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ABSTRACT 

 

This dissertation addresses the problem of reconstruction of the 3D structure of colon segments 

and the 3D motion of an endoscope from colonoscopy images. Colonoscopy is currently the preferred 

screening modality for early colorectal cancer (CRC) detection, claiming about 50,000 annual deaths 

in the US. During colonoscopy, the endoscopist performs diagnosis and/or treatment based on images 

of the interior of the human colon taken by the camera at the tip of the endoscope. 

The reconstruction of the virtual colon and the endoscope motion from colonoscopy images has 

the potential to (1) improve endoscopist’s understanding of the colon structure of the patient and the 

endoscopist’s navigation technique at the time of colonoscopy; (2) determine the estimated area and 

location of the colon mucosa uninspected by the endoscopist; domain experts estimated that as much 

as 95% of the colon mucosa should be inspected; and (3) bridge the gap between virtual colonoscopy 

and optical colonoscopy. Besides our previous work, we found no other techniques that address the 

same problem in the literature. We propose a set of new algorithms and evaluate them using images 

inside an Olympus synthetic colon as well as colonoscopy images from real colonoscopy procedures. 

Edges of colon fold contours are first detected and processed to generate the wire frame of the 

reconstructed virtual colon. We propose a colon fold contour estimation algorithm using a single 

colonoscopy image. We introduce Depth-from-Intensity---the depth and shape estimation of colon 

folds using brightness intensity of pixels. We introduce an algorithm to estimate the amount of 

protrusion and width of colon folds and interpolate the folds and the colon wall to connect the folds in 

3D space. We present our new method for reconstructing the virtual colon from sequential 

colonoscopy images and deriving corresponding camera motions. We discuss two quality metrics 

derived using the information from the reconstruction: spiral score and percentage of areas 



x 

 

uninspected. Spiral score is found strongly correlated with the ground truth visualization quality on 

159 colonoscopy videos. The percentage of areas uninspected metric is of great interest to domain 

experts. 

Broader impact: The proposed work has potential to improve the amount of the colon mucosa 

inspected in clinical practice; thereby, potentially increasing the protective effect of colonoscopy 

against CRC. The technology may change the way colonoscopy is performed in routine practice and 

may be used for training new endoscopists. Finally, the algorithm design will add to existing 

knowledge in endoscopy video processing and may be beneficial for other endoscopy procedures. 
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CHAPTER 1 INTRODUCTION 

 

Colonoscopy is currently the preferred colorectal cancer screening modality among Fecal Occult 

Blood Test, flexible sigmoidoscopy, CT Colonography (CTC), and Double Contrast Barium Enema. 

Colorectal cancers are malignant tumors that develop in the colon and rectum. Colorectal cancer 

claims about 50,000 lives annually in the US [1]. Its annual death rate is second only to that of lung 

cancer. The survival rate is higher if the cancer is found and treated early before metastasis to lymph 

nodes or other organs occurs. Colonoscopy allows for inspection of the inner lining of the human 

colon and therapeutic operations such as polyp removal in a single procedure. Over 14 million 

colonoscopic procedures are performed annually in the US alone [2]. This number is increasing as the 

current Medicare guidelines suggest that each US citizen undergo colonoscopy at least once every 10 

years starting at age 50. 

The colon is 150 cm long nested inside the human abdomen. The colon consists of six major 

anatomical segments: rectum, sigmoid, descending colon, transverse colon, ascending colon, and 

cecum. Colonoscopy consists of two phases: an insertion phase and a withdrawal phase. During the 

insertion phase, a flexible endoscope (a flexible tube with a tiny video camera at the tip) is advanced 

under direct vision via the anus into the rectum and then gradually into the cecum or the terminal 

ileum (the last part of the small intestine). During the withdrawal phase, the endoscope is gradually 

withdrawn. The camera has a wide-angle lens and generates a video signal of the interior of the 

human colon, which is displayed on a monitor for real-time diagnosis by the endoscopist. The 

purpose of the insertion phase is to reach the cecum or the terminal ileum. Careful mucosa inspection 

and diagnostic or therapeutic interventions such as biopsy, polyp removal, etc., are performed during 

the withdrawal phase. Colonoscopy is a complex procedure to master. Currently, the endoscopist has 
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no prior information about the structure of the colon to navigate through this long tubular organ with 

many turns. The endoscopist learns the structure of the colon during the procedure.  

Colonoscopy has contributed to a marked decline in the number of colorectal cancer related deaths. 

However, recent data suggest a significant average miss rate of 4-12% for the detection of even large 

polyps and cancers [3-5]. A polyp miss rate as high as 80% was reported [6]. The miss rate may be 

related to poor colon preparation, the location of the lesion in the colon and/or the experience of the 

endoscopist, but there are no prospective studies to investigate these factors. To minimize the miss 

rate, consensus guidelines for quality inspection were proposed in 2006 by American Society of 

Gastrointestinal Endoscopy and American College of Gastroenterology [7].  

Recent years have seen several advances in colonoscopy. For instance, a number of algorithms 

have been investigated for measuring objective quality of colonoscopy (i.e., how well the colon was 

inspected during the procedure) [8-11], polyp detection [12, 13], anatomical landmark detection [14], 

3D reconstruction of a cylinder generalized colon from colonoscopy images [15], and 3D 

reconstruction of the colon surface for surgical planning [16, 17], or image-guided automated 

colonoscopy [18].  

Unlike these techniques, we investigated a set of new algorithms combined together to reconstruct 

a 3D virtual colon segment from one or more neighboring colonoscopy images using standard 

endoscopes and without additional hardware or prior knowledge of the structure of the colon. The 

reconstruction of the virtual colon is very challenging, but has great potential for (1) understanding 

the colon structure of the patient; (2) understanding the endoscopist’s navigation technique at the time 

of colonoscopy; (3) determining the estimated location and the area of the colon mucosa inspected by 

the endoscopist; and (4) deriving objective metrics of quality of colonoscopy. 
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1.1. Contributions 

1. We are the first to investigate the problem of 3D reconstruction of the colon structure from 

colonoscopy images without requiring prior knowledge of the coarse structure of the colon or 

additional hardware except the computer used for capturing and image analysis. Most of the 

prior attempts focus on reconstruction of the 3D colon surface from 2D endoscopy images 

[16, 17, 19] for detailed surgical planning or image-guided automated colonoscopy [18]. 

These techniques are not suitable for reconstruction of the colon structure. As the first 

investigator, we discovered a number of problems that have not been explored in the 

literature.  

We propose the first fully automated technique for creating a virtual colon from one or more 

2D colonoscopy image. The technique consists of a number of new algorithms. (1) The pre-

processing step selects an informative frame (frame that is in focus and contains sufficient 

number of edges), detects edges that are likely of colon folds, and estimates the center of the 

innermost colon fold. It then determines whether the frame is a good candidate for 

reconstruction or not. For instance, frames with a close-up inspection of the colon wall 

without the distant lumen are not suitable for the reconstruction. In order to create a 3D 

virtual colon segment, we require closed colon fold contours to form a wire frame of the 

reconstructed virtual colon. (2) Automatic fold contour estimation obtains closed fold 

contours. We introduce two algorithms, one of which uses only a single colonoscopy image 

and the other using sequential images. Either of these techniques can be applied. (3) Fold 

shape and depth estimation estimates the fold shape and the distance from the camera (depth) 

for each fold. We investigated a new algorithm, Depth-from-Intensity (DfI). DfI first estimates 

the depth using the pixel brightness intensity of qualified fold pixels and then obtains the 
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shape. DfI also estimates the colon fold width and height (the amount of protrusion) seen at 

these pixels to give a more realistic colon structure. Brightness intensity calibration is also 

performed before the calibrated intensity is used to calculate the depth of the pixel as the light 

source of the endoscope does not distribute light evenly depending on the location of the 

pixels. A reverse projection of the edge pixels for the frame reverses project the pixels into a 

local 3D coordinate system. (4) For reconstruction of the colon structure from multiple 

sequential frames, we extend an existing 3D model registration to transform the local model 

reconstructed from the current frame to the global model built from all the previous frames.  

Camera motions are obtained as a by-product. This method can recover a fold partly seen in 

one frame (e.g., behind another colon fold because the colon bends at that fold or the fold is 

behind the camera), but is clearly seen in a subsequent frame. (5) Rendering of the virtual 

colon is done when required by the endoscopist.  

3. We implemented our technique, designed our experiments using an Olympus synthetic colon 

model, designed our performance metrics, and evaluated our techniques. The evaluation turns 

out to be most difficult since there is no ground truth for quantitative measurements. There 

are no endoscopy devices with global positioning capability to provide camera locations or 

orientations during colonoscopy. The colon is not rigid. It also moves due to breathing, heart 

condition, etc. We are not able to obtain very accurate ground truth of the colon structure 

during colonoscopy to account for these issues despite our several attempts. A virtual colon 

from a prior CT Colonography (CTC) cannot be used to obtain ground truth since the virtual 

colon from CTC presents the colon structure when patients are in supine or prone positions, 

not sideways as in colonoscopy. Another potential way to obtain very accurate ground truth is 

to have the endoscopist perform colonoscopy on a patient while an MRI scan is on-going; 
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however, such attempts have never been tried. Several precautions need to be considered 

before conducting this type of test on patients. Subjective evaluation may be the only option 

to go about for future clinical trials. 

For this study, we used an Olympus synthetic colon model and measured fold distances and 

fold circumferences as ground truth. The measurements were taken by our domain expert. We 

conducted two sets of experiments. The first set is for evaluation of our reconstruction result 

from a single colonoscopy image. The average error per fold of the fold depths and the fold 

circumferences compared to the ground truth are 4.1 and 12.1 mm, respectively. The average 

depth error of 4.1 mm is small, less than 1/5 of the distance the endoscope camera used in this 

study can see (20-150 mm). The average error for estimating the circumference of around 12 

mm is less than 1/10 of the circumference of folds in the colon model (140-200 mm). The 

second set of experiments is for evaluation of our solution using multiple colonoscopy images.  

We evaluated both the reconstructed endoscope motions and the reconstructed colon 

structures. We do not have the ground truth for the amount of the endoscope motion, but we 

can observe the direction of the endoscope motion from watching the video. Our method 

gives correct camera rotation directions for 88% of the cases, but only gives 73% correct 

camera translation directions of the cases used in our study. The method finds more colon 

folds than the technique using a single colonoscopy image as anticipated, but does not reduce 

the error rate for the colon structure reconstruction compared to the technique using a single 

colonoscopy image. We suggest further improvements.  

4. We explored whether the computed results can be used to derive good quality metrics for 

objectively measuring quality of the colon mucosa inspection during colonoscopy. We 

investigated two metrics. One quality metric is called spiral score, a coarse measurement of 
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the number of times the camera sees all four sides of the colon wall. It was previously shown 

[20] that the spiral score metric is strongly correlated with the ground truth determined by the 

domain expert. However, the previous method is too slow to provide feedback to the 

endoscopist during the procedure. We show that we can derive this metric as feedback. Our 

study on 159 colonoscopy videos found that the metric has a strong correlation with the 

quality of the colon mucosa inspection ground truth. We implemented the software and 

installed it at two educational rooms in Mayo Clinic, Rochester, MN. The data is currently 

being analysed by a separate team of researchers for whether or not the feedback improves 

quality of colonoscopy performed by the fellows using those two rooms. Another quality 

metric is the percentage of the colon mucosa area unseen and map of these unseen areas. Our 

domain experts see great potential values for this metric. Using the reconstructed colon 

structure and reconstructed camera motions, we can derive the aforementioned measurements. 

We developed prototype software to illustrate the idea. 

 

1.2. Organization 

 In Chapter 2, we provide background on the human colon structure and colonoscopy as well as 

important characteristics of endoscope camera lens (fish-eye lens) and its projection model, which 

causes distortion of endoscopy images. Also, we describe related work on existing 3D model 

reconstruction methods and 3D colon surface reconstruction using those methods. In Chapter 3, we 

present the pre-processing step necessary for selecting an image suitable for reconstruction. In 

Chapter 4, we present the colon fold contour estimation algorithm using a single colonoscopy image 

along with experimental results demonstrating the effectiveness of the technique. In Chapter 5, we 

present the shape and depth estimation of colon folds using Depth-from-Intensity (DfI) as well as 
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supporting performance evaluation result. In Chapter 6, we discuss our solution for constructing the 

virtual colon using multiple images. In Chapter 7, we discuss two quality measurements derived from 

the reconstruction result and evaluate the effectiveness of these techniques on existing colonoscopy 

videos. We provide conclusions and description of our future work in Chapter 8. 
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CHAPTER 2 BACKGROUND AND RELATED WORK 

 

There is no other existing work on 3D reconstruction of the structure of the colon from 2D 

colonoscopy video. Existing works focus on 3D reconstruction of the colon surface. To understand 

the complexity of our problem, we first provide background on the colon anatomy and colonoscopy. 

Next, we discuss camera calibration and 3D shape reconstruction techniques. 

 

2.1. The human colon and colonoscopy 

The colon is a non-rigid tube about 150 cm long connecting the small intestine to the anus. The 

colon consists of six major anatomical segments: rectum, sigmoid, descending colon, transverse colon, 

ascending colon, and cecum. See Figure 2.1. The colon has exterior layer and interior layers of 

muscles. The exterior muscle (tenae coli) is a muscle separated into 3 smooth flat bands that run 

almost the entire length of the colon. The interior muscles wrap around the colon. Haustra are small 

pouches caused by sacculation since the tenae coli is shorter than the colon. Haustral folds lie in 

between adjacent haustra. Haustral folds are colon folds we refer to in this dissertation. Colon 

mobility (the contraction of the muscles) moves the contents inside the colon slowly toward the 

rectum. The colon mucosa is the first layer of the inner lining of the colon that we can see. Some parts 

of a haustral fold may protrude, but the other part may be completely flat as illustrated in Figure 

2.1(b). Haustral folds are not of the same size. We do not find any reports on the distances among 

haustral folds, the average number of folds per colon, or the average circumference of haustral folds 

in different sections of the colon. All these issues add additional complexity in reconstructing the 

colon structure. 
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(a) (b) 

Figure 2.1 (a) Simplified diagram showing the structure of the colon; (b) A fold with only half of it 

protruding and a fold with all sides protruding can be observed in this Olympus synthetic colon model 

used for training endoscopists and used in our study. Images are courtesy of Piet C. de Groen. 

 

As mentioned in the introduction, colonoscopy consists of two phases: an insertion phase and a 

withdrawal phase. During the insertion phase, a flexible endoscope (a flexible tube with a tiny video 

camera at the tip) is advanced under direct vision via the anus into the rectum and then gradually into 

the cecum or the terminal ileum (part of the small intestine). The objective during the insertion phase 

is to reach the cecum quickly without causing perforation or pain to the patient. During the 

withdrawal phase, the endoscope is gradually withdrawn and careful colon examination is expected. 

In the US, endoscopists are recommended to remove all detected polyps, although not all of them are 

malignant. The same practice may not be applied in other countries. 

The tiny video camera at the tip of the endoscope has a wide-angle lens (fish-eye lens) to allow a 

wider view volume for physicians to examine the inside of an organ without much tilting and panning. 

The tip of the endoscope can be flipped upside down or left and right. Fish-eye lenses cause distortion 

in the projected 2D images seen by the endoscopst during colonoscopy. The lens cannot be auto 

focused. The endoscopist needs to place the camera at a proper distance from the colon wall in order 
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to see the colon wall clearly. To inspect behind the haustra folds for hidden polyps, the endoscopist 

may move the camera back and forth, angle the camera, or inject additional air/CO2 to deflate the fold. 

Some advanced video processors, such as Olympus endoscopes, adjust illumination automatically. 

Fujinon endoscopes have two light sources, but Olympus endoscopes have three light sources. These 

issues add to the complexity of the problem. 

Colonoscopy is complex to master. Experienced endoscopists state that as much as possible of the 

colon mucosa (all sides or 360 degrees inspection) of the colon wall should be examined throughout 

the withdrawal phase of colonoscopy. Figure. 2.2(A-B) shows a desirable withdrawal inspection 

pattern in which the lumen is seen in the camera field of view (called lumen view) or lumen image. 

The colon center axis is at the center of the lumen (green area). Figure 2.2(C-D) shows a different 

inspection pattern where one side of the colon wall is seen each time without the lumen (called wall 

view) or wall image. Depending on the configuration of the anatomy and the location of the camera in 

different anatomic sections in the colon, a combination of wall view or lumen view may be required 

to see all mucosa. 

 

Figure 2.2 Diagram showing withdrawal inspection pattern: A and C show the spiral shape of the 

movement of the tip of the endoscope. B and D show the visual field in red. Green bar represents the 

colon lumen; A and B reflect views in which the distant proximal colon is visible (or lumen view). C 

and D reflect views in which the distant proximal colon is absent and only colon wall is seen (or wall 

view). The diagram is courtesy of our medical advisor, Piet C. de Groen. 



11 

 

 

 

 

 

2.2. Camera calibration 

A camera calibration technique calculates intrinsic parameters of a camera and corrects a 

distorted image by re-projecting the object according to the perspective projection model. In this 

section, we discuss properties of wide-angle lenses and common projection models.  

The pinhole camera model is not suitable for modeling fish-eye lens since it follows the 

perspective projection model to project objects in 3D space onto a 2D plane. In the perspective 

projection model, the wider field of view (FOV), the more distortion on a projected image. If the field 

of view (FOV) is 180˚, a finite sized canvas cannot contain the projected image. Figure 2.3(a) shows 

that 180˚ FOV (θ=90˚) needs an infinite sized canvas (r = f tan 90˚) where FOV is 2θ; the canvas size 

is 2r and f is a focal length. Any of the four projection models, stereographic projection, equidistance 

projection, equisolid angle projection, or orthogonal projection can be used for fish-eye lenses [21, 

22].  

𝑟 = 2𝑓 tan
𝜃

2
         (stereographic projection) 

𝑟 = 𝑓𝜃                      (equidistance projection) 

𝑟 = 2𝑓 sin
𝜃

2
       (equisolid angle projection) 

𝑟 = 𝑓 sin𝜃                 (orthogonal projection) 

The fish-eye lens projects front hemispherical surroundings on the hemispherical surface. The above 

projection models represent how to transform a pixel on a hemispherical surface to a flat surface. 

Figure 2.3(b) illustrates transformation of u to u’ by the equidistance projection model where u is a 

pixel on the hemisphere and u’ is the corresponding pixel on the flat surface. This transformation 

causes distortion of images. Every frame of a colonoscopy video is distorted like this. Therefore, the 

geometric measurement directly on the colonoscopy image might yield incorrect result. For this 
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reason, camera calibration or image correction is essential as a preprocessing step to most of the 3D 

reconstruction techniques [16, 17, 19]. Kannala et al. [22] provide a generic calibration method for 

various fish-eye projection models and Stehle et al. [23] use this generic method for 3D 

reconstruction of the colon surface. They need to calibrate the camera with several images of a planar 

calibration object. In this study, we do not calibrate the camera, but assume that we know the 

projection model for the camera lens. That is, we let the user choose the desired camera projection 

model among the above fish-eye lens models. 

θ

θ f
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y
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α r
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                  (a)                                    (b) 

Figure 2.3(a) The pinhole model (perspective projection model) requires an infinite sized canvas (r = 

f tan90˚) when FOV is 180˚ (θ=90˚). (b) Fish-eye projection model; the bottom is the distorted 

image and the top is the hemispherical environment in front of a camera with a fish-eye lens. 

 

2.3. 3D shape reconstruction techniques 

3D model reconstruction from 2D images is a challenging topic in computer vision and computer 

graphics communities. There have been many different approaches such as shape from shading [24-

32], stereo matching [33-38], shape from texture [39, 40], shape from motion [41-45], etc.  
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The shape-from-shading approach computes the 3D shape of a surface from the brightness of a 

single grayscale image of that surface. The basic idea is that the gradient and the distance of an object 

surface can be calculated by the brightness of that surface area. The conventional shape-from-shading 

algorithms assume that the light source is infinitely far from an object so that the ray of light comes 

parallel everywhere on the object surface. Another common assumption of shape-from-shading 

algorithms is that the object surface is Lambertian. The Lambertian surface [46] diffuses incoming 

light such that the amount of the diffused light (photon) is proportional to the cosine of the angle 

between the surface normal and the direction that the light is reflected. Although the amount of 

photon is decreased proportionally to the cosine of the emission angle, the observed area also 

increases, resulting in the same increase in the amount of the photon. Consequently, the luminance of 

the surface is same regardless of the direction from which it is observed. Figure 2.4 shows a diagram 

explaining the property of Lambertian surface.  

incident 

light
diffuse

reflection

specular 

reflection

incident 

light

diffuse
reflection

specular 

reflection

Lambertian Surface Colon Mucosal Surface

 

Figure 2.4 Lambertian surface is shown on the left of the diagram; the colon surface reflects much 

more light to the direction of specular reflection than the Lambertian surface does.  

The shape-from-motion approach reconstructs a 3D shape of an object from multiple sequential 

images. Usually, this approach can be divided into several sub-processes. At first, prominent feature 

points on an object are selected. Next, the correspondence of these feature points across the image 
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sequence is established and the relative motion between the object and the camera is estimated. 

Finally, the 3D shape of the object is computed. A critical limitation of the shape-from-motion 

approach is that a target object must be rigid. In other words, the shape of an object must not change 

between sequential images.  

The stereo-matching approach calculates the depth of an object using disparity in appearance and 

location of features of a pair of images of the same object. Ideally, the images should be taken by two 

different static cameras located on a same horizontal line at a fixed distance from each other. To 

simulate two static cameras using a single moving camera, the camera motion must be predictable to 

maintain a geometrical relationship such as position and direction of the camera each time an image is 

taken. Because the movement of the camera is not predictable, stereo-matching is not suitable for 

reconstruction from endoscopy images.  

The shape-from-texture algorithm computes the shape of a surface from shapes of individual 

patterns on the surface with relatively same patterns. Particularly, disparity refers to the difference in 

appearance and locations of features.  

Stereo-matching techniques are not suitable for endoscopy images because the movement of the 

camera is not predictable. The shape-from-texture techniques are not suitable for endoscopy images 

due to inconstant patterns on the colon wall. Shape-from-shading and shape-from-motion techniques 

are widely used for reconstructing the colon surface from endoscopy images. 

Deguchi [19] proposed a 3D colon surface reconstruction technique with the shape-from-shading 

(SfS) approach. The 3D colon reconstruction using a SfS algorithm has three main challenges which 

are opposed to the assumption of the conventional SfS algorithms mentioned above. First, an 

endoscope uses localized and pointed light source instead of distant and parallel light source. Second, 

the colon surface in the regions with water drop, which reflects more of the incoming light to the 
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specular reflection direction than the other directions, is not Lambertian. Third, the endoscope uses 

fish-eye lens that does not follow the perspective projection model. The author just assumed that the 

colon surface is Lambertian to simplify the problem. Then, they developed their own procedure to 

correct distortion caused by fish-eye lens to follow perspective projection and extended the 

conventional SfS algorithm to cover the case of near point light source and perspective projection. 

The author used the fact that the light source is located almost at the same place with the camera lens, 

which means that the gray level of a certain pixel depends on the distance from the view point as well 

as the gradient of the object surface. The author described the image irradiance equation as 

𝐸 =  𝜎
𝐹(cos 𝜃)

𝑟2
,                                                                        (2.1) 

where E is image brightness and σ is a constant coefficient of imaging system parameters together 

with the intensity of the light. F is a bi-directional reflectance distribution function. The angle 

between the surface normal and optical axis, θ, and the distance between the light source (same with 

the camera) and the observed surface, r, are variables. Since there are two variables in the equation 

we can solve it only when one of the two variables is given. To solve this problem, the author 

proposed an algorithm to reconstruct the object shape by repeatedly computing equal-distance 

contours from a given initial contour at the distance of r from the camera. Then, we can solve 

Equation (2.1) to get the gradient (θ) for each point on the contour. As a result, we can derive a 

normal vector of each surface patch for each contour point, which means that we can obtain the shape 

of the object along the contour. Next, the subsequent equal-distance contour from the camera is 

computed as follows. Based on the gradient of each surface patch, we find points at a certain distance 

away from the center of each surface patch such that these points are at equal distance from the 

camera. Connection of those calculated points is the evolved equal-distance contour for the next 

iteration. This step is repeated until a number of iterations are reached. 
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Koppel et al. [17] adopted the shape-from-motion (SfM) technique to reconstruct a 3D colon 

surface and mapped texture from the input video on the reconstructed model. As mentioned, the SfM 

algorithms use more than one image so it is critical that the object is rigid or not changing its shape 

among these images. However, the authors did not address this non-rigid property of the colon. First, 

as a preprocessing step, they do camera calibration and correct image distortion caused by 

endoscope’s fish-eye lens. Second, corresponding points between images are found using one of the 

two following schemes. The first scheme is suitable for videos with a high frame rate since it 

continuously tracks feature points between images. The second scheme employs the Scale-Invariant 

Feature Transform (SIFT) algorithm to find interesting points and the features of these points [47]. 

Third, the Random Sample Consensus (RANSAC) [48] algorithm is used to select 5 or 8 best features 

according to whether the 5-point polynomial algorithm (5P) [49] or 8-point linear algorithm (8L) [50] 

is used to compute the camera motion parameters (e.g., camera position and angle). The 5P or 8L 

algorithm calculates the parameters again using the remaining features for validation. After repeated 

hypothesizing and validation, the best hypothesis is retained, which is the resulting camera motion 

parameters. Fourth, the colon surface shape can be constructed using a stereo matching technique 

given the camera motion parameters. Finally, the surface shapes from different sets of images are 

registered to each other to create a more complete colon surface. 

Kaufman et al. [16] combined the SfS algorithm and the SfM algorithm. They reconstruct a 

partial colon surface using the SfS algorithm proposed by Prados and Faugeras [24] which handles 

moving local light and light attenuation. Then, with SfM algorithm, the authors estimate the camera 

motion parameters using features on the partial 3D surfaces created by the SfS algorithm. Using these 

calculated camera parameters, the authors register these partial 3D surfaces to create a more complete 

colon surface.  
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In Zhou et al. [15], an optical-flow-based method performs optical flow analysis to align 

neighboring 3D circles (not necessarily corresponding to colon folds) and determine the distance 

among them. The technique can generate a small 3D colon segment, but has the following limitations. 

First, some colon segments (e.g., transverse colon) may not be circular as assumed. Second, the 

technique assumes that the neighboring circles are not occluded; however, partial occlusion is typical 

in practice. Third, it does not model colon fold thickness. Therefore, the mucosa behind thick folds 

may not be simulated. 

     

              (a)                           (b)                           (c)                                        

Figure 2.5 (a) Input image with four colon fold contours manually labeled; brightness of each contour 

pixel represents the intensity change along the norm direction of the pixel. (b) Front view of the 

produced virtual colon; (c) Same virtual colon with one side of the colon mucosa rendered and unseen 

areas in green along with the percentage of colon mucosa seen after a simple flying through the 

virtual colon from the first fold to the last fold without lateral tip deflection. 

In our previous work, we proposed an algorithm to reconstruct a 3D virtual colon segment from a 

single colonoscopic image given manually drawn contours of colon folds [51]. Figure 2.5(b-c) shows 

the front view and side view of the virtual colon reconstructed from Figure 2.5(a). For each fold, we (i) 

reverse project the location of each pixel on the manually drawn contour of the fold to a unit vector in 

3D space while correcting distortion due to the fish-eye lens used in endoscope cameras and (ii) 

estimate the depth---distance of the fold from the camera, the fold diameter, the orientation of the 

plane the fold is laid on, and the fold thickness. Finally, the reconstructed folds in 3D space are 

connected and the colon wall is generated. Assume that folds in a small tubular colon segment are 
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bounded by the same maximum diameter. Thus, a small fold seen in the image is at a farther distance 

from the camera than a larger fold. Fold thickness estimation is important as thick folds can block the 

view of small lesions behind them. More inspection efforts are needed for these folds. The drawbacks 

of this algorithm are as follows. 1. Manual labeling of colon folds is infeasible in practice. 2. The 

depth estimation and the calculation of the slant of a fold and the plane on which the fold is laid 

require the assumption that a fold shape is a perfect circle, which is not the case in practice. 3. The 

fold surface creation has errors due to the use of the fixed fold width. We addressed these drawbacks 

in the proposed work. 

 

2.4. 3D model registration 

3D model registration techniques find correspondence between two given 3D models and give 

transformation parameters to register together. We register 3D colon segments reconstructed from 

each colonoscopy video frame. Many existing 3D model registration techniques are available in the 

literature [52-55]. Iterative Closest Point (ICP) algorithm [56] based techniques need initial guess and 

iteration to find the best match. Instead, we discover the correspondence of 3D points of models from 

2D images by tracking points. Arun et al. [57] and Horn et al. [58] presented a closed-form solution to 

calculate the transformation parameters that gives the least mean squared error between the two point 

sets after the transformation when the correspondence of points between two sets are given. However, 

the solution sometimes gives a reflection instead of a correct rotation matrix when the two point sets 

have severely different patterns. Umeyama [59] suggested a solution that always produces the best 

transformation parameters even for those severely corrupted data. We used Umeyama’s solution to 

find transformation parameters which rotates, scales, and rotates a local colon model to register into 

the global colon model. 
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The brief review of Umeyama’s work is as follows. 

 Problem definition: Given Mx = {p1, p2, …, pn} and My = {q1, q2, …, qn} where Mx and My are 

corresponding point patterns in 3D space, minimize 
1

𝑛
‖𝑀𝑦 − (𝑆𝑅𝑀𝑥 + 𝑇)‖

2
 where T is a 

3x1 translation matrix, R is a 3x3 rotation matrix, and S is a scalar scaling factor. 

 Solution:  

R = USVT 

S = 1/σp
2 tr(DS) 

T = μq − SRμp 

where 

μ𝑝 =
1

𝑛
∑𝑝𝑘

𝑛

𝑘=1

 

μ𝑞 =
1

𝑛
∑𝑞𝑘

𝑛

𝑘=1

 

𝜎𝑝
2 =

1

𝑛
∑‖𝑝𝑘 − 𝜇𝑝‖

2
𝑛

𝑘=1

 

𝜎𝑞
2 =

1

𝑛
∑‖𝑞𝑘 − 𝜇𝑞‖

2
𝑛

𝑘=1

 

∑𝑝𝑞 =
1

𝑛
∑(𝑞𝑘 − 𝜇𝑞)(𝑝𝑘 − 𝜇𝑝)

𝑇

𝑛

𝑘=1

 

UDVT is a singular value decomposition of ∑pq 

𝑆 = {
𝐼                                       if 𝑑𝑒𝑡 (∑𝑝𝑞) ≥ 0

diag(1,1,… ,1,−1)      if 𝑑𝑒𝑡(∑𝑝𝑞) < 0
,  

where tr() gives the trace of the input matrix and det() gives the determinant of the input matrix. 
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2.5. Conclusion 

Most existing works focus on colon surface reconstruction using the SfS or the SfM approach. 

These existing 3D model reconstruction algorithms are not suitable for tubular colon structure 

reconstruction. The SfS would wrongly express lumen as relatively far surface not a hole. The colon 

folds and the hidden area behind folds cannot be expressed. The SfM technique requires that the 

object be rigid, which is not the case for the colon. The work by Zhou et al. [15] has several 

limitations as aforementioned. 
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CHAPTER 3 PREPROCESSING 

 

We propose a new solution for reconstructing the colon structure from one or more sequential 

colonoscopy images. The challenges are many. The colon and colonoscopy are complex. The colon 

has many turns and only some colon folds are seen in one image during colonoscopy. Colon folds 

may be occluded in one frame, but are clearly seen in another frame. There are many types of noise 

that could be mistaken as colon folds such as blood vessels, stool, polyps, biopsy or therapeutic 

instruments in a frame. Fish-eye camera lenses cause image distortion. There are varying camera 

motions such as push/pull and torque motions as well as camera tip movements. Furthermore, there is 

also automatic adjustment of light distribution by the endoscope video processor, etc. We address 

several of these challenges. 

In this chapter, we present our pre-processing step that detects edges that are likely of colon folds 

and estimates the center of the innermost colon fold seen in the image. Next, it discards the frame that 

is not a good candidate for reconstruction, for instance, the frame showing a close-up colon wall. The 

edges and the center of the innermost colon fold are used in subsequent steps. 

    

(a) (b) (c) (d) 

Figure 3.1 (a) Original image; (b) After Canny edge detection of (a); (c) After removal of meandering and short 

edges of (b); (d) Overlapping of circumcircles of edges in (c)  

 

3.1. Determining candidate fold edges 

We first smooth the grey scale image of an input image using a Gaussian kernel and apply Canny 

edge detection with threshold parameter values that give many continuous edges. Figure 3.1(b) shows 
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an example result. Second, we cut an edge segment with sharp turns into smaller segments and 

remove the short ones. This process also separates branch edges from the main edges. The pseudo 

code of the algorithm is shown in Figure 3.2. A result after pre-processing is shown in Figure 3.1(c).  

 

pre-processing(C){  

Input: C: Color image; W: Window size in number of pixels 

Output: O: Set of remaining edges 

E = { }; 

I = rgb2gray(C);                  // convert an RGB color input image to a grayscale image 

I = smooth(I, );           // smooth image I using a Gaussian kernel 

E = canny(I, cannyLow, cannyHigh); // E is a set of edges as a result of Canny edge detection 

/*  pi: an edge pixel of edge e; pi and pi+1 are neighboring pixels; |e|: the number of pixels of edge e; di: a 

Freeman chain code [0,…,7] [60] of the direction from pi to pi+1 */ 

while (E is not empty) { 

e removefrom(E); // remove an edge from E; the order of removal is not important 

isSharpTurn false;  // assume that the edge e has no sharp turns 

for ( i  1; i ≤ |e| && isSharpTurn ==false; i++) { 

 for ( k  i; k < i + W && isSharpTurn ==false; k++) { 

if ( dk== (di + 3)%8 || dk == (di + 4)%8 || dk == (di + 5)%8 ) { 

    // Pixel k is in an opposite direction of pixel i. Cut this edge at pk 

     e* { pj | i ≤ j ≤ k}; // e* is assigned all edge pixels from pj to pk of this edge 

   e**  { pj | k < j ≤ |e|}; // e** is assigned all edge pixels of this edge after pixel pk 

   O O   {e*};  // add e* in the output edge set O 

   E  E   {e**};  // add the remaining edge into E 

   isSharpTurn  true; 

       } // end if 

    }  // end for k 

    if (isSharpTurn ==false) OO   {e}; 

   } // end for i 

}// end while 

OremoveShortEdges(O, lenThres); // remove an edge in O with fewer pixels than lenThres 

} 

Figure 3.2 Pseudo code of the algorithm to select candidate fold edges 

s smooth
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3.2. Estimation of the center of the innermost fold (CIF) 

For each edge segment, we draw a circumcircle of a triangle drawn with two tips at the two ends 

of the edge segment and the last tip at the midpoint of the edge segment. The estimated CIF should be 

inside the most overlapped regions by these circumcircles because the innermost fold is nested inside 

the outer folds. However, we may have noise edges that are not part of a fold contour such as blood 

vessels, stools or operational instruments. We use the following algorithm to find candidate CIF and 

remove CIF that is likely incorrect due to noise. 

Given I = {p | p is a pixel of an input image} and E = {e | e is a remaining edge after pre-processing}, 

1. Find the darkest area DI in I using the intensity histogram of I, or BI, 

BI = {bi | bi is the number of pixels of I whose intensity value is i, where 0 ≤ i ≤ 255}. 

DI = {p | p is a pixel in I assigned to any bin between b0 and bk, where k is the smallest value that 

satisfies ∑ 𝑏𝑖 ≥ 𝐴 ∙𝑊 ∙ 𝐻𝑘
𝑖=0 }. 

W and H are the width and height of the input image, respectively and A is a constant between 0 

and 1 exclusive.  

2. Calculate the degree of overlap v(p) for each pixel p using Equation (3.1). The rationale is that we 

want the value of v(p) to be high when p is within the most overlapped regions created from fold 

edges.  

  𝑣(𝑝) = ∑ 𝑙(𝑒𝑖)𝑖 , 𝑒𝑖 ∊ 𝐸𝑝 ,                           (3.1) 

where l(e) is the length (number of edge pixels) of an edge e and Ep = {e|e is an edge whose 

circumcircle encloses the pixel p}. Instead of counting the number of overlapping circumcircles 

that contain this pixel p, we sum the length of the edges that form these circumcircles. Fold edges 

are generally longer than most noise edges. The sum is better than a simple count as it gives a 

higher weight to long edges. 
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3. Calculate CIF denoted as p* by first determining whether an image belongs to Case 1 or Case 2. 

Case 1 is the case when the average intensity of the darkest area DI is less than an intensity 

threshold IT; p* is the center of the darkest area in this case. Otherwise, the image belongs to 

Case 2 which mostly represents non-dark lumen images or wall images. The precise calculation 

of CIF is as follows. 

p∗ =

{
 
 

 
 (

∑ 𝑥(𝑝𝑖)𝑖

|𝐷𝐼|
,
∑ 𝑦(𝑝𝑖)𝑖

|𝐷𝐼|
) , 𝑝𝑖 ∊ 𝐷𝐼                                           𝐶𝑎𝑠𝑒 1,

(
∑ 𝑥(𝑝𝑖)𝑖

|𝐷
𝐼′
|

,
∑ 𝑦(𝑝𝑖)𝑖

|𝐷
𝐼′
|

) , 𝑝𝑖 ∊ 𝐷
𝐼′
                                        𝐶𝑎𝑠𝑒 2,

 

where |DI| is the number of pixels in the darkest region DI; x(pi) and y(pi) denote the x-coordinate 

and the y-coordinate of a pixel pi, respectively. For Case 2, I’ = {p | p is a pixel in I with the 

largest v(p)}.  

4. We discard the CIF if the condition below is satisfied. 

v(p*) < lenRatio∗ ∑ 𝑙(𝑒𝑖)𝑖  or ∑ 𝑙(𝑒𝑖)𝑖 < len where ei ∊ E. 

We chose smaller lenRatio and len threshold values for images belonging to Case 1 than those of 

Case 2. For Case 1, we aim to exclude the darkest area caused by stools, dark blood vessels or 

shadow of folds from being mis-considered as the lumen surrounded by the innermost fold. For 

Case 2, we aim to exclude wall images with short edges forming some insignificant overlapping 

circumcircles. 

5. We observe that true CIFs detected from sequential frames are typically near each other except 

when there is a large camera motion. Based on the Euclidean distance of CIFs in sequential 

frames, we discard likely false CIFs if the following condition is met. 

Δ(p*i, p*i-1) > dist or Δ(p*i-1, p*i-2) > dist or Δ(p*i-2, p*i-3) > dist, 

where p*i indicates CIF of frame i and Δ (p*i, p*j) represents the Euclidean distance between CIFs 
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found in frame i and in frame j. The values of constants A, IT, lenRatio, len, and dist were 

determined experimentally.  

 

3.3. Handling a thick fold 

Some folds are thick, resulting in two parallel edges of the same fold. Only the inner edge of the 

thick fold is desired. We observe that the brightness intensity along the edge-cross-section toward CIF 

increases (dark to bright) after crossing the edge. To detect an outer edge segment of a fold, we first 

compute the norm vector for each edge pixel of an edge segment. The direction of the norm vector is 

90° of that of the tangential vector of this pixel toward CIF. The vector length depends on the size of 

the image. Next, we compute the difference as the sum of the intensity values on the norm vector 

before crossing the edge pixel less the sum of the intensity values on the norm vector after crossing 

the edge pixel. A negative difference (dark to light) indicates that the edge segment is likely the outer 

edge of the colon fold, which we discard. 

 

3.4. Conclusion 

In this chapter, we present our pre-processing step in detail. The parameter values for the edge 

detection, W, and lenThres used in the pseudo code in Figure 3.2 and the vector length used for 

removing outer edge segments of thick edges were determined experimentally. These values and 

effectiveness of the pre-processing are reported together with our study in Chapter 7 on evaluation of 

quality measurements derived from our 3D reconstruction results. 
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CHAPTER 4 COLON FOLD CONTOUR ESTIMATION USING A 

SINGLE COLONOSCOPY IMAGE 

 

In this chapter, we describe a new method to detect closed colon fold contours from a single 

image. We have edge segments and the center of the innermost fold from the pre-processing step. We 

need to assign edge segments to colon folds, which is very challenging. Given an input image in 

Figure 4.1(a), consider mapping complex edge segments in Figure 4.1(b) to fold contours in Figure 

4.1(c). The solution is rather subjective since there is no precise ground truth. For instance, edge 

segment e6 in Figure 4.1 (b) has three candidate pairs in clockwise direction: e2, e7, and e8, any of 

which is acceptable. Among these possible choices, a good solution should yield a virtual colon 

segment closest to the real colon segment. Fourth, the colon shape is not always circular. For instance, 

the transverse colon typically has triangular fold shapes. The colon is not rigid. Hence, the shape can 

easily be deformed depending on the amount of air/CO2 used to inflate the colon. Finally, once edge 

segments are classified for each fold contour, they need to be connected with smooth curves with the 

least deviation from the original contour shape. This should be achieved even for occluded or flat 

sections of fold contours.  

Many existing image segmentation techniques are available in the literature [61-63]. For instance, 

level sets [64] and graph cuts [65, 66] methods may be modified for colon fold contour estimation to 

overcome the aforementioned challenges of noise, occlusion, and deformation of the colon. However, 

the modification is non-trivial, especially to handle occlusion. These techniques generally take 

significant time to generate region contours due to examination of pixel properties. These reasons 

motivated us to explore an alternative. 
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e1
e2

e3

e4

e5

e6

e7

e8

e9

   

                (a)                         (b)                      (c) 

Figure 4.1 The process of fold contour completion. (a) Complex colonoscopic image. (b) Remaining 

edges after noise filtering. (c) Colon fold contours completed using our proposed technique; e1 and e3 

are connected and form the innermost fold contour. Edges e2, e4 and e6 are connected and form the 

second innermost fold contour. Edge e5 is effectively removed. The small dots are estimated centers 

of colon folds forming the colon center axis. 

 

4.1. Mapping Edge Segments to Colon Folds 

Our problem statement is as follows. Given a set E of edge segments and the seed point s0, 

classify the edge segments into subsets, each corresponds to a colon fold. Given E={e1, e2, e3, e4, e5} 

and s0 which is the CIF location, we group the edge segments in E into subsets by performing region 

expansion iteratively to estimate each fold region, starting from the innermost fold to the outerrmost 

fold. Each subset has a 1-1 mapping with a colon fold. Each fold region is bounded by its assigned 

edge segments and/or association/restriction lines created to represent the missing real edge segments. 

The already assigned edge segments are then removed from the subsequent consideration. The 

process is repeated until E becomes empty. Figure 4.2(a-e) illustrates the first iteration to find the 

region estimating the innermost fold. The region is conceptually expanding from the seed point s0 in 

all directions (Figure 4.2(a)). During the expansion, a tip event occurs when the region reaches a tip 

of an edge segment for the first time. Figure 4.2(b) shows a tip event at p1. At each tip event, we find 

the closest eligible tip to connect and check whether the two tips can be connected smoothly. Eligible 
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tips must be visible (not blocked by any edge segments or restriction lines) from s0 and in an opposite  

 

                  (a)                  (b)                 (c) 

         

                         (d)                        (e)                                  

Figure 4.2 (a-e) Illustration of how to find edge segments of the innermost contour using the seed 

point s0, which results in e1 and e3 assigned to the innermost contour and removed from consideration 

in the next iteration; (f) s1 is the new estimated colon center of the innermost fold. See text for 

explanation. Region expansion of the 2nd innermost fold starts with s1 as the seed. 

 

tip direction of the tip creating the tip event. In Figure 4.2(b), p2 is the closest eligible tip of p1. We 

connect the two tips if a smooth connection between them is possible by checking whether the angle 

∠p1s0p2, the angle between p1p2 and the tangential line of p1, the angle between p1p2 and the 

tangential line of p2, each is less than a small threshold. If so, the connection between them is possible 

by association. In Figure 4.2(b), the association is possible. We use a line to represent the association 

between the two tips and treat edge e1, the association line, and edge e3 as one long edge segment. In 

Figure 4.2(c), the tip event occurs at p3; however, its closest eligible tip p4 cannot be associated with 

p3. In this case, we draw a tangential half-line from p3 as shown in Figure 4.2(c). We call this line the 
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restriction line. The association or restriction line is created to represent a missing edge segment. 

Similarly, restriction lines from p4 and p5 are drawn as shown in Figure 4(d and e). At the end, the 

region stops expanding because it is bounded by edge segments and/or association, restriction lines, 

or image boundary (Figure 4.2(e)). The edge segment of which both tips is on the region boundary 

(i.e., the associated e1 and e3) is assigned to the current colon fold and the new center point (s1 in Fig. 

4(e)) of the bounded region is computed. Notice that edge e2 is not assigned to the innermost fold 

because one of its tips, p6, is not on the region boundary. The assigned edge segments are removed 

from E and the next iteration of region expansion starts again with the modified E and the new seed 

point s1 to detect the next fold contour.  

The pseudocode of the technique is shown in classifyEdgeSegments(E,s) where E is the set of n 

edge segments and a seed point s which are the result of the pre-processing step. The output is the set 

G which is a set of sets of edge segments for each contour i and C is the set of center points of all 

detected fold contours. The technique calls RegionExpansion(E, s, c, G, C) in line 2 with c initialized 

to one where c is an iteration index. Each edge has two end points and we assign different labels 

(clockwise or counterclockwise) to these end points according to the direction with respect to s as a 

center. Thus, we represent edge ei = picpiĉ where c stands for clockwise and ĉ stands for 

counterclockwise. Classifying end points into two groups by its direction is important since we only 

want to connect two end points from different directional groups.  

RegionExpansion is a recursive function that does region expansion one fold at a time from the 

innermost fold (c=1) to the outermost fold (c=n). Each time it assigns edge segments to a specific 

fold and adds them into the output set for the fold. We use four temporary sets: Q, Q’, T, and Fc. The 

event queue Q keeps visible end points of given edges in increasing order of Euclidean distance from 

the center of the fold under consideration. 
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classifyEdgeSegments(E, s){ 

Input:  E={e1, e2,…,en} is a set of n edge segments and ei=picpiĉ. 

           s(sx, sy): Seed point at the coordinates sx, sy 

Output: G={F1, F2,…, Fn} where Fi={ei1, ei2,…,eim} (representing the ith fold)  

          and eij=pijcpijĉ (representing the edges assigned to the ith fold) 

          C={s1, s2,…, sn} where si(six, siy) is the center point of the ith fold. 

1.   G ←{ }, C ←{ } // {} represents an empty set 

2.   (G, C) ← RegionExpansion(E, s, 1, G, C) 

3.   return (G, C) 

} 

Figure 4.3 Pseudo code for assigning edge segments to colon folds 

 

regionExpansion(E, s, c, G, C){ 

Input:  E={e1, e2,…,en} is a set of n edge segments and ei=picpiĉ. 

           s(sx, sy): Seed point // the estimated center of the current fold 

           c: Iteration index 

           G={Fi| Fi={ei1, ei2,…,eim} and 1≤i≤c-1}  // G ={ } when c=1 

           C={si| si is the center of the ith fold, 1≤i≤c-1}  // C ={ } when c=1 

Output: G = G ∪ {Fc} where Fc is a set of edge segments assigned to the cth innermost fold. 

              C = C ∪ {sc} where sc is the estimated center point of the cth innermost fold. 

1.  if E is empty then return (G, C) 

2.  Q ← {end points of edges visible from s in increasing order of Euclidean distance from s} 

3.  Q’←{ }, T ←{ }, Fc ←{ }. 

4.  while Q is not empty do{ 

5.      Fetch the first element pij from Q . // pij is the nearest end point of any edge i from s 

   // c denotes the clockwise end point and ĉ denotes the counter clockwise end point 

6.      Draw a restriction line of pij. (j=c or ĉ).  

7.      Remove points blocked by the restriction line from Q and Q’. 

8.      Remove lines containing those points from T. 

9.      Q’← Q’ ∪{pij} 

10.     if there exists pi*ĵ in Q’ where ∠pij spi*ĵ  < α then { // α is a constant; association occurs 

11.        Remove pij and pi*ĵ from Q’. 

12.        Insert line pijpi*ĵ  into T. //connect the two points with a line 

13.     } 
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14. } 

        // A this point, a region is closed by real edges and restriction lines or image boundary. 

15.  sc ← Center of the closed region 

16.  while Q’ is not empty do{ 

17.     Fetch a point pkj from Q’. 

18.     F ←{ }      // F is a temporary storage. 

19.     pk*ĵ ← pkĵ      

20.    while there exists a line in T that has pk*ĵ as an end point do{ 

21.          Let pk*ĵpk**j be the line.  

22.          F← F ∪{ek*} // ek* = pk*ĵpk*j 

23.          pk*ĵ ← pk**ĵ  // Search the chain of association 

24.     } 

25.     if there exists pk*ĵ in Q’ then{ 

26.          Fc← Fc ∪ F  

27.          Fc← Fc ∪{ek*} // ek* = pk*ĵpk*j 

28.          E ← E - Fc  

29.     } 

30.  } 

31.  G ← G ∪ {Fc} 

32.  C ← C ∪ {sc} 

33.  c ← c+1 

34.  (G, C) ← RegionExpansion(E, sc, c, G, C) 

35.  return (G, C) 

} 

Figure 4.4 Pseudo code of the region expansion used in our method for assigning edge segments to 

colon folds  

 

After initialization, line 5 gets the first event point pij from Q which is closest to the seed point 

and draw a line from pij which is tangential to ei on pij. We call this tangential line a restriction line. In 

Line 7, we update Q and Q’ by removing points blocked by the restriction line. This is to prevent 

other outer edge segments from being considered. In Line 8, we delete associations containing those 

blocked points from T. Next, we insert pij into Q’ and check if there is a point associable with pij. If so, 
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we insert the association into T and remove the two points from Q’. Q’ is used to store points pij 

detected by region expansion and is updated in line 9 after each event point is processed where 1≤ i 

≤ n and j = c or ĉ. If there exist pij and pi*ĵ in Q’ where the angle ∠pijspi*ĵ is less than α (set to 25° in 

our implementation), we connect pij and pi*ĵ with a line and consider that ei and ei* are conceptually 

merged into one edge segment. See Figure 4.5. In other words, there is an association between these 

two edges. When an association occurs, the two associated poins are removed from Q’ and stored in T. 

Fc keeps edge segments that are classified as belonging to the cth innermost fold and is the output of 

the cth iteration. 

 

piĵ
pi*ĵ

pi*j

pi**j

pij

pi**ĵs

 

Figure 4.5 Diagram showing how an association is formed among edge segments 

 

We repeat line 4-12 until Q is empty. In line 15, we calculate the center of the region defined by edge 

segments, restriction lines and image boundary and update s with the newly calculated center. Now, 

we start to get the first element of Q’ and iterate lines 16-19 until Q’ is empty. We also need to check 

T since T contains points that got removed from Q’ through the association process. When Q’ is empy, 

output Fc and sc and check if E is empty. If it is, the procedure returns; otherwise, c gets incremented 

by 1, which means region expansion starts again for the next contour. 
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4.2. Closing Contours and Assigning Contour Pixel Properties 

Let G ={F1, F2,…, Fn} where Fi is a set of edge segments of fold contour i from the inntermost 

fold contour (i=1) to the outermost contour (i=n). C={s1, s2,…, sn} where si is the center point of ith 

fold contour. The problem statement is to estimate closed contours for all real colon folds given sets F 

and C. We want to complete as many contours as we can out of n contours; however, it is difficult to 

estimate a real contour shape if the total angle covered by edge segments of the contour is too small. 

This typically occurs when a fold is flat or a large portion of a fold is hidden behind the other fold. To 

solve this problem, we assume that the shapes of folds in an image are similar. Under this assumption 

we use the shape of the nearest completed contour (prefer the outer one than tge inner one if the 

condition is same) to complete a contour which cannot be closed by itself. Therefore, the algorithm 

has two rounds: one is to check for the closest outer contour and the other is to check for the closest 

inner contour. To indicate whether a contour is closed or not, we use B = {b1, …, bn} where bi is true 

when contour i is closed; otherwise bi is false. The first round starts estimation from the outermost 

fold contour Fn (i.e., the last contour found in classifiedEdgeSegment) to F1. In this round, if Fi could 

not be closed by itself, then use the nearest outer completed contour i+k (k ≥1). The second round 

starts from the innermost contour 1 to the outermost contour n, using the shape of the nearest inner 

contour i-k (k ≥1) when we cannot complete contour i using Fi by itself. For drawing the estimated 

curve to connect given edge segments, we use Bezier curve. The algorithm works as follow. 

For each Fi, order its elements eij by its polar angle and connect pijĉ and pij+1c with Bezier curve if 

∠ pijĉ spij+1c < ß (In our implementation ß =120°) where j is the index of ordered edge segments. 

After that we update Fi with the result of connections and if Fi has one closed contour (an edge 

segment ei of which pic = piĉ) insert Fi into G’ which is the set of completed contours. If more than 
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one edge segments remains disconnected in Fi we discard this set. Otherwise we keep trying to 

connect two end points p1ĉ and p1c of an edge e1. The pseudo code is shown below. 

 

completeContours(G, C){ 

Input.   G={F1, F2,…, Fn} where Fi={ei1, ei2,…,eim} and eij=pijcpijĉ. 

            C={s1, s2,…, sn} where si(six, siy) is the center point of ith fold. 

Output. G’={F’1, F’2,…, F’n} which is the set of completed folds. 

1.   B = {bi=false for all i from 1=n }  

2.   G’←{} 

3.   for (idx← n; idx ≥ 1; idx ← idx -1) do{ // first round  

           // F* can be empty if the below k is not found  

4.        F*
 ← Fk where bk = true and k is the smallest value larger than idx 

5.        (bidx, F’idx) ← adoptShape(Fidx, sidx, F
*, sk) 

6.        G’ ← G’ ∪ {F’idx} 

7.   } 

9.    

10.  for (idx ← 1; idx ≤ n; idx ← idx +1) do{ // second round 

11.      F*
 ← Fk where bk = true and k is the largest value smaller than idx 

12.      (bidx, F’idx) ← adoptShape (Fidx, sidx, F
*, sk) 

13.      G’ ← G’ ∪ {F’idx} 

14.  } 

15.  return (G’) 

} 

Figure 4.6 Pseudo code for generating closed fold contours after edge segments for each fold is 

determined 

We explain the functionality of adoptShape(F, s, F*,s*) through an example. Figure 4.7 shows e* 

is the outer completed contour and e is a portion of the inner contour that we have detected in the 

previous step. We estimate e’ (dash-line portion) from e* by shrinking the completed contour to 

match the incomplete contour. The algorithm first translate s* to s. Therefore, the two contours have 

the same center s in Figure 4.7. Next, we calculate two ratios: r1 is the ratio of the length of pc s to the 
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length of p’c s and r2 is the ratio of the length of pĉ s to p’ĉ s. We interpolate the values of ratios 

between r1 and r2 for each sampling point on e* and multiply each of the ratios to the length from s to 

the corresponding sampling point to get the length from s to the corresponding point on e’. The 

pseudo code of adoptShape follows. 

 

 

 

Figure 4.7 Diagram showing the use of the outer contour to estimate the missing portion e of the inner 

contour.  

 

adoptShape(F, s, F*,s*){ 

Input. F={e1, e2,…,em} and ei=picpiĉ. // F is a set of edges assigned to this fold 

          s(sx, sy): Center point of the fold F. 

          F*: Completed fold of which shape is adopted to complete F. 

          s*(s*
x, s

*
y): Center point of fold F*. 

Output. b: true or false 

      F’: Completed contour of F if exists otherwise {} 

1. Order F with ei in increasing order of polar angles 

2. m ← |F| 

3.  if m > 1 then {                        // try to connect nearby edge segments 

4.       for (i←0; i ≤ m; i ← i+1) do{ 

5.            if ∠piĉ s pi+1c < ß then{       // ß = 120° in our implementation 

6.                 F ← F – {ei, ei+1} 

7.                 ei ← drawBezierCurve(piĉ, pi+1c, ei, ei+1) 

8.                 F ← F ∪ {ei} 

9.            } 

e*

s

epc

pĉ

p'c

p'ĉ

e'
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10.       } 

11.       if F is closed then return (b← true, F’← F ) 

          // close the remaining open contour 

12.  } 

13.  m ← |F| // γ and ß are constants 

14.  if m > 1 then return (b← false, F’← {})  

15.  if m = 1 then { // when only a single edge segment e1 exists  

            //  Large estimation error, do not close the contour 

16.     if ∠p1ĉ s p1c > γ  then  return (b← false, F’← {})   

           // Medium estimation error, close contour using another contour 

17.      if  ß < ∠p1ĉ s p1c < γ then {  

18.           if F*≠ {} then return (b← {} theF’← adoptShape(F, s, F*,s*) 

19.           else return (b← false, F’← {}) 

20.     } 

           // Small estimation error, close contour using local information 

21.     if ∠p1ĉ s p1c < ß then{  

22.           F ← F – {e1} 

23.           ei ← drawBezierCurve(p1ĉ, p1c, e1, e1) 

24.           return (b← true, F’ ← F ∪ {e1}) 

25.      } 

26. } // end of case for m=1 

} 

Figure 4.8 Pseudo code for adopting shape of another complete fold contour to fill the missing portion 

of a fold 

 

drawBezierCurve(pij, pi*ĵ, ei, ei*){ 

Input:    pij: Start point of Bezier curve to draw. 

         pi*ĵ: End point of Bezier curve to draw. 

             ei : Edge segment on which pij is.  

             ei*: Edge segment on which pi*j is. 

Output: e’: Edge segment connecting ei and ei* with Bezier curve. 

         e' is a closed contour if ei = ei*. 

 

1.   Draw a tangential line li of ei on pij. 



37 

 

 

 

 

 

2.   Draw a tangential line li* of ei* on pi*j. 

3.   c ← Cross point of li and li*. 

4.   a ← angle between li and li*. 

5.   r ← 0.9 × (a / 180°) + 0.1; the value of r is obtained based on experiments 

6.   ci ← pij + (c - pij) × r 

7.   ci* ← pi*j + (c - pi*j) × r 

8.   e’ ← BezierCurve(pij, ci, ci*, pi*ĵ) 

9.   return (e’) 

} 

Figure 4.9 Pseudo code for drawing Bezier curve to create a smooth curve between neighboring edge 

segments 

 

Given closed contours, we now assign a value to each pixel on each contour to represent the fold 

thickness at that point on the contour. Recall that the contour consists of estimated edge segments and 

real edge segments. To assign a value for the pixel on the real edge segment, we compute the normal 

vector of the corresponding edge pixel. The direction of the normal vector is toward the image 

boundary. We calculate the difference of the maximum brightness intensity value and the minimum 

brightness intensity value along the normal vector direction considering only pixels within d distance 

pixels from the edge pixel. For the estimated portion of the contour, we interpolate the differences 

using the differences at the two end points of the estimated edge segments.  

 

4.3. Experimental environment and results 

 

4.3.1. Experimental environment 

We implemented our image analysis techniques in OpenCV and used OpenGL for 3D rendering. 

We evaluated the proposed technique using 39 colonoscopy images selected from seven different 

colonoscopic procedures and from different segments of the colon (e.g., transverse colon, cecum). We 
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obtained parameters from a separate training set of colonoscopy images. Manual contours of each 

colon fold were drawn by a trained staff and reviewed by the domain expert for correctness. We count 

the number of detected folds (D), the number of actual folds (A), the number of actual folds missed by 

the program (M), the number of wrongly detected folds (W), and the number of detected folds that are 

difficult to evaluate manually (N). For instance, the distant inner fold can be much occluded, making 

it difficult to manually determine the actual shape of the fold.  We used the following performance 

metrics to evaluate the effectiveness of the proposed algorithm: 

 

Recall(𝑅) =  
# Correctly detected folds

# Actual folds (𝐴)
× 100, 

Precision(𝑃) = 
# Correctly detected folds

# Dectected folds (𝐷)− # N/A (𝑁)
× 100, 

Similarity(𝑆) =  
∑

𝑀𝐿𝐴𝑖 ∩𝑃𝐿𝐴𝑖

𝑀𝐿𝐴𝑖 ∪𝑃𝐿𝐴𝑖
𝑖

# Correctly detected folds
× 100 

where MLAi and PLAi are manually labeled area and program labeled area for ith correctly detected 

fold, respectively. The area of a fold is the number of pixels inside the fold contour. The test was 

performed on a workstation with two Intel Xeon E5504 Quad-Core 2GHz Processors, 6 GB RAM, 

and 64-bit Windows 7 Professional as the operating system. 

 

4.3.2 Experimental results 

Figure 4.10 shows that the computer generated 3D images using the proposed algorithm resemble 

corresponding input images quite well. Table 4.1 summarizes the test results showing very good recall 

score which means that the program detects almost all existing folds. However, some non-existing 

(wrong) folds were generated, which affect precision. A wrong fold happens when the algorithm pairs 
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Table 4.1 Performance of our colon contour algorithm; D: # detected folds, A: # actual folds, M: # 

missed folds, W: # wrong folds, N: # N/A, R: recall, P: precision, S: similarity  

Case ID #Detect #Actual #Miss #Wrong #N/A Recall Precision Similarity ±SD (%) 

1 5 6 1 0 0 0.83 1.0 87.2±7.2 

2 6 8 2 0 0 0.75 1.0 74.5±16.4 

3 8 7 0 1 0 1.0 0.88 83.6±3.64 

4 6 6 0 0 0 1.0 1.0 70.8±17.7 

08404 6 4 0 0 2 1.0 1.0 79.044.8 

12239 5 4 0 0 1 1.0 1.0 82.298.3 

12660 9 6 0 3 0 1.0 0.67 68.9±8.99 

12808 5 5 1 1 0 0.8 0.8 74.0±8.4 

14069 4 4 0 0 0 1.0 1.0 72.8±13.8 

14279 5 4 0 1 0 1.0 0.8 84.5±5.9 

14428 7 5 0 2 0 1.0 0.71 80.3±8.1 

14507 5 3 0 1 1 1.0 0.75 83.3±9.3 

14537 4 2 0 1 1 1.0 0.67 80.8±13.7 

14816 6 6 0 0 0 1.0 1.0 85.9±6.3 

14918 4 5 1 0 0 0.8 1.0 85.6±8.6 

15007 4 5 1 0 0 0.8 1.0 81.3±9.8 

15077 5 5 0 0 0 1.0 1.0 69.1±8.5 

15107 4 4 0 0 0 1.0 1.0 70.7±17.2 

15137 7 5 0 0 2 1.0 1.0 77.0±16.8 

15268 7 5 1 3 0 0.8 0.57 85.1±5.7 

15297 8 6 1 2 1 0.83 0.71 77.6±9.0 

15807 7 6 0 1 0 1.0 0.86 72.1±10.4 

15957 6 4 0 2 0 1.0 0.67 80.3±10.0 

16526 5 4 0 0 1 1.0 1.0 80.5±13.7 

16646 5 4 0 1 0 1.0 0.8 84.6±5.1 

17006 9 6 0 3 0 1.0 0.67 82.9±6.2 

17465 6 6 1 1 0 0.83 0.83 78.6±11.8 

17615 3 5 2 0 0 0.6 1.0 90.0±4.8 

17885 7 4 0 2 1 1.0 0.67 62.9±15.7 

18064 6 5 0 0 1 1.0 1.0 85.4±6.5 
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a fold edge segment with an unfiltered strong blood vessel edge or with an edge segment from 

another fold. If a fold edge segment is not long enough and the true pair edge segment is too far due 

to a large portion of flat surface, the algorithm mismatches edges from different folds. The crucial 

factor that reduces similarity is occlusion which happens for inner folds since a large portion of these 

folds are hidden behind other folds. Our test result shows less similarity for inner folds and higher 

similarity for outer folds as expected. The processing time for colon fold contour estimation was 0.5 s 

per image on average. 

  

  

18274 9 6 0 2 1 1.0 0.75 91.1±4.3 

20102 5 4 0 0 1 1.0 1.0 77.6±9.3 

20741 8 4 0 4 0 1.0 0.5 73.6±16.6 

21018 5 3 0 1 1 1.0 0.75 82.5±3.2 

21696 5 5 0 0 0 1.0 1.0 74.9±7.6 

22959 6 5 0 0 1 1.0 1.0 84.5±7.6 

23326 7 6 0 1 0 1.0 0.86 83.2±11.7 

23566 6 5 0 1 0 1.0 0.83 87.7±11.7 

24034 4 4 0 0 0 1.0 1.0 75.9±19.8 

Overall 229 191 11 34 15 94.2% 84.1% 79.5±13.0 
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(a) S = 83.6 ± 14.4                (b) S = 79.0 ± 4.8 

 

(c) S = 82.2 ± 8.3                 (d) S = 85.6 ± 8.6 

 

(e) S = 75.9 ± 7.7                  (f) S = 83.2 ± 11.7 

 

(g) S = 89.1 ± 5.3                 (h) S = 78.3 ± 11.8 

Figure 4.10 Left image of each item is input colonoscopy image and the right one is its corresponding 

3D reconstruction result with the colon center axis (red line). 

 

4.4. Conclusion 

We have presented our new algorithm for automatic contour estimation for 3D reconstruction of a 

colon segment from a single 2D colonoscopy image. The technique gives an average recall of 94.2% 

and an average precision of 84.1%, which is quite good. The lower performance comes from the fact 

that the innermost fold may be occluded or the outer fold was behind the camera, causing incorrect 

estimation of the fold contours in the occluded parts of the fold. 
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CHAPTER 5 COLON SEGMENT RECONSTRUCTION FROM A 

SINGLE COLONOSCOPY IMAGE  

 

Automatically detected fold contours of a 2D colonoscopy image are given from the previous 

chapter. There are three major steps in this chapter: 1) Reverse projection of 2D fold contours into 3D 

space; 2) Distance estimation of the fold contours in 3D space based on brightness intensity of pixels 

surrounding the fold contours and 3) Interpolation of the colon fold surface as well as wall surface 

between neighboring fold contours. We estimated fold width and protrusion in order to emulate real 

colon structures. Since it is not possible to obtain ground truth real colon structures, we use an 

Olympus synthetic colon model and measured fold distances and circumferences as ground truth. We 

conducted experiments on twelve images taken using an endoscope inside the synthetic colon model. 

We obtained twelve reconstructed virtual colons. The average estimation errors of the fold depth 

estimates and the fold circumference estimates compared to the ground truth are 4.1 and 12.1 mm, 

respectively. We also tested that the technique can handle more complex colon images from real 

colons. The experimental results are promising. 

 

5.1. Reverse Projection 

Reverse projection places fold contours in 3D space while correcting distortion caused by a fish-

eye lens typically which is used in colonoscopes to allow for a wider field-of-view (FOV). We 

assume that the intrinsic parameters of the camera are given. That is, we know the projection model 

that the camera lens of the endoscope obeys. Given the projection model, we trace the ray projected 

on the image by converting each vertex u on the fold contour to a unit vector vu in 3D space. 
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                     (a)                                      (b) 

Figure 5.1 (a) and (b) Conversion of point u on fold contour to reverse projection vector vu. 

 

The bottom of Figure 5.1(a) shows a contour in the input image. Let P be the origin of the 2D xy 

coordinate system of the input image, which is at the center of the image. Let’s consider a contour 

point u at r distance from the origin in this 2D coordinate. Let the angle between x axis and vector Pu 

be α. Therefore, the x and y coordinate of u (ux, uy) is 

ux = r cos α  

uy = r sin α. 

Figure 5.1(b) shows the 3D coordinate system. Let t be the orthogonal projection of vu onto the xy 

plane of this coordinate system. Thus, 

t = sin θ.    

We can now compute the x, y, and z coordinate of vu (vux, vuy, vuz) as 

vux = t cos α = sin θ cos α = ux sin θ / r 
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vuy = t sin α = sin θ sin α = uy sin θ / r 

vuz = cos θ  

We know the values of ux, uy, and r. To obtain the 3D coordinate of vu, we need to compute the value 

of θ using the given projection model as follows. If the camera follows the equidistance projection 

and FOV is 140˚, 

r = f θ 

Let Q be the image diameter (see Figure 5.1(a)) which is the maximum value of r. The maximum 

value of θ is 70˚ since FOV is 140 .̊ When the value of θ is at the maximum, the value of r is also at 

the maximum. Thus, 

Q = 70 f 

f = Q / 70 

θ = 70r / Q 

Finally, we have θ; therefore, we can calculate the unit vector vu (vux, vuy, vuz) from vertex u (ux, uy) on 

a fold contour of an input image. This process is applied to all the points on each fold contour. At the 

end of this process, we will have vectors of rays reverse-projecting the 2D contour into 3D space. 

 

5.2. Depth Estimation from Intensity 

Our depth estimation consists of two key steps: brightness intensity calibration and estimation of 

depth of each non-specular pixel based on its brightness intensity. 

 

5.2.1 Brightness intensity calibration 

Brightness intensity calibration should be performed before we use pixel intensity to estimate 

distance of pixels from the endoscope. The rationale is that rays from the light source are more 
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concentrated on the center of the image than the border of the image. We made a calibration object 

which is a hemisphere with scales inside as shown in Figure 5.2(a).  The hemisphere object has a 

property that when a camera is placed at the center of the sphere, the distance from the camera to any 

point on the surface is identical. Furthermore, any point on the surface has its surface normal 

directing toward the camera. Thus, if the light source emits photons evenly around the surface, 

brightness intensity must be identical for all pixels. 

 

0 x (Degree)

y (Intensity)

 

           (a)                    (b)                            (c) 

Figure 5.2 (a) Hemisphere object marked with 18 scales at 10ightness intensity c is used for 

measuring intensity distribution of the camera. (b) Image of the hemisphere object captured using 

Olympus PCF-H180AL with 140° FOV. (c) Dots show intensity values sampled along the horizontal 

line from (b). The purple line was the result of the polynomial regression fitting, which yields 

Equation (5.1). 

 

We performed experiments by placing several types of endoscope such as Olympus CF-H180AL 

scope at the center of the sphere of the calibration object. As shown in Figure 5.2(b), pixels near the 

center (0° in Figure 5.2(c)) are brighter than pixels near the border. We obtained Equation (5.1) that 

predicts the intensity value y (0 ≤ y ≤ 255) given a degree x using polynomial regression fitting 

(Lutus, 2011).  

y = -0.0168x2 + 186                              (5.1) 
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Based on the above experiments, before calculation of pixel depth for each pixel involved in the 

calculation, we adjust the brightness intensity of the pixel based on the value of x, which is the degree 

calculated as FoV*d/imgw. The value of d is the Euclidean distance of the pixel coordinate from the 

image center and imgw represents the image width. The adjusted intensity i’ is obtained from the 

original pixel intensity i using Equation (5.2) where 0 ≤ i and i' ≤ 255. 

                       i' = i + 0.0168x2                                  (5.2) 

The adjusted brightness intensity is used in subsequent steps. We demonstrate the impact of the 

brightness intensity calibration on the reconstruction in Section 5.4.1.  

 

5.2.2. Depth from Intensity (DfI) of non-specular pixels on a contour  

We use brightness intensity of the surface around a fold contour to infer the distance of that 

surface from the camera. For estimation of depth from brightness intensity, the colon surface is 

assumed Lambertian except at specular spots. This assumption is also used in previous work for colon 

surface reconstruction for computer-aided surgery (Kaufman and Wang, 2008). Under the 

assumptions that (i) a point light source and the camera lens are located at the same position and (ii) 

there is no ambient light, the Lambertian’s cosine law in Equation (5.3) holds. 

 =  
𝐶 ∙   𝑠𝜃

𝑑2
,                                                                              ( . ) 

where i is the intensity value; d is the distance between the camera and the surface; θ is the slant angle 

between the observer’s line of sight and the surface normal; and C is a constant representing an 

intrinsic camera property. Given the same slant angle, the surface at a further distance appears darker 

in the image than the surface closer to the camera. For surface at the same distance from the camera, 

the surface appears darker if it is slant more.  
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                     (a)                     (b)                 (c) 

Figure 5.3 (a) Experiment to establish the relation between the brightness intensity on a surface 

and the distance from the endoscope to the surface. (b) Colon surface is glossy, which reflects more 

light to the reflection angle and generates considerable ambient light. (c) Protruded folds blocks 

ambient light from deep surface. 

 

The assumption (ii), however, does not hold in practice since the closed structure of the colon and 

glossy mucosa cause significant ambient light. We performed experiments to explore the relationship 

between the brightness intensity and the distance from the camera in the colon by inserting a special 

ruler designed for colonoscopy as shown in Figure 5.3(a). The deeper the surface is, the more effect 

the ambient light becomes as shown in Figure 5.3(b). From our observation, the ambient light causes 

a slower drop in brightness intensity as the distance d increases than that described by Equation (5.3). 

We experimented with different values of the power coefficient m (0.5, 0.75, 1, 1.25, and 2) in 

Equation (5.4). The detailed results are reported in Section 5.4. In summary, we found that m=1 gives 

the least estimation error from the ground truth measurements of an Olympus synthetic colon model. 

 =  
𝐶 ∙   𝑠𝜃

𝑑 
 ,                                                                            ( . ) 

The limitation of Equation (5.4) is that it does not take the amount of protrusion of colon folds into 

account. For example, as shown in Figure 5.3(c), tall folds block reflected lights from reaching inside, 

reducing the amount of ambient light on the surface whereas flat surface should result in more 
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ambient light. For simplicity, we use Equation (5.4) with m=1 hereafter. 

Next, we estimate the depth (distance from the camera) du for every reverse projection vector vu 

(in 3D space) corresponding to the pixel u on each of the fold contours. Let 𝜃 be the angle between 

the normal vector of the surface where vu is directing and the line of sight of the camera. Each pixel u 

has corresponding brightness intensity denoted as iu. We rearrange Equation (5.4) and replace the 

parameters d and i with the parameters corresponding to the point u. Hence, we have Equation (5.5).  

𝑑 = 
𝐶   𝑠𝜃 

  
 .                                                                        ( . ) 

To minimize the estimation error of du, we want to find a point close to u that best minimizes the 

slant angle θu. When θu=0° (the surface normal at this point faces directly to the line of sight of the 

camera), cos 0°=1. We cannot use specular pixels since they do not obey the Lambertian’s cosine law. 

Therefore, we find a suitable non-specular pixel close to the point u. According to the Lambertian’s 

cosine law, for points located at the same distance from the camera, those appear brighter in the 

image have smaller slant angles. Hence, we search for the brightest non-specular pixel within a 1D 

window of size K starting from u along the normal direction of u away from the estimated center of 

the innermost fold (CIF). The center is obtained by the preprocessing step (Section 3.2). We denote 

this brightest non-specular pixel u’ and its intensity as iu’. We estimate θu’ instead of θu. To detect a 

specular pixel, we slide a square window (of size BxB pixels) centered at each pixel in the image. If 

the intensity of the center pixel is T times higher than the average brightness intensity in the sliding 

window, the pixel is considered a specular pixel; T >1. Figure 5.4 illustrates key factors involved in 

the estimation. The green dots in Figure 5.4(a) are examples of the brightest non-specular pixels along 

the fold contours. 
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                        (a)                            (b) 
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(c)                             (d) 

Figure 5.4 (a) Blue rectangles mark different surface properties of a fold. The green dots represent the 

brightest non-specular pixels (u’), within the 1D search window from the fold contours. (b) We 

estimate the value of θu’ of part 1 and part 2 to be 0° as u’ faces directly to the camera. However, θu’ 

of part 3 cannot simply be set to zero since it depends on the fold protrusion. (c) For a wide fold like 

part 3, we estimate the value of θu’ proportionally to the value of θ*
u. Vector c is from the endoscope 

to the center of the fold contour. Unit vector vu is the reverse projection of pixel u. We know the angle 

between c and vu, and thus can calculate the value of θ*
u. (d) Scattered dots are the projections of the 

green dots in (a) on 3D space by DfI. Different color indicates different fold contours. 

 

Let wu be a normalized distance between the contour pixel u and the corresponding brightest non-

specular pixel u’; 0<wu≤1. For the point u where 0 < wu < 1 (like Parts 1 and 2 in Figure 5.4(c)), we 

set θu’ to 0° since the slant angle of the brightest non-specular pixel u’ is closest to 0°. For the point u 

where wu is 1, the brightest non-specular pixel u’ is located outside the search range or this part of the 
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fold may be flat (e.g., Part 3 of Figure 5.4(c)). In this case, we need to consider the protrusion of the 

fold (height) in our depth estimation. Thus, we use Equation (5.6) to represent the two cases.  

𝑑 = 
𝐶(⌈ ̅ ⌉   𝑠0 + ⌊  ⌋   𝑠𝜃  )

   
,                                                          ( . ) 

where  ̅  = 1– wu. When wu < 1, du becomes C/ iu’. When wu is 1, we consider the fold height at the 

point u. This fold height is estimated by hu as the absolute difference of the average intensities of K 

pixels inside and K pixels outside of the contour along the perpendicular line across the pixel u.  The 

more protruded fold blocks more rays of light from the light source near the camera. As a result, we 

see larger brightness difference between the pixels in front of the fold and behind the fold. The value 

of hu is normalized between 0 and 1 inclusive. 

Let θ*
u be the slant angle when the fold at the point u is perfectly flat (i.e., hu is zero). When the 

fold at the point u is at the maximum height, we set θu’ is 0° since surface of tall folds faces the 

camera directly. The value of θu’ increases as the normalized height decreases. Thus, we have 

Equation (5.7). 

𝜃
 ′

= 𝜃 
∗(1 −   )                                                                      ( . ) 

The angle θ*
u at the flat surface point u can be estimated using the unit vector vu and vector c from the 

camera to the contour center in 3D space (see Figure 5.4(d)). Finally, we have 

𝑑 = 
𝐶(⌈ ̅ ⌉ + ⌊  ⌋   𝑠(𝑎𝑟 𝑠 𝑛(𝑣 ∙  ̂)(1 −   )))

 
 ′

 .                                      ( . ) 

Since we have du, we can obtain various points on the reverse-projected fold contours by multiplying 

vu and du as shown in Figure 5.4(b). These points scatter due to estimation errors of du. Moreover, du 

is not available for a point u in an occluded portion of a fold contour. To address these issues, we first 

remove outlier points using statistical boxplots. We found boxplots to be sufficiently effective for 
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most fold contours, except the innermost contour, which is difficult to estimate correctly due to 

occlusion. Then, we fit the remaining points to a plane using the least squares fitting algorithm. This 

plane becomes the plane the fold is laid on. Then, we recalculate vu by computing the cross point 

between 𝑣̂  and the plane for each point u. The values of constants C, T, B and K were determined 

experimentally as explained in Section 5.4.  

 

5.3. Colon Surface Generation 

There are two major types of surface: (i) surface of folds and (ii) surface between folds (or wall 

surface). We use Cubic Bezier curve [67] for interpolation of the surface. In our previous technique 

[51], we calculate the curves using a fixed fold width, which causes all folds to have same thickness 

(width), which is not the case for real colon folds. Furthermore, we did not consider smooth 

continuation of the surface among neighboring folds, which results in unnecessary protrusion in the 

reconstructed colon as shown in Figure 5.5(c). We propose a new method that uses several features 

extracted from an input colonoscopy image and geometrical relations between neighboring folds 

estimated in Section 5.2.2 to improve our previous surface generation technique. 

We sample P evenly distributed points from each fold contour and assign indices to these points 

starting from the topmost point (the one with the biggest y coordinate) in the clockwise direction. The 

value of P is based on experiments shown in Section 5.4. Interpolation for surface is applied on 

corresponding points with the same index on different fold contours. Since the same algorithm is 

applied to each point, we omit the point index from the notations used in the rest of the description. 
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                        (a)                           (b)            

     

                         (c)                            (d) 

Figure 5.5 (a) Original input image with flat surface on the left side. (b) Original image superimposed 

with the detected fold contours shown as blue lines. (c) Front view of the reconstructed colon segment 

using our previous technique shows incorrect protrusion of the fold closest to the camera; however, 

the original image (a) shows flat surface. (d) Front view of the reconstructed colon segment using the 

proposed technique with a better expression for the flat part of the fold. 

 

Figure 5.6 shows the fold surface on pi0 , one of the sampled points on the ith fold contour. The 

corresponding surface generated from this point consists of a Bezier curve pi0p'i2 on its left and 

another Bezier curve pi0pi2 on its right. Another Bezier curve pi2p'(i+1)2 expresses the wall surface, 

Wall i, between the ith fold and (i+1)th fold. The positions of pi2 and p'i2 are important and should be 

computed based on the estimated fold width and height in order to generate the surface that closely 

reflects the real surface. Thus, we use Wi and Hi computed as W∙wu and H∙hu, respectively where wu 

and hu are measured in the previous section. Recall that 0 < wu ≤ 1 and 0 ≤ hu ≤ 1. The constants 

W and H are the maximum fold width and fold height determined based on experiments in Section 
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5.4. Let qi denote the center of the fold contour i in 3D space. We compute the positions of pi2 and p'i2 

using Equations (5.9-5.13).  

𝑣 0⃗⃗⃗⃗  ⃗ =  𝑞 𝑝 0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗                                    (5.9) 

𝑣 1⃗⃗⃗⃗  ⃗ =  𝑝(  1)0𝑝(  1)0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗                                (5.10) 

𝑝𝑖1 = 𝑝𝑖0 +𝐻𝑖𝑣̂𝑖0                                 (5.11) 

𝑝𝑖2 = 𝑝𝑖1 +𝑊𝑖𝑣̂𝑖1                                 (5.12) 

𝑝′
𝑖2

= 𝑝𝑖1 −𝑊𝑖𝑣̂𝑖1                                (5.13) 

 

pi0

pi2

Fold i 
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pi1

vi1

vi0p'i2
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p(i-1)0

Fold i-1 

Fold i+1 

vi1

p(i-1)2

p(i+1)0

p'(i+1)2

Wall i-1 
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Figure 5.6 Diagram showing an interpolation of the fold surface of fold i. 

 

Equation (5.10) gives the vector that aligns the left and right neighboring folds of the fold i. 

Figure 5.6 shows 𝑣 1⃗⃗⃗⃗  ⃗ twice parallel to each other for ease of understanding of Equations (5.11-5.13). 

We use Equations (5.11-5.13) to position the points pi2 and p'i2 on this vector 𝑣 1⃗⃗⃗⃗  ⃗ so that the three 

folds align well and the fold width and height are taken into account. For a fold i which does not have 

the previous (i-1) or the next (i+1) fold, we use pi instead of inexistent p(i-1) or p(i+1) to calculate 𝑣 1⃗⃗⃗⃗  ⃗.  
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               (a)                                   (b) 

Figure 5.7 Diagram demonstrating the interpolation of the wall surface of wall i 

 

Besides the two end points, each Cubic Bezier curve requires two control points to describe the 

shape of the curve. We need two control points, ci1 and ci2, for the curve pi0pi2 as shown in Figure 

5.7(a). For curve pi2p'(i+1)2 connecting the ith and (i+1)th folds, we need two more control points, ci3 

and c'(i+1)3 as shown in Figure 5.7(b). The positions of the control points are also important as they 

contribute to the shape of the Bezier curve. The control points ci1, ci2 and ci3 are calculated using 

Equations (5.14-5.19). 

      𝑖1 = 𝑝𝑖0 + 𝐶1𝑊𝑖𝑣̂𝑖2                                 (5.14) 

𝑝𝑖 = 𝑝𝑖0 +𝐶2𝐻𝑖𝑣̂𝑖0                                 (5.15) 

𝑣  ⃗⃗⃗⃗  ⃗ =  𝑝 2𝑝(  1) ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗                                   (5.16) 

𝑣  ⃗⃗⃗⃗  ⃗ =  𝑣 1⃗⃗⃗⃗  ⃗(1−  𝑖) + 𝑣  ⃗⃗⃗⃗  ⃗ 𝑖                             (5.17) 

 𝑖2 = 𝑝𝑖2 −𝐶 𝑊𝑖𝑣̂𝑖                                (5.18) 

 𝑖 = 𝑝𝑖2 +𝐶 |𝑝 2𝑝′(  1)2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
| 𝑣̂𝑖                           (5.19) 
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(a)                              (b) 

Figure 5.8 (a) Expression for a flat portion of a fold with our old surface generation algorithm; (b) 

Expression for a flat portion of a fold with proposed new surface generation algorithm. Dots in (a) 

and (b) represent three consecutive folds. 

 

Let C1, C2, C3, and C4 be constants. The control point ci1 is set to be at a distance proportional to 

the width of the fold i on 𝑣 2⃗⃗⃗⃗  ⃗ ---the vector perpendicular to 𝑣 0⃗⃗⃗⃗  ⃗, as shown in Equation (5.14). To set 

the positions of ci2 and ci3, we calculate the position of the point p(i+1)3 using Equation (5.15) but for 

the (i+1)th fold, instead of the ith fold. This point is on the normal vector of the corresponding point on 

the next fold 𝑝(𝑖 1)0 at the distance proportional to the height of the fold. The vector 𝑣  ⃗⃗⃗⃗  ⃗ is 

computed using Equation (5.16) to ensure a smooth connection of the wall surface between the two 

neighboring folds. Control points ci2 and ci3 are on vector 𝑣  ⃗⃗⃗⃗  ⃗ which is linearly interpolated between 

vector 𝑣 1⃗⃗⃗⃗  ⃗ an d vector 𝑣  ⃗⃗⃗⃗  ⃗ by the height of fold i using Equation (5.17). The vector 𝑣  ⃗⃗⃗⃗  ⃗ of a flatter 

fold i (hi is closer to 0), should be closer to 𝑣 1⃗⃗⃗⃗  ⃗  than 𝑣  ⃗⃗⃗⃗  ⃗ and vice versa. We select 𝑣  ⃗⃗⃗⃗  ⃗ this way to 

avoid unnecessarily protrusion when the fold is flat as shown in Figure 5.8(b) and Figure 5.5(d). Our 

previous surface generation algorithm resulted in unnecessary bumps as shown in Figure 5.8(a) and 

Figure 5.5(c). We place ci2 using Equation (5.18) on 𝑣  ⃗⃗⃗⃗  ⃗ at the distance proportional to the width of 

the fold. By Equation (5.19), ci3 is placed on 𝑣  ⃗⃗⃗⃗  ⃗  at the distance proportional to the distance between 

pi2 and pa(i+1)2. Control points ci2 and ci3 on a same vector 𝑣  ⃗⃗⃗⃗  ⃗  make the curve at pi2 smooth. Control 

points c'i1, c'i2 and c'i3 can be obtained similarly. Due to noise within an image and estimation errors, 

some portion of consecutive folds may conflict with each other. In this case, we adjust the slant of the 

farther of the conflicting folds as follows. We iteratively increase the depth of the invading portion of 
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the farther contour and re-compute the plane of that contour based on the adjusted depths until the 

two folds no longer conflict. 

 

  

(a)                                 (b) 

  

(c)                                (d) 

Figure 5.9 (a) As a result of DfI algorithm in Section 5.2.2, fold contours are located in 3D space. (b) 

Wire-frame of a reconstructed colon segment after surface generation. (c) Final reconstructed colon 

segment rendered with OpenGL. (d) Half rendered virtual colon segment with unobserved areas 

shown in green. 

 

Figure 5.9(a) shows an example of reconstructed colon folds in 3D space. After interpolation 

between these folds to generate the wire-frame of the colon structure is completed (Figure 5.9(b)), we 

divide the wire-frame into small polygons for smooth rendering using OpenGL (Figure 5.9(c)). We 

render 40,000 (200 circumferential × 100 stacks × 2 triangles) polygons in between two folds to 

express smooth colon surface in our experiments. 
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(a) 

 

          (b)                  (c)                 (d)                  (e) 

Figure 5.10 (a) Olympus synthetic colon model. (b) Image (06990) taken by an endoscope camera 

inside the colon model in (a). (c) Image (b) superimposed with labeled fold contours in blue; the 

contours are numbered from 1 (the outermost contour) to 4 (the innermost contour); (d) 

Reconstruction result using the fold contours and Equation (5.4) with the brightness intensity 

calibration. (e) Side view of the half rendered reconstructed colon with the brightness intensity 

calibration. The section between the two white arrows in (e) correspond to the section of the colon 

model between the two white arrows in (a). Overall shape of the two sections is similar and the left 

parts of these sections are narrower than the right parts. 

 

5.4. Experimental Environment and Results 

We conducted quantitative evaluation of our technique using an Olympus synthetic colon model 

(Figure 5.10(a)) and computed average deviations of fold depths and fold circumferences of the 

reconstructed models from the synthetic colon model. For qualitative evaluation, we selected thirty-

eight images from different segments of the real colon from six screening colonoscopy procedures to 



58 

 

 

 

 

 

show that our technique works on real colonoscopy images as well. The input image resolution was 

720x480 pixels. For displaying the virtual colon, we used the OpenGL default projection model 

(perspective projection) because OpenGL does not natively support the equidistance projection used 

in fish-eye lenses. Thus, a slight distortion and different depth perception is noticeable for some 

images.  

Table 5.1 shows parameter values used in our implementation. The values were determined based 

on experiments using a set of images not included in the image set for the evaluation in Section 5.4.1 

and 5.4.2. FoV was set to 110 since images were cropped and the actual coverage was found to be 110 

as observed during our experiments to determine the formula for brightness intensity calibration. 

 

Table 5.1 Parameters and default values 

Step Parameter and value 

Section 5.2.2 

C = 150 

K = 10 

T = 20 

B =15 

FoV =110 

m =1 

Section 5.3. 

 

P =200 

C1 = 1/2 

C2 = 15 

C3 = 1/2 

C4 = 1/5 

W=0.005; H=0.25 

 

5.4.1. Tests on images from an Olympus synthetic colon model 

The picture of the synthetic colon model is shown in Figure 5.10(a). The model has three sections: 

the straight beginning with the narrow end; the curve section in the middle, and the ending straight 
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section. With the model, we measured outside distances between folds and outside fold circumference 

as measuring the inside circumference of the fold is difficult. We used the information as ground truth 

for objective evaluation of the reconstruction algorithms. We picked four images from each section of 

the colon model. We selected these images since the fold contours in these images were detected well 

so that we can focus on evaluating the reconstruction results. 

 

Table 5.2 Depth represents the distance from the camera. Circf. represents the circumference. MAD is 

the mean absolute difference (error) between measurements taken from the ground truth and the 

reconstructed model using the default setting. The lower the MAD, the better the result. 

 Ground truth (mm) Reconstructed model Absolute Difference 

Depth Circf. Depth Circf. Depth Circf. 

Fold 1 28 200 42 202 14 2 

Fold 2 65 184 73 184 8 0 

Fold 3 108 180 111 190 3 10 

Fold 4 128 160 139 129 11 31 

MAD 9 11 

 

Performance evaluation on the synthetic colon model  

Figure 5.10(a) is the picture of the model. Figure 5.10(b) shows an image taken from the inside of 

the colon model. The detected contours are automatically labelled and shown in Figure 5.10(c). 

Figure 5.10(d) is the reconstruction result with the parameter values in Table 5.1. Comparing Figure 

5.10(b) and (d), the right part of the outermost fold, fold 1, is shown the generated colon with the 

highest amount of protrusion as shown in the input image (Figure 5.10(b)). The left part of fold 1 in 

the virtual colon model is less protruded than the right part of fold 1. The upper and lower parts are 

flat as in the input image. Table 5.2 shows the ground truth of each fold as well as measurements 

taken from the virtual colon generated by our algorithm using Figure 5.10(b). We scaled the 

reconstructed circumferences and depths using the same scale factor. The scale factor was determined 
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by matching the circumference of fold 2 of the virtual colon with the ground truth of fold 2. In this 

case, we used fold 2 to determine the scale factor since its shape is most similar to the real fold 2. The 

mean absolute difference (error) of the depth and the circumference are 9 and 11, respectively.  

Table 5.3 shows MAD for each image in different sections of the colon model. The average MAD for 

depth and circumference are computed using MADs of all twelve images. The average depth error is 

around 4 mm with the minimum depth error of only 1 mm. We observed that the endoscope can see 

folds within the range of 20-150 mm from the camera. The average depth error of 4 mm is small 

compared to this range. The average circumference error is around 12 mm, which is less than 1/10 of 

the circumference of folds in the colon model (140-200 mm).  

 

Table 5.3 MAD in depth and MAD in circumferences of 4 images for each section 

 Image ID Depth MAD Circf. MAD 

Section 1 

Straight 

06990 9 11 

00080 5 7 

13000 4 12 

07230 5 23 

Section 2 

Curve 

00170 2 4 

00180 1 0 

00270 5 0 

00370 1 30 

Section 3 

Straight 

15010 3 9 

16220 8 16 

15950 4 26 

02870 2 7 

Average MAD 4.1 12.1 

 

 

Determination of suitable value of m in Equation (5.4) 

Table 5.4 shows that the value m=1 gives the least error for both depth and circumference while 
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m=2 (the original Lambert for both depth ives the highest error. 

 

Table 5.4 Average estimation errors over twelve input images in 

Table 5.3 using different values of m in Equation (5.4) 

Average MAD of 0.5 0.75 1.0 1.25 2.0 

Depth 13.3 8.5 4.1 8.2 30 

Circf. 29.5 18.8 12.1 14.3 38.2 

 

Effectiveness of brightness intensity calibration 

Table 5.5 shows that with intensity calibration, the error is lower for both depth and 

circumference estimates.  

 

Table 5.5 Effectiveness of intensity calibration on reconstructed results over 

twelve input images in Table 5.3  

Average MAD of w/ intensity calibration w/o intensity calibration 

Depth 4.1 6.8 

Circf. 12.1 15.2 

 

5.4.2. Tests on images of real colons 

We evaluated proposed reconstruction technique objectively in terms of overall shape of 

reconstructed models with the synthetic colon. In this section, we evaluate our technique qualitatively 

about how well fold shapes are expressed with real colons since we could not measure fold protrusion 

(height) and thickness (width) inside the synthetic colon. Moreover, we cannot obtain the ground truth 

shape of real colons even with CT data since the positions of the patient during CT colonography and 

colonoscopy are different, and the colon is not rigid. However, we can feel the amount of protrusion 

and thickness of folds when looking at them in 2D images. We can compare how similar protrusion 

and thickness by looking at the images of the inside of the real colon and the rendered reconstructed 
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models under the same view direction and distance.  

Six cases are shown in Figure 5.11. The original input images are shown in the first column of Figure 

5.11. The second column shows the corresponding input images overlaid with automatically detected 

fold contours. In the third column, front views of virtual colons reconstructed by the proposed 

algorithm are presented. Side views of the half rendered virtual colons are displayed in the fourth 

column.  

          (i)                  (ii)                 (iii)                 (iv) 
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Figure 5.11 (i) Original input image. (ii) Automatically detected fold contours superimposed on the 

input image. (iii) Front view of the virtual colon. (iv) Side view of the half rendered virtual colon. (a) 

16646: rendered fold shape looks closely similar to that in the input image (b) 17885: parts of the 

folds are beyond the original image; contours of the third and fourth outermost folds were wrong 

causing the overall shape of the colon to look abnormal as shown in the side view; but the protrusion 

and thickness of the rendered folds look close to the input image (c) 20102: smooth surface is 

rendered correctly (d) 21696: the innermost fold is placed too far from the camera (e) 27006: 

triangular shape folds are rendered correctly (f) 59214: the rendered fold shape and overall shape look 

similar to that of the input image. 

 

Table 5.6 Execution time per module 

Step Execution time (in seconds) 

Depth estimation 0.008 

Surface generation 0.016 

Polygon construction 0.075 

Unobserved area calculation 0.128 

Total 0.227 

 

 

5.4.3. Average execution time per image 

We ran our reconstruction software given the fold contours on a 64-bit Windows 7 workstation 

with Intel Xeon E5504 CPU (two 2.0 GHz processors) and 6 GB of RAM. Table 5.6 shows the time 

taken for each key step of the colon reconstruction techniques. The calculation of the unobserved area 

and the polygon construction is the most time consuming. 
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5.4.4. Discussion 

We have shown the effectiveness of our intensity calibration in lowering the error of fold depth 

and circumference. Our modification of the Lambertian cosine law is effective. Our method for 

estimating fold protrusion and thickness is promising since it expresses flat surface and protruded 

surface effectively for most images we observed in our data set. The quality of the 3D reconstruction 

result largely depends on the result of contour estimation. Good contour estimation gives good 3D 

reconstruction results with low depth and circumference estimation errors as demonstrated in Tables 

5.2 and 5.3. We observed more errors for folds far from the camera because of occlusion. The 3D 

reconstruction technique itself is promising, but needs further improvement to overcome the 

aforementioned drawbacks. In the next chapter, we improve our contour estimation technique by 

tracking fold edges between consecutive frames. Using multiple images is advantageous in contour 

completion since partially occluded folds in one frame may appear unconcluded in another frame.  

 

5.5. Conclusion 

In this chapter, we present our new depth from intensity 3D reconstruction technique of a colon 

structure. We use intensity calibration to handle uneven distribution of light rays on colon surface. We 

found that ambient light affects the relationship between brightness intensity and distance of colon 

surface from the camera described by the Lambertian cosine law. We proposed a modification of the 

Lambertian cosine law and showed the effectiveness of our modification. The technique is the first 

fully automated technique that is able to reconstruct a colon structure from a 2D colonoscopy image. 

Most other existing work focuses on reconstructing the colon surface. The proposed 3D 

reconstruction technique is promising as shown in our experimental results using measurements of an 

Olympus synthetic colon model as ground truth. The average depth estimation error and 
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circumference estimation error are 4.1 mm and 12.1 mm, respectively. Our reconstructed results on 

images of real colons are quite good in terms of expressing fold protrusion and fold thickness based 

on our observation.  
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CHAPTER 6 3D COLON SEGMENT AND COLONOSCOPE MOTION 

RECONSTRUCTION FROM SEQUENTIAL COLONOSCOPY IMAGES 

 

This chapter introduces a technique that reconstructs the motion of a colonoscope as well as a 3D 

virtual colon segment using sequential colonoscopy images. The first step is tracking fold edges 

across the sequential input colonoscopy images. In the second step, we build a model of a 3D colon 

segment for each input frame in a local coordinate system and register the local model into the 

reference /global coordinate system using the tracking information in the first step. As a result of the 

registration, we have an extended 3D colon segment. The origins of the local coordinate systems in 

the global coordinate system form the trajectory of the colonoscope. The third step is colon surface 

generation and rendering of the model for visualization. This step can be done when visual feedback 

is required. We complete fold contours by pairing fold edge segments and / or adopting the fold shape 

from the neighboring fold edges. We use the same algorithm for surface generation as in Section 5.3 

after the all closed fold contours are obtained.  

 

6.1. Fold Edge Tracking 

We present our technique to reconstruct a 3D colon segment from a single colonoscopy image in 

Chapter 5. To establish correspondence among 3D colon segments reconstructed from different 

images, we find correspondence across fold edges among these images since the models are 

reconstructed based on the fold edges.  

To track a fold edge across frames, we sample a number of points along each fold edge of the 

current frame and find the corresponding tracked points in the next frame using the Lucas-Kanade 

(LK) tracking algorithm [68]. Other optical-flow tracking algorithms that do not incur significant 
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processing overhead may be used. A good feature point to track for LK tracking is a corner point with 

strong derivatives in two orthogonal directions. Since our feature points are along the edges, they are 

not necessary the best feature points for LK tracking. Furthermore, the corresponding tracked points 

in the next frame may not locate along any fold edge of the frame. Therefore, we select new feature 

points to track every frame and use them to locate corresponding points (tracked points) in the next 

frame only. In other words, feature points in frame i are used to find tracked points in frame i+1; after 

that new feature points on the fold edges of frame i+1 are selected and used for tracking with frame 

i+2, and so on. To select feature points of an edge, we sample them at a fixed number of pixels apart 

starting from the first pixel of the edge. An alternative to this simple technique is to find feature points 

closest to the tracked points and use them for tracking instead of resampling new feature points every 

frame. However, this alternative incurs more computation overhead and is sensitive to the initial 

selection of good feature points to track. 

We use the tracking results to assign a global edge ID to each edge, depending on whether the 

edge in the current frame corresponds to an edge in its previous frame as follows. We first label each 

tracked point and its 8 connected neighbors in frame i with the global edge ID of the corresponding 

edge in frame i-1 (i.e., global edge ID of the edge used to find these tracked points). If any edge pixel 

in frame i is in the same pixel location as one of the labels, the edge pixel is assigned that label. An 

edge is either assigned the lowest value (i.e., lowest global edge ID) among the labels assigned to its 

edge pixels or is given a new unique global edge ID if its edge pixels are not assigned any labels (i.e., 

not overlapping with any edges in the previous frame). 

 

6.2. Model Registration 

We have one 3D colon segment reconstructed from one input colonoscopy image in its own local 
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coordinate system. A colon model is a set of points reconstructed based on fold contours. From fold 

edge tracking, we also have correspondence among points between neighboring frames. In other 

words, we have multiple models and we know the correspondence among the parts of the models.  

 

x

y

o1
z

f11f12

 

x

y

o2

z

f21f22

f23

 
x

y

o3
z

f31f32
f33

 

         (a)                     (b)                            (c) 

x

y

z
o1

o'2

o'3
o'4

o'5

f’1f’2
f’3

f’4

f’5

 
(d) 

Figure 6.1 (a-c) Three virtual colon models, each in its own local coordinate system; small cylinder 

represents the camera location; the camera is withdrawn; (d) Global virtual colon on a global 

coordinate system generated from merging the virtual colons in (a)-(c); the origin o1 is used as the 

origin of the global coordinate system, the origin o2 in (b) becomes o2’ and the origin o3 in (c) 

becomes o3’ in the global coordinate system; folds f11, f21 and f31 in the three local coordinate systems 

correspond to the same global fold f ’1 in the global coordinate system. Folds f12, f22 and f32 in the local 

coordinate systems correspond to the same global fold f ’2. Folds f23 and f33 in the local coordinate 

systems correspond to the same global fold f ’3. Folds f ’3, f ’4, and f ’5 are reconstructed from 

subsequent images not shown here. The camera motions of the colonoscope are obtained. 
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Thus, we can superimpose all the models in the same global coordinate system to create a longer 

virtual colon segment as well as the trajectory of the endoscope. This concept is illustrated in Figure 

6.1. We call this process registration. A model in a local coordinate system before registration is 

called a local model and the model registered in a global coordinate system is called a global model.  

However, the local models do not have identical shape even for the same part of the colon due to 

noises in input images, estimation errors of our Depth from Intensity (DfI) algorithm, and colon 

mobility. In addition, each local model may cover slightly different folds. Furthermore, different 

illumination among input frames due to a fold blocking the light source causes different scales of 

local models. We use the least-squares approach by Umeyama [59] to estimate transformation 

parameters from one local model to another local model such that the transformation error is 

minimized. 

In this section, we first describe a method to build a local model in its own local coordinate 

system for each input image in Section 6.2.1. Second, in Section 6.2.2, we describe an algorithm that 

effectively registers local models into a global model in the global coordinate system. The coordinate 

system of the model derived from the first input frame is used as the global coordinate system. The 

local model of the subsequent frame is registered with the global model reconstructed from all its 

prior frames and then merged into the global model. In Section 6.2.3, we derive a formula that 

calculates camera trajectory with camera view direction. Next, we present the technique for pairing 

fold edges and completing fold contours in 3D space in Section 6.2.4. Then, we use the same 

algorithm discussed in Section 5.3 for rendering the virtual colon.  

 

6.2.1. Construction of a Model in a Local Coordinate System 

First, we reversely project the points used to track fold edges in 2D space described in Section 6.1 
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in 3D space using DfI and the reverse projection algorithm presented in Sections 5.2 and 5.1, 

respectively. Thus, for each input frame, we have a local 3D coordinate system where the 

colonoscope is at the origin and the model is located relatively from the colonoscope. The points are 

scattered and form a rough shape of a colon segment as shown in Figure 6.2. The pseudo code for 

building a local model for a given frame is shown in Figure 6.3. 

 

    

                    Frame i-1                             Frame i 

     

      Model Mi-1 built from frame i-1             Model Mi built from frame i  

Figure 6.2 Top row: images from the colonoscope taken inside the Olympus synthetic colon shown in 

Figure 2.1(b). Green dots show the sample points used for tracking in frame i-1 and the corresponding 

tracked points in frame i. Bottom row: corresponding local models. Red, green and blue axes 

represents x, y and z axes, respectively. 
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Figure 6.3 Pseudo code for building a local model of the input frame 

 

6.2.2. Transformation Matrix Calculation 

We use two steps: (1) calculating transformation parameters which registers a local model of 

frame i (Mi) to its previous local model (Mi-1) and (2) computing transformation parameters which 

registers Mi to the global model by accumulating all the transformation parameters from the first 

frame up to frame i. In this way, we can obtain the camera motions between consecutive frames all 

the way up to frame i.  

The problem definition for the first step is shown below. 

 Given Mi = {pij}; i = 1, 2, …, m; j = 1, 2, …, n; (The model Mi is reconstructed from frame i.)  

 Calculate Ti, Ri and Si to transform Mi with the least mean squared error between the 

transformed Mi and Mi-1 where i > 1, Ti is a 3x1 translation matrix, Ri is a 3x3 rotation matrix, 

buildLocalModel(f){ 

Input. f: frame  

Output. M: Set of 3D points reconstructed from this frame 

 M ← {}  

 for ( i ← 1; i ≤ number of edges in f; i++) { 

  Ei ← {} // Ei: Set of points assigned to edge i 

  for ( 1 ≤ j; j ≤ the number of points in the edge i in f ; j++){ 

   // obtain a reverse projection vector vij for each pij (point j on edge i) 

   vij ← reverseProjection(pij) 

   // obtain the corresponding point in 3D space 

   // DfI() is the function that returns the depth using the DfI algorithm 

   // unitVector(v) returns the unit vector of the input vector v 

   p’ij ← unitVector(vij)* DfI(pij) 

   Ei ← Ei ∪ {p’ij}  

  } 

  M ← M ∪ Ei 

 } 

 return M 

} 
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and Si is a scalar scaling factor. 

We employ Umeyama’s solution[59] to solve this problem. As a result, calculated Si, Ri and Ti 

register Mi into the local coordinate system of Mi-1. In other words, SiRiMi + Ti is registered in the 

local coordinate system of Mi-1 (i > 1) and S1R1M1 + T1 is registered in the global coordinate system 

where S1 = 1, R1 = [
1 0 0
0 1 0
0 0 1

], and T1 = [0 0 0]T which represent no scaling, no rotation, and no 

translation, respectively. 

In the second step, we register Mi into the global coordinate system. To transform the local model 

Mi to MG
i which is a part of the global model in the global coordinate system, we can repeatedly apply 

the scaling factors, the rotation matrices, and the translation matrices from frame 1 to frame i as 

shown in Equation (7.1). 

𝑀𝐺
𝑖 = S1R1( ∙∙∙ (Si-2Ri-2(Si-1Ri-1(SiRiMi + Ti) + Ti-1) + Ti-2) ∙∙∙ ) + T1            (7.1) 

𝑀𝐺
𝑖 = S1S2 ∙∙∙ SiR1R2 ∙∙∙ RiMi + S1S2 ∙∙∙ Si-1R1R2 ∙∙∙ Ri-1 Ti + ∙∙∙ + S1R1T2 + T1             (7.2) 

𝑀𝐺
𝑖 = 𝑆𝐺

𝑖𝑅
𝐺
𝑖𝑀𝑖 + 𝑇𝐺

𝑖,                         (7.3) 

𝑆𝐺
𝑖 = ∏ 𝑆𝑘

𝑖
𝑘=1 ,                            (7.4) 

𝑅𝐺
𝑖 = ∏ 𝑅𝑘

𝑖
𝑘=1 ,                            (7.5) 

𝑇𝐺
𝑖 = 𝑇𝐺

𝑖 1 + 𝑆𝐺
𝑖 1𝑅

𝐺
𝑖 1𝑇𝑖,                     (7.6) 

Equation (7.3) transforms the local model Mi to MG
i in the global coordinate system, directly. 

Note that a different problem formulation is possible. For instance, instead of finding the best 

transformation matrix between adjacent frames, one can consider a range of previous or future frames 

to find the best matching model with the least transformation error. This approach should produce 

better registration results, but incur more processing overhead to process additional frames. 
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6.2.3. Colonoscope Motion Calculation 

Transformation matrices provide camera motions as shown in Equations (7.7-7.9). We obtain the 

camera position at frame i (CL
i) from repeated applications of the translation matrices obtained from 

registering adjacent frames starting from the first frame to the current frame i. We obtain the camera 

view vector at frame i (CV
i ) where the camera is directing and the camera up vector at frame i (CU

i) 

which is perpendicular to the camera view vector. The camera up vector can express camera torque.  

Camera location 𝐶𝐿
𝑖 = 𝑇𝐺

𝑖                           (7.7) 

Camera view vector 𝐶𝑉
𝑖 = ∏ (𝑅𝑖)

𝑖
𝑘=1 𝐶𝑉

1                (7.8) 

Camera up vector 𝐶𝑈
𝑖 = ∏ (𝑅𝑖)

𝑖
𝑘=1 𝐶𝑈

1,                 (7.9) 

where CV
1 = (0, 0, -1) is the initial camera view vector; CU

1=(0, 1, 0) is the initial camera up vector; 

and CL
1 = (0, 0, 0) is the initial camera location in the local coordinate system. 

 

6.2.4. Merging MG
i to the global model G 

First, we find a representative curve (RC) in 3D space for each edge in a given MG
i. Each RC of 

MG
i is assigned the global edge ID given from the fold edge tracking step. Points on the same edge 

may be scattered at different depths from the camera as shown in Figure 6.5(a). Therefore, we place 

these points on the same average depth by repeatedly calculating an average curve from the average 

curve in a previous iteration. The number of iterations is equal to the number of points on the RC. To 

compute the average curve of an RC, we start from the first point on the edge to the last point on that 

edge. For each point, we replace its depth with the average depth of itself and its neighboring point on 

the same edge. Figure 6.5(b) shows nine RCs obtained from the model MG
i as a result of this step 

applied to the points in Figure 6.5(a).  

Second, we merge the RCs of MG
i with those of the global model G. The pseudo code is shown in 
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Figure 6.4. As a result of this step, some existing RCs of G may become longer and the positions of 

points on these RCs may be updated. 

 

 

Figure 6.4 Pseudo code for merging MG
i to the global model G 

 

mergeMtoG(MG
i, G){ 

Input. MG
i: Local model transformed to global coordinate system 

      G: Global model 

Output. G: Global model after merging with MG
i 

For each RCj of MG
i, 

   For each RCk of G with the same global edge ID as RCj, 

      if RCk is longer than RCj     // the number of points of RCk is more than that of RCj  

         For each point pjl on RCj,             

           Compute the Euclidean distance between pjl and the nearest point pkm on RCk   

           if the distance < THRSD_DIST,  

              Update the value of pkm to be at the average location of pjl and pkm in RCk 

      else 

         For each point pkm on RCk, 

           Compute the Euclidean distance between pkm and the nearest point pjl on RCj   

           if the distance < THRSD_DIST,  

              Update the value of pjl to be at the average location of pjl and pkm in RCj 

         Replace RCk with RCj from G   

return G 

} 
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                (a) Model MG
i                       (b) RCs in Model MG

i 

Figure 6.5 Example of deriving representative curves (RCs) 

 

6.3. Fold Contour Completion for Rendering 

The previous steps are performed for every frame to update the global model G. However, the 

fold contour completion and rendering step only run when the endoscopist wants to visualize the 

global model G with the unobserved area labeled and the motion of the endoscope. In this step, we 

group RCs of G and connect the grouped RCs to make a closed fold contour. In order to group these 

RCs, we need to find planes in which these RCs are laid on. The difficulty is that some RCs may be 

too short or RCs are close to straight. In these cases, existing linear plane fitting techniques could 

result in incorrect planes for those RCs. We design a technique to find a representative plane (RP) for 

each RC first and group nearby RPs to find an average RP for the group. To generate a smooth 

connection between a pair of RCs, we use Cubic Bezier curve when the gap between the two tips of 

the RCs in the pair is smaller than a threshold. Otherwise, we adopt the shape from the nearest RC 

covering the gap. If no nearest RC can cover this gap, we do not use this RC to create a fold contour. 

1. Filtering noise RCs  

 Remove short RCs: We filter short RCs out as short ones are likely mis-detected blood vessel 

edges or wrong tracking. We compute the sum of the Euclidean distance of the x, y, z 
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locations of the neighboring pairs of points with the same global edge ID. We discard this RC 

when the sum is smaller than a threshold, THRSD_VALID_RC_LENGTH.  

 Discard non-key RCs: This step is to pick one key RC out of closely located RCs and 

discards non-key RCs. First, we sort RCs in the decreasing order of their length (the sum of 

the Euclidean distance between the neighboring points). Then, for each RCi, we find an RCj 

(where j ≠ i) closer to RCi than a threshold, THRSD_DIST_BTW_RC, and discard this RCj. 

To calculate the distance between RCi and RCj, for each point in RCi, we find the nearest 

point in the RCj based on the Euclidean distance among them. The average of these distances 

is the distance between RCi and RCj. 

2. Grouping the remaining RCs 

 To group nearby RCs together, we need distance among RCs. Thus, we find a representative 

plane (RP) for each RC and the distance among RPs is used for grouping. RP is perpendicular 

to the vector directing to the center of the innermost fold (CIF) projected in 3D space. Each 

RP is centered at the mid-point of its RC and has the reverse projection of CIF as its normal 

vector as shown in Figure 6.6(a). Once we find the corresponding RP of an RC, we project all 

the points on the RC to the RP along their reverse projection as illustrated in Figure 6.6(b). 

 

CIF

RCRP

 

CIF

 

                  (a)                                        (b)  

Figure 6.6 Diagram showing a representative plane (RP) of a given RC 
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 Starting from the RP with the lowest global ID as the current RP, we group RPs whose 

Euclidean distance from the current RP is within a threshold, THRSD_DIST_BTW_RP. If 

there is at least two RPs in the group, we compute the average RP among the RPs in the 

group. Next, we project all the points on the RPs in the group to this average RP along the 

reverse projection vector of each point. The RPs in the group is excluded from further 

grouping. We consider the RP with the lowest global ID among the remaining RPs as the 

current RP and repeat the same process until all RPs are considered.  

 

3. Fold contour completion for each RP 

Each RC in an RP has the start tip and the end tip. We determine the center c of the fold as the 

average location of all the end points of all the RCs in the RP. Choose an RCi and compute the angle 

(∠ei c sj) between the end tip (ei) of the RCi, c, and the start tip (sj) of the RCj. We pair RCj with RCi 

which has the smallest ∠ei c ej using the RC connection technique described below. If there is no RCj 

that can be paired with, we use the shape adoption technique described below. We repeat this process 

until we can no longer pair any remaining RC in this RP. 

RC connection: To connect ei and sj, we first compute the tangent lines: one for ei and the other for sj 

using the tip and the kth point from that tip where k is determined based on experiments. We select a 

control point on each tangent line at the distance d from the tip where d = control_prop * Euclidean 

distance between the ei and sj. We do not connect sj of RCj and ei of RCi if the distance between the 

two control points is greater than the distance between sj and ei since, in this case, the two tangential 

lines do not meet where the connection may not be smooth.  

Shape adoption: We calculate the range (polar angle [0, 360)) uncovered by RCi which is [θi, θj] 
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where θi is the polar angle of ei and θj is the polar angle of sj as shown in Figure 6.7. We find RCs in 

other RPs that overlap with the range [θi+α, θj −α]. If more than one RC satisfies the condition, select 

the RC of the closest RP in the Euclidean distance. Then, project the points on the overlapping 

segment of the selected RC on this RP on their reverse projection vector. The margin α is to allow a 

smooth connection between the RCi and the adopted segment where α = (θj - θi) * margin_prop. Next, 

connect the adopted segment and the two tips of the RCi using the RC connection technique. If there 

is no RC in any other RPs to adopt the shape from or the uncovered polar angle after the shape 

adoption is still at least the threshold angle, we discard this RP from fold contour completion. The 

values of the parameters control_prop and margin_prop and thresholds were determined 

experimentally and will be described in Section 6.4. 

 

θi

θj
α

α

ei

sj

c

Target range 

to adopt shape

 

Figure 6.7 Shape adoption; sj denotes the start tip of RCj and ei is the end tip of RCi 

 

4. Finding the plane for each completed contour 

The completed contours are forced on RPs which has different slant from a real plane that the 

contour is lying on. Thus, we find a natural plane for each completed fold contour using the same 

method in Section 5.2 except that we use only the points on the real RCs but not the points created 
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from Bezier Curve or the shape adoption technique. 

5. Colon surface generation 

We generate colon fold and wall surface using the same method in Section 5.3. 

 

6.4. Experimental Setup and Results 

We developed our software in C++ language with OpenCV and OpenGL. We evaluated the effectiveness 

of our technique on the reconstructed camera motion and the reconstructed colon structure. We used 

the same synthetic colon as in Section 5.4.1 and the same ground truth. The depth of folds and fold 

circumference ground truth were measured from the outside of the synthetic colon by our domain 

expert. The domain expert inspected the inside of the synthetic colon by repeatedly performing a full 

insertion (from the beginning to the end of the synthetic colon) followed by a full withdrawal (from 

the end to the beginning of the synthetic colon). Note that the measurements taken from the outside of 

the synthetic colon may be different from those taken from the inside of the synthetic colon during the 

inspection since the synthetic colon can change its shape depending on the amount of air/CO2 used 

during the inspection and endoscope positions. However, the domain expert is not able to measure the 

circumferences of the colon folds from the inside of the synthetic colon.  

Although Figure 6.8 shows that the curvy section of the colon (section 2) has several colon folds, 

most images of the inside of this section is either wall or blurry or has distorted fold shape due to the 

endoscope movement into this section. For the following experiments, we selected a number of image 

sequences and used our technique to reconstruct the corresponding colon segment and the camera 

motion from these sequences. We used a total of 898 images for evaluation of camera motion 

direction and used a total of 456 images for evaluation of reconstruction of the colon structure. These 

images were originally captured at the capturing rate of 29.97 fps at the resolution of 720x480 pixels. 
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Figure 6.8 Olympus synthetic colon used in our experiments 

 

Table 6.1 shows parameter values used in our implementation. The values were determined based 

on experiment using a set of images not included in the image set for evaluation in Section 6.4.1 and 

6.4.2.  

 

Table 6.1 Parameters and default values 

Step Parameter and value 

Section 6.2.4 THRSD_DIST = 0.005 

Section 6.3 

 

THRSD_VALID_RC_LENGTH = 0.4 

THRSD_DIST_BTW_RC = 0.07 

THRSD_DIST_BTW_RP = 0.1 

k = 5 

control_prop = 0.4 

margin_prop = 0.25 

 

 

 

 

6.4.1. Results on camera motion estimation 

Camera motion consists of translation, rotation, and scaling. Camera translation and rotation are 
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obvious during colonoscopy. Scaling is caused by our reconstructions, not the actual change in the 

scale of the colon. With Depth-from-Intensity, the depth of the reconstructed colon folds depends on 

the brightness intensity. The brightness can change significantly in subsequent frames. For instance, 

since camera lens and the light source are not exactly on the same location a protruding fold near the 

light source may block significant amount of light and cause less illumination for the folds behind it. 

We evaluate each aspect of the camera motion separately. 

Evaluation of Translation Direction 

While we cannot measure the exact amount of camera translation, we can observe the direction of 

the translation in each axis. For the z-axis, the camera direction is either backward (B/+), forward (F/-

), or no motion (N). For the y-axis, the direction is either up (U/+), down (D/-), or no motion (N). For 

the x-axis, the direction is right (R/+), left (L/-), or no motion (N)  Table 6.2 shows the ground truth 

camera direction denoted as GT, the calculated amount of camera motion and direction, the 

normalized camera motion in the x-axis, y-axis, and z-axis, and the score. The Case ID indicates the 

start frame of the image sequence used in that case. The # frames indicates the number of frames used 

in that case. We originally wanted to use at least 30 frames per case; however, in some cases, 30 

frames include more than one camera motion. Therefore, we only selected a sequence that shows a 

single camera motion for evaluation. The score is the number of correct camera motion directions 

including no motion the software determines. The score is between 0 and 3 because there are three 

axes. A higher score is desirable. When the absolute normalized camera motion is less than 0.2 (20% 

of the distance the camera moved), it is difficult to observe the motion direction in that axis from 

watching the corresponding image sequence. Therefore, we treat such a motion as no motion. Table 

6.2 shows the results. In Case 13253, the camera direction in each of the three axes is correct. The 

score is therefore 3. The absolute normalized score in the x-axis is 0.03 less than 0.2; the software 
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determines that there is no clear motion, which is also correct according to the ground truth. Only in 

the z-axis, the software found a significant camera forward movement, which is the same as the 

ground truth. Five out of ten cases show correct camera directions in all axes. Table 6.2 shows that the 

technique gives the correct camera translation directions for 73% (22/(3*10)) of the translation 

directions. 

 

Table 6.2 Results of camera motion evaluation: GT is the ground truth direction observed manually. 

Cal. x, y, z are calculated amount and direction of motion in x, y, and z direction, respectively. Cal. 

Abs. travel dist. is the absolute distance the camera translates. Nor. x, y, and z capture the normalized 

amount (Cal. /Cal. Abs travel distance) together with the direction of the translation in x-axis, y-axis, 

and z-axis, respectively. The camera direction in the x-axis is denoted with right(+)/left(-), in the y-

axis with up(+)/down(-) , and in the z-axis with backward(+)/forward(-) 

Case 

ID 

# 

frames 

GT 

(x/y/z) 

Cal.  

x 

Cal.  

y 

Cal.  

z 

Cal. Abs. 

travel 

dist. 

Nor. x Nor. y Nor. z Score 

13253 30 N/N/F -3.3 5.8 -101.3 101.5 -0.03 (N)  0.06 (N) -1.00 (F) 3 

13284 30 N/N/F -10.6 -15.7 -91.2 93.2 -0.11 (N) -0.17 (N) -0.98 (F) 3 

13437 13 R/N/F 56.4 38.2 -117.4 135.7 0.42 (R) 0.28 (U) -0.87 (F) 2 

4984 17 R/U/N 3.6 3.3 -14.5 15.3 0.24 (R) 0.22 (U) -0.95 (F) 2 

6165 30 L/N/B -12.0 0.2 22.6 25.6 -0.47 (L) 0.01 (N) 0.88 (B) 3 

6846 20 N/N/B -2.2 9.2 -8.2 12.5 -0.18 (N) 0.74 (U) -0.66 (F) 1 

12915 30 N/N/B 8.3 2.8 4.3 9.8 0.85 (R) 0.29 (U) 0.44 (B) 1 

12521 18 N/U/F -0.5 22.3 -27.8 35.7 -0.01 (N) 0.62 (U) -0.78 (F) 3 

17355 12 N/D/B -3.7 -4.3 19.5 20.3 -0.18 (N) -0.21 (D) 0.96 (B) 3 

16074 29 L/D/B -6.9 20.9 -21.4 30.7 -0.22 (L) 0.68 (U) -0.70 (F) 1 
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Evaluation of Rotation Direction 

In order to evaluate the rotation direction, we decompose the rotation matrix into an individual 

rotation matrix for each axis. The rotation matrix for each axis in the right-handed coordinate system 

is shown below. 

𝑅𝑥(𝛼) =  [
1 0 0
0 cos𝛼 −sin𝛼
0 sin𝛼 cos𝛼

] 

𝑅𝑦(𝛽) =  [
cos𝛽 0 sin𝛽
0 1 0

−sin𝛽 0 cos𝛽
] 

𝑅𝑧(𝛾) =  [
cos 𝛾 −sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

]. 

 

The combined rotation about the x-axis, the y-axis, and the z-axis, respectively is 

𝑅𝑧(𝛾)𝑅𝑦(𝛽)𝑅𝑥(𝛼) = [

cos𝛽 cos 𝛾 sin𝛼 sin𝛽 cos 𝛾 − cos𝛼 sin 𝛾 cos𝛼 sin𝛽 cos𝛾 + sin𝛼 sin 𝛾
cos𝛽 sin𝛾 sin𝛼 sin𝛽 sin 𝛾 + cos𝛼 cos 𝛾 cos𝛼 sin𝛽 sin𝛾 − sin𝛼 cos 𝛾
−sin𝛽 sin𝛼 cos𝛽 cos𝛼 cos𝛽

] . 

Thus, we decompose the rotation matrix R computed in Section 6.2.2 as below. 

β = asin(-R31) 

α = atan(R32/R33) 

γ = atan(R21/R11) 

For this evaluation, the GT of the rotation about the x-axis (Up, Down), the y-axis (Left, Right, and 

the z-axis (Counter Clockwise, or Clockwise), respectively are determined for each image sequence. 

When the camera rotation about an axis is less than about 7°, it is difficult to observe the rotation 

about that axis from watching the corresponding image sequence. Therefore, when the absolute 

computer gernerated score is less than 7°, we treat such a rotation as no rotation. The score is the 

number of correct rotation directions in the three axes.  
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Table 6.3 Results of rotation evaluation on synthetic colon model images in the x-axis: up (+)/ down 

(-), in the y-axis: left (+)/right (-), and in the z- axis: counter-clockwise (+)/clockwise (-); N denoting 

no camera motion; we show the start frame and end frame for each sequence. 

Case ID # frames GT Start frame / End frame x y z score 

6080 30 D/L/CC 

 

-45.7 

(D) 

36.3 

(L) 

-17.8 

(C) 

2 

12805 30 U/R/C 

 

16.9  

(U) 

-10.4 

(R) 

-17.1 

(C) 

3 

6973 27 N/L/CC 

  

2.4  

(N) 

11.7 

(L) 

16.6 

(CC) 

3 

12521 18 U/L/N 

 

25.74 

(U) 

8.7 

(L) 

0.1 

(N) 

3 

6937 8 N/R/N 

  

3.5  

(N) 

-26.5 

(R) 

-2.4 

(N) 

3 

12017 10 D/L/N 

 

-7.8 

(D) 

9.8 

(L) 

1.4 

(N) 

3 

12143  7 U/R/N 

 

20.6 

(U) 

-28.5 

(R) 

-64.3 

(C) 

2 

12230 15 D/L/N 

 

-31.2 

(D) 

27.5 

(L) 

2.5 

(N) 

3 

12863 10 D/R/N 

 

-28.8 

(D) 

-45.9 

(R) 

11.2 

(CC) 

2 

12872 25 U/N/C 

 

10.3 

(U) 

2.6 

(N) 

-26.9 

(C) 

3 
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Table 6.4 Results of rotation evaluation on colonoscopy images of real colons in the x-axis: up (+)/ 

down(-), in the y-axis: left(+)/right(-), and in the z- axis: counter-clockwise(+)/clockwise(-); N 

denoting no camera motion; we show the start frame and end frame for each sequence. 

Case ID # frames GT Start frame / End frame x y z score 

28815   15 U/R/N 

 

27.7 

(U) 

-22.4 

(R) 

3.7 

(N) 

3 

22670 20 U/N/N 

 

29.7 

(U) 

-5.7 

(N) 

-2.1 

(N) 

3 

30521 20 D/N/N 

 

-18.4 

(D) 

-13.8 

(R) 

1.0 

(N) 

2 

30897 39 N/R/N 

 

19.0 

(U) 

-16.5 

(R) 

-5.7 

(N) 

2 

31293 9 D/N/N 

 

-11.7 

(D) 

11.5 

(L) 

-5.0 

(N) 

2 

35967 29 N/N/CC 

 

-2.2 

(N) 

-11.1 

(R) 

44.3 

(CC) 

2 

32286 14 D/L/N 

 

-19.4 

(D) 

27.4 

(L) 

-1.4 

(N) 

3 

22781 12 D/N/N 

 

-31.4 

(D) 

-2.4 

(N) 

6.9 

(N) 

3 

12179 

 

11 U/N/CC 

 

38.7 

(U) 

2.0 

(N) 

8.4 

(CC) 

3 

19462 32 N/R/N 

 

-6.6 

(N) 

-16.2 

(R) 

-3.8 

(N) 

3 
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Tables 6.3 and 6.4 show that reconstructed rotation directions on the synthetic colon (in Figure 

2.1(b)) and real colons, respectively are quite good. Tables 6.3-6.4 show that the technique gives the 

correct camera rotation directions for 88% (53/(3*20)) of the directions. 

Evaluation of scaling 

When an image has low illumination, the reconstructed colon model is large since the distance 

from the camera is far and the reverse projection vectors expand. For a brightly illuminated image, 

the reconstructed model is small. Figure 6.9 illustrates the same 3D model, but seen with different 

levels of illumination. When we have an image sequence showing images with lower illumination to 

brighter illumination, we have a small reconstructed colon model (reconstructed from the brighter 

frame) to register with a large reconstructed colon model (reconstructed from the darker frame); the 

scale increases in this case. We denote this case as Bright-to-Dark (B-D). Thus, to fit the model B in 

Figure 6.9 to model A, we need to scale down (scale<1). For a similar reason, we need to scale up 

(scale>1) when the image sequence showing images changing from bright to dark, denoted as (D-B). 

 

Model A 

reconstructed 

using a bright 

image

Model B 

reconstructed 

using a dark 

image

y

x

 

Figure 6.9 Bright-to-Dark: scaling of the reconstructed model B down to fit the reconstructed model 

A (scale: x/y < 1); Dark-to-Bright: scaling of the reconstructed model A up to fit the reconstructed 

model B (scale: y/x > 1) 
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Table 6.5 Evaluation of effectiveness of scaling using the synthetic colon images: Bright to dark (B-D): the 

model grows larger. The calculated scale (Cal. Scale) is less than 1 in this case. Dark to bright (D-B): the model 

shrinks. Cal. Scale is greater than 1 in this case. N denotes no scaling or scale is around 1 ([0.9, 1.1]). 

Case ID # frames GT Start frame / End frame Cal. Scale 

4815 30 B-D  

  

0.43  

(B-D) 

4885 30 D-B  

  

1.09 

(N) 

12521 18 D-B  

  

2.16 

(D-B) 

11937 18 D-B  

 

1.74 

(D-B) 

11963 21 B-D  

  

0.66 

(B-D) 

12038 7 B-D  

  

0.65 

(B-D) 

12054 8 D-B  

  

1.59 

(D-B) 

12075 7 B-D 

  

0.75 

(B-D) 

12110 7 D-B  

  

1.07 

(D-B) 

12145 7 B-D  

  

0.57 

(B-D) 
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Table 6.6 Evaluation of effectiveness of scaling on real colons using images from colonoscopy: Bright to dark 

(B-D): the model grows larger. The calculated scale (Cal. Scale) is less than 1 in this case. Dark to bright (D-B): 

the model shrinks. Cal. Scale is greater than 1 in this case. N denotes no scaling or scale is around 1 ([0.9, 1.1]). 

Case ID # frames GT Start frame/End frame Cal. Scale 

12179 

 

10 D-B  

  

1.44 

(D-B) 

12226 

 

13 D-B 

  

1.03 

(N) 

29074 

 

12 D-B 

  

1.11 

(D-B) 

29337 

 

14 D-B 

  

1.40 

(D-B) 

29862 

 

13 B-D 

  

0.32 

(B-D) 

30132 

 

13 D-B 

  

1.31 

(D-B) 

30268 

 

14 D-B 

  

1.50 

(D-B) 

30503 

 

16 B-D 

  

0.64  

(B-D) 

30898 

 

20 D-B 

  

1.10 

(D-B) 

30954 

 

10 B-D 

  

0.56 

(B-D) 
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Tables 6.5 and 6.6 show the results of scaling direction test on the synthetic colon (in Figure 

2.1(b)) and real colons, respectively. For both of the tests, our software calculated scaling direction 

reliably for 90% (18/20) of the cases. Only one case out of ten cases in each of the tests has a wrong 

scale direction. 

 

Table 6.7 Case 12900 (section 1 - straight); Circf represents circumferences. MAD represents the 

mean absolute difference considering all the folds seen in the image sequence. The reconstructed 

model denotes after scaling. 

 Ground truth (mm) Reconstructed model Absolute Difference 

Depth Circf. Depth Circf. Depth Circf. 

Fold 1 25 166 41 216 16 50 

Fold 2 51 190 51 190 0 0 

Fold 3 75 184 65 198 10 14 

Fold 4 118 160 96 158 22 2 

Fold 5 138 160 124 132 14 28 

MAD 13 19 

 

6.4.2. Evaluation of the colon structure 

The following tables show the evaluation results on the shape of the reconstructed colons by 

comparing the depths and circumferences with the ground truth depths and circumferences for 

different sections of the synthetic colon shown in Figure 6.8. Tables 6.7-6.9 show detail results per 

case. The circumference of fold 2 was used to derive the scaling factor to scale the virtual colon to the 

synthetic colon model in Table 6.7-6.8. The scaling is needed since the originally reconstructed model 

is in its own unit (not in mm). Fold 2 was chosen to determine the scaling factor since it is less 

sensitive to illumination and occlusion because it is not too close or too far from the camera. 

Furthermore, it gave the least MAD after applying the scaling factor to the original reconstructed 

model. The circumference of in Table 6.9, fold 1 was used to scale the originally reconstructed colon 
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model since it gave the least MAD. 

 

Table 6.8 Case 12320 (section 2 - curve); Circf represents circumferences. MAD represents the mean 

absolute difference considering all the folds seen in the image sequence. The reconstructed model 

denotes after scaling. 

 Ground truth (mm) Reconstructed model Absolute Difference 

Depth Circf. Depth Circf. Depth Circf. 

Fold 1 53 160 55 184 2 24 

Fold 2 85 160 87 160 2 0 

MAD 2 12 

 

Table 6.9 Case 16203 (section 3 - straight); Circf represents circumferences. MAD represents the 

mean absolute difference considering all the folds seen in the image sequence. The reconstructed 

model denotes after scaling. 

 Ground truth (mm) Reconstructed model Absolute Difference 

Depth Circf. Depth Circf. Depth Circf. 

Fold 1 41 180 50 180 9 0 

Fold 2 67 190 61 155 6 35 

Fold 3 93 185 99 147 6 39 

Fold 4 112 168 109 166 4 2 

Fold 5 140 100 121 145 19 45 

MAD 9 24 

 

The average depth MAD and circumference MAD on the synthetic colon are 8.5 mm and 17 mm, 

respectively. Table 6.10 shows that 94.7% of the folds seen in colonoscopy can be reconstructed.  

During the curvy section of the colon (section 2), only a few folds are shown in the corresponding 

image sequence, resulting in a small depth MAD and circumference MAD. Although the recall of the 

folds in this section is 100%, the picture of the synthetic colon indicates that there are more folds in 

this section. Those folds are not seen continuously in one long image sequence. Hence, the recall of 
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folds cannot reflect this fact well. The average percentage of the depth error is about 10% (8.5/85.8) 

of the average depth of all the folds seen in all the image sequences. The average percentage of the 

circumference error is about 10% (17/178.2) of the average circumference of all the folds seen in all 

the image sequences. We cannot quantitatively show the performance of the technique using 

endoscopy images of real colons since there is no available ground truth as mentioned in the 

introduction. Figure 6.10 shows the results of intermediate step and final reconstruction result from 

colonoscopy images of a real colon. 

 

Table 6.10 Overall results; MAD represents the mean absolute difference considering all the folds 

seen in each image sequence; recall of folds represents the ratio of the number of reconstructed folds 

and the number of actual folds seen in each image sequence 

Case ID Depth MAD Circf. MAD Recall of folds # Frames 

6955 (section 1) 13 33 5/5 34 

6990 (section 1) 10 30 5/5 37 

12900 (section 1) 13 19 5/5 144 

20399 (section 1) 9 25 3/5 76 

19024 (section 1) 5 12 4/4 57 

12320 (section 2) 2 12 2/2 21 

12117 (section 2) 8 0 1/1 28 

18753 (section 2) 12 11 3/3 19 

16203 (section 3) 9 24 5/5 17 

15940 (section 3) 4 4 3/3 23 

Average 8.5 17 36/38 (94.7%)  
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 (a)                                       (b) 

  

 (c)                                       (d) 

  

(e)                                      (f) 

Figure 6.10 (a) Input image; (b) Green edges indicate that the fold edge is tracked through several previous 

frames. Short red lines indicate the motion of the tracked points. White numbers are global edge ID assigned to 

each edge. (c) Completed contours of G in the global coordinate system. (d) Rendered G; red, green and blue 

lines represents x, y and z axis of the global coordinate system. (e) Wireframe of G; fold contours are marked 

with yellow color. Gray cylinder represents the endoscope. (f) Green area represents unobserved area under the 

reconstructed camera motion on the reconstructed colon model; red and blue lines from the endoscope indicate 

the line of sight and the up vector, respectively. 
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6.5. Conclusion 

We evaluated our proposed technique in two aspects: endoscope motion reconstruction and colon 

structure reconstruction. For the evaluation of motion reconstruction, we compared the software 

generated camera translations and rotation directions with ground truth motion directions. Since it is 

not feasible to obtain the precise amount of motion, we only evaluated the direction of motion. 

Overall, the test result shows that the proposed technique produces directions of endoscope motion in 

at least 73% in agreement with the ground truth. Further improvement is needed. Accurate camera 

motion directions are useful for evaluating mucosa inspection pattern in detail and for detection of the 

boundary between the insertion phase and the withdrawal phase of a procedure [69]. The boundary is 

important for calculating a number of other quality metrics. 

For colon structure reconstruction evaluation, we tested our software with a number of sequences 

of images with overall illumination changes across the images in the sequence. The illumination 

changes cause the change in the scale of the local reconstructed colon models that form the global 

colon model. Our experiments show that, when considering the directions of scaling (up or down), we 

can scale the models correctly in 90% of the studied cases. The scale factors affect the overall shape 

of the colon structure reconstruction. The results suggest that improvement is needed to further reduce 

the circumferential error or depth errors which are currently around 10%. We observed a better recall 

of fold edges using this technique than our technique in Chapter 5. That means, more folds can be 

reconstructed in the straight parts of the colon. 
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CHAPTER 7 QUALITY METRICS FOR COLON MUCOSA 

INSPECTION DURING COLONOSCOPY 

 

This chapter describes our algorithms and implementation design of a real-time colonoscopy 

analysis system to derive spiral score as an objective quality metric. The CIF detection technique 

introduced in Section 3.2 is used as a core algorithm for spiral counting. The algorithm is fast enough 

to achieve real-time analysis while the existing work by Liu et al. [20] is not. We found a strong 

correlation between the spiral score measured during the withdrawal phase and the visualization 

quality score given by domain experts on a data set of 159 colonoscopy videos. Our finding confirms 

the conclusion of a similar study on 21 colonoscopy videos by Liu et al. [20]. Also, we describe our 

new method for calculating unobserved mucosa area given camera motion and a structure of a colon 

segment. We believe that our unobserved area calculation provides a good and detail measurement of 

quality of colon mucosa inspection during colonoscopy procedures. 

 

7.1. Coarse quality measurement for spiral withdrawal motion 

In [20], Liu et al. proposed spiral score defined as the number of times all four quadrants of the 

colon were consecutively visualized as a new metric of quality of the mucosa circumferential 

inspection. They introduced PCurve, an image analysis method for CIF estimation. PCurve extends 

the previous technique [9, 70] by utilizing quasi-parallel curves/edges of nested colon folds to 

estimate CIF for the types of images that the previous technique could not handle well. Given the 

detected CIF in each image, the corresponding inspected quadrant is computed. Next, the spiral score 

is computed based on the above definition. In the same study, the spiral score of the withdrawal phase 

was found strongly correlated (with Pearson’s correlation coefficient of 0.68) with the ground truth 
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visualization quality on 21 de-identified colonoscopy videos captured using Fujinon endoscopes. 

PCurve, however, is very time consuming, which is not suitable for real-time analysis and feedback. 

Instead PCurve, we use our light and fast CIF detection algorithm described in Section 3.2 and study 

whether our algorithm still produces satisfactory results for counting the spiral score.  

     

                     (a)                               (b) 

    

                     (c)                               (d) 

Figure 7.1 Four sequential images form a ‘spiral’; each image is divided into four fixed quadrants 

using the axes originated at the center of the image; a green marker at the corner indicated that the 

colon wall in that quadrant was inspected, which is 180° opposite to the quadrant of the detected CIF 

(marked by an x); the top-left, top-right, bottom-right, and bottom-left quadrants were detected, 

respectively in (a), (b), (c), and (d). The spiral score shown after the letter S increments from 7 in (a) 

to 8 in (d) after one additional spiral is found.  

 

We followed the approach proposed by Liu et al. to assign the quadrant given CIF [20]. Liu et al. 

divided each image into four fixed and equal quadrants: top-left quadrant (Q1), top-right quadrant 

(Q2), bottom right quadrant (Q3), and bottom left quadrant (Q4). The inspected quadrant is 

diagonally opposite from the quadrant of the detected CIF if the detected CIF is in between the two 
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concentric circles centered at the image center (shown in light blue in Figure 7.1). Figure 7.1(a-d) 

shows a series of inspection of the quadrants: Q1, Q2, Q3, and Q4. The rationale is that if the detected 

CIF is too close to the image center, the endoscopist is looking straight down the lumen and does not 

focus on any particular quadrant of the colon wall. Therefore, we should not mark any particular wall 

as inspected. To incorporate this domain knowledge, a laterality threshold was introduced by Liu et 

al. [20]. The radius of the inner circle is the multiplication result of a laterality threshold and half 

image height. Figure 7.1 shows a lateral threshold of 0.66. In our study, we also use the outer circle to 

filter out wall images (defined in Section 2.1) since we set the detected CIF at the top-left corner of 

the image if the image is a wall image.  

 

Table 7.1 Parameters and values obtained based on experiments on the Fujinon data set; parameters 

for the CIF calculation are mentioned in Section 3.2. 

Step Parameter and value 

Preprocessing W=25; = 3x3; lenThres=80; cannyLow=10; 

cannyHigh=15; window size for handling thick folds = 32 

pixels;  

CIF estimation A=0.002; IT=15; dist=50 

Case 1 lenRatio=0.4; len=160 

Case 2 lenRatio=0.66; len=400 

Spiral counting Laterality threshold = 0.66; maxSpiral = 15 

 

Since endoscopists may have individual inspection preference, e.g. clockwise or counter-

clockwise order, Liu et al. do not consider the order of the quadrant numbers as important. As soon as 

all four quadrants are inspected consecutively, one spiral is counted. The spiral score is the number of 

spirals found so far. We limit the spiral score to be no more than maxSpiral to handle the case of long 

and complex colons causing an unusually high spiral score. The value of maxSpiral was determined 

s smooth
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empirically and is shown in Table 7.1. 

We implemented the aforementioned algorithms in C++ as a Windows dynamic linked library 

(DLL). We used OpenCV for basic image processing such as smoothing, edge detection, color to gray 

scale transformations, and circle and line drawing as well as our SAPPHIRE middleware and 

Software Development Kit (SDK) [71] for routing images from input, analysis module, output and 

feedback. SAPPHIRE provides ease of coding, maintenance, collaboration among multiple 

developers, and efficient execution of modules with multithreading. SAPPHIRE takes a text file that 

lists the names of DLL of required modules and parameters of these modules. SAPPHIRE loads and 

runs each of the listed modules in their own thread. SAPPHIRE routes data among modules according 

to the detected dependency and data timestamps. Interested readers are referred to [71] for details. 

Our spiral counting module skips processing blurry frames (out-of-focus frames) determined by 

another module [71]. It outputs the spiral score up to a current frame and a feedback image for the 

frame. We provide two levels of feedback. The primary feedback includes a green marker at the 

corner of the detected quadrant and the spiral score. The secondary feedback includes the two blue 

concentric circles centered at the image center as mentioned previously. The detected CIF location is 

marked as x in green. During routine screening colonoscopy, only the primary feedback should be 

used since it does not obstruct the viewing area. In practice, the spiral score is shown inside the black 

corner area. Both types of feedback may be used during teaching or training of endoscopists.  

 

7.2. Performance evaluation and experimental results 

We used two video data sets for this study: Fujinon data set and Olympus data set. The capturing 

rate for the videos in these data sets was 29.97 fps at the resolution of 720x480 pixels. No patient 

information is included in these videos. The Fujinon data set consists of 21 videos of procedures 
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performed using Fujinon endoscopes. These procedures have excellent bowel preparation (i.e. colon 

wall has been cleaned carefully and there is little stool inside the colon). For each video, four 

endoscopists provided the ground truth mucosa visualization score from 0 (poor quality) to 100 (best 

quality) and the frame number when maximum intubation was reached for the first time. This frame 

number roughly estimates the start of the withdrawal phase. The ground truth visualization score not 

only includes the circumferential inspection quality, but also the quality of examination of hepatic and 

splenic flexures, rectal valves, and the ileocecal valve. The Fujinon data set was used by Liu et al. 

[20]. It is used in this study to first obtain program parameter values and compare our current work 

with the previous work [20]. The Fujinon data set is small. Therefore, we also conducted our study on 

a larger data set. The Olympus data set contains 159 de-identified videos of 159 randomly selected 

routine screening colonoscopies (one video per procedure) performed in a period of 1.5 years. 

Olympus endoscopes were used. Two domain experts viewed and annotated these videos as done in 

the Fujinon data set. We first verified that the assumptions (linearity, normality, independence, and 

constant variance) required for Pearson's correlation analysis were met. The Pearson’s correlation 

coefficients obtained from the two data sets are shown in Table 7.2. 

 

Table 7.2 Pearson’s correlation coefficients 

Data Set #videos P-Curve Proposed technique Proposed technique* 

Fujinon set 21 0.68 0.72 0.73 

Olympus set 159 N/A 0.49 0.58 

*With the maximum spiral score limited to 15. 

 

Our analysis shows the Pearson’s correlation coefficient of 0.72 between our spiral score 

computed during the withdrawal phase and the ground truth visualization score averaged over those 

given by the four endoscopists. The correlation of 0.72 is considered a very strong correlation since 
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the ground truth score also considers quality of examination of the flexures and values that are not 

taken into account in the calculation of the spiral score. The correlation coefficient also indicates that 

our new method performs better than the PCurve method that gave Pearson’s correlation coefficient 

of 0.68 on the same data set.  

The Pearson’s correlation coefficient between the average of the ground truth visualization 

quality scores by the two domain experts and the spiral scores on the Olympus set is 0.49. When 

inspecting the spiral score and the ground truth, we found videos with good visualization quality, but 

with low spiral score because the colon is easy to navigate. We also found videos with good (not 

excellent) visualization quality, but with overly high spiral scores due to the complexity of the colon 

with many turns. This finding suggests that we should consider the colon anatomy when computing 

the spiral score. For instance, when we set the spiral score to 15 for any videos with more than 15 raw 

spiral scores (overly high spiral score case), the correlation coefficient significantly improves to 0.58. 

This is a significant improvement over the non-adjusted spiral score. The maximum spiral score of 15 

was observed from the Fujinon set. The Olympus set is much larger than the Fujinon set with more 

patients and more endoscopists performing these procedures. We believe this causes lower Pearson’s 

correlation in the Olympus set.  

The spiral counting module took on average about 13 ms per frame, which is less than 33 ms 

required for real-time processing. The time was measured on Dell Vostro 460 with Sandy Bridge Core 

i7, 2600 3.4GHz with 4 GB of RAM running 64 bit Windows 7. 

 

7.3. Unobserved area calculation and visualization 

Another quality metric of interest to domain experts is locations of unobserved areas of the colon 

mucosa and the percentage of these areas. It is not difficult to mark the unobserved area using 
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OpenGL given a 3D reconstructed colon and the endoscope motion. Since camera lens and light 

source are at the same location, we just can render shadow on the virtual colon surface using stencil 

buffer. However, in this way, we cannot calculate the percentage of the unobserved area because 

OpenGL does not provide any method to tell which polygon the shadow is rendered. Thus, we 

calculate the unobserved area as follows. For each polygon, we check three conditions: (i) if the 

polygon is facing the endoscope (the origin of the coordinate system), (ii) if the polygon is within the 

camera field-of-view, and (iii) if there are no obstacles from the polygon to the endoscope. The first 

condition is satisfied if the angle difference (in the range of [0, 180]) between the normal of the 

polygon and the vector from the camera to the center of the polygon is greater than 90°. We call this 

vector to this polygon the line of sight of the polygon. The second condition is satisfied if the angle 

difference between the line of sight of the polygon and the camera direction is at most half of FOV of 

the camera. The last condition is satisfied if the distance of the polygon from the camera is same as 

the OpenGL-provided depth (Z-value) of the corresponding pixel in the viewport. Every pixel in a 

viewport has its own depth value indicating the distance of the closest object from the camera in that 

direction. When any of the three conditions is not satisfied, we count that polygon as an unobserved 

polygon. Therefore, we can calculate the percentage of the unobserved mucosa area as the percentage 

of unobserved polygons. 

 

7.4. Conclusion 

In this chapter, we introduced a method to count spiral motions of the endoscope as a quality 

metric for colonoscopy procedures. We developed the software that provides feedback of inspected 

quadrant as well as the number of the spirals seen so far by detecting CIF per frame. Furthermore, we 

show that the CIF location can be used to compute the spiral score---the number of times all sides of 
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the colon wall is inspected as the quality metric, as effective as the PCurve method studied previously 

We found that the spiral score metric has a strong correlation with visualization quality given by 

domain experts. Hence, it is promising to be used to determine one aspect of quality inspection of 

colonoscopy. The average processing time is 13 ms per image on a modern workstation, which makes 

this technique clinically and practically more useful for real-time processing and real-time feedback 

of quality of mucosa inspection during colonoscopy. The unobserved colon mucosa area with the 

location of the endoscope calculated by our proposed technique provides fine detail measurements of 

quality of the mucosa inspection. Furthermore, it potentially can enable the endoscopist to go back 

and review these uninspected areas. This second metric is yet to be evaluated more thoroughly. Other 

metrics such as bowel preparation quality, efforts of the endoscopist in cleaning the colon should also 

be taken into account. Last, we can potentially use 3D endoscope motion for better colonoscopy 

quality measurement such as more accurate spiral motion counting and end-of-insertion-phase 

detection.  
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CHAPTER 8 CONCLUSION AND FUTURE WORK 

 

We have described in great detail about our technique for automated reconstruction of a 3D 

virtual colon from 2D colonoscopy images and our evaluation of the technique. Our technique is the 

first fully automated technique of its kind. Most other existing work focuses on reconstructing the 

colon surface. We have overcome several major challenges. We use pixel intensity calibration to 

handle an uneven distribution of light on the colon surface. We found that ambient light affects the 

relationship between brightness intensity and distance of the colon surface from the camera described 

by the Lambertian’s cosine law. We proposed a modification of the Lambertian’s cosine law and 

showed the effectiveness of our modification. We also extended Umeyama’s registration method for 

two point sets to register models reconstructed from sequential frames to create a global virtual colon. 

Nevertheless, several challenges remain. Since we use Depth-from-Intensity to estimate the depth of a 

point on a colon fold contour in 3D space, significant illumination changes between neighboring 

frames has a considerable impact on the scale of the corresponding virtual colons. Errors in fold edge 

tracking can lead to wrong contour shape. Our technique is reasonably good for reconstruction of the 

shape of the straight segments of the colon, but less effective for the curvy segments. The 

experimental results show that reconstruction of the directions of camera rotation is quite accurate. 

The calculation of the camera translation direction should be further improved in order to correctly 

estimate the boundary between the insertion phase and the withdrawal phase of colonoscopy in which 

a number of objective quality metrics during the withdrawal phase have been proposed.  

We studied the effectiveness of the spiral score metric---the number of times all sides of the colon 

wall is inspected. We developed software that provides feedback of the inspected quadrants as well 

the number of the spirals seen so far. We found that the spiral score metric has a strong correlation 
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with the ground truth visualization quality of the colon mucosa. Furthermore, we have our analysis 

and feedback software running on two PCs in two educational rooms at Mayo Clinic, Rochester, MN. 

Whether the computer generated feedback help improving quality of colonoscopy of endoscopists in 

these rooms are being studied by a separate research team. We introduced the method to estimate 

locations of unobserved areas in the colon during colonoscopy as well as a percentage of these unseen 

areas given a reconstructed virtual colon and camera motion. These metrics are of great interest to 

endoscopists to pinpoint these areas as feedback for a second round inspection during colonoscopy. 

Nevertheless, other metrics for measuring bowel preparation quality, efforts of the endoscopist in 

cleaning the colon should also be taken into account to fully capture quality of colonoscopy. 

Future work includes an improvement on selecting feature points to track since a subtle difference 

using two different sets of feature points for tracking can generate accumulated errors when 

registering many sequential models. Furthermore, instead of registering local models reconstructed 

using adjacent frames, we can register the local models to the global model directly to reduce 

accumulated errors and improve the accuracy of the reconstructed model shape for both straight and 

curvy segments of the colon. This will improve the accuracy of the unseen area calculation method as 

well. A better design for contour completion able to handle curvy segments of the colon is needed. 

Because of frequent blurry frames that appear during colonoscopy and frames with a close up 

inspection of the colon mucosa without the lumen in view, we cannot generate local colon models 

from these frames. Hence, during the withdrawal phase of a colonoscopy procedure, a number of 

global colon models corresponding to non-blurry frame and non-wall segments are expected. We need 

an effective technique to register these global colon models together for the proposed technique to be 

useful for clinical trials and practice. 
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