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ABSTRACT

Markov logic networks (MLNs) are a statistical relational model that incorporates first-

order logic and probability by attaching weights to first-order clauses. However, due to the

large search space, the structure learning of MLNs is a computationally expensive problem. In

this paper, we present a new algorithm for learning the structure of Markov Logic Network

by directly utilizing the data to construct the candidate clauses. Our approach makes use

of a Markov Network learning algorithm to construct a template network. We then apply

the template to guide the candidate clauses construction process. The experimental results

demonstrate that our algorithm is promising.
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CHAPTER 1. OVERVIEW

1.1 Introduction

In recent years, there has been an increasing interest in methods for unifying the strengths

of first-order logic and probabilistic graphical models in machine learning area (Getoor and

Taskar, 2007). Markov Logic Networks (MLNs) are a statistical relational model that combine

first-order logic and Markov networks. An MLN typically consists of a set of first-order clauses

attached with weights, and it can be viewed as a template for features of Markov networks

(Richardson and Domingos, 2006). Learning a MLN can be decomposed into two separated

parts: structure learning (learning the logical clauses) and weight learning (learning the weight

of each clause). Learning the structure of a MLN is the process of generating a set of clauses

attached with their weights (Kok and Domingos, 2005), and it allows us to obtain uncertain

dependencies underlying the relational data.

The structure learning problem of MLNs is an important but challenging task. With the

continuous increasing of the data size, the search space is usually super-exponentially large

and the clause evaluation also generates huge amount of groundings. In general, search for all

the possible candidate clauses and evaluate them with full groundings may not be a feasible

solution. A few practical approaches have been proposed to date, among which the MSL (Kok

and Domingos, 2005), BUSL (Mihalkova and Mooney, 2007), ILS (Biba et al., 2008b), LHL

(Kok and Domingos, 2009), LSM (Kok and Domingos, 2010), HGSM (Dinh et al., 2010b),

GSLP (Dinh et al., 2011) and LNS (Sun et al., 2014). Most of these approaches focus on

constraining the search space of the candidate clauses in a top-down or bottom-up manner.

The top-down approaches follow a general-and-test strategy, start from an empty clause,

systematically enumerate candidate clauses by greedily adding literals to existing clauses, and

evaluate the result clauses’ empirical fit to training data by using some scoring models. Such
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approaches are usually inefficient as they have two shortcomings: searching the explosive space

of clauses is computationally expensive; and it is susceptible to result in a local optimum.

Bottom-up approaches, however, overcome these limitations by directly utilizing the training

data to construct candidate clauses and guide the search.

In this paper, we present a novel MLN structure learning algorithm. This algorithm first

constructs a set of template nodes from the database, then creates a set of observations using the

data , and utilize the template nodes and observations to learn a ”template” Markov networks.

This template is then applied to guide the candidate clauses construction process. Candidate

clauses are evaluated and reduced to form the final MLN.

We begin the paper by briefly reviewing the necessary background knowledge of first-order

logic, Markov networks, and Markov logic networks in chapter 2. We then describe the details

of our structure learning algorithms in chapter 3, and report the experimental results in chapter

4. Last, we conclude this paper and discuss future work in chapter 5.
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CHAPTER 2. BACKGROUND

In this chapter, we explain the necessary background knowledge about Markov logic net-

works. We start with first-order logic and Markov network, then we introduce how Markov logic

network incorporates them together. Finally, we demonstrate the structure learning problem

of MLNs and review some previous works.

2.1 First-order logic

A first-order knowledge base (KB) is a set of formulas or sentences in first-order logic

(Genesereth and Nilsson, 1987). There are four types of symbols in first-order logic: constants,

variables, functions and predicates. Constant symbols represent objects in a domain and can

have types (e.g., person: alice, bob, carl,etc.). Variable symbols range over the objects in a

domain. Function symbols represent functions that map tuples of objects to objects(e.g.,

MotherOf). Predicate symbols describe attributes of objects (e.g., Student(clice)) or relations

between objects in the domain (e.g., workedUnder(alice, bob)). Constants and variables are

often typed, that is, constants can only represent objects of the corresponding type and variables

can only range over objects in the corresponding type. In this paper, we assume no functions

in the domains. We denote constants by lower-cased strings, variables by single upper-case

letters and predicates by strings that start with upper-case letters.

Example: We use the IMDB database as the domain for this example: This dataset

contains facts that describe the profession of individuals in the movie business, relationships

that indicate the connection between people, and the movies represent which person works for

which movie. Actor(alice) means alice is an actor and Director(bob) indicates that bob is a

director. The predicate workedUnder(A,B) specifies that person A works on a movie under

the supervision of person B, and the predicate Movie(T,C) specifies that person C works on
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movie T . Here both A,B, and T are variables, A and B range over objects in type Person and

T range over objects in type Movie.

A term is any expression that represents an object in the domain. It can be a constant, a

variable, or a function that is applied to terms. For example, alice, A, and MotherOf(alice)

are terms. Ground terms contain no variables. An atomic formula or atom is a predicate

applied to a tuple of terms(e.g., workedUnder(alice,MotherOf(alice))). A ground atom is a

predicate replaces all variables with constants. We call an atom variable atom if it only contains

variables. Formulas are constructed from atoms using logical connectives and quantifiers. A

positive literal is an atom and a negative literal is a negated atom. A clause is a disjunction

of positive and negative literals. The number of literals in the disjunction is the length of the

clause. A database is a partial specification of a world, that is, each atom in it is true, false or

unknown. In this paper, we make a closed-world assumption: a ground atom in the database

is assumed to be true, a ground atom that is not in the database is considered false. A world

is an assignment of truth values to all the possible ground atoms in a domain.

To conclude, first-order logic is a helpful tool that widely used in Artificial Intelligence

area for the purpose of knowledge representation . Its expressiveness allows us to describe the

complexity of the world in a more succinct way. However, first-order logic can not handle the

uncertainty of the world, thus, pure first-order logic has restricted applicability to practical AI

problems.

2.2 Markov networks

A Markov network (or Markov random field) is an undirected graphical model for the joint

distribution of a set of random variables X = (X1, X2, ....Xn) ∈ X (Pearl, 1988). It consists

of an undirected graph G = (V,E) with a list of potential function φk. The graph G has a

set of nodes, each of them represents one of the random variable. Nodes are connected by

edges, which describe the dependency of nodes. A clique is a set of nodes, where each pair of

nodes in the clique is connected by an edge. For each clique in the graph there is a potential

function. Each potential function is a real-valued non-negative function, represents the state

of the corresponding clique. Figure 2.1 gives an example of a Markov network. There are four
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nodes A,B,C and D in the figure, which represent the random variables, and they form two

cliques. The corresponding potential functions of the cliques are Φ(A,B) and Φ(B,C,D)).

Given a set of random variables X = (X1, X2, ....Xn) ∈ X , let P (X = x) be the probability

of finding that random variable X takes on the particular value configuration x. Because X is a

set of variables, then P (X = x) can be understood to be the joint distribution of X. The joint

distribution for a Markov network is given by the following formula (Richardson and Domingos,

2006):

P (X = x) =
1

Z

∏
k

φk(x{k}) (2.1)

where x{k} is the state of variables that appear in the kth clique. Here Z is the normalizing

partition function given by: Z =
∑

x∈X
∏

k φk(x{k}). Markov networks can also equivalently

written as log-linear models, which is given by:

P (X = x) =
1

Z
exp(

∑
k

wkfk(x{k})) (2.2)

where fk(x{k}) is the feature corresponding to x{k} with its weight wk being log φk(x{k}). Each

feature can be any real-valued function of the state, but in this paper we will only focus on

binary features, that is, it is either 0 or 1, depends on whether it is satisfied or not.

Figure 2.1 An example Markov network

Markov network is a probabilistic model that handles the uncertainty of the world. However,

it is not expressiveness and can not describe the complexity of the world.
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2.3 Markov logic networks

Markov Logic network is a statistical relational learning model that unifies first-order logic

and Markov network, takes the advantages from both of them. It consists of a set of weighted

first-order clauses. If we consider a first-order KB as a set of hard constraints on the possible

worlds, then a MLN can be seen as an approach to soften these constraints: a world that

violates some clauses is less likely to be possible, but not impossible. The fewer clauses a

world violates, the more probable it is. The weight attached to a clause shows how strong the

constraint is. A higher weight indicates the greater difference between a world satisfies the

clauses and the world that does not. Table 2.1 shows an example of a simple MLN. The formal

definition of MLNs is defined as follows:

Definition 1 (Richardson and Domingos, 2006) A Markov logic network L is a set of pairs

(fi, wi), where fi is a formula in first-order logic and wi is a real number. Together with a

finite set of constants C = {c1, c2, ..., c|C|}, it defines a Markov network ML,C (2.1 and 2.2) as

follows:

1. ML,C contains one binary node for each possible grounding of each atom appearing in

L. The value of the node is 1 if the grounding atom is true, and 0 otherwise.

2. ML,C contains one feature for each possible grounding of each formula fi in L. The value

of this feature is 1 if the ground formula is true, and 0 otherwise. The weight of the feature is

the wi, attached with fi in L.

Two nodes in ML,C are connected by an edge if and only if the corresponding ground atoms

appear together in some ground formulas in L. Thus the atoms in each ground formula form

a clique in ML,C . For example, figure 2.2 shows the graph of the ground Markov network

defined by giving the MLN in table 2.1 with constants Tim, Frank, and Shawshank. This

graph contains a node for each ground atom and an edge for each pair of atoms that appear

together in one of the ground formula. Its features include Actor(Tim) ⇒ ¬Director(Tim),

Director(Frank)⇒ ¬WorkedUnder(Frank, T im), etc.

An MLN can be seen as a template for generating Markov networks, given different sets of

constants, it will construct different ground Markov networks. Let X be the set of all ground

atoms, F be the set of all clauses in the MLN, wi be the weight attached with clause fi ∈ F ,
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Figure 2.2 Ground Markov network

Gfi be the set of all possible groundings of clause fi with the constants in the domain. Then

the probability of a possible world x specified by the ground Markov network ML,C is defined

as:

P (X = x) =
1

Z
exp(

∑
fi∈F

wi

∑
g∈Gfi

g(x)) =
1

Z
exp(

∑
fi∈F

wini{x}) (2.3)

The value of g(x) is 1 if g is satisfied and 0 otherwise. Then, given a truth assignment to X,

the quantity
∑

g∈Gfi
g(x) counts the number of groundings of fi that are true. Thus ni{x} is

the number of true groundings of fi in x.

For example, consider an MLN that contains exactly one formula Actor(A)⇒ ¬Director(A)

with its weight w, and C = {Bob}. This results in four possible worlds: {Actor(Bob), Director(Bob)},

{¬Actor(Bob), Director(Bob)}, {Actor(Bob),¬Director(Bob)}, and {¬Actor(Bob),¬Director(Bob)}.

From 2.3 we can obtain P ({Actor(Bob), Director(Bob)}) = 1
3ew+1 and the probability of the

other three worlds is ew

3ew+1 . Here 3ew + 1 is the value of partition function Z. Thus, any w > 0

will make the world P ({Actor(Bob), Director(Bob)}) less possible than the others.

Table 2.1 Example of a MLN

First-order logic Weight

Actor(A)⇒ ¬Director(A) 0.8

Director(A)⇒ ¬WorkedUnder(A,B) 1.2

WorkedUnder(A,B) ∧Movie(T,A)⇒Movie(T,B) 1.5
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2.3.1 Inference

To perform inference over a given MLN, one needs to ground it to its corresponding Markov

network (Pearl, 1988). As described by Richardson and Domingos (2006), this process can be

done as follows. First, all the possible ground atoms in the domain are constructed, and they

are used as the nodes of the Markov network. The edges in the Markov network are decided

by the groundings of the first-order clauses, that is, two ground atoms are connected if they

are both in a grounding of a clause. Thus, nodes that participate together in a ground clause

will form cliques.

2.3.2 Structure learning

Given a database, the problem of learning a MLN can be separated into two parts: weight

learning and structure learning, where structure learning referred to learning the formulas

and weight learning referred to learning the weights. In this paper we only focus on the

structure learning problem, because given a structure learned, a weight learning algorithm

called L−BFGS (Liu and Nocedal, 1989) has been developed to learn the weights. The main

task in learning the structure of MLNs is to find a set of potentially good clauses. Clauses are

evaluated using a weighted pseudo log-likelihood (WPLL) measure, introduced in (Kok and

Domingos, 2005), defined as:

logPw(X = x) =
∑
r∈R

cr

gr∑
k=1

logPw(Xr,k = xr,k|MBx(Xr,k)) (2.4)

where R is the set of first-order predicates, gr is the number of groundings of predicate r, xr,k

is the truth value (either 0 or 1) of the kth ground atom of r, cr = 1/gr.

