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ABSTRACT

Inverted index has been extensively used in Information retrieval systems for document related

queries. We consider the generic case of graph storage using Inverted Index and compressing them

using this format. Graph compression by reordering has been done using traversal and clustering

based techniques. In generic methods, the graph is reordered to arrive at new identifiers for the

vertices. The reordered graph is then encoded using an encoding format. The reordering to achieve

maximal compression is a well known NP complete problem, the Optimal Linear Arrangement.

Our work focuses on the inverted index format, where each node has its corresponding list of

neighbours. We propose a heuristic based graph reordering, using the property that the cost of

each vertex is bound by its neighbour with largest vertex id. Consider, two vertices x and y with

edges a and b respectively. If x>y and a>b, then cost of graph would come down, if the vertex id

of x and y are interchanged. Further, experiments shows that using this heuristic helps in achieving

compression rates on par with distributed methods but with reduced utilization of computation

resources.
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CHAPTER 1. INTRODUCTION

Information Retrieval system maintain documents and handles search queries on the document.

A typical search query is a set of key words which is used to search for documents most relevant to

the query. Inverted Index has been used as in-memory data structure in Information retrieval(IR)

system. The terms(words) in each document is extracted and assigned a term-ID . Each term has

a corresponding list of document-ID in which they occur. The inverted index has the collection of

list for all the unique terms in the document collection. Example, a term t has a list associated

with it as

list(t) = {d1, d2, d3}.

For a given set of search terms, say t1, t2...tn, their document list, list(t1), list(t2), ..., list(tn) is

retrieved from Inverted Index and processed to get the most relevant documents. This format is

efficient as it allows, processing of union or intersection of the list for a set of terms. The list often

also contains the frequency of terms in each of those documents. This data structure is also used

in finding group of similar documents or finding the piracy of documents.

Search engines generally get thousands of queries per second and maintain billions of documents.

The inverted Index is often large and cannot be loaded completely into main memory. However,

the engines have to process and return the results within few milliseconds. If the inverted index

is stored in the disk and each list is loaded in memory on need basis, then the decompression

can be performed for the list alone. This calls for compression at the list level in the Inverted

Index to improve the processing speed. Thus, Inverted Index has the benefit of providing localized

compression decompression, thereby optimizing the processing speed. Compressing the inverted

index has been proven to optimize the processing of queries by Witten Et Al(11).

The inverted index can made more memory efficient by using gaps between the document id.

For example, a term x with list(x) = {d1, d2, ...dn} is sorted by doc id and represented as difference
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between consecutive identifiers d1, d2 − d1, ...dn−1 − dn. An example gap representation is given

below,

list(x) : 200, 240, 300, 320, 340

list(x) : 200, 40, 60, 20, 20

The gaps can further be encoded and stored as binary values, thus memory bounds for a gap n

is reduced to the O(1 + log2(n)). This bound denotes the number of bits used to store a gap. If

similar documents are assigned consecutive identifiers, then the gaps for the list corresponding to

common terms would be smaller. This reduces the in-memory graph space and in turn improves

the compression achieved. This is especially helpful in case of huge graphs with billions of edges.

For the same list(x), if the document ids are 210, 211, 212, 213, 214, the gaps are reduced to list(x) :

210, 1, 1, 1, 1. Since the Gap compression depends on document Id’s, we analyze whether reordering

the document id helps with Inverted Index compression.

Additionally, this methodology can be used for social and web graph processing as well. In

case of a graph, it would be similar to Adjacency list with each node having its corresponding list

of neighbours. Thus graph can be represented as a collection of list for each node. Additionally,

adjacency list is commonly used format for graph processing. In case of large graphs, the index

can be stored in the disk and the required lists for a node can be retrieved using offset information.

After retrieval, the decompression or reverting the gaps to node id can be done for required list

alone which improves the decompression speed. The document and words usage of Inverted Index

could be considered as a special case of graph: A bipartite graph with words and documents as

node groups.

If the related nodes are reordered in a way that the node IDs are closer, then the part of the

graph loaded in memory can cater successive queries. This helps to improve processing speed of

the graph by having fewer cache misses. This has been extensively used in social graph processing

to find similarity between user profiles and behaviour.

