
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2017

λir : A language with intensional receive
Swarn Priya
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Priya, Swarn, " λir : A language with intensional receive" (2017). Graduate Theses and Dissertations. 16198.
https://lib.dr.iastate.edu/etd/16198

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F16198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/16198?utm_source=lib.dr.iastate.edu%2Fetd%2F16198&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

λir: A language with intensional receive

by

Swarn Priya

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Gianfranco Ciardo, Major Professor

Samik Basu
Steven Kautz

The student author, whose presentation of the scholarship herein was approved by the program of
study committee, is solely responsible for the content of this thesis. The Graduate College will

ensure this thesis is globally accessible and will not permit alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2017

Copyright c© Swarn Priya, 2017. All rights reserved.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS vii

ABSTRACT viii

1. INTRODUCTION 1

1.1 Contributions . 3

2. MOTIVATING EXAMPLES 5

2.1 Pipelining . 5

2.2 Encoding State Machines . 6

2.3 Chain of responsibility design pattern . 7

2.4 Multiplexing . 9

3. DESIGN OF INTENSIONAL RECEIVE: ABSTRACT SYNTAX 11

3.1 Single-state Processes . 12

3.2 Intensional Design of the Receive Expression . 12

4. DYNAMIC SEMANTICS OF λir PROGRAMS 15

4.1 Dynamic Objects . 15

4.2 Local and Global Semantics . 16

4.3 Sequential Synchronous Local Semantics . 16

4.4 Concurrent Asynchronous Global Semantics . 18

5. STATIC SEMANTICS OF λir PROGRAMS 20

5.1 Computing Potential Behavior of a Recipient . 20

iii

5.2 Pipelining (revisited) . 22

5.3 Chain of responsibility design pattern (revisited) . 24

5.4 Subtyping, Value, and Communication Types . 26

5.5 Type Rules . 27

6. INTENSIONAL RECEIVE GENERATES NEW HAPPENS-BEFORE RE-

LATIONS 30

6.1 Actions: Conflict and Happens-Before Relations . 30

6.2 Guaranteed Delivery . 32

7. EXTENSIONS 35

7.1 Broadcast . 35

7.2 Multicast . 36

7.3 Guarded Receive . 38

7.4 Non-blocking Receive . 39

7.5 Synchronization primitive, Wait . 39

7.6 Extension in properties . 41

8. FORMALIZATION 43

8.1 Parallel Composition . 44

8.2 Formalization of the extensions . 46

9. RELATED WORK 49

10.CONCLUSION 52

BIBLIOGRAPHY 54

APPENDIX. ADDITIONAL MATERIAL 59

A.1 Dynamic Semantics of STLC expressions . 59

A.2 Static Semantics of STLC expressions . 60

iv

A.3 Happens-Before Relations . 60

A.4 Type Inference Algorithm inspired by Hindley and Milner Approach 63

v

LIST OF FIGURES

Page

Figure 2.1 An example of the receive expression supporting pipeline architecture. 6

Figure 2.2 An example of the receive expression encoding state machines. 7

Figure 2.3 An example of the receive expression representing chain of responsibility

design pattern. 8

Figure 2.4 An example of the receive expression supporting multiplexing. 9

Figure 3.1 λir Abstract Syntax. (In this thesis, Notation • Represents a Set of • Ele-

ments.) . 11

Figure 3.2 An example of the receive expression performing different tasks based on the

type of the message. Note expressions on lines 3 and 5 that treat messages

from the same mailbox differently. 13

Figure 3.3 Syntactic sugar for multiple receive and its desugaring 13

Figure 4.1 Definitions used in λir’s Dynamic Semantics 15

Figure 4.2 Operational Semantics . 17

Figure 5.1 Example showing the communication type of two interacting processes 21

Figure 5.2 Communication type of initstg and finstg . 23

Figure 5.3 Communication type of midstg . 23

Figure 5.4 Communication type of hndlr1 and hndlr2 24

Figure 5.5 Communication type of rqst . 25

Figure 5.6 Subtyping relations for value types. 26

Figure 5.7 Subtyping relations for communication types. 26

Figure 5.8 Typing Rules for λir. 27

vi

Figure 5.9 Auxiliary Functions . 28

Figure 6.1 Conflicting actions in the Message Passing Model based on type of message

received. 31

Figure 6.2 Encoding vending machine and reasoning about its correctness. 31

Figure 7.1 Syntax, action, dynamic semantics, and static semantics for Broadcast. . . . 36

Figure 7.2 Syntax, action, dynamic semantics, and static semantics of Multicast. 37

Figure 7.3 Syntax, dynamic semantics, and static semantics for Guarded Receive. 38

Figure 7.4 Syntax, dynamic semantic and static semantic for Non-blocking receive. . . . 40

Figure 7.5 Syntax, dynamic semantics, and static semantics for Wait. 41

Figure 7.6 Conflicting actions in Message Passing Model for the extensions where #

denotes conflict and their happens-before ≺ relation. 42

Figure 8.1 Parallel composition library . 44

Figure 8.2 Structural Congruence Rules. 45

Figure 8.3 Theorems related to Congruence . 46

Figure 8.4 Lines of code in Coq. (SYN : Syntax, SEM : Semantics, TYPE : Typing

rules, GD : Guaranteed delivery, HB : Happens-before relation, Total : Total

number of lines of code, + : Number of lines of code added in each of the

module for each extension). 47

Figure A.1 Operational Semantics . 59

Figure A.2 Static Semantics . 60

Figure A.3 Conflicting actions in the Message Passing Model where # denotes conflict

and their happens-before ≺ relation. 61

Figure A.4 Variable representing value type and communication type 63

vii

ACKNOWLEDGEMENTS

I would like to thank a lot of people around me who helped me with various aspects of research

and writing this thesis. First and foremost, special thanks to Dr. Gianfranco Ciardo for agreeing

to be my major professor at very last moment and for his support towards my master’s degree. I

would also like to thank Dr. Kristin Yvonne Rozier for her valuable feedback and encouragement

on this work. I would also like to thank my lab mates for helping me out in various ways in my

research and thesis. I also want to thank my POS committee members, Dr. Samik Basu and Dr.

Steve Kautz.

viii

ABSTRACT

Message passing-based programming is one of the dominant concurrent programming models

today in both research and practice. The major challenge in message passing concurrency is to

reason about the type of message received by any process and its effect. We present λir, a message

passing-based language that incorporates an intensional design of the receive expression to solve this

problem. Intensional design of receive expression integrates static and dynamic type checking and

allows the effect of the message received to be intensionally inspected through a notion of dynamic

typing. This enables reasoning about the effect of the message received from the head of the

mailbox while retaining static type safety. We demonstrate the applications of intensional design

of receive expression in various programming patterns like multiplexing, safe pipelining, encoding

state machines and supporting the chain of responsibility pattern. In each of these applications,

intensional receive helps in providing better safety. We have also formalized λir using the Coq

proof assistant and prove its soundness. λir provides built-in proofs for guaranteed delivery of

messages and encodes actions as an integral part that makes it possible to describe and prove

properties about happens-before relations. λir comes with a range of extensions like broadcasting,

multicasting, guarded receive, non-blocking receive, and synchronization primitive “wait” that not

only provide insights into the extensibility of the calculus, but also provide pedagogical examples

of how it can be extended.

1

CHAPTER 1. INTRODUCTION

Programming support for concurrency has come full circle. Hoare’s communicating sequential

processes [17], Hewitt and Agha’s actors [16, 1], Milner’s Π calculus [23] and Bagherzadeh and

Rajan’s concurrent calculus [28] [3] promoted the ideas that programs can be formed by compos-

ing independently executing entities that communicate with each other via messages. This model

was embraced by several language designs early on, e.g. Reppy’s CML [30], Erlang [33], Pierce

and Turner’s PICT [26], but mainstream languages remained focused on developing “lightweight

threads” as the dominant concurrency abstraction. Over the last decade, message passing concur-

rency has re-emerged as one of the dominant programming models for concurrency, as evidenced

by the success of Scala actors [13], Akka [5], Panini [3] and Go [11] among others. The future of

embedded systems depends on developments in message-passing architectures, including the Robot

Operating System (ROS) [27] and NASA’s new Autonomy Operating System (AOS) [22]. There is

significant interest in understanding the theoretical properties of the message passing model further

for enabling reasoning about behaviors of critical concurrent programs, e.g. for flight-certification

of message-passing architectures [22], and safety properties of robotic systems [27].

To that end, this thesis introduces intensional receive, a novel formulation of the receive op-

eration, to enable more precise, static modular type-checking of message passing programs. To

illustrate the motivation behind intensional receive consider the following simple code snippet that

has a traditional receive operation in the first and the second line that accepts an incoming mes-

sage and binds it to the name x and y respectively to be used in the continuation of the receive

operation. The continuation of the first receive operation is the entire expression in lines 2 and 3,

and the continuation of the second receive operation is the addition operation on the third line.

1 (receive x

2 (receive y

2

3 (add x y)

4)

5)

Static, modular type-checking of this simple code is difficult in the presence of a range of dynamic

language features like reflection, dynamic loading, native code interfaces, etc., that eliminate all

hopes of having static access to all message send locations.

Our proposal λir is designed to support reasoning about the effect of receiving any message

from the mailbox and statically type checking the message received. Inspired by Harper and

Morrisett [14], we achieve this by incorporating an intensional type system design, where process can

intensionally inspect the type of message at run time. Specifically, expression receive x : T e1 e2

inspects whether the runtime (message) type of x is T , and evaluates e1 if so, or e2 otherwise.

This design has two distinct advantages. First, static typing can guarantee that the expression

receive x : T e1 e2 is well-typed regardless of where it is applied. Message received from a

process is always type checked at static time. Static safety is achieved for the messages. Indeed

this advantage can be seen in an intensional version of our example from above that is presented

below.

1 (receive (x : nat)

2 (receive (y : nat)

3 (add x y)

4 unit

5)

6 unit

7)

The first receive operation receive x : nat ... unit says to evaluate the expression receive

y : nat ... unit if the message received is of type nat otherwise evaluate to unit expression.

The expression can be type-checked independent of its message send sites, a big win for modularity.

3

Second, the use of dynamic typing provides more precise reasoning for the expression at run

time. To illustrate consider a message send site like in line 9 in the code below that defies static

reasoning but leads to process p computing 42 in λir.

1 (let p =

2 (spawn

3 (receive (x : nat)

4 (receive (y : nat)

5 (add x y)

6 unit

7)

8 unit

9)

10) in

11 (send (if (< 1 0) #f 41) p) ;

12 (send 1 p)

13)

The rest of this thesis describes this design of λir, its advantages, and its challenges.

1.1 Contributions

In summary, this thesis makes the following contributions.

• It presents λir, a calculus for message passing concurrency with intensional receive.

– Like [10], we extend the simply-typed lambda calculus (STLC) to build λir to leverage

the strong meta-theory that has already been developed for STLC. As a result, our

expression-based calculus has an STLC-like style and leverages familiarity.

– λir provides an intensional design of the receive primitive that leverages dynamic typing.

4

– λir incorporates infrastructure to reason about both type soundness and concurrency-

related properties that build on the happens before relation. To show the utility of

λir regarding its ability to support formalization of properties about message passing

program, we state and prove two properties: guaranteed delivery and the happens-before

relation between actions in the trace of the program [19].

– The design of λir incorporates standard value types, plus we incorporate communication

types that describe an upper bound on communication effects of the expressions, inspired

by [18]. We show an illustrative example of using communication types to detect type

incompatibilities between senders and recipients in the same program.

• It presents a mechanized realization of λir. We have mechanized λir using Coq proof assistant.

• It demonstrates the impact of the intensional receive for improving type-safety in application

patterns such as pipelining, encoding state machines, chain of responsibility design pattern

and multiplexing.

• five extensions of λir (§7): broadcast, multicast, guarded receive, non-blocking receive, and

wait. These new features have helped us understand the extensibility of our calculus. Several

of these features required under 200 lines of Coq code, with multicast being the exception in

that it required 306 lines of Coq code.

The rest of the thesis is organized as follows: Chapter 2 presents impact of the intensional

design of receive expression; Chapter 3 presents the syntax of λir with examples illustrating its use;

Chapter 4 presents the operational semantics of λir; Chapter 5 describes the static semantics of λir;

Chapter 6 describes the properties supported by λir; Chapter 7 describes the extensions supported

by λir; Chapter 8 describes the noteworthy aspects of our Coq formalization; Chapter 9 discusses

related ideas and Chapter 10 concludes.

5

CHAPTER 2. MOTIVATING EXAMPLES

In this section, we demonstrate the applicability of intensional design of receive expression for

providing better safety for many programming patterns like pipelining, encoding state machines,

chain of responsibility pattern and multiplexing. In each programming pattern, we demonstrate

how intensional design of receive expression which incorporates both static and dynamic typing

makes reasoning more precise and provides better safety.

In all the examples, we use receive x : T e as a shorthand for receive x : T e unit, and

we use P as the type of a process for simplicity. The full representation of a process type is discussed

in §3.

2.1 Pipelining

Pipelining structure is widely used in both hardware and software where each component (called

pipeline stage) has a set of inputs and a set of outputs. Each stage takes data on its input and

produces data on its output which acts as an input for the next stage component. For the correct

implementation of pipeline structure, there should be type compatibility between the various stages.

Pipeline structure can go faulty due to incompatibility in types of the output produced by one stage

which is consumed by another stage. The intensional design of the receive operation can help avoid

type incompatibility between pipeline stages in a message passing-based pipeline architecture. An

example λir program is shown in Figure 2.1 that spawns three processes that are first class values

in λir and binds them to names initstg, midstg and finstg.

There can be two kinds of incompatibilities. The first kind of incompatibility can arise at

pipeline setup time, e.g. at lines 25-27 in Figure 2.1. For example, initstg could be connected

to a value that is not a pipeline stage process. These cases are immediately detected due to the

newfound type information in the intensional receive. Somewhat more interestingly, initstg could

6

1 (let finstg =

2 (spawn (s : nat)

3 (receive (a : nat)

4 (set (add a a a a 2))

5)

6) in

7 (let midstg =

8 (spawn (midnext : P)

9 (receive (next : P)

10 (set next)

11 (receive (m : nat * nat)

12 (send (get) (snd m))

13)

14)

15) in

16 (let initstg =

17 (spawn (initnext : P)

18 (receive (next : P)

19 (set next)

20 (receive (m : nat)

21 (send (get)

22 (pair 0 m))

23)

24)

25) in

26 (send initstg midstg) ;

27 (send midstg finstg) ;

28 (send initstg 10)

29)

30)

31)

Figure 2.1 An example of the receive expression supporting pipeline architecture.

be connected to a value that is a process, but of incompatible kind. We will see in §5.2 that these

problems are also resolved by refining P further. The second kind of incompatibility can arise when

the pipeline is processing data, e.g. at lines 3-5, 11-13, and 20-22. These kinds of incompatibilities

can also be checked and eliminated. Notice that the initstg and midstg processes can receive

messages of multiple kind and exhibits incompatible behavior in response to each kind of message.

So, parametric polymorphism doesn’t immediately work here.

2.2 Encoding State Machines

As another application of intensional design of receive expression, consider its usage in encoding

state machines. Intensional receive expression can be used to receive messages in an order from the

mailbox and perform computation on them. A state machine encoding can be faulty if the order

of transition from one state to another is not maintained. For example halfadder in Figure 2.2

works only on two inputs of type bool provided in an order and produces sum and carry1.

1For simplicity we do not encode the output, but extending this example to send messages to an output process
would be straightforward.

7

1 (let halfadder =

2 (spawn (p : bool * bool)

3 (fix (receive (x : bool)

4 (receive (y : bool)

5 (if (and (equal x false)

6 (equal y false)

7)

8 (set (pair false false))

9 else if (and (equal x true)

10 (equal y true)

11)

12 (set (pair false true))

13 else (or (and (equal x true)

14 (equal y false)

15)

16 (and (equal x false)

17 (equal y true)

18)

19)

20 (set (pair true false))

21)

22)

23)

24) in

25 (send halfadder true) ;

26 (send halfadder false)

27)

Figure 2.2 An example of the receive expression encoding state machines.

The use of intensional receive makes the state machine’s behavior at the type-level explicit in

the source code. Furthermore, incompatibilties between the type and order in which inputs are

provided to the halfadder can also be detected during typechecking, e.g. at lines 25-26.

2.3 Chain of responsibility design pattern

The chain-of-responsibility patterns is a commonly-used software design pattern to organize

components that make a request (requester) and other components that handle the request (han-

dler) in a manner that avoids coupling requester with knowledge about which handler handles

which request. This pattern eliminates the need to couple the sender to the compatible handler as

8

the handler who cannot handle the message forwards the message to the next handler in the chain.

The last (default) handler either raises error or provides default handling. This guarantees that

there is at least a handler in the system that can handle the request from requester processes and

hence provide completeness of the system.

Intensional receive can be used to implement this pattern in message passing systems and also

ensures completeness of the system. By completeness, we mean that there is at least one process

in the system that can handle the sent message of a particular type.

1 (let hndlr1 =

2 (spawn (next : P)

3 (receive (m1 : P)

4 (set m1)

5 (receive (m2 : bool * P)

6 (send (snd m2)

7 (neg (fst m2)))

8 (receive (f : Top)

9 (send get f)

10)

11)

12)

13) in

14 (let hndlr2 =

15 (spawn (s : nat)

16 (receive (m3 : nat * P)

17 (send (snd m3)

18 (double (fst m3))

19)

20) in

21 (let rqst =

22 (spawn (r : bool * nat)

23 (receive (m4 : nat)

24 (set (pair (fst get) m4)

25)

26 (receive (m5: P)

27 (send m5

28 (pair (fst get)

29 self)) ;

30 (send m5

31 (pair (snd get)

32 self)) ;

33 (receive (b : bool)

34 (receive (c : nat)

35 (set (pair b c)

36)

37)

38)

39)

40) in

41 (send rqst 2) ;

42 (send rqst hndlr1) ;

43 (send hndlr1 hndlr2)

44)

45)

46)

Figure 2.3 An example of the receive expression representing chain of responsibility design
pattern.

In the example presented in Figure 2.3, there is a requester rqst and two other processes in

the system hndlr1 and hndlr2. rqst is sending two messages of type bool * P and nat * P to

9

hndlr1 at line 27-32. hndlr1 is capable of handling the message of type bool * P and hence it

performs computation on it and sends back the result to the rqst as we could see at lines 5, 6

and 7. But hndlr1 cannot handle the message of type nat * P and hence forward the request to

hndlr2 as we could see at line 9. hndlr2 performs the computation on message of type nat * P

and sends back the result to rqst at lines 17 and 18. By following the chain of intensional receive

expression, a programmer can inspect the system for completeness. We revisit this example in §5.3

where we discuss checking completeness.

2.4 Multiplexing

In this section, we demonstrate how intensional design of receive expression helps us in reasoning

about the effects and types of multiple messages sent to a single process by different sources. In

another mechanism to deal with multiple messages the messages cannot be statically type checked.

Our intensional design of receive expression help us to statically type check different type of messages

sent by different sources to a single process. We illustrate an example in the Figure 2.4.

1 (let mult =

2 (spawn (addr : P)

3 (fix (receive (m1 : P)

4 (set m1)

5 (receive (m2 : nat)

6 (receive (m3 : bool)

7 (send (get)

8 (pair m2 m3))

9 (receive (m4 :

10 bool)

11 (receive (m5 :

12 nat)

13 (send (get)

14 (pair m5

15 m4))

16)

17)

18)

19)

20)

21)

22) in

23 (let output =

24 (spawn (a:nat*bool)

25 (receive (m6:nat*bool)

26 (set m6)

27)

28) in

29 (send mult output);

30 (send mult 4) ;

31 (send mult false)

32)

33)

Figure 2.4 An example of the receive expression supporting multiplexing.

10

There is a process mult which forwards the pair of message received from different sources to

process output where the first element of the pair is always a natural and the second element is

always a bool irrespective of in which order message is received. In the body of the process mult,

it multiplexes the input provided to it in line 30 and 31 as pair of nat and bool and forwards it to

process output as we could see in the line 13, 14 and 15. Intensional receive expression help us to

statically type check the messages from different sources and always keeps the effect same.

11

CHAPTER 3. DESIGN OF INTENSIONAL RECEIVE: ABSTRACT

SYNTAX

This and the next four chapters describe the technical underpinnings of intensional receive.

While intensional receive could also augment process calculi in the flavor of CSP [17] or Π calculus

[23], we chose to built an expression-based calculus that we call λir. λir extends the simply-type

lambda calculus in a style similar to [10]. This combination is arguably closer to the adoption

of message-passing concurrency in practice [13, 5, 11, 27, 22], while remaining small enough to

highlight the foundation nature of intensional receive.

e ::= Exp

| send e e´ Send

| spawn x : T e Spawn

| receive x : T e e´ Receive

| self Self

| set e Asgn

| get Read

| x : T . e Abs

| e e App

| x Variable

| unit Unit

| fix e Fix

T ::= Value Types

| T
C−→ T Arrow

| P(T C) Process

| unit Unit

| Top Top

C ::= Comm Types

| 0 Null

| C1 & C2 Choice

| C1 :: ... :: Cn Seq

| ![T] Send

| ?[T] Receive

Figure 3.1 λir Abstract Syntax. (In this thesis, Notation • Represents a Set of • Elements.)

Figure 3.1 shows the expression-based core syntax and set of types, which includes both value

types and communication types. We borrow standard terms and types from the simply typed

lambda calculus. To that, we add new expressions for sending a message (send), spawning a new

process (spawn) and receiving a message (receive). An expression of the form send e e′ sends

a message represented by the e′ to the process represented by the e. We also have support for

12

recursive functions (fix) and λir also has two nullary expressions for retrieving the identity of a

process (self). Our examples also freely use let, if, booleans, and numbers that have the standard

desugaring.

The typing for unit values and functions is standard, except function types also encode in-

formation about “latent” communication that can be performed if that function is evaluated. λir

distinguishes between value types T and communication types C. We write T
0−→ T as T −→ T when

the use is unambiguous. We discuss types in more detail when presenting the static semantics of

λir in §5.

3.1 Single-state Processes

Somewhat non-traditionally, each process in λir can have a single state that can be read (using

get) and written (using set). Supporting multiple states can be encoded using records and pairs

without causing fundamental difficulties.

An expression of the form spawn x : T e creates a new process with state x of type T and e as

the body of the new process. The body e can use the name x to refer to its own state, but other

processes may not access the state.

The type of a process is a 2-tuple that represents the type of the value produced by the body

of the process and the communication type of the process (Comm Types).

3.2 Intensional Design of the Receive Expression

A typical message passing calculus includes a nullary receive expression of the form receive that

retrieves a message from the mailbox such that the value of the expression is the value of the received

message. While this design is flexible, the continuation of the receive expression is well typed only

if the sender sends a compatible message. A second design of the receive expression would expect

incoming messages to be of a certain type T and the program would fail to type check if there are

message sends of an incompatible type. This second design has the advantage of static reasoning.

However, the increasing use of dynamic features such as reflection, dynamic linking/loading, native

13

1 (spawn x : unit

2 (receive (y : unit)

3 (set y)

4 (receive (z : unit -> unit)

5 (set z get)

6 (stop)

7)

8)

9)

Figure 3.2 An example of the receive expression performing different tasks based on the
type of the message. Note expressions on lines 3 and 5 that treat messages
from the same mailbox differently.

code interfaces, and meta-programming in practice makes it increasing difficult to carry out this

static reasoning precisely [21].

In λir, building on the large body of work combining static checking and dynamic checking (for

instance [9, 31, 12, 21]), and inspired by [14], we incorporate a design of the receive expression that

integrates static and dynamic reasoning.

An expression of the form receive x : T e e′ checks the dynamic type of the current message in

the mailbox. If the type of the message received matches the type T the message is retrieved bound

to x and the expression reduces to e. Otherwise, the expression reduces to e′ without retrieving

the message from the mailbox. An example appears in Figure 3.2.

This design provides two benefits. First, the body of the process lends itself to static reasoning

independent of the sender processes in the system. For example, expressions on lines 3 and 5 in

Figure 3.2 can be statically checked regardless of the sender processes. Second, the use of dynamic

typing provides more precise reasoning. In the examples we also freely use syntactic sugar for

1 receive x : T1 e1

2 T2 e2

3 T3 e3

4 e4

1 receive x : T1 e1

2 receive x : T2 e2

3 receive x : T3 e3

4 e4

Figure 3.3 Syntactic sugar for multiple receive and its desugaring

14

receive with multiple types as shown in Figure 3.3 (left) whose desugaring is shown on the right in

Figure 3.3.

15

CHAPTER 4. DYNAMIC SEMANTICS OF λir PROGRAMS

We define λir’s operational (dynamic) semantics as a small-step semantics. The definitions

used by the operational semantics are defined in Figure 4.1. In λir’s operational semantics each

concurrently running process instance owns its state and mailbox which stores messages sent to it

and uses only one thread of execution to execute its body. Two processes can only communicate

through sending messages to each other. The state of a process can be only accessed and changed

by the process itself.

4.1 Dynamic Objects

The operational semantics of λir transition from one global (program) configuration to another

is shown in Figure 4.2. A global configuration P is a concurrent composition ‖ of process instance

configuration
∑

. Concurrent composition ‖ is commutative, i.e.
∑
‖
∑′ is equal to

∑′ ‖ ∑.

Evaluation contexts :

E ::= · | send e E | send E v | set E | E e | v

E

Domains :

P ::= · | ∑ ‖ P Global config∑
::= 〈st, e,M〉id Local config

st ::= T x v State

M ::= · | v.M Mailbox

v ::= Values

| x : T . e Abs

| unit Unit

| process id Process

a ::= Actions

| send (v, id, id′) Send

| receive (v, T, id) Receive

| spawn (id, id′) Spawn

| get (id) Get

| set (id) Set

| local (id) Local

| self Self

Figure 4.1 Definitions used in λir’s Dynamic Semantics

16

A process configuration
∑

consists of a unique process identifier id, and the state declared in

the process st, expression to be evaluated in the body of the process, and a mailbox. The mailbox

stores the message sent to a process and messages are received in sequential order from the mailbox.

st contains a type of the state, the name of the state, and the value it provides.

In λir, a value can be an abstraction, the unit expression, or a process value.

The execution of a λir program produces a trace of observable actions. Actions are basic

units of execution and each action represents execution of a single indivisible (atomic) instruction.

Figure 4.1 shows a core set of actions observed during the execution of a λir program. An action

can be: send a message v from the process instance id to process instance id′, receive a message v

of type T , create a new process instance id′, get the value of state by the process instance id, set

the value of state by the process instance id, to get its own address and the local action observed

during an execution.

4.2 Local and Global Semantics

The operational semantics of λir consists of two sets of evaluation rules which includes its local

and global semantics. A local evaluation
a
; denotes a transition from a process configuration to

another performing the action a. A local transition in turn causes a global transition
a
↪→ from one

program configuration to another in which processes run concurrently. A process instance is chosen

nondeterministically by a preemptive scheduler in the program configuration for evaluation at each

point of time. The dynamic semantic rules are of the form P
a
↪→ P ′, to be read as “program P

reduces to program P ′” or “program P takes a step to program P ′.” The reduction rules are

given in Figure 4.2.

4.3 Sequential Synchronous Local Semantics

Local evaluation relation
a
; within the context of a process instance denotes evaluation of an

expression e at the body of the process to another expression e′ and performing the action a.

This evaluation causes the transition from a process configuration to another with a (potentially)

17

Local evaluation rule
a
;: 〈st,E [e],M〉id || P

a
; 〈st′,E [e′],M ′〉id || P

(Asgn)
〈T x v,E [set v′],M〉id || P

set(id)
; 〈T x v′,E [v′],M〉id || P

(Read)
〈T x v,E [get],M〉id || P

get(id)
; 〈T x v,E [v],M〉id || P

(ReceiveT)
Γ ` v : T, 0

〈st,E [receive x : T e e′], v.M〉id || P
receive(v,T,id)

; 〈st,E [[v/x]e],M〉id || P

(ReceiveF)
Γ ` v : T ′, 0

〈st,E [receive x : T e e′], v.M〉id || P
receive(v,T ′,id)

; 〈st,E [e′], v.M〉id || P

(Self)
〈st,E [self],M〉id || P

self
↪→ 〈st,E [id],M〉id || P

(AppAbs)
〈st,E [x : T.e v],M〉id||P

local(id)
; 〈st,E [[v/x] e],M〉id||P

(Fix)

〈st,E [fix x : T e],M〉id || P
local(id)
↪→ 〈st,E [[fix x : T e/x]e],M〉id || P

Global evaluation rule
a
↪→: 〈st,E [e],M〉id || P

a
↪→ 〈st′,E [e′],M ′〉id || P ′

(Send)
〈st′, e′,M ′〉id′ ∈ P P ′ = 〈st′, e′,M ′.v′〉id′] P

〈st,E [send id′ v′],M〉id || P
send(v′,id,id′)

↪→ 〈st,E [v′],M〉id || P
′

(Spawn)

fresh(id′, 〈st,E [spawn x T e],M〉id || P) v′ = default(T)

P ′ = 〈T x v′, e,·〉id’ || P
〈st,E [spawn x T e],M〉id || P

spawn(id,id′)
↪→ 〈st,E [id′],M〉id || P

′

(Congruence)
〈st,E [e],M〉id

a
; 〈st′,E [e′],M ′〉id

〈st,E [e],M〉id || P
a
↪→ 〈st′,E [e′],M ′〉id || P

′

Figure 4.2 Operational Semantics

modified mailbox and updated state. In local-semantics, a process instance can access its state,

18

update the value of its state, and receive a message from its mailbox. The rules for state assignment,

state read, and self are self-explanatory and presented in Figure 4.2.

The two rules of receive (ReceiveT) and (ReceiveF) model the cases where the top of the mailbox

contains a matching message, and otherwise. The rule looks up the dynamic type of the message,

and performs substitution in e in the former case, and reduces to e′ in the latter.

All of the rules record actions. The set expression performs a set (id) action. The get expression

performs a get (id) action, the receive expression performs a receive (v, T, id) action and the self-

expression performs a self action.

4.4 Concurrent Asynchronous Global Semantics

Global evaluation
a
↪→ denotes concurrent evaluation of process instances. The rule (Congruence)

plays the role of a preemptive scheduler that chooses a process instance id in global configuration

P nondeterministically to take an atomic action at each point in time, according to the operational

semantic rules.

A process can send a message to another process through the send expression. A send expression

represented as send id′ v′ where the id′ represents the address of the process to which message is

sent and the second expression represents the content of the message. The evaluation of send

expression appends the message v′ to the end of the mailbox of the receiver of the message. The

notation 〈st′, e′,M ′.v′〉id′] P denotes overriding the process configuration of process represented

by the address id′, where] is an overriding union operation. The send expression performs a

send (v′, id, id′) action.

A process can create another new process to carry the rest of its computation or perform some

subtasks. A new process is created using spawn x T e where e is the body of the process, and x is the

state in the process with type T . After the evaluation of spawn x T e, a new process configuration

is added to the set of configurations. The address of the new process should be a fresh address. The

value v′ is the value assigned to the state x which is a default value and which has the same type

as the type of state. The auxiliary function default produces a default value based on the type of

19

the process’s state. The notation 〈T x v′, e,M ′〉id′ || P denotes appending 〈T x v′, e,M ′〉id′ with

the concurrent composition. The spawn expression performs a spawn (id, id′) action.

20

CHAPTER 5. STATIC SEMANTICS OF λir PROGRAMS

We now discuss the type system of λir that ranges over expressions and types defined in Fig-

ure 3.1.

The typing judgment Γ ` e : (T , C) says that in the typing environment Γ, expression e has value

type T and communication type C which describe an upper bound on the communication performed

during the reduction of the expression. The idea of communication types is inspired from [18]

which calls them “process types”, whereas our communication types describe the communication

behavior of both expressions and processes (thus the general name). The set of value types and

communication types are defined in the Figure 3.1. 0 is the type of the null process. The type

C1 & C2 represents an internal choice irrespective of what communication are provided by the

environment. C1 :: ... :: Cn represents the sequence of the communication types C1, ... , Cn. ?[T]

represents the receive communication type and ![T] represents the send communication type. The

value types are basic simple lambda types except that function types also encode the information

about the latent communication that could be produced due to the function evaluation. Also, we

include a process type that includes the value type and communication type of the body of the

process which helps us reason about the process.

5.1 Computing Potential Behavior of a Recipient

From the communication type of a process, we know whether it is capable of receiving a message

of a certain type. However, statically we do not know which state the recipient will be at run

time when the message is sent. Depending on the state of the recipient, it can exhibit different

communication behavior.

To illustrate this, consider the example in Figure 5.1 that has two processes a and b. Process

a is triggered by sending it b’s address and a number 5 at line 20. We are reasoning about the

21

1 (let a =

2 (spawn (s : nat)

3 (receive (y : P * nat)

4 (if (gt (snd y) (0))

5 then (receive (x :

6 P * nat)

7 (if (gt (snd x)

8 (snd y))

9 then (set

10 (snd x))

11 else (set

12 (snd y)))

13 (x)

14)

15 else y)

16 (send b

17 (pair (self) 2)

18)

19) in

20 (let b =

21 (spawn (s : nat)

22 (receive (y : P * nat)

23 (set (snd y))

24)

25) in

26 (send (a) (pair b 5))

27)

28)

&

::

?[P*nat] ::

0 &

::

?[P*nat] ::

0 &

0 0

0

::

::

0 0

&

::

?[P*nat] 0

0

![P*nat]

Figure 5.1 Example showing the communication type of two interacting processes

22

communication behavior of process a. The communication type of process a is represented by an

abstract syntax tree (AST) in Figure 5.1 (right).

The body of the process a has a receive expression which receives a message of type P * nat

and evaluates a conditional expression or sends a message to the process b. The receive type

?[P * nat] must be present in the communication type of the process b in order for these processes

to be compatible.

The AST of the communication type shows that process a contains multiple states where it

can receive a message of type ?[P * nat] (e.g., lines 3 and 4 in the code). But the process a can

be in any of those states. Furthermore, process a will exhibit a different communication behavior

when it is in either of those states. For example, process a can either receive a message of type

?[P * nat] and exhibit no communication behavior (0) (right most subtree). Alternatively, it can

receive a message of type ?[P * nat] and then possibly be ready to receive another message of

type ?[P * nat] (left most subtree). λir’s static semantics models this possibility by composing

the subtree starting with ?[P * nat] nodes using a non-deterministic choice operator 	 (details

in §5.5).

5.2 Pipelining (revisited)

As we presented an example in Figure 2.1 the components connected in pipeline structure

should be compatible with each other in terms of message being sent and consumed. From the

communication type of a process, we know whether a process is capable of receiving a message of a

certain type. Figure 2.1 shows that initstg is sending a message of type ![nat * nat] to midstg

and midstg is sending message of type nat to finstg. So from the communication type of

processes, we can argue that sender and receiver are compatible with each other or not. Lets look

at the AST representing communication type of initstg, midstg and finstg in the Figure 5.2

and Figure 5.3. As we could see AST representing communication type of initstg has a state

where it can send message of type ![nat * nat], which means AST representing communication

type of midstg must have a state where it can receive message of type ?[nat * nat] to guarantee

23

&

::

?[P] 0

&

::

?[nat] ::

0 0 ![nat * nat]

0
&

::

?[nat] 0

0

Figure 5.2 Communication type of initstg and finstg

&

::

?[P] 0

::

?[nat * nat] ::

0 0 ![nat]

Figure 5.3 Communication type of midstg

compatibility between them. We could see in the Figure 5.3, there is node representing the state

where it can receive message of type ?[nat * nat]. Also in AST representing communication type

of midstg, we could see it can be in a state where it can send message of type ![nat]. For midstg

and finstg to be compatible, AST representing communication type of finstg must have a state

where it can receive message of type ?[nat]. We could see in the right side of Figure 5.2 which

represents communication type of finstg, there is node representing the state where it can receive

message of type ?[nat]. Hence midstg and finstg are compatible with each other. Hence from

communication type, we can argue about the compatibility between various stages which could not

be possible without the intensional design of receive. Because of the design of intensional receive,

we have incorporated types in receive and send communication types.

24

&

::

?[P] 0

&

::

?[bool * P] ::

0 rqst ![bool]

::

?[Top] ::

0 0 ![nat * P]

&

::

?[nat * P] ::

0 rqst ![nat]

0

Figure 5.4 Communication type of hndlr1 and hndlr2

5.3 Chain of responsibility design pattern (revisited)

In the example in Figure 2.3, we claim that intensional receive helps us to prove the completeness

of the system. From the communication type of the handlers and requesters, we could argue that

if there is a send communication type of a particular type in the system then there must be a

receive communication type of that particular type in the system. As we could see in the AST

representing communication type of rqst in Figure 5.5, it can be in states where it can send message

of type ![bool * P] and ![nat * P]. Also we could see in the AST representing communication

type of hndlr1 and hndlr2 in Figure 5.4, hndlr1 can be in a state where it can receive message

of ?[bool * P]. Also as hndlr1 is not capable of handling message of type nat * P, hence it

forwards the request to hndlr2. In the AST representing communication type of hndlr1 in the

left side of Figure 5.4, it can be in a state where it can send a message of type ![nat * P]. In

the AST representing communication type of hndlr2 in the right side of Figure 5.4, it can be in

a state where it can receive a message of type ?[nat * P]. So we could see that both the type

of messages sent by the rqst are handled by at-least one handler. Hence from the communication

type of all the processes in the system, we can prove completeness of the system by showing that

there exists at-least a receiver which is capable of handling message of any particular type.

25

&

::

?[nat] 0

::

?[P] ::

::

0 hndlr1 ![bool * P]

::

0 hndlr1 ![nat * P]

&

::

?[bool] &

::

?[nat] 0

0

0

Figure 5.5 Communication type of rqst

26

Subtyping for Value Types: T � T ′

(Reflexive)
T � T

(Transitive)
T � T ′ T ′ � T ′′

T � T ′′

(Arrow)
T2 � T1 T ′1 � T ′2 C � C ′

T1
C−→ T ′1 � T2

C′
−→ T ′2

(Top)
T � Top

Figure 5.6 Subtyping relations for value types.

5.4 Subtyping, Value, and Communication Types

The sub-typing relations between the types are shown in Figure 5.6 and Figure 5.7. The

subtyping for value types is standard except subtyping relation for function types is augmented to

state subtyping requirements for latent communication type.

The subtyping relations for communication types is interesting. The basic intuition behind these

rules is that a super-communication-type defines an upper bound on the communication behavior,

and the sub-communication-type also defines an upper bound on the communication behavior that

is contained within the upper bound defined by the super-communication-type.

Subtyping for Communication Types: C � C ′

(Reflexive)
C � C

(Transitive)
C � C ′ C ′ � C ′′

C � C ′′

(Internal Choice)
Ci � C ′i

C1 & C2 � C ′i (i ∈ {1,2})
(Send)

T � T ′

![T] � ![T ′]

(Receive)
T � T ′

?[T] � ?[T ′]
(Seq)

Ci � C ′i for each i ∈ {1, . . . , n}
C1 :: . . . :: Cn � C ′1 :: . . . :: C ′n

(Seq)
Ci ∈ C ′1 :: . . . :: C ′n

Ci � C ′1 :: . . . :: C ′n

Figure 5.7 Subtyping relations for communication types.

27

The subtyping relations for send and receive are devised to avoid surprising the recipient.

5.5 Type Rules

Type Checking: Γ ` e : T, C

(Send)
Γ ` e′ : T ′, C ′ Γ ` e : P (T C), C ′′ ?[T ′] ∈ C 	 (?[T ′], C) = C ′′′

Γ ` send e e′ : T ′, C ′ :: C ′′ :: ![T ′] :: C ′′′

(Receive)
Γ , x : T ` e : T ′, C ′ Γ ` e′ : T ′, C ′′

Γ ` receive x : T e e′ : T ′, ?[T] :: C ′ & C ′′

(Spawn)
Γ, self st : T, self id : P(T ′ C ′) ` e : T ′, C ′

Γ ` spawn x : T e : P(T ′ C ′), 0
(Self)

Γ(self id) = P(T C), 0

Γ ` self : P(T C), 0

(Set)
Γ ` e : T ′, C ′ Γ ` self st : T, 0 T ′ � T

Γ ` set e : T, C ′
(Get)

Γ ` self st : T, 0

Γ ` get : T, 0

(Abs)
Γ , x : T ` e : T ′, C

Γ ` x : T e : T
C−→ T ′, 0

(App)
Γ ` e : T

C′′
−−→ T ′, C Γ ` e′ : T, C ′

Γ ` e e′ : T ′, C :: C ′ :: C ′′

(Fix)
Γ ` e : T

C−→ T, 0

Γ ` fix e : T, C
(Subsume)

Γ ` e : T ′, C T ′ � T

Γ ` e : T, C

(Subsume)
Γ ` e : T, C ′ C ′ � C

Γ ` e : T, C

Figure 5.8 Typing Rules for λir.

Figure 5.8 shows the typing rules for expressions of λir which assigns the value type and com-

munication type to each expression in the typing context Γ.

Intensional design of receive expression help us to gain compatibility between the sender and

receiver in terms of their flow of communication which we explain further by describing our typing

rules.

28

	(?[T], C) =

0 if C = 0,

0 if C = ![T],

?[T] if C = ?[T],

	(?[T], C1) &	 (?[T], C2) if C = C1 & C2,

	(?[T], C1) & ... &	 (?[T], Cn) if C = C1 :: ... :: Cn

〈st, e,M〉id 6∈P

fresh(id,P)

Figure 5.9 Auxiliary Functions

The type rule for the send expression is most interesting because it involves both verifying

compatibility between the sender and the receiver and computing the potential behavior of the

receiver in response to receiving a message. This rule type checks the send expression by ensuring

(a) the message e′ is well-typed and has value type T ′ and reducing e′ could lead to communication

behavior as defined by the communication type C ′ in the typing context Γ, and (b) expression e

which evaluates to the identity of the recipient process is well-typed and has value type P (T C)

where T is the value type of the body of the recipient process and C is the communication type of

the body of the recipient process and reducing e could lead to the communication behavior repre-

sented by communication type C ′′ in the typing context Γ. Hence the send expression represented

as send e e′ has value type T ′ and communication type C ′ :: C ′′ :: ![T ′] :: C ′′′ where receive com-

munication type ?[T ′] should be present in C. This ensures a compatibility between the receiver

and the message being sent.

When a message is sent, the recipient could be in one of the potentially many states (see §5.1).

Given a receive type ?[T] and a communication type, the function 	 creates a composite com-

munication type that represents a non-deterministic composition of the communication behavior

starting with the states that can receive the message of type T .

The rule for receive expression models that upon receiving a message of type T the process

would exhibit both the receiving behavior as well as the communication behavior exhibited by the

expression e, whereas upon receiving a message that is not of type T the process would only exhibit

the communication behavior of the expression e′.

29

The rule for spawn expression produces the process type that encodes both the value type

produced by the body of that process and its entire communication behavior. Spawning a process

itself doesn’t lead to any communication. Creating a function value records the communication type

in the function type, and applying a function exhibits the communication behavior or evaluating

the argument, the function, and the latent communication behavior.

30

CHAPTER 6. INTENSIONAL RECEIVE GENERATES NEW

HAPPENS-BEFORE RELATIONS

Our intensional receive expression helps us produce a new happens-before relation which help

us in proving correctness of the system. A system is correct if it meets its specification. If a system

is expecting to receive messages in an order of certain types, to prove the correctness of the system

we need to argue about the receive actions caused by the execution of the system. As we could

see due to our intensional design of receive expression, receive action incorporates type denoted by

T . This addition helps us state that there can be ordering between various receive actions in the

trace which can be utilized to argue about the order of message types that are received by any

program. The new happens-before relations are produced by arguing about the incorporated types

in the receive action which is the direct impact of our intensional design of receive. Also we can

see that incorporated type in the receive action makes the receiver action a non-mover action [20].

Any receive action incorporating type T cannot be switched with either its left or right actions

because that will not be compatible with the corresponding intensional receive expressions which

is expecting to receive message of type T before or after any other type T ′. Complete proof of this

property is presented in the Appendix §A.3.

6.1 Actions: Conflict and Happens-Before Relations

Evaluation of a message passing program, with its nondeterministic preemptive scheduler, re-

sults in a trace of interleaved actions (defined in Figure 4.1), performed by different process instances

of the program. To build the core of λir, we define the execution trace of a message passing pro-

gram, define the conflict and happens-before relations, and prove the mover properties of the set

of actions using Lipton’s reduction theory [20]. While definitions and detailed proof of λir’s mover

properties are presented in §??, we discuss the essence below.

31

Conflicting actions # and their happens-before relation: ≺

receive(v, T, id′) # receive(v, T ′, id′)

〈st,E [receive x : T e e′], v.M〉id′ ∈P

receive(v, T, id′) # send(v, id, id′)

〈st,E [receive x : T e e′], v.M〉id′ ∈P

send(v, id, id′) ≺ receive(v, T, id′)

send(v, id, id′) ≺ send(v′, id, id′)

receive(v, T, id′) ≺ receive(v′, T ′, id′)

send(v, id, id1) ≺ send(v1, id, id2) ∧ send(v1, id, id2) ≺ send(v2, id2, id3)

........... ≺ send(vn, idn−1, idn) ≺ send(v′, idn, id1)

receive(v, T1, id1) ≺ receive(v′, Tn, idn)

Figure 6.1 Conflicting actions in the Message Passing Model based on type of message
received.

1 (let VM =

2 (spawn (s : nat)

3 (fix (receive (x : nat * P)

4 (receive (c :

5 red * P)

6 (send (snd c)

7 (red -drink))

8 (receive (c :

9 orange *

10 P)

11 (send (snd c)

12 (orange -drink))

13)

14)

15)

16)

17) in

18 (let C =

19 (spawn (a : P)

20 (receive (addr : P)

21 (set addr)

22 (receive (coin : nat)

23 (receive (type : red)

24 (send get

25 (pair coin self)) ;

26 (send get

27 (pair type self));

28 (receive (d1 :

29 red -drink)

30 (unit)

31 (receive (d2 :

32 orange -drink)

33 (unit)

34)

35)

36)

37)

38)

39) in

40 (send C VM) ;

41 (send C 5);

42 (send C r)

43)

44)

Figure 6.2 Encoding vending machine and reasoning about its correctness.

32

Consider the example in Figure 6.2 where intensional receive is used to model a simple vending

machine (VM) which serves customers and take a coin first and a choice of drink next as input and

dispense the drink to the customer. In the example, we use descriptive type names such as red,

orange, red-drink and orange-drink for clarity that can be encoded in terms of existing types in

the language. Execution of the program will produce a trace of actions where there will be receive

actions due to intensional receive expression at various receiving sites like lines 8, 9 and 12. There are

possibilities of inefficient order in which customer operates the VM. A customer can press the choice

first and then insert the coin but VM cannot operate in this order. Hence we need happens-before

relation between the type of messages received by VM. Our intensional receive design help us to get

new happens-before relation. The receive action produced due to execution of receive expression at

lines 8 and 9 are receive ((5, C), (nat * P), VM) and receive ((r, C), (red * P), VM). As we know

according to the specification of vending machine that it accepts coin first and then the choice of

drink, we can have a new happens-before relation which states that receive ((5, C), (nat * P), VM)

≺ receive ((r, C), (red * P), VM). Also both the receive actions are non-mover and cannot be

switched with each other. receive ((5, C), (nat * P), VM) cannot be moved to the right or left of

any other receive action present in the program. receive ((r, C), (red * P), VM) is one of them

because always message of type nat should be received before message of type red. Also by

looking at the trace of the program, we can verify that vending machine meets the specifications

or not. Similarly we can reason about the other case. Intensional receive help us to produce new

happens-before relation which help us in validation and verification of the system.

6.2 Guaranteed Delivery

One of the important characteristics of message passing model is guaranteed delivery of the

messages sent to a process. Processes can communicate with each other only by sending messages

to each other. As explained in our dynamic semantics presented in §4, every message sent to a

process instance is appended to the end of the mailbox. Whenever a receive expression is evaluated

within the process, a message from the head of the mailbox is dequeued and processed depending

33

on the type of the message. By “message delivery”, we mean that the message is dequeued from

the mailbox and processed by the process.

Guaranteed delivery is stated as follows “Every message send to a process is eventually received

(processed) at some point of time”. An expression present in a process configuration can either

be a value or can make “progress” by stepping to some other expression. If expression becomes

a value then it can no longer make any progress. We call a state in which there does not exists

a process configuration P ′ such that process configuration P takes step to process configuration

P ′ a normal form state. We define a missed delivery state as a process state that cannot take any

further step, is not in stuck state, and its mailbox is not empty.

Lemma 6.2.1. (Guaranteed delivery) Let Σ = 〈st, e,M〉id be an arbitrary process configuration

for a λir program where the expression e is well-typed in the typing environment Γ which takes a

multi step to Σ′ = 〈st, e′,M ′〉id then Σ′ is not a missed delivery state.

Proof. The proof is based on the dynamic semantics and static semantics of λir presented in Fig-

ure 4.2 and Figure 5.8. Because soundness of λir is proved as a separate theorem we know that

well-typed program in λir can never get stuck. Semantics of send expression states that messages

sent to a process are appended to the receiver’s mailbox. The operational semantics of intensional

receive expression dequeues the message from the mailbox if the message at the head is of expected

type. The process configuration Σ = 〈st, e,M〉id takes multiple step to reach a configuration Σ′ =

〈st, e′,M ′〉id from where no further execution is possible and it is not in stuck state. If a particular

configuration is not in a stuck state and it cannot take any further step that means the expression

at its body is a value. Our proof goal says that the mailbox of such configuration is empty. The

proof proceeds by performing the case analysis on M ′. Either M ′ is empty or it is of the form v

:: M ′′. The first case where the mailbox is empty is a trivial case. The second case which states

that M ′ is of the form v :: M ′′ is not true because the expression in the body of the process

configuration is a value, hence there is no expression left to handle the message. The above case is

never possible in our language design. Our multi-step relation covers all the possible transition of

a process configuration which supports reflexive and transitivity property. For guaranteed delivery

34

of a message, we look into the possible transition of process configuration in terms of receiving a

message. A process agrees to receive the message until it is actually processed by it. If a message

is sent to any process, it will be eventually received when the process is ready to be at the state of

receiving it at some future point. Our intensional receive is designed in such a way that it prevents

the process to enter into a block state. Hence the process configuration with non-empty mailbox

can either take a step further which can be possible by various possibilities of multi-step relation

or the mailbox is empty.

35

CHAPTER 7. EXTENSIONS

We demonstrate the utility of λir as a foundation for formalizing message passing concurrent

architectures through five extensions that build on different parts of the λir core. Two of the

extensions, broadcast and multicast, show a broader use of the send operation of the message

passing model. Another extension, guarded receive adds a conditional feature regulating when a

receive operation can occur. Meanwhile, non-blocking receive demonstrates a different extension

to the receive expression that allows progress to be made even if the mailbox is empty. Lastly, we

extend our calculus to include the additional synchronisation primitive wait.

7.1 Broadcast

A process can send messages over computer networks by three different methods: unicast,

multicast, and broadcast. The core calculus presented in §3 supports unicast. By the unicast

method, one process can send the message to only one other process. If a process wants to send the

same message to different processes, it has to use the send expression multiple times. Also to use

the send expression to send messages to every other process, the process has to know the address

of every other process in the program. The broadcast expression enables broadcasting messages to

all the processes present in the program without knowing the addresses of these processes.

Figure 7.1 details an extension of λmpc with the broadcast feature, which sends a message

represented by expression e to every process present in the program. We extend the core λir actions

by adding a broadcast action which are observed during the execution of broadcast expression.

Action can be broadcasting message v by the process instance id. A process can send message v

to every other process in the program through the broadcast expression. A broadcast expression is

represented as broadcast v where v represents the message send to all other processes in the global

configuration P. The evaluation of broadcast expression as shown in the Figure 7.1 appends the

36

e ::= . . . Exp

| broadcast e Broadcast

a ::= . . . Actions

| broadcast (v, id) Broadcast

(Broadcast)

∀〈sti, ei,Mi〉idi ∈ P

P ′ = 〈st1, e1,M1.v〉id1] 〈st2, e2,M2.v〉id2] . . .] 〈stn, en,Mn.v〉idn] P

〈st,E [broadcast v],M〉id || P
broadcast(v,id)

↪→ 〈st,E [v],M〉id || P
′

(Broadcast)
Γ ` e : T ′, C ′

Γ ` broadcast e : T ′, C ′ :: ![T ′]

Figure 7.1 Syntax, action, dynamic semantics, and static semantics for Broadcast.

message v to the end of the mailbox of the receiver of the message which is basically all the other

processes present in the global configuration. The notation 〈sti, ei,Mi.v〉idi]P denotes overriding

the process configuration of process represented by the address idi, where] is an overriding union

operation. The configuration of all the other processes is updated by appending the mailboxes of

each process with message v. The broadcast expression performs a broadcast (v, id) action.

The rule (Broadcast) presented in Figure 7.1 checks the broadcast expression by ensuring that

the message e is well-typed and has value type T ′ and communication type C ′ in the typing context

Γ. Hence the broadcast expression represented as broadcast e has value type T ′ and communication

type C ′ :: ![T ′] which is sequence of communication type of e and communication type send.

7.2 Multicast

The multicast extension enables sending messages to a group of processes found in the program,

specified by a group of addresses. Figure 7.2 details an extension of λmpc with multicast feature,

which sends message represented by e′ to a group of processes represented by e in the program.

We extend the λir actions by multi action which are observed during the execution of multicast

expression. Action can be sending message v′ to a group of processes v by the process instance id.

37

e ::= . . . Exp

| multicast e e′ Multicast

a ::= . . . Actions

| multicast (v′, id, v) Multi

(Multicast)

v = (v1, v2, v3, . . .) (∀vi ∈ v) ∧ ∀〈sti, ei,Mi〉vi ∈ P

P ′ = 〈sti, ei,Mi.v
′〉vi]P

〈st,E [multicast v v′],M〉id || P
multicast(v′,id,v)

↪→ 〈st,E [v′],M〉id || P
′

(Multicast)

e = (e1, . . . , en)

Γ ` e′ : T ′, C ′ Γ ` e : P(T1 C
′
1),. . . P(Tn C

′
n), C1 :: . . . :: Cn ?[T ′] ∈ C ′i

	(?[T ′], C ′1 :: . . . C ′n) = C ′′′

Γ ` multicast e e′ : T1, ..., Tn, C ′ :: C1 :: . . . :: Cn :: ![T ′] :: C”’

Figure 7.2 Syntax, action, dynamic semantics, and static semantics of Multicast.

A multicast expression is represented as multicast v v′ where v represents the addresses of the group

of processes to which message is sent and v′ represents the message to be sent. The set of processes

to which message is sent is represented as pair of processes using the lambda expression pair. The

evaluation of multicast expression as shown in the Figure 7.2 appends the message v′ to the end of

the mailbox of the receiver of the message which is basically all the processes present in the group

represented by v. The notation 〈sti, ei,Mi.v〉idi]P denotes overriding the process configuration of

process represented by the address idi, where] is an overriding union operation. The configuration

of all the processes present in the group v is updated by appending the mailboxes of each process

in the group v with message v′. The multicast expression performs a multi (v′, id, v) action. The

rule (Multicast) shown in the Figure 7.2 type checks the multicast expression by ensuring that (a)

the message e′ is well-typed and has value type T ′ and reducing e′ could lead to communication

behavior as defined by the communication type C ′ in the typing context Γ and (b) expression e

evaluates to identities of the recipient processes are well-typed and have value type as pair type

containing P (Ti C
′
i) where Ti represents the value type of the body of the recipient processes and C ′i

is the communication type of the body of the recipient and reducing e could lead to the sequence of

communication behavior represented by sequence of communication type Ci in the typing context

38

e ::= . . . Exp

| guard x : T e e′ e′′ Guard

(Guarded)
Γ ` v : T, 0

〈st,E [guard x : T true e′ e′′], v.M〉id || P
receive(v,T,id)

; 〈st,E [[x := v]e′],M〉id || P

(Guarded)
Γ ` v : T, 0

〈st,E [guard x : T, 0 false e′ e′′], v.M〉id || P
receive(v,T,id)

; 〈st,E [e′′], v.M〉id || P

(Guarded)
Γ ` v : T ′, 0

〈st,E [guard x : T e e′ e′′], v.M〉id || P
receive(v,T ′,id)

; 〈st,E [e′′], v.M〉id || P

(Guarded)
Γ ` e : bool, C ′′′ Γ ` e′′ : T ′, C ′′ Γ, x : T ` e′ : T ′, C ′

Γ ` guard x : T e e′ e′′ : T ′, C ′′′ :: ?[T] :: C ′ & C ′′

Figure 7.3 Syntax, dynamic semantics, and static semantics for Guarded Receive.

Γ. Hence the communication type of multicast expression has communication type C ′ :: C1 ::...:: Cn

:: ![T ′] :: C ′′′ where receive communication type ?[T ′] must be present in C ′i. Given a receive type

?[T ′] and a sequence of communication type, the function 	 creates a composite communication

type that represents a non-deterministic composition of the communication behavior starting with

the states that can receive the message of type T that is represented as C ′′′.

7.3 Guarded Receive

We also extend our calculus to support a conditional feature in the receive expression, which

ensures that the effect of the message received is executed only if the guard is true. Figure 7.3

details an extension of λmpc with the guarded receive feature, stipulating that a process can receive

a message v from the mailbox by satisfying the guard. If the message is dynamically type-checked

in the context Γ, the message is assigned value type T , the communication type is 0, and the guard

is true, the message is retrieved and e′ is executed. Otherwise, the message is not retrieved, and

expression e′′ is executed. The rule (Guarded) type-checks the guarded receive expression. The

type of the guard is Boolean in the typing context Γ. The expressions e′ and e′′ are assigned value

39

type T ′ and communication type C ′ and C ′′. The communication type of the guarded receive is

sequence of C ′′′ which represents the communication of the guarded expression and choice between

the communication represented by type ?[T] :: C ′ and C ′′ in the context Γ.

7.4 Non-blocking Receive

Sometimes we want to allow progress of the configuration even when the mailbox is empty,

rather than risking a livelock due to the receive expression. As the mailbox is empty we cannot

dynamically type check the messages as there is no message present in the mailbox. The non-

blocking receive extension handles cases when the nreceive expression checks the mailbox for a

message of certain kind (type) but the mailbox is empty. If a message of the expected type is

present in the mailbox then nreceive proceeds in the same way as the standard receive expression

that is present in our syntax. Otherwise, a future value is substituted in place of the message value

in the body of the nreceive expression. Accessing this future value blocks the computation until

the message value is resolved. The future value takes an argument T , which is the type of message

scheduled to arrive at the mailbox in future. If a message arrives at the mailbox, then the receive

expression unblocks the computation and the message is substituted in place of the future value.

The typing rule for non-blocking receive is similar to the receive expression and is presented in the

Figure 7.4.

7.5 Synchronization primitive, Wait

The message passing model presented in this thesis supports asynchronous communication.

Many other practical message passing models implement some level of synchronization. Therefore,

we extend our calculus to add the synchronization primitive “wait.” Wait is a synchronization

method that allows some process id to block until a process id′ evaluates to a value. This value

is then returned directly to the process id, bypassing id’s mailbox.

Figure 7.5 details an extension of λmpc with wait primitive, which blocks a process until a particular

process’s body is reduced to a value. A wait expression is represented as wait id′ where id′ represents

40

e ::= . . . Exp

| nreceive x: T e e′ Non-blocking

v ::= . . . Value

| future T Future

(NReceive)〈st,E [nreceive x : T e e′],·〉id || P local (id)
; 〈st,E [[future T/x]e],·〉id || P

(NReceive)〈st,E [nreceive x : T e e′],·〉id || P local (id)
; 〈st,E [e′],·〉id || P

(NReceive)
Γ ` v : T, 0

〈st,E [nreceive x : T e e′], v.M〉id || P
receive(v,T,id)

; 〈st,E [[v/x]e],M〉id || P

(NReceive)
Γ ` v : T ′, 0

〈st,E [nreceive x : T e e′], v.M〉id || P
receive(v,T ′,id)

; 〈st,E [e′], v.M〉id || P

(Bsend)
future T 〈st′, e′,M ′〉id′ ∈ P

〈st,E [send id′ future T],M〉id || P
send(f,id,id′)

;

〈st,E [receive x : T send id′ x send id′ future T],M〉id || P

(Bset) 〈st,E [set future T],M〉id || P
set(id)
;

〈st,E [receive x : T set x set future T],M〉id || P

(Bfst) 〈st,E [fst pair future T v],M〉id || P
local(id)
;

〈st,E [receive x : T fst pair x v fst pair future T v],M〉id || P

(Bsnd) 〈st,E [snd pair v future T],M〉id || P
local(id)
;

〈st,E [receive x : T snd pair v x snd pair v future T],M〉id || P

(Babs) 〈st,E [y : T e future T],M〉id || P
set(id)
;

〈st,E [receive x : T (y : T e x) (y : T e futureT)],M〉id || P

(Bseq)〈st,E [future T ; e],M〉id || P
set(id)
;

〈st,E [e],M〉id || P

(NReceive)
Γ , x : T ` e : T ′, C ′ Γ ` e′ : T ′, C ′′

Γ ` nreceive x : T e e′ : T ′, ?[T] :: C ′ & C ′′

Figure 7.4 Syntax, dynamic semantic and static semantic for Non-blocking receive.

41

e ::= . . . Exp

| wait e Wait

(Wait)
〈st′, v,M ′〉id′ ∈ P

〈st,E [wait id′],M〉id || P
local (id)

; 〈st,E [v],M〉id || P
(Wait)

Γ ` e :T, C

Γ ` wait e : T, C

Figure 7.5 Syntax, dynamic semantics, and static semantics for Wait.

the address of the process whose body should be reduced to a value to unblock the wait state. The

notation 〈st′, v,M ′〉id′ ∈ P denotes such process configuration of process id′ exists in the global

configuration P. The evaluation of wait expression shown in the Figure 7.5 reduces the body

of the process id to the value v. The wait expression performs a local action. The rule (Wait)

shown in the Figure 7.5 type checks the wait expression by assigning the type value type T and

communication type C in the typing context Γ where T represents the type of the value to which

the body of the process id′ will eventually reduce to.

7.6 Extension in properties

We extend the properties presented in the §6 which is shown in Figure 7.6. Broadcast action

of a message to all the process instance conflicts with receive actions of the same message in those

processes. Similarly multicast action of a message conflicts with receive action if that message in

the group of processes to which message is sent. Happens-before relation says that a broadcast

action and a multicast action of a message must happen before it is being received by the other

processes to which it is sent.

Lemma 7.6.1. (λir’s mover properties) Let T be the execution trace of an arbitrary Message

passing program. Then, in trace T broadcast action broadcast (v, id) of process instance id is a left

mover, as defined in Definition 4; a multicast (v, id, id′) of process instance id is left mover.

Proof. Let a be an action with left and right neighbours al and ar in the sub-trace al ↪→ a ↪→ ar.

We replace a with broadcast and multicast actions of a process instance id to show their mover

properties in an arbitrary trace with arbitrary left and right neighbour actions from other process

instance. In a subtrace al ↪→ broadcast (v, id) ↪→ ar, the broadcast action of a message v conflicts

42

with receive action of the same message v. This is because swapping the broadcast action with its

right neighbour allows receiving a message v from process instance idi which is not even send by id.

However, Message passing model’s happens-before relation, in Figure 7.6, does not allow this by

ensuring that a message v must be sent by process instance id to process instance idi before it can be

received by process instance idi i.e. broadcast (v, id) ≺ receive (v, T, idi). This in turn means the

broadcast action can not be right mover. Since broadcasting of the message v to process instance id

must happen before its being received by process instances idi, a broadcast action broadcast (v, id)

can not be right neighbour to the receive action receive (v, T, idi) and thus the broadcast action

can be safely swapped with any of its left neighbour, i.e. the broadcast action is a left mover. The

same argument applies with multi (v, id, idi) . This in turn means broadcast and multicast action

a are a left mover and not a right mover.

Conflicting actions # and Their happens-before relation for the extensions: ≺

∀〈sti,E [receive x : T e e′], v.Mi〉idi ∈P

receive(v,T, idi) # broadcast(v, id)

id = (id1, id2, . . .) ∀idi ∈ id 〈sti,E [receive x : T e e′], v.Mi〉idi ∈P

receive(v,T, idi) # multicast(v, id, idi)

∀〈sti,E [receive x : T e e′], v.Mi〉idi ∈P

broadcast(v, id) ≺receive(v,T, idi)

id = (id1, id2, . . .) ∀idi ∈ id 〈sti,E [receive x : T e e′], v.Mi〉idi ∈P

multicast(v, id, id) ≺ receive(v,T, idi)

Figure 7.6 Conflicting actions in Message Passing Model for the extensions where # de-
notes conflict and their happens-before ≺ relation.

43

CHAPTER 8. FORMALIZATION

The syntax, semantics, type system and all proofs in this thesis have been formalized using the

Coq proof assistant. Our formalization for the core λir has 2263 lines of code. The Coq formalization

is inspired by the lambda calculus formalization, but there are several differences that make it more

interesting from a design perspective. First, we built support for message passing primitives such

as spawning a process, sending and receiving a message, etc. Next, to support the intensional

receive expression we incorporated dynamic type checking of messages at the head of the mailbox

in the operational semantics of receive expression. Because of the dynamic typing feature, standard

theorems like progress, preservation and soundness become more challenging to prove. We solved

these challenges by leveraging the type information in the syntax of receive, that leads to an extra

hypothesis in theorems which states that there exists a type T which is assigned to the message

at the head of the mailbox by our inductive typing relation. This design is different from the

traditional proofs for lambda calculus.

Also different from standard Coq encoding of STLC-like calculi, where only one expression takes

one step at one time, we have incorporated parallel configurations, which enable several entities

which take one step at the same time. Also, multiple configurations can take a step at the same

time in our dynamic semantics. We enable this configuration-level concurrency via the definition of

global configurations, consisting of a state, body and mailbox of a particular process. Therefore, a

step relation is a multiple-place relation enclosed under a global configuration that enables processes

to progress independently.

We also record the set of actions observed during the execution of a message passing program.

This action record is represented as a trace of the program, which helps us to reason about the

happens-before relation between the various actions and enables analysis of concurrency-related

issues. Each execution creates a sequential record that could be used in debugging, validation,

44

verification, and other analysis tasks, such as reasoning about interference, order in which messages

are received etc. We formalized the happens-before relation between the various actions in Coq

and also proved their mover properties.

8.1 Parallel Composition

In addition to the formalization of λir in Coq proof assistant and proving the theorems related

to it, we also provide a library for parallel composition, shown in Figure 8.1. All the prior work

uses list to model parallel composition which lack theorems related to structural congruence. Our

library provides both the notion of parameterized parallel composition as well as theorems related to

structural congruence. Our library includes the entire set definitions and lemmas that were used in

our formalization; these are directly available for others to extend and build upon through Require

Export command in Coq. In this library, we propose a general framework for parallel composition,

and we define instances of the various parallel compositions of the variety of entities that support

the congruence property. The parallel composition library is defined such that future constructions

can be parameterized over any composition. In our library comp(α) stands for parallel composition

holding data values in some type α.

comp(α) : Parallel Composiiton

comp(α) : α | : comp(α)

empty : comp(α)

append : comp(α) + + comp(α)→ comp(α)

membership : α ∈ comp(α)→ bool

subset : comp(α) ⊆ comp(α)→ bool

number : comp(α)→ nat

add : comp(α) + α→ comp(α)

same : comp(α1) ⊆ comp(α2) ∧ comp(α2) ⊆ comp(α1)

equiv : comp(α) ≡ comp(α)

Figure 8.1 Parallel composition library

45

Figure 8.1 lists our notational conventions. We declare that comp(α) is a type by parameterising

it over types. An empty parallel composition exists for any α. The operations of append, member-

ship, subset, number, add, and same are also available for any α. For example, in our λir we use

the parallel composition composed of the type process configuration where global configuration is

a parallel composition of local process configurations. We use the structural congruence operation

to indicate that ≡ is a structural congruence relation over the parallel composition. We formalized

it by following laws shown in Figure 8.2.

Structural Congruence: P1 ≡ P2

(Reflexivity)
P ≡ P

(Append Empty Composition)
P + + empty ≡ P

(Symmetry)
P1 ≡ P2

P2 ≡ P1

(Transitivity)
P1 ≡ P2 P2 ≡ P3

P1 ≡ P3

(Commutative)
P1 + + P2 ≡ P2 + + P1

(Associativity)
P1 + + (P2 + + P3) ≡ (P1 + + P2) + + P3

(Parallel)
P1 ≡ P ′1 P2 ≡ P ′2

P1 + + P2 ≡ P ′1 + + P ′2

Figure 8.2 Structural Congruence Rules.

Our parameterized parallel composition provides structural congruence with the reduction se-

mantics. Two parallel compositions are structurally congruent if they are identical up to the

structure. The dynamic nature of many calculi using parallel composition is represented using

reduction rules or computation steps. We represent the reduction semantics, which means the

computation step of the parallel composition, using three basic rules. The three basic rules of the

computation are empty parallel composition can take computational step to an empty composition,

if the parallel composition is formed by appending two parallel composition P and Q then if P takes

step to P ′ then P ++ Q takes step to P ′ ++ Q and if Q takes step to Q′ then P ++ Q takes step

46

• If P ⇒ P ′ then ∃ P ′′ : P ′ ≡ P ′′ ∧ P ⇒ P ′′.

• If P ⇒ Q then ∃ Q′ : P ⇒ Q′ implies Q ≡ Q′.

• If P ≡ P ′ ∧ P ′ ⇒ Q′ ∧ Q ≡ Q′ implies P ⇒ Q.

• If P ⇒ Q then ∃ P ′ : P ≡ P ′ ∧ P ′ ⇒ Q.

• If P ⇒ Q then ∃ P ′ Q′ : P ′ ⇒ Q′ ∧ Q ≡ Q′ ∧ P ≡ P ′.

Figure 8.3 Theorems related to Congruence

to P ++ Q′. The parallel composition should be represented as appending two compositions to

extract the proofs of theorems from the library.

We also proved various theorems associated with the congruence which can be found in the

library. All the theorems are listed in the Figure 8.3. The design of the theorems is inspired

by structural congruence property [8] for Π calculus and it is unique in the sense that we prove

the theorems for parameterized parallel compositions regardless of just the parallel composition of

processes. The notation⇒ represents the computation step any parallel composition may perform.

The reduction relation is closed under the basic set of reduction rules such as if P⇒ P ′ then P ++

Q ⇒ P’ ++ Q, if Q ⇒ Q′ then P ++ Q ⇒ P ++ Q’ etc. These reduction rules can be extended

to add more rules related to parallel composition like if P1 ++ P2 — P ′1 ++ P ′2 then P1 ++ P2 —

P3 ++ P4 ⇒ P ′1 ++ P ′2 — P3 ++ P4. In the above representation all the variables P, Q, P1, P2

etc represents a parallel composition. All the theorems listed in Figure 8.3 states that the parallel

composition that are structurally congruent have the same reductions. All the theorems proved in

the library can be reused if the composition is represented according to the signature presented in

the library. The design of our reduction semantics and parallel composition make these theorems

provable for parameterized parallel composition.

8.2 Formalization of the extensions

We have formalized the five extensions presented in our thesis in the section §7 in the Coq

proof assistant. Each extension is provided in a separate Coq file. Each contains pieces of syntax,

47

semantics, type systems, and the metatheoretical proofs needed by the addition of that extension.

All the proofs of our core calculus were reused in formalizing the extensions without breaking the

existing proofs. The table below presented in Figure 8.4 shows the number of lines of codes for the

core λir and then the number of lines of codes needed to add to each of the segments to insert each

feature. All the Coq formalisms are indented using Coq recommended style [32].

Feature SYN SEM TYPE SOUNDNESS GD HB Total

λir 50 813 241 899 30 230 2263

+ + + + + + + +

Broadcast 1 68 4 44 0 1 118

Multicast 1 162 15 127 0 1 306

Guarded Receive 1 85 7 86 0 1 180

Non-Blocking Receive 2 102 4 58 0 1 167

Synchronization primitive “wait” 1 43 2 128 0 1 175

Figure 8.4 Lines of code in Coq. (SYN : Syntax, SEM : Semantics, TYPE : Typing rules,
GD : Guaranteed delivery, HB : Happens-before relation, Total : Total number
of lines of code, + : Number of lines of code added in each of the module for
each extension).

Formalizing the new features helped us validate the extensibility of our calculus in the sense

that all the proofs for the theorems were reused by simply extending the proofs to add the new

features. Formalization of the feature “broadcast” required addition of a new auxiliary function that

updates the mailbox of all the configurations present in the program. Formalization of “guarded

receive” was similar to the “receive” operation except that we need to take into account the extra

expression that resembles the guard both in the dynamic and static semantics. In the dynamic

semantics, we need to make sure that the guard expression can be destructed to be only of three

cases true, false or any expression e.

Formalization of “non-blocking receive” includes extra dynamic semantic rules for unblocking

the state reached due to trying to access the future value. These rules required additional lines of

codes in the existing proofs for taking care of the subgoal in the new proof that emerged due to

the expressions that might get substituted by future values when the mailbox is empty. Also we

48

need to destruct the mailbox to deal with both the cases when the mailbox is empty and when the

mailbox is not empty.

Formalization of “multicast” added the largest number of lines of code to the core λir. In multi-

cast we send a message to a set of processes. To avoid adding a list of types to our core calculus, we

represented the set of addresses differently. We used standard lambda expression “pair” to repre-

sent the set of process addresses to which a message is sent. In the static and dynamic semantics we

incorporated this information by modelling the set of addresses as a pair of addresses written using

(pair id1 (pair id2 . . .))) to represent (id1, id2, . . .). Formalization of “multicast” also leads to the

addition of an auxiliary function that updates only the mailbox of the process addresses present in

the pair of addresses to which message is sent. Formalizing the synchronization primitive “wait”

required a change in the formulation of preservation theorem to include an additional hypothesis

for reasoning about the type of the body of other configuration present in the program. This is the

only feature that required a change in the signature of preservation theorem.

All the features required less than 200 lines of codes except the multicast. The Coq encoding

of the core λir along with all the feature is presented in the supplementary material.

49

CHAPTER 9. RELATED WORK

There have been several proposals to explore the benefits of type systems that mix static and

dynamic information, but these works have not focused on message passing systems that was the

focus of λir. Our design is inspired by Harper and Morrisett [14], but goes beyond its mechanical

adaptation to address several unique challenges in the message passing setting.

There have also been several proposals for reasoning about the messages, its effect and the

communication flow of message passing concurrency. For example, there are various type systems

proposed for actor model incorporating session types, behavioral types, parameterized type and

static types. Session type system proposed for Featherweight Erlang captures the flow of com-

munication within a session but still uses dynamic pattern matching for retrieving messages from

the mailbox [24]. Their approach doesn’t retains any information about the type of messages at

compile time but λir does. A static type system for actors proposed by Fowler [10] uses two typing

judgments: the standard judgment on values Γ ` V : A, and a judgment Γ | B ` M : A, which

states that a term M has type A under Γ, and can receive values of type B. Their approach consider

the case that an expression is only allowed to receive message of a single type B. But by using our

design, a process can receive messages of multiple types from the mailbox.

Behavioral types [7] encode the intended communication protocols and guarantees that runtime

computation implements these protocols but they don’t have any mechanism like our intensional

receive to type check the message at compile time and reason about its effect. A functional actor

calculus which include primitive for sending a message, creating a new actor, and changing an

actor’s behavior was proposed by Agha [2]. In this model, actors are typically untyped. He et al.

[15] have proposed a type system where each actor is parameterized by the type it handles. Though

type is specified and actor is only allowed to receive message of that particular type but they are

not allowed to handle message of multiple type which is allowed by our intensional design of receive

50

expression. Oortwij [25] analyze the behavior of Message Passing Interface (MPI) but have no

support to reason about the effect of message at run time and also no mechanism to typecheck the

message at compile time. Yasutake and Watanabe proposed a calculus for actor model formalized

in Coq proof assistant [34] but have not focused on providing static semantics. Colaco [6] has

formalized an actor model called CAP where actors are dynamically created, which leads to orphan

messages that may or may not be handled by the target actor in some execution path; the model

statically detects these orphan messages. They are mainly concerned about these properties but

have no mechanism like our intensional receive which intensionally inspects the messages.

Rajan proposed a programming model called Capsule-oriented programming [28] to deal with

challenges of concurrency which favors modularity over explicit concurrency, encourages concur-

rency correctness by construction and exploits the modular structure of programs to expose implicit

concurrency. It specifies a concurrent program as a collection of capsules and ordinary object-

oriented classes where static analysis of capsules and its interaction is facilitated. Bagherzadeh

and Rajan proposed a concurrent core calculus [3] and also presents its semantics which guarantees

sparse interference and cognizant interference by controlling sharing among concurrent tasks, ac-

cessibility of states of tasks, and dynamic binding. Their calculus includes higher level concurrency

constructs like asynchronous method invocation, future values, etc. as compared to λir which has

the design like traditional actor model. Also, their calculus is not mechanized while our calculus is

fully mechanized. Rajan and Leavens [29] proposed a language called Ptolemy that has quantified

and typed events. In their work, they have event types that completely decouples subject, and

observer modules and also event type declares the types of information communicated between the

announcement of events and handler methods. They provide modularization by separating event

type declarations from the modules that announce events. Similarly, in our calculus, we decouple

the sender and receiver and messages received by a process can be type checked irrespective of

sender’s information. Bagherzadeh, Rajan, Leavens and Mooney’s proposed calculus of Ptolemy

[4] with explicit event announcement and also propose a technique called translucid contracts that

allows programmers to write modular specifications for code and also allow them to reason about

51

the code’s control effects which support modular verification of interaction patterns used in the

aspect-oriented code which is not only Ptolemy specific but can be used to reason about other AO

interfaces and OO languages and also allow handlers to statically know about types of event they

handle.

All of these calculi does not support static type checking of messages received by the processes

and reasoning about them by intensionally inspecting their type at run time. Our intensional receive

utilizes runtime information to reason about the effect of the message received from the mailbox at

the same time retains static type safety. Also our core calculus aims to fill this gap by providing a

foundation for message passing concurrency that supports type-effect system for static type checking

for messages received by any process and is also fully mechanized.

52

CHAPTER 10. CONCLUSION

We have introduced intensional receive, a novel formulation of the receive expression in mes-

sage passing concurrency, and λir, a mechanized core calculus with intensional receive. This new

design is aimed at improving reasoning about the type of message received by any process and its

effect. Intensional design of receive expression integrates static and dynamic type checking and

allows the effect of the message received to be intensionally inspected through a notion of dynamic

typing. A distinct advantage is that this design enables reasoning about the effect of the message

received from the head of the mailbox while retaining static type safety. We have demonstrated

several applications of intensional design of receive expression in various programming patterns like

multiplexing, safe pipelining, encoding state machines and supporting the chain of responsibility

pattern. In each case, intensional receive helped provide better safety. We have also formalized λir

using the Coq proof assistant and prove its soundness.

In the future, we are planning to utilize λir as a jumping-off point for the analysis of real-life

applications. We believe that λir forms a basis that be used to formalize properties about emerging

message-passing architectures, including embedded operating systems that rely on message-passing

to transfer all information between applications. Examples include ROS (Robot Operating System)

[27] and NASA’s cFE/cFS (core Flight Executive/core Flight System) software1, which serves as a

basis for many platforms such as the AOS (Autonomy Operating System) [22]. We plan on inves-

tigating this application in particular for AOS; proofs about the behaviors of its message-passing

architecture will play an integral part in constructing the safety cases required by the FAA to allow

AOS to fly on the target Unmanned Aerial Systems (UAS) platforms in U.S. airspace. The exten-

sible foundation provided by λir could also be extended to add context sensitivity to the typing

environment so that we can reason in a different way about communications between the processes.

The context insensitive environment merges all the information about communications happening

1NASA Core Flight System https://cfs.gsfc.nasa.gov/

https://cfs.gsfc.nasa.gov/

53

with a particular process while in a context sensitive environment separate communication infor-

mation with the individual process can be taken into account. We believe this variation will prove

useful for consistency checking of the set of communications happening within a process.

54

BIBLIOGRAPHY

[1] Agha, G., Hewitt, C.: Actors: A conceptual foundation for concurrent object-oriented pro-

gramming. In: Shriver, B., Wegner, P. (eds.) Research Directions in Object-oriented Program-

ming, pp. 49–74. MIT Press, Cambridge, MA, USA (1987), http://dl.acm.org/citation.

cfm?id=36160.36162

[2] Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor computation. J.

Funct. Program. 7(1), 1–72 (Jan 1997), http://dx.doi.org/10.1017/S095679689700261X

[3] Bagherzadeh, M., Rajan, H.: Panini: A concurrent programming model for solving pervasive

and oblivious interference. In: Modularity’15: 14th International Conference on Modularity

(March 2015)

[4] Bagherzadeh, M., Rajan, H., Leavens, G.T., Mooney, S.: Translucid contracts: Expressive

specification and modular verification for aspect-oriented interfaces. In: AOSD ’11: 10th In-

ternational Conference on Aspect-Oriented Software Development (March 2011)

[5] Bonér, J., Klang, V., Kuhn, R.: Akka library. http://akka. io (July 2009)

[6] Colaco, J.L., Pantel, M., Dagnat, F., Sallé, P.: Static safety analysis for non-uniform service

availability in actors. In: Proceedings of the IFIP TC6/WG6.1 Third International Confer-

ence on Formal Methods for Open Object-Based Distributed Systems (FMOODS). pp. 463–

. Kluwer, B.V., Deventer, The Netherlands, The Netherlands (1999), http://dl.acm.org/

citation.cfm?id=646816.708629

[7] Crafa, S.: Behavioural types for actor systems. CoRR abs/1206.1687 (2012), http://arxiv.

org/abs/1206.1687

http://dl.acm.org/citation.cfm?id=36160.36162
http://dl.acm.org/citation.cfm?id=36160.36162
http://dx.doi.org/10.1017/S095679689700261X
http://dl.acm.org/citation.cfm?id=646816.708629
http://dl.acm.org/citation.cfm?id=646816.708629
http://arxiv.org/abs/1206.1687
http://arxiv.org/abs/1206.1687

55

[8] Engelfriet, J., Gelsema, T.: An exercise in structural congruence. Inf. Process. Lett. 101(1),

1–5 (2007), https://doi.org/10.1016/j.ipl.2006.08.001

[9] Flanagan, C.: Hybrid type checking. In: POPL ’06. pp. 245–256. POPL ’06, ACM, New York,

NY, USA (2006), http://doi.acm.org/10.1145/1111037.1111059

[10] Fowler, S., Lindley, S., Wadler, P.: Mixing metaphors: Actors as channels and channels as

actors. ECOOP’17: The European Conference on Object-Oriented Programming 7253 (2017)

[11] Griesemer, R., Pike, R., Thompson, K.: The go programming language. The Go Programming

Language (2010)

[12] Hackett, B., Guo, S.y.: Fast and precise hybrid type inference for JavaScript. In: Proceedings of

the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation.

pp. 239–250. PLDI ’12, ACM, New York, NY, USA (2012), http://doi.acm.org/10.1145/

2254064.2254094

[13] Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based programming.

Theor. Comput. Sci. 410(2-3), 202–220 (Feb 2009), http://dx.doi.org/10.1016/j.tcs.

2008.09.019

[14] Harper, R., Morrisett, G.: Compiling polymorphism using intensional type analysis. In: Pro-

ceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages. pp. 130–141. POPL ’95, ACM, New York, NY, USA (1995), http://doi.acm.

org/10.1145/199448.199475

[15] He, J., Wadler, P., Trinder, P.: Typecasting actors: From akka to takka. In: Proceedings of

the Fifth Annual Scala Workshop. pp. 23–33. SCALA ’14, ACM, New York, NY, USA (2014),

http://doi.acm.org/10.1145/2637647.2637651

[16] Hewitt, C.: Viewing control structures as patterns of passing messages. Artificial Intelligence.

8(3), 323–364 (Jun 1977), http://hdl.handle.net/1721.1/6272

https://doi.org/10.1016/j.ipl.2006.08.001
http://doi.acm.org/10.1145/1111037.1111059
http://doi.acm.org/10.1145/2254064.2254094
http://doi.acm.org/10.1145/2254064.2254094
http://dx.doi.org/10.1016/j.tcs.2008.09.019
http://dx.doi.org/10.1016/j.tcs.2008.09.019
http://doi.acm.org/10.1145/199448.199475
http://doi.acm.org/10.1145/199448.199475
http://doi.acm.org/10.1145/2637647.2637651
http://hdl.handle.net/1721.1/6272

56

[17] Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677 (Aug

1978), http://doi.acm.org/10.1145/359576.359585

[18] Igarashi, A., Kobayashi, N.: A generic type system for the pi-calculus. SIGPLAN Not. 36(3),

128–141 (Jan 2001), http://doi.acm.org/10.1145/373243.360215

[19] Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM

21(7), 558–565 (Jul 1978), http://doi.acm.org/10.1145/359545.359563

[20] Lipton, R.J.: Reduction: A method of proving properties of parallel programs. Commun. ACM

18(12), 717–721 (Dec 1975), http://doi.acm.org/10.1145/361227.361234

[21] Long, Y., Liu, Y.D., Rajan, H.: Intensional effect polymorphism. In: Proceedings of the 29th

European Conference on Object-oriented Programming. ECOOP’15 (July 2015)

[22] Lowry, M., Bajwa, A., Quach, P., Karsai, G., Rozier, K., Rayadurgam, S.: Autonomy

operating system for uavs. Online: https://nari.arc.nasa.gov/sites/default/files/

attachments/15%29%20Mike%20Lowry%20SAEApril19-2017.Final_.pdf (April 2017)

[23] Milner, R.: The polyadic-calculus: a tutorial. Logic and algebra of specification 94, 203–246

(1991)

[24] Mostrous, D., Vasconcelos, V.T.: Session typing for a featherweight erlang. In: Proceedings of

the 13th International Conference on Coordination Models and Languages. pp. 95–109. COOR-

DINATION’11, Springer-Verlag, Berlin, Heidelberg (2011), http://dl.acm.org/citation.

cfm?id=2022052.2022059

[25] Oortwijn, W., Blom, S., Huisman, M.: Future-based static analysis of message passing pro-

grams. In: Proceedings of the Ninth workshop on Programming Language Approaches to

Concurrency- and Communication-cEntric Software. pp. 65–72. PLACES 2016, Eindhoven,

The Netherlands (April 2016), https://doi.org/10.4204/EPTCS.211.7

http://doi.acm.org/10.1145/359576.359585
http://doi.acm.org/10.1145/373243.360215
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/361227.361234
https://nari.arc.nasa.gov/sites/default/files/attachments/15%29%20Mike%20Lowry%20SAEApril19-2017.Final_.pdf
https://nari.arc.nasa.gov/sites/default/files/attachments/15%29%20Mike%20Lowry%20SAEApril19-2017.Final_.pdf
http://dl.acm.org/citation.cfm?id=2022052.2022059
http://dl.acm.org/citation.cfm?id=2022052.2022059
https://doi.org/10.4204/EPTCS.211.7

57

[26] Pierce, B.C., Turner, D.N.: Pict: a programming language based on the pi-calculus. In: Proof,

Language, and Interaction: Essays in Honour of Robin Milner. pp. 455–494. The MIT Press,

Cambridge, MA (2000)

[27] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.:

ROS: an open-source Robot Operating System. In: ICRA workshop on open source software.

vol. 3, p. 5. Kobe (2009)

[28] Rajan, H.: Capsule-oriented programming. In: ICSE’15: The 37th International Conference

on Software Engineering: NIER Track (May 2015)

[29] Rajan, H., Leavens, G.T.: Ptolemy: A Language with Quantified, Typed Events, pp.

155–179. Springer Berlin Heidelberg, Berlin, Heidelberg (2008), https://doi.org/10.1007/

978-3-540-70592-5_8

[30] Reppy, J.H.: Cml: A higher concurrent language. In: Proceedings of the ACM SIGPLAN 1991

Conference on Programming Language Design and Implementation. pp. 293–305. PLDI ’91,

ACM, New York, NY, USA (1991), http://doi.acm.org/10.1145/113445.113470

[31] Siek, J., Taha, W.: Gradual typing for objects. In: Proceedings of the 21st European Con-

ference on Object-Oriented Programming. pp. 2–27. ECOOP ’07, Springer-Verlag, Berlin,

Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-73589-2_2

[32] The Coq Team: Coqstyle. https://coq.inria.fr/cocorico/CoqStyle (August 2013)

[33] Virding, R., Wikström, C., Williams, M.: Concurrent Programming in Erlang (2Nd Ed.).

Prentice Hall International (UK) Ltd., Hertfordshire, UK (1996)

[34] Yasutake, S., Watanabe, T.: Actario: A framework for reasoning about actor systems. In:

AGERE! 2015: the ACM SIGPLAN Workshop on Programming based on Actors, Agents,

and Decentralized Control. pp. 1–10. ACM, New York, NY, USA (Oct 2015), http://dx.

doi.org/10.1145/nnnnnnn.nnnnnnn

https://doi.org/10.1007/978-3-540-70592-5_8
https://doi.org/10.1007/978-3-540-70592-5_8
http://doi.acm.org/10.1145/113445.113470
http://dx.doi.org/10.1007/978-3-540-73589-2_2
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

58

[35] Yi, J.: Cooperability: A New Property for Multithreading. Ph.D. thesis, University of Cali-

fornia at Santa Cruz, Santa Cruz, CA, USA (2011), aAI3497948

59

APPENDIX. ADDITIONAL MATERIAL

Appendix is organized as follows:

§A.1 presents the operational semantics of basic lambda expressions;

§A.2 describes the static semantics of basic lambda expresisons.

§A.3 presents detailed definitions and proofs related to happens-before.

§A.4 presents inference algorithm.

A.1 Dynamic Semantics of STLC expressions

Local evaluation rule
a
;: 〈st,E [e],M〉id || P

a
; 〈st′,E [e′],M ′〉id || P

(First)
〈st,E [fst(pair v v′)],M〉id||P

local(id)
; 〈st,E [v],M〉id||P

(Second)
〈st,E [snd(pair v v′)],M〉id||P

local(id)
; 〈st,E [v′],M〉id||P

(If)
〈st,E [if true then e1 else e2],M〉id||P

local(id)
; 〈st,E [e1],M〉id||P

(If)
〈st,E [if false then e1 else e2],M〉id||P

local(id)
; 〈st,E [e2],M〉id||P

(Sequential)
〈st,E [v; e],M〉id||P

local(id)
; 〈st,E [e],M〉id||P

Figure A.1 Operational Semantics

60

Type Checking: Γ ` e : T, C

(V ariable)
(x, T) ∈ Γ

Γ ` x : T, 0
(Nat)

Γ ` n : nat, 0
(Pair)

Γ ` e : T, C Γ ` e′ : T ′, C ′

Γ ` pair e e′ : T * T ′, C :: C ′

(First)
Γ ` e : T * T ′, C :: C ′

Γ ` fst pair e e′ : T, C
(Second)

Γ ` e : T * T ′, C :: C ′

Γ ` snd pair e e′ : T ′, C ′

(If)
Γ ` e : bool, C Γ ` e′ : T, C ′ Γ ` e′′ : T, C ′′

Γ ` if e then e′ else e′′ : T, C :: C ′ & C ′′
(Unit)

Γ ` unit : unit, 0

(True)
Γ ` true : bool, 0

(False)
Γ ` false : bool, 0

(Seq)
Γ ` e : T, C Γ ` e′ : T ′, C ′

Γ ` e ; e′ : T ′, C :: C ′

Figure A.2 Static Semantics

A.2 Static Semantics of STLC expressions

A.3 Happens-Before Relations

Definitions A.3.1, A.3.2, A.3.3, A.3.4 are adapted from the previous work [35].

Definition A.3.1. (Trace) An execution trace of a message passing program is a total order of

actions a, as defined in Figure 4.1, performed by individual process instance in the program config-

uration P when evaluating the program using the local and global evaluation rules of Figure 4.2.

Definition A.3.2. (Adjacent and neighbor actions) Two actions a and b in a trace T are

adjacent if one follows immediately after another. Two adjacent actions a and b are neighbors if

they are performed by different process instances, i.e., instance(a) 6= instance(b). The auxiliary

function instance returns the process identifier of an action.

Definition A.3.3. (Commuting and conflicting actions) Let a1 and a2 be actions of process

identifiers id1 and id2 in an execution trace P
a1
↪→ P ′ a2↪→ P ′′. Then actions a1 and a2 commute,

written as a1 !# a2, if swapping them in the trace results in the same final state in the trace starting

with the same start state, i.e., P
a2
↪→ P ′′′ a1↪→ P ′′. Otherwise, a1 and a2 conflict, written as a1 #

a2.

61

Conflicting actions # and their happens-before relation: ≺

〈st,E [spawn x : T e],M〉id′ ∈P

spawn(id′, id′′) # send(v, id, id′)
send(v, id, id′) ≺ spawn(id′, id′′)

Figure A.3 Conflicting actions in the Message Passing Model where # denotes conflict
and their happens-before ≺ relation.

There can be conflicting actions in message passing program stemming from its semantics: a

send action of a message to a process instance conflicts with another send action of a message

to the same process instance; a send action of a message to a process instance conflicts with the

receive action of the same message.

A happens-before relation [19] ≺ orders pairs of conflicting actions. For example, in our mes-

sage passing model, sending of a message v by a process instance id to process instance id′ must

happen-before receive of the same message from the process instance id′, i.e., send(v, id, id′) ≺

receive(v, T, id′). Figure A.3 shows our message passing model’s conflicting actions and their

happens-before relations.

Definition A.3.4. (Right-, left-, both-, and non-mover actions) Let a1 and a2 be adjacent

actions that are performed by different processes in an arbitrary execution trace P
a1
↪→ P ′ a2↪→ P ′′.

Then a1 is a right-mover if swapping a1 with a2 in the trace results in the same final state given

the trace began with the same start state, i.e., P
a2
↪→ P ′′′ a1↪→ P ′′. Conversely, a2 is a left-mover if

swapping it with a1 results in the same final state, starting from the same start state. An action that

can be swapped with its both left and right adjacent actions in any trace is a both-mover. Conversely,

an action that cannot be swapped with either its left nor right neighbors is a non-mover.

The operational semantics of the message passing model determine the mover properties of the

actions. Lemma A.3.1 specifies mover properties of the message passing model’s actions.

Lemma A.3.1. (Message passing model’s mover properties) Let T be the execution trace

of an arbitrary message passing program. Then, in trace T send action send (v, id, id′) of process

instance id is a left-mover, as defined in Definition A.3.4; a spawn (id′, id′′) of process instance id′

62

and a receive receive (v, T, id′) action of message v from the process instance id by process instance

id′ are a non-mover and local (id), get (id), set (id) and self are a both-mover.

Proof. The proof is based on happens-before relations of message passing model actions in Fig-

ure 4.1. Let a be an action with left and right neighbors al and ar in the sub-trace al ↪→ a ↪→ ar.

We replace a with send, receive and spawn actions of a process instance id to show their mover

properties in an arbitrary trace with arbitrary left and right neighbor actions from other process

instance.

In a sub-trace al ↪→ send (v, id, id′) ↪→ ar, the send action of a message v conflicts with the

receive action of the same message v. This is because swapping the send action with its right

neighbor allows receiving a message v from process instance id′, which has not been sent by id.

However, the message passing model’s happens-before relation does not allow this by ensuring that

a message v must be sent by process instance id to process instance id′ before it can be received by

process instance id′, i.e., send (v, id, id′) ≺ receive (v, T, id′). This in turn means the send action

cannot be right-mover. Since sending of the message v to process instance id′ must happen before

v is received by process instance id′, a send action send (v, id, id′) cannot be a right neighbor to

the receive action receive (v, T, id′) and thus the send action can be safely swapped with any of

its left neighbors, i.e., the send action is a left-mover.

A receive action receive (v, T, id′) only conflicts with another receive action if process instance

id′ receive message from two different process instances, since they both modifies the actions taken

by process instance id’ and also the mailbox of the process instance id′. A receive action cannot be

swapped with either its left or right neighbor. Because it might be the case that we swap receive

with its left neighbor or right neighbor and receive action happens before the send action for a

message v. Also receive action conflicts with another receive action because there can be certain

order of type of messages to be received by any process. Hence receive action receive (v, T, id′)

cannot be swapped to its left receive (v′, T ′, id′) and its right receive (v′′, T ′′, id′) because message

of type T should be received after message of type T ′ and before message of type T ′′. Hence receive

action is a non-mover.

63

τ ::= Value Types

| α variable

| τ ζ−→ τ Arrow

| τ ζ Process

| unit Unit

ζ ::= Comm Types

| β variable

| 0 Null

| ζ1 & ζ2 Choice

| ζ1 :: ... :: ζn Seq

| ![τ] Send

| ?[τ] Receive

Figure A.4 Variable representing value type and communication type

Similarly spawn (id′, id′′) is also non-mover. The reason behind the above argument is there

might be the case that a process decided to spawn a process based on the message it receives. So

send action which sends any message v to the process id′ on which these actions are dependent can

not happen after spawn actions. So they cannot be left-mover. A spawn action conflicts with the

receive action of the same process instance id′ as a process instance id′ must receive the message

from the mailbox before it decided to spawn a new process based on the message it receives. Hence

spawn action cannot be a right-mover. Hence spawn action is a non-mover.

There are four actions which can be both-movers, they are local (id), get (id), set (id) and

self.

A.4 Type Inference Algorithm inspired by Hindley and Milner Approach

In this section we present type-inference algorithm which is inspired by Hindley-Milner algo-

rithm. It is an deterministic step-by-step procedure for determining types for untyped expressions.

Algorithm share the notions of “expressions” and “type”. Accepts an environment Γ and an ex-

pression e. It produces a value type τ and communication type ζ or fails.

Type Checking: Γ ` e : τ , ζ

64

(1) (Abs)
Γ , x : T ` e : T ′, C

Γ ` x : T e : T
C−→ T ′, 0

T (Γ ` x : T e) =

do τ , ζ = T (Γ, x : T ` e)

do (β = fresh ∧ β = 0)

return T
ζ−→ τ , β

(2) (App)
Γ ` e : T

C′′
−−→ T ′, C Γ ` e′ : T, C ′

Γ ` e e′ : T ′, C :: C ′ :: C ′′

T (Γ ` e e′) =

do τ , ζ = T (Γ ` e)

do τ ′, ζ ′ = T (Γ ` e′)

do β = fresh

do α = fresh

do τ = τ ′
β−→ α

return α, ζ :: ζ ′ :: β

(3) (Send)
Γ ` e′ : T ′, C ′ Γ ` e : P (T C), C ′′ ?[T ′] ∈ C 	 (?[T ′], C) = C ′′′

Γ ` send e e′ : T ′, C ′ :: C ′′ :: ![T ′] :: C ′′′

T (Γ ` send e e′) =

do τ , ζ = T (Γ ` e)

do τ ′, ζ ′ = T (Γ ` e′)

do β = fresh

do α = fresh

do τ = P (α, β)

do ?[τ ′] ∈ β

do β′ = 	 (?[τ ′], β)

return τ ′, ζ ′ :: ζ :: ![τ ′] :: β′

65

(4) (Receive)
Γ , x : T ` e : T ′, C ′ Γ ` e′ : T ′, C ′′

Γ ` receive x : T e e′ : T ′, ?[T] :: C ′ & C ′′

T (Γ ` receive x : T e e′) =

do τ , ζ = T (Γ, x : T ` e)

do τ , ζ ′ = T (Γ ` e′)

return τ , ?[T] :: ζ & ζ ′

(5) (Spawn)
Γ, self st : T, self id : P(T ′, C ′) ` e : T ′, C ′

Γ ` spawn x : T e : P(T ′ C ′), 0

T (Γ ` spawn x : T e) =

do τ , ζ = T (Γ, self st : T, self id : P(T ′, C ′) ` e)

do (β = fresh ∧ β = 0)

return P(τ ζ), β

(6) (Self)
Γ(self id) = P (T C), 0

Γ ` self : P(T C), 0

T (Γ ` self) =

do α = fresh

do β = fresh

do τ = P (α β)

do ζ = 0

return τ , ζ

(7) (Set)
Γ ` e : T ′, C ′ Γ ` self st : T, 0 T ′ � T

Γ ` set e : T, C ′

T (Γ ` set e) =

do τ ′, ζ ′ = T (Γ ` e)

do τ , ζ = T (Γ ` self st)

do ζ = 0

do τ ′ ≺ τ

return τ , ζ ′

66

(8) (Get)
Γ ` self st : T, 0

Γ ` get : T, 0

T (Γ ` get) =

do τ , ζ = T (Γ ` self st)

do ζ = 0

return τ , ζ

(9) (Fix)
Γ ` e : T

C−→ T, 0

Γ ` fix e : T, C

T (Γ ` fix e) =

do τ , ζ = T (Γ ` e)

do (α = fresh)

do (β = fresh)

do τ = α
β−→ α

do ζ = 0

return α, β.

	2017
	λir : A language with intensional receive
	Swarn Priya
	Recommended Citation

	TABLE OF CONTENTS
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Contributions

	2. MOTIVATING EXAMPLES
	2.1 Pipelining
	2.2 Encoding State Machines
	2.3 Chain of responsibility design pattern
	2.4 Multiplexing

	3. DESIGN OF INTENSIONAL RECEIVE: ABSTRACT SYNTAX
	3.1 Single-state Processes
	3.2 Intensional Design of the Receive Expression

	4. DYNAMIC SEMANTICS OF ir PROGRAMS
	4.1 Dynamic Objects
	4.2 Local and Global Semantics
	4.3 Sequential Synchronous Local Semantics
	4.4 Concurrent Asynchronous Global Semantics

	5. STATIC SEMANTICS OF ir PROGRAMS
	5.1 Computing Potential Behavior of a Recipient
	5.2 Pipelining (revisited)
	5.3 Chain of responsibility design pattern (revisited)
	5.4 Subtyping, Value, and Communication Types
	5.5 Type Rules

	6. INTENSIONAL RECEIVE GENERATES NEW HAPPENS-BEFORE RELATIONS
	6.1 Actions: Conflict and Happens-Before Relations
	6.2 Guaranteed Delivery

	7. EXTENSIONS
	7.1 Broadcast
	7.2 Multicast
	7.3 Guarded Receive
	7.4 Non-blocking Receive
	7.5 Synchronization primitive, Wait
	7.6 Extension in properties

	8. FORMALIZATION
	8.1 Parallel Composition
	8.2 Formalization of the extensions

	9. RELATED WORK
	10. CONCLUSION
	BIBLIOGRAPHY
	APPENDIX. ADDITIONAL MATERIAL
	A.1 Dynamic Semantics of STLC expressions
	A.2 Static Semantics of STLC expressions
	A.3 Happens-Before Relations
	A.4 Type Inference Algorithm inspired by Hindley and Milner Approach