Some previous works on structure learning are: MSL, BUSL, listed as follows:

MSL: This algorithm is proposed by Kok and Domingos (2005), it uses beam search to

search from all possible clauses. In each iteration, MSL uses beam search to find the best

clause, and add it to the MLN: starting with all the unit clauses, it applies each possible

operator (addition and deletion) to each clause, keep the n best ones, apply the operator to

those, and repeat until no new clause improves the WPLL. The best clause is the one with

highest WPLL score and it will be added to the MLN. MSL terminates when no more clause

can be added to the MLN, and it then returns the MLN.
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BUSL: This algorithm makes use of relational path-finding to find a path of ground atoms

in the data. It variabilizes each ground atom in the path and creates a Markov network with

the paths as nodes and the boolean value matrix as training data. It utilizes the Grow-Shrink

Markov network structure learning algorithm to connect the nodes. After construction of

Markov network template, it creates candidate clauses by making disjunctions of the atoms

in each clique’s node. Finally, it uses WPLL to evaluate the candidates and discards those

candidates that do not increase the overall WPLL.
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CHAPTER 3. TEMPLATE CONSTRUCTING STRUCTURE

LEARNING

In this chapter, we explain the details of our algorithms: learning Markov logic network

structure by template constructing (TCSL).

As we mentioned in chapter 2, MLNs can be viewed as templates for generating Markov

networks, given different sets of constants, different ground Markov networks are constructed.

Thus, we want to create a Markov network template similar to the one in figure 3.1 to restrict

the search space and guide the construction of candidate clauses. Algorithm 1 gives the skeleton

of TCSL. Let P be the set of all predicates in the domain. Each predicate P is considered in

sequence. For each P , the algorithm first constructs a set of template nodes, and creates a set

of observations using the data. A Markov network template is then learned using the template

nodes and the observations. Finally, we focus on each maximal clique in the template network

and generate a set of candidate clauses. We evaluate the candidates with the WPLL score, add

these candidates which increase the overall WPLL score to the final MLN.

Figure 3.1 An example Markov network template

3.1 Construct template nodes

To learn a Template network using Markov network structure learning algorithm, we first

need to construct a set of template nodes. A template node is basically a literal that only
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Algorithm 1 TCSL(DB , MLN , MaxFreeV ariable)

1: Initialization, add all unit clauses to MLN

2: for each P ∈ P do

3: Construct template nodes for predicate P

4: Generate observations for the template nodes

5: Use the template nodes and the observations to learn the Markov network template

6: Use the template to build candidate clauses

7: end for

8: Remove duplicate candidates clauses

9: Evaluate candidates, add the best ones to MLN

10: return MLN

contains variables. We use predicate P to create the first template node, referred to as the

headNode. Other template nodes are then created by searching for constant-shared ground

atoms in the database and constructing a corresponding variable literal. Thus, template nodes

are actually atoms that have true groundings in the data. The output of template nodes con-

struction process for predicate P is an array, which contains a set of template nodes. Algorithm

2 displays how the template nodes are created. It makes use of the following definition:

Definition 2 Two ground atoms are constant-shared or connected if there is at least one

constant that is an argument of both.

Let P be the predicate currently under consideration in this iteration, m be the maximum

number of free variable that can be allowed in the templateNodeArray. The algorithm first

creates the variable atom of P as the headNode in line 1, and add it to the position 0 of

templateNodeArray. Each argument in headNode is assigned a unique variable. In line 2,

we set variableNum to the number of variables in headNode. Next, from line 3 to 15, the

algorithm iterates over each possible ground atom GP of P . In line 4, it finds the set of all the

true ground atoms in the data that are constant-shared with GP , denoted as CGP
. Then for each

c ∈ CGP , it constructs a new template node. If the newNode was not created previously and

did not violate the limitation of variable number, then it will be added to templateNodeArray

(line 9-10). However, note that some nodes will be ignored if there already exists m variables,

thus some useful information may be lost.

Example: Assume we are given the database shown in table 3.1 as the domain of our

running example. The ground atoms listed in the database are true and all the other atoms
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Algorithm 2 TemplateNodesConstruction(P , m)

Input:

P : the predicate being considered in this loop

m: maximum free variable number allowed in the array

Output:

templateNodeArray: the array contains template nodes

1: Use P to create the head template node, called headNode, and add it to the place 0 of

templateNodeArray.

2: variableNum = number of variables in headNode

3: for each GP , ground atom of P do

4: let CGP
be the set of all the true ground atoms that are constant-shared with GP

5: for each c ∈ CGP
do

6: newNode = Create a new template node

7: variableNum+ = new variable introduced in newNode

8: Index = templateNodeArray.find(newNode)

9: if Index < 0&&variableNum <= m then

10: add newNode to templateNodeArray

11: else

12: variableNum− = new variable introduced in newNode

13: end if

14: end for

15: end for

are false:

Table 3.1 Example database

Actor(Tim)

Director(Frank)

WorkedUnder(Tim,Frank)

Movie(Shawshank, T im)

Movie(ShawShank, Frank)

Suppose the predicate currently under consideration is P = Actor. Then the headNode is

Actor(A). We need to consider each ground atom of P and let’s start with Actor(Tim). The

constant-shared ground atoms of Actor(Tim) in the database are WorkedUnder(Tim, Frank)

and Movie(Shawshank, Tim). Thus we can create template nodes WorkedUnder(A, B) and

Movie(C,A), add them to templateNodeArray. Next we consider the other ground atom Ac-

tor(Frank): the constant-shared ground atoms in the database are Director(Frank), WorkedUn-

der(Tim, Frank) and Movie(Shawshank, Frank). Template nodes constructed are Director(A)
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WorkedUnder(D,A) and Movie(E,A). Movie(E,A) is ignored because Movie(C,A) already ex-

ists, the rest two nodes are added to templateNodeArray. Table 3.2 lists the set of template

nodes constructed. There are four free variables in the array: A,B,C and D.

Table 3.2 Template nodes constructed

Actor(A) WorkedUnder(A,B) Movie(C,A) Director(A) WorkedUnder(D,A)

3.2 Generate observations

We have constructed a list of template nodes and added them to the array. Next we will

generate a set of observations for the template nodes. We have limited the number of free

variables in templateNodeArray by setting the parameter m. Algorithm 3 lists the procedure.

Algorithm 3 Generate Observations

Input:

templateNodeArray : the array of template nodes

m : max free variable number in templateNodeArray

Output:

M : a matrix contains the observations generated

1: let S be the set of all possible assignments to the variables of the template nodes.

2: for each si ∈ S do

3: append a new array M [i] to M

4: for each node nj ∈ templateNodeArray do

5: if the ground atom of nj under the assignment si is true then

6: M [i][j] = true

7: else

8: M [i][j] = false

9: end if

10: end for

11: end for

Let S be the set of all possible assignments for the variables in the templateNodeArray, M

be the result matrix containing a column for each template node and a row for each possible

assignment. The algorithm considers each assignment si ∈ S, it first add a new empty array to

M , then, in line 4-8, it checks the ground atom of each template node given variable assignment

si, set the corresponding value in M to true if the ground atom exists in the data and false

otherwise. The larger number of variables in templateNodeArray, the greater size of S will
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Table 3.3 An example of observations generated

Actor(A) WorkedUnder(A,B) Movie(C,A) Director(A) WorkedUnder(D,A)

1 0 1 0 0

1 0 1 0 0

1 1 1 0 0

1 1 1 0 0

0 0 1 1 1

0 0 1 1 0

0 0 1 1 1

0 0 1 1 0

be. A greater size of S could help generate more observations. However, generate too many

observations may result in an extremely long run time. We set m = 5 to control the number

of observations generated.

Table 3.3 shows the observations we generate for the template node in table 3.2. Both A, B

and D can take two possible constants, while C can only be Shawshank. So the total number

of observations created is 2× 2× 2 = 8.

3.3 Alternative approach to create template nodes and observations

As we pointed out in section 3.1, some of the template nodes will be filtered out with

limited number of free variable in templateNodeArray. We have to set m to limit the number

of variable, this is because we generated S which contains all possible assignment of variables

in templateNodeArray. Without the restriction of variable number, the size of S could be

exponentially large. However, this restriction may also result in loss of some template nodes.

Here we present an alternative approach to relax the restriction: we still add these template

nodes to the templateNodeArray, but create their observations in a different way. The details

of the algorithms are listed as follows:

Algorithm 4 displays the details of template nodes construction. The only difference here

is that we remove the variable number restriction m, others remain the same. By removing

restriction, more template nodes will be introduced, thus more information may be gained.

Algorithm 5 describes the alternative way for generating observations. If a template node

only contains the first mth variables, we use the same way in algorithm 3 to assign its value in
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Algorithm 4 TemplateNodesConstruction2(P )

Input:

P : the predicate being considered in this loop

Output:

templateNodeArray: the array contains template nodes

1: Use P to create the head template node, called headNode, and add it to the place 0 of

templateNodeArray.

2: variableNum = number of variables in headNode

3: for each GP , ground atom of P do

4: let CGP
be the set of all the true ground atoms that are constant-shared with GP

5: for each c ∈ CGP
do

6: newNode = CreateNode(c, headNode,GP )

7: variableNum+ = new variable introduced in newNode

8: Index = templateNodeArray.find(newNode)

9: if Index < 0 then

10: add newNode to templateNodeArray

11: else

12: variableNum− = new variable introduced in newNode

13: end if

14: end for

15: end for

M ; otherwise, we make use of an idea in BUSL (Mihalkova and Mooney, 2007), that is, if this

node has a true grounding that is constant-shared with the current grounding of headNode,

then its value in M will be set to true. Other things remain the same.

This alternative approach allows more variables to be introduced, thus more template nodes

are added to the templateNodeArray, while the size of S remains the same.

3.4 Learn the template and build candidate clauses

Finally, to construct the Markov network template, we need to know how the template nodes

are connected by edges. Consider the template nodes as the nodes in the Markov network, and

the observation matrix M as the training data, we can find the edges by applying a Markov

network structure learning algorithm. Any Markov network structure learning algorithm can be

applied here, and we chose the Grow-Shrink Markov Network (GSMN) algorithm by Bromberg

et al. (2006). GSMN decides whether two nodes are conditionally independent of each other

by using χ2 statistical tests.



16

Algorithm 5 Generate Observations2

Input:

templateNodeArray : the array of template nodes

m : max free variable number in templateNodeArray

Output:

M : a matrix contains the observations generated

1: let S be the set of all possible assignments to the first mth variables of the template nodes.

2: for each si ∈ S do

3: append a new array M [i] to M

4: for each node nj ∈ templateNodeArray do

5: if nj only contains first mth variables then

6: if the ground atom of nj under the assignment si is true then

7: M [i][j] = true

8: else

9: M [i][j] = false

10: end if

11: else

12: if there exists a true grounding of nj that is constant-shared with the grounding of

headNode then

13: M [i][j] = true

14: else

15: M [i][j] = false

16: end if

17: end if

18: end for

19: end for
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After the template network is constructed for predicate P , we then use it to build a set

of candidate clauses. We consider each clique contains headNode in the Markov network

template, generate all possible clauses from length 1 to the size the of the clique by making

disjunctions from the template nodes in the clique, and we try all possible negation/non-

negation combinations. Note that we only construct clauses from those template nodes which

form cliques in the template; i.e., for any two template nodes in a clause, there must exist an

edge between them. Every candidate clause must contain the headNode.

Finally, we remove duplicates in the candidates, and evaluate them using the WPLL. Each

clause need to be assigned a weight in order to learn the WPLL score. To learn the weight, we

use L−BFGS as Richardson and Domingos did (2006). After all the scores are learned, all the

candidate clauses are considered for addition to the MLN in order of decreasing score. To speed

up the inference and decrease over fitting, we only evaluate candidates with its weight greater

than minWeight. Candidates that do not increase the overall WPLL score are discarded, and

the rest are appended to the MLN.
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CHAPTER 4. EXPERIMENTAL EVALUATION

4.1 Experimental setup

In this section we describe how we setup our experiment. We implement our algorithm

using the Alchemy package available at http:// alchemy.cs.washington.edu.

4.1.1 Datasets

We use a publicly available dataset IMDB database to evaluate our approach. It’s available

at http://alchemy.cs.washington.edu. The statistics are shown in Table 4.1

Table 4.1 Details of dataset

Dataset Types Constants Predicates True Atoms Total Atoms

IMDB 4 316 10 1540 32615

IMDB. The IMDB dataset is created by Mihalkova and Mooney (2007) from the imdb.com

database, describes a domain about movie. Its predicates describing directors, actors, movies,

and their relationships (e.g, Director(person), WorkedUnder(person, person), etc.) It is divided

into 5 independent folds. Each fold contains four movies, their directors and actors, etc. We

omitted 4 equality predicates (e.g, SamePerson(person, person), SameMovie(movie, movie),

etc.) since they are true if and only if their arguments are the same.

4.1.2 Methodology

We compared our algorithms with MSL and BUSL. Both of them are implemented in the

Alchemy package. We measured the performance using the metrics used by Kok and Domingos

(2005), the area under the precision-recall curve (AUC). AUC is helpful because it displays how

good an algorithm predicts the positive atoms in the data, and it is insensitive to a large number
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of true negative atoms in the data. In order to calculate the AUC of a given MLN, we performed

inference over it, tested the prediction for each predicate by providing the rest predicates in

the data as evidence. Exception is the predicates Actor(person) and Director(person), we have

to evaluate them together because the groundings of them for the same constant are mutually

exclusive, that is, one person can only be either a actor or a director. We set MSL’s parameters

as default setting and set BUSL’s parameters as in Mihalkova and Mooney (2007). We set

TCSL’s minWeight = 0.5 in our experiments. We performed all runs on the same machine.

4.2 Experimental results

Table 4.2 reports the average AUCs and the AUCs of three different types of predicates for

each algorithm. Higher number of AUC indicates better performance.

Let TCSL be the first algorithm we proposed and TCSL-Alter be the alternative approach

to create template nodes and observations. First, we compare our algorithms with MSL and

BUSL. Our algorithms’ average AUCs are higher than both MSL and BUSL. For predicate

Director(person) and Actor(person), our algorithms significantly outperform MSL, and also

improve over BUSL. For predicate WorkedUnder(person, person), our algorithms have higher

AUCs than BUSL, but lower than MSL. For predicate Movie(movie, person), all the four al-

gorithms’ AUCs are very close. This result suggests that our algorithms outperform BUSL for

both types of the predicates, but compare to MSL, our algorithms did worse on the relation-

ship predicate WorkedUnder(person, person) and much better on predicating unary predicate.

Next we compare TCSL with TCSL-Alter. The average AUCs of TCSL and TCSL-Alter are

almost the same. TCSL has a higher AUC for predicate Director(person) and Actor(person),

and also slightly better for predicate Movie(movie, person), but performs worse for predicate

WorkedUnder(person, person). This result indicates that, since TCSL-Alter introduced more

variables and more template nodes than TCSL, that may be the reason it performs better on

WorkedUnder(person, person) predicate, but assign the values in M matrix in two different

ways may also lead to the decreasing of AUC on Director(person) and Actor(person).

Table 4.3 shows the average training time overall for each system. Both TCSL and TCSL-

Alter are trained much slower than BUSL and MSL. This is because our algorithms spend most
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Table 4.2 Experimental results of AUCs

System Average AUC Director and Actor WorkedUnder Movie

MSL 0.414 0.603 0.381 0.259

BUSL 0.468 0.911 0.249 0.245

TCSL 0.511 0.981 0.296 0.256

TCSL-Alter 0.506 0.968 0.312 0.238

Table 4.3 Experimental running time

System runTimes(min)

MSL 6.91

BUSL 1.42

TCSL 14.67

TCSL-Alter 15.55

of their training time on generating the observations. That’s also the reason that TCSL’s and

TCSL-ALter’s run time are very close, although TCSL-Alter introduced more template nodes.
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CHAPTER 5. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel algorithm for the Markov logic network structure

learning problem. This approach directly makes use of the data to restrict the search space

and guide the construction of candidate clauses, it also generates a set of observations to help

construct reliable Markov network templates. Our experiments with a real-world domain have

shown the effectiveness of our approach. One bottleneck of this approach is that, it is pretty

slow currently because the observation generation algorithm is not very efficient.

Directions for future work includes: improve the efficiency of observation generation process

(the significant limitation in our approach); apply our algorithms to larger, richer domains;

instead of only consider the ground atoms that is constant-shared with headNode, introduce

multiple hops (e.g., variabilize the ground atoms which are constant-shared with template nodes

already obtained) of template nodes in the template nodes construction part .
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