Generic graph compression can be achieved using various methods. In this work, we focus on

reordering the vertices to reduce the gaps across the entire graph. The graph compression can be
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done in two stages: First step would be reordering the vertices to reduce the gaps and second would

be to use suitable encoding of the inverted index to improve level of compression. In our work, we

analyze the effect of a new heuristic on the compression of graph using the inverted index format.

1.1 Background

Graph compression by reordering can been formulated and analyzed as the Optimal Linear

Arrangement(OLA) or Minimum Linear Arrangement (MLA) problem. For a graph G(V,E), the

Minimum Linear Arrangement is a permutation of vertices f : V → 1...|V |, such that the function

∑
(u,v)∈E

|f(u)− f(v)|

is minimized. Its logarthmic variation (MLogA) has a corresponding minimization function as,

∑
(u,v)∈E

log|f(u)− f(v)|

The MLA and its logarithmic variation (MLogA) are NP- hard. If we consider the Inverted Index

version of the problem, the Minimum Logarthmic Gap Arrangement(MLogGapA) [2] has been

proved to be NP-hard as well. MLogGapA can be defined as, finding a permutation f : V → 1...|V |

so that the BinaryCostf (G) is minimized. BinaryCostf (G) is defined as

BinaryCostf (G) =
∑
v∈V
|BinaryCostf (v)|

where BinaryCostf (v) =

k−1∑
i=1

log|f(vi+1)− f(vi)|

with k neighbours of each vertex being ordered, such that for a vertex v with neig(v) =

{v1, v2, ..., vk} f(v1) < f(v2). In the figure 1.1 the list corresponding to vertex 2 is 3, 4, 5 and

the gaps would be 3 : 1, 1. Hence the BinaryCost(2) = log(1) + log(1).

In case of unary encoding, the list(x) = {v1, v2, ..., v3} is encoded as x : v1, v2 − v1, v3 − v2.

Hence, the memory bounds of x is given by v3 and in generic case the neighbour with largest id.

It can be noticed that the unary cost is a variation of the MLA. Following this we define the unary
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cost problem as, finding a permutation of vertices f : V → 1...|V |, such that the UnaryCostf (G)

is minimized. UnaryCostf (G) is defined as

UnaryCostf (G) =
∑
v∈V

UnaryCostf (v)

where UnaryCostf (v) = Max(∀x∈neigh(v)f(x))

Figure 1.1 Original Graph

Figure 1.2 Original Index

Figure 1.3 Reordered Graph

Figure 1.4 Reordered Index

Reordering the vertices , with the objective of reducing gaps, has been studied using sequential

and distributed methods. In the sequential methods, the graph is traversed based on a strategy and

renamed by the order of traversal. The distributed methods are aimed at utilizing the distributed

systems and enables huge graphs to be processed with lesser time. In the distributed methods, the

graph is split in a top down manner such that the partitions have minimum edges between them.

The partitioning ends after they reach relatively smaller size and the vertices are named at this

stage. The distributed methods are especially effective for graphs with hundreds of billions edges,

which cannot be processed in a single machine. The graph is partitioned and can be used in a

distributed manner with minimal cross machine queries.
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The graph in the figures 1.1 and 1.3 shows the Inverted Index for the original and reordered

graph. The MLogGapA of the graphs are 1.67 and 1.8. It is also shown that optimal solutions for

MLA and MLogA vary in graphs.(6).

1.2 Contribution

From figures 1.2 and 1.4, the highest neighbours of nodes {1,2,3,4,5} are { 5,5,2,5,4} and

{4,5,2,5,4} respectively for the same graph with different ordering. The unary cost, i.e sum of

list mentioned earlier, are 21 and 20. It is evident that if the vertex with highest id can be assigned

to a vertex with lesser degree the unary cost comes down. It can also be noticed that if 4 is swapped

with 3 the cost decreases further. We use this property in terms of effective degree, as a heuristic

to reorder the graph. The effective degree can be defined as the number of vertices to which the

current vertex could become the highest neighbour. In case of vertices with same effective degree,

we break the ties using original degree or cost. Further modification to this heuristic provides better

MLogGapA cost for the graphs analyzed. We compare the effectiveness of using this heuristic to

the existing distributed work.

1.3 Organization

The rest of the thesis is organized as follows. In Section 2, we look at the existing traditional

approaches to reorder the inverted index. In Section 3,we discuss our algorithm which yields better

unary cost. Then we look at variations of the algorithm and the corresponding binary cost. In

Section 4, we present our experimental results performed on real world graphs and comparison of

our results to existing methods. In Section 5, we summarize our contributions, and discuss the

possible extensions to this work.
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CHAPTER 2. REVIEW OF LITERATURE

Prior related work falls into two major categories, namely compressing indices and compressing

Web graphs.

2.1 Index Compression

Compressing indices has been studied based on several aspects. The stages where it can be

compressed would be ordering of the vertices and the encoding of the gaps. In terms of ordering,

the nodes are traversed using a strategy and then named 1 to n based on the order of traversal.

The renaming of vertices is aimed at improving the compression of the inverted index.

2.1.1 Traversal based Algorithms

Modified TSP: A modified Travelling Salesman Problem has been used to find a path such

that gaps between the nodes are minimized in Document Similarity Graph(DSG) (9).The DSG has

documents as nodes and the number of similar terms between two documents as edge distance.

Given a graph with a set of nodes and distances between the connected nodes, TSP finds the path

that covers all the nodes which minimizes the distance travelled. The greedy strategy of TSP has

two variation. One selects the next node as, the one with minimum distance from last node in the

current path. The second method selects the next node based on node having minimum distance

from any node in the current path. The second strategy studied here is based on finding the

minimum spanning tree(MST) and traversing it using BFS(Breadth First Travesal) or DFS( Depth

First Traversal). This is following the result that all edges of a MST are near optimal path for

TSP. This has further been studied with methods to scale the algorithm using dimension reduction

(8) and modified graph using Locality Sensitive Hashing (10)

Lexicographic order: In another work (5), assigning the ID based on the lexicographic order
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of the document URL has proven to be much effective than other methods. But this cannot be

applied to documents which lack the domain relevance property.

2.1.2 Clustering based Algorithms

Cosine Similarity based: Clustering based reordering for documents have high space com-

plexity as it requires multiple copies of the subgraph to be maintained. The work by Blandford and

Belloch [(9)], uses cosine similarity to cluster documents. Given a graph of documents, a subgraph

is taken and the cosine similarity between the documents is given as edge distance. The subgraph

is partitioned into two and center of mass for both are identified as D1 and D2. Each node x in

the subgraph is analyzed and interchanged, such that the nodes x will be placed in partition 1 or 2

based on its highest cosine similarity to D1 or D2 respectively. This is done recursively using top

down manner for the entire collection of documents. Finally, the partitions are ordered from the

lowest level.Further, this has been improvised based on top down approach to utilize lexicographic

property and bottom up strategy which provides linear space and time complexity.

2.1.3 Encoding

For a term x with documents, say x: 20 30 40 50, the gaps are represented as x: 20, 10,10,10.

This is called as delta encoding and forms the basis for other encoding methods. We analyze the

compression in terms of delta encoding with variable length byte code and BV encoding(16). The

BV encoding uses a set of rules for encoding. It utilizes nodes with similar neighbours to represent

the list. The BV is a widely used encoding scheme due to the availability of open source library

and its performance. The Back Link encoding scheme built on the BV utilizes the shingle ordering

( similarity of the list between two nodes)(6).

2.2 Graph compression

In most of the webgraph and social graph compression, the compression is based on just the

nodes and the edges. These methods does not go into the detail of the nodes and the domain
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specific metadata (like similarity of users or URLs). Initial work proposed in this direction would

be the reordering of graph vertices using breadth first traversal(2). Recent research for partitioning

or compressing graphs have been done using distributed systems. This is mainly because of the

availability of computation resources and need to handle terabytes of data. Thus, graph processing

had been studied using distributed systems such as Pregel(7) and Apache giraph(21)

2.2.1 Distributed partitioning

In the distributed methods, the graph is partitioned into clusters which reduces the cross cluster

edges. This is mostly done by trying to find two subgraph with minimum cut. The graph is

recursively divided to identify clusters and then renamed from the lowest level of clusters.

Slash burn: Graph reordering based on density has also proven to be effective. The high density

subgraphs (hubs) will be identified and removed. The remaining graph will be named with highest

ids. The hub identification is done recursively in a top down manner and then the vertices are

renamed.

Graph embedding: Hansen showed that embedding the vertices of a graph on to a plane (3) and

partitioning based on the embedding gives an O(
√
logn) approximation for balanced partitioning

algorithms. Further, embedding the vertices on to a line (17) and partitioning has been shown to

optimize the graph reordering in terms of MLA.

2.2.2 Recursive Bisection

The most recent work on improving the LogGapA cost of a graph uses a variation of Kernighan-

Lin heuristic, Recursive Bisection(21), to partition the graph and reorder the vertices. A graph is

divided into two set of vertices V1 and V2. The vertices in each set are given a cost, which signifies

the cost it contributes towards compression if moved to the other set. The vertices are sorted in the

descending order of move gains.Then, each vertex in the V1 and V2 are swapped until the collective

gain becomes negative. This process is repeated until there are no more vertices are swapped or an

iteration limit is reached.
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Algorithm 1: Recursive Bisection

Data: Graph G = (V, E)

Result: Partition G1, G2

1 Partition V into V1 and V2;

2 repeat

3 for v in V do

4 gains[v] = computeMoveGain(v);

5 end for

6 for v S1, u S2 do

7 if gains[v] + gains[u] 0 then then

8 exchange v and u in the sets;

9 else

10 break ;

11 end if

12 end for

13 S1 sorted V1 in descending order of gains;

14 S2 sorted V2 in descending order of gains;

15 until not converged or iterations limit exceeded ;
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CHAPTER 3. EFFECTIVE DEGREE HEURISTIC-BASED ALGORITHMS

In this section, we discuss our algorithm and variations of it which has been used to study the

unary and binary cost reduction.

3.1 Effective Degree Based Traversal (EDBT)

Intuition: A given graph ordering can be optimized by swapping the node id of two vertices

say x, y, if x > y and x.degree >y.degree. We can swap the vertex id of x and y and decrease the

unary cost of the graph.

Description:We use this factor in terms of effective degree as priority to traverse the graph.

Effective degree is the measure of the number of vertices the node x will affect if given an id.

Effective degree can be defined by a k- partial order function f : V → V such that f−1(n), f−1(n−

1), ..., f−1(n − k) are defined. Given a partial order for k vertices from n, n − 1, ...n − k the

neighbours of f−1(n) gets UnaryCost of n. Initially a node x with y neighbors when assigned an

ID n, n forms the upper bound for each of the y nodes. For all the vertices v in the graph, we

intialize UnaryCost(v) = 0. As the algorithm propagates the k partial order determines the cost

of some vertices. Given the k-partial order, the effective degree can be defined as

effectiveDegree(v) =
∑

x∈neigh(v)
UnaryCost(x)==0

1

If one of the neighbors already has a higher id neighbor, the effective degree of x is decremented

and so on. This algorithm aims at improving the unary cost and is detailed in the 2. A variation

of our algorithm also achieves near optimal RB binary cost.

As the graph is processed, most vertices will have similar effective degree. We try to use

UnaryCost, original degree and combination of both as tie breakers.
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Algorithm 2: Effective Degree Based Traversal

Input : Graph G(V,E)

Output: Reordered graph F

1 Load the Graph into InvIndex

2 Insert the nodes into priority queue pq based on degree of a node

3 Initialize currNodeID to |v|
4 while pq is not empty do

5 currNode = pq.front();

6 Assign currNodeID to node;

7 Decrement currNodeID;

8 for Neighbors of currNode do

9 if Neighbors.UnaryCost == 0 then

10 for NeighOfNeigh : Neighbors.neighbors do

11 Decrement priority of NeighOfNeigh;

12 end for

13 Update Neighbors.UnaryCost = currNodeID+1;

14 end if

15 end for

16 end while

Priority processing: Often, the effective degree of the graph is similar for more than one

vertex. The use of various tie breakers is essential in bringing down the unary cost. If the effective

degree is similar, then cost or original degree of a node (the highest neighbour id) is used to

determine the priority 9 and 9. A node with higher unary cost/original degree is given priority over

the other.

Algorithm 3: Cost as tie breaker

1 Function Priority Queue::compare(x, y):

2 if x.priority > y.priority then

3 /* y gets priority */

4 return 1;

5 else if x.priority == y.priority and x.cost > y.cost then

6 /* y gets priority */

7 return 1;

8 /* x gets priority */

9 return -1;
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Algorithm 4: Original degree as tie breaker

1 Function Priority Queue::compare(x, y):

2 if x.priority > y.priority then

3 /* y gets priority */

4 return 1;

5 else if x.priority == y.priority and x.originalDegree > y.originalDegree then

6 /* y gets priority */

7 return 1;

8 /* x gets priority */

9 return -1;

3.2 Variation of EDBT

Experiments shows that a variation of EDBT 5 provides better binary cost. The priority is

decremented for each neighbour and their cost updated to recently assigned neighbour rather than

the highest neighbour.

3.2.1 Complexity analysis

The algorithm iterates over v vertices and instantiates the priority with O(V). Then the neigh-

bour are iterated and if not processed already its neighbours are iterated O(VE). The priority

queue insertion takes log n time and it is the only factor which forms a bottle neck. For consecutive

runs, we maintain a copy of the priority queue items. The items are thereon added to the priority

queue and not modified to reduce the cost of deletion. This gives additional run time complexity

of O(V log V) The run time is controlled by the edge with total cost of O(VE+V log V) and space

complexity of O(V) where a copy of nodes are created for priority queue and new ordering.

3.3 Optimality Analysis

The heuristic used utilizes the property of least degree and assigned neighbour id to assign the

next neighbour. This will not provide optimal cost for the cases where similar nodes are more than

the effective degree. In the figure 3.1, the node with degree 1 is assigned 10, thus one node has

unary cost of 1. But this leads to a unary cost greater than 10+9+9 . The actual unary cost is
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Algorithm 5: Effective Degree Based Traversal for Binary Cost

Input : Graph G(V,E)

Output: Reordered graph F

1 Load the Graph into InvIndex

2 Insert the nodes into priority queue pq based on degree of a node

3 Initialize currNodeID to |v|
4 while pq is not empty do

5 currNode = pq.front();

6 Assign currNodeID to node;

7 Decrement currNodeID;

8 for Neighbors of currNode do

9 Decrement priority of Neighors;

10 Update Neighbors.UnaryCost = currNodeID+1;

11 if Neighbors.UnaryCost == 0 then

12 for NeighOfNeigh : Neighbors.neighbors do

13 Decrement priority of NeighOfNeigh;

14 end for

15 end if

16 end for

17 end while

Algorithm 6: Combination tie breaker

1 Function Priority Queue::compare(x, y):

2 if x.priority > y.priority then

3 /* y gets priority */

4 return 1;

5 else if x.priority == y.priority and x.UnaryCost > y.UnaryCost then

6 if x.originalDegree > y.originalDegree then

7 /* y gets priority */

8 return 1;

9 /* x gets priority */

10 return -1;
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Figure 3.1 EDBT reordering Figure 3.2 Optimal reordering

43 .In the other assignment as shown in figure 3.2, the 10 being assigned to one of the 5 similar

nodes and hence 9,8,7,6 will not be the unary cost of any other node. The 10 is used to shadow the

effect of 9,8,7 and 6. This brings the unary cost down to 41. Thus, in graphs with higher density,

utilization of similar nodes would bring out the optimal arrangement. Optimal arrangement is

dependent on the structure of the graph.
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CHAPTER 4. EXPERIMENTAL RESULTS

Experiments were performed to analyze the compression achieved by reordering and encoding.

by various algorithms and then compare the unary and binary cost. Further, the resulting graphs

were encoded using BV compression to study the effect of reordering on the encoding. The algo-

rithms used for traversal were BFS(Breadth First Search), Highest Degree based traversal, Effective

degree with cost and tie breaker, and Effective degree with cost and tie breaker. A variation of the

algorithm was found effective for binary cost and has been compared with Recursive Bisection.

Experiments were conducted on several graphs from the Stanford Large Network Dataset

Collection(15). The implementation was done in Java, and run on a Linux server with Core 32GB

RAM with Cent-OS operating system. The graph used for experiment are from varying node size

and density. The graphs vary from 262,111 nodes (Amazon) to 1,791,489 nodes(Wiki topcats).

The graph have been pre-processed to have vertices 1 to n and then traversed using one of the

algorithms.

4.1 Data sets

Data sets listed below were used and their size in terms of edges and nodes are given in table

4.1

Amazon200: Nodes are Amazon items related based on categories and item purchased together.

If an item i is frequently co-purchased with product j, the graph contains an undirected edge from

i to j.

com-amazon.ungraph: A graph formed by crawling Amazon website. Nodes are customers and

items related as who Bought an Item.

com-dblp.ungraph: DBLP Computer Science has comprehensive list of research papers in com-

puter science. The graph is a co-authorship network where two authors are connected if they
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publish at least one paper together.

com-Youtube:A graph of the Youtube social network users. Users are connected with each other

and forms groups. Users can be part of a group as well

Wikitalk: Each registered Wikipedia user has a talk page, that they can edit in order to commu-

nicate and discuss updates to various articles on Wikipedia. Using the latest complete dump of

Wikipedia page edit history (from January 3 2008) all user talk page changes was extracted as a

graph

as-skitter:Internet topology graph. From trace routes run daily in 2005 from several scattered

sources to million destinations.

cit-hepth: Its a network of citation from e-print arXiv. If a paper i cites paper j, the graph

contains a directed edge from i to j. If a paper cites, or is cited by, a paper outside the dataset, the

graph does not contain any information about this.

cit-Patents: A graph of the US patents which are maintained by the National Bureau of Economic

Research. The data set spans 37 years (1963 to 1999), and includes all the utility patents granted

during that period. The citation graph includes edges for each patent i which refers patent j within

the given nodes.

4.2 Algorithms

We have used variation of the EDBT with cost and original degree as tie breaker. Similarly, for

the modified version of EDBT cost and orginal degree and its combination is used as tie breaker

BFS: The graph is traversed using BFS and vertices are named according to that order

HDT:The vertices with highest degree is given the lowest ID. This can be considered as the reverse

approach of EDBT

EDBT-Org: This is a variation of EDBT with original degree being the tie breaker and is assigned

in the initial level only

EDBT-Cost:This is a variation of EDBT with cost being the tie breaker. The cost being modified
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adds to the run time complexity of the algorithm, as priority queue operations are involved.

EDBT-Comb Mod: The modified EDBT with combination of original degree and cost as tie

breaker

EDBT-Cost Mod: The modified EDBT with cost as a tie breaker

RB: Recursive Bisection was ran on the given graphs and mapping was provided to us by Sergey

Pupeyrev [(21)]

Table 4.1 Data Set - Graph properties

Graph Node Edges

Amazon200 262,111 1,234,877

com-amazon.ungraph 334,863 925,872

com-dblp.ungraph 317,080 1,049,866

com-Youtube 1,134,890 2,987,624

wikitalk 2,394,385 5,021,410

as-skitter 1,696,415 11,095,298

cit-hepth 27,770 352,807

cit-Patents 3,774,768 16,518,948

4.3 Unary Cost Analysis

The graphs were reordered and from the mapping, the unary cost was derived as sum of highest

ID neighbour for each node. The EDBT with cost as tie breaker performs better than other

algorithm for all the graphs. It can also be seen that unary cost and the BV metrics(Binary cost)

are not varying in the same way in any of the graphs. Another factor to notice is that, denser the

graph the unary cost comes down more for the given heuristic. Thus, this method will be more

effective for denser graphs.

4.4 Binary Cost Analysis

Using the reordered graph from the algorithms, we used two encoding scheme to analyze the

binary cost. The delta encoding where gaps were encoded by variable byte encoding and BV
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compression scheme.For the first scheme, each list is converted into gaps and then the entire inverted

index is encoded as a byte stream with special byte codecs to identify each list. In terms of BV

encoding, we use the mapping to arrive at the modified graph. The graph is printed out into list of

edges and then the file is fed into the BV compression algorithm. The BV scheme, on processing

a graph, stores it using three files: the properties file, offset file and .graph file. The properties file

has meta data of the compressed graph such as bits per link and bits per interval. The binary cost

varies independently of the unary cost and does not seem to be affected by the density. The file size

for delta encoding shows that EDBT-comb and RB are closer and sometimes EDBT-comb yields

lower size. For amazon200 and com-amazon.ungraph , the EDBT variations have lower file size.

Thus, binary cost is varying based on the encoding and EDBT is more suitable for delta encoding

while RB is suitable for BV compression scheme.

4.5 Permutation Analysis

We analyzed the L1 distance, L2 distance and Cosine Similarity between the permutation for

all the algorithms. The results showed that permutations were random and does not follow any

similarity range between the mentioned algorithms.
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Table 4.2 Reordering cost

Algorithm Delta Encoding(KB) BV(Bits per link) Unary-Cost

amazon200

original 4,243 14.947 50,922,737,794

bfs 3,937 12.031 41,458,074,695

HDT 4,788 20.799 50,922,737,794

EDBT-Org 3,547 10.809 42,781,208,937

EDBT-cost 3,909 14.062 40,612,996,699

EDBT-Comb Mod 3,188 8.645 37,026,723,279

EDBT-Cost Mod 3,239 9.068 37,005,229,976

RB 3,214 8.747 42,003,649,153

com-dblp.ungraph

original 5,275 16.666 75,800,000,000

bfs 4,431 10.273 52,500,000,000

HDT 5,097 18.093 47,500,000,000

EDBT-Org 4,654 13.502 76,400,000,000

EDBT-cost 4,650 14.058 44,200,000,000

EDBT-Comb Mod 4,043 9.209 56,200,000,000

EDBT-Cost Mod 4,138 9.581 56,500,000,000

RB 4,031 7.800 59,700,000,000

com-youtube-ungraph

original 13,967 15.027 547,000,000,000

bfs 14,120 14.303 494,000,000,000

HDT 13,796 17.667 293,000,000,000

EDBT-Org 14,563 17.594 1,040,000,000,000

EDBT-cost 13,460 15.046 213,000,000,000

EDBT-Comb Mod 13,676 13.866 670,000,000,000

EDBT-Cost Mod 13,629 13.816 630,000,000,000

RB 13,359 11.578 757,000,000,000

com-amazon.ungraph

original 4,381 23.467 146,000,000,000

bfs 4,148 10.981 60,900,000,000

HDT 4,918 21.876 58,200,000,000

EDBT-Org 3,755 10.149 65,300,000,000

EDBT-cost 4,437 16.030 51,000,000,000

EDBT-Comb Mod 3,575 9.178 58,000,000,000

EDBT-Cost Mod 3,557 9.088 58,000,000,000

RB 3,567 8.278 65,700,000,000
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Table 4.2 (continued)

Algorithm Delta Encoding(KB) BV(Bits per link) Unary-Cost

as-skitter

original 41,197 9.974 1,600,000,000,000

bfs 40,966 10.118 1,596,137,980,366

HDT 43,253 13.731 1,062,633,411,384

EDBT-Org 44,280 13.604 2,390,000,000,000

EDBT-cost 40,880 11.403 775,000,000,000

EDBT-Comb Mod 36,613 8.533 1,680,000,000,000

EDBT-Cost Mod 37,235 8.928 1,770,000,000,000

RB 35,923 6.347 1,520,000,000,000

cit-Hepth

original 1384 29.648 264,000,000,000

bfs 1024 8.814 504,000,000

HDT 1099 11.563 517,000,000

EDBT-Org 1057 9.989 592,000,000

EDBT-cost 1027 9.868 470,000,000

EDBT-Comb 969 8.391 520,000,000

EDBT-Cost Mod 972 8.374 526,000,000

cit-Patents

original 101590 24.533 19,924,870,590,408

bfs 81317 16.742 8,209,542,343,666

HDT 96495 24.203 7,144,918,712,484

EDBT-Org 86313 19.7 10,559,104,597,943

EDBT-cost 90043 21.087 5,954,512,341,018

EDBT-Comb Mod 74907 15.933 8,392,018,241,308

EDBT-Cost Mod 75021 15.742 8,744,689,350,021
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CHAPTER 5. SUMMARY AND DISCUSSION

We have defined a variation of MLA problem,the unary cost for a graph and analyzed the com-

pression of graph in terms of unary and binary cost. The heuristic used here gives best unary cost

and near optimal binary cost with relatively less use of computational resources. From Table 4.2,

it is evident that the algorithm provides lower unary cost than the traditional methods like BFS

and Highest degree first based reordering. Based on the analysis in 3.1 and 3.2, it can be seen that

similarity measure can yield better compression for the mentioned cases. Hence, this heuristic if

used as a combination with similarity measure would yield better compression.Further, distributed

algorithms when combined with heuristic based traversal at subgraph level to reduce the iteration

could benefit from the reduced space complexity.
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