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ABSTRACT

In this thesis, we study the problem of estimating the number of triangles of an undirected

graph in the data stream model. Some of the well-known streaming algorithms work as follows:

Sample a single triangle with high enough probability and repeat this basic step to obtain a global

triangle count. For example, the neighborhood sampling algorithm attempts to sample a triangle

by randomly choosing a single edge e, a single neighbor f of e and waits for a third edge that

completes the triangle. The basic sampling step in the algorithm is repeated multiple times to

obtain an estimate for the global triangle count in the input graph stream. In this work, we propose

a multi-sampling variant of this algorithm. We provide a theoretical analysis of the algorithm and

prove that it improves upon the known space and accuracy bounds. We experimentally show that

this algorithm outperforms several well-known triangle counting streaming algorithms.
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CHAPTER 1. INTRODUCTION

The intelligent data analysis has passed through a number of stages. Each stage addresses novel

research issues that have arisen. Due to the increase in database sizes, new algorithms have been

proposed to deal with the scalability issue. The recent advances in hardware and software have

enabled the capture of different measurements of data in a wide range of fields. These measurements

are generated continuously and in a very high fluctuating data rates. Examples include sensor

networks, weblogs, and computer network traffic. The storage, querying and mining of such data

sets are highly computationally challenging tasks [11]. Recently, the data generation rates in

some data sources become faster than ever before. This rapid generation of continuous streams of

information has challenged our storage, computation and communication capabilities in computing

systems. Systems, models, and techniques have been proposed and developed over the past few

years to address these challenges [1, 23].

1.1 Data Streaming Model

A data stream is a sequence of data elements made available through time. In the data stream

model, some or all of the input is represented as a finite sequence of element(from some finite

domain) which is generally not available for random access, but instead arrives one at a time in a

stream. If the stream has length n and the domain has size m, algorithms are generally constrained

to use space that is logarithmic in m and n.

Often it is the case that the stream processor does not have enough resources(space) to store

the entire stream in its memory and perform an off-line computation. Thus the processor cannot

access an individual item of the stream multiple times unless it is stored in the memory. Hence

streaming algorithm needs to run in real time, as the data arrives and decide if each element will

be processed (in our case, sampled) or discarded. Each time the algorithm runs through the stream
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is called a pass over the data. Streaming algorithms’ performances are usually compared by the

number of passes, available memory and their runtime. Since exact answers are not possible due to

limited memory, we settle for an approximate answer. Approximation algorithms can result in an

approximate solution with error bounds. Sampling and sketching [23, 1] techniques are common

techniques used in this case. Sampling refers to the process of probabilistic choice of a data item

to be processed or not. Boundaries of the error rate of the computation are given as a function of

the sampling rate.

The data streams we study here are graph streams, meaning they correlate with the changes

in a graph network with time. The edges arrive as a stream in time. Each edge corresponds to a

relation between two vertices of the graph. Sampling such streams is the act of choosing a subgraph

of the main graph and process it instead.

If the stream is not dynamic, the arriving elements of the stream are new edges being added to

the graph network. But in a dynamic graph stream, edges can be added or removed, in case two

vertices are no longer connected. So the elements will consist of the edge and the operation (add

or delete). Studying dynamic streams are much harder since the sampling algorithm needs to be

considering the deletions as well.

1.2 Triangle substructure

Graphs are data structures that used to model complex relations in a wide variety of appli-

cations, including biochemistry, neurobiology, ecology, social sciences, and information systems.

Normally, the graph consists of a set of nodes or vertices and a second set of edges which are

the relations between those vertices. These relations can be one-sided(directed graphs) or two-

sided(undirected graphs). With the growth of networks, the demand for their graph representations

has also increased. Defining new measures of interest on graph data and designing novel algorithms

that compute or approximate such measures on large graphs is an important task for analyzing

graph structures that reveal their underlying properties [4].
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A triangle in an undirected simple graph is a subgraph of three nodes that are all connected.

A triangle is also the smallest non-trivial clique. In an n−clique, there are exactly
(
n
3

)
triangles.

Understanding coarser and finer properties of triangle structures in a network has found ap-

plications in social network analysis, recommendation systems, spam and fraud detection, and

understanding structure and evolution of social and web graphs [35, 5, 10, 12, 26, 3, 9, 33]. So-

ciologists have long been interested in triadic structures in social network graphs [35, 5]. The

frequently used notions of transitivity coefficient and clustering coefficient critically depend on the

number of triangles present in a social network. With the advent and presence of very large scale

graphs such as online social networks and web graphs, the computational complexity of computing

the number of triangles in a graph has received a lot of attention. Since exact triangle computation

is expensive on large-scale graphs, considerable emphasis has been placed on designing algorithms

that will estimate number of triangles of a graph with provable guarantees on the quality of the

estimation. The problem we are trying to contribute to here is counting the number of triangles

in a streaming graph in one pass. There have been several algorithms that count the number of

triangles in a data stream, with different approximations, run times and memory bounds. We will

show our contribution in the following chapters starting with literature review, details about our

algorithm, proof that the algorithm works, our memory bound and end with experimental results

comparing our algorithm to the previous ones. We will see that our algorithm gives better memory

bounds in theory and also in practice.
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CHAPTER 2. PRIOR WORK

There has been an extensive body of research on the problem of exact and approximate triangle

counts in various computational models [27, 31, 33, 32, 34, 30, 24, 18]. For example in [18], the

authors study triangle counting in very large sparse graphs and try to focus on the space complex-

ities of known algorithms and discuss their implications. In [27], they evaluate the practicability

of triangle counting and listing in very large graphs with various degree distributions. Tsourakakis

et al. propose a practical method in [32] using a straightforward triangle counting algorithm as a

black box and performing experiments on real-world networks and on synthetic data sets.

Here we restrict our attention to the prior in the data stream model. Bar-Yosseff et al. were

the first to formally study the problem of triangle counting the data stream model in 2002 [2].

They reduced the triangle counting problem on graphs to estimating zeroth and second frequency

moments over numeric data. Much of the latter work is based on various sampling strategies in

the sense that they attempt to sample a sub-graph of the original graph [21, 16, 6, 28, 13, 14, 15,

8, 25, 20]. Some of these works use reservoir sampling to sample edges/vertices, whereas other

use fixed probability to sample edges/triangles. Reservoir sampling is the family of randomized

sampling algorithms used for randomly choosing a sample of k items from a list S containing n

items, where n is either a very large and does not fit in memory or is an unknown number. The idea

is to keep at most k items in memory at all times, deleting the previous items either by timestamp

or randomly to update the sample. As for fixed probability algorithms, the work of Jha et al.

in [13] is based on the classic probabilistic result, the birthday paradox. They prove that when

the transitivity is constant and there are more edges than vertices (common properties for social

networks), their algorithm requires O(
√
n) space to require accurate results. The work of Lim and

Kang [20] uses a fixed probability to sample the edges. They fix a parameter p and pick each edge

with probability p and count the number of triangles formed by the sampled sub-graph. As for the
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reservoir sampling algorithm, the most recent example is the Triest based algorithm [29] which we

will discuss thoroughly later in this section.

Some of the prior work on insert-only streams (i.e. edge deletions are not allowed) [13, 14, 15, 8,

25], whereas other algorithms work on dynamic graph streams that allow deletion of edges [7, 29].

Some algorithms provide the triangle count only after the entire stream is processed, while other

algorithms can continuously monitor the number of triangles in the graph that has been observed

so far.

The memory used by these algorithms depend on two factors: Various graph parameters such

as number of vertices (n), number of edges (m), total number of triangles (T ), maximum-degree

(∆), etc, and the approximation and error probability factors ε and δ. The memory bounds of

various algorithms can be found in Table 3.1 in the next section.

The algorithm due to Pagh and Tsourakakis[24], to which we refer to as colorful triangle count-

ing, each vertex of the graph is colored with N = 1/p colors randomly. The triangles which have

the same colored vertices are then counted. They claim that when p ≥ max( δlognt ,
√

logn
t ), the

triangle estimate is concentrated around its expectation.

The streaming algorithm of Buriol et al. [8]works as follows: uniformly at random, using the

well-known reservoir sampling technique, pick a vertex v and an edge 〈a, b〉 of the graph. Once

sampled, if the both cross edges 〈a, v〉 and 〈b, v〉 arrive in the stream, then output 1 otherwise

output 0. Run R independent copies of this basic procedure and take the average output as an

estimate for the number of triangles. They have proved that the output is a (ε, δ) approximation of

the total number of triangles when the space/memory used is O(mnT
1
ε2

log(1/δ)). Here T denotes the

total number of triangles in the graph. From now on, we will refer to this algorithm as Edge-Vertex

Single Sampling algorithm, EVSS algorithm for short.

The neighborhood sampling algorithm [25] attempts to sample a triangle by randomly choosing

a single vertex v, a single neighbor u of v and waits for a third edge that completes the triangle. This

algorithm uses reservoir sampling to uniformly at random pick an edge e1, a random neighboring

edge e2 of e1, and waits for an edge e3 such that e1, e2, e3 form a triangle. It is shown that
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this algorithm uses O(m∆
T

1
ε2

log(1/δ)) to compute a (ε, δ) approximation of T . Here ∆ denotes

the maximum degree of the graph. The authors refer to this algorithm as neighborhood sampling

algorithm.

Both of the above-described algorithms attempt to sample a single triangle. In our previous

work [17], by modifying the above procedures to sample multiple triangles, we obtain much better

theoretical bounds on the memory and space used. Consider EVSS algorithm. Instead of picking a

single vertex and a single edge, sample multiple vertices and multiple edges , store the cross edges

that connect the sampled vertices to the sampled edges and count the number of triangles formed

by sampled edges and cross edges and scale the number by an appropriate factor. This is referred

to as the EVMS algorithm [17, 22].

The recent work of Stefani et al.[29], called the Triest algorithm, uses reservoir sampling to

sample multiple edges and counts the number of triangles in the sampled-subgraph. Their algorithm

also handles dynamic streams (where edges can be deleted) and can be used to obtain local-triangle

counts.

In this work, we propose an extension to the neighborhood sampling algorithm called the neigh-

borhood multi-sampling algorithm, NMS for short, using the idea of multi-sampling. We will prove

that our algorithm gives better memory bounds for streaming graphs in theory as well as in the

experiment over several different data-sets. It is also faster and more consistent than some of the

previous well-known algorithms.
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CHAPTER 3. ALGORITHMS AND ANALYSIS

In this section, we present the pseudo code and explanation of the NMS algorithm as well as

its accuracy and memory bounds. We start with some preliminaries and then go into details of the

algorithm analysis to gain the memory bounds.

3.1 Neighborhood Multi-Sampling algorithm(NMS Algorithm)

We assume the graph stream, GS arrives element by element in the form of ei = (u, v), in

which ei is an edge with two end points u and v. fix two probability parameters p and q. The

algorithm maintains three sets of edges L1, L2, and L3. When an edge e arrives it is placed in L1

with probability p. In addition, if e is a neighbor of an edge in L1, then it is placed in L2 with

probability q. Moreover, if e forms a triangle with an edge from L1 and L2, then it is placed in

L3. When triangle estimate is needed, we compute all triangles with edges e1, e2, e3 of the form:

e1 ∈ L1, e2 ∈ L2, e3 ∈ L3 and e1 arrived before e2, and e2 arrived before e3. We scale the count

by dividing the number of triangles by pq and this is our estimate for the total number of triangles

in the graph. Though this description of the algorithm uses L3, we can implement the algorithm

without explicitly storing L3. The pseudo-code of the algorithm is shown in Figure 3.1.

3.1.1 Preliminaries

We briefly describe the notations/ theorems that are used in the paper.

We say two triangles are incident on a vertex v or edge e if they both contain v as one of their

vertices or e as one of their edges. For a graph G = (V,E), we use n and m to denote the number

of vertices and edges respectively. We use T to denote the total number of triangles, Tv to denote

the number of triangles incident on a vertex v, Te to denote the number of triangles incident on

an edge e, ∆ to denote the maximum degree of the graph. The maximum number of triangles a
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1: procedure NMS Algorithm

2: Input: The graph stream GS
3: Initialize: L1 = ∅, L2 = ∅, L3 = ∅, Y = ∅
4: for each edge ei = (u, v) in GS , do

5: With probability p, add ei to L1

6: if e ∈ N(L1) then

7: With probability q add ei to L2

8: end if

9: for every (ej , ek), ej ∈ L1, ek ∈ L2 such that t(ej) < t(ek) and t(ej) < t(ei) and

〈ei, ej , ek〉 form a triangle do

10: Add the triangle 〈ei, ej , ek〉 to Y

11: end for

12: end for

13: Output: |Y |/pq, Number of sampled triangles from the stream

14: end procedure

Figure 3.1: NMS Algorithm

vertex or an edge can participate in are denoted by ∆V and ∆E . Note that ∆E ≤ ∆V ≤ ∆2.

Defintion. We say that a probabilistic algorithm computes an (ε, δ) approximation of T if the

output of the algorithm lies between T + εT and T − εT with probability ≥ 1− δ.

Chebyshev’s Inequality : Let X be a random variable. Then,

Pr[|X − E(X)| ≥ δ] ≤ V ar(X)

δ2

Chernoff Inequality : Let X1, X2, ..., Xm be independent random variables that take values be-

tween 0 and 1. Let E(X1) = E(X2) = ... = E(Xm) = p. Let X = X1 +X2 + ...+Xm, then

Pr[|X/m− p| ≥ pδ] ≤ 2e
−δ2mp

2

Hajnal-Szemeredi Theorem: Every graph with n vertices and maximum vertex degree at most k is

k + 1 colorable with all color classes of size at least n
k+1 .

3.1.2 Analysis

Let τ(G) be the set of all the triangles in the graph G and |τ(G)| = T .
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Lemma 3.1.1 Let t ∈ τ(G). The probability that t is sampled in the NMS algorithm is, Pr[t ∈

Y ] = pq.

Proof. A triangle is sampled if the L1 edge is sampled with probability p, and then the L2 edge in

the neighborhood of the L1 edge is sampled with probability q. Since every edge is sampled with

a fixed probability, p and q respectively, and the two events are independent, the probability that

a triangle, t ∈ τ(G) gets sampled is pq.

Lemma 3.1.2 The NMS algorithm outputs X whose expectation is the number of triangles in the

graph G

Proof. Let’s define random variables X1, X2, X3, . . . , XT , such that,

Xi =


1 if the ith triangle of G gets sampled

0 otherwise

Let p be the probability of the ith triangle to be sampled according to lemma 3.1.1 is:

Pr[Xi = 1] = pq

Then the expected value of Xi, would be:

E[Xi] = Pr[Xi = 1].1 + Pr[Xi = 0].0 = pq

Let us define a new random variable X as

X = X1 +X2 + ...+XT

The expected value of X will be

E[X] = E[

T∑
i=1

Xi] =

T∑
i=1

E[Xi] = Tpq

.
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Recall that

V ar[X] =

T∑
i=1

V ar(Xi) +
∑

0≤i≤j≤T
Cov[Xi, Xj ]

From the definition of Variance for Bernoulli random variables, V ar[Xi] = pq − p2q2 ≤ pq. Note

that if triangles i and j do not share an edge then the incident of them being sampled is completely

independent and Cov[Xi, Xj ] = 0. Triangles i and j can be dependent when they share an edge.

If they share a vertex then E[XiXj ] = pq2. We want get an upper bound for the variance. So we

try to get a bound for Cov(Xi, Xj). Since Cov(Xi, Xj) = E[XiXj ]−E[Xi]E[Xj ] which is at most

E[XiXj ]. Thus Cov(Xi, Xj) ≤ pq2. However, if the triangles share an edge, then E[XiXj ] ≤ pq2.

In this case the Co-variance of Xi and Xj is bounded by pq2. Let P denote the maximum of p and

q. So if we sum all such covariances, we have

∑
0≤i≤j≤T

Cov(Xi, Xj) ≤ Ppq(
∑

e∈G T
2
e )

≤ Ppq(
∑

e∈G Te∆E)

≤ Ppq∆E
∑

e∈G Te

≤ 3Ppq∆ET

Here Te is the number of triangles incident on an edge e and ∆E = maxe Te. Thus V ar(X) is

bounded by Tpq(1 + 3P∆E). Using Chebyshev inequality, we can obtain a concentration bound

for X. Recall that the output of the algorithm is
X

pq
. So if the variance for

X

pq
is σ2 we will have:

Pr[|X
pq
− T | ≥ εT ] ≤ σ2

ε2T 2

σ2 =
V ar[X]

pq
and we already have an upper bound for V ar[X].

Pr[|Xpq − T | ≥ εT ] ≤ Tpq(1+3P∆E)
p2q2ε2T 2 ≤ δ

So to obtain an ε, δ approximation we require that

pq ≥ 1 + 3P∆E

δε2
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For simplicity, if set p = q, after solving this inequality we get q ≥
−3∆E +

√
q∆2

E + 4ε2δ

2δε2
. So the

bound given by Chebyshev’s inequality is

pq = p2 ≥
−3∆E +

√
q∆2

E + 4ε2δ

4δ2ε4

Thus the above algorithm outputs (ε, δ) approximation if p = q and the above inequality holds.

However, we now show how to achieve a better concentration bound using Hajnal-Szemeredi

theorem and Chernoff bounds. Note that the random variables X1 · · ·XT are not mutually in-

dependent thus Chernoff bounds cannot be applied directly. This problem can be gotten around

by appealing to the work of Hajnal-Szemeredi. Pagh and Tsourakakis are the first to apply this

technique in the context of triangle counting [24].Let Xi be defined as above, i = 1, ..., T . Consider

an auxiliary graph H. For every Xi (equivalently a triangle ti) place a vertex vi in H. If Xi and

Xj are dependent, place an edge between vi and vj . as follows(shown in Figure 3.2).

Add a vertex in H for every triangle in G. Then connect two vertices v1 and v2 in H representing

Figure 3.2: Construction of auxiliary graph from the sampled triangles

triangles t1 and t2 in G, if and only if t1 and t2 have a common edge.
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Observe that the maximum degree of H is ∆E . According to Hajnal-Szemeredi theorem, the

graph G can be colored with ∆E + 1 colors, with each color set having at most k =
T

∆E
vertices.

Consider such a coloring. Note that if v1 and v2 have the same color, the corresponding random

variables Xi and Xj are independent. Thus all the random variables belonging to same color class

are mutually independent and we can apply Chernoff bounds in each such class. For a color c,

let kc denote the number of vertices of H with color c. Note that T equals the sum of all kc’s.

Fix a color c, and without loss of generality, assume that X1, · · · , Xkc t1, t2, · · · tkc be the random

variables corresponding to the color class c. Let Zc =
∑kc

i=1
Xi
pq . Note that E[Zc] = kc. By Chernoff

bounds,

Pr[|Zc − kc| ≥ εkc] = Pr[|
∑k
i=1Xi
pvpe

− kc| ≥ εkc] (3.1)

= Pr[|
∑k
i=1Xi
kc

− pq| ≥ εpq] (3.2)

≤ 2e
−ε2pqk

2 (3.3)

Assume C = {c1, c2, ..., cr} are our colors. Define Z =
∑

c∈C Zc. Note that the output of the

algorithm is the random variable Z. Call a color c good if |Zc − kc| ≤ εkc. If all colors are good,

then

∑
c∈C

kc −
∑
c∈C

εkc ≤
∑
c∈C

Zc ≤
∑
c∈C

kc +
∑

εkc

T − εT ≤ Z ≤ T + εT

Thus if all colors are good, then the output of the algorithm (Z) differs from T by at most εT . By

Inequality 3.3, the probability that a color class is not good is at most 2e
−ε2pq

2 . Since there are at

most ∆E + 1 many color classes, by union bound, the probability that some color class is not good

is (∆E + 1)(2e
−ε2pqk

2 ). If we want this probability to be less than δ, then we obtain that

pq ≥ O(
∆E

ε2T
log

∆E

δ
)

Thus when the above inequality holds, our algorithm outputs an (ε, δ) approximation to T .
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3.1.3 Memory bound

We now analyze the memory used by the algorithm. The memory used for this algorithm

consists of the memory used to store the L1, L2 edges. The expected number of L1 edges in total

is pM . We can compute the expected number of L2 edges as follows: (1− (1− p)te)q in which t(e)

is the number of neighbors of e coming before e in the stream. So the total memory of second level

edges will be: ∑
e∈G[1− (1− p)t(e)]q

= q
∑

e 1−
∑

e(1− p)t(e)

= q(m−
∑

e(1− p)t(e)) ≤ qm

So the memory can be simplified to pm+ qm such that pq ≥ ∆E

ε2T
log

∆E

δ

Theorem 3.1.3 There is a streaming algorithm that computes (ε, δ)-approximation of number of

triangles in a graph by using expected space O(mp) where p is O(

√
∆E

T

1

ε

√
log

∆E

δ
).

Memory of a triangle counting algorithm can be written as f(G).g(ε, δ) in which f is a function

of the graph and g is a function of ε and δ. In the table below, you can see f and g for some

of the recent algorithms versus the proposed algorithms in this paper. The algorithms referred to

are Edge Vertex Simple Sampling algorithm (EVSS)by Buriol et al. [8], Neighborhood Sampling

by Pavan et al’s [25], Triest-Base algorithm [29], Colorful Triangle Counting by Pagh et al.’s [24],

EVMS algorithm [17] and the NMS algorithm.

Table 3.1: Comparison of the algorithms

EVSS NS Triest Colorful EVMS NMS

f(G)
mn

T

m∆

T
m(

∆E

T
)
1
3 m

√
∆V

T
m

√
∆V

T
m

√
∆E

T

g(ε, δ)
1

ε2
log

1

δ

1

ε2
log

1

δ

1

(ε)
2
3

log2/3 ∆E

δ

1

ε
log

1

δ

1

ε

√
log

∆V

δ

1

ε

√
log

∆E

δ
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CHAPTER 4. EXPERIMENTAL RESULTS

4.1 Experimental Data

The experiments were performed to analyze the memory usage, accuracy, and speed of both

the algorithms, and to empirically verify the performance of the algorithms for varying values of p

and q. We ran the algorithms with the probabilities set to 0.01, 0.05, 0.1, 0.15 and 0.2. Hence for

each graph, we have 25 possible experiments for each algorithm. The same experiment were done

for the EVMS algorithm in [22].

Experiments were conducted on several graphs from the Stanford Large Network Dataset Col-

lection [19]. The properties of these datasets are shown in Table 4.1.

Amazon product co-purchasing network: Network was collected by crawling Amazon website.

It is based on Customers Who Bought This Item Also Bought feature of the Amazon website. If a

product i is frequently co-purchased with product j, the graph contains an undirected edge from i

to j.

Skitter: An Internet topology graph from trace routes run daily in 2005 from several scattered

sources to million destinations.

LiveJournal social network: A free on-line blogging community where users declare friendship

with each other.

DBLP Collaboration network : A co-authorship network of computer science bibliography

where two authors are connected if they publish at least one paper together. Authors who pub-

lished to a certain journal or conference form a community.

Orkut social network: A free on-line social network where users form friendship each other.

Orkut also allows users form a group which other members can then join.

Berkeley-Stanford web graph: Nodes represent pages from berekely.edu and stanford.edu do-

mains and edges represent hyperlinks between them. The graph was initially directed, which was
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converted to undirected by removing redundant edges that represent direction.

The implementation was done in Java 8, and run on a PC with Core i7 2.5 Ghz, 16GB RAM with

Windows 10 operating system. The experiments were run on insertion only streams for the NMS

algorithm, where each edge is a new edge with no repetitions. The datasets were chosen in such

a way that they have varying topologies. The graphs have varying densities ranging from around

900,000 edges (Amazon) to more than 100 Million edges (Orkut).

All the graphs were pre-processed so that the vertices are numbered from 0 to n − 1, where n

is the total number of vertices of the graph.

4.2 Experiments for the NMS algorithm

We compare the performances of our algorithms against EVSS algorithm from Buriol et al’s [8],

Triest-Base [29], neighborhood sampling algorithm [25], colorful sampling algorithm due to Pagh

and Tsourakakis [24] and the EVMS algorithm [17]. The rationale for this choice of algorithms

is as follows: Naturally, we would like to compare NMS against itscounter parts. In [29], the

authors experimentally showed that Triest-Base algorithm outperforms several other algorithms

from the literature, thus we chose Triest-Base algorithm. The colorful triangle counting algorithm

was chosen because as far as our knowledge its performance on graph streams has not been tested

before. We re-implemented these algorithms in java. The theoretical memory bounds for the these

algorithms are shown in 3.1. We calculated memory usage of the algorithms as the total number

of edges sampled. We first ran the NMS algorithm for various choices of p and q. To get a fair

comparison, the other algorithms were run using (approximately) same amount of total memory

as used by the NMS algorithm. We measured the accuracy of the algorithms by using percentage

error, pE = 100(T − τ)/T , where T is the actual number of triangles in the graph and τ is the

estimated triangle count by an algorithm. The total memory is the sum of the level 1 and level 2

edges for the NMS algorithm.

Once sampled, we used edge-iterator to count the number of triangles among the sampled

edges. The NMS algorithm shows high accuracy even when p = q = 0.01. For all experiments, it is
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Table 4.1: Properties of the various datasets considered for the experiments

Graph Nodes Edges Triangle count

DBLP 317,080 1,049,866 2,224,385

As-Skitter 1,696,415 11,095,298 28,769,868

Live Journal 3,997,962 34,681,189 177,820,130

Amazon 334,863 925,872 667,129

Berk-Stanford 685,230 7,600,595 64,690,980

Orkut 3,072,441 117,185,083 627,584,181

observed that the total memory used is strictly less than the theoretical upper bound of m(p+ q).

The results are summarized in Table 4.2.

4.2.1 NMS vs EVMS Sampling

The comparison between the two new algorithms proposed in this work are in Table 4.3. We

can observe that the total memories used by both the algorithms are very close to each other when

p = pe and q = pv, with the NMS using slightly lesser memory than the EVMS algorithm. Figure

4.8 plots the total memory Tm against various sampling probabilities (pv = q and pe = p = 0.05)

on the Skitter graph. In terms of accuracy, we see that NMS algorithm is far superior on all the

experimental settings–nearly three to six times more accurate than the EVMS algorithm. From the

memory vs q plot in Figure 4.8, the total memory used increases almost linearly with the increase

in probability, whereas in EVMS, the memory increase is not perfectly linear. This partly explains

the high variance in the estimate from the EVMS algorithm, where the pE sometimes increases

even though Tm increases, as plotted in Figure 4.4.

In terms of the time taken, the NMS algorithm is slower mainly due to the fact that computing

number triangles once the edges are sampled can be done more efficiently in EVMS algorithm by

maintaining efficient data structures. It can be estimated that if R is the number of edges sampled,

then EVMS triangle count takes O(R) time, where as NMS triangle count takes O(R logR) time.

Additional overhead involved in checking for time stamps involving all three edges of a triangle. In

the EVMS technique, for every red edge, we find all neighboring black edge with common vertices

such that every neighboring edge has a time stamp greater than the red edge. This can be done
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in O(|N |) time, where N is the set of all neighbors for a red edge. In the NMS technique for every

level 1 edge, e, we find all common neighbors n1 and n2 from the neighbor set N of e, such that

they share a vertex. This operation takes O(|N |2). This explains the higher running time of the

NMS algorithm.

Figure 4.2 DBLP
Figure 4.3 Berkeley Stanford

Figure 4.4: Tm vs pE for NMS and EVMS algorithms for DBLP

Figure 4.6 As-Skitter
Figure 4.7 Berkeley Stanford

Figure 4.8: Tm vs pv = q when pe = p = 0.05 for NMS and EVMS algorithms for As-Skitter graph
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4.2.2 NMS vs Triest based

The detailed comparison results are shown in table 4.4. The experiments show that the NMS

algorithm is much faster than the Triest base, in both small and large graphs. the error for the

NMS algorithm is consistently low although for the Triest, the error changes radically and increases

as the size of the graph gets larger.

4.2.3 NMS vs Colorful triangle counting

The detailed comparison results are shown in Table 4.5. Though the NMS is slower than the

EVMS algorithm, it is still faster when compared to colorful triangle counting for small graphs. For

larger graphs the colorful triangle counting does better than NMS in terms of time. The time taken

by the algorithms for the Berkeley-Stanford graph is shown in Figure 4.12. The NMS algorithm

shows better accuracy in most of the cases.

Figure 4.10 DBLP
Figure 4.11 Berkeley Stanford

Figure 4.12: Tm vs Time for EVMS, NMS and Colorful triangle counting algorithms for Berkeley

Stanford graph



19

Table 4.2: Results of the NMS algorithm for various graphs

As-skitter

p q Tm τneigh pE Time (s)

0.01 0.01 179,235 27,320,000.00 -5.04 6.22 3

0.05 0.15 1,989,823 28,307,333.33 -1.61 51.46

0.10 0.15 2,664,100 28,724,533.33 -0.16 84.77

Live-journal

p q Tm τneigh pE Time (s)

0.01 0.01 513,674 175,570,000.00 -1.2654 14.76

0.05 0.20 7,656,244 177,739,500.00 -0.0453 60.15

0.10 0.15 8,379,284 177,826,600.00 0.0036 74.37

Orkut-social network

p q Tm τneigh pE Time (s)

0.05 0.01 6,999,753 625,484,000.00 -0.33 135.13

0.10 0.01 12,888,478 628,859,000.00 0.20 189.67

0.15 0.01 18,746,995 627,811,333.33 0.04 273.70

DBLP social network

p q Tm τneigh pE Time (s)

0.01 0.05 19,764 2,202,000.00 -1.01 0.32

0.15 0.01 166,237 2,226,666.67 0.10 0.54

0.10 0.10 181,344 2,223,600.00 -0.04 0.76

Amazon Product Graph

p q Tm τneigh pE Time (s)

0.01 0.05 13,744 656,000.00 -1.67 0.35

0.10 0.05 118,501 671,200.00 0.61 0.67

0.15 0.01 145,885 668,666.67 0.23 0.56

Berkeley-Stanford web graph

p q Tm τneigh pE Time (s)

0.01 0.05 283,825 60,962,000.00 -5.7643 24.11

0.10 0.10 1,276,129 63,879,600.00 -1.2542 186.67

0.20 0.05 1,649,959 64,368,500.00 -0.4985 169.08
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Table 4.3: Comparison of EVMS vs NMS algorithm

EVMS NMS

pv = q pe = p Tm pE Time(s) Tm pE Time(s)

DBLP

0.05 0.01 20,469 -3.16 0.346 19,764 -1.01 0.32

0.1 0.01 30,944 -1.37 0.387 29,108 0.66 0.31

0.1 0.10 203,520 1.56 0.544 181,344 -0.04 0.76

Amazon

0.01 0.01 10,415 -8.56 0.37 10,305 -1.07 0.41

0.15 0.10 190,579 0.74 0.49 170,482 0.33 0.74

0.05 0.15 183,062 2.03 0.48 171,088 -0.49 0.84

Berkeley-Stanford

0.01 0.05 417,102 7.89 10.35 390,196 -2.02 27.03

0.05 0.1 1,147,570 -5.30 31.99 970,666 -0.02 92.26

0.1 0.1 1,592,198 -3.04 47.61 1,276,129 -1.25 186.67

Orkut

0.01 0.01 2,283,760 -0.84 38.10 2,032,120 -0.21 94.97

0.01 0.05 7,725,722 1.71 49.89 6,999,753 -0.33 135.13

0.01 0.1 13,816,850 1.33 113.89 12,888,478 0.20 189.67

Table 4.4: Comparison of NMS vs Triest

NMS Triest

pv = q pe = p Tm pE Time(s) pE Time(s)

DBLP

0.05 0.01 19,764 -1.01 0.32 -9.20 1.87

0.1 0.01 29,108 0.66 0.31 -7.11 2.67

0.1 0.10 181,344 -0.04 0.76 -0.10 29.38

Amazon

0.01 0.01 10,305 -1.07 0.41 54.61 0.8

0.15 0.10 170,482 0.33 0.74 -0.46 21.55

0.05 0.15 171,088 -0.49 0.84 -0.51 21.82

Berkeley-Stanford

0.01 0.05 390,196 -2.02 27.03 2.33 751.08

0.05 0.1 970,666 -0.02 92.26 -3.20 3,203.47

0.1 0.1 1,276,129 -1.25 186.67 -4.87 4,560.59
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Table 4.5: NMS vs Colorful triangle counting

Colorful triangle counting NMS

p Tc pE Time (s) Tm pE Time (s)

DBLP

0.01 10,544 5.65 0.52 12,399 -0.65 0.71

0.08 80,930 5.35 0.61 80,631 -0.52 0.45

0.20 210,079 -0.90 1.08 200,610 -0.49 0.67

As-Skitter

0.05 556,308 7.04 5.71 547,546 1.11 10.49

0.10 1,110,313 -0.64 14.73 1,143,146 -0.002 13.97

0.20 2,218,433 -0.49 44.30 2,146,372 0.53 62.51

Berkeley-Stanford

0.05 332,018 -0.30 8.68 390,196 -2.02 27.03

0.10 664,925 -0.78 22.27 614,873 -0.33 53.72

0.17 1,109,374 0.48 78.16 1,185,173 -0.0028 155.80

Orkut

0.01 1,171,600 -0.39 58.61 1,575,696 0.92 72.87

0.03 2,929,852 -0.45 56.47 3,115,248 -0.12 122.29

0.10 11,717,612 0.08 166.33 13,386,721 0.01 350.92
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CHAPTER 5. SUMMARY AND DISCUSSION

This thesis presents the Neighborhood Multi-Sampling algorithm, which is an extension to

the Neighborhood sampling algorithm introduced before. It combines the ideas that sampling

multiple edges and also sampling neighbors of the previous edges increases the probability to hit

more triangles in the sample. The NMS algorithm computes (ε, δ)-approximation of the number of

triangles in a graph by using expected space O(mp) where p is O(

√
∆E

T

1

ε

√
log

∆E

δ
).

Based on the experiments and theoretical results we can conclude that the performance of the

NMS algorithm is way better, both theoretically and experimentally, compared to its counterparts

(Neighborhood Sampling and EVSS ). The NMS algorithm has better accuracy among all the

algorithms studied here, though it is slower than the colorful triangle counting algorithm. The

algorithm can also be adapted to continuously monitor the number of triangles and to work on

dynamic graph stream. It would be interesting to extend these algorithms to other sub-graph

structures other than the triangles.
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