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ABSTRACT

All current engineering prognostic practices require prior off-line tests. These are
needed to: (1) Determine the exact conservative principle or utility function being satisfied,
and (2) Determine associated material, geometric and process parameters. In addition,
prediction of onset of instability or failure requires a failure criterion. The data driven
prognosis (DDP) approach, developed here, obviates the need for such off-line testing and
facilitates true predictive capability using only on-line data being sensed. To achieve this
end, the DDP algorithm makes an assumption regarding polynomial order of the potential or
utility function in the neighborhood of each observation points. Thus, an assumption
regarding the local piecewise behavior replaces any global assumption. The needed system
parameters in dimensionless forms are then estimated based on prior data or experience
from the same experiment. A multi-physics model based on the concept of excess curvature
is then developed to predict short-term and long term stability profiles of any system. The
model is first validated against simple “Balloon Burst” experiment and later used for
analyzing “Gulf Stream” and “Economics” systems. The proposed DDP algorithm may be
used for general conservative systems provided the variables involved in the conservation
principle are observable. The developed multi-physics model also provides an objective
basis for data driven prediction of system stability and associated decision making in various

mechanical, economic and societal systems.



CHAPTER 1. INTRODUCTION

1.1 Overview of Prognostic Systems

Predictive or prognostic ability represents a core competency required in many walks
of life. Traditionally, analytical or numerical models based on conservation principles are
used for such activities. These models require satisfying primarily three principles: - (1)
equilibrium (which embodies satisfaction of a conservative principle), (2) compatibility and
(3) constitutive relations. In most cases, the constitutive relations depend on prior
knowledge of constitutive or material parameters. Most often, a failure criterion and
associated critical or threshold value of a parameter is also required to predict onset of
material or geometric instabilities. Such estimation protocols require off-line testing.

1.2 Drawbacks

Numerous applications of practical interest, however, suffer from two major
drawbacks: (1) the exact conservation principle or utility function being conserved may be
unknown, (2) the system may not be amenable to perform off-line (in particular, destructive)
testing. For instance while trying to predict the onset of instability in a material (e.g. necking
in a tension test done on a material), the material properties can be found out even before
the actual experiment is done. The knowledge of specific material and geometric properties
can then ease the process of prediction. But if a non-materialistic or abstract system (e.g. a
global economic system, or a genetics system) is considered there is neither any way of
knowing the specific material properties, nor there is any method to assess the nature of the
conservation function. In such cases there is a need to rely on a predictive algorithm that
can function without these parameters known beforehand.

1.3 Data Driven Prediction Algorithm

The present work circumvents these two difficulties by devising a data driven
prognosis (DDP) algorithm. The proposed algorithm requires assumption of existence of a
conservation principle, but its exact form need not be known a priori. Instead, an assumption
is made regarding its piecewise polynomial form around each observation point. Further, the
proposed algorithm requires no off-line material or process parameters as input. Instead, it is
completely data driven, and only in-situ procured data is utilized to estimate the required

dimensionless length scale parameters. The assessment of failure criterion is also done with



this procured data. Thus, the proposed DDP algorithm significantly enhances current
prognostic capabilities.
1.4 Components of Data Driven Predictive Algorithm

The current work starts with a discussion of basic methodology adopted for the
prognostic approach. In particular, the concept of “Curvature Induced Path Dependency” is
introduced. Chapter 2 discusses how curvature of a mathematical manifold may nucleate a
“dislocation” when attempting to complete a closed loop. As in material systems, such micro-
scale dislocations can induce macro-scale path dependency on a mathematical manifold.
Chapter 3 and 4 discusses development of the mechanistic multi-physics formulation along
with details of the algorithm. Three types of analysis are considered next. Chapter 5
discusses the verification (a balloon burst experiment) done for this predictive algorithm. In
the balloon burst experiment considered here, the prognosis protocol predicts the onset of
instability or the point where the balloon will burst from visual data only. Chapter 6 discusses
how this predictive algorithm can be utilized in a real world problem (the Gulf Stream
Instability Analysis). The development of cold cores in Gulf Stream along the eastern coast
of North America is an interesting phenomenon which holds a lot of importance in the fishing
community. The knowledge of such cold core rings beforehand would definitely be beneficial
for their commercial purposes. Chapter 6 discusses the application of prediction algorithm to
anticipate the formation of such cold cores. Another real world application (Economics) of
the DDP algorithm is also shown in Chapter 7. A macro-economic example is considered. In
each case, the multi-physics prognosis protocol is asked to predict onset of instabilities in an
economic system comprising of 81 countries, which are then compared and verified against
historical data. Eventually, the conclusion section of this work considers the quality of the
prognosis by comparing not only accuracy, but also “false positives” where a false alarm is
sounded or a “missed positive” where an instability (that actually happened) is missed. The

efficacy and efficiency of the algorithm is then discussed in light of such data “on hindsight”.



CHAPTER 2. CONCEPT OF CURVATURE

Curvature is just a measure of how “curved” a curve is. The measure of “curvature”

should depend only on the shape of the curve. Moreover the measure of “curvature” should
match with our intuition in the simplest cases. Straight lines are not curved, hence their
curvature is zero. Smaller circles which bend more sharply than larger circles should have
higher curvature values. Following this, the measure of the curvature of a circle can be
thought of as the reciprocal of its radius. Hence the curvature is large if the radius is small
and the curvature is small if radius is large. Thus the curvature of a circle is defined is the

reciprocal of its radius r.
K= 2 (1)

2.1 Osculating Circle
Geometrically, given any smooth plane curve C and a point P on it, there is a unique
circle called the osculating circle (a circle passing through P and a pair of additional points
on the curve infinitesimally close to P) which most closely approximates the curve near P.

The curvature of C at P is then defined to be the curvature of that circle [Wikipedia]. [Figure
2.1]

Figure 2.1: An osculating circle. The curvature of curve C at point P is same as the
curvature of the osculating circle.

The curvature of the osculating circle is given by equation 1. The radius of curvature is equal

to the reciprocal of the radius of the osculating circle.



2.2 Tangent Vector to Curve
Physically, curvature can be understood by imagining a particle moving along that
curve (C) in unit speed. The time tis taken as the parameter for C (provides a natural
parameterization for the curve). The unit tangent vector T at the point P also depends on
time. The unit tangent vector T can be also thought as the velocity vector (velocity is always
tangential at point P when a particle is going around a curve or arc or a circle), since the
particle is moving with unit speed. The absolute curvature is then the magnitude of the rate
of change of T. [Figure 2.2]
el = |5 @
This signifies magnitude of the acceleration of the particle [Wikipedia 2012]. Geometrically,
this measures how fast the unit tangent vector to the curve rotates. If a curve keeps close to
the same direction, the unit tangent vector changes minimally and the curvature is small;
when the curve undergoes a tight turn, the curvature is large. The absolute value of the
curvature is a measure of how sharply the curve bends. Curves which bend slowly, which
are almost straight lines, will have small absolute curvature. Curves which swing to the left
(counter clockwise) have positive curvature and curves which swing to the right (clock wise)
have negative curvature. The two interpretations of curvature (curvature of circle and
acceleration of a particle along a curve) are related geometrically. In the first definition the

curvature of a circle is actually a ratio between the angles of an arc to its length. For the

. , 2 1
circle, arc length = 2mr(circumference) and arc angle = 2m. So k = — = ~ From

2nr
this understanding, the absolute curvature of a plane curve at a point P can be given as
— ||42]| = ||4®
el = [|Gell = 113 @)

d¢ = infinitesimal angle inrad between tangents to the curve at the ends of a

infinitesimal segment of the curve And ds = length of the segment.
Since the curve is a unit speed one i.e. the particle moving along the curve is having unit

speed, the particle would cover the distance ds in dstime. Hence dtin equation (2) of

curvature becomes equal to ds and equation (2) can also be written like || = ||%|| .



Figure 2.2: The T and N vectors at two points on a plane curve, a translated version of
the second frame (dotted).
0T = change of T And dS = length of line segment between 2 points.
The change dT happens orthogonal to the direction of T, so it must be along the normal
direction N. Equations (2) and (3) can be derived from each other. For instance and
replacing dt = ds in equation (2),

_dr N = i (T(s+ As) —T(s)).N _ I A |ITI| i A¢p do
=as T Al As T oAb As  asdbAs  ds

N(s) A

Figure 2.3: Unit tangents at two ends of the arc of length As

2.3 Mathematical Definition of Curvature

Let us now consider a plane curve in 2 dimensions which is described by Cartesian
parametric equations namely x = x(t) and y = y(t) [Wolfram Math world 2012]. If ¢ =



tangential angle and s = arc length then the curvature also called the *first curvature” is

given by

do do do
_9% _ a dt — __dt

EE @ e

The numerator of equation (4) can be found using the identity

K

d dy

Y _ at _ Y

tan ¢ = dx & x
dt

Differentiating equation (5) with respect to time t we get

xry//_ ylxll

ditand) _ o2 ¢ﬂ _
dt

dt X2
From equation 6 we get
do 1 x'y'— y'x" 1 x'y" — y'x"
dt ~ sec? 1) x'% T 1+ tan?¢ x'?
_ 1 xlyll_ylx// _ x/yll_ylx//
- . Q 2 A y,z

Combining equations (4) and (7) we get

X'y -y %!
K= ——7

(%)

(4)

(5)

(6)

(7)

(8)

Now let us consider a 2 dimensional curve of the form y = f(x) , where x and y are naturally

scaled orthogonal coordinates. Natural scaling means (ds)? = (dx)? + (dy)? .Then the

equation of curvature becomes

_1(dy d? d?
o il @) o |5
K=—= —

ds ds dx ds < dy 2) "
1+ [— dy]“\?
dx (1 +| 2 )
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= 9)

(1+y%)?
Equation 8 and 9 represents curvature for different curve forms. But the meaning of

curvature for each one of them is the same. Curvature represents the change in slope over
a length scale.
2.4 Extrinsic and Intrinsic Curvature

Equations (8) and (9) all represent extrinsic curvature, which is defined for objects
embedded in another space (usually a Euclidean space) in a way that relates to the radius
of curvature of circles that touch the object [Weisstein, Eric W. "Curvature." Wolfram
MathWorld]. Extrinsic curvature depends on the object’'s particular embedding. It is not
detectable to someone who is unaware of the three-dimensional space surrounding the
object. There is another curvature called intrinsic curvature which is detectible to
“inhabitants” residing on the object. Intrinsic curvature is independent of the object’s
embedding and is a property of the object. It only depends on how the distances are
measured on the surface but never on the embedding of the surface in higher dimensions.
Example of intrinsic curvature is the Gaussian curvature.
2.5 Gaussian Curvature

For explaining the Gaussian curvature we need to introduce another term called the
principal curvature. Consider a one dimensional curve that lies on a two dimensional
surface embedded in 3 dimensions. The tangent vector T to this curve lies on the tangent
plane of the surface. The tangent plane of the surface is orthogonal to the surface’s unit
normal vector U. The normal curvature (x,)is defined as the curvature of the curve
projected on the plane containing both T and U. All curves with same tangent vector will
have same surface normal associated with them. Taking all possible tangent vectors then
the maximum and minimum values of the normal curvature at a point are called the principal
curvatures and can be denoted by (x;) and (k) [Wikipedia 2012]. The Gaussian curvature

is defined as the product of the 2 principal curvatures and is given by
Kg == Kl Kz
Intrinsically Gaussian curvature can be defined by imagining an ant living on the two

dimensional surface on which the smooth curve lies. Now if the ant is tied to a point P with a

thread of length R and it tries to make a circle around the point P the circumference of the



circle so drawn would not be equal to 2zR. Similarly if the ant tries to draw a triangle the sum
of the angles would never be equal to 2 . Then the surface is said to have some Gaussian
curvature and it gives a measure of how much convex (positive Gaussian curvature) or
concave (negative Gaussian curvature) the surface is. For surfaces not having any
Gaussian curvature there will be no deviation from such measurements. Examples include
sphere (positive Gaussian curvature), hyperboloid (negative Gaussian curvature). [Figure

2.4]
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Figure 2.4: Surfaces having Gaussian curvature: Hyperboloid (negative), Cylinder
(zero) and Sphere (positive)

2.6 Occurrence of Curvature in a System

There are various ways that a curvature can occur in the system. Let us understand
the concept by some imaginative examples. Consider few different situations of 3 different
ants living on 3 different surfaces: - 1) A plane surface; 2) A sphere; 3) A plane surface
where temperatures are different at different places. All these ants are able to walk on the
surface, draw lines, make rulers and measure lengths but they have no idea of the outside
three dimensional space. The first situation is to draw a straight line on each of their residing
surfaces. The first ant living on the flat surface is able to do that perfectly. The second ant
living on the sphere draws the straight line as the shortest distance between 2 points; he
has no way of knowing that what he has actually drawn is an arc between 2 points. This
happens as the sphere has a curvature and for a proper line to be drawn the ant needs to
go through the sphere. When the third ant tries to draw a straight line on his surface with a



ruler, the ruler gets elongated when it comes in contact with the warmer parts of the surface.
So the straight line on the third surface curves out towards the warmer regions and

ultimately to people outside the ant’s world it looks like an arc. [Figure 2.5]

Figure 2.5: Ants on plane surface, sphere and a hot plate.

The second situation happens when each of these ants try to make a square and a triangle
on their surfaces. The first ant notices that if he draws a straight line of say 10 cm long
starting at point A, then makes a right angle, and repeats this 3 times more he is able to
reach at his starting point A. Then he also discovers that if tries to draw a triangle on his

surface the sum of the angles is equal to 27 . [Figure 2.6]
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Figure 2.6: A perfect square and a triangle on a flat surface

The second ant on the sphere tries to make a square but his ending point B is different from
that of his staring point A. Similarly when he tries to draw a triangle, the sum of the angles of
the triangle is not equal to 2w . Rather for him the sum of angles is always greater than 2m .

Same situation arises for the ant on the surface of varying temperatures. He too cannot
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meet his starting point when he draws a square and he can’t ever draw a triangle whose

angles’ sum is 2m .

Figure 2.7: Square, triangle on a circle; Square on a hot plate.

So a curved surface can be defined as a surface where the laws of Euclidean geometry
(valid for a plane surface) fail. The curvature of the sphere and the hot plate that were
described previously are all intrinsic curvatures. That is they are curvatures which only
depend upon measurements taken in a local region [Six Not So Easy Pieces]. Sphere and
the hot plate (where the temperature increases with distance from the center) all have
positive intrinsic curvatures. Similarly there are other surfaces which also have negative
intrinsic curvature. Examples are the saddle on a horse, or a hot plate where the
temperature decreases with distance from center.

Any thermodynamic or mechanical system can be described in terms of a pair of
work conjugate variables. For example in thermodynamics the internal energy of the system
can be described by temperature and entropy, or pressure and volume. For a mechanical
system, a small increment of energy may be expressed in terms of similar work conjugate
pairs: a force times a small displacement. Let us consider a system being defined by work
conjugate pair of variables U and V. A closed loop cycle in such a system is closed in all
variables, implying a return to the original state upon completion of the cycle. In other words,
if the system is at an initial state of U = 0 and V = 0, and it undergoes a complete cycle, it
will return to the final state of U = 0 and V = 0, which is the same as the initial state. When
the solution-space (in which the cycle is executed) is curved, then the complete cycle would
not be closed in all variables. This means that if after the cycle, U = 0 then V necessarily

would not return to 0 and vice versa.
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2.7 Concept of Path Dependency: Plasticity in crystalline materials

Let us establish the physical background for understanding plastic deformations of
metals and from there understand the relation between curvature, dislocation and path
dependency. Plasticity describes irreversible and path dependent behaviors of ductile
materials. Commonly, plasticity is volume conserving (plasticity in soils being an exception)
and causes only shape change or distortion in the body. As a body is loaded from its stress
free state, it first undergoes elastic or reversible deformation. During this phase, the strain at
a point returns to zero if the stress returns to zero, and vice versa. In other words, closed
thermodynamic cycles do not dissipate any work.

However, as the stress exceeds a critical threshold, commonly called the yield
stress, the behavior of the body becomes path dependent, and closed thermodynamic
cycles dissipate work. The work conjugate pair, stress and strain, does not return to zero
simultaneously when their excursion amplitude exceeds this critical value. Since, plastic
deformation is primarily a distortion; a direct test of plasticity of the material could thus be
done by producing a state of simple shearing deformation in a specimen through the
application of forces that result in a state of shear stress.

Plasticity theory was primarily developed in order to describe the behavior of ductile
metals. Metals in their usual form are polycrystalline aggregates, which are composed of
large number of grains, each of which has the structure of a simple crystal. In crystalline
materials, plastic flow is related directly to the presence of dislocations and their response to
the applied stresses. For instance, relatively lower stresses are required to cause plastic
flow in crystals having dislocations, in comparison to the much higher stresses necessary to
initiate plastic flow in a perfect crystal, i.e. without dislocations or defects. A crystal is a three
dimensional array of atoms forming a regular lattice, it may be regarded as a molecule of
indefinite extent. The atoms vibrate about fixed points in the lattice but by and large do not
move away from the fixed points being held by the forces exerted by neighboring atoms.
The forces may be ionic, covalent or metallic bonding.

Experiments show that plastic deformation is the result of relative motion, or slip on
specific crystallographic planes in response to shear stress along these planes. It is found
that the slip planes are most often those that are parallel to the planes of closest packing, a
simple explanation for this is that the separation between such planes is the greatest and
therefore slip between them is the easiest. The cause for this is that the resistance to slip as

a result of interatomic forces decreases rapidly with interatomic distance. Within each slip
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plane there are preferred slip directions which are those of the atomic rows with greatest
density. A slip plane and a slip direction together are said to form a slip system. [Lubliner
1990]

While in slip, atoms in plane slide tangentially from one equilibrium position over to
another. The stress needed to displace the atom from equilibrium is the derivative of the
bond energy function, the bond energy function being zero at the equilibrium position. The
bond energy function is an-harmonic curve resulting from the balance of attractive and
repulsive atomic forces among the atoms. The stress reaches a maximum at approximately
quarter of the distance between the two equilibrium positions, dropping to zero at the
metastable position midway between them. After that, the stress changes sign, meaning that
force is required to hold the atom back (as opposed to application of a force to take the atom
away) as it tries to fall toward the new equilibrium position [Roylance 2001] [Figure 2.8b]. Let
us understand the stress versus displacement and energy versus displacement curve with

the help of Figure 2.8a.

Shear Stress

Shear Plane
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Figure 2.8a: Slip Process in a Perfect Crystal
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Figure 2.8b: Variation of Shear Stress and Lattice/Potential Energy with Atomic
Displacement

Application of a shear stress on a plane within a crystal causes displacement of
atoms from their original positions within the crystal lattice. If the atomic displacement is
small the strain is elastic, or upon removal of the stress the atom moves back to its original
position. If however, the displacement is large enough to take atom 1 to a positions midway
between atom 2 and 4 , atom 1 will become in a state of metastable equilibrium with respect
to the two atoms and it has equal chance of taking up a position above atom 4 or above its
original neighbor atom 2 [Figure 2.9a]. At the midway point at a distance of d/2, the stress
required to displace the atom is zero as the atom can go in either direction. This point is
unstable and a displacement in either direction will decrease the potential energy. If
however under the influence of the stress, atom 1 goes any closer to the position above
atom 4, it will move toward the position above atom 4. The symmetry of the lattice will be
restored even if atom 1 is above atom 4 but atoms on either side of the shear plane will
have nearest neighbors different from their original ones. The crystal is then said to have
slipped or undergone plastic deformation. This also means it is no longer in the elastic or

reversible regime of deformation.
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Figure 2.9: Slip between two neighboring rows of atoms

A value of the shear stress necessary to produce slip may be calculated theoretically by
assuming that slip takes place by the uniform displacement of adjacent atomic planes. Let
us consider two neighboring rows of atoms; the distance between the centers of adjacent
atoms in each row being d and the height between the centers lines of the two rows being h.
[Figure 2.8]. Let us suppose the two rows are in equilibrium configuration under zero stress.
If one row is displaced by a distance d relative to the other, a new configuration is achieved
that is not different from the first one. A displacement of d/2 on the other hand would lead to
an unstable equilibrium configuration at zero stress. When halfway between the two
equilibrium positions, the atom has equal probability of going to either of the two positions.
Hence the halfway position is a metastable position. When the atom is just quarter of a
distance away from one of the positions it has highest chance of going to the position it is
closest to. So the critical length scale between 2 equilibrium positions is d/2. When the
atoms in the upper row slide over those in the lower one, intrinsically strong interatomic
forces must be overcome by the applied stress. The crystal energy varies with the relative
atomic displacement across the slip plane as shown in Figure 2.8b. When the atoms in the
upper plane have been displaced by one-half of their interatomic distance, d/2, the crystal
energy corresponds to a maximum as going in either direction will only decrease this

energy. [Pareja 2008] The force or shear stress required to produce the displacement will be
proportional to% , where U is the lattice energy. Suppose the lattice energy variation with

atomic displacement is given by the equation:

U(x)=A—Bcos? (10)
The shear stress needed for a relative atomic displacement of x to occur can be given by

du . 2mx

= T= TmaxSin—- (11)
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When the displacement x is small, and stress and strain are small then Hooke’s law in shear
dt
given by T = Gy is also followed which also means G = (d—y) . Also a small atomic
0

displacement of x between atomic rows which are separated by a distance of h corresponds

to a lattice shear of Yy = % .

Differentiating equation 11 with respect to x we get

dr T Zn'cosZTrx - (d‘r) — T 2T 12
dx - max d d - dx 0 - max d ( )

ing & = dr v - =%
Using I 1 dx and a lattice shear of Yy = L we get
dt 1/drt dt dr 2w
(&), = z(—y)o => (d—y)o =h(g), = P Tma’y (13)
dt 2w Gd
Therefore G = (d—y)o = hTmax? => Tmax = 5, (14)
If h is approximately equal to d then ,,,4, = % = 1—60. (15)

So the theoretical shear strength is of the order 16—0 .Actually this has been over estimated as
the function z(x) is not symmetrical for a real crystal in the range of 0 to g. A more refined

approach lowers the shear stress to % . These values are much higher than the

experimental shear stress values found for single crystals of pure metals. In reality the shear
strength of single crystals is less than this by 1 to 3 orders of magnitude that is in the order
of 103G to 10756.

2.8 Dislocations and Crystal Plasticity

There is an observed discrepancy between theoretical and observed shear strength
as was seen above. The reason behind low experimental values for the required shear
stress was proposed independently by Taylor, Polyani and Orowan in 1934. It was realized
that it is not necessary to slip entire planes of atoms past one another to deform the material
plastically. This would require breaking all the bonds connecting the planes simultaneously.

The stress needed to do this would be very high, on the order of 1% as described above for

the theoretical shear stress. But there is no need to move all the atoms at once; only a few
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at a time need to move, requiring a much smaller stress. This discrepancy and the
observation of slip bands have led to the theory that slip in ordinary crystals must take place
by some mechanism other than movement of whole planes of atoms past one another. This
can be attributed to lattice defects and dislocations. A mechanism based on a specific defect
called a dislocation was proposed for this reason. A scenario can be imagined of atoms
lying in a plane above a single line which are displaced by one atomic distance. This would
force this particular plane of atoms previously there into a midway position as shown in Fig.
2.12(a), creating an additional plane of atoms halfway between the normal equilibrium
positions. This is an example of a dislocation specifically line defect. [Roylance 20017]

All real crystals contain defects, that is, deviations from the ideal crystal structure. A
defect concentrated about a single lattice point and involving only a few atoms is called a
point defect; if it extends along a row of many atoms, it is called a line defect; and if it covers
a whole plane of atoms, a planar defect.

Point defects can be purely structural, such as (a) a vacancy or (b) an interstitial
atom. They can involve foreign atoms also as impurities: (c) a substitution impurity, (d) an
interstitial impurity. Point defects distort the crystal lattice locally as seen from the Figure
2.10. The distortion felt for this point defect is significant over a few atomic distances but

negligible farther away.
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Figure 2.10: Point Defects: - (a) Vacancy (b) Interstitial atom (c) Substitution Impurity
(d) Interstitial Impurity
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Figure 2.11: Planar defects: (a) Grain Boundary (b) Twin Boundary (i) and (ii) Stacking
faults

Planar defects include (a) grain boundaries in poly-crystals and within single crystals
they are manifested as (b) twin boundaries and (c) stacking faults. Planar defects are shown
in Figure 2.11.

The most important line defects in crystal are dislocations. There are mainly two
types of dislocations; edge and screw. An edge dislocation in a crystal can be visualized as
a line. It can be imagined as if an extra half-plane of atoms has been introduced on one side
of the imaginary line, as illustrated in Figure 2.12(a) for a simple cubic lattice. When the
distance from the dislocation line is quite a lot number of atomic distances, the lattice is
virtually undisturbed. If now a path through this “good” crystal is considered it would have
been closed if the lattice were perfect. But now such a path, consisting of the same number
of atom-to-atom steps in each direction and enclosing a dislocation is not closed as shown

in the Figure 2.12(a). The vector b needed to close it is called the Burgers vector of the
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dislocation, and the path defining it is called the Burgers circuit. For an edge dislocation, the
Burgers vector is necessarily perpendicular to the dislocation line. And this is the defining
property of an edge dislocation. Similarly, the defining property for a screw dislocation can
be defined as one whose Burgers vector is parallel to the dislocation line as shown in Figure
2.12(b).

o o o o
» Atoms above
the slip plane

|
I
o ole © ¢ o oto o Burgers
ole o 0 o “"75_ circuit oAtoms below
@ e the slip plane
o o |2 @ é o o%os o
________l____._ —— —— h JE—
[s] O [+] O (] O (=] [&] \ .
Dislocation line
o O (=] a a O [+] [&] b
[+ o | (] (] O O (] L]
(2] o o O (] (] (] (]
(a) (b)

Figure 2.12: Dislocation in a Crystal (a) Edge Dislocation (b) Screw Dislocation

A dislocation in a crystal need not be a straight line. However, the Burgers vector must
remain constant. Thus, a dislocation can change from edge to screw, or vice versa. It
cannot, however, terminate inside the crystal. It can only terminate at the surface of a crystal
or at a grain boundary. It can form a closed loop, or branch into other dislocations (at points
called nodes), subject to the conservation of the Burgers vectors: the sum of the Burgers
vectors of the dislocations meeting at a node must vanish if each dislocation is considered
to go into the node [Frank 1951].

It can be said that plastic deformation in crystals results from the movement of
dislocations. In order for an edge dislocation to move one atomic distance in the plane
containing it and its Burgers vector (the slip plane), each atom need move only a small
fraction of an atomic distance. Consequently, the stress required to move the dislocation is
only a small fraction of the theoretical shear strength discussed previously. An approximate

value of this stress is given by the Peierls—Nabarro stress given by the following equation.
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26 —2mh
ey = 15, €XP [d(l:;) (16)

h and d denote the distances between adjacent planes of atoms and between atoms in

each plane, respectively. The Peierls—Nabarro stress is clearly much smaller than the
theoretical shear strength. Its value depends on h/d, and the smallest value is achieved
when h/d is largest, that is, for close-packed planes that are as far apart as possible. This

explains why farther apart densely packed planes are the most probable to slip.

e Atoms before motion

O Atoms after motion

Figure 2.13: Slip by means of edge dislocation

If the stress is maintained, the dislocation will keep on moving to the next position.
As the dislocation moves in its slip plane, the portion of the plane that it leaves behind can
be regarded as having experienced slip of the amount of one Burgers-vector of
magnitude b = |b|. When the dislocation reaches the crystal boundary, slip will have

occurred on the entire slip plane. Suppose that the length of the slip plane is s, and that an
edge dislocation moves a distance x in the slip plane; then it contributes a displacement?.

. . . . _ . nbx
In case of n dislocations, moving an average distance x produce a displacementu = -

If the average spacing between slip planes is /, then the plastic shear strain is yP =

u nbx

1= T However L just the average number of dislocation lines per unit perpendicular

area or, equivalently, the total length of dislocation lines of the given family per unit crystal

volume — a quantity known as the density of dislocations, usually denoted by p . Since only
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the mobile dislocations contribute to plastic strain, it is their density, denoted by p,, that
appears in the equation for plastic strain. The final equation is given by y? = p,,bx .
[Lubliner 1990]

2.9 Curvature Induced Path Dependency

Referring to Figure 2.7 it is observed that the ant which started moving from point A
on the sphere never returned to point A or to its original state after it underwent a complete
cycle. It returned to some other point A’ which means it actually returned to another state.
Similar kind of phenomenon was shown in Figure 2.12 and 2.13. In crystals this
phenomenon can be attributed to lattice defects or more specifically dislocations. In
thermodynamics, this phenomenon can be seen as an irreversible change; the difference
between A and A’ representing the change. A phenomenon or process that is not reversible
is called irreversible.

If (End State) — (Start State) > Critical Value we conjecture that the solution space
will exhibit formation of a dislocation. We hypothesize that formation of such dislocation (or
dislocation cluster) is the root cause of path dependency exhibited by a system. Thus,
excessive curvature of solution space may nucleate a dislocation, and induce path
dependency or irreversibility in a solution space or a mathematical manifold.

The occurrence of curvature and dislocations is related very closely. When a system
(be it mathematical or mechanical) is curved it will not behave like a closed loop system,
which means there will be a difference in its initial and final state as explained above. If the
difference between the initial and final state exceeds a certain critical curvature say K then
the system will nucleate a formation of dislocation. Once dislocation starts the system will
never return to its initial state after undergoing a full process or cycle. Hence a system
having dislocation will exhibit path dependency. In a crystalline or metallic system the
formation of dislocations can be brought out by the shear stresses that were calculated in
previous sections. For example if one atom in a crystalline system is at a distance greater
than d/2 from its equilibrium position it has a high chance of never returning to its previous
equilibrium position thus exhibiting a dislocation in a crystalline system. In a mathematical
system, curvature can occur if pair wise relation between two entities A and B is altered by
introduction of a third entity C when C enters and demands a share of the resource that is
supposed to be conserved. This introduction of C curves the solution space. And on this

kind of system a dislocation is nucleated if the curvature exceeds a critical value or the final
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state is so much different than the initial state that the difference exceeds a critical curvature

dictated by the geometric length scale at that point.
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CHAPTER 3. LENGTH SCALE DERIVATION

Let us consider an observable body or a phenomenon. A finite number of

observation points are inserted into such a system. At each point, information is collected at
multiple dimensions, and at discrete instants of time for the entire duration of the
experiment. Let us also consider two points A and B. At both of these points there are many
dimensions where each dimension is denoted by i. The value recorded at these two points
in some particular dimension i =d can be denoted as u4 and u . For the present
analysis, after all values are recorded at every observation point, a normalized relationship
is developed between each pair of points in each dimension. Such a normalized relationship

ug - ug

between two points A and B is given by a;” = Wi+ Br 7

where mis an arbitrary small

constant that is determined later.

In order to develop a model describing such a phenomenon, it is first assumed that
the system under observation is conservative. As a first attempt, it is also assumed that a
piecewise second order potential is sufficient to describe the interactions in the system.
Thus, the general potential function is assumed to be quadratic in the neighborhood of each
observation points. However, the nature of the quadratic potential function (coefficients of
the second order polynomial) can vary from one point to the other. The approximations and
intrinsic uncertainty introduced in the model predictions due to this approximation will be
examined later.

Next, it is attempted to satisfy the three canonical requirements of: (1) compatibility,
(2) equilibrium and (3) constitutive relation. It is further acknowledged that objectivity or
frame invariance is a requirement for describing the behavior of such a system. Objectivity
implies that the state of the observed system remains invariant with respect to variations in
the observation procedure. In the present development, compatibility is enforced indirectly
by requiring that the system be objective at every observable scale at each location
[Chandra and Roy 2012]. Such an indirect approach satisfies compatibility as well as
objectivity simultaneously. Using such an approach [Chandra and Roy 2012], the
conservation of linear momentum in the neighborhood of point A may be described as,
R~ Bh+ AL =0 (17)
Here R'l-‘1 is the rank at point A in dimensioni [Chandra and Roy 2012]. Such a rank

satisfies both compatibility (and objectivity) as well as equilibrium at A. H‘,‘: represents the
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Borda Count [Saari 1999, 2000, and 2001 a, b]. The parameter B‘i"k may be described

A . . . .
as B4 (M)Z Ekl * ||L,Lj]| . The parameter B, is a non-dimensional quantity and

essentially represents the square of a length-scale around the point A, in which the
linearized equation (17) is valid. The length-scale essentially denotes a region around the
observation point, in which the piecewise quadratic assumption for the potential function is

valid. So replacing B4, in the equation above the following equation of length scale (L;) can

be obtained.

RA - (;)2 pot Ll + AHY =0 (18)
=> R4 = (Ai)z Eukl* L,L; + AH} (19)
=> E,,,d[h": ] = 25+ AH, (20)

Out of all the possible transformation laws, the ones that are permissible in the
above equation are the ones that conserve angular momentum and the symmetry of
potential function. Now the conservation of angular momentum requires that (i and j) be
interchangeable. Similarly, the interchangeability of (k and 1) is mandated by the symmetry
requirements on the definition of strain. The requirement of work conjugate requires
symmetry in potential function and this enforces interchangeability
between (i; j) pair and (k; Dpair. After all such transformations, the following equation
can be derived:-

Eijri " R; R;j Ry R
2 Lle LyL; Lle LiLy

]— a7 « [AH; + AH; + AH), + AH|] (21)

A constant mf’B is evaluated for each observation pair by assuming an order of the
interaction potential between the pair under consideration. As a first attempt, only piecewise
quadratic potential function is used in the present work. Next, the constant mAB is
evaluated by setting the spatial gradient of the observed variable at observation point A

(ufj) to be exactly the same as the spatial gradient of the normalized variable (af]-).

Finally, the constant m is evaluated from a least square fit of all the m’."B values. The
constant m essentially sets the datum and the coordinate of the origin is set at —m in the
respective dimension. [Chandra 2012] Since only a least square approximation is used for
evaluatingm, and it is used universally at all points (to set same datum for all observation

points), the gradient of the observed variable and that of the normalized variable are not
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exactly the same at all points. This introduces an approximation in our formulation. The error

introduced due to this approximation is measured in the present work.
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CHAPTER 4. ALGORITHMS

The algorithms needed for the prediction, verification and the different applications

are explained below.
4.1 LBar and LBarTilda Calculation

This calculation follows a generic approach. This approach is followed so that the
algorithm can be applied for any system where the actual Poisson’s ratio of the system is
not known. For example, an economics system is not a mechanical or a materialistic system
and hence the Poisson Ratio of an economics system cannot be known beforehand. It is
already known that Poisson’s Ratio for pure volumetric deformation or dilatation (v,) = -1
and Poisson’s Ratio for only shape change (at constant volume) or pure Shear (vg) = 0.5.
Using these two prior known values we calculate the proportion of volumetric deformation

and shear deformation happening.

4.1a Algorithm

1. Two frames consecutive in time are considered. It is assumed that the value of
LBar(L) and LBarTiIda(i) does not change for points in the 2 frames in such a short
time interval. So 1 common value of LBar(L) and LBarTilda(L) is calculated for all
points in the 2 frames.

2. The long term (or projected rank upon satisfying both equilibrium and compatibility)
rank(R) values for all features/dimensions for the 2" frame are obtained.

3. The difference between short term (satisfying equilibrium only) rank (H) values of the
2 frames is calculated.

4. Using the above 2 values of R and H for a specific dimension and at each data point,
2 sets of simultaneous equations are solved.

a) Considering volumetric deformation(vy = —.99), values for 1/LBarVolume
(1/Ly) are obtained.

b) Considering deformation due to pure shear(vg¢=.5), values for
1/LBarShear (1/Lg) are obtained.

5. The number of equations in each set at each data point for a particular dimension is
equal to the number of dimensions. The number of solutions obtained at each data

point for a specific dimension is 24imSize
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6. Solving the 2 sets of simultaneous equations gives us the reciprocal values. So
reciprocal of the values is taken to obtain the actual L, and L.

7. Since the number of solutions is 24mSiz¢ 8 and 16 values of L are obtained when
number of total dimensions are 3 and 4 respectively. The number of solutions is

called to be the number of roots of L.

4.1b Nature of the Roots
At each point there are a number of dimensions. So totally for one point there are

2dimSize . dimSize number of roots as for 1 specific dimension there are 24imSiz¢ nymber of
roots. 24imSize. nymber of roots of 1 dimension corresponds to 24imSize. number of roots of
any other dimension in 1:1 manner. This means the 1% root of L of the 1% dimension is
related to the 1% root of L of the 2™ dimension and so on. This is a valid assumption as
Matlab will always solve simultaneous equations at the same time giving the roots in order
of their correspondence. Also it has been noticed that in perfect correlation between the
roots the value of any one of the simultaneous equation is 4.68 x 10771 — 4.16 x 10772 x
i which is almost equal to 0 whereas when the roots are tried to be combined randomly (not
1:1) in the equation the value is 0.006 X i — 0.004 which is of the order of 1073 .
4.2 Curvature/Kappa Calculation

This calculation also follows a generic approach. This approach is followed for the
same reason as before so that the algorithm can be applied for any system where the actual
Poisson’s ratio of the system is not known. For example, an economics system is not a
mechanical or a materialistic system and hence the Poisson Ratio of an economics system

cannot be known beforehand.

4.2a Range of proportionality variable (alpha)
If 3, is the volumetric curvature and #x is the shear curvature then the total or

composite curvature(xk) at a given location/point and dimension is given by:
K=oak,+ (1—-a)k (22)
Here a is the proportion by which volumetric curvature takes place. Shear stress is the
component of stress coplanar with the material cross section. Shear stress arises from a
force vector perpendicular to the surface normal vector of the cross section. Hence shear
changes the shape of the object and not the volume. Volume is altered by dilatational

deformation (as shown in the figure below).
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AL T

Fig 4.1: A shear stress T is applied to the top of the square while the bottom is held in
place. This stress results in a strain, or deformation, changing the square into a
parallelogram

In Solid Mechanics the composite stress is given by:

! 1 A
O'i]' = A€ 8,1 + ZG(GU — 56 511) (23)
Where 4 = bulk modulus, G = shear modulus & €' = €11 + &2 + €33 (volumetric strain for
. . vE
3 dimensions).Also shear modulus, G = 20 and bulk modulus A = aAmazy

Comparing the stress equation (23) and curvature equation (22) with each other we find

T . . a A _ v
similarity between the two equations. So we can wrltea— %= oz The range of
Poisson’s Ratio (v) is —1<v<0.5.Whenv= —1thena= —% and when v = 0.5 then

1—2v =0 which implies 1 —a = 0, that gives a = 1. Hence the range of a should be

between —% and 1.
4.2b Algorithm

1. LBarVolume(L,) and LBarShear(Lg) for all data points and for all
features/dimensions are calculated using the algorithm described above for
calculating LBar. Let LBarMatrixVolume and LBarMatrixShear be the 2 matrices that
contain the results.

2. As explained in the previous algorithm during the calculation of LBarMatrixVolume
and LBarMatrixShear, 2fetureSize nymbers of roots are calculated for a specific

feature and at each point.
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The reciprocal of LBarMatrixVolume is taken and let
LBarMatrixReciprocalVolume contain these results.

The sum of all values of all points of LBarMatrixReciprocalVolume for a particular
feature and for a specific root is taken. Then the sum is divided by the number of
points (sampleSize) to get the average. Let averageLBarVolumeVectorReciprocal
contain the average results.

All the data points in LBarMatrixReciprocalVolume are considered and a relation

between each pair of point is created. For example if there are 2 points A and B and

. 1 , . 1
the value of LBarReciprocalVolume (ﬁ) at point A and point B are L=Aand

v

&=
<hu:|| =

%Brespectively the relation between A and B is given by
14

- . Like this relations

4=
B
Ly

él“ =

between every pair of points for all features and all roots are created.
The matrix of all these relations is homogenized following the algorithm described
previously.
Each point has relation with every other point. Since there are sampleSize number
of points there are sampleSize number of relations for each point. The relations are
all added up for each point for a specific feature and a specific root and then divided
by sampleSize to get the rank of all the relations for a particular point. Let
rVolFromLBarVol represent the rank for all points.
The 2 averages averagel BarVolumeVectorReciprocