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ABSTRACT

Some of the well known streaming algorithms to estimate number of triangles in a graph stream

work as follows: Sample a single triangle with high enough probability and repeat this basic step

to obtain a global triangle count. For example, the algorithm due to Buriol et al. [6] uniformly at

random picks a single vertex v and a single edge e and checks whether the two cross edges that

connect v to e appear in the stream. This basic sampling step is repeated multiple times to obtain

an estimate for the global triangle count in the input graph stream.

This work, proposes a multi-sampling variant of this algorithm: In case of Buriol et al’s algo-

rithm, instead of randomly choosing a single vertex and edge, randomly sample multiple vertices

and multiple edges and and collect cross edges that connect sampled vertices to the sampled edges.

We provide a theoretical analysis of the algorithm and prove that this simple modification yields

improves upon the known space and accuracy bounds. We experimentally show that the algorithm

out performs several well known triangle counting streaming algorithms.
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CHAPTER 1. INTRODUCTION

With the current scale of web based networks, it is often extremely difficult to calculate the ex-

act characteristic of graphs, the main reason being their humongous size which makes it inefficient

to apply traditional algorithms. It is often sufficient to obtain an approximate estimation of these

characteristic quantities. One such quantity is the number of triangles in the graph.

Triangle is the smallest non-trivial clique of a graph. Understanding coarser and finer properties

of triangle structures in a network has found applications in various areas such as social network

analysis, recommendation systems, spam and fraud detection, and understanding network struc-

ture and evolution [29, 4, 8, 9, 20, 3, 7, 26]. For example, the frequently used notions of transitivity

coefficient and clustering coefficient critically depend on the number of triangles present in a social

network. Many of the applications involve estimating these co-coefficients. With the advent and

presence of very large scale graphs such as online social networks and web graphs, the computa-

tional complexity of computing the number of triangles of a graph has received a lot of attention.

Since exact triangle computation is expensive on large scale graphs, considerable emphasis has been

placed on designing algorithms that will estimate the number of triangles of a graph with provable

guarantees on the quality of the estimation.

1.1 The streaming model

One of the practical and well accepted models of computation for large scale data analytics

is that of data stream model. In this model the data items arrive as a stream and the goal is

to compute a function over the entire stream. Often it is the case that the stream processor

does not have enough resources to store the entire stream in its memory and perform an off-line
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computation. Thus the processor can not access an individual item of the stream multiple times

unless it is stored in the memory. This streaming model is applicable in scenarios where the volume

and velocity of the data is huge. In the data stream model for graphs, the stream processor receives

a stream (e1, e2, · · · , em) as input, where each ei is an edge of an underlying graph G = (V,E).

No assumption is made on the order in which the edges arrive. The goal is to compute a function

of interest by observing the graph stream while using as little memory as possible. Due to the

constraints on the memory, it is not possible to compute exact answers for most of the functions.

Thus it is desirable to compute an approximate value of the underlying function.

1.2 Contribution

This thesis presents a new algorithm to estimate the number of triangles of a graph in the data

stream model. The algorithms is based on the algorithm due to Buriol et al. [6]. A basic step in both

the algorithms is that they sample a single triangle. Firstly, a high-level description of the triangle

sampling procedures is provided. The streaming algorithm of Buriol et al. is as follows: Uniformly

at random sample a vertex v and an edge 〈a, b〉 of the graph. The uniform sampling is done using

the classical reservoir sampling technique. Once sampled, if the both cross edges 〈a, v〉 and 〈b, v〉

arrive then output 1 otherwise output 0. Run R independent of copies of this basic procedure and

take the average output as an estimate for the the number of triangles. Let T denote the number

of triangles of the graph and m, n denote the number of edges and vertices of the graph. They

showed that if R is O(mnT
1
ε2

log(1/δ)), then with probability at least (1−δ), the estimate is accurate

within a relative error of ε, i.e, the estimate differs from correct value by at most εT . From now

we will refer to this algorithm as Edge-Vertex Single Sampling algorithm, EVSS algorithm for short.

The EVSS algorithm attempts to sample a single triangle. Simply stated the main contribution

in the thesis is the following: By Modifying the above procedures to sample multiple triangles we

obtain better bounds on the memory and space used. Consider EVSS algorithm. Instead of picking
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a single vertex and a single edge, pick multiple vertices and multiple edges , store the cross edges

that connect the sampled vertices to the sampled edges, and count the number of triangles formed

by sampled edges and cross edges and scale the number by an appropriate factor. Surprisingly,

it is shown that this simple variant, not only outperforms the original algorithms but has better

accuracy, space bound and runtimes compared to some state of the art triangle counting algorithms.

A theoretical analysis of the algorithm is provided and the algorithm is experimentally evaluated.

It is proved that the multi-sampling version of the EVSS algorithm uses O(m
√

∆V√
T

1
ε log(∆V /δ))

memory to compute an (ε, δ)-approximation of number of triangles, here ∆V denotes the maximum

triangle degree of the graph (maximum number of triangles a vertex can participate in). The new

variant has smaller factors in terms of ε—1
ε instead of 1

ε2
. The algorithm is validated by performing

an extensive set of experiments, where the proposed algorithm is compared to a few other well

known algorithms. We empirically show that the new algorithms performs better than several

other triangle counting streaming algorithms from the literature [23, 18, 19, 6]. The experiments

show that even on very large graphs such as Orkut (containing more than 100 million edges), the

estimates produced by our algorithm have very high accuracy (> 99%) while storing only 2% of

the edges. Impressively, the run time is less than a minute.
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CHAPTER 2. REVIEW OF LITERATURE

2.1 Non-Streaming algorithms

A naive method to count triangles is to consider all triplets in a graph and verify if they form

a triangle. This takes O(n3) time, where n is the number of vertices of the graph. The algorithm

proposed by Alon et al. [1] reduces the triangle counting problem into a matrix multiplication

problem which runs in O(m1.4). Other simple counting algorithms are node and edge iterator

algorithms. The node iterator counts for each node, the number of triangles contained in it. The

edge iterator in turn counts the number of common neighbors that the vertices of each edge have.

Though a lot of minor improvements have been suggested using special data structures, hashing

and sorting techniques these algorithms run in O(mn) time with worst case run time of O(n3). The

above algorithms are suitable for smaller graphs, but are practically in-feasible to work on larger

real time graphs.

2.2 Streaming algorithms

There has been an extensive body of research on the problem of exact and approximate tri-

angle counts in various computational models [21, 25, 26, 27, 28, 24, 18, 14]. Here we restrict

our attention to the prior in the data stream model. Bar-Yosseff et al. were the first to for-

mally study the problem of triangle counting the data stream model [2]. They reduced the triangle

counting problem on graphs to estimating zeroth and second frequency moments over numeric data.

Much of the latter work is is based on various sampling strategies in the sense that they attempt

to sample a sub-graph of the original graph [17, 13, 5, 22, 11, 10, 12, 6, 19, 16, 23]. In the

algorithm defined by R. Pagh et al[18], each vertex of the graph is colored with N = 1
p colors

randomly, the triangles having the same colored vertex are then counted. They claim that when
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p ≥ max( δlognt ,
√

logn
t ), the triangle estimate is concentrated around its expectation. The work of

Buriol et al. [6], randomly picks a vertex and an edge and looks for the two cross edges that connect

the sampled vertex and the sampled edge, and this process is repeated. The work [19], randomly

picks an edge e1 and a random neighbor e2 and looks for a cross edge that connects e1 with e2.

Both these works use reservoir sampling to randomly picks vertices/edges. The work of Lim and

Kang [16] uses a fixed probability to sample the edges (as opposed to reservoir sampling). They fix a

parameter p and pick each edge with probability p and count the number of triangles formed by the

sampled sub-graph. The recent work of Stefani et al. [23] uses reservoir sampling to sample multiple

edges and counts the number of triangles in the sampled-subgraph. Their algorithm also handles

dynamic streams (where edges can be deleted) and can be used to obtain local-triangle counts. The

memory used by these algorithms depend on various graph parameters such as number of vertices

(n), number of edges (m), total number of triangles (T ), maximum-degree (∆), maximum number

of triangles an vertex participates (∆V ) etc. We describe the EVSS sampling strategy in Algorithm

1 from Buriol et al [6] as our multi-sampling algorithm is built on it’s base sampling strategy. This

algorithm is repeated 1
∈2 times and the average is returned to get a triangle estimate.

Input: Edge Stream E

Initialize: i = 1, β = 0;

for ∀e = 〈u,w〉 from edge stream E do

if coin( 1
i ) == head then

a← u; b← w;

v ← vertex uniformly chosen from V \{a, b}
x← false; y ← false

end

if e == (a,v) then
x← true

end

if e == (b,v) then
y ← true

end

i← i+ 1

end

if x← true and y ← true then
β = 1

end

return β;

Algorithm 1: EVSS algorithm
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CHAPTER 3. MULTI-SAMPLING ALGORITHMS

This section describes the EVMS algorithm proposed as part of the thesis. The algorithms is

an extension to Buriol et al.[6] inspired by the multi sampling approach used by Stefani et al. [23].

3.1 Algorithm variations

The EVMS algorithm in turn has two variations based on the sampling approach used. The

sampling of edges and vertices can be done based on a fixed probability p, 0 < p < 1 or based

on the reservoir sampling approach. One main difference between the two is the certainty of the

sample size after the sampling process. In the reservoir sampling approach, the size of the sample

is fixed whereas the sample size using the fixed sampling greatly depends on the value of p. The

reservoir sampling works as follows: Let’s assume we have a graph stream where edge ei arrives

at time i. We need to maintain a reservoir R of size M . We sample the edge ei if |R| < M else

we sample ei by randomly replacing an element from R with probability M
i . Another variation in

the algorithms is the number of passes (multi-pass or single-pass) made on the graph stream. The

thesis makes extensive theoretical and experimental analysis only on the single pass, fixed sampling

version.

3.2 Edge-vertex multi-sampling (EVMS)

Before the algorithm is presented, we provide an intuitive reasoning behind as why multi-

sampling is a better strategy. Consider a two triangle t1 = {a, b, c} and t2 = {a, d, e} that share a

vertex a. Assume that the order in which the edge appear in the stream is bc, ab, ca, ad, ae, de. The

EVSS algorithm samples t1 if vertex a is sampled and the edge ab is sampled which happens with

probability 1/(mn). If we were two sample both the triangles, then the sampling step of EVSS
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need to be repeated twice and thus probability of sampling both the triangles in 1/(mn)2. Suppose

that we sample a single vertex and two edges (and look for cross edges), what is the probability

that both t1 and t2 are sampled? This happens if the sampled vertex is a and the sampled edges

are bc and ad. This probability is proportional to 1/m2n which is higher than 1/(mn)2. Thus the

second strategy has a better chance of entangled triangle (triangles that share a vertex/edge) than

the first strategy. This is the rationale behind the multi-sampling algorithm.

Our algorithm works as follows: We fix two sampling probabilities pv and pe. For simplicity,

we assume that the vertex set V is known in advance. Later, we discuss how this assumption can

be removed. We place each v ∈ V into a set Sv with probability pv. We then process the graph

stream—when an edge e arrives place it in a set Se with probability pe. In addition, if e connects

a vertex from Sv to an edge from Re, then we place e in a set Be. We call the edges from Re as

red edges and edges from Be as black edges. Note that an edge can be both red edge and black

edge.Let us denote the time at which an edge 〈u, v〉 appears in the stream as t〈u,v〉. We count only

the sampled triangles such that each triangle has exactly two black edges and a red edge, and the

two black edges appear after the red edge in the stream. We scale this count with an appropriate

factor to get a global estimate.

The reason we check for triangles in which black edges arrive after the red edges is, if we sample

edges in the stream in order of arrival 〈a, b〉 as red,〈b, d〉 as black and 〈b, c〉 as red while the vertex

d is a sampled vertex, the edge 〈c, d〉 can be sampled as a black edge afterwards. Then the triangle

〈b, c, d〉 should be counted as a sampled triangle. But we are not counting such triangles.

3.3 Theoretical Preliminaries

This section presents certain results used later in the theoretical analysis of the algorithms.

Definition 3.3.1. Random Variable: A random variable X is a function from a sample space Ω,

to the real numbers, X : Ω→ R.
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Definition 3.3.2. Expectation of a random variable is defined as

E[X] =
∑
α

Pr(X = α)α

Lemma 3.3.1. Chebyshev’s Inequality: Let X be a random variable. Then,

Pr[|X − E(X)| ≥ δ] ≤ V ar(X)

δ2

Lemma 3.3.2. Chernoff Inequality: Let X1, X2...., Xm be independent random variables that take

values between 0 and 1. Let E(X1) = E(X2) = ... = E(Xm) = p. Let X = X1 + X2 + ... + Xm,

then

Pr[
∣∣X/m− p∣∣ ≥ pδ] ≤ 2e

−δ2mp
2

Lemma 3.3.3. Hajnal-Szemerédi Theorem: Every graph with n vertices and maximum vertex

degree at most k is k + 1 colorable with all color classes of size at least n
k+1 .

3.4 EVMS Algorithm

3.4.1 Algorithm

As mentioned above, in the fixed sampling approach, the vertices and edges are sampled with a

fixed probability. Let us denote these probabilities as pv and pe respectively. Let G be input graph

with V as the vertex set and E as the edge stream of the graph G. Let Sv denote the sampled

vertex set, the set of all sampled triangles - Y , the set of all red edges - Re, and the set of all black

edges - Be. The algorithm can be implemented as a multi-pass algorithm, where initially we sample

vertices with probability pv, in the first pass we sample edges with probability pe. On the second

pass, we check if each edge can be sampled as black edge. This approach can be slow if the graph

is too large or in real-world scenarios where it is often not practical to read the stream multiple

times. The two passes can be easily combined to a single pass with a slight modification to the

algorithm involving time stamps of the edges. The passes are combined such that every edge in the

stream is considered to be sampled as a red edge as well as a black edge. A formal description of

the EVMS algorithm can be found in Algorithm 2. Here, Y is a random variable that denotes the
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number of triangles sampled by the algorithm. The algorithm outputs |Y |
pvpe

whose expected value

is the number of triangles in the entire graph.

Input: Edge Stream E, vertex set V, pv, pe

Initialize: Sv = ∅, Y = ∅, Re = ∅, Be = ∅;
for every v ∈ V do

if coin(pv) == head then
Sv ← Sv ∪ {v}

end

end

for ∀ei = 〈a, b〉 from edge stream E do

if coin(pe) == head then
Re ← Re ∪ {e}

end

if (a ∈ Sv and Re has an edge with vertex b) OR (b ∈ Sv and Re has an edge with vertex a) then
Be ← Be ∪ {ei}

end

for every (ej , ek), ej ∈ Re, ek ∈ Be such that (tej < tek) and (tej < te) and 〈e, ej , ek〉 forms a

triangle do
Y ← Y ∪ 〈ei, ej , ek〉

end

end

Output: τ = |Y |/(pvpe)
Algorithm 2: EVMS - Fixed sampling

3.4.2 Theoretical Analysis

Let τ(G) be set of all triangles in graph G, and |τ(G)| = T .

Lemma 3.4.1. Let t ∈ τ(G). The probability that t is sampled is,

Pr[t ∈ Y ] = pvpe

Proof. A triangle, 〈a, b, c〉 is sampled when one of its vertex and its opposite edge is sampled as a

red edge. Since every vertex and edge is sampled with a fixed probability, pv and pe respectively,

and the two events are independent, the probability that a triangle , t ∈ τ(G) gets sampled is

pvpe.
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To estimate the number of triangles, we consider the algorithm’s output into a random variable

such that the expectation of the random variable gives the triangle estimate.

Lemma 3.4.2. The algorithm EVMS-fixed-sampling outputs τ whose expectation is the number of

triangles in the graph G.

Proof. Let us define a random variable X, which denotes the number of triangles sampled by the

algorithm. Let us calculate the E[X]. To calculate E[X], we split the random variable X into

smaller random variables Xi such that X =
∑
Xi, 1 ≤ i ≤ T . We define,

Xi = 1, if the ith triangle of the graph gets sampled

= 0, else

E[Xi] = Pr[Xi = 1].1 + Pr[Xi = 0].0

= pvpe

Since Xi is a 0,1 random variable, |Y | =
T∑
i=1

Xi

E[τ ] = E[

T∑
i=1

Xi

pvpe
]

=
1

pvpe

T∑
i=1

E[Xi]

= T

Lemma 3.4.3. The EVMS algorithm returns a triangle estimate τ , such that

V ar[τ ] ≤ T

pe
(

1

pv
+ 3∆V T )

.
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Proof.

V ar[τ ] = V ar[
1

pvpe

T∑
i=1

Xi]

=
1

pv2pe2

T∑
i=1

T∑
j=1

Cov[Xi, Xj ]

=
1

pv2pe2
(

T∑
i=1

V ar(Xi) +

T∑
i=1

T∑
i=1
i 6=j

Cov[Xi, Xj ])

From the expression for Variance, V ar[Xi] = pvpe − pv2pe
2. If triangles i and j do not share a

vertex then Cov[Xi, Xj ] = 0. Triangles i and j can be dependent when they share the red edge or

the sampled vertex. If they share a vertex, Cov[Xi, Xj ] = pepv
2 − pv2pe

2.

Let us calculate an upper bound for
T∑
i=1

T∑
i=1
i 6=j

Cov[Xi, Xj ]. If Tv is the number of triangles incident

on vertex v, then,

T∑
i=1

T∑
i=1
i 6=j

Cov[Xi, Xj ] =
T∑
i=1

T∑
i=1
i 6=j

(pepv
2 − pv2pe

2)

≤
T∑
i=1

T∑
i=1
i 6=j

(pepv
2)

≤ pepv
2
∑
v∈G

Tv
2

≤ pepv
2
∑
v∈G

Tv∆V

≤ pepv
2∆V

∑
v∈G

Tv

≤ 3pepv
2∆V T
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Hence we have,

V ar[τ ] ≤ 1

pv2pe2
(

T∑
i=1

(pvpe − pv2pe
2) + 3pepv

2∆V T )

≤ 1

pv2pe2
(
T∑
i=1

(pvpe) + 3pepv
2∆V T )

=
1

pv2pe2
(T (pvpe) + 3pepv

2∆V T )

V ar[τ ] ≤ T

pe
(

1

pv
+ 3∆V T )

Theorem 3.4.4. Concentration using Chebyshev’s inequality: For any ε, δ ∈ (0, 1), and pv = pe =

q, the EVMS fixed sampling algorithm returns a triangle estimate τ such that when

q ≥
−3∆V +

√
q∆2

V + 4ε2δ

2δε2

Pr[|τ − T | ≥ εT ] ≤ δ

Proof. The proof follows by simple application of Chebyshev’s inequality using the variance ob-

tained from Lemma 3.4.3. Recall that the output of the algorithm is
X

pepv
.

Pr[| Xpepv − T | ≥ εT ] ≤ Tpvpe(1+3P∆V )
p2vp

2
eε

2T 2 ≤ δ

For simplicity, if set pv = pe = q, after solving this inequality we get q ≥
−3∆V +

√
q∆2

V + 4ε2δ

2δε2
.

Thus the above algorithm outputs (ε, δ) approximation if pv = pe = q and the above inequality

holds.

Theorem 3.4.5. For any ε, δ ∈ (0, 1), the EVMS fixed sampling algorithm returns a triangle

estimate τ such that when

pepv ≥
2

ε2
3∆V + 1

T
ln(

2(3∆V + 1)

δ
)

Pr[|τ − T | ≤ εT ] > 1− δ
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Proof. We can use Chernoff bounds to find the concentration bounds for the random variable X,

since it can be split into smaller random variables with equal expectation. But one cavaet to ap-

ply Chernoff bounds is that the random variables need to be independent. In this case, random

variables, Xi and Xj are not independent when the triangles they represent share a vertex. One

way to deal with this is to group the triangles into groups, such that no triangle in a group share a

vertex. Hence all random variables within a group are independent, enabling us to apply Chernoff

bounds on each of these group. But how do we know how many such groups exist ?

One way to find a lower bound on the number of groups is to build an auxiliary graph H and

apply Hajanal-Szeméredi therorem on the graph H. We build H, so that for every triangle in τ(G),

we have a corresponding vertex in H. An example of this construction is shown in Figure 3.1. There

is an edge between any two vertices in H if, the corresponding triangles in τ(G) share a vertex.

Let the maximum number of triangles shared by a vertex in τ(G) be ∆V . By Hajanal-Szeméredi

theorem, H can be properly colored with at most 3∆V + 1 colors, with atleast k = |τ(G)|
3∆V +1 vertices

in each color.

Figure 3.1: Construction of auxiliary graph from the sampled triangles

Let us number each of the triangles in τ(G) by a arbitrary number i, so that the random variable

Xi corresponds to that particular triangle i. Let c be one of the colors in the coloring of H. Let Yc
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be the set of random variables Xi, such that the node i in H has color c. The random variables in

Yc are independent. Also it is to be noted that
∑
∀c

[
∑

Xi inYc

Xi] =
∑
∀Xi

and
∑
∀c
k = T .

Applying Chernoff bounds to the color set c, we have,

Pr[|

∑
Xi∈c

Xi

k
− pepv| ≥ εpepv] ≤ 2e

−ε2kpepv
2

Pr[|

∑
Xi∈c

Xi

pepv
− k| ≥ εk] ≤ 2e

−ε2kpepv
2

The above equation shows the probability bound for a single color class. Hence, the probability

that at least one of the class has Pr[|

∑
Xi∈c

Xi

k − pepv|] ≥ εpepv can be obtained by union over all

color sets. Let us denote this by δ.

∑
∀c
Pr[|

∑
Xi∈c

Xi

k
− pepv| ≥ εpepv] ≤

∑
∀c

2e
−ε2kpepv

2

Pr[|

∑
∀c

∑
Xi∈c

Xi

pepv
− T | ≥ εT ] ≤ (3∆V + 1)2e

−ε2kpepv
2

Pr[|

∑
Xi

pepv
− T | ≥ εT ] ≤ (3∆V + 1)2e

−ε2kpepv
2

Pr[|τ − T | ≥ εT ] ≤ (3∆V + 1)2e
−ε2kpepv

2

Pr[|τ − T | ≥ εT ] ≤ δ

Therefore,

e
−ε2kpepv

2 ≤ δ

2(3∆V + 1)

pepv ≥
2

ε2
3∆V + 1

T
ln(

2(3∆V + 1)

δ
) ' ∆V

ε2T
ln

∆V

δ

From the above expression, we infer that when pepv ≥ 2
ε2

3∆V +1
T ln(2(3∆V +1)

δ ), the EVMS fixed

sampling algorithm provides a (ε, δ) approximation for the number of triangles in the graph G.
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3.4.3 Memory bounds

We now analyze the memory used by the algorithm. The memory used for this algorithm

consists of the memory used to store the black and red edges. The expected number of red edges

in total is pem. We can compute the expected number of black edges as follows: Let ab be an edge

of the graph. This becomes a black edge if a is in Sv and an edge incident on b is sampled as a red

edge. The other case is when b is in Sv and an edge incident on a was is sampled as a red edge .

Let’s look at the former case. The vertex a ∈ Sv with probability pv. Let d be the number of edges

that are incident on vertex b and arrive before edge ab. Probability that at least one of these edges

being a red edge is (1−(1−pe)d). Thus ab becomes black edge with probability (1−(1−pe)d)pv. In

general let d(e) denote the number of edges that arrive before e and is incident on e. The expected

number of black edges is at most

∑
e∈G

[1− (1− pe)d(e)]pv

= pv
∑
e∈G

1−
∑
e∈G

(1− pe)d(e)

= pv(m−
∑
e∈G

(1− pe)d(e)) ≤ mpv

So the expected number of red and black edges is bounded by m(pe+pv). Subject to the constraint

from Theorem 3.4.5, pepv ≥ ∆V
ε2T

log∆V
δ the quantity pe + pv is minimized when pv = pe equals√

∆V
ε2T

log∆V
δ . Thus the expected number of edges stored by the algorithm is O(mpe) and the

expected number of vertices stored is O(npe) which is O(mpe). Putting together we obtain the

following.
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Theorem 3.4.6. There is a streaming algorithm that computes (ε, δ)-approximation of number of

triangles in a graph by using expected space O(mp) where p equals
√

∆V
T

1
ε

√
log∆V

δ .

3.4.4 Time Complexity

The running time of the algorithm depends only on the step that computes the exact count of

the triangles from the vertex and edge samples. We use the edge iterator algorithm to find the

exact count. The Edge Iterator algorithm computes for each edge the number of triangles it a part

of. It does this by find the common neighbors of its end vertices. The time complexity of this

algorithm is O(
∑
v∈Sv

d2
v).

3.5 EVMS - Reservoir sampling

3.5.1 Algorithm

The thesis gives a description of the reservoir sampling version of the algorithm, but does not

discuss the theoretical and experimental analysis. In the reservoir sampling version of the EVMS

algorithm, the vertices and red edges are sampled using a reservoir of fixed size. Let us denote

the vertex reservoir memory as N and edge reservoir memory as M . Let n and m be the total

number of vertices and edges respectively in the original graph. Let V = {vi, 1 ≤ i ≤ n} and

E = {ei, 1 ≤ i ≤ m} be the vertex set and edge stream respectively. The formal description of the

EVMS-reservoir sampling algorithm is defined in Algorithm 3.
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Input: Edge Stream E, vertex set V, pv, pe

Initialize: Sv = ∅, Y = ∅, Re = ∅, Be = ∅;
for every vi ∈ V do

if |Sv| < N then

Sv ← Sv ∪ {vi} ;

end

else if coin(M
i ) == head then

t← random vertex from Sv ;

Sv ← Sv \ {t};
Sv ← Sv ∪ {vi} ;

end

end

for ∀ei = 〈a, b〉 from edge stream E do

if |Re| < M then

Re ← Re ∪ {ei} ;

end

else if coin(N
i ) == head then

x← random vertex from Re ;

Re ← Re \ {x} ;

Re ← Re ∪ {ei} ;

end

if (a ∈ Sv and Re has an edge with vertex b) OR (b ∈ Sv and Re has an edge with vertex a) then

Be ← Be ∪ {ei} ;

end

for every (ej , ek), ej ∈ Re, ek ∈ Be such that (tej < tek) and (tej < tei) and 〈ei, ej , ek〉 forms a

triangle do
Y ← Y ∪ 〈ei, ej , ek〉

end

end

Output: |Y | mn
MN

Algorithm 3: EVMS - Reservoir sampling
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CHAPTER 4. EXPERIMENTAL EVALUATION

The experiments were performed to analyze the memory, accuracy, and speed of both the algo-

rithms. The aim is to verify, for a given value of pv and pe the theoretical bounds hold true. We

also analyze how the parameters like maximum triangle degree, number of edges and transitivity

co-efficient of the graph affect the accuracy of the algorithms. We run the algorithms with the

probabilities set to 0.01, 0.05, 0.1, 0.15 and 0.2. Hence for each graph, we have 25 possible experi-

ments.

Experiments were conducted on several graphs from the Stanford Large Network Dataset Col-

lection [15]. The implementation was done in Java 8, and run on a PC with Core i7 2.5 Ghz, 16GB

RAM with Windows 10 operating system. The experiments were run on insertion only streams,

where each edge is a new edge with no repetitions. The datasets were chosen in such a way that

they have varying topologies. The graphs have varying densities ranging from around 900,000

edges (Amazon) to more than 100,000,000 edges (Orkut). The graph was pre-processed so that the

vertices are numbered form 0 to n− 1, where n is the total number of vertices of the graph. In the

implementations, the graph is represented as an adjacency list with a map of all the vertices and

corresponding values as the list of all neighbors of that vertex.

The performance of the proposed algorithms were compared against EVSS algorithm from Bu-

riol et al’s [6], Triest-Base [23], neighborhood sampling algorithm [19], and colorful sampling

algorithm due to Pagh and Tsourakakis [18]. The rational for this choice of algorithms is as fol-

lows: Naturally, we would like to compare EVMS and NMS against their counter parts. Since,

Triest-Base [23], the authors experimentally showed that Triest-Base algorithm outperforms sev-

eral other algorithms from the literature, we chose Triest-Base algorithm. We chose the colorful
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Table 4.1: Memory functions for the various algorithms

EVSS NS Triest Colorful EVMS

f(G)
mn

T

1

ε2
log

1

δ

m∆

T

1

ε2
log

1

δ
m(

∆E

T
)
1
3

1

(ε)
2
3

√
log

∆E

δ

m∆V

T

1

ε2
m

√
∆V

T

1

ε

√
log

∆V

δ

triangle counting algorithm because as far as our knowledge its performance on graph streams has

not been tested before. The theoretical memory bounds can be expressed as a function of the

different parameters of the graph like number of vertices, edges and actual triangle count. Let us

denote this as f(G). The f(G) for all the above algorithms are show in Table 4.1

All the above algorithms were implemented in java. The implementation is available at https :

//github.com/kpneeraj/triangle counting. The experiments were first run on the EVMS-fixed

sampling algorithm with different values for pv and pe. To get a fair comparison, the other algo-

rithms were run using the total memory, Tm used by the both the algorithms. The total memory

is the sum of the red and black edges for the EVMS algorithm.

4.1 Datasets used

The following datasets [15] were used whose vertex and edge counts are shown in Table 4.2.

DBLP Collaboration network : A co-authorship network of computer science bibliography

where two authors are connected if they publish at least one paper together. Authors who pub-

lished to a certain journal or conference form a community.

Skitter : An Internet topology graph from trace routes run daily in 2005 from several scattered

sources to million destinations.

Live-journal: A friendship graph of a free on-line blogging community where users declare friend-

ship among each other. Users are vertices and the presence of a edge represent friendship between

two users.

Amazon co-purchasing network: It is a graph built by collecting items that were purchased

along with each other. The vertices are products and the presence of an edge between two vertices



20

Table 4.2: Properties of the various datasets considered for the experiments

Graph Nodes Edges Triangle count

DBLP 317,080 1,049,866 2,224,385

As-Skitter 1,696,415 11,095,298 28,769,868

Live Journal 3,997,962 34,681,189 177,820,130

Amazon 334,863 925,872 667,129

Berk-Stanford 685,230 7,600,595 64,690,980

Orkut 3,072,441 117,185,083 627,584,181

represent the fact that the products are frequently purchased with each other.

Berkeley-Stanford web graph : Nodes represent pages from berekely.edu and stanford.edu do-

mains and edges represent hyperlinks between them. The graph was initially directed, which was

converted to undirected by removing redundant edges that represent direction.

Orkut web graph : A friendship graph of the Orkut social network where each vertex is a person

and each edge represents friendship between two people.

4.2 EVMS sampling

Since the vertices are numbered from 0 to n− 1, the first step of vertex sampling is replaced by

sampling integers from 0 to n−1 with probability pv. The implementation of the EVMS algorithm

maintains two adjacency lists one for the red edges and the other for the black edges. Along with

the neighbors for each vertex, the time stamp for the corresponding neighbors are stored as well.

The actual count of the number of triangles is done using the edge-iterator algorithm by iterating

through all the red edges. For every red edge x, we find two black edges, y, z such that y and z

share common vertices and tx < ty and tx < tz.

We discuss the results of the EVMS algorithm and later compare them with the results of Buriol

[6], Triest [23], Pavan et al [19] and Pagh et al.’s [18] colorful triangle counting algorithms in terms

of accuracy and time taken. A subset of the results of the fixed sampling algorithm for various

values of pv and pe is shown in Table 4.2. For every pe and pv the results were taken by running
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the algorithm 5 times and taking the median. The average of the runs are also reported. We can

see that for even large graphs like Orkut with more than 100 million edges, we get considerable

accuracy (98%) in the triangle estimate with a total memory of just 2% of the entire graph with

time just over a minute. We define percentage error, pE = (T−τ)/T , where T is the actual number

of triangles in the graph and τ is the estimated triangle count by our algorithm. A negative pE

means that the experiment under estimated the number of triangles in the graph. We can observe

that |pE| < 1% in majority of the cases even for very small pe and pv.

Though the number of black edges increase consistently with the increase in pe, the accuracy

does not. This is because the number of vertices or red edges sampled will be low when pv or pe is

low correspondingly. This results in fewer number of sampled triangles that affect the accuracy of

the estimates. We can observe that though the accuracy drops, it stays well within the theoretical

bound stated in Theorem 3.4.5.

In the next few sections, we compare the results of the single pass fixed sampling algorithm

with Buriol , Triest and Pavan et al [19]. To get a fair comparison, the other algorithms were

re-implemented in Java. The experiments were first run on the EVMS fixed sampling algorithm

with different values of pv and pe. The total memory, Tm (sum of red and black edges) is recorded

and is used as the input to the other algorithms.

4.2.1 EVMS vs EVSS algorithm

The optimized version of EVSS algorithm was implemented and its results were compared with

the EVMS algorithm. The algorithm was run such that the number of memory consumed by both

the algorithms are similar. In most cases for very small repetitions, r, the EVSS algorithm fails

to find any triangle, resulting in low-quality estimates whereas EVMS shows very good accuracy.

The EVSS algorithm could not be run for large graphs like Orkut due to the low performance of

the algorithm. The results of the comparison is shown in Table 4.4.
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4.2.2 EVMS vs Triest-Base algorithm

The Triest-Base algorithm works by sampling M edges using reservoir sampling and counts

the number of triangles in the sampled subgraph. Similar to the EVSS’s experimental setup, the

Triest algorithm was run with M = Tm. Similar to the Buriol’s experimental setup, the Triest

algorithm was run with M = Tm. Triest shows comparable performance and accuracy to the

EVMS algorithm. Triest shows comparable performance and accuracy to the EVMS algorithm.

Triest-base shows better accuracy for higher M , but tends to require more memory when the graph

is sparse or when the number of edges of the graph is high. For example in the Amazon graph,

with M = Tm = 14, 336, pE = 1.03% for EVMS, where as Triest shows a pE of 59.61%. The

EVMS performs better than the Triest-Base and EVSS in terms of time as well. The reason is

that in general, reservoir sampling takes more time than fixed probability sampling (especially

when the reservoir size is high). As an example let us consider the the Orkut graph with more

than 170 million edges. The EVMS algorithm gives an estimate with pE = 4% in over a minute

with Tm = 145000, where as Triest-Base takes over 5 minutes and over 800,000 units of memory

for the achieving the same accuracy. Figure 4.2 shows the time taken by both the algorithms for

the amazon graph and DBLP graphs. Figure 4.1 shows the time taken by the EVSS,EVMS and

Triest-Base algorithms for the As-Skitter graph. The EVMS algorithm takes less than 4s in all

cases, whereas the time increases linearly with Tm for the Triest-Base and EVSS algorithms.

Figure 4.1: Tm vs Time for Triest-base, EVSS and EVMS algorithms
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(a) Amazon (b) DBLP

Figure 4.2: Tm vs Time for Triest-base and EVMS algorithms

4.2.3 EVMS vs Neighborhood Sampling

The base version of neighborhood sampling was implemented. We observed that EVMS al-

gorithm has better accuracy compared to the neighborhood sampling algorithm. Moreover, the

run-time of the base implementation of the neighborhood sampling algorithm is high. In their

work they optimized the run time by doing a batch processing. However batch processing has the

disadvantage that we have to wait till the entire stream is processed to obtain a triangle count.

More specifically, triangle count can not be monitored continuously. Due to very high running

times further analysis and comparison with this algorithm are not reported.

4.2.4 EVMS vs Colorful triangle Counting

The colorful triangle counting algorithm first chooses 1/p many colors and randomly assigns a

color to each vertex. Since the vertices are numbered from 0 to n − 1, 1/p colors were randomly

assigned to integers from 0 to n−1. Then edges whose end points have the same color are placed in

the sample. The colorful triangle counting was run by setting the p with values 0.01, 0.03, 0.05, 0.08,

0.10, 0.17, 0.20. The total memory, Tc used was measured as the total number of edges sampled in

each color. The comparison is done by approximately matching the total memory Tm used by the

EVMS algorithm and the total memory used by the colorful triangle counting. We observe that
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though the time taken is more than EVMS algorithm, the colorful triangle counting gives better

accuracy when compared to EVMS. Figure 4.3 shows the time taken by both the algorithms for the

Berkeley Stanford and Amazon graphs.

(a) Berkeley Stanford (b) DBLP

Figure 4.3: Tm vs Time for Colorful Triangle and EVMS algorithms
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Table 4.3: Results of the EVMS algorithm for various graphs

DBLP social network

pv pe V E Be Tm τ pE Time (s)

0.05 0.01 15780 10380 10089 20469 2154000.00 -3.16 0.34

0.05 0.05 15692 52561 33809 86370 2241200.00 0.76 0.41

0.15 0.15 47670 157062 172945 330007 2209466.67 -0.67 0.667

Amazon Product Graph

pv pe V E Be Tm τ pE Time (s)

0.15 0.01 50189 9424 15761 25185 691333.33 3.63 0.28

0.05 0.05 16675 46089 20210 66299 648800.00 -2.75 0.33

0.05 0.1 17025 92809 34374 127183 668000.00 0.13 0.40

Berkeley-Stanford web graph

pv pe V E Be Tm τ pE Time (s)

0.05 0.01 34220 66984 249093 316077 67424000.00 4.22 3.17

0.15 0.01 103180 66359 735434 96542 64361333.33 -0.51 6.52

0.05 0.05 34094 332610 402696 735306 64628800.00 -0.10 13.74

As-skitter

pv pe V E Be Tm τ pE Time (s)

0.1 0.01 169712 110627 753437 27417 27417000.00 -4.70 4.48

0.01 0.05 16982 555164 121783 676947 28384000.00 -1.34 4.19

0.05 0.1 84387 1108978 748970 1857948 28740000.00 -0.10 14.75

Live-journal

pv pe V E Be Tm τ pE Time (s)

0.01 0.01 39834 347209 192482 18577 185770000.00 4.47 15.28

0.15 0.01 599880 347082 2816486 3163568 172709333.33 -2.87 15.67

0.1 0.05 400063 1735031 4005049 887176 177435200.00 -0.22 20.46

Orkut-social network

pv pe V E Be Tm τ pE Time (s)

0.01 0.01 30856 1171375 1112385 2283760 622330000.00 -0.84 38.10

0.15 0.01 460448 1171998 16168020 17340018 629705333.33 0.34 66.34

0.1 0.05 306699 5857609 18158724 24016333 627276600.00 -0.05 106.96
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Table 4.4: EVMS vs EVSS sampling

EVSS EVMS

Tm or Repetitions pE Time (s) pE Time (s)

DBLP

203520 100.00 25.49 1.56 0.544

224229 -127.79 33.03 -7.37 0.492

275683 42.88 32.42 3.40 0.693

295178 -70.31 34.01 -1.26 0.789

330007 -13.65 45.16 -0.67 0.667

340952 -14.00 59.01 -5.57 1.03

Amazon

10415 100.00 1.33 -8.56 0.37

50422 100.00 3.40 -0.77 0.40

66299 100.00 7.87 -2.75 0.33

159609 100.00 15.25 0.12 0.50

332820 -100.51 42.60 0.03 0.69

379469 100.00 54.83 -0.62 0.73

Berkley-Stanford

116,033.00 -35.46 26.11 -10.13 3.75

316,077.00 -1.79 122.01 4.22 3.17

559,491.00 -18.57 343.02 -1.87 5.30

754,190.00 15.37 592.31 -4.90 19.03

801,793.00 -18.60 734.91 -0.51 6.52

1,044,961.00 6.74 996.58 -0.86 7.71

1,563,453.00 -1.56 2271.79 1.94 33.20

As-Skitter

188,576.00 100.00 64.59 1.70 2.79

864,064.00 -89.02 876.19 -4.70 4.48

1,189,096.00 5.79 1672.59 -2.26 8.22

1,227,522.00 100.00 2150.96 5.04 5.09

1,603,202.00 -41.53 2749.18 3.13 7.40



27

Table 4.5: EVMS vs Triest Base

Triest EVMS

Tm or M pE Time (s) pE Time (s)

DBLP

12376 -9.803146769 1.329 -23.12 0.667

20469 -9.20353482 1.879 -3.16 0.346

30944 -7.110734777 2.67 -1.37 0.387

40747 -0.7411185107 3.841 -0.35 0.479

50318 2.401285592 6.063 -3.05 0.375

86370 3.913206082 11.448 0.76 0.412

119359 0.3248504283 18.375 -0.16 0.543

153380 -0.04366580563 21.281 1.08 0.46

203520 -0.1907962044 33.106 1.56 0.544

250749 -0.2391002385 38.61 -2.12 0.752

274446 -0.2964278279 50.219 -1.24 0.62

295178 1.06512402 46.328 -1.26 0.789

330007 -0.2668924484 57.3 -0.67 0.667

Amazon

14336 59.612 0.946 1.03 0.53

19907 -35.74 1.444 -1.67 0.30

50422 4.40 4.577 -0.77 0.40

87526 -2.55 10.121 -1.07 0.40

105391 0.80 12.395 -0.07 0.46

126489 -1.23 17.761 -0.06 0.45

127183 -0.85 14.476 0.13 0.40

159609 -0.36 19.155 0.12 0.50

236257 0.62 29.455 -0.06 0.55

285553 0.31 33.138 0.35 0.63

332820 -0.12 37.663 0.03 0.69

Berkley-Stanford

116,033 4.87 82.42 -10.13 3.75

417,102 1.83 901.08 7.89 10.35

559,491 0.55 1,560.59 -1.87 5.30

801,793 -2.98 2,804.86 -0.51 6.52

1,044,961 -3.75 3,903.47 -0.86 7.71

As-Skitter

188,576.00 100.00 64.59 1.70 2.79

864,064.00 -89.02 876.19 -4.70 4.48

1,189,096.00 5.79 1672.59 -2.26 8.22

1,227,522.00 100.00 2150.96 5.04 5.09

1,603,202.00 -41.53 2749.18 3.13 7.40
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Table 4.6: EVMS vs Colorful triangle counting

Colorful Triangle Counting EVMS

Total memory pE Time (s) Tm pE Time (s)

DBLP

10,544 5.65 0.52 12,376 -23.12 0.67

26,191 -0.81 0.50 30,944 -1.37 0.39

52,864 0.85 0.41 50,318 -3.05 0.38

80,930 5.35 0.61 86,370 0.76 0.41

104,707 -0.08 0.56 119,359 -0.16 0.54

174,509 2.80 0.92 183,740 -2.09 0.49

210,079 -0.90 1.08 203,520 1.56 0.54

Berkeley-Stanford Graph

166,101 -6.31 3.81 116,033 -10.13 3.75

332,018 -0.30 8.68 316,077 4.22 3.17

511,439 6.04 15.41 559,491 -1.87 5.30

664,925 -0.78 22.27 801,793 -0.51 6.52

1,109,374 0.48 78.16 1,147,703 5.33 22.63

1,329,356 -0.12 96.97 1,563,453 1.94 33.20

Live-Journal

346,764 1.04 16.16 539,691 4.47 15.28

867,710 -0.39 16.77 1,299,055 -2.65 13.43

2,667,720 4.58 23.86 2,246,382 -0.64 13.42

3,468,870 -0.62 31.33 3,163,568 -2.87 15.67

5,782,986 1.00 56.19 5,740,080 -0.22 20.46

6,940,331 0.02 65.18 7,707,350 0.36 25.42

Orkut

2,929,852 -0.45 56.47 2,283,760 -0.84 38.10

5,856,111 -0.15 83.04 6,664,778 -0.46 49.68

11,717,612 0.08 166.33 11,717,812 1.33 113.89
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CHAPTER 5. CONCLUSION AND FUTURE WORK

The thesis presents the Edge vertex Multi Sampling algorithm that has better theoretical bounds

O(m
√

∆V√
T

1
ε log(∆V

δ )) than several state of art algorithms. We also verify if the gain seen in the the-

oretical analysis reflects in the experimental analysis. Based on the experiments we can make the

following conclusions. The EVMS algorithm has better accuracy and run-times compared to EVSS

, Triest-Base and neighborhood sampling, lower accuracy compared to colorful triangle counting.

However, EVMS is faster the the colorful triangle counting. The algorithm can be further extended

for dynamic streams, where the stream contains deletion edges. Also, the algorithm can be made

even faster using the map-reduce technique suggested in R. Pagh et al[18]. Further, the multi-

sampling strategy can also be applied to other single sampling techniques like the neighborhood

sampling.
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