
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2012

Displacement-based two-finger grasping of
deformable planar objects
Feng Guo
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons, and the Robotics Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Guo, Feng, "Displacement-based two-finger grasping of deformable planar objects" (2012). Graduate Theses and Dissertations. 12648.
https://lib.dr.iastate.edu/etd/12648

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12648&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12648&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F12648&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=lib.dr.iastate.edu%2Fetd%2F12648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/12648?utm_source=lib.dr.iastate.edu%2Fetd%2F12648&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


Displacement-based two-finger grasping of deformable planar objects

by

Feng Guo

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:

Yan-Bin Jia, Major Professor

Vasant Honavar

James Oliver

Iowa State University

Ames, Iowa

2012

Copyright c© Feng Guo, 2012. All rights reserved.



ii

DEDICATION

I would like to dedicate this thesis to my wife Yueran Yang and my parents without whose

support I would not have been able to complete this work.



iii

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The Grasping Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2. REVIEW OF LITERATURE . . . . . . . . . . . . . . . . . . . . 5

CHAPTER 3. FINITE ELEMENT METHOD . . . . . . . . . . . . . . . . . . 6

3.1 Linear Plane Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Stiffness Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 4. TWO FINGER SQUEEZE . . . . . . . . . . . . . . . . . . . . . 11

4.1 Deformation due to Contact Displacement . . . . . . . . . . . . . . . . . . . . . 12

4.2 Squeeze Grasp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Generalized Squeeze Grasp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

CHAPTER 5. GRASP COMPUTATION . . . . . . . . . . . . . . . . . . . . . . 20

5.1 An Efficient Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Algorithm Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

CHAPTER 6. ROBOT EXPERIMENT . . . . . . . . . . . . . . . . . . . . . . . 25

CHAPTER 7. DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



iv

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



v

LIST OF TABLES

Table 5.1 Algorithm Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Table 6.1 Grasping Two Ring-like Objects . . . . . . . . . . . . . . . . . . . . . . 26



vi

LIST OF FIGURES

Figure 1.1 Squeeze Grasp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 3.1 Planar Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 3.2 Rotation Field under Linear Elasticity . . . . . . . . . . . . . . . . . . 8

Figure 3.3 Triangular Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 4.1 Translation of pi towards p0. . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 4.2 Generalized Squeeze Grasp . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 6.1 Grasping with a Barrett Hand. . . . . . . . . . . . . . . . . . . . . . . 25

Figure 6.2 Graspable regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 6.3 Independent Grasp Region . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 6.4 Grasping a Foam Object . . . . . . . . . . . . . . . . . . . . . . . . . . 28



vii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to people who gave me all kinds

of help in my study.

First and foremost, I would like to thank Dr. Yan-Bin Jia, who has given me tremendous

support, inspiring guidance and valuable help on my research. It was such a pleasure to work

with him during the Master’s career. He has always been there when I have difficulties in

research and guide me towards a thinker.

I am also greatly thankful to my committee members, Dr. Vasant Honavar and Dr. James

Oliver, for their help and contribution to this work. It is such an honor to have them as my

committee member and learn from them.

The Robotics Lab has been a great place for study and research. All the lab members in

the lab, Jiang Tian, HyunTae Na, Theresa Driscoll, Huan Lin, Rex Fernando, Feifei Wang and

Sean Strickland, have made it a lovely place. I am grateful to them all.

I would also thank other friends Yetian Chen, Ru He, Chuan Jiang, Tsing-yi Jiang, Zi Li,

Lisen Peng, Yang Peng, Hua Qin, Chuang Wang, Wanwu Wang, Liyuan Xiao, Jinsheng Zhang,

Wei Zhang. Their presences make Ames a lovely home to me.

Support for this research has been provided in part by Iowa State University, and in part

by the National Science Foundation through the grant IIS-0915876. Any opinions, findings and

conclusions or recommendations in this thesis are those of the author and do not necessarily

reflect the views of the National Science Foundation



viii

ABSTRACT

This thesis introduces a strategy of grasping deformable objects using two fingers which

specifies finger displacements rather than grasping forces. Grasping deformable objects must

maintain its equilibrium before and after the induced deformation. The deformed shape and

grasping force are computed using the finite element method (FEM). The equilibrium of the

object is guaranteed automatically since the computed grasping force are collinear and sum

up to 0. To achieve a grasp, the forces have to be tested for staying inside the pre- and post-

deformation contact friction cones. This test could be as expensive as solving a large linear

system, if the deformed shape is computed. We present an algorithm that performs a grasp

test in O(n) time, where n is the number of discretization vertices under FEM, after obtaining

the spectral decomposition of the object’s stiffness matrix in O(n3) time. All grasps (up to

discretization) can be found in additional O(n2) time. Robot grasping experiments have been

conducted on thin 21
2D objects.
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CHAPTER 1. INTRODUCTION

Grasping deformable objects is quite different from grasping rigid ones. Two types of

analysis have been developed for the latter. Form closure means the object cannot move given

the fingers are fixed, while force closure grasps resist any arbitrary wrench and keep the object

in equilibrium. However, deformable objects have infinite degrees of freedom, which makes

form closure impossible. On the other hand, the grasp wrench space changes as the object

deforms, which makes it impossible to conduct any conventional force closure analysis.

Deformable objects are very common in our world. However grasping of deformable objects

is an under-researched area, primarily due to the following reasons. Physics-based deformation

modeling is computationally expensive, but necessary since deformation is involved. Besides,

the grasped object must be in equilibrium at more than one scenario: before and after defor-

mation.

The deformation induced by a grasp can be modeled using the elasticity theory, in which

the applied force and the displacement of the contact are strictly related and thus cannot be

both specified at the same time. In this thesis, we choose to specify desired displacements of

the fingers rather than the force exerted, for the following reasons:

1. In practice, it is much easier to control the finger’s displacement than the force it exerted.

Controlling the robotic hands’ movement or locations is by far the most common, direct,

easy way of manipulation.

2. The exact grasping force, especially that in deformation process, is not very much con-

cerned, as long as the object can be grasped.

3. Specifying the displacement gives rise to certain constraints that are sufficient for deter-

mining the deformation and corresponding force.
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Linear elasticity is applicable when the deformation is small enough. Computation of de-

formed shape based on linear elasticity comes down to solving either a system of fourth order

differential equations, which has no closed-form solution in general, or practically, a large linear

system using Finite Element Method(FEM). The latter takes subcubic time in the number of

discretization nodes, which is typically high for accurate modeling. A large deformation can

only be modeled by nonlinear elasticity and computed using the even more expensive nonlinear

FEM.

The lack of a closed form description of the deformed shape implies that (part of) the shape

needs to be computed repeatedly with hypothesized finger placements in order to compute a

single grasp. Computational efficiency has thus become a bottleneck, even more so for grasp

optimization and real-time implementation.

Whether a finger placement with certain finger displacement can form a grasp without slip

depends on the local geometry of the contacts. Therefore global deformation is not needed. The

stiffness matrix of the object stays the same for different grasp tests, although the boundary

conditions may vary. An improvement in computation is possible by preprocessing the stiffness

matrix.

1.1 Assumptions

In this thesis, we focus on how to grasp planar objects without concerning any body force,

e.g. gravity. The contacts between fingers and objects are point contacts with friction. The ob-

ject deforms with finger’s displacement. When the deformation is small enough, linear elasticity

theory applies. Classical elasticity theory often ignores dynamics in modeling deformation. So

the following assumptions are made.

(A1) The object to be grasped is isotropic, and either planar or thin 21
2D.

(A2) Gravity is ignored as the object lies in a horizontal supporting plane.

(A3) Two grasping fingers are in the same plane, and make point contacts with the object in

the presence of friction.
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(A4) The deformation yielded by a grasp is small enough so that the linear elasticity theory is

applicable.

(A5) Deformation happens instantaneously such that the applied contact forces do not vary,

and no velocity of the object builds up.

1.2 The Grasping Problem

Figure 1.1 shows a grasp achieved by squeezing an object. The action is equivalent to

keeping one finger still and stuck to its contact point, say, q, while translating the other finger

toward q without slip at its contact point p.

Figure 1.1: Squeeze Grasp

To grasp the deformable object in Figure 1.1, the finger placement G(p,q) should prevent

any Euclidean motion such that the only possible displacement is deformation. In presence

of friction, this requires the grasp to be force closure if the object were rigid. By Nguyen’s

result (13), the segment pq in Figure 1.1 must lie inside the friction cones at p and q on the

object’s original shape.

If no contact slips, the same finger placement exerting the same forces also needs to maintain

equilibrium over the deformed shape of the object. Suppose under the deformation the contact

points p and q have moved to p̃ and q̃, resp. The segment p̃q̃ must lie inside the friction cones

at p̃ and q̃ on the object’s post-deformation shape.
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1.3 Thesis Outline

This thesis will formally characterize squeeze grasps like the one shown in Figure 1.1, and

describe an efficient algorithm to compute them. Chapter 2 reviews the related research that

has been done. Chapter 3 will briefly review linear elasticity and FEM with derivations of

some basic results to be used later. In Chapter 4, we will show that it is possible to grasp a

deformable object by squeezing it with two fingers moving toward each other along a straight

line, as long as the connection line of the two contacts stay inside the contact friction cones

before and after deformation. We will also show that actions other than pure squeeze can also

result in grasps if so does the corresponding pure squeeze. Chapter 5 will present an O(n)

time algorithm for grasp testing, where n is the number of vertices in FEM, after obtaining

the singular value decomposition (SVD) of the object’s stiffness matrix. The cost of finding all

grasps reduces to O(n2). It turns out that SVD, which takes O(n3) time, dominates the overall

computation. Chapter 6 will present experiments on grasping ring-like and solid 2-D objects

using a Barrett Hand. Discussion on future research will follow in Chapter 7 to conclude the

thesis.
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CHAPTER 2. REVIEW OF LITERATURE

Rigid body grasping is an extensively studied area rich with theoretical analyses, algorithmic

syntheses, and implementations with robotic hands (1). In particular, two-finger force-closure

grasps of 2-D objects are well understood and efficiently computable for polygons (13) and

piecewise-smooth curved shapes (15).

Much fewer work exists on grasping of deformable objects, which needs to deal with accurate

modeling of deformations caused by the grasping forces. In (16), a model for deformable contact

regions under a grasp was introduced to predict normal and tangential contact forces with no

concern of grasp computation or modeling of global deformation. Simulation accuracy and

efficiency could be improved based on derived geometric properties at deformable contact (10).

Deformation modeling of shell-like objects that have been grasped is studied in (18).

The concept of bounded force-closure was proposed in (19). Visual and tactile information

was effective on controlling the motion of a grasped deformable object (7). The deformation-

space (D-space) approach (6) characterized the optimal grasp of a deformable part as one where

the potential energy needed to release the part equals the amount needed to squeeze it to its

elastic limit– hence the object could not escape.

The recent work (9) specifies grasping forces instead of finger displacements. Extra con-

straints, which lead to unrealistic requirements, had to be imposed for computing the deformed

shape. The corresponding grasp space (i.e., the set of feasible finger placements) was 1-D, and

the synthesis algorithm was too inefficient to be applicable to solid 2-D objects.
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CHAPTER 3. FINITE ELEMENT METHOD

The first part of this chapter reviews the 2D linear elasticity. The displacement field which

does not generate strain energy is characterized. The second part describes the Finite Element

Method used to model the deformation. The null space of the stiffness matrix is shown. The

result will later be used in our design of a grasping strategy.

3.1 Linear Plane Elasticity

Consider a thin flat object as is shown in Figure 3.1, the thickness h of which is dominated

by the other two dimensions. The object is bounded by a generalized cylinder. Here we consider

the plane stress (4) parallel to the xy-plane, which assumes zero normal stress σz and shear

stresses τxz and τyz in the xz and yz planes.

Figure 3.1: Planar Object

Under a displacement field (u(x, y), v(x, y)), every point of the object moves to (x+u, y+v).

The normal strains εx, εy and the shearing strain γxy within every cross section are given below:

εx =
∂u

∂x
,

εy =
∂v

∂y
, (3.1)

γxy =
∂u

∂y
+
∂v

∂x
.
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The strain energy can be derived as (3):

U =
h

2

∫∫
S

(
E

1− v2
(ε2x + 2vεxεy + ε2y) +

E

2(1 + v)
γ2

xy) dxdy, (3.2)

where E and v are Young’s modulus and Poisson’s ratio of the material, resp., with E > 0 and

−1 ≤ v ≤ 1
2 .

Theorem 1. Under linear elasticity, any displacement field (u(x, y), v(x, y)) that yields zero

strain energy is linearly spanned by three fields: (1, 0), (0, 1) and (−y, x).1

Proof. Suppose U = 0 under a displacement field (u, v). From 3.2 we see that the strains εx,

εy and γxy must vanish everywhere. From 3.1,

u =
∫
εx dx+ f(y) =

∫
0 dx+ f(y) = f(y),

v =
∫
εy dy + g(x) =

∫
0 dy + g(x) = g(x),

where f and g are arbitrary single variable functions. Since γxy = 0, du/dy+ dv/dx = f ′(y) +

g′(x) = 0 for all (x, y) in the body. Given f and g do not share variable, f ′(y) = −g′(x) = c

for some constant c. Integration of the two derivatives gives

(u, v) = c(−y, x) + d(1, 0) + e(0, 1),

for some constants d and e.

Displacement fields that generate no strain energy are essentially rigid body transforma-

tions. The fields (1, 0) and (0, 1) represent translation in x- and y- directions resp. The field

(−y, x), which displays every point (x, y) in the direction orthogonal to (x, y), corresponds to

rotation around origin. Note that, as is shown in Figure 3.2, it approximates rotation well only

when the rotation is small enough. When it is not, such field also inflates the original shape.

When such field is large enough, the change of the orientation of the object approaches π/2.

Such deviation from the real rotation indicates certain limit of linear elasticity in modeling the

real world.
1Theorem given and proven by Yan-Bin Jia.
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(a)

(b) (c)

Figure 3.2: The rotation field under linear elasticity. The red shape is original shape, while
the blue one shows the shape under certain rotation field. Denote the original shape as S and
the rotation field as r, the blue shapes can be expressed as S + λr, where λ is a real number.
(a),(b) and (c) show the resulting shape when λ is very small, certain value that is note very
small and approaching infinity, resp. (b) and (c) are shrunk to fit.

3.2 Stiffness Matrix

For the rest part of the paper, all vectors are column vectors and all indices in a vector or

matrix start at 0.

Closed forms of the strain energy integrals do not exist for most objects. The Finite Element

Method(FEM) is widely used to compute it (and the deformation). The object’s cross section

is discretized into a finite number of elements(e.g. triangles) with vertices p0, · · · ,pn−1, where

pk = (pkx, pky)T , for 0 ≤ k ≤ n− 1. Among these vertices, p0, · · · ,pm−1 where m ≤ n, are on

the boundary in counterclockwise order. One example is shown in Figure 3.3.

Let ∆ = (δT
0 , · · · , δT

n−1)T , where δk = (δkx, δky)T , be the displacement of pk, for 0 ≤ k ≤

n − 1, the displacement of any interior point of an element can be linearly interpolated over

those of the vertices of the element. The displacement field and the deformed shape are thus

uniquely determined by ∆. We first obtain the strain energies of individual elements, and then
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Figure 3.3: Triangular mesh with 3,120 vertices, 156 of which are on the boundary.

assemble them into the total strain energy:

U =
1
2

∆TK∆, (3.3)

where K is the 2n × 2n stiffness matrix. The fact that K is quadratic form indicates the

symmetry of K, and the non-negativeness of strain energy ensures that K is positive semi-

definite.

The strain energy U is zero if and only if K∆ = 0, that is, ∆ is in the null space of K. Such

a vector ∆ gives the form of a rigid body displacement (5, pp. 48). Meanwhile, by Theorem 1,

the displacement field generating zero strain energy is spanned by (−y, x), (0, 1) and (1, 0).

Under linear interpolation, it indicates that the null space of K, where lies ∆, is spanned by

the following three vectors:

vx =



1

0
...

1

0


, vy =



0

1
...

0

1


, vr =



−p0y

p0x

...

−pn−1,y

pn−1,x


. (3.4)

Here vx and vy translate all vertices by unit distance in the x- and y-directions, resp., while vr

rotates them about the origin. Note that vr is orthogonal to vx and vy if the geometric center

of the object is placed at origin.
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Lemma 1. The stiffness matrix K of an (unconstrained) object with n discretization vertices

has rank 2n− 3.

Following from Lemma 1, the matrix K has 2n− 3 positive eigenvalues λ0, · · · , λ2n−4. Let

u0, · · · ,u2n−4 be the corresponding unit eigenvectors, and

u2n−3 =
vx

||vx||
,

u2n−2 =
vy

||vy||
, (3.5)

u2n−1 =
z
||z||

.

where z = vr − (vr · u2n−3)u2n−3 − (vr · u2n−2)u2n−2, correspond to the zero eigenvalues. It

follows from the Spectral Theorem (17) that

K = UΛUT , (3.6)

where U = (u0, · · · ,u2n−1) is orthonormal, and Λ = diag(λ0, · · · , λ2n−4, 0, 0, 0).

Suppose the object is in equilibrium with the configuration (∆,F). Since only boundary

vertices take external force, F = (fT
0 , · · · , fT

m−1, 0, · · · , 0)T . According to Virtual Work Prin-

ciple (5, pp. 136), the virtual work done by the equilibrium force F through a virtual displace-

ment2 is equal to the change of potential energy of the object under such virtual displacement,

which leads to

K∆ = F. (3.7)

In Equation 3.7, we have 4n variables, 2n from ∆ and 2n from F, and we need half of them

to be known to solve for the other half. Note that since K is singular, if improper variables

are picked as known, for example, the 2n variables of F, we will get a space of the unknown

variables rather than a specific solution. In the next chapter, constraints generated by the

grasping strategy will be imposed so that the solution to the system is unique.

2The virtual displacement is an admissible imaginary infinitesimal displacement that is superposed to the
equilibrium deformation.
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CHAPTER 4. TWO FINGER SQUEEZE

As shown in Figure 4.1, we place two fingers at p0 and pi. The finger at p0 is kept still,

while the other finger at pi squeezes the object for a grip. Without loss of generality, we place

p0 at the origin and align the positive y-axis with −−→p0pi. The remaining boundary points are

not in contact with anything, thus no forces are applied. So

fk = 0, (4.1)

for 1 ≤ k ≤ n− 1 with k 6= i. The force vector is now

F =



f0

0
...

0

fi

0
...

0



. (4.2)

Proposition 1. The forces exerted by the two fingers are opposite to each other, that is,

f0 + fi = 0.

Proof. Since vx and vy are in the null space of K, they are orthogonal to the eigenvectors

corresponding to non-zero eigenvalues. Substitute Equation 3.6 into 3.7,

UΛUT ∆ = F. (4.3)
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Figure 4.1: Translation of pi towards p0.

Left multiply vT
x on both sides of the above equation and substitute Equation 4.2 in, the left

side vanishes, yielding

0 = (1, 0, · · · , 1, 0)



f0

0
...

0

fi

0
...

0



,

or equivalently, (1, 0) · (f0 + fi) = 0. Similarly, multiplications of vT
y on Equation 4.3 lead to

(0, 1) · (f0 + fi) = 0. Thus we have f0 + fi = 0.

From now on, we will write f0 = −f and fi = f .

4.1 Deformation due to Contact Displacement

Squeezing the object is possible if
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1) the two fingers can maintain its equilibrium before and after the deformation that would

result from such a squeeze, and

2) no slip happens at either finger contact.

Our strategy is to first look at how the object deforms under constraints that assume condition

2, and then verify the consistency between both conditions and the computed deformation

under them.

The stationary finger in contact with the object at p0 indicates

δ0 = 0. (4.4)

This eliminates vx and vy from the solution space of Equation 3.7 because translations are

now prohibited. The vector, now with p0x = p0y = 0, represents a rotation about p0—the only

rigid body motion left. In Equation 3.7, we eliminate the first two rows and columns from K,

and the first two elements each from ∆ and F, obtaining

K ′∆′ = F ′, (4.5)

where ∆′ = (δT
1 , · · · , δT

n−1) and F ′ = (0, · · · , 0, fT , 0, · · · , 0)T . The null space of K ′ is spanned

by the vector1

vr =



−p1y

p1x

...

−pn−1,y

pn−1,x


. (4.6)

The (2n− 2)× (2n− 2) matrix K ′ is symmetric and positive semi-definite, with rank 2n− 3,

and can be spectrum-decomposed as:

K ′ =
2n−3∑
i=0

λ′iu
′
iu

′T
i , (4.7)

where λ′i’s are eigenvalues of K ′ with λ′2n−3 = 0, and u′i’s are corresponding eigenvectors, with

u′2n−3 = v′r/||v′r||.
1Note that pix = 0 in the coordinate system in Figure 4.1.
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Proposition 2. The contact force f exerted at pi under constraint 4.4 is collinear with the

segment p0pi.

Proof. Like what we do in proving Proposition 1, we substitute Equation 4.7 into 4.5, and

multiply both sides of the resulting equation with u
′T
2n−3, obtaining

0 = u
′T
2n−3F

′,

or equivalently, v
′T
r F′ = 0, which by Equation 4.6 reduces to (−piy, pix)f = 0. Thus f and p0pi

are colinear.

Under Proposition 2, we conveniently represent the squeezing force exerted by the moving

finger as f = (0,−f)T with f being its magnitude. So

F′ =



0
...

0

−f

0
...

0



,

where the entry −f has index 2i− 1.

As an important part of our strategy, we specify the finger displacement. Such specification

gives us another boundary condition:

δi = d =

 dx

dy

 . (4.8)
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Rewrite ∆′ as

∆′ =



δ1
...

δi−1

d

δi+1

...

δn−1



. (4.9)

We are essentially solving a version of system 4.5 in 2n−3 variables: δT
1 , · · · , δT

i−1, δ
T
i+1, · · · , δT

n−1,

each with two coordinates, and f .

Theorem 2. Given a displacement d = (dx, dy)T of the moving finger, the displacement field

∆′ of the object and the squeezing force F′ are uniquely determined.2

Proof. Denote u′j = (u′0,j , · · · , u′2n−3,j)
T , for 0 ≤ j ≤ 2n − 3. Left multiply both sides of

Equation 4.5, after substitution of Equation 4.7, by u
′T
0 , · · · ,u

′T
2n−4 sequentially, utilizing the

orthogonality of these vectors:
λ′0u

′T
0

...

λ′2n−4u
′T
2n−4

∆′ = −f


u′2i−1,0

...

u′2i−1,2n−4

 .

With the above, we project ∆′ onto u
′T
0 , · · · ,u

′T
2n−3, denoting g = u

′T
2n−3∆′,

∆′ = −f
2n−4∑
j=0

1
λ′j
u′2i−1,ju

′
j + gu′2n−3. (4.10)

Since u′2n−3 = v′r/||v′r||, we have u′2i−1,2n−3 = pix = 0. Hence ||u′2i−1||2 =
∑2n−4

j=0 u′wi−1,j = 1.

Now, we look at the two equations in Equation 4.10 that involve d:

dx = −f
2n−4∑
j=0

1
λ′j
u′2i−1,ju

′
2i−2,j + gu′2i−2,2n−3, (4.11)

dy = −f
2n−4∑
j=0

1
λ′j
u

′2
2i−1,j . (4.12)

2Theorem given and proven by Yan-Bin Jia.
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The sum in Equation 4.12 is positive because λ′j > 0 for 0 ≤ j ≤ 2n− 4, and some u′2i−1,j 6= 0.

We solve the above two equations:

f = −dy/(
2n−4∑
j=0

1
λ′j
u

′2
2i−1,j), (4.13)

g =
1

u′2i−2,2n−3

(dx − dy(
2n−4∑
j=0

1
λ′j
u′2i−1,ju

′
2i−2,j)/(

2n−4∑
j=0

1
λ′j
u

′2
2i−1,j)). (4.14)

Finally, plug f and g into Equation 4.10 to obtain δT
1 , · · · , δT

i−1, δ
T
i+1, · · · , δT

n−1.

Or equivalently, with the boundary conditions given by Equation 4.1, 4.4 and 4.8, the

system 3.7 is uniquely solvable.

In the special case dy = 0, the finger in contact with pi moves in the x-direction. It

follows from Equation 4.13 and 4.14 that f = 0 and g = dx/u
′
2i−2,2n−3. Plugging them into

Equation 4.7, we can show that ∆ = (dx/u
′
wi−2,2n−3)u2n−3. Consequently, the object undergoes

a pure rotation with no deformation.

4.2 Squeeze Grasp

To squeeze the object, one finger moves towards the other, or in our scenario, dx = 0. We

refer to d = −dy > 0 as the squeezing distance.

Corollary 1. Under a squeeze grasp, the contact forces and displacements of all vertices scale

with the squeezing distance d.

Proof. This follows directly from substitutions of dx = 0 and dy = −d into Equation 4.13

and 4.14, and from subsequent substitutions of the obtained f and g into Equation 4.10.

The next corollary states that a squeeze makes no difference in the resulting deformation if

the moving and still fingers switch their roles.

Corollary 2. Squeezing with pi fixed while p0 moving toward pi by a distance of d yields the

same shape except under a translation of (0, d)T .

Proof. Suppose that the original squeeze with p0 fixed and pi moving by (0,−d)T under force

F results in a displacement field δ. System 3.7 is satisfied by F and δ under the constraints
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δ0 = 0 and δi = (0,−d)T . It must also be satisfied by F and a new displacement δ′ = δ+ d · vy

since vy is in the null space of K. A result analogous to Theorem 2 can be easily established to

ensure that F and δ′ are the unique solution under the new constraints δ′0 = (0, d)T and δ′i = 0.

The deformed shape is the same as the one constrained by δ0 = 0 and δi = (0,−d)T , except it

is translated by (0, d)T .

In a squeeze grasp, two finger contacts stay on the same line all the time. According to

Proposition 1 and 2, the equilibrium of the body is guaranteed. We yet have to see that whether

slip will happen or not. One simple fact is that, no slip happens between two contact objects

if the contact force stays inside the friction cone. If the force is right on the edge of the friction

cone, it depends on the initial state of the two objects. If they are relatively still in the initial

state, then still no slip happens. Since Proposition 2 says that the direction of the squeezing

force is parallel to pipj , then if pipj stays inside the friction cones all the time, no slip will

happen. It follows directly that no rotation about pj may happen either, because if it does,

slip must happen at pi.

The orientation of the friction cone can be represented by the orientation of the contact

tangent, which is decided by its neighbor vertices. For example, the tangent at pi is along the

direction of pi+1 − pi−1 before deformation and pi+1 − pi−1 + δi+1 − δi−1 after deformation.

According to Corollary 1, δi+1−δi−1 scales with d. Thus the orientation of the tangent changes

monotonically with d. So if no slip happens on original shape and the deformed shape with

squeezing distance d, then no slip may happen for any deformed shape with squeezing distance

that is less than d. This agrees with our experience that hard squeezes are more likely to cause

slips on soft objects.

Since the squeezing force scales with d, it should not be too small that the squeezing force

fails requirements for certain tasks, for example, picking the object up from the supporting

plane. Meanwhile, d cannot be too large in order for the squeezing forces to stay in their

respective contact friction cones, and for the resulting deformation to be small enough so that

it is well described by the linear elasticity.

How large can d be? Linear elasticity theory does not tell us. It depends on the material,
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the global shape of the object, the contact locations, etc. For simplification, we introduce a

factor φ ∈ (0, 1) and consider all squeezing distances d = ρ||pi−pj ||, where ρ ∈ (0, φ], to cause

small deformations3. We call ρ the relative squeezing depth.

Definition 1. A finger placement G(p,q) on an object is an ρ-squeeze grasp if

1) the line segment pq is inside the friction cones at p and q, and

2) after deformation due to the displacement of p to p̃ = p + ρ(q−p), the line segment p̃q

lies inside the friction cones at p̃ and q of the deformed shape.

4.3 Generalized Squeeze Grasp

Now consider the case where dx 6= 0. p̃i is now off the line pipj . Although the total force

sum up to 0 according to Proposition 1, the two squeezing forces do not point to each other

according to Proposition 2, which means that there is a torque and equilibrium is broken.

Is a grasp only possible when the action is exactly squeeze? Of course not. The above illusion

is due to the limit of linear elasticity in modeling the real world, as shown in Figure 3.2.

Let us leave linear elasticity theory aside for the moment, and look at Figure 4.2. Shape 1

and Shape 2 are undeformed shapes only different by an angle α in orientation. Shape 3 are

deformed shape of shape 1 generated by displacing point a to point b, a pure squeeze. Shape

4 are deformed shape of shape 1 generated by displacing point a to point d, where |dq| = |bq|

and d is on cq. The four shapes share a point p. Now consider the deformed shape s of shape

2 generated by displacing point c to point d, which is a pure squeeze. Shape s is the same as

shape 4 because shape 1 and 2 are the same, and the corresponding points of them are fixed

at same locations. Now, since shape 3 and shape 4 are both deformed shape generated by a

pure squeeze of the same distance from the same shape, they are also the same, except for a

difference α in orientation. So the displacement
−→
ab and

−→
ad generates the same resulting shape.

On the other hand, the force exerted at d is along
−→
dq since shape 4 can be generated from shape

2 by the same pure squeezing. So both the deformed shape 3 and 4, and the grasping forces
3We usually take φ to be less than 20%.
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exerted on them, are the same, except for an angle α in orientation. Thus if displacement
−→
ab

could result in a grasp, so could
−→
ad .

Figure 4.2: Generalized Squeeze Grasp. Shape 1 and Shape 2 are same undeformed shapes
different by α orientation. a and c are corresponding points. Shape 3 and Shape 4 are deformed
shapes generated from shape 1 by displacement ~ab and ~ad resp. All 4 shapes share point q.
a,b,q are collinear and c,d,q are also collinear. || ~ab|| = ||~cd||.

Proposition 3. If a finger placement G(p,q) can achieve a grasp by pure squeeze d of ρ-

depth, then any displacement d′ of the same squeeze depth can achieve a grasp. The set of all

displacement vectors can be grouped into equivalent classes according to their squeeze depth at

same finger placement.

With above Proposition, given any finger placement and the displacement vector, we can

test the grasp by testing the pure squeezing grasp at the same finger placement.
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CHAPTER 5. GRASP COMPUTATION

Algorithm 1 tests whether a general finger placement G(pi,pj), 0 ≤ i < j ≤ m − 1 is a

ρ-squeeze grasp. Step 4 of the algorithm is the most expensive one. A brute force method

would fix one contact, say at pi, and solve system 4.5, where K ′ is the (2n − 2) × (2n − 2)

stiffness matrix generated after removing the 2i-th and (2i+ 1)-st rows and columns from K.

Inversion of the matrix is necessary in order to check for different locations pj of the moving

finger. This operation can be carried out in O(n2.807) time using Stassen’s algorithm, or in

O(n2.376) time using the Coppersmith-Winograd algorithm.1

Algorithm 1 Test of G(pi,pj) for a ρ-squeeze grasp

1: if pipj does not lie inside the friction cone at pi or pj then
2: return no
3: else
4: evaluate the tangents at pi and the displaced location p̃j , using p̃i−1, p̃i+1, p̃j−1 and

p̃j+1

5: if pip̃j does not lie inside the friction cone at pi or p̃j then
6: return no
7: else
8: return yes
9: end if

10: end if

Nevertheless, the matrix K ′ changes whenever pi does, that is, whenever the still finger is

relocated. Anew matrix inversion needs to be performed. The number of matrix inversions

equals m, the number of boundary vertices that are possible locations of pi. For a brute force

iteration, the running time is O(m2n2.807) or O(n3.807) since m = O(
√
n) for a solid object.

This chapter describes fast grasp testing that works on the stiffness matrix K only. We
1The latter algorithm is mainly useful for proving theoretical time bounds.
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make use of its spectral decomposition 3.6, and obtain the matrices U and Λ via singular value

decomposition (SVD) in O(n3) time. Below we show that the placement G(pi,pj) can be

checked for a squeeze grasp in O(n) time.2

5.1 An Efficient Algorithm

Perform Singular Value Decomposition to the symmetric matrix K

K = UΣUT , (5.1)

where Σ = diag(ρ0, · · · , ρ2n−4, 0, 0, 0) with ρk’s being non-zero eigenvalues of K, and U =

(w0, · · · ,w2n−1)T is the orthonormal matrix consisting eigenvectors of K with wk’s being its

row vectors written in column vector form.

Now apply the coordinate transformation. Let

y =


y0

...

y2n−1

 = UT ∆. (5.2)

Since U is orthonormal, UT = U−1. Then

∆ = Uy. (5.3)

Substitute it into Equation 3.7:

K∆ = UΣUTUy = UΣy = F,

Left multiply UT on both sides of the last equal sign, we get

(ρ0y0, · · · , ρ2n−4y2n−4, 0, 0, 0)T = UT F

= UT (0, · · · , 0, f2i, f2i+1, 0, · · · , 0, f2j , f2j+1, 0, · · · )T

= f2iw2i + f2i+1w2i+1 + f2jw2j + f2j+1w2j+1. (5.4)

2The efficient algorithm was mainly developed by Yan-Bin Jia and Huan Lin
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Let r = (rx, ry)T = (pj − pi)/||pj − pi||. According to Proposition 1 and 2,

f2i

f2i+1

f2j

f2j+1


= f

 r

−r

 ,

where f is the magnitude of the force. Let a = (rT ,−rT )T and W = (w2i,w2i+1,w2j ,w2j+1),

Equation 5.4 becomes 

ρ0y0

...

ρ2n−4y2n−4

0

0

0


= fWa.

Divide the i-th entry of both sides of the above equation by ρi, for 0 ≤ i ≤ 2n− 4, resp., and

denote the resulting vector of the right side as P , we get:

y0

...

y2n−4

0

0

0


= fP. (5.5)
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Since ∆ = Uy,

(δT
i , δ

T
j )T = W T y

= W T





y0

...

y2n−4

0

0

0


+



0
...

0

y2n−3

y2n−2

y2n−1





= fW TP +W T
s3


y2n−3

y2n−2

y2n−1

 . (5.6)

where Ws3 is a 3× 4 submatrix of W taking its last 3 rows. Given (δT
i , δ

T
j )T = (0, 0,dT )T , we

then have

(
W TP W T

s3

)


f

y2n−3

y2n−2

y2n−1


=


0

0

d

 . (5.7)

Once we solve the above 4 by 4 system, we can calculate y using Equation 5.5. And then

∆ is solved using Equation 5.3.

5.2 Algorithm Analysis

The preprocessing, SVD, takes O(n3) time. After the that, obtaining W TP takes O(n)

time, and obtaining W T
s3 takes constant time. Solving the system 5.7 takes constant time.

Obtaining y takes O(n) time. With y, we can evaluate any value of ∆ in O(n) time.

Get Back to step 4 of Algorithm 1, evaluating p̃i−1, p̃i+1, p̃j−1 and p̃j+1, which takes O(n)

time, gives us the result of one grasp testing.

Theorem 3. After SVD of the stiffness matrix K, which takes O(n3) time, the grasp test on

a finger placement G(pi,pj) takes O(n) time.
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To compute the global deformation resulted by one grasp, we need to evaluate ∆, which

takes O(n2) time, or, if we only need the contour of the shape, 2m−4 entries of ∆ are evaluated,

which takes O(n1.5) time. To find all grasps, we exhaustively test the
(
m
2

)
pairs of boundary

points, which can be done in O(m2n), or O(n2) time. The overall running time is dominated

by SVD.

Table 5.1 shows the running time of the naive algorithm and the efficient algorithm for

different tasks on solid and hollow objects3. We can see that almost for every task, the efficient

algorithm reduces the time by order of 2.

Table 5.1: Algorithm Comparison. Running time of naive and efficient algorithms on different
tasks and different types of object.

Naive Efficient(after SVD O(n3))
Solid Hollow Solid Hollow

Single Grasp Test O(n3) O(n3) O(n) O(n)
Compute global deformed contour O(n3) O(n3) O(n1.5) O(n2)
Find 2nd finger location given 1st O(n3.5) O(n4) O(n1.5) O(n2)

Find all grasps O(n4) O(n5) O(n2) O(n3)

3Hollow objects are the object with all the elements on the boundary. More detailed description will be seen
in Chapter 6
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CHAPTER 6. ROBOT EXPERIMENT

Figure 6.1 shows the experimental setup in which grasping was carried out by two fingers of

a Barrett Hand. Every finger had a strain gauge sensor mounted at its lower joint to measure

contact force.

Figure 6.1: Grasping with a Barrett Hand.

The hand initially grasped two hollow objects displayed in the first column of Table 6.1.

They were cut from food and medicine containers, respectively. Such an object could be viewed

as one swept out by a rectangular cross section with width w and height h along a closed 2-D

curve γ(s) parametrized by arc length s and having length L. Let the displacement field along

the curve be δ(s) = α(s)t+β(s)n, where t and n are the unit tangent and normal on the curve.

The strain energy takes the form (9):

Uc =
1
2
Ew

∫ L

0

(
hε2 +

h3

12
ζ2

)
ds, (6.1)

with the extensional strain ε = dα/ds−κβ and the change ζ = −d2β/ds2−(dκ/ds)α−κ(dα/ds)

in the curvature κ. Under the FEM scheme, all elements lie on the boundary. The strain energy

Uc can be written in the form of 3.3 with a semi-positive stiffness matrix. We can show that
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the analytical results from Chapters 3 and 4 carry over.

The elliptic object in Table 6.1 was made of high-density polyethylene (Young’s modulus

E = 0.8GPa), and the triangle-like object was made of polyethylene terephthalate (E = 3GPa).

Their cross sections had sizes 11mm×0.6mm and 20mm×0.6mm, respectively. The surfaces of

the objects were filed to increase friction with fingers. The coefficients of friction were measured

by determining the max slope of the phalange on which the objects could be placed without slip.

The values were 0.9 for the elliptic ring and 0.6 for the triangular one. The second column of

Table 6.1 shows the simulation results of two grasps, and the third column shows the outcomes

of an experiment (which matched the simulation results well), both at 10%-squeeze depth.

Shape Simulation Experiment

Table 6.1: Grasping two ring-like objects (column 1): simulation (column 2) and experimental
(column 3).

Figure 6.2 shows the graspable regions of the 3 objects. The graspable regions grow signif-

icantly with the friction coefficient. However, they decrease very little while w increases from

1% to 10%. Note that the regions are symmetric about line y = x, as implied by Corollary 2.

Figure 6.3 shows simulation results on graspable regions with µ = 0.5. The black segments

in Figure 6.3(a) represent a pair of independent graspable regions of the object at 10% squeeze

depth. Two fingers may be placed at any one point from each region and form a grasp at
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Figure 6.2: Graspable regions. Cell (i, j), i, j =1, 2, 3, shows the graspable regions on object
i with friction coefficient µj =0.3, 0.5, 0.7, resp. The blue regions are 10%−graspable and also
1%−graspable, and the red regions are only 1%−graspable.

10% squeeze depth. In Figure 6.3(b), the colored regions represent the set of all the location

pairs that form grasps at 10% squeeze depth. The red rectangular in 6.3(b) corresponds to the

independent graspable regions shown in 6.3(a).

Next, the hand grasped solid objects of rubber foam (E = 50KPa, Poisson’s ratio ν = 0.3

and coefficient of friction µ = 1.3). Shown in Figure 6.4 are two instances of grasping an object

with the longest diameter 10.4cm and thickness 2.56cm.
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(a) a (b) b

Figure 6.3: (a) Independent graspable segments (colored in black)for the relative squeeze depth
of s = 10%; and (b) the set of grasps, each represented as a point with its coordinates indicating
the arc length values of the two contact positions. The red rectangular region in (b) corresponds
to the pair of black segments in (a) on which two fingers can be placed independently to form
a grasp.

(a) a (b) b

Figure 6.4: Grasping a foam object: (a) underdeformed shape and (b) grasp configuration.
The pair of points in (a) marks an unsuccessful grasp.



29

CHAPTER 7. DISCUSSION

This thesis studies how to grasp planar deformable objects by squeezing them with two

point fingers. The key idea is to specify desired finger displacements rather than forces, and

to use them as constraints over an object so that its deformed shape can be computed and

checked for equilibrium after deformation. We have conducted an analysis of this method and

developed an efficient algorithm to find all grasps (up to discretization under the finite element

scheme).

Specification of finger displacements over finger forces not only makes the strategy close

to a real grasping scenario, but also helps stabilize the grasp. If constant forces are specified,

grasping would act like an inverted pendulum and have no resistance to disturbance intended

to cause rotation. If finger displacements are specified, however, disturbances up to certain

magnitude can be resisted by friction at two contacts.

The 5th assumption ignores the dynamics in grasping and only look at the start and finish

of the process. Assuming quasi-static process may also ignore dynamics, yet allows us to study

the internal process. The concept of finger displacement can be replaced by the path of the

moving finger, which specifies a bigger problem set.

Future work may include grasp stability, area finger contacts and grasping 3-dimensional

deformable objects.
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