Hausdorff dimension by defining the constructive dimension

of a set X ⊆ C using constructive s-supergales, and John Hitchcock proved that con-

structive dimension may be equivalently defined by restricting Lutz’s definition to s-gales

[28]. In [2], Athretya et al. effectivized packing dimension by defining the constructive

strong dimension of a set X ⊆ C.

Definition. The constructive dimension and constructive strong dimension of a set X ⊆

C are

cdim(X) = inf{s ≥ 0 | there exists a constructive s-gale that succeeds on every S ∈ X}

and

6

cDim(X)

= inf{s ≥ 0 | there exists a constructive s-gale that succeeds strongly on every S ∈ X},

respectively.

It is easy to see that, for all S ∈ C, dimH({S}) = dimP ({S}) = 0 since there exists

an s-gale that is similar to the martingale defined in (1.2.2). However, using constructive

dimension, we may (perhaps surprisingly) assign a non-zero value to the dimension of

an individual sequence.

Definition. The lower and upper dimensions of S ∈ C are

dim(S) = cdim({S})

and

Dim(S) = cDim({S}),

respectively.

In [44], Lutz demonstrates that the dimension of a sequence has nice properties. For

example, for every sequence S ∈ C, dim(S) ∈ [0, 1], and, for every α ∈ [0, 1], there exists

an uncountable number of sequences S such that dim(S) = α. Also, it is easy verify

that if R ∈ C is random, then dim(R) = 1. On the other hand, if S is computable, then

dim(S) = 0. While constructive martingales have provided a means of reasoning about

the structure of random sequences, constructive s-gales provides a means of analyzing the

structure of sequences that are not necessarily random. Dim(S) has similar properties,

and, as with Hausdorff and packing dimension,

dim(S) ≤ Dim(S),

for all sequences S.

It is also possible to characterize the constructive dimension and constructive strong

dimension of a set X ⊆ C using the lower and upper dimensions of the individual

sequences within X. The following theorem was proven in [44, 2].

7

Theorem 1.2.3. For all X ∈ C,

cdim(X) = sup
S∈X

dim(S)

and

cDim(X) = sup
S∈X

Dim(S).

In 2005, Hitchcock proved a pointwise characterization for the Hausdorff dimension

of a union of Π0
1 sets [29].

Theorem 1.2.4. If X ⊆ C is a union of Π0
1 sets, then

dimH(X) = sup
S∈X

dim(S).

Chris Conidis proved that the packing dimension of a union X ⊆ C of Π0
1 sets cannot

be characterized by the supremum of the upper dimensions of the individual sequences

in X [12].

1.3 Algorithmic Information Theory and Constructive

Dimension

Betting strategies such as martingales are one way of reasoning about the randomness

of objects. However, other paradigms have been developed that provide equivalent ways

of thinking about randomness. One of these paradigms is based on the minimum-length

description of a string and is often referred to as Kolmogorov complexity due to Andrey

Kolmogorov’s work in this area. It is worth noting that the foundations for this field

were originally developed between 1960 and 1964 by Ray Solomonoff [65, 66, 67] and

then independently discovered by Kolmogorov in 1965 [36] and Gregory Chaitin in 1969

[11]. In this section, we provide a basic overview of algorithmic probability and prefix

Kolmogorov complexity, which will be expanded upon in Chapter 2. For an in-depth

8

analysis of this subject, we refer the reader to the books by Ming Li and Paul Vitányi

[42], André Nies [54], and Rodney Downey and Denis Hirschfeldt[17].

A set of strings S ⊆ Σ∗ is prefix-free if no string in S is a prefix of any other string

in S. A self-delimiting Turing machine is a Turing machine M whose domain (i.e., the

set of all strings that M halts on) is a prefix-free set. It is well-known that there exist

universal self-delimiting Turing machines. For the rest of this dissertation, we call a

self-delimiting Turing machine simply a Turing machine, and we let U be some fixed

universal self-delimiting Turing machine.

Definition. The Kolmogorov complexity of a string w ∈ {0, 1}∗ is

K(w) = min{|π|
∣∣ π ∈ {0, 1}∗ and U(π) = w}.

The intuition of the above definition is that any string π ∈ {0, 1}∗ such that K(w) = |π|

and U(π) = w is one (of perhaps many) of the most compressed representations of w

that is decompressible by U . The length of this minimum-length description |π| is the

quantity of information content in w.

Strings that are incompressible, i.e., strings w such that K(w) ≥ |w|, are considered

random. In 1973, both Leonid Levin [38] and Schnorr [60] used Kolmogorov complexity

to characterize random sequences.

Theorem 1.3.1. A sequence S ∈ C is random if and only if there exists a constant

c ∈ N such that, for all n ∈ N,

K(S � n) ≥ n− c.

Solomonoff defined the universal a priori probability of a string w as

m(w) =
∑

U(π)=w

2−|π|,

i.e., m(w) is the probability that the universal Turing machine U outputs w when U

is given an input π such that each bit of π is produced by a fair coin toss. Solomonoff

9

used m as a tool in the development of his theory of inductive inference and has several

interesting applications in the field of artificial intelligence.

In 1974, Leonid Levin proved his coding theorem, which relates the universal a priori

probability of a string to its Kolmogorov complexity [38, 39].

Theorem 1.3.2. For all strings w,

K(w) = log
1

m(w)
+O(1).

Theorem 2.2.1 of this dissertation generalizes Levin’s coding theorem.

Kolmogorov complexity has also been useful in the theory of constructive dimension.

In 2002, Elvira Mayordomo proved that the lower dimension of a binary sequence can

be characterized in terms of Kolmogorov complexity [52], and, in 2007, Athreya et al.

proved a similar result for the upper dimension of a binary sequence [2].

Theorem 1.3.3. For all sequences S ∈ C,

dim(S) = lim inf
n→∞

K(S � n)

n

and

Dim(S) = lim sup
n→∞

K(S � n)

n
.

With these characterizations, we can view the dimension of a sequence S as its den-

sity of algorithmic information. This way of describing constructive dimension is useful

to this dissertation since we define the mutual dimension between two sequences, i.e.,

the density of shared algorithmic information between two sequences, using a similar

characterization.

1.4 Applications of Effective Dimension

There are many useful applications of effective dimension. In this section, we provide

a brief overview of some of these applications, which is not meant to be exhaustive. We

10

encourage the reader to refer to the survey papers [45, 31] for a more in-depth discussion

on this topic.

1.4.1 Computational Complexity

One of the first applications of effective dimension was in the field of computational

complexity. Lutz considered time and space bounded s-gales in order to discuss the

structure of sets inside of complexity classes and proved several results on frequency

sets in E and circuit-size complexity in ESPACE [43]. Other interesting results that use

dimension in complexity classes include several dimension zero-one laws. For example,

Lance Fortnow et al. proved that the strong dimension of E in ESPACE is either 0 or

1 [20] and Moser proved that either the dimension of BPP in EXP is 0 or BPP = EXP

[53]. Hitchcock and Gavalda et al. have also related resource-bounded dimension to

computational learning [30, 23].

1.4.2 Fractal Geometry

Researchers have used Kolmogorov complexity to develop a notion of the dimension

of an individual point in Rn [47]. The Kolmogorov complexity of a point x ∈ Rn at

precision r ∈ N is

Kr(x) = min{K(q) | q ∈ B2−r(x) ∩Qn}, (1.4.1)

where B2−r(x) is the open ball of radius 2−r centered at x. Here, K(q) is the length of

a shortest program that outputs a binary encoding of q. The idea of this definition is to

assign Kr(x) to be K(q), for some representative q ∈ B2−r(x)∩Qn. One might ask, what

is considered an appropriate representative? Several of these rationals within B2−r(x)

will include a large amount of spurious information. Indeed, any finite-length message

can be encoded into one of these rational points. By assigning Kr(x) to be the minimum

K(q), we ensure that q only has information that its proximity to x forces it to have.

11

We may also assign a dimension to an individual point x ∈ Rn that is not necessarily

zero.

Definition. The lower and upper dimensions of a point x ∈ Rn are

dim(x) = lim inf
r→∞

Kr(x)

r
.

and

Dim(x) = lim sup
r→∞

Kr(x)

r
.

Using the constructive dimensions of points, it is possible to perform a point-wise analysis

of self-similar fractals. For example, in [47], Lutz and Mayordomo characterized the

dimensions of individual points of computably self-similar fractals. In [15], Dougherty

et al. analyzed the constructive dimension of points that are the result of a translation

of a point in the Cantor set by a random real. In [25], Gu et al. considered random

subfractals S ⊆ F of self-similar fractals F ⊆ Rn and studied their dimension spectra,

i.e., the set of all dimensions of points within S.

1.4.3 Other Applications

The dimensions of points have also been used to study connectivity properties [48, 68],

rectifiability of curves [56, 24], and Brownian motion [34].

1.5 Overview of Chapter 2

Claude E. Shannon defined the entropy of a random variable X with outcomes

{x1, x2, . . . , xn} to be

H(X) =
n∑
i=1

p(xi) log2

1

p(xi)
.

Intuitively, H(X) is the expected number of bits of information revealed by the outcome

of X. We can define the mutual information between random variables X and Y to be

I(X;Y) = H(Y)−H(Y |X),

12

where H(Y |X) is the conditional entropy of Y given X. We can think of I(X;Y) as

the shared information between X and Y [14]. Analogously, we define the algorithmic

mutual information I(u : w) between two strings u ∈ Σ∗ and w ∈ Σ∗ to be

I(u : w) = K(w)−K(w |u),

where

K(w |u) = min{|π|
∣∣ π ∈ {0, 1}∗ and U(π, u) = w}

is the conditional Kolmogorov complexity of w given u. Like Shannon mutual informa-

tion, I(u : w) represents the quantity of information that both u and w share. In fact, it

has been shown that, under modest assumptions, if x and y are drawn from probability

spaces X and Y of strings, respectively, then the expected value of I(x : y) is very close

to I(X;Y) [42]. In this sense, algorithmic mutual information is a refinement of Shannon

mutual information.

One way of measuring the algorithmic mutual information between x ∈ Rn and

y ∈ Rt is by considering the mutual information between the prefixes of the binary

expansions of their individual components. However, Turing’s correction to his 1973

paper [69] indicates that there exist very simple functions (e.g., addition) that are not

computable when reals are represented by their binary expansions. Since Chapter 3

addresses how computable functions process points in Euclidean space, we use a different

method for measuring the mutual information between points that is based on rational

approximations of reals.

We define the algorithmic mutual information Ir(x : y) between x ∈ Rn and y ∈ Rt

at a given precision r ∈ N to be the minimum I(q : p) such that q ∈ B2−r(x) ∩ Qn and

p ∈ B2−r(y) ∩Qt. The intuition for this definition is similar to that of Kr(x) in (1.4.1).

Any q ∈ B2−r(x) and p ∈ B2−r(y) such that I(q : p) = Ir(x : y) will only share the

information that their proximities to x and y force them to share.

13

Another way of thinking about the algorithmic mutual information between two

points is by considering the mutual information between the rationals q ∈ B2−r(x) and

p ∈ B2−r(y) that have minimum Kolmogorov complexity within their respective balls.

More precisely, let Jr(x : y) = I(q : p) such that q ∈ B2−r(x) ∩ Qn, p ∈ B2−r(y) ∩ Qt,

K(q) = Kr(x), and K(p) = Kr(y). Intuitively, this seems to be a good alternative

definition for the algorithmic mutual information between two points at precision r. In

fact, Theorem 2.7.7 says that, for all x ∈ Rn and y ∈ Rt, Ir(x : y) = Jr(x : y) + o(r).

It can be useful to consider both Ir and Jr when reasoning about mutual information

between points. For example, we use Theorem 2.7.7 to prove the following properties of

Ir(x : y).

1. Ir(x : y) = Kr(x) +Kr(y)−Kr(x, y) + o(r).

2. Ir(x : y) ≤ min{Kr(x), Kr(y)}+ o(r).

3. If x and y are independently random, then Ir(x : y) = o(r).

4. Ir(x : y) = Ir(y : x) + o(r).

In order to prove this relationship between Ir(x : y) and Jr(x : y), we must first estab-

lish an upper bound on the number of rational points q ∈ Qn of minimum Kolmogorov

complexity within an arbitrary ball of radius 2−r (Theorem 2.4.4). We prove this upper

bound by making use of a generalization of Levin’s coding theorem [38, 39], which is one

of the main theorems of Chapter 1 (Theorem 2.2.1).

1.6 Overview of Chapter 3

In Chapter 2, we explore the algorithmic mutual information between points in Eu-

clidean space. The first section of Chapter 3 defines the mutual dimension between two

point and analyzes its basic properties. The lower and upper mutual dimensions between

14

x ∈ Rn and y ∈ Rt are

mdim(x : y) = lim inf
r→∞

Ir(x : y)

r

and

Mdim(x : y) = lim sup
r→∞

Ir(x : y)

r
,

respectively. Our first theorem of this chapter, Theorem 3.1.1, describes the basic prop-

erties of mutual dimension. For all x ∈ Rn and y ∈ Rt, the following hold.

1. dim(x) + dim(y)−Dim(x, y) ≤ mdim(x : y) ≤ Dim(x) +Dim(y)−Dim(x, y).

2. dim(x) + dim(y)− dim(x, y) ≤Mdim(x : y) ≤ Dim(x) +Dim(y)− dim(x, y).

3. mdim(x : y) ≤ min{dim(x), dim(y)}, Mdim(x : y) ≤ min{Dim(x), Dim(y)}.

4. 0 ≤ mdim(x : y) ≤Mdim(x : y) ≤ min{n, t}.

5. If x and y are independently random, then Mdim(x : y) = 0.

6. mdim(x : y) = mdim(y : x), Mdim(x : y) = Mdim(y : x).

(Note that property 5 will be discussed in detail in Chapter 5.) The above properties

for mutual dimension include all but one of the desiderata (e.g., see Bell [3]) for any

satisfactory notion of mutual information. Section 3.3 is dedicated to investigating the

most important desideratum, the data processing inequality for both mdim and Mdim.

Intuitively, a data processing inequality states that the amount of shared information

between two objects will never significantly increase after one of these objects is processed

by a particular kind of function. Various subfields of information theory have developed

their own kinds of data processing inequalities. For example, in classical Shannon infor-

mation theory [14], for all probability spaces X, Y , and Z and all functions f : X → Z,

I(f(X);Y) ≤ I(X;Y).

15

In algorithmic information theory, if f : Σ∗ → Σ∗ is a computable function, then there

exists a constant c ∈ N such that, for all strings x, y ∈ Σ∗,

I(f(x) : y) ≤ I(x : y) + c. (1.6.1)

In order to investigate data processing inequalities for points in Rn, we must be able

to reason about the computability of functions in Euclidean space. The framework we

use for this is taken from the field of computable analysis as found in the works of Ko

[35], Weihrauch [73], and Braverman and Cook [6]. An oracle for a point x ∈ Rn is a

computable function gx : N→ Qn such that, for all n ∈ N, |gx(n)−x| ≤ 2−n. A function

f : Rn → Rt is computable if there exists an oracle machine M such that, for every oracle

gx for x ∈ Rn and every n ∈ N, |M gx(n)− f(x)| ≤ 2−n, i.e., M gx is an oracle for f(x).

Given (1.6.1), it might seem reasonable to conjecture that if f : Rn → Rt is com-

putable, then

mdim(f(x) : y) ≤ mdim(x : y) and Mdim(f(x) : y) ≤Mdim(x : y), (1.6.2)

for all x ∈ Rn and y ∈ Rm, but this does not hold in general. For example, it has been

shown that there exist functions f : R→ R2 that are both computable and space-filling

(e.g., [0, 1]2 ⊆ range(f)) [13]. Therefore, if x ∈ R such that dim(f(x)) = 2, then

mdim(f(x) : f(x)) = dim(f(x))

= 2

> 1

≥ Dim(x)

≥Mdim(x : y).

The problem here is that f is extremely sensitive to its input, which allows it to com-

press a great deal of “sparse” high-precision information about its input x into “dense”

lower-precision information about its output f(x). To avoid these excessively sensitive

16

functions, we require that our computable functions f : Rn → Rt be Lipschitz, i.e., there

exists a constant c > 0 such that, for all x, y ∈ Rn, |f(x)− f(y)| ≤ c · |x− y|. The main

theorem of this chapter, which we refer to as the data processing inequality, says that,

for all computable Lipschitz functions f : Rn → Rt and all x ∈ Rn and y ∈ Rm, (1.6.2)

holds.

To prove the data processing inequality, we first prove a more general result called

the modulus processing lemma. Using this lemma, we show the existence of inequalities

similar to that of (1.6.2), whose functions f are not necessarily Lipschitz. For example,

we show that, if a function f : Rn → Rt is Hölder with exponent α ∈ (0, 1] (i.e., there

exists a constant c > 0 such that, for all x, y ∈ Rn, |f(x)− f(y)| ≤ c · |x− y|α), then

mdim(f(x) : y) ≤ 1

α
mdim(x : y) and Mdim(f(x) : y) ≤ 1

α
Mdim(x : y),

In Section 3.4, we derive reverse data processing inequalities, for example, giving

conditions under which mdim(x : y) ≤ mdim(f(x) : y). In Section 3.5, we use data

processing inequalities and their reverses to explore conditions under which computable

functions on Euclidean space preserve, approximately preserve, or otherwise transform

mutual dimensions between points.

1.7 Overview of Chapter 4

In this chapter, we extend the notion of mutual dimension to sequences over an arbi-

trary alphabet Σ. Formally, the lower and upper mutual dimensions between sequences

S ∈ Σ∞ and T ∈ Σ∞ are defined by

mdim(S : T) = lim inf
(u,w)→(S,T)

I(u : w)

|u| log |Σ|

and

Mdim(S : T) = lim sup
(u,w)→(S,T)

I(u : w)

|u| log |Σ|
,

17

respectively. The first objective of this chapter is to prove the basic properties for

the lower and upper mutual dimensions between sequences, which are similar to the

properties for the lower and upper mutual dimensions between points in Euclidean space.

We accomplish this goal by relating the mutual dimensions between sequences to the

mutual dimensions between the sequences’ real representations. The primary objective

of this chapter is to analyze how the lower and upper mutual dimensions between two

sequences change when one of the sequences is transformed by a Turing functional.

A reduction can be described in several ways. Generally speaking, a problem A re-

duces to a problem B if A is solvable when assuming that B is solvable. In computability

theory, Turing reductions are used to discuss the idea of relative computability. Formally,

a sequence S is Turing reducible to a sequence T if there exists an oracle machine that

computes S when T is written on the oracle tape. We often refer to oracle machines as

Turing functionals, which have been studied in detail by Rogers [57] and Soare [63, 64].

When a Turing functional ΦS runs on a particular input, it is allowed to query the oracle

S at any time. The use of a Turing functional is the largest position of the oracle tape

that is queried during the computation of ΦS on input n. We will be primarily concerned

with Turing functionals whose use is bounded by a computable function.

Downey, Hirshfeldt, and LaForte first defined sw-reducibility (strong weak truth table

reducibility) as a Turing reduction whose use is bounded by n + c where n ∈ N is the

input and c is a constant [16]. The authors showed that, for all sequences S and T , if T

is sw-reducible to S, then, for all n ∈ N,

K(T � n) ≤ K(S � n) +O(1).

An sw-reduction is now referred to as a computable Lipschitz reduction (cl-reduction)

because all Turing functionals whose use function is bounded by n+ c can be viewed as

an effective Lipschitz continuous function [41, 40].

In Section 4.8, we discuss data processing inequalities for sequences, where transfor-

mations are represented by Turing functionals with bounded use. Our main result of

18

this section says that, for all sequences X, Y, Z ∈ Σ∞, if Z is cl-reducible to X, then

mdim(Z : Y) ≤ mdim(X : Y)

and

Mdim(Z : Y) ≤Mdim(X : Y).

We also show that, for all α ≥ 1, if Z is reducible to X via a functional Φ whose use

is bounded by dα(n+ c)e, for all inputs n ∈ N, then

mdim(Z : Y) ≤ α ·mdim(X : Y)

and

Mdim(Z : Y) ≤ α ·Mdim(X : Y).

We then provide weaker versions of the above inequalities stated in terms of the Turing

functionals themselves.

In section 4, we explore reverse data processing inequalities for sequences, i.e., data

processing inequalities where the transformation may significantly increase the amount

of shared information between two objects. Unlike the data processing inequalities de-

scribed above, we cannot derive reverse data processing inequalities by restricting how

much of the oracle a Turing functional accesses. Instead, we place restrictions on the

lengths of the strings that a Turing functional outputs.

In [22], Gács analyzed the lengths of the outputs of monotonic operators, which are

also used to describe Turing reductions. Similarly, we are interested in examining the

lengths of the strings output by a Turing functional equipped with a finite oracle. We

define the yield of a Turing functional ΦS with access to at most n ∈ N bits of the oracle

S, denoted φSyield(n), to be the smallest input m ∈ N such that ΦS�n(m) ↑.

We say that a sequence T is uniquely yield bounded reducible (uyb-reducible) to a

sequence S if there exists a Turing functional Φ such that,

19

1. if the first φSyield(n) symbols of ΦS is a prefix of ΦT , then the first n symbols of S

is a prefix of T , and

2. φSyield(n) is bounded by a computable function.

Our main result of this section says that, for all sequences X, Y, Z ∈ Σ∞, if Z is uyb-

reducible to X via a functional Φ such that φXyield(n) ≤ n + c, for some constant c ∈ N,

then

mdim(X : Y) ≤ mdim(Z : Y)

and

Mdim(X : Y) ≤Mdim(Z : Y).

We also show that, for all α ≥ 1, if Z is uyb-reducible to X via a functional Φ such that

φXyield(n) ≤ dα(n+ c)e, for all inputs n ∈ N, then

mdim(X : Y) ≤ α ·mdim(Z : Y)

and

Mdim(X : Y) ≤ α ·Mdim(Z : Y).

1.8 Overview of Chapter 5

With the exception of property 5 in Theorem 3.1.1, we have not yet discussed the

relationships between algorithmic randomness and mutual dimension. In this chapter,

we investigate the mutual dimension between coupled random sequences, produce some

results on algorithmic independence, and explore a notion of constructive mutual Billings-

ley dimension.

In Section 1.2, we defined a sequence R ∈ Σ∞ to be random if there exists no

constructive martingale that succeeds on R. Intuitively, a random sequence R ∈ {0, 1}∞

is one whose bits are generated by the outcomes of infinitely many tosses of a fair coin.

20

We may also define other types of random sequences by using biased coins. For example,

let ~α = (α(1), α(2), · · ·) be a sequence of probability measures on {0, 1}. A sequence

R ∈ {0, 1}∞ is random with respect to ~α if, for each i ∈ N, the ith bit of R is the

outcome of an independent α(i)-biased coin toss.

In [44], Lutz showed that, for any sequence R ∈ {0, 1}∞ that is random with respect to

a computable sequence ~α of probability measures on {0, 1} that converges to a probability

measure α on {0, 1}, then

dim(R) = H(α). (1.8.1)

This theorem can be thought of as an algorithmic extension of a classical theorem of

Eggleston [18, 5]

When discussing coupled randomness, we must consider probability measures on

{0, 1}×{0, 1}. Let ~α = {α(1), α(2), · · · } be a sequence of probability measures on {0, 1}×

{0, 1}. We say that a pair of sequences (R1, R2) ∈ {0, 1}∞ × {0, 1}∞ is coupled random

with respect to ~α if R1 is random with respect to ~α1 = (α
(1)
1 , α

(2)
1 , · · ·) and R2 is random

with respect to ~α2 = (α
(1)
2 , α

(2)
2 , · · ·), where α

(i)
1 is the first marginal probability measure

of α(i) and α
(i)
2 is the second marginal probability measure on α(i). Intuitively, the ith

bit of R1 is the outcome of an α
(i)
1 -biased coin toss and the ith bit of R2 is the outcome

of an α
(i)
2 -biased coin toss. Notice that the ith bit of R1 is generated independently of

the i+ 1th bit of R1, but the ith bits of R1 and R2 may be correlated since α
(i)
1 and α

(i)
2

may be dependent probability measures. We make this definition precise and extend it

to sequences over an arbitrary alphabet Σ in Chapter 5.

The main theorem of this chapter, Theorem 5.5, states that, for every pair (R1, R2) ∈

Σ∞×Σ∞ that is coupled random with respect to a computable sequence ~α of probability

measures on Σ× Σ that converges to a probability measure α on Σ× Σ,

mdim(R1 : R2) = Mdim(R1 : R2) =
I(α1 : α2)

log |Σ|
.

21

This theorem can be regarded as a “mutual version” of (1.8.1) that has also been

generalized for random sequences over an arbitrary alphabet Σ. We also show that

Mdim(R1 : R2) = 0 is a necessary, but not sufficient condition for two random sequences

R1 and R2 to be independently random.

A probability measure on Σ∞ is a function β : Σ∗ → [0, 1] such that

1. ν(λ) = 1, where λ is the empty string and

2. for every w ∈ Σ∗, β(w) =
∑
a∈Σ

β(wa).

Intuitively, β(w) is the probability that w v S (w is a prefix of S) when S ∈ Σ∞ is “chosen

according to” the probability measure β. A probability measure β on Σ∞ is strongly

positive if there exists a δ > 0 such that, for all w ∈ Σ∗ and a ∈ Σ, β(wa) > δβ(w).

In 1960 Billingsley investigated generalizations of Hausdorff dimension in which the

dimension itself is defined “through the lens of” a given probability measure [4, 7]. Lutz

and Mayordomo developed the lower and upper effective Billingsley dimensions dimβ(S)

and Dimβ(S) defined by

dimβ(S) = lim inf
w→S

K(w)

`β(w)

and

Dimβ(S) = lim sup
w→S

K(w)

`β(w)
,

where β is a strongly positive probability measure on Σ∞ and

`β(w) =

|w|−1∑
i=0

log
1

β(w[i])

is the Shannon self-information of w ∈ Σ with respect to β, i.e., the number of bits of

information contained in w, where each symbol a ∈ Σ is given a weight β(a). It is an easy

observation that if µ is the uniform probability measure on Σ∞, then dimµ(S) = dim(S)

and Dimµ(S) = Dim(S). In a sense, the probability measure β in the above definitions

acts as a “standard for randomness” since sequences S ∈ Σ∞ that are random with

22

respect to β are the only kind of random sequences where dimβ(S) = Dimβ(S) = 1.

These effective Billingsley dimensions have been useful in the algorithmic information

theory of self-similar fractals [47, 25].

Our final objective is to investigate “Billingsley generalizations” mdimν (S : T) and

Mdimν(S : T) of mdim(S : T) and Mdim(S : T), where ν is a probability measure

on Σ∞ × Σ∞. These turn out to make sense only when S and T are mutually normal-

izable, which means that the normalizations implicit in the fact that these dimensions

are densities of shared information are the same for S as for T . We prove that, when

mutual normalizability is satisfied, the Billingsley mutual dimensions mdimν(S : T)

and Mdimν(S : T) are well behaved. We also identify a sufficient condition for mu-

tual normalizability, make some preliminary observations on when it holds, and prove

a divergence formula, analogous to a theorem of [46], for computing the values of the

Billingsley mutual dimensions in many cases.

23

CHAPTER 2. KOLMOGOROV COMPLEXITY AND

MUTUAL INFORMATION IN EUCLIDEAN SPACE

In this chapter, we develop the underlying framework required to discuss mutual

dimension in Euclidean space. We define a layered disjoint system (LDS), which allows

us to view certain discrete spaces in terms of “layers” that are partitioned into “blocks.”

Our first result generalizes Levin’s Coding Theorem ([38, 39]) and relates the Kolmogorov

complexity of a block within an LDS to its universal a priori probability. Using this result,

we establish an upper bound on the number of strings of minimal Kolmogorov complexity

within a particular block.

The Kolmogorov complexity of a point x in Rn at precision r ∈ N, denoted by Kr(x),

is defined as the minimum Kolmogorov complexity of a rational point within Br(x),

which is the open ball of radius r centered at x. A rational point q ∈ Qn ∩ Br(x) such

that K(q) = Kr(x) is called a K-minimizer of Br(x). We prove upper bounds on the

number of K-minimizers within a ball of radius r ∈ N and the values of Kr(x) and

Kr+s(x), for some s ∈ N.

Finally, we define the mutual information between two points x ∈ Rn and y ∈ Rm at

precision r ∈ N, denoted by Ir(x : y), to be the minimum mutual information between a

rational point in Br(x) and a rational point in Br(y). We prove that Ir(x : y) = Jr(x :

y) + o(r) as r → ∞, where Jr(x : y) is the minimum mutual information between a

K-minimizer of Br(x) and a K-minimizer of Br(y). We conclude this chapter with a

discussion on the basic properties of Ir(x : y).

This chapter is a joint work with Jack H. Lutz and appeared in [10].

24

2.1 Preliminaries

We write Z for the set of integers, N for the set of non-negative integers, Q for the

set of rationals, R for the set of reals, and Rn for the set of all n-vectors (x1, x2, · · · , xn)

such that each xi ∈ R. Our logarithms are in base 2. We denote the cardinality of a

set A, the length of a string s ∈ {0, 1}∗, and the distance between two points x, y ∈ Rn

(using the Euclidean metric) by |A|, |s|, and |x− y| respectively. We also denote the ith

string in {0, 1}∗ by si.

Our use of Turing machines is strictly limited to self-delimiting (or prefix) machines.

Because of this, we refer to a self-delimiting Turing machine simply as a Turing machine.

We refer the reader to Li and Vitanyi [42] for a detailed explanation of how self-delimiting

Turing machines work.

The (conditional) Kolmogorov complexity of a string x ∈ {0, 1}∗ given a string y ∈

{0, 1}∗ with respect to a Turing machine M is

KM(x | y) = min{|π|
∣∣∣ π ∈ {0, 1}∗ and M(π, y) = x}.

The Kolmogorov complexity of x with respect to M is KM(x) = KM(x |λ), where λ is

the empty string. A Turing machine M ′ is optimal if, for every Turing machine M , there

is a constant cM ∈ N such that, for all x ∈ {0, 1}∗,

KM ′(x) ≤ KM(x) + cM .

We call cM an optimality constant for M . It is well-known that every universal Turing

machine is optimal [42]. Following standard practice, we fix a universal, hence opti-

mal, Turing machine U ; we omit it from the notation, writing K(x) = KU(x) and

K(x | y) = KU(x | y); and we call these the Kolmogorov complexity of x and the (condi-

tional) Kolmogorov complexity of x given y, respectively.

The joint Kolmogorov complexity of two strings x, y ∈ {0, 1}∗ is

K(x, y) = K(〈x, y〉),

25

where 〈·, ·〉 is some standard pairing function for encoding two strings. Gács [21] proved

the useful identity

K(x, y) = K(x) +K(y | 〈x,K(x)〉) +O(1). (2.1.1)

The universal a priori probability of a set S ⊆ {0, 1}∗ is

m(S) =
∑

U(π)∈S

2−|π|.

Since we are using self-delimiting machines, the Kraft inequality tells us that m({0, 1}∗)

≤ 1. The universal a priori probability of a string x ∈ {0, 1}∗ is m(x) = m({x}).

For r ∈ N, we write K(r) for K(sr) and m(r) for m(sr). It is well known that there

is a constant c0 ∈ N such that K(x) ≤ |x| + 2 log (1 + |x|) + c0, and hence K(r) ≤

log (1 + r) + 2 log(1 + log (1 + r)) + c0, hold for all x ∈ {0, 1}∗ and r ∈ N.

Levin’s coding lemma plays an important role in section 2.2.

Lemma 2.1.1 (coding lemma [38, 39]). If A ⊆ {0, 1}∗×N is computably enumerable and

satisfies Σ(x,l)∈A2−l ≤ 1, then there is a Turing machine M such that, for each (x, l) ∈ A,

there is a string π ∈ {0, 1}l satisfying M(π) = x.

2.2 Layered Disjoint Systems and a Coding Theorem

We begin by developing some elements of the fine-scale geometry of algorithmic in-

formation in Euclidean space. In this context it is convenient to regard the Kolmogorov

complexity of a set of strings to be the number of bits required to specify some element

of the set.

Definition (Shen and Vereshchagin [62]). The Kolmogorov complexity of a set S ⊆

{0, 1}∗ is

K(S) = min{K(x) |x ∈ S}.

26

Note that S ⊆ T implies K(S) ≥ K(T). Intuitively, small sets may require “higher

resolution” than large sets.

We need a generalization of Levin’s coding theorem [38, 39] that is applicable to

certain systems of disjoint sets.

Notation. Let B ⊆ N× N× {0, 1}∗ and r, s ∈ N.

1. The (r, t)-block of B is the set Br,t = {x ∈ {0, 1}∗ | (r, t, x) ∈ B}.

2. The rth layer of B is the sequence Br = (Br,t | t ∈ N).

Definition. A layered disjoint system (LDS) is a set B ⊆ N×N×{0, 1}∗ such that, for

all r, s, t ∈ N,

s 6= t⇒ Br,s ∩Br,t = ∅.

Note that this definition only requires the sets within each layer of B to be disjoint.

Theorem 2.2.1 (LDS coding theorem). For every computably enumerable layered dis-

joint system B there is a constant cB ∈ N such that, for all r, t ∈ N,

K(Br,t) ≤ log
1

m(Br,t)
+K(r) + cB.

Proof. Assume the hypothesis, and fix a computable enumeration of B. For each r, t ∈ N

such that Br,t 6= ∅, let xr,t be the first element of Br,t to appear in this enumeration.

Let A be the set of all ordered pairs (xr,t, j + k + 2) such that r, t, j, k ∈ N, Br,t 6= ∅,

k ≥ K(r), and m(Br,t) ≥ 2−j. It is clear that A is computably enumerable.

For each r, t ∈ N, let

jr,t = min{j ∈ N
∣∣m(Br,t) > 2−j},

27

noting that jr,t =∞ if Br,t = ∅. For all r, t ∈ N such that Br,t 6= ∅, we have

∑
l∈N

(xr,t,l)∈A

2−l =
∞∑

j=jr,t

∞∑
k=K(r)

2−(j+k+2)

=
∞∑

k=K(r)

2−(k+1)

∞∑
j=jr,t

2−(j+1)

= 2−K(r)2−jr,t

< 2−K(r)m(Br,t).

Since the sets in each layer Br of B are disjoint, it follows that

∑
(x,l)∈A

2−l ≤
∞∑
r=0

∞∑
t=0

2−K(r)m(Br,t)

=
∑
r=0

2−K(r)

∞∑
t=0

m(Br,t)

=
∞∑
r=0

2−K(r)m

(
∞⋃
t=0

Br,t

)

≤
∞∑
r=0

2−K(r)m({0, 1}∗)

≤
∞∑
r=0

2−K(r)

≤
∞∑
r=0

m(r)

= m({0, 1}∗)

≤ 1.

We have now shown that the set A satisfies the hypothesis of Lemma 2.1.1. Let M

be a Turing machine for A as in that lemma, and let cB = cM + 3, where cM is an

optimality constant for M . To see that cB affirms the theorem, let r, t ∈ N be such

that Br,t 6= ∅. (The theorem is trivial if Br,t = ∅, since the right-hand side is infinite.)

Then (xr,t, jr,t + K(r) + 2) ∈ A, so there is a program π ∈ {0, 1}jr,t+K(r)+2 such that

28

M(π) = xr,t. We thus have

K(Br,t) ≤ K(xr,t)

≤ KM(xr,t) + cM

≤ |π|+ cM

= jr,t +K(r) + 2 + cM

= blog
1

m
(Br,t)c+ 1 +K(r) + 2 + cM

≤ log
1

m(Br,t)
+K(r) + cB.

Note that Levin’s coding theorem [38, 39], the nontrivial part of which says that

K(x) ≤ log 1
m(x)

+O(1), is the special case Br,t = {st} of the LDS coding theorem.

2.3 Counting K-minimizers within Blocks of a LDS

Our next objective is to use the LDS coding theorem to obtain useful bounds on the

number of times that the value K(S) is attained or approximated.

Definition. Let S ⊆ {0, 1}∗ and d ∈ N.

1. A d-approximate K-minimizer of S is a string x ∈ S for which K(x) ≤ K(S) + d.

2. A K-minimizer of S is a 0-approximate K-minimizer of S.

We use the LDS coding theorem to prove the following.

Theorem 2.3.1. For every computably enumerable layered disjoint system B there is

a constant cB ∈ N such that, for all r, t, d ∈ N, the block Br,t has at most 2d+K(r)+cB

d-approximate K-minimizers.

Proof. Let B be a computably enumerable LDS, and let cB be as in the LDS coding

theorem. Let r, t, d ∈ N, and let N be the number of d-approximate K-minimizers of the

block Br,t. Then

m(Br,t) ≥ N · 2−(K(Br,t)+d),

29

so the LDS coding theorem tells us that

K(Br,t) ≤ log
1

N · 2−(K(Br,t)+d)
+K(r) + cB

= K(Br,t) + d− logN +K(r) + cB.

This implies that

logN ≤ d+K(r) + cB,

whence

N ≤ 2d+K(r)+cB .

2.4 Counting K-minimizers within Cubes and Balls

We now lift our terminology and notation to Euclidean space Rn. In this context, a

layered disjoint system is a set B ⊆ N× N× Rn such that, for all r, s, t ∈ N,

s 6= t⇒ Br,s ∩Br,t = ∅.

We lift our Kolmogorov complexity notation and terminology to Rn in two steps:

1. Lifting to Qn: Each rational point q ∈ Qn is encoded as a string x ∈ {0, 1}∗ in

a natural way. We then write K(q) for K(x). In this manner, K(S), m(S), K-

minimizers, and d-approximate K-minimizers are all defined for sets S ⊆ Qn.

2. Lifting to Rn. For S ⊆ Rn, we define K(S) = K(S ∩Qn) and m(S) = m(S ∩Qn).

Similarly, a K-minimizer for S is a K-minimizer for S ∩Qn, etc.

For each r ∈ N and each m = (m1, . . . ,mn) ∈ Zn, let

Q(r)
m = [m1 · 2−r, (m1 + 1) · 2−r)× · · · × [mn · 2−r, (mn + 1) · 2−r)

be the r-dyadic cube at m. Note that each Q
(r)
m is “half-open, half-closed” in such a way

that, for each r ∈ N, the family

Q(r) = {Q(r)
m |m ∈ Zn}

30

is a partition of Rn. It follows that (modulo trivial encoding) the collection

Q = {Q(r)
m | r ∈ N and m ∈ Zn}

of all dyadic cubes is a layered disjoint system whose rth layer is Q(r). Moreover, the set

{(r,m, q) ∈ N× Zn ×Qn | q ∈ Q(r)
m }

is decidable, so Theorem 2.3.1 has the following useful consequence.

Corollary 2.4.1. There is a constant c ∈ N such that, for all r, d ∈ N, no r-dyadic cube

has more than 2d+K(r)+c d-approximate K-minimizers. In particular, no r-dyadic cube

has more than 2K(r)+c K-minimizers.

The Kolmogorov complexity of an arbitrary point in Euclidean space depends on

both the point and a precision parameter.

Definition. Let x ∈ Rn and r ∈ N. The Kolmogorov complexity of x at precision r is

Kr(x) = K(B2−r(x)).

That is, Kr(x) is the number of bits required to specify some rational point in the

open ball B2−r(x). Note that, for each q ∈ Qn, Kr(q)↗ K(q) as r →∞.

Given an open ball B of radius ρ and a real number α > 0, we write αB for the ball

with the same center as B and radius αρ. We also write B for the topological closure of

B.

The definition of Kr(x) directs our attention to the Kolmogorov complexities of arbi-

trary balls of radius 2−r in Euclidean space. The following easy fact is repeatedly useful

in this context.

Observation 2.4.2. For every open ball B ⊆ Rn of radius 2−r,

B ∩ 2−(r+d 1
2

log ne)Zn 6= ∅.

31

Proof. If B is such a ball, then the expanded ball

B′ = 2r+d
1
2

log neB

has radius

2d
1
2

log ne > 2
1
2

log n−1 =

√
n

2
.

This implies that

B′ ∩ Zn 6= ∅,

whence

B ∩ 2−(r+d 1
2

log ne)Zn = 2−(r+d 1
2

log ne)(B′ ∩ Zn)

6= ∅.

We use Observation 2.4.2 to establish the following connection between the complex-

ities of cubes and the complexities of balls.

Lemma 2.4.3. There is a constant c ∈ N such that, for every r ∈ N, every r-dyadic

cube Q, and every open ball B ⊆ Rn of radius 2−r that intersects Q,

K(B) ≤ K(Q) +K(r) + c.

Proof. Fix a computable enumeration m0,m1,m2, · · · of Zn satisfying |mi| ≤ |mi+1| for

all i ∈ N. Note that, for all i ∈ N,

i < |B|mi|(0) ∩ Zn| ≤ (2|mi|+ 1)n. (2.4.1)

Let l = d1
2

log ne, and let M be a self-delimiting Turing machine such that, if U(π1) =

q ∈ Qn and U(π2) = r ∈ N, then, for all i ∈ N,

M(π1π20|si|1si) = q + 2−(r+l)mi. (2.4.2)

Let c = 2d2n log (1 +
√
n)e+ 1 + cM , where cM is an optimality constant for M .

32

Now assume the hypothesis, and let q be a K-minimizer of Q. Observation 2.4.2 tells

us that there is a point m ∈ Zn such that 2−(r+l)m ∈ B − q. Then |2−(r+l)m| is the

distance from a point in B to the point q ∈ Q, so

|m| = 2r+l|2−(r+l)m| ≤ 2r+ldiam(B ∪Q).

Since B ∩Q 6= ∅, it follows that

|m| ≤ 2r+l[diam(B) + diam(Q)]

= 2l(2 +
√
n) (2.4.3)

≤
√
n

2
(2 +

√
n)

=
n

2
+
√
n.

It is crucial here that this bound does not depend on B, Q, or r.

Choose i ∈ N such that mi = m. By (2.4.1) and (2.4.3),

i < (2(
n

2
+
√
n) + 1)n = (1 +

√
n)2n. (2.4.4)

Now let π = π1π20|si|1si, where π1 and π2 are minimum-length programs for q and r,

respectively. By (2.4.2) we have

M(π) = q + 2−(r+l)mi ∈ B.

It follows by (2.4.4) that

K(B) ≤ K(q + 2−(r+l)mi)

≤ KM(q + 2−(r+l)mi) + cM

≤ |π|+ cM

= K(q) +K(r) + 2|si|+ 1 + cM

= K(Q) +K(r) + 2d2n log (1 +
√
n)e+ 1 + cM

= K(Q) +K(r) + c.

33

Theorem 2.4.4. There is a constant c ∈ N such that, for all r, d ∈ N, no open ball

of radius 2−r has more than 2d+2K(r)+c d-approximate K-minimizers. In particular, no

open ball of radius 2−r has more than 22K(r)+c K-minimizers.

Proof. Let B be an open ball of radius 2−r, let Q be a r-dyadic cube such that B∩Q = ∅,

and let u = K(B) − K(Q). There are at most 2d+u+K(r)+c′ (d + u)-approximate K-

minimizers q ∈ Q of Q such that K(q) ≤ K(Q) + d + u = K(B) + d where c′ ∈ N is a

constant from Corollary 2.4.1. Therefore, there are at most 2d+u+K(r)+c′ d-approximate

K-minimizers of B in Q ∩B.

Observe that it takes at most 3n = 2n log 3 r-dyadic cubes to cover B. By Lemma

2.4.3, u ≤ K(r) + c′′, where c′′ ∈ N is a constant. Therefore, it follows that B has at

most 2d+2K(r)+c d-approximate K-minimizers where c = c′ + c′′ + n log 3. In particular,

B has at most 22K(r)+c K-minimizers.

2.5 Upper Bounds on Kr(x) and Kr+s(x)

Lemma 2.4.3 gives a slightly simplified proof of the known upper bound on Kr(x).

Observation 2.5.1 ([47]). For all x ∈ Rn, Kr(x) ≤ nr + o(r).

Proof. Let c be a constant of Lemma 2.4.3, let x = (x1, . . . , xn) ∈ Rn, and let

γx = max{|xi|+ 1
∣∣1 ≤ i ≤ n}.

For each r ∈ N, let m(r) = (m1, . . . ,mn) be the unique m ∈ Zn such that x ∈ Q(r)
m .

Then, for each r ∈ N and 1 ≤ i ≤ n, we have |mi| ≤ 2rγx. It follows easily from this

that there is a constant c′ ∈ N such that, for every r ∈ N,

K(m(r)) ≤ n(log(2rγx) + 2 log log(2rγx)) + c1. (2.5.1)

There is clearly a constant c2 ∈ N such that, for every r ∈ N,

K(2−rm(r)) ≤ K(m(r)) +K(r) + c2. (2.5.2)

34

By (2.5.1), (2.5.2), and Lemma 2.4.3 we now have

Kr(x) = K(B2−r(x))

≤ K(Q
(r)
m(r)) +K(r) + c

≤ K(m(r)) +K(r) + c

≤ nr + ε(r),

where

ε(r) = n(log γx + 2 log log(2rγx)) + 2K(r) + c+ c1 + c2.

= o(r)

as r →∞.

Lemma 2.5.2. There is a constant c ∈ N such that, for all r, s ∈ N, x ∈ Rn, and

q ∈ B2−r(x),

Kr+s(x) ≤ K(q) + ns+K(r) + as,

where as = K(s) + 2 log(d1
2

log ne+ s+ 3) + n(d1
2

log ne+ 3) +K(n) + 2 log n+ c.

Proof. Fix a computable enumeration m0,m1,m2, · · · of Zn satisfying |mi| ≤ |mi+1| for

all i ∈ N. Note that, for all i ∈ N,

i < |B|mi|(0) ∩ Zn| ≤ (2|mi|+ 1)n. (2.5.3)

Let l = d1
2

log ne, and let M be a self-delimiting Turing machine such that, if U(π1) =

q ∈ Qn, U(π2) = r ∈ N, U(π3) = s ∈ N, U(π4) = n ∈ N, and U(π5) = i ∈ N, then

M(π1π2π3π4π5) = q + 2−(r+s+l+1)mi. (2.5.4)

Let as = 2n(d1
2

log ne+ s+ 3) + 1 + cM , where cM is an optimality constant for M .

35

Now assume the hypothesis. Observation 2.4.2 tells us that there is a point m ∈ Zn

such that 2−(r+s+l)m ∈ B2−(r+s)(x)− q. Then |2−(r+s+l)m| is the distance from a point in

B2−(r+s)(x) to the point q, so

|m| = 2r+s+l|2−(r+s+l)m|

≤ 2r+s+l(2−r + 2−(r+s))

= 2s+l(1 + 2−s) (2.5.5)

= 2l(2s + 1)

≤ 2l2s+1

≤ 2l+s+1.

Choose i ∈ N such that mi = m. By (2.5.3) and (2.5.5),

i < (2|mi|+ 1)n ≤ (2(2l+s+1) + 1)n = (2l+s+2 + 1)n. (2.5.6)

Now let π = π1π2π3π4π5, where π1, π2, π3, π4, and π5 are minimum-length programs

for q, r, s, n, and i, respectively. By (2.5.4) we have

M(π) = q + 2−(r+s+l+1)mi ∈ B2−(r+s)(x). (2.5.7)

Therefore, (2.5.7) and optimality tell us that

Kr+s(x) = K(B2−(r+s)(x))

≤ K(q + 2−(r+l)mi)

≤ KM(q + 2−(r+l)mi) + cM

= |π|+ cM

= K(q) +K(r) +K(s) +K(n) +K(i) + cM .

As noted in section 2, there is a constant c0 ∈ N such that

K(i) ≤ log(1 + i) + 2 log(1 + log(1 + i)) + c0.

36

It follows by (2.5.6) that

K(i) ≤ n log(1 + 2l+s+2) + 2 log(1 + n log(1 + 2l+s+2)) + c0

≤ n(l + s+ 3) + 2 log(1 + n(l + s+ 3)) + c0

≤ n(l + s+ 3) + 2(1 + log n+ log(l + s+ 3)) + c0

= ns+ n(l + 3) + 2 log n+ 2 log(l + s+ 3) + c0 + 2.

Letting c = cM + c0 + 2, it follows that

Kr+s(x) ≤ K(q) + ns+ as,

where as = K(s) + 2 log(l + s+ 3) + n(l + 3) +K(n) + 2 log n+ c.

The following corollary says roughly that, in Rn, precision can be improved by ns

bits by adding ns bits of specification.

Corollary 2.5.3. There is a constant c ∈ N such that, for all r, s ∈ N and x ∈ Rn,

Kr+s(x) ≤ Kr(x) + ns+ bs,

where bs = as +K(r) and as is as in Lemma 2.5.2.

2.6 Algorithmic Mutual Information in Euclidean Space

This section develops the algorithmic mutual information between points in Euclidean

space at a given precision. As previously discussed, we assume that rational points q ∈ Qn

are encoded as binary strings in some natural way. Mutual information between rational

points is then defined from conditional Kolmogorov complexity in the standard way [42]

as follows.

Definition. Let p ∈ Qm, r ∈ Qn, s ∈ Qt.

1. The mutual information between p and q is

I(p : q) = K(q)−K(q | p).

37

2. The mutual information between p and q given s is

I(p : q | s) = K(q | s)−K(q | p, s).

The following properties of mutual information are well known [42].

Theorem 2.6.1. Let p ∈ Qm and q ∈ Qn.

1. I(p,K(p) : q) = K(p) +K(q)−K(p, q) +O(1).

2. I(p,K(p) : q) = I(q,K(q) : p) +O(1).

3. I(p : q) ≤ min {K(p), K(q)}+O(1).

(Each of the properties 1 and 2 above is sometimes called symmetry of mutual infor-

mation.)

Mutual information between points in Euclidean space at a given precision is now

defined as follows.

Definition. The mutual information of x ∈ Rn and y ∈ Rt at precision r ∈ N is

Ir(x : y) = min{I(qx : qy) | qx ∈ B2−r(x) ∩Qn and qy ∈ B2−r(y) ∩Qt}.

As noted in the introduction, the role of the minimum in the above definition is to

eliminate “spurious” information that points qx ∈ B2−r ∩ Qn and qy ∈ B2−r(y) ∩ Qt

might share for reasons not forced by their proximities to x and y, respectively.

Notation. We also use the quantity

Jr(x : y)

= min{I(px : py) | px is a K-minimizer of B2−r(x) and py is a K–minimizer ofB2−r(y)}.

38

2.7 Relating Ir(x : y) and Jr(x : y)

Although Jr(x : y), having two “layers of minimization”, is somewhat more involved

than Ir(x : y), one can imagine using it as the definition of mutual information. In

fact, for all x, y ∈ R, Jr(x : y) does not differ greatly from Ir(x : y). We next develop

machinery for proving this useful fact, which is Theorem 2.7.7 below.

Lemma 2.7.1. There is a constant c ∈ N such that, for any r ∈ N, open ball B ⊆ Rn

of radius 2−r, and q ∈ B ∩Qn,

|{p′ ∈ B21−r(q) ∩Qn |K(p′) ≤ K(B)}| ≤ 2K(r)+2K(r−1)+c.

Proof. Let B be centered at x ∈ Rn. If pq ∈ Qn is a K-minimizer of B21−r(q), then

pq ∈ B22−r(x). By Lemma 2.5.2,

K(B) ≤ K(pq) +K(r) + c

= K(B21−r(q)) +K(r) + c,

where c = K(2) +K(n) + 2n(d1
2

log ne+ 5) + 1 + c′ for some constant c′. This inequal-

ity implies that any K-minimizer of B is also a K(r) + c-approximate K-minimizer of

B21−r(q). Therefore, by Lemma 2.4.4,

|{p′ ∈ B21−r(q) ∩Qn |K(p′) ≤ K(B)}|

≤ |{p′ ∈ B21−r(q) ∩Qn |K(p′) ≤ K(B21−r(q)) +K(r) + c}|

≤ 2K(r)+2K(r−1)+c.

Lemma 2.7.2. For all x ∈ Rn, q ∈ Qt, and qx, px ∈ B2−r(x) ∩ Qn where px is a

K-minimizer of B2−r(x),

K(q | qx) ≤ K(q | px) +K(K(px)) + o(r).

Proof. Let M be a self-delimiting Turing machine that takes programs of the form π =

〈π1π2π30|si|1si, q〉, where U(π1, p) = q′ ∈ Qt, U(π2) = K(p), U(π3) = r ∈ N, and i ∈ N.

39

M runs π2 and π3 on U to obtain K(p) and r, performs a systematic search for the

ith discovered element of {p′ ∈ B21−r(q) ∩ Qn |K(p′) ≤ K(p)}, and outputs U(〈π1, pi〉).

Therefore,

M(π) = U(〈π1, pi〉). (2.7.1)

Let cM be an optimality constant for M .

Assume the hypothesis, and let π = 〈π1π2π30|si|1si, qx〉, where π1 is a minimum-

length program for q when given px, π2 is a minimum-length program for K(px), π3 is

a minimum-length program for r, and i is an index for px in the set {p′ ∈ B21−r(qx) ∩

Qn |K(p′) ≤ K(px)}. By (2.7.1), we have M(π) = U(〈π1, px〉) = q. Therefore, by Lemma

2.7.1 and optimality,

K(q | qx) ≤ KM(q | qx) + cM

≤ |π1π2π30|si|1si|+ cM

= K(q | px) +K(K(px)) +K(r) + 2|si|+ 1 + cM

≤ K(q | px) +K(K(px)) +K(r) + 2 log |{p′ ∈ B21−r(qx) ∩Qn |K(p′) ≤ K(px)}|

+ 1 + cM

≤ K(q | px) +K(K(px)) +K(r) + 2(K(r) + 2K(r − 1) + c) + 1 + cM

= K(q | px) +K(K(px)) + o(r).

By Lemma 2.7.2 and Observation 2.5.1 we have the following.

Corollary 2.7.3. Let x ∈ Rn. If qx ∈ B2−r(x) ∩ Qn and px ∈ Qn is a K-minimizer of

B2−r(x), then K(px | qx) = o(r).

Lemma 2.7.4. Let x ∈ Rn and y ∈ Rt. If px ∈ B2−r(x) and qy, py ∈ B2−r(y) where px

is a K-minimizer for B2−r(x) and py is a K-minimizer for B2−r(y), then

K(px | qy, K(qy)) ≤ K(px | py, K(py)) + o(r).

40

Proof. By the triangle inequality for strings and Corollary 2.7.3,

K(px | qy, K(qy)) ≤ K(px | py, K(py)) +K(py | qy, K(qy)) +O(1)

≤ K(px | py, K(py)) +K(py | qy) +O(1)

= K(px | py, K(py)) + o(r).

The following lemma was inspired by Hammer et al. [26].

Lemma 2.7.5. For all x, y, z ∈ {0, 1}∗,

K(z)−K(K(z))−K(K(x)) ≤ I(x : y) +K(z |x,K(x)) +K(z | y,K(y))

−K(z | 〈x, y〉, K(〈x, y〉))− I(x : y|z) +O(1).

Proof. By the well-known identity (2.1.1), obvious inequalities, and basic definitions.

K(z)−K(K(z))−K(K(x))

= K(x)−K(x, y)−K(K(x)) +K(x, z)−K(x) +K(y, z)−K(x, y, z)

+K(x, y) +K(z)−K(z, y)−K(K(z)) +K(x, z, y)−K(x, z) +O(1)

= −K(y |x,K(x))−K(K(x)) +K(x, z)−K(x) +K(y, z)−K(x, y, z)

+K(x, y)−K(y | z,K(z))−K(K(z)) +K(y |x, z,K(x, z)) +O(1)

≤ K(y)−K(y |x) +K(x, z)−K(x) +K(y, z)−K(y)−K(x, y, z) +K(x, y)

−K(y | z) +K(y |x, z) +O(1)

= I(x : y) +K(z |x,K(x)) +K(z | y,K(y))−K(z |x, y,K(x, y))− I(x : y | z) +O(1).

Corollary 2.7.6. For all x, y, z ∈ {0, 1}∗,

I(x : y) ≥ K(z)−K(z |x,K(x))−K(z | y,K(y))−K(K(x))−K(K(z)) +O(1).

Theorem 2.7.7. For all x ∈ Rn and y ∈ Rt,

Ir(x : y) = Jr(x : y) + o(r).

41

Proof. Let qx, px ∈ Qn and qy, py ∈ Qt where px is a K-minimizer of B2−r(x), py is a

K-minimizer of B2−r(y), and I(qx : qy) = Ir(x : y). By Lemma 2.7.2,

K(qy)−K(qy | px) ≤ K(qy)−K(qy | qx) +K(K(px)) + o(r).

Applying the definition of mutual information for rationals, we have

I(px : qy) ≤ I(qx : qy) +K(K(px)) + o(r),

which, by Corollary 2.7.6 and Observation 2.5.1, implies that

I(qx : qy) ≥ K(px)−K(px | px, K(px))−K(px | qy, K(qy)) + o(r)

= K(px)−K(px | qy, K(qy)) + o(r).

By applying Lemma 2.7.4 and the definition of mutual information for rationals to the

above inequality, we obtain

I(qx : qy) ≥ K(px)−K(px | py, K(py)) + o(r)

= I(py, K(py) : px) + o(r).

Thus, by Theorem 2.6.1,

I(qx : qy) ≥ I(px, K(px) : py) + o(r)

≥ I(px : py) + o(r).

The above inequality tells us that Ir(x : y) = I(qx : qy) ≥ I(px : py) + o(r) = Jr(x :

y) + o(r). Also, by definition, Ir(x : y) ≤ Jr(x : y).

Before discussing the properties of Ir(x : y), we need one more lemma.

Lemma 2.7.8. Let x ∈ Rn, y ∈ Rt, and r ∈ N. If px ∈ Qn is a K-minimizer of B2−r(x)

and py ∈ Qt is a K-minimizer of B2−r(y), then

K(px, py) = Kr(x, y) + o(r).

42

Proof. By Corollary 2.7.3,

Kr(x, y) ≤ K(px, py) ≤ K(py) +K(px | py)

= Kr(y) +K(px | py)

≤ Kr(x, y) +K(px | py) +O(1)

= Kr(x, y) + o(r).

2.8 Properties of Ir(x : y)

The following characterization of algorithmic (Martin-Löf) randomness is well known.

Definition. A point x ∈ Rn is random if there is a constant d ∈ N such that, for all

r ∈ N,

Kr(x) ≥ nr − d.

Two points x ∈ Rn and y ∈ Rt are independently random if the point (x, y) ∈ Rn+t is

random.

We now establish the following useful properties of Ir(x : y).

Theorem 2.8.1. For all x ∈ Rn and y ∈ Rt,

1. Ir(x : y) = Kr(x) +Kr(y)−Kr(x, y) + o(r).

2. Ir(x : y) ≤ min{Kr(x), Kr(y)}+ o(r).

3. If x and y are independently random, then Ir(x : y) = o(r).

4. Ir(x : y) = Ir(y : x) + o(r).

43

Proof. To prove the first statement, let px ∈ Qn be a K-minimizer of B2−r(x) and py ∈ Qt

be a K-minimizer of B2−r(y). First, by Theorem 2.7.7,

Ir(x : y) = Jr(x : y) + o(r)

= I(px : py) + o(r)

= K(py)−K(py | px) + o(r)

≤ K(py)−K(py | px, K(px)) + o(r).

By (2.1.1) and Lemma 2.7.8, this implies that

Ir(x : y) ≤ K(py) +K(px)−K(px, py) + o(r)

= Kr(y) +Kr(x)−Kr(x, y) + o(r).

Next we show that Ir(x : y) ≥ Kr(x) +Kr(y)−Kr(x, y) + o(r). By the above inequality,

Ir(x : y) = K(py)−K(py | px) + o(r)

≥ K(py)−K(py | px, K(px))−K(K(px)) + o(r).

Finally, by (2.1.1), Observation 2.5.1, and Lemma 2.7.8,

Ir(x : y) ≥ K(py) +K(px)−K(px, py) + o(r)

≥ Kr(y) +Kr(x)−Kr(x, y) + o(r).

We continue to the second statement. By 1,

Ir(x : y) = Kr(x) +Kr(y)−Kr(x, y) + o(r)

≤ Kr(x) +Kr(y)−Kr(y) + o(r)

= Kr(x) + o(r).

Likewise, Ir(x : y) ≤ Kr(y) + o(r). Therefore, Ir(x : y) ≤ min{Kr(x), Kr(y)}+ o(r).

44

We now prove the third statement. By 1,

Ir(x : y) = Kr(x) +Kr(y)−Kr(x, y) + o(r)

≤ Kr(x) +Kr(y) +K(r)−Kr(r, x, y) + o(r)

≤ nr + tr +K(r)− (n+ t)r + o(r)

= o(r),

where the last inequality is due to the premise that x and y are independently random

and Observation 2.5.1.

Lastly, we prove the fourth statement. By 1 and Lemma 2.7.8,

Ir(x : y) = Kr(x) +Kr(y)−Kr(x, y) + o(r)

= Kr(x) +Kr(y)−K(px, py) + o(r)

= Kr(x) +Kr(y)−K(py, px) + o(r)

= Kr(x) +Kr(y)−Kr(y, x) + o(r)

= Ir(y : x) + o(r).

45

CHAPTER 3. MUTUAL DIMENSION AND DATA

PROCESSING INEQUALITIES

In the previous chapter, we defined the mutual information between two points in

Euclidean space at a given precision and explored its basic properties. In this chapter, we

define the lower and upper mutual dimensions between two points in Euclidean space.

Intuitively, this is the density of algorithmic mutual information between two points. In

Section 3.1, we show that mutual dimension has all of the properties one would expect

a measure of mutual information to have [3] with the exception of a data processing

inequality.

Section 3.3 is dedicated to exploring various data processing inequalities for mutual

dimension in Euclidean space. Roughly speaking, a data processing inequality states that

the amount of shared information between two objects cannot be significantly increased

when one of the objects is processed by a particular class of functions. We show that, if

a computable function f : Rn → Rt is Lipschitz continuous, then, for all x, y ∈ Rn, the

mutual dimension between f(x) and y is no greater than the mutual dimension between

x and y. We also demonstrate how to obtain other data processing inequalities by placing

different continuity restrictions on f .

Section 3.4 investigates reverse data processing inequalities in Euclidean space, i.e.,

data processing inequalities where the function may significantly increase the mutual

dimension between two points.

This chapter is a joint work with Jack H. Lutz and appeared in [10].

46

3.1 Mutual Dimension in Euclidean Space

We now define the lower and upper mutual dimensions between points in Euclidean

space(s).

Definition. The lower and upper mutual dimensions between x ∈ Rn and y ∈ Rt are

mdim(x : y) = lim inf
r→∞

Ir(x : y)

r

and

Mdim(x : y) = lim sup
r→∞

Ir(x : y)

r
,

respectively.

With the exception of the data processing inequality, which we prove in section 3.3,

the following theorem says that the mutual dimensions mdim and Mdim have the basic

properties that any mutual information measure should have. (See, for example, [3].)

Theorem 3.1.1. For all x ∈ Rn and y ∈ Rt, the following hold.

1. dim(x) + dim(y)−Dim(x, y) ≤ mdim(x : y) ≤ Dim(x) +Dim(y)−Dim(x, y).

2. dim(x) + dim(y)− dim(x, y) ≤Mdim(x : y) ≤ Dim(x) +Dim(y)− dim(x, y).

3. mdim(x : y) ≤ min{dim(x), dim(y)}, Mdim(x : y) ≤ min{Dim(x), Dim(y)}.

4. 0 ≤ mdim(x : y) ≤Mdim(x : y) ≤ min{n, t}.

5. If x and y are independently random, then Mdim(x : y) = 0.

6. mdim(x : y) = mdim(y : x), Mdim(x : y) = Mdim(y : x).

47

Proof. To prove the first statement, we use Theorem 2.8.1 and basic properties of lim sup

and lim inf. First we show that mdim(x : y) ≥ dim(x) + dim(y)−Dim(x, y).

mdim(x : y) = lim inf
r→∞

Ir(x : y)

r

= lim inf
r→∞

Kr(x) +Kr(y)−Kr(x, y) + o(r)

r

≥ lim inf
r→∞

Kr(x)

r
+ lim inf

r→∞

Kr(y)

r
+ lim inf

r→∞

−Kr(x, y)

r
+ lim inf

r→∞

o(r)

r

= dim(x) + dim(y)− lim sup
r→∞

Kr(x, y)

r

= dim(x) + dim(y)−Dim(x, y).

Next we show that mdim(x : y) ≤ Dim(x) +Dim(y)−Dim(x, y).

mdim(x : y) = Dim(x) +Dim(y)−Dim(x)−Dim(y) +mdim(x : y)

= Dim(x) +Dim(y)

−
(

lim sup
r→∞

Kr(x)

r
+ lim sup

r→∞

Kr(y)

r
+ lim sup

r→∞

−Ir(x : y)

r

)
≤ Dim(x) +Dim(y)

− lim sup
r→∞

Kr(x) +Kr(y)−Kr(x)−Kr(y) +Kr(x, y) + o(r)

r

= Dim(x) +Dim(y)−Dim(x, y).

The proof of the second statement is similar to the first. The third statement follows

immediately from Theorem 2.8.1 and the fact that

lim inf
r→∞

min{Kr(x), Kr(y)} ≤ min{lim inf
r→∞

Kr(x), lim inf
r→∞

Kr(y)}.

The fourth statement follows from the third and the fact that, for all x ∈ Rn, Dim(x) ≤

n. Finally, both the fifth and sixth statements follow immediately from Theorem 2.8.1.

48

3.2 Computable Functions in Euclidean Space

In order to discuss data processing inequalities for points in Euclidean space, we must

first understand what it means for a function f : Rn → Rm to be computable. In this

chapter, we use well-known concepts from computable analysis found in [6, 35, 73].

An oracle for a point x ∈ Rn is a function gx : N→ Qn such that,

|gx(r)− x| ≤ 2−n,

for all r ∈ N. A function f : Rn → Rm is computable if there exists an oracle machine

M such that, for every x ∈ Rn and every oracle gx for x,

|M gx(r)− f(x)| ≤ 2−r,

for all r ∈ N, i.e., M gx is an oracle for f(x).

3.3 Data Processing Inequalities for Points in Euclidean Space

Our objectives in this section are to prove data processing inequalities for lower and

upper mutual dimensions in Euclidean space.

Definition. A function f : Rn → Rt is Lipschitz if there is a constant c > 0 such that,

for all x, y ∈ Rn,

|f(x)− f(y)| ≤ c|x− y|.

The following result is the main theorem of this chapter. The meaning and necessity

of the Lipschitz hypothesis are explained in the introduction.

Theorem 3.3.1 (data processing inequality). If f : Rn → Rt is computable and Lips-

chitz, then, for all x ∈ Rn and y ∈ Rt,

mdim(f(x) : y) ≤ mdim(x : y)

and

Mdim(f(x) : y) ≤Mdim(x : y).

49

We in fact prove a stronger result.

Definition. A modulus (of uniform continuity) for a function f : Rn → Rk is a nonde-

creasing function m : N→ N such that, for all x, y ∈ Rn and r ∈ N,

|x− y| ≤ 2−m(r) ⇒ |f(x)− f(y)| ≤ 2−r.

Note that it is well known that a function is uniformly continuous if and only if it has a

modulus of uniform continuity.

Lemma 3.3.2. If f : Σ∗ × Σ∗ → Σ∗ is a computable function, then, for all x, y, z ∈ Σ∗,

K(y |x) ≤ K(y | f(x, z)) +K(z) +O(1).

Proof. LetM be a self-delimiting Turing machine such that if U(π1, f(x, z)) = y, U(π2) =

z, and π3 is a program for f where x, y, z ∈ Σ∗ and f : Σ∗ × Σ∗ → Σ∗ is a partial

computable function, then

M(π1π2π3, x) = y. (3.3.1)

Assume the hypothesis, and let π = π1π2π3 where π1 is a minimum-length program for

y given f(x, z), π2 is a minimum-length program for z, and π3 is a minimum-length

program for f . Therefore, by (3.3.1), we have M(π, x) = y. By optimality,

K(y |x) ≤ KM(y |x) + cM

≤ |π|+ cM

= K(y | f(x, z)) +K(z) +K(f) + cM

= K(y | f(x, z)) +K(z) +O(1).

Lemma 3.3.3. If f : Rn → Rk is computable and m : N → N is a computable, strictly

increasing modulus for f , then for every x ∈ Rn, y ∈ Rt,

Ir(f(x) : y) ≤ Im(r+1)(x : y) + o(r).

50

Proof. Let qx ∈ Qn and qy ∈ Qt such that Im(r+1)(x : y) = I(qx : qy). Because |x− qx| ≤

2−m(r+1), where m is a modulus for f , we know that |f(x) − f(qx)| ≤ 2−(r+1). Also,

since f is computable, there exists an oracle Turing machine M that uses an oracle

qx such that |M qx(r) − f(qx)| ≤ 2−r. Let h : N × Qn → Qk be a function such that

h(qx, r) = M qx(r + 1). Observe that

|M qx(r + 1)− f(x)| ≤ |f(x)− f(qx)|+ |M qx(r + 1)− f(qx)|

≤ 2−(r+1) + 2−(r+1)

= 2−r.

From this and Lemma 3.3.2, it follows that

Ir(f(x) : y) ≤ I(M qx(r + 1) : qy)

= I(h(qx, r) : qy)

≤ I(qx : qy) +K(r) +O(1)

= Im(r+1)(x : y) + o(r).

Lemma 3.3.4 (modulus processing lemma). If f : Rn → Rk is computable and m : N→

N is a computable, strictly increasing modulus for f , then for all x ∈ Rn and y ∈ Rt,

mdim(f(x) : y) ≤ mdim(x : y)

(
lim sup
r→∞

m(r + 1)

r

)
and

Mdim(f(x) : y) ≤Mdim(x : y)

(
lim sup
r→∞

m(r + 1)

r

)
,

except when

(
lim sup
r→∞

m(r + 1)

r

)
=∞ while either mdim(x : y) = 0 or Mdim(x : y) =

0.

51

Proof. By Lemma 3.3.3, we have

mdim(f(x) : y) ≤ lim inf
r→∞

Im(r+1)(x : y)

r

= lim inf
r→∞

(
Im(r+1)(x : y)

m(r + 1)
· m(r + 1)

r

)
≤ mdim(x : y)

(
lim sup
r→∞

m(r + 1)

r

)
.

A similar proof can be given for Mdim.

Theorem 3.3.1 follows immediately from Lemma 3.3.4 and the following well-known

observation.

Observation 3.3.5. A function f : Rn → Rk is Lipschitz if and only if there exists

s ∈ N such that m(r) = r + s is a modulus for f .

Definition. A function f : Rn → Rt is Hölder with exponent α > 0 if there is a constant

c > 0 such that, for all x, y ∈ Rn,

|f(x)− f(y)| ≤ c|x− y|α.

We can derive an observation similar to Observation 3.3.5 for Hölder functions.

Observation 3.3.6. If a function f : Rn → Rk is Hölder with exponent α, then there

exists s ∈ N such that m(r) = d 1
α

(r + s)e is a modulus for f .

We can derive the following fact from Observation 3.3.6 and the modulus processing

lemma.

Corollary 3.3.7. If f : Rn → Rk is computable and Hölder with exponent α, then, for

all x ∈ Rn and y ∈ Rt,

mdim(f(x) : y) ≤ 1

α
mdim(x : y)

and

Mdim(f(x) : y) ≤ 1

α
Mdim(x : y).

52

3.4 Reverse Data Processing Inequalities

In this section we develop reverse versions of the data processing inequalities from

section 3.3.

Notation. Let n ∈ Z+.

1. [n] = {1, · · · , n}.

2. For S ⊆ [n], x ∈ R|S|, y ∈ Rn−|S|, the string

x ∗S y ∈ Rn

is obtained by placing the components of x into the positions in S (in order) and

the components of y into the positions in [n] \ S (in order).

3. For each x = (x1, x2, . . . , xn) ∈ Rn, let x(i,j) = (xi, xi+1, . . . , xj) for every i, j ∈ N

such that i ≤ j ≤ n.

Definition. Let f : Rn → Rk.

1. f is co-Lipschitz if there is a real number c > 0 such that for all x, y ∈ Rn,

|f(x)− f(y)| ≥ c|x− y|.

2. f is bi-Lipschitz if f is both Lipschitz and co-Lipschitz.

3. For S ⊆ [n], f is S-co-Lipschitz if there is a real number c > 0 such that, for all

u, v ∈ R|S| and y ∈ Rn−|S|,

|f(u ∗S y)− f(v ∗S y)| ≥ c|u− v|.

4. For i ∈ [n], f is co-Lipschitz in its ith argument if f is {i}-co-Lipschitz.

53

Note that f is [n]-co-Lipschitz if and only if f is co-Lipschitz.

Example. The function f : Rn → R defined by

f(x1, · · · , xn) = x1 + · · ·+ xn

is S-co-Lipschitz if and only if |S| ≤ 1. In particular, if n ≥ 2, then f is co-Lipschitz in

every argument, but f is not co-Lipschitz.

We next relate co-Lipschitz conditions to moduli.

Definition. Let f : Rn → Rk.

1. An inverse modulus for f is a nondecreasing function m′ : N → N such that, for

all x, y ∈ Rn and r ∈ N,

|f(x)− f(y)| ≤ 2−m
′(r) ⇒ |x− y| ≤ 2−r.

2. Let S ⊆ [n]. An S-inverse modulus for f is a nondecreasing function m′ : N → N

such that, for all u, v ∈ R|S|, all y ∈ Rn−|S|, and all r ∈ N,

|f(u ∗S y)− f(v ∗S y)| ≤ 2−m
′(r) ⇒ |u− v| ≤ 2−r.

3. Let i ∈ [n]. An inverse modulus for f in its ith argument is an {i}-inverse modulus

for f .

Observation 3.4.1. Let f : Rn → Rk and S ⊆ [n].

1. f is S-co-Lipschitz if and only if there is a positive constant t ∈ N such that

m′(r) = r + t is an S-inverse modulus of f .

2. f is co-Lipschitz if and only if there is a positive constant t ∈ N such that m′(r) =

r + t is an inverse modulus of f .

Definition. Let f : Rn → Rt and S ⊆ [n]. We say that f is S-injective if, for all

x, y ∈ Rn and z ∈ Rn−|S|,

f(x ∗S z) = f(y ∗S z)⇒ x = y.

54

Note f is injective if and only if f is [n]-injective.

Definition. Let f : Rn → Rt be a function and S ⊆ [n] such that n ∈ N. An S-left

inverse of f is a partial function g : Rt × Rn−|S| → R|S| such that, for all x ∈ R|S| and

y ∈ Rt × Rn−|S|,

g(f(x ∗S y), y) = x.

It is easy to prove that f has an S-left inverse if and only if f is S-injective.

Lemma 3.4.2. If f : Rn → Rt has an S-inverse modulus m′, then f is S-injective and

m′ is a modulus for any S-left inverse of f .

Proof. Let m′ : N→ N be an S-inverse modulus for f , x, y ∈ R|S| and z ∈ Rn−|S|, then,

if f(x ∗S z) = f(y ∗S z),

|f(x ∗S z)− f(y ∗S z)| ≤ 2−m
′(r),

for all r ∈ N, which implies that

|x− y| ≤ 2−r.

Therefore, x = y and f is S-injective.

Let g : Rt × Rn−|S| → R|S| be an S-left inverse of f . Let x, y ∈ domg and r ∈ N

such that x = (f(u ∗S w), w) and y = (f(v ∗S z), z), where u, v ∈ R|S| and w, z ∈ Rn−|S|.

Assume that |x− y| ≤ 2−m
′(r), then

|f(g(f(u ∗S w), w) ∗S w)− f(g(f(v ∗S z), z) ∗S z)|

= |f(u ∗S w)− f(v ∗S z)|

≤ |(f(u ∗S w), w)− (f(v ∗S z), z)|

= |x− y|

≤ 2−m
′(r).

55

So, |g(f(u ∗S w), w)− g(f(v ∗S z), z)| ≤ 2−r, and

|g(x)− g(y)| = |g(f(u ∗S w), w)− g(f(v ∗S z), z)|

≤ 2−r.

Therefore, m′ is a modulus for g.

Lemma 3.4.3. If f : Rn → Rt is a computable and uniformly continuous function that

has a computable S-inverse modulus m′, then f has a computable S-left inverse.

Proof. Assume the hypothesis. Since f is computable and uniformly continuous, there

exist a modulus m for f and an oracle Turing machine Mf such that, for every x ∈ Rn,

r ∈ N, and every oracle hx for x,

|Mhx
f (r)− f(x)| ≤ 2−r. (3.4.1)

Define g : Rt × Rn−|S| → R|S| by

g(z) =

 x if z = (f(x ∗S y), y),

undefined if otherwise
,

where x ∈ R|S|, y ∈ Rn−|S|, and z ∈ Rt × Rn−|S|.

We now show that g is computable. Let z = (f(x ∗S y), y) ∈ domg and hz be an

oracle for z such that, for all r ∈ N,

|hz(r)− z| ≤ 2−r. (3.4.2)

First we show that, for any r ∈ N, there exist a rational q ∈ Q|S| and an oracle hqy for

q ∗S y such that

|Mhqy
f (m′(r) + 3)− hz(m′(r) + 3)| ≤ 2−(m′(r)+1).

Let q ∈ Q|S| such that |q∗Sy−x∗Sy| ≤ 2−(m(m′(r)+2)), and let hqy(r) = q∗Shz(r)(t+1,t+n−|S|)

be an oracle for q ∗S y. Therefore,

|f(q ∗S y)− f(x ∗S y)| ≤ 2−(m′(r)+2). (3.4.3)

56

By (3.4.1), (3.4.2), (3.4.3),

|Mhqy
f (m′(r) + 3)− hz(m′(r) + 3)(1,t)|

= |Mhqy
f (m′(r) + 3)− f(q ∗S y) + f(q ∗S y)− f(x ∗S y) + f(x ∗S y)− hz(m′(r) + 3)(1,t)|

≤ |Mhqy
f (m′(r) + 3)− f(q ∗S y)|+ |f(q ∗S y)− f(x ∗S y)|

+ |hz(m′(r) + 3)(1,t) − f(x ∗S y)|

≤ 2−(m′(r)+3) + 2−(m′(r)+2) + 2−(m′(r)+3)

= 2−(m′(r)+1).

Let Mg be a Turing machine equipped with oracle hz. Given an input r ∈ N, Mg searches

for and outputs a rational qx ∈ Q|S| such that

|Mhqxy

f (m′(r) + 3)− hz(m′(r) + 3)(1,t)| ≤ 2−(m′(r)+1), (3.4.4)

where hqxy = qx ∗S hz(r)(t+1,t+n−|S|) is an oracle for qx ∗S y. We now show that |Mhz
g (r)−

g(z)| ≤ 2−r. By (3.4.1), (3.4.2), (3.4.4),

|f(Mhz
g (r) ∗S y)− f(x ∗S y)|

= |f(qx ∗S y)− f(x ∗S y)|

= |f(qx ∗S y)−Mhqxy

f (m′(r) + 3) +M
hqxy

f (m′(r) + 3)− hz(m′(r) + 3)(1,t)

+ hz(m
′(r) + 3)(1,t) − f(x ∗S y)|

≤ |f(qx ∗S y)−Mhqxy

f (m′(r) + 3)|+ |Mhqxy

f (m′(r) + 3)− hz(m′(r) + 3)(1,t)|

+ |hz(m′(r) + 3)(1,t) − f(x ∗S y)|

≤ 2−(m′(r)+3) + 2−(m′(r)+1) + 2−(m′(r)+3)

= 2−(m′(r)+2) + 2(m′(r)+1)

< 2−m
′(r).

57

Since m′ is an S-inverse modulus for f , we have

|Mhz
g (r)− g(z)| = |Mhz

g (r)− x|

≤ 2−r.

Therefore, g is a computable S-left inverse of f .

Lemma 3.4.4 (reverse modulus processing lemma). If f : Rn → Rk is a computable

and uniformly continuous function, and m′ : N→ N is a computable, strictly increasing

S-inverse modulus for f , then, for all S ⊆ [n], x ∈ R|S|, y ∈ Rt, and z ∈ Rn−|S|,

mdim(x : y) ≤ mdim((f(x ∗S z), z) : y)

(
lim sup
r→∞

m′(r + 1)

r

)
and

Mdim(x : y) ≤Mdim((f(x ∗S z), z) : y)

(
lim sup
r→∞

m′(r + 1)

r

)
,

except when

(
lim sup
r→∞

m′(r + 1)

r

)
= ∞ while either mdim((f(x ∗S z), z) : y) = 0 or

Mdim((f(x ∗S z), z) : y) = 0.

Proof. Assume the hypothesis. By Lemmas 3.4.2 and 3.4.3, there exists a computable

and uniformly continuous function g that is an S-left inverse of f and m′ is a modulus

for g. Then, for all S ⊆ [n], x ∈ R|S|, y ∈ Rt, and z ∈ Rn−|S|,

mdim(x : y) = mdim(g(f(x ∗S z), z) : y).

Therefore, by Lemma 3.3.4, we have

mdim(x : y) ≤ mdim(f(x ∗S z), z : y)

(
lim sup
r→∞

m′(r + 1)

r

)
.

A similar proof can be given for Mdim.

By Observation 3.4.1 and Lemma 3.4.4, we have the following.

58

Theorem 3.4.5 (reverse data processing inequality). If S ⊆ [n] and f : Rn → Rk is

computable and S-co-Lipschitz, then, for all x ∈ R|S|, y ∈ Rt, and z ∈ Rn−|S|,

mdim(x : y) ≤ mdim((f(x ∗S z), z) : y)

and

Mdim(x : y) ≤Mdim((f(x ∗S z), z) : y).

Definition. Let f : Rn → Rk and 0 < α ≤ 1.

1. f is co-Hölder with exponent α if there is a real number c > 0 such that, for all

x, y ∈ Rn,

|x− y| ≤ c|f(x)− f(y)|α.

2. For S ⊆ [n], f is S-co-Hölder with exponent α if there is a real number c > 0 such

that, for all u, v ∈ R|S| and y ∈ Rn−|S|,

|u− v| ≤ c|f(u ∗S y)− f(v ∗S y)|α.

Observation 3.4.6. Let f : Rn → Rk and S ⊆ [n].

1. If f is S-co-Hölder with exponent α, then there exists t ∈ N such that m′(r) =

d 1
α

(r + t)e is an S-inverse modulus of f .

2. If f is co-Hölder with exponent α, then there exists t ∈ N such that m′(r) =

d 1
α

(r + t)e is an inverse modulus of f .

The next corollary follows from the reverse modulus processing lemma and Observa-

tion 3.4.6.

Corollary 3.4.7. If S ⊆ [n] and f : Rn → Rk is computable and S-co-Hölder with

exponent α, then, for all x ∈ R|S|, y ∈ Rt, and z ∈ Rn−|S|,

mdim(x : y) ≤ 1

α
mdim((f(x ∗S z), z) : y)

and

Mdim(x : y) ≤ 1

α
Mdim((f(x ∗S z), z) : y).

59

3.5 Data Processing Applications

In this section we use the data processing inequalities and their reverses to investi-

gate how certain functions on Euclidean space preserve or predictably transform mutual

dimensions.

Theorem 3.5.1 (mutual dimension conservation inequality). If f : Rn → Rk and g :

Rt → Rl are computable and Lipschitz, then, for all x ∈ Rn and y ∈ Rt,

mdim(f(x) : g(y)) ≤ mdim(x : y)

and

Mdim(f(x) : g(y)) ≤Mdim(x : y).

Proof. The conclusion follows from Theorem 3.1.1 and the data processing inequality.

mdim(f(x) : g(y)) ≤ mdim(x : g(y))

= mdim(g(y) : x)

≤ mdim(y : x)

= mdim(x : y).

A similar argument can be given for Mdim(f(x) : g(y)) ≤Mdim(x : y).

Theorem 3.5.2 (reverse mutual dimension conservation inequality). Let S1 ⊆ [n] and

S2 ⊆ [t]. If f : Rn → Rk is computable and S1-co-Lipschitz, and g : Rt → Rl is

computable and S2-co-Lipschitz, then, for all x ∈ R|S1|, y ∈ R|S2|, w ∈ Rn−|S1|, and

z ∈ Rt−|S2|,

mdim(x : y) ≤ mdim((f(x ∗S w), w) : (g(y ∗S z), z))

and

Mdim(x : y) ≤Mdim((f(x ∗S w), w) : (g(y ∗S z), z)).

60

Proof. The conclusion follows from Theorem 3.1.1 and the reverse data processing in-

equality.

mdim(x : y) ≤ mdim((f(x ∗S w), w) : y)

= mdim(y : (f(x ∗S w), w))

≤ mdim((g(y ∗S z), z) : (f(x ∗S w), w))

= mdim((f(x ∗S w), w) : (g(y ∗S z), z)).

A similar argument can be given for Mdim(x : y) ≤ Mdim((f(x ∗S w), w) : (g(y ∗S

z), z)).

Corollary 3.5.3 (preservation of mutual dimension). If f : Rn → Rk and g : Rt → Rl

are computable and bi-Lipschitz, then, for all x ∈ Rn and y ∈ Rt,

mdim(f(x) : g(y)) = mdim(x : y)

and

Mdim(f(x) : g(y)) = Mdim(x : y).

Corollary 3.5.4. If f : Rn → Rk and g : Rt → Rl are computable and Hölder with

exponents α and β, respectively, then, for all x ∈ Rn and y ∈ Rt,

mdim(f(x) : g(y)) ≤ 1

αβ
mdim(x : y)

and

Mdim(f(x) : g(y)) ≤ 1

αβ
Mdim(x : y).

Corollary 3.5.5. Let S1 ⊆ [n] and S2 ⊆ [t]. If f : Rn → Rk is computable and S1-co-

Hölder with exponent α, and g : Rt → Rl is computable and S2-co-Hölder with exponent

β, then, for all x ∈ R|S1|, y ∈ R|S2|, w ∈ Rn−|S1|, and z ∈ Rt−|S2|,

mdim(x : y) ≤ 1

αβ
mdim((f(x ∗S w), w) : (g(y ∗S z), z))

and

Mdim(x : y) ≤ 1

αβ
Mdim((f(x ∗S w), w) : (g(y ∗S z), z)).

61

CHAPTER 4. BOUNDED TURING REDUCTIONS AND

DATA PROCESSING INEQUALITIES FOR SEQUENCES

In Chapter 3, we defined and investigated mutual dimensions between points in Eu-

clidean space. The purpose of this chapter is to develop a similar framework for the

mutual dimension between sequences over an arbitrary alphabet.

The first half of this chapter defines the lower and upper mutual dimensions between

sequences and shows that they are equal to the lower and upper mutual dimensions

between the sequences’ real representations, respectively. Using this result, we prove

that mutual dimensions between sequences have nice properties.

The second half of this chapter addresses data processing inequalities for sequences.

We show that for all sequences X, Y, and Z and all Turing functionals Φ such that,

ΦX(n) = Z � n, for all n ∈ N, if the largest oracle query made during the computation

of ΦX(n) is bounded by n + c, where c ∈ N is a constant, then the mutual dimension

between Z and Y is no greater than the mutual dimension between X and Y . We

also derive other data processing inequalities by making adjustments to the computable

bounds of the use function of Turing functionals.

We define the yield of a Turing functional ΦS with access to at most n symbols of

S to be the smallest m ∈ N such that ΦS�n(m) does not halt and show how to derive

reverse data processing inequalities by applying bounds to the Turing functional’s yield.

Sections 4.1 through 4.6 are a joint work with Jack H. Lutz and can be found in [9].

The rest of this chapter can be found in [8].

62

4.1 Notation

Let Σ = {0, 1, . . . k− 1} be the alphabet consisting of k symbols and Σ∗ be the set of

all strings over Σ. We write Σ∞ for the set of all infinite sequences over Σ, and, for every

S ∈ Σ∞ and n ∈ N, S[n] is the nth symbol of S and S � n denotes the first n symbols of

S. For all strings x, y ∈ Σ∗ and sequences S ∈ Σ∞, we write x v S and x v y to mean

that x is a prefix of S and x is a prefix of y, respectively. For S, T ∈ Σ∞, the notation

(S, T) represents the sequence in (Σ×Σ)∞ obtained after pairing each symbol in S with

the symbol in T located at the same position. For S ∈ Σ∞, let

αS =
∞∑
i=0

S[i]k−(i+1) ∈ [0, 1].

Informally, we say that αS is the real representation of S.

4.2 Relating the Kolmogorov Complexities of Sequences to

the Kolmogorov Complexities of Reals

In this section, we show that the Kolmogorov complexity of S � r is equal to the

Kolmogorov complexity of the real representation of S at precision r.

Recall the definition of the Kolmogorov complexity of a set of strings.

Definition (Shen and Vereshchagin [62]). The Kolmogorov complexity of a set S ⊆ Σ∗

is

K(S) = min{K(u) |u ∈ S}.

Keeping in mind that tuples of rationals in Qn can be encoded as a string in Σ∗, we

remind the reader of the definition of the Kolmogorov complexity of a real at precision

r.

Definition. The Kolmogorov complexity of x ∈ R at precision r ∈ N is

Kr(x) = K((x− 2−r, x+ 2−r) ∩Q).

63

Lemma 4.2.1. There is a constant c ∈ N such that, for all S, T ∈ Σ∞ and r ∈ N,

K((S, T) � r) = Kr(αS, αT) + o(r).

Proof. First we show that Kr(αS, αT) ≤ K((S, T) � r) + o(r).

Observe that

∣∣(αS, αT)− (αS�r, αT �r)
∣∣

=

∣∣∣∣(∞∑
i=0

S[i]k−(i+1),

∞∑
i=0

T [i]k−(i+1)

)
−
(r−1∑

i=0

S[i]k−(i+1),

r−1∑
i=0

S[i]k−(i+1)

)∣∣∣∣
=

∣∣∣∣(∞∑
i=r

S[i]k−(i+1),
∞∑
i=r

T [i]k−(i+1)

)∣∣∣∣
≤
∣∣∣∣(∞∑

i=r

S[i]2−(i+1),
∞∑
i=r

T [i]2−(i+1)

)∣∣∣∣
= |(2−r, 2−r)|

≤ 21−r,

which implies the inequality

Kr−1(αS, αT) ≤ K(αS�r, αT �r). (4.2.1)

Let M be a Turing machine such that, if U(π) = (u0, w0)(u1, w1) · · · (un−1, wn−1) ∈

(Σ× Σ)∗,

M(π) =

(n−1∑
i=0

ui · k−(i+1),
n−1∑
i=0

wi · k−(i+1)

)
. (4.2.2)

Let cM be an optimality constant for M and π ∈ {0, 1}∗ be a minimum-length program

for (S, T) � r. By optimality and (4.2.2),

K(αS�r, αT �r) ≤ KM(αS�r, αT �r)

≤ |π|+ cM (4.2.3)

= K((S, T) � r) + cM .

64

Therefore, by Corollary 2.5.3, (4.2.1), and (4.2.3),

Kr(αS, αT) ≤ Kr−1(αS, αT) + o(r)

≤ K(αS�r, αT �r) + o(r)

≤ K((S, T) � r) + o(r).

Next we prove that K((S, T) � r) ≤ Kr(αS, αT) + O(1). We consider the case where

S = x(k − 1)∞, T 6= y(k − 1)∞, and x ∈ Σ∗ and y ∈ Σ∗ are either empty or end with

a symbol other than (k − 1), i.e., S has a tail that is an infinite sequence of the largest

symbol in Σ and T does not. Let M ′ be a Turing machine such that, if U(π) = 〈q, p〉 for

any two rationals q, p ∈ [0, 1],

M ′(π) = (u0, w0)(u1, w1) · · · (ur−1, wr−1) ∈ (Σ× Σ)∗, (4.2.4)

where M ′ operates by running π on U to obtain (q, p) and searching for strings u =

u0u1 · · ·ur−1 and w = w0w1 · · ·wr−1 such that

q =

|x|−1∑
i=0

uik
−(i+1) +(k−1)k−(|x|+1), u|x|−1 < (k−1), and ui = (k−1) for i ≥ |x|, (4.2.5)

and

wi · k−(i+1) ≤ p− (w0 · k−1 + w1 · k−2 + · · ·+ wi−1 · k−i) < (wi + 1) · k−(i+1) (4.2.6)

for 0 ≤ i < r.

Let cM ′ be an optimality constant for M ′ and m, t ∈ N such that m, t ≤ kr − 1 and

(αS, αT) ∈ [m · k−r, (m+ 1) · k−r)× [t · k−r, (t+ 1) · k−r). (4.2.7)

Let

(q, p) ∈ Bk−r(αS, αT) ∩ [m · k−r, (m+ 1) · k−r)× [t · k−r, (t+ 1) · k−r) ∩Q2, (4.2.8)

and let π be a minimum-length program for (q, p). First we show that ui = S[i] for all

0 ≤ i < r. We do not need to consider the case where i ≥ |x| because (4.2.5) assures us

65

that ui = S[i]. Thus we will always assume that i < |x|. If u0 6= S[0], then, by (4.2.5),

q /∈ [S[0] · k−1, (S[0] + 1) · k−1).

By (4.2.7), this implies that

q /∈ [m · k−r, (m+ 1) · k−r),

which contradicts (4.2.8). Now assume that un = S[n] for all n ≤ i < r − 1. If

ui+1 6= S[i+ 1], then, by (4.2.5),

q /∈
[i∑
n=0

S[n] · k−(i+1) + S[i+ 1] · k−(i+2),
i∑

n=0

S[n] · k−(i+1) + (S[i+ 1] + 1) · k−(i+2)

)
.

By (4.2.7), this implies that

q /∈ [m · k−r, (m+ 1) · k−r),

which contradicts (4.2.8). Therefore, ui = S[i] for all 0 ≤ i < r. A similar argument

shows that wi = T [i], so we conclude that M ′(q, p) = (S, T) � r.

By optimality, (4.2.4), and (4.2.8),

K((S, T) � r) ≤ KM ′((S, T) � r) + cM ′

≤ |π|+ cM ′

= K(q, p) + cM ′

= K(B2−r(αS, αT) ∩ [0, 1]2) + cM ′

≤ Kr(αS, αT) +O(1),

where the last inequality holds simply because we can design a Turing machine to trans-

form any point from outside the unit square to its edge. All other cases for S and T can

be proved in a similar manner.

Lemma 4.2.2. There is a constant c ∈ N such that, for all S ∈ Σ∞ and r ∈ N,

K(S � r) = Kr(αS) + c.

66

Proof. Let 0∞ represent the sequence containing all 0’s. It is clear that there exist

constants c1, c2 ∈ N such that

K(S � r) = K((S, 0∞) � r) + c1

and

Kr(αS, 0) = Kr(αS) + c2.

Therefore, by the above inequalities and Lemma 4.2.1,

K(S � r) = K((S, 0∞) � r) + c1

= K(αS, 0) + o(r) + c1

= Kr(αS) + o(r) + c1 + c2

= Kr(αS) + o(r).

4.3 Relating the Dimensions of Sequences to the Dimensions

of Reals

We now describe how the dimensions of sequences and the dimensions of reals corre-

spond to one another. First, we state the definitions of the lower and upper dimensions

of a sequence.

Definition. The lower and upper dimensions of S ∈ Σ∞ are

dim(S) = lim inf
u→S

K(u)

|u| log |Σ|

and

Dim(S) = lim sup
u→S

K(u)

|u| log |Σ|
,

respectively.

67

Next, we recall the definitions of the lower and upper dimensions of a real.

Definition. For any point x ∈ R, the lower and upper dimensions of x are

dim(x) = lim inf
r→∞

Kr(x)

r

and

Dim(x) = lim sup
r→∞

Kr(x)

r
,

respectively.

The next two corollaries describe principles that relate the dimensions of sequences

to the dimensions of the sequences’ real representations. The first follows from Lemma

4.2.1 and the second follows from Lemma 4.2.2.

Corollary 4.3.1. For all S, T ∈ Σ∞,

dim(S, T) = dim(αS, αT) and Dim(S, T) = Dim(αS, αT).

Corollary 4.3.2. For any sequence S ∈ Σ∞,

dim(S) = dim(αS).

4.4 Relating the Mutual Information between Sequences to

the Mutual Information between Reals

We now proceed to show that the algorithmic mutual information between the first r

bits of S and the first r bits of T is equal to the algorithmic mutual information between

the real representation of S and the real representation of T at precision r.

Lemma 4.4.1. There is a constant c ∈ N such that, for all x, y ∈ Σ∗,

K(y |x) ≤ K(y | 〈x,K(x)〉) +K(K(x)) + c.

68

Proof. Let M be a Turing machine such that, if U(π1) = K(x) and U(π2, 〈x,K(x)〉) = y,

M(π1π2, x) = y.

Let cM ∈ N be an optimality constant of M . Assume the hypothesis, and let π1 be a

minimum-length program for K(x) and π2 be a minimum-length program for y given x

and K(x). By optimality,

K(y |x) ≤ KM(y |x) + cM

≤ |π1π2|+ cM

= K(y | 〈x,K(x)〉) +K(K(x)) + c,

where c = cM .

Lemma 4.4.2. For all x ∈ Σ∗, K(K(x)) = o(|x|) as |x| → ∞.

Proof. There exist constants c1, c2 ∈ N such that

K(K(x)) ≤ logK(x) + c1

≤ log (|x|+ c2) + c1

= o(|x|).

as |x| → ∞.

The following lemma is well-known and can be found in [42].

Lemma 4.4.3. There is a constant c ∈ N such that, for all x, y ∈ Σ∗,

K(x, y) = K(x) +K(y |x,K(x)) + c.

The following is a corollary of Lemma 4.4.3.

Corollary 4.4.4. There is a constant c ∈ N such that, for all x, y ∈ Σ∗,

K(x, y) ≤ K(x) +K(y |x) + c.

69

Lemma 4.4.5. For all x, y ∈ Σ∗,

K(y |x) +K(x) ≤ K(x, y) + o(|x|) as |x| → ∞.

Proof. By Lemma 4.4.1, there is a constant c1 ∈ N such that

K(y |x) ≤ K(y | 〈x,K(x)〉) +K(K(x)) + c1.

This implies that

K(y |x) +K(x) ≤ K(y | 〈x,K(x)〉) +K(K(x)) +K(x) + c1.

By Lemma 4.4.3, there is a constant c2 ∈ N such that

K(y |x) +K(x) ≤ K(x, y) +K(K(x)) + c1 + c2.

Therefore, by Lemma 4.4.2,

K(y |x) +K(x) ≤ K(x, y) + o(|x|).

as |x| → ∞.

The rest of this section is about mutual information. We remind the reader of the

definition of the mutual information between strings as defined in [42].

Definition. The (algorithmic) mutual information between u ∈ Σ∗ and w ∈ Σ∗ is

I(x : y) = K(y)−K(y |x).

Lemma 4.4.6. For all strings x, y ∈ Σ∗,

I(x : y) = K(x) +K(y)−K(x, y) + o(|x|).

Proof. By definition of mutual information and Lemma 4.4.5,

I(x : y) = K(y)−K(y |x)

≥ K(x) +K(y)−K(x, y) + o(|x|).

70

as |x| → ∞. Also, by Corollary 4.4.4, there is a constant c ∈ N such that

I(x : y) = K(y)−K(y |x)

≤ K(x) +K(y)−K(x, y) + c

= K(x) +K(y)−K(x, y) + o(|x|).

as |x| → ∞.

The next definition was proposed and thoroughly investigated in Chapter 2.

Definition. The mutual information between x ∈ R and y ∈ R at precision r ∈ N is

Ir(x : y) = min{I(q : p) | q ∈ B2−r(x) ∩Q and p ∈ B2−r(y) ∩Q}.

Lemma 4.4.7. For all S, T ∈ Σ∞ and r ∈ N,

I(S � r : T � r) = Ir(αS : αT) + o(r).

Proof. By Lemmas 4.2.2, 4.2.1, and 4.4.6,

I(S � r : T � r) = K(S � r) +K(T � r)−K((S, T) � r) + o(r)

= Kr(αS) +Kr(αT)−Kr(αS, αT) + o(r)

= Ir(αS : αT) + o(r).

as r →∞.

4.5 Relating the Mutual Dimensions between Sequences to

the Mutual Dimensions between Reals

In this section, we define the upper and lower mutual dimensions between sequences,

recall the definitions of the upper and lower mutual dimensions between reals, and de-

scribe how these definitions relate to each other.

71

Definition. The lower and upper mutual dimensions between S ∈ Σ∞ and T ∈ Σ∞ are

mdim(S : T) = lim inf
(u,w)→(S,T)

I(u : w)

|u| log |Σ|

and

Mdim(S : T) = lim sup
(u,w)→(S,T)

I(u : w)

|u| log |Σ|
,

respectively.

(We insist that |u| = |w| in the above limits.) The mutual dimension between two

sequences is regarded as the density of algorithmic mutual information between them.

Definition. The lower and upper mutual dimensions between x ∈ R and y ∈ R are

mdim(x : y) = lim inf
r→∞

Ir(x : y)

r

and

Mdim(x : y) = lim sup
r→∞

Ir(x : y)

r

The following corollary follows immediately from Lemma 4.4.7 and relates the mu-

tual dimension between sequences to the mutual dimension between the sequences’ real

representations.

Corollary 4.5.1. For all S, T ∈ Σ∞,

mdim(S : T) = mdim(αS : αT) and MDim(S : T) = Mdim(αS : αT).

4.6 Properties of Mutual Dimensions between Sequences

This section describes the basic properties of the lower and upper mutual dimensions

between sequences.

72

Theorem 4.6.1. For all S, T ∈ Σ∞,

1. dim(S)+dim(T)−Dim(S, T) ≤ mdim(S : T) ≤ Dim(S)+Dim(T)−Dim(S, T).

2. dim(S)+dim(T)−dim(S, T) ≤Mdim(S : T) ≤ Dim(S)+Dim(T)−dim(S, T).

3. mdim(S : T) ≤ min{dim(S), dim(T)}; Mdim(S : T) ≤ min{Dim(S), Dim(T)}.

4. 0 ≤ mdim(S : T) ≤Mdim(S : T) ≤ 1.

5. mdim(S : T) = mdim(T : S); Mdim(S : T) = Mdim(T : S).

Proof. The theorem follows directly from the properties of mutual dimension between

points in Euclidean space described in section 3.1 and the correspondences described in

corollaries 4.3.1, 4.3.2, and 4.5.1.

4.7 Turing Reductions and Functionals

Oracle machines are used as a means of carrying out relative computations, i.e.,

computations performed by Turing machines with access to an additional source of in-

formation provided by the oracle. An oracle machine is a Turing machine equipped with

an additional read-only tape called the oracle tape. We write MS to denote an oracle

machine with sequence S written on its oracle tape. Given an input n ∈ N, an oracle

machine will either halt or run forever. If the oracle machine halts on a given input, then

it must query the oracle tape a finite number of times.

It is often useful to provide an oracle tape with a string rather than a sequence. The

behavior of a machine M with a string oracle x ∈ Σ∗ is identical to that of a sequence

oracle S ∈ Σ∞, except that, if the machine attempts to query a position of the oracle

tape that is larger than |x|− 1, the machine immediately enters a looping state and runs

forever.

The following notations and definitions can be found in [1, 57, 64]. We may dis-

associate an oracle machine M from any particular oracle and refer to it as a partial

73

function ΦM : Σ∞×N→ Σ∗ defined by ΦM(S, n) = MS(n). Each ΦM is called a Turing

functional. The partial function ΦS
M : N→ Σ∗ is defined by ΦS

M(n) = ΦM(S, n), and we

write ΦS
M(n) ↓ if MS halts on input n and ΦS

M(n) ↑ if MS does not halt on input n.

For any two sequences S and T and any oracle machine M , we write ΦS
M = T if, for

all n ∈ N,

ΦS
M(n) = T � n.

We say that T is Turing reducible to S if there exists an oracle machine M such that

ΦS
M = T .

For the rest of this paper, we omit the M in ΦM and ΦS
M and denote an arbitrary

Turing functional by Φ and an arbitrary Turing functional with oracle S by ΦS.

4.8 Turing Functionals with Bounded Use and Data

Processing Inequalities

In this section, we develop data processing inequalities for sequences and show how

these inequalities change when applying different computable bounds to the use of a

Turing functional. First, we prove several supporting lemmas.

Lemma 4.8.1. There exists a constant c ∈ N such that, for all u, v, w ∈ Σ∗,

K(u | vw) ≤ K(u | v) +K(|v|) + c.

Proof. Let M be a TM such that, if U(π1) = |v| and U(π2, v) = u,

M(π1π2, vw) = u.

Let cM ∈ N be an optimality constant of M . Assume the hypothesis, and let π1 be a

minimum-length program for |v| and π2 be a minimum-length program for u given v. By

74

optimality,

K(u | vw) ≤ KM(u | vw) + cM

≤ |π1π2|+ cM

= K(u | v) +K(|v|) + c,

where c = cM .

Corollary 4.8.2. For all u, v, w ∈ Σ∗,

I(u : w) ≤ I(uv : w) + o(|u|).

Proof. By the definition of mutual information and Lemma 4.8.1, there exists a constant

c ∈ N such that

I(u : w) = K(w)−K(w |u)

≤ K(w)−K(w |uv) +K(|u|) + c

= I(uv : w) + o(|u|).

Corollary 4.8.3. For all u,w ∈ Σ∗,

I(u : w) = I(w : u) + o(|u|) + o(|w|).

Proof. By Lemma 4.4.6,

I(u : w) = K(u) +K(w)−K(u,w) + o(|u|)

= K(w) +K(u)−K(w, u) + o(|u|)

= I(w : u) + o(|u|) + o(|w|).

We now investigate bounded Turing reductions and their effects on the shared algo-

rithmic information between strings. As previously mentioned, a halting oracle machine

computation can only make a finite number of queries to its oracle, and we are often

interested in knowing the largest position of the oracle tape that a machine will query

before it halts. The following definition is from [1].

75

Definition. The use function of a Turing functional Φ equipped with oracle S ∈ Σ∞ is

φSuse(n) =

m+ 1 if ΦS(n) ↓ and m is the largest query made to S

0 if ΦS(n) ↓ and S is not queried during the computation

undefined if ΦS(n) ↑

,

for every n ∈ N.

Traditionally, we denote Turing functionals using uppercase Greek letters (e.g., Φ, Γ)

and their corresponding use functions by lowercase Greek letters (e.g., φuse, γuse).

Definition. A sequence T ∈ Σ∞ is bounded Turing reducible (bT-reducible) to a se-

quence S ∈ Σ∞ if T is Turing reducible to S by a Turing functional Φ such that φSuse is

bounded by a computable function.

For convenience, we say that T ∈ Σ∞ is m-bT-reducible to S ∈ Σ∞ if T is bT-reducible

to S via Φ and m : N→ N is a computable function bounding φSuse.

Lemma 4.8.4. Let m : N → N be a computable, strictly increasing function. For all

X, Y, Z ∈ Σ∞, if Z is m-bT-Turing reducible to X, then

I(Z � r : Y � r) ≤ I(X � m(r) : Y � m(r)) + o(m(r)).

Proof. Assume that Z is m-bT-Turing reducible to X by some Turing functional Φ whose

use function φXuse is bounded by m. By Corollaries 4.8.2 and 4.8.3,

I(Z � r : Y � r) = I(Y � r : Z � r) + o(r)

≤ I(Y � m(r) : Z � r) + o(r) (4.8.1)

= I(Z � r : Y � m(r)) + o(m(r)).

Define the partial function f : Σ∗ × N→ Σ∗ by

f(u, r) = Φu(r),

76

for all u ∈ Σ∗ and r ∈ N. The function f is clearly computable. Therefore, by (4.8.1)

and Lemma 3.3.2,

I(Z � r : Y � r) ≤ I(f(X � m(r), r) : Y � m(r)) + o(m(r))

= K(Y � m(r))−K(Y � m(r) | f(X � m(r), r)) + o(m(r))

≤ K(Y � m(r))−K(Y � m(r) |X � m(r)) + o(m(r))

= I(X � m(r) : Y � m(r)) + o(m(r)).

We now present an important technical lemma.

Lemma 4.8.5 (Bounded Use Processing Lemma). Let m : N → N be a computable,

strictly increasing function. For all X, Y, Z ∈ Σ∞, if Z is m-bT-Turing reducible to X,

then

mdim(Z : Y) ≤ mdim(X : Y)

(
lim sup
r→∞

m(r)

r

)
and

Mdim(Z : Y) ≤Mdim(X : Y)

(
lim sup
r→∞

m(r)

r

)
,

except when

(
lim sup
r→∞

m(r)

r

)
=∞ while either mdim(X : Y) = 0 or Mdim(X : Y) = 0.

Proof. By Lemma 4.8.4,

mdim(Z : Y) = lim inf
r→∞

I(Z � r : Y � r)
r log |Σ|

≤ lim inf
r→∞

I(X � m(r) : Y � m(r)) + o(m(r))

r log |Σ|

= lim inf
r→∞

(
I(X � m(r) : Y � m(r)) + o(m(r))

m(r) log |Σ|
· m(r)

r

)
≤
(

lim inf
r→∞

I(X � m(r) : Y � m(r)) + o(m(r))

m(r) log |Σ|

)(
lim sup
r→∞

m(r)

r

)
= mdim(X : Y)

(
lim sup
r→∞

m(r)

r

)
.

A similar proof can be given for Mdim.

77

Definition. Let m : N→ N be defined by m(n) = n + c, where c ∈ N is a constant. A

sequence T ∈ Σ∞ is computable Lipschitz reducible (cl-reducible) to a sequence S ∈ Σ∞

if T is m-bT-reducible to S.

The following theorem follows directly from Lemma 4.8.5.

Theorem 4.8.6. For all sequences X, Y, Z ∈ Σ∞, if Z is cl-reducible to X, then

mdim(Z : Y) ≤ mdim(X : Y)

and

Mdim(Z : Y) ≤Mdim(X : Y).

Let α ≥ 1 and hα : N → N be defined by hα(n) = dα(n + c)e, where c ∈ N is a

constant. The following is a corollary of Lemma 4.8.5.

Corollary 4.8.7. Let α ≥ 1. For all sequences X, Y, Z ∈ Σ∞, if Z is hα-bT-reducible to

a sequence X, then

mdim(Z : Y) ≤ α ·mdim(X : Y)

and

Mdim(Z : Y) ≤ α ·Mdim(X : Y).

Typically, data processing inequalities are statements about all of the defined outputs

of a particular transformation. The results above, while powerful, are not framed in

this manner. To remedy this, we now discuss data processing inequalities in terms of

individual bounded Turing functionals.

Definition. Let m : N→ N be a computable function. A m-bounded Turing functional

(m-bT-functional) is a Turing functional such that, for every sequence S ∈ Σ∞ and every

n ∈ N where ΦS(n) is defined, φSuse(n) ≤ m(n).

Definition. Let m : N → N be defined by m(n) = n + c. A computable Lipschitz

functional (cl-functional) is a m-bounded Turing functional.

78

We use Theorem 4.8.6 and Corollary 4.8.7 to derive the following data processing

inequalities for sequences whose transformations are bounded Turing functionals.

Corollary 4.8.8. If Φ is a cl-functional, then, for all S, T ∈ Σ∞ where ΦS is defined,

mdim(ΦS : T) ≤ mdim(S : T)

and

Mdim(ΦS : T) ≤Mdim(S : T).

We also have a similar data processing inequality for hα-bounded Turing functionals.

Corollary 4.8.9. For all α ≥ 1, if Φ is a hα-bounded Turing functional, then, for all

S, T ∈ Σ∞ where ΦS is defined,

mdim(ΦS : T) ≤ α ·mdim(S : T)

and

Mdim(ΦS : T) ≤ α ·Mdim(S : T).

4.9 Turing Functionals with Bounded Yield and Reverse Data

Processing Inequalities

In this section, we define the yield of a Turing functional and develop several reverse

data processing inequalities (i.e., data processing inequalities where the transformations

may significantly increase the mutual dimension between two sequences) using yield

bounded Turing functionals.

We now introduce the yield function of a Turing functional.

Definition. The yield function of a Turing functional Φ equipped with oracle S ∈ Σ∞

is defined by

φSyield(n) = min{m ∈ N |ΦS�n(m) ↑},

for all n ∈ N.

79

Intuitively, “use” is how much of the oracle the Turing functional must access in order

for it to halt on a given input, while “yield” is how many inputs the Turing functional

can halt on given a prefix of the oracle.

Definition. A sequence T ∈ Σ∞ is yield bounded reducible (yb-reducible) to a sequence

S ∈ Σ∞ if T is Turing reducible to S by a Turing functional Φ such that φSyield is bounded

by a computable function.

For convenience, we say that T is m-yb-reducible to S if T is yb-reducible to S and

m : N→ N is a computable function bounding φSyield.

In order to develop reverse data processing inequalities for sequences, we need to

apply the following restriction to our Turing functionals.

Definition. A Turing functional ΦS is uniquely yielding for oracle S ∈ Σ∞ if, for all

T ∈ Σ∞ and n ∈ N,

ΦS � φSyield(n) v ΦT ⇒ S � n v T.

Definition. A sequence T ∈ Σ∞ is uniquely yield bounded reducible (uyb-reducible) to

S ∈ Σ∞ if T is yb-reducible to S by a Turing functional that is uniquely yielding.

We say that T is m-uyb-reducible to S if T is uyb-reducible to S by a Turing functional

whose yield function is bounded by a computable function m : N→ N.

Lemma 4.9.1. If T ∈ Σ∞ is m-uyb-reducible to S ∈ Σ∞, then S is m-bT-reducible to

T .

Proof. Let T be m-uyb-reducible to S by a Turing functional Φ. We define a Turing

functional ΓT that operates on an input n ∈ N by querying the first m(n) bits of T and

searching for a string x ∈ Σ∗ such that |x| ≥ n and Φx(m(n)) = T � m(n). After finding

80

x, ΓT outputs x � n. Observe that

ΦS � φSyield(n) v ΦS � m(n)

= T � m(n)

= Φx(m(n))

v Φx.

Since Φ is uniquely yielding for S and |x| ≥ n, S � n v x, which implies that ΓT (n) =

S � n.

The following lemma follows directly from Lemma 4.8.5 and Lemma 4.9.1.

Lemma 4.9.2 (Bounded Yield Processing Lemma). Let m : N → N be a computable,

strictly increasing function. For all X, Y, Z ∈ Σ∞, if Z is m-uyb-reducible to X, then

mdim(X : Y) ≤ mdim(Z : Y)

(
lim sup
r→∞

m(r)

r

)
and

Mdim(X : Y) ≤Mdim(Z : Y)

(
lim sup
r→∞

m(r)

r

)
,

except when

(
lim sup
r→∞

m(r)

r

)
=∞ while either mdim(Z : Y) = 0 or Mdim(Z : Y) = 0.

Definition. Let m(n) = n + c, for some constant c ∈ N. A sequence T ∈ Σ∞ is

linear uniquely yield bounded reducible (`-uyb-reducible) to a sequence S ∈ Σ∞ if T is

m-uyb-reducible to S.

The following theorem and corollary follow directly from the Bounded Yield Process-

ing Lemma.

Theorem 4.9.3. For all sequences X, Y, Z ∈ Σ∞, if Z is `-uyb-reducible to X, then

mdim(X : Y) ≤ mdim(Z : Y)

and

Mdim(X : Y) ≤Mdim(Z : Y).

81

Corollary 4.9.4. Let α ≥ 1. For all sequences X, Y, Z ∈ Σ∞, if Z is hα-uyb-reducible

to X, then

mdim(X : Y) ≤ α ·mdim(Z : Y)

and

Mdim(X : Y) ≤ α ·Mdim(Z : Y).

The end of Section 4.8 discussed data processing inequalities in terms of all of the

defined outputs of use bounded Turing functionals. In like manner, we describe reverse

data processing inequalities in terms of yield bounded Turing functionals.

Definition. A Turing functional is a yield bounded functional (yb-functional) if there

exists a computable function f : N→ N such that, for every S ∈ Σ∞, φSyield(n) ≤ f(n).

Definition. A uniquely yield bounded functional (uyb-functional) is a yield bounded

functional that is also uniquely yielding for every oracle.

For convenience, we say that a Turing functional is a m-uyb-functional if it is a

uyb-functional whose yield is bounded by a computable function m : N→ N.

Definition. Let m : N→ N be defined by m(n) = n+ c. A Turing functional is a linear

uniquely yield bounded functional (`-uyb-functional) if it is a m-uyb-functional.

We use Theorem 4.9.3 and Corollary 4.9.4 to derive the following reverse data process-

ing inequalities for sequences whose transformations are uniquely yield bounded Turing

functionals.

Corollary 4.9.5. For all `-uyb-functionals Φ and sequences S, T ∈ Σ∞ where ΦS is

defined,

mdim(S : T) ≤ mdim(ΦS : T)

and

Mdim(S : T) ≤Mdim(ΦS : T).

82

Corollary 4.9.6. Let α ≥ 1. For all hα-uyb-functionals Φ and sequences S, T ∈ Σ∞

where ΦS is defined,

mdim(S : T) ≤ α ·mdim(ΦS : T)

and

Mdim(S : T) ≤ α ·Mdim(ΦS : T).

83

CHAPTER 5. COUPLED RANDOMNESS

In this chapter, we investigate the mutual dimensions between coupled random se-

quences. Intuitively, a coupled random sequence is the interleave of two sequences R1

and R2 that are generated by independent tosses of coins whose biases may or may not

be correlated. We prove that an interesting class of coupled random sequences can be

characterized by Shannon mutual information.

We also show that every independently random pair of sequences has zero mutual

dimension. However, we demonstrate that the converse is not true by constructing two

sequences that are not independently random and yet have zero mutual dimension.

Finally, we develop a “mutual” version of constructive Billingsley dimension, i.e.,

constructive dimension with respect to nonuniform probability measures [47], and prove

a divergence formula that characterizes the Billingsley mutual dimension between certain

kinds of coupled random sequences.

Because coupled randomness is new to algorithmic information theory, the first three

sections of this chapter review the technical framework for it.

This chapter is a joint work with Jack H. Lutz and can be found in [9].

5.1 Probability Measures on Alphabets and Sequences

Let Σ be a finite alphabet. A (Borel) probability measure on the Cantor space Σ∞ of

all infinite sequences over Σ is (conveniently represented by) a function ν : Σ∗ → [0, 1]

with the following two properties.

84

1. ν(λ) = 1, where λ is the empty string.

2. For every w ∈ Σ∗, ν(w) =
∑
a∈Σ

ν(wa).

Intuitively, here, ν(w) is the probability that w v S (w is a prefix of S) when S ∈ Σ∞

is “chosen according to” the probability measure ν.

Most of this chapter concerns a very special class of probability measures on Σ∞. For

each n ∈ N, let α(n) be a probability measure on Σ, i.e., α(n) : Σ→ [0, 1], with

∑
a∈Σ

α(n)(a) = 1,

and let ~α = (α(0), α(1), . . .) be the sequence of these probability measures on Σ. Then

the product of ~α (or, emphatically distinguishing it from the products ν1× ν2 below, the

longitudinal product of ~α) is the probability measure µ[~α] on Σ∞ defined by

µ[~α](w) =

|w|−1∏
n=0

α(n)(w[n])

for all w ∈ Σ∗, where w[n] is the nth symbol in w. Intuitively, a sequence S ∈ Σ∞

is “chosen according to” µ[~α] by performing the successive experiments α(0), α(1), . . .

independently.

5.2 Coupled Probability Measures

To extend probability to pairs of sequences, we regard Σ×Σ as an alphabet and rely

on the natural identification between Σ∞ × Σ∞ and (Σ × Σ)∞. A probability measure

on Σ∞ × Σ∞ is thus a function ν : (Σ× Σ)∗ → [0, 1]. It is convenient to write elements

of (Σ × Σ)∗ as ordered pairs (u, v), where u, v ∈ Σ∗ have the same length. With this

notation, condition 2 above says that, for every (u, v) ∈ (Σ× Σ)∗,

ν(u, v) =
∑
a,b∈Σ

ν(ua, vb).

85

If ν is a probability measure on Σ∞ × Σ∞, then the first and second marginal prob-

ability measures of ν (briefly, the first and second marginals of ν) are the functions

ν1, ν2 : Σ∗ → [0, 1] defined by

ν1(u) =
∑
v∈Σ|u|

ν(u, v), ν2(v) =
∑
u∈Σ|v|

ν(u, v).

It is easy to verify that ν1 and ν2 are probability measures on Σ∗. The probability

measure ν here is often called a joint probability measure on Σ∞ × Σ∞, or a coupling of

the probability measures ν1 and ν2.

If ν1 and ν2 are probability measures on Σ∞, then the product probability measure

ν1 × ν2 on Σ∞ × Σ∞ is defined by

(ν1 × ν2)(u, v) = ν1(u)ν2(v)

for all u, v ∈ Σ∗ with |u| = |v|. It is well known and easy to see that ν1 × ν2 is, indeed

a probability measure on Σ∞ × Σ∞ and that the marginals of ν1 × ν2 are ν1 and ν2.

Intuitively, ν1 × ν2 is the coupling of ν1 and ν2 in which ν1 and ν2 are independent, or

uncoupled.

We are most concerned here with coupled longitudinal product probability measures

on Σ∞ × Σ∞. For each n ∈ N, let α(n) be a probability measure on Σ × Σ, i.e., α(n) :

Σ× Σ→ [0, 1], with ∑
a,b∈Σ

α(n)(a, b) = 1,

and let ~α = (α(0), α(1), . . .) be the sequence of these probability measures. Then the

longitudinal product µ[~α] is defined as above, but now treating Σ × Σ as the alphabet.

It is easy to see that the marginals of µ[~α] are µ[~α]1 = µ[~α1] and µ[~α]2 = µ[~α2], where

each α
(n)
i is the marginal on Σ given by

α
(n)
1 (a) =

∑
b∈Σ

α(n)(a, b), α
(n)
2 (b) =

∑
a∈Σ

α(n)(a, b).

86

The following class of examples is useful [55] and instructive.

Example 5.2.1. Let Σ = {0, 1}. For each n ∈ N, fix a real number ρn ∈ [−1, 1],

and define the probability measure α(n) on Σ × Σ by α(n)(0, 0) = α(n)(1, 1) = 1+ρn
4

and

α(n)(0, 1) = α(n)(1, 0) = 1−ρn
4

. Then, writing α~ρ for ~α, the longitudinal product µ[α~ρ] is

a probability measure on C×C. It is routine to check that the marginals of µ[α~ρ] are

µ[α~ρ]1 = µ[α~ρ]2 = µ,

where µ(w) = 2−|w| is the uniform probability measure on C.

5.3 Coupled Random Sequences

It is convenient here to use Schnorr’s martingale characterization [59, 58, 61, 42,

54, 17] of the algorithmic randomness notion introduced by Martin-Löf [51]. If ν is a

probability measure on Σ∞, then a ν–martingale is a function d : Σ∗ → [0,∞) satis-

fying d(w)ν(w) =
∑

a∈Σ d(wa)ν(wa) for all w ∈ Σ∗. A ν–martingale d succeeds on a

sequence S ∈ Σ∞ if lim supw→S d(w) = ∞. A ν–martingale d is constructive, or lower

semicomputable, if there is a computable function d̂ : Σ∗ × N → Q ∩ [0,∞] such that

d̂(w, t) ≤ d̂(w, t+ 1) holds for all w ∈ Σ∗ and t ∈ N, and limt→∞ d̂(w, t) = d(w) holds for

all w ∈ Σ∗. A sequence R ∈ Σ∞ is random with respect to a probability measure ν on

Σ∗ if no lower semicomputable ν–martingale succeeds on R.

If we once again treat Σ × Σ as an alphabet, then the above notions all extend

naturally to Σ∞ × Σ∞. Hence, when we speak of a coupled pair (R1, R2) of random

sequences, we are referring to a pair (R1, R2) ∈ Σ∞×Σ∞ that is random with respect to

some probability measure ν on Σ∞×Σ∞ that is explicit or implicit in the discussion. An

extensively studied special case here is that R1, R2 ∈ Σ∞ are defined to be independently

random with respect to probability measures ν1, ν2, respectively, on Σ∞ if (R1, R2) is

random with respect to the product probability measure ν1 × ν2 on Σ∞ × Σ∞.

87

When there is no possibility of confusion, we use such convenient abbreviations as

“random with respect to ~α” for “random with respect to µ[~α].”

A trivial transformation of Martin-Löf tests establishes the following well known fact.

Observation 5.3.1. If ν is a computable probability measure on Σ∞×Σ∞ and (R1, R2) ∈

Σ∞ × Σ∞ is random with respect to ν, then R1 and R2 are random with respect to the

marginals ν1 and ν2.

Example 5.3.2. If ~ρ is a computable sequence of reals ρn ∈ [−1, 1], α~ρ is as in Example

5.2.1, and (R1, R2) ∈ C ×C is random with respect to α~ρ, then Observation 5.3.1 tells

us that R1 and R2 are random with respect to the uniform probability measure on C.

5.4 Shannon Entropy Characterizations of the Dimensions of

Random Sequences

We recall basic definitions from Shannon information theory.

Definition. Let α be a probability measure on Σ. The Shannon entropy of α is

H(α) =
∑
a∈Σ

α(a) log
1

α(a)
.

Definition. Let α be probability measures on Σ×Σ. The Shannon mutual information

between α1 and α2 is

I(α1 : α2) =
∑

(a,b)∈Σ×Σ

α(a, b) log
α(a, b)

α1(a)α2(b)
.

Theorem 5.4.1 ([44]). If ~α is a computable sequence of probability measures α(n) on Σ

that converge to a probability measure α on Σ, then for every R ∈ Σ∞ that is random

with respect to ~α,

dim(R) =
H(α)

log |Σ|
.

88

5.5 Shannon Mutual Information Characterizations of the

Mutual Dimensions of Coupled Random Sequences

The following is a corollary to Theorem 5.4.1.

Corollary 5.5.1. If ~α is a computable sequence of probability measures α(n) on Σ that

converge to a probability measure α on Σ, then for every R ∈ Σ∞ that is random with

respect to ~α and every w v R,

K(w) = |w|H(α) + o(|w|).

Lemma 5.5.2. If ~α is a computable sequence of probability measures α(n) on Σ×Σ that

converge to a probability measure α on Σ × Σ, then for every coupled pair (R1, R2) ∈

Σ∞ × Σ∞ that is random with respect to ~α and (u,w) v (R1, R2),

I(u : w) = |u|I(α1 : α2) + o(|u|).

Proof. By Lemma 4.4.6,

I(u : w) = K(u) +K(w)−K(u,w) + o(|u|).

We then apply Observation 5.3.1 and Corollary 5.5.1 to obtain

I(u : w) = |u|(H(α1) +H(α2)−H(α)) + o(|u|)

= |u|I(α1 : α2) + o(|u|).

The following is a corollary to Lemma 5.5.2.

Corollary 5.5.3. If α is a computable, positive probability measure on Σ × Σ, then,

for every sequence (R1, R2) ∈ Σ∞ × Σ∞ that is random with respect to α and (u,w) v

(R1, R2),

I(u : w) = |u|I(α1 : α2) + o(|u|).

89

In applications one often encounters longitudinal product measures µ[~α] in which

the probability measures α(n) are all the same (the i.i.d. case) or else converge to some

limiting probability measure. The following theorem says that, in such cases, the mutual

dimensions of coupled pairs of random sequences are easy to compute.

Theorem 5.5.4. If ~α is a computable sequence of probability measures α(n) on Σ × Σ

that converge to a probability measure α on Σ×Σ, then for every coupled pair (R1, R2) ∈

Σ∞ × Σ∞ that is random with respect to ~α,

mdim(R1 : R2) = Mdim(R1 : R2) =
I(α1 : α2)

log |Σ|
.

Proof. By Lemma 5.5.2, we have

mdim(R1 : R2) = lim inf
(u,w)→(R1,R2)

I(u : w)

|u| log |Σ|

= lim inf
(u,w)→(R1,R2)

|u|I(α1 : α2) + o(|u|)
|u| log |Σ|

=
I(α1 : α2)

log |Σ|

A similar proof shows that Mdim(R1 : R2) = I(α1:α2)
log |Σ| .

Example 5.5.5. Let Σ = {0, 1}, and let ~ρ be a computable sequence of reals ρn ∈ [−1, 1]

that converge to a limit ρ. Define the probability measure α on Σ × Σ by α(0, 0) =

α(1, 1) = 1+ρ
4

and α(0, 1) = α(1, 0) = 1−ρ
4

, and let α1 and α2 be the marginals of α. If

α~ρ is as in Example 5.2.1, then for every pair (R1, R2) ∈ Σ∞ × Σ∞ that is random with

respect to α~ρ, Theorem 5.5.4 tells us that

mdim(R1 : R2) = Mdim(R1 : R2)

= I(α1 : α2)

= 1−H(
1 + ρ

2
).

In particular, if the limit ρ is 0, then

mdim(R1 : R2) = Mdim(R1 : R2) = 0.

90

5.6 The Mutual Dimension between Independently Random

Sequences

Theorem 5.5.4 has the following easy consequence, which generalizes the last sentence

of Example 5.5.5.

Corollary 5.6.1. If ~α is a computable sequence of probability measures α(n) on Σ × Σ

that converge to a product probability measure α1 × α2 on Σ×Σ, then for every coupled

pair (R1, R2) ∈ Σ∞ × Σ∞ that is random with respect to ~α,

mdim(R1 : R2) = Mdim(R1 : R2) = 0.

Applying Corollary 5.6.1 to a constant sequence ~α in which each α(n) is a product

probability measure α1 × α2 on Σ× Σ gives the following.

Corollary 5.6.2. If α1 and α2 are computable probability measures on Σ, and if R1, R2 ∈

Σ∞ are independently random with respect to α1, α2, respectively, then

mdim(R1 : R2) = Mdim(R1 : R2) = 0.

5.7 Dependent Sequences with Zero Mutual Dimension

In this section, we show that the converse of Corollary 5.6.2 does not hold. This can

be done via a direct construction, but it is more instructive to use a beautiful theorem

of Kakutani, van Lambalgen, and Vovk. The Hellinger distance between two probability

measures α1 and α2 on Σ is

H(α1, α2) =

√∑
a∈Σ

(
√
α1(a)−

√
α2(a))2.

(See [37], for example.) A sequence α = (α(0), α(1), . . .) of probability measures on

Σ is strongly positive if there is a real number δ > 0 such that, for all n ∈ N and

a ∈ Σ, α(n)(a) ≥ δ. Kakutani [33] proved the classical, measure-theoretic version of the

91

following theorem, and van Lambalgen [70, 71] and Vovk [72] extended it to algorithmic

randomness.

Theorem 5.7.1. Let ~α and ~β be computable, strongly positive sequences of probability

measures on Σ.

1. If
∞∑
n=0

H(α(n), β(n))2 <∞,

then a sequence R ∈ Σ∞ is random with respect to ~α if and only if it is random

with respect to ~β.

2. If
∞∑
n=0

H(α(n), β(n))2 =∞,

then no sequence is random with respect to both ~α and ~β.

Observation 5.7.2. Let Σ = {0, 1}. If ρ = [−1, 1] and probability measure α on Σ× Σ

is defined from ρ as in Example 5.5.5, then

H(α1 × α2, α)2 = 2−
√

1 + ρ−
√

1− ρ.

Proof. Assume the hypothesis. Then

H(α1 × α2, α)2 =
∑

a,b∈{0,1}

(
√
α1(a)α2(b)−

√
α(a, b))2

=
∑

a,b∈{0,1}

(
1

2
−
√
α(a, b)

)2

= 2

(
1

2
−
√

1 + ρ

4

)2

+ 2

(
1

2
−
√

1− ρ
4

)2

= 2−
√

1 + ρ−
√

1− ρ.

Corollary 5.7.3. Let Σ = {0, 1} and δ ∈ (0, 1). Let ~ρ be a computable sequence of real

numbers ρn ∈ [δ − 1, 1− δ], and let α~ρ be as in Example 5.2.1. If

∞∑
n=0

ρ2
n =∞,

92

and if (R1, R2) ∈ Σ∞ × Σ∞ is random with respect to α~ρ, then R1 and R2 are not

independently random with respect to the uniform probability measure on C.

Proof. This follows immediately from Theorem 5.7.1, Observation 5.7.2, and the fact

that
√

1 + x+
√

1− x = 2− x2

2
+ o(x2)

as x→ 0.

Corollary 5.7.4. There exist sequences R1, R2 ∈ C that are random with respect to

the uniform probability measure on C and satisfy Mdim(R1 : R2) = 0, but are not

independently random.

Proof. For each n ∈ N, let

ρn =
1√
n+ 2

.

Let ~ρ = (ρ0, ρ1, . . .), let α~ρ be as in Example 5.2.1, and let (R1, R2) ∈ Σ∞ × Σ∞ be

random with respect to α~ρ. Observation 5.3.1 tells us that R1 and R2 are random with

respect to the marginals of α~ρ, both of which are the uniform probability measure on C.

Since ρn → 0 as n→∞, the last sentence in Example 5.5.5 tells us (via Theorem 5.5.4)

that Mdim(R1 : R2) = 0. Since

∞∑
n=0

ρ2
n =

∞∑
n=0

1

n+ 2
=∞,

Corollary 5.7.3 tells us that R1 and R2 are not independently random.

5.8 Billingsley Dimension

In this section, we review the Billingsley generalization of constructive dimension, i.e.,

dimension with respect to strongly positive probability measures. A probability measure

β on Σ∞ is strongly positive if there exists δ > 0 such that, for all w ∈ Σ∗ and a ∈ Σ,

β(wa) > δβ(w).

93

Definition. The Shannon self-information of w ∈ Σ is

`β(w) =

|w|−1∑
i=0

log
1

β(w[i])
.

In [47], Lutz and Mayordomo defined (and usefully applied) constructive Billingsley

dimension in terms of gales and proved that it can be characterized using Kolmogorov

complexity. Since Kolmogorov complexity is more relevant in this discussion, we treat

the following theorem as a definition.

Definition (Lutz and Mayordomo [47]). The dimension of S ∈ Σ∞ with respect to a

strongly positive probability measure β on Σ∞ is

dimβ(S) = lim inf
w→S

K(w)

`β(w)
.

5.9 Billingsley Mutual Dimension

In the definition of the dimension of a sequence with respect to a strongly positive

probability measure on Σ∞, the denominator `β(w) normalizes the dimension to be a

real number in [0, 1]. It seems natural to define the Billingsley generalization of mutual

dimension in a similar way by normalizing the algorithmic mutual information between u

and w by log β(u,w)
β1(u)β2(w)

(i.e., the self-mutual information or pointwise mutual information

between u and w [27]) as (u,w) → (S, T). However, this results in bad behavior. For

example, the mutual dimension between any two sequences with respect to the uniform

probability measure on Σ × Σ is always undefined. Other thoughtful modifications to

this natural definition results in sequences having negative or infinitely large mutual

dimension. The main problem here is that, given a particular probability measure, one

can construct certain sequences whose prefixes have extremely large positive or negative

self-mutual information. In order to avoid undesirable behavior, we restrict the definition

of Billingsley mutual dimension to sequences that are mutually normalizable.

94

Definition. Let β be a probability measure on Σ∞ × Σ∞. Two sequences S, T ∈ Σ∞

are mutually β–normalizable (in this order) if

lim
(u,w)→(S,T)

`β1(u)

`β2(w)
= 1.

Definition. Let S, T ∈ Σ∞ be mutually β–normalizable. The upper and lower mutual

dimensions between S and T with respect to β are

mdimβ(S : T) = lim inf
(u,w)→(S,T)

I(u : w)

`β1(u)
= lim inf

(u,w)→(S,T)

I(u : w)

`β2(w)

and

Mdimβ(S : T) = lim sup
(u,w)→(S,T)

I(u : w)

`β1(u)
= lim sup

(u,w)→(S,T)

I(u : w)

`β2(w)
,

respectively.

The above definition has nice properties because β–normalizable sequences have prefixes

with asymptotically equivalent self-information. Given the basic properties of mutual

information and Shannon self-information, we can see that

0 ≤ mdimβ(S : T) ≤ min{dimβ1(S), dimβ2(T)} ≤ 1.

Clearly, Mdimβ also has a similar property.

5.10 A Mutual Divergence Formula

Definition. Let α and β be probability measure on Σ. The Kullback-Leibler divergence

between α and β is

D(α||β) =
∑
a∈Σ

α(a) log
α(a)

β(a)

The following lemma is useful when proving Lemma 5.11.1 and Theorem 5.10.2.

Lemma 5.10.1 (Frequency Divergence Lemma [46]). If α and β are positive probability

measures on Σ, then, for all S ∈ FREQα,

`β(w) = (H(α) +D(α||β))|w|+ o(|w|)

as w → S.

95

The rest of this chapter is primarily concerned with probability measures on alpha-

bets. Our first result of this section is a mutual divergence formula for random, mutually

β–normalizable sequences. This can be thought of as a “mutual” version of a divergence

formula in [46].

Theorem 5.10.2 (Mutual Divergence Formula). If α and β are computable, positive

probability measures on Σ×Σ, then, for every (R1, R2) ∈ Σ∞×Σ∞ that is random with

respect to α such that R1 and R2 are mutually β–normalizable,

mdimβ(R1 : R2)=Mdimβ(R1 : R2)=
I(α1 : α2)

H(α1) +D(α1||β1)
=

I(α1 : α2)

H(α2) +D(α2||β2)
.

Proof. By Corollary 5.5.3 and the Frequency Divergence Lemma, we have

mdimβ(R1 : R2) = lim inf
(u,w)→(R1,R2)

I(u : w)

`β1(u)

= lim inf
(u,w)→(R1,R2)

|u|I(α1 : α2) + o(|u| log |Σ|)
(H(α1) +D(α1||β1))|u|+ o(|u|)

= lim inf
(u,w)→(R1,R2)

|u|(I(α1 : α2) + o(log |Σ|))
|u|((H(α1) +D(α1||β1)) + o(1))

=
I(α1 : α2)

H(α1) +D(α1||β1)
.

Similar arguments show that

mdimβ(R1 : R2) =
I(α1 : α2)

H(α2) +D(α2||β2)

and

Mdimβ(R1 : R2) =
I(α1 : α2)

H(α1) +D(α1||β1)
=

I(α1 : α2)

H(α2) +D(α2||β2)
.

5.11 Achieving Mutual Normalizability

We conclude this chapter by making some initial observations regarding when mutual

normalizability can be achieved.

96

Definition. Let α1, α2, β1, β2 be probability measures over Σ. We say that α1 is

(β1, β2)–equivalent to α2 if∑
a∈Σ

α1(a) log
1

β1(a)
=
∑
a∈Σ

α2(a) log
1

β2(a)
.

For a probability measure α on Σ, let FREQα be the set of sequences S ∈ Σ∞

satisfying limn→∞ n
−1|{i < n

∣∣S[i] = a}| = α(a) for all a ∈ Σ.

Lemma 5.11.1. Let α1, α2, β1, β2 be probability measures on Σ. If α1 is (β1, β2)–

equivalent to α2, then, for all pairs (S, T) ∈ FREQα1×FREQα2, S and T are mutually

β–normalizable.

Proof. By the Frequency Divergence Lemma,

lim
(u,w)→(S,T)

`β1(u)

`β2(w)
= lim

n→∞

(H(α1) +D(α1||β1)) · n+ o(n)

(H(α2) +D(α2||β2)) · n+ o(n)

=
H(α1) +D(α1||β1)

H(α2) +D(α2||β2)

=

∑
a∈Σ

α1(a) log
1

β1(a)∑
a∈Σ

α2(a) log
1

β2(a)

= 1,

where the last equality is due to α1 being (β1, β2)–equivalent to α2.

Given probability measures β1 and β2 on Σ, we would like to know which sequences

are mutually β–normalizable. The following results help to answer this question for

probability measures on and sequences over {0, 1}.

Lemma 5.11.2. Let β1 and β2 be probability measures on {0, 1} such that exactly one

of the following conditions hold.

1. 0 < β2(0) < β1(1) < β1(0) < β2(1) < 1

2. 0 < β2(1) < β1(0) < β1(1) < β2(0) < 1

97

3. 0 < β2(0) < β1(0) < β1(1) < β2(1) < 1

4. 0 < β2(1) < β1(1) < β1(0) < β2(0) < 1

5. β1 = µ and β2 6= µ.

If f is defined by

f(x) =
x · log β1(1)

β1(0)
+ log β2(1)

β1(1)

log β2(1)
β2(0)

,

then

0 < f(x) < 1,

for all x ∈ [0, 1].

Proof. First, observe that f is linear and has a negative slope under conditions 1 and 2,

a positive slope under conditions 3 and 4, and zero slope under condition 5. We verify

that, for all x ∈ [0, 1], f(x) ∈ (0, 1) under each condition.

Under condition 1, we assume

β2(0) < β1(1) < β2(1),

which implies that

log
β2(0)

β2(1)
< log

β1(1)

β2(1)
< 0.

From the above inequality, we obtain

0 <
log β2(1)

β1(1)

log β2(1)
β2(0)

< 1.

Therefore, by the definition of f ,

0 < f(0) < 1. (5.11.1)

Under the same condition, we have

β1(0) < β2(1),

98

which implies that

log
β1(0)

β1(1)
< log

β2(1)

β1(1)
.

From the above inequality, we obtain

log β1(0)
β1(1)

log β2(1)
β2(0)

<
log β2(1)

β1(1)

log β2(1)
β2(0)

,

whence

0 <
log β1(1)

β1(0)
+ log β2(1)

β1(1)

log β2(1)
β2(0)

.

Therefore, by the definition of f ,

0 < f(1). (5.11.2)

By (5.11.1), (5.11.2), and the negativity of the slope of f ,

0 < f(1) < f(0) < 1.

A similar argument shows that, if condition 2 holds, then 0 < f(1) < f(0) < 1.

Assuming condition 3, we can prove that, if β2(0) < β1(1) < β2(1), then

0 < f(0) < 1, (5.11.3)

using the argument given above. Under the same condition, we have

β2(0) < β1(0),

which implies that

log β1(1)− log β1(0) + log β2(1)− log β1(1) < log β2(1)− log β2(0).

From this inequality, we derive

log β1(1)
β1(0)

+ log β2(1)
β1(1)

log β2(1)
β2(0)

< 1.

99

Therefore, by the definition of f ,

f(1) < 1. (5.11.4)

By (5.11.3), (5.11.4), and the positivity of the slope of f ,

0 < f(0) < f(1) < 1.

A similar argument shows that, if condition 4 holds, then 0 < f(1) < f(0) < 1.

Under condition 5 and without loss of generality, assume that β1 = µ and β2(0) <

1/2 < β2(1), which implies

0 < 1 + log β2(1) < log
β2(1)

β2(0)
.

From the above inequality, we derive

0 <
log β2(1)

1/2

log β2(1)
β2(0)

< 1,

whence, by the definition of f ,

0 < f(x) < 1,

for all x ∈ [0, 1].

Theorem 5.11.3. Let β1 and β2 be probability measures on {0, 1} that satisfy exactly

one of the conditions from Lemma 5.11.2, and let α1 be an arbitrary probability measure

on {0, 1}. Then α1 is (β1, β2)–equivalent to exactly one unique probability measure α2,

which is defined by

α2(0) =
α1(0) log β1(1)

β1(0)
+ log β2(1)

β1(1)

log β2(1)
β2(0)

and α2(1) = 1− α2(0).

Proof. By Lemma 5.11.2, α2 is a valid probability measure. Observe that

α2(0) =
α1(0) log β1(1)

β1(0)
+ log β2(1)

β1(1)

log β2(1)
β2(0)

100

if and only if

α1(0)

(
log

1

β1(0)
− log

1

β1(1)

)
+ log

1

β1(1)
= α2(0)

(
log

1

β2(0)
− log

1

β2(1)

)
+ log

1

β2(1)
.

The above equality holds if and only if

α1(0) log
1

β1(0)
+ α1(1) log

1

β1(1)
= α2(0) log

1

β2(0)
+ α2(1) log

1

β2(1)
,

which implies that α1 is (β1, β2)–equivalent to α2.

The following corollary follows from Theorem 5.11.3 and Lemma 5.11.1.

Corollary 5.11.4. Let β1, β2, α1, and α2 be as defined in Theorem 5.11.3. For all

(S, T) ∈ FREQα1 × FREQα2, S and T are mutually β–normalizable.

101

BIBLIOGRAPHY

[1] Klaus Ambos-Spies. Strongly Bounded Turing Reducibilities and Computably Enu-

merable Sets. Heidelberg University Lecture Notes, 2011.

[2] Krishna B. Athreya, John M. Hitchcock, Jack H. Lutz, and Elvira Mayordomo. Ef-

fective strong dimension in algorithmic information and computational complexity.

SIAM Journal of Computing, 37(3):671–705, 2007.

[3] C.B. Bell. Mutual information and maximal correlation as measures of dependence.

Annals of Mathematical Statistics, 33(2):587–595, 1962.

[4] P. Billingsley. Hausdorff dimension in probability theory. Illinois Journal of Math-

ematics, 4:187–209, 1960.

[5] P. Billingsley. Ergodic Theory and Information. R. E. Krieger Pub. Co, 1978.

[6] Mark Braverman and Stephen Cook. Computing over the reals: foundations for

scientific computing. Notices of the American Mathematical Society, 53(3):318–329,

2006.

[7] H. Cajar. Billingsley Dimension in Probability Spaces, volume 892 of Lecture Notes

in Mathematics. Springer, 1981.

[8] Adam Case. Bounded Turing reductions and data processing inequalities for se-

quences, submitted.

102

[9] Adam Case and Jack H. Lutz. Mutual dimension and random sequences. In Pro-

ceedings of the 40th International Symposium on the Mathematical Foundations of

Computer Science, pages 199–210. Springer, 2015.

[10] Adam Case and Jack H. Lutz. Mutual dimension. ACM Transactions on Compu-

tation Theory, 7, July 2015, article no. 12.

[11] Gregory J. Chaitin. On the simplicity and speed of programs for computing infinite

sets of natural numbers. Journal of the ACM, 16:407–422, 1969.

[12] Chris J. Conidis. Effective packing dimension of Π0
1-classes. Proceedings of the

American Mathematical Society, 136:3655–3662, 2008.

[13] P. J. Couch, B. D. Daniel, and Timothy H. McNicholl. Computing space-filling

curves. Theory of Computing Systems, 50(2):370–386, 2012.

[14] Thomas R. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley

& Sons, Inc., second edition, 2006.

[15] Randall Dougherty, Jack H. Lutz, Daniel R. Mauldin, and Jason Teutsch. Translat-

ing the Cantor set by a random real. Transactions of the American Mathematical

Society, 366(6):3027–3041, 2014.

[16] Rod G. Downey, Denis R. Hirschfeldt, and Geoff LaForte. Randomness and re-

ducibility. Journal of Computer and System Sciences, 68:96–114, 2004.

[17] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic Randomness and Com-

plexity. Springer, 2010 edition, 2010.

[18] H. G. Eggleston. The fractional dimension of a set defined by decimal properties.

The Quarterly Journal of Mathematics, 20:31–36, 1965.

103

[19] Kenneth Falconer. Fractal Geometry: Mathematical Foundations and Applications.

Wiley, second edition, 2003.

[20] Lance Fortnow, John M. Hitchcock, A. Pavan, N.V. Vinodchandran, and Fengming

Wang. Extracting Kolmogorov complexity with applications to dimension zero-one

laws. Information and Computation, 209:627–636, 2011.

[21] Peter Gács. On the symmetry of algorithmic information. Soviet Mathematics

Doklady, 15(5):1477–1480, 1974. Correction, Ibid., 15:1480, 1974.

[22] Péter Gács. Every sequence is reducible to a random one. Information and Control,

70:186–192, 1986.

[23] R. Gavaldà, M. López-Valdés, E. Mayordomo, and N.V. Vinodchandran. Resource-

bounded dimension in computational learning theory. arXiv:1010.5470, January

2011.

[24] Xiaoyang Gu, Jack Lutz, and Elvira Mayordomo. Curves that must be retraced.

Information and Computation, 209(6):992–1006, 2011.

[25] Xiaoyang Gu, Jack H. Lutz, R. Elvira Mayordomo, and Philippe Moser. Dimension

spectra of random subfractals of self-similar fractals. Annals of Pure and Applied

Logic, 165:1707–1726, 2014.

[26] Daniel Hammer, Andrei E. Romashchenko, Alexander Shen, and Nikolai K.

Vereshchagin. Inequalities for Shannon entropy and Kolmogorov complexity. Jour-

nal of Computer System Sciences, 60(2):442–464, 2000.

[27] Te Sun Han and Kingo Kobayashi. Mathematics of Information and Coding. Trans-

lations of Mathematical Monographs (Book 203). American Mathematical Society,

2007.

104

[28] John M. Hitchcock. Gales suffice for constructive dimension. Information Processing

Letters, 86:9–12, 2003.

[29] John M. Hitchcock. Correspondence principles for effective dimensions. Theory of

Computing Systems, 38(5):559–571, 2005.

[30] John M. Hitchcock. Online learning and resource-bounded dimension: Winnow

yields new lower bounds for hard sets. SIAM Journal on Computing, 36:1696–1708,

2007.

[31] John M. Hitchcock, Jack H. Lutz, and Elvira Mayordomo. The fractal geometry of

complexity classes. SIGACT News, 36:24–38, 2005.

[32] Claude Tricot Jr. Two definitions of fractional dimension. Mathematical Proceedings

of the Cambridge Philosophical Society, 91:57–74, 1982.

[33] Shizuo Kakutani. On equivalence of infinite product measures. Annals of Mathe-

matics, 49(1):214–224, 1948.

[34] Bjørn Kjos-Hanssen and Anil Nerode. Effective dimension of points visited by Brow-

nian motion. Theoretical Computer Science, 410(4-5):347–354, 2009.

[35] Ker-I Ko. Complexity Theory of Real Functions. Birkhäuser, first edition, 1991.

[36] A. N. Kolmogorov. Three approaches to the quantitative definition of information.

Problems of Information Transmission, 1(1):1–7, 1965.

[37] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and Mixing

Times. American Mathematical Society, first edition, 2009.

[38] Leonid A. Levin. On the notion of a random sequence. Soviet Mathematics Doklady,

14(5):1413–1416, 1973.

105

[39] Leonid A. Levin. Laws of information conservation (nongrowth) and aspects of

the foundation of probability theory. Problemy Peredachi Informatsii, 10(3):30–35,

1974.

[40] Andrew E.M. Lewis and George Barmpalias. Random reals and lipschitz continuity.

Mathematical Structures in Computer Science, 16:737–749, 2006.

[41] Andrew E.M. Lewis and George Barmpalias. Randomness and the linear degrees of

computability. Annals of Pure and Applied Logic, 145:252–257, 2006.

[42] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and Its

Applications. Springer, third edition, 2008.

[43] Jack H. Lutz. Dimension in complexity classes. SIAM Journal on Computing,

32(5):1235–1259, 2003.

[44] Jack H. Lutz. The dimensions of individual strings and sequences. Information and

Computation, 187(1):49–79, 2003.

[45] Jack H. Lutz. Effective fractal dimensions. Mathematical Logic Quarterly, 51:62–72,

2005.

[46] Jack H. Lutz. A divergence formula for randomness and dimension. Theoretical

Computer Science, 412:166–177, 2011.

[47] Jack H. Lutz and Elvira Mayordomo. Dimensions of points in self-similar fractals.

SIAM Journal on Computing, 38(3):1080–1112, 2008.

[48] Jack H. Lutz and Klaus Weihrauch. Connectivity properties of dimension level sets.

Mathematical Logic Quarterly, 54(5):483–491, 2008.

[49] Benôıt Mandelbrot. Les objets fractals: Forme, hasard et dimension. Flammarion,

1975.

106

[50] Benôıt Mandelbrot. The Fractal Geometry of Nature. W.H. Freeman and Company,

1982.

[51] Per Martin-Löf. The definition of random sequences. Information and Control,

9:602–619, 1966.

[52] Elvira Mayordomo. A Kolmogorov complexity characterization of constructive

Hausdorff dimension. Information Processing Letters, 84(1):1–3, 2002.

[53] Philippe Moser. A zero-one subexp-dimension law for bpp. Information Processing

Letters, 111:429–432, 2011.

[54] Andre Nies. Computability and Randomness. Oxford University Press, reprint edi-

tion, 2012.

[55] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, first

edition, 2014.

[56] Robert Rettinger and Xizhong Zheng. Points on computable curves of computable

lengths. In MFCS, pages 736–743. Springer, 2009.

[57] Hartley Rogers. Theory of Recursive Functions and Effective Computability. MIT

Press, 1987.

[58] Claus-Peter Schnorr. A unified approach to the definition of random sequences.

Mathematical Systems Theory, 5(3):246–258, 1971.

[59] Claus-Peter Schnorr. Zuflligkeit und Wahrscheinlichkeit: Eine algorithmische Be-

grndung der Wahrscheinlichkeitstheorie. Springer-Verlag, 1971 edition, 1971.

[60] Claus-Peter Schnorr. Process complexity and effective random tests. Journal of

Computer and System Science, 7:376–388, 1973.

107

[61] Claus-Peter Schnorr. A survey of the theory of random sequences. In Proceedings of

the Fifth International Congress of Logic, Methodology and Philosophy of Science,

pages 193–211. Springer, 1977.

[62] Alexander Shen and Nikolai K. Vereshchagin. Logical operations and Kolmogorov

complexity. Theoretical Computer Science, 271(1-2):125–129, 2002.

[63] Robert I. Soare. Recursively Enumerable Sets and Degrees: A Study of Computable

Functions and Computably Generated Sets. Springer-Verlag, 1987.

[64] Robert I. Soare. Turing oracle machines, online computing, and three displacements

in computability theory. Annals of Pure and Applied Logic, 160:368–399, 2009.

[65] R.J. Solomonoff. A preliminary report on a general theory of inductive inference.

Technical Report V-131, Zator Company, Cambridge, MA, February 1960.

[66] R.J. Solomonoff. A formal theory of inductive inference. part i. Information and

Control, 7:1–22, 1964.

[67] R.J. Solomonoff. A formal theory of inductive inference part ii. Information and

Control, 7:224–254, 1964.

[68] Daniel Turetsky. Connectedness properties of dimension level sets. Theoretical

Computer Science, 412(29):3598–3603, 2011.

[69] Alan M. Turing. On computable numbers, with an application to the Entschei-

dungsproblem. A correction. Proceedings of the London Mathematical Society,

43(2):544–546, 1937.

[70] M. van Lambalgen. Random Sequences. PhD thesis, University of Amsterdam, 1987.

[71] M. van Lambalgen. Von mises’ definition of random sequences reconsidered. Journal

of Symbolic Logic, 52(3):725–755, 1987.

108

[72] V.G. Vovk. On a criterion for randomness. Dokl. Akad. Nauk SSSR, 294(6):1298–

1302, 1987.

[73] Klaus Weihrauch. Computable Analysis: An Introduction. Springer, first edition,

2000.

	2016
	Mutual dimension, data processing inequalities, and randomness
	Adam Case
	Recommended Citation

	DEDICATION
	TABLE OF CONTENTS

	ACKNOWLEDGMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Notions of Dimension
	1.2 Betting Strategies and Constructive Dimension
	1.3 Algorithmic Information Theory and Constructive Dimension
	1.4 Applications of Effective Dimension
	1.4.1 Computational Complexity
	1.4.2 Fractal Geometry
	1.4.3 Other Applications

	1.5 Overview of Chapter 2
	1.6 Overview of Chapter 3
	1.7 Overview of Chapter 4
	1.8 Overview of Chapter 5

	2. KOLMOGOROV COMPLEXITY AND MUTUAL INFORMATION IN EUCLIDEAN SPACE
	2.1 Preliminaries
	2.2 Layered Disjoint Systems and a Coding Theorem
	2.3 Counting K-minimizers within Blocks of a LDS
	2.4 Counting K-minimizers within Cubes and Balls
	2.5 Upper Bounds on Kr(x) and Kr+s(x)
	2.6 Algorithmic Mutual Information in Euclidean Space
	2.7 Relating Ir(x:y) and Jr(x:y)
	2.8 Properties of Ir(x:y)

	3. MUTUAL DIMENSION AND DATA PROCESSING INEQUALITIES
	3.1 Mutual Dimension in Euclidean Space
	3.2 Computable Functions in Euclidean Space
	3.3 Data Processing Inequalities for Points in Euclidean Space
	3.4 Reverse Data Processing Inequalities
	3.5 Data Processing Applications

	4. BOUNDED TURING REDUCTIONS AND DATA PROCESSING INEQUALITIES FOR SEQUENCES
	4.1 Notation
	4.2 Relating the Kolmogorov Complexities of Sequences to the Kolmogorov Complexities of Reals
	4.3 Relating the Dimensions of Sequences to the Dimensions of Reals
	4.4 Relating the Mutual Information between Sequences to the Mutual Information between Reals
	4.5 Relating the Mutual Dimensions between Sequences to the Mutual Dimensions between Reals
	4.6 Properties of Mutual Dimensions between Sequences
	4.7 Turing Reductions and Functionals
	4.8 Turing Functionals with Bounded Use and Data Processing Inequalities
	4.9 Turing Functionals with Bounded Yield and Reverse Data Processing Inequalities

	5. COUPLED RANDOMNESS
	5.1 Probability Measures on Alphabets and Sequences
	5.2 Coupled Probability Measures
	5.3 Coupled Random Sequences
	5.4 Shannon Entropy Characterizations of the Dimensions of Random Sequences
	5.5 Shannon Mutual Information Characterizations of the Mutual Dimensions of Coupled Random Sequences
	5.6 The Mutual Dimension between Independently Random Sequences
	5.7 Dependent Sequences with Zero Mutual Dimension
	5.8 Billingsley Dimension
	5.9 Billingsley Mutual Dimension
	5.10 A Mutual Divergence Formula
	5.11 Achieving Mutual Normalizability

	BIBLIOGRAPHY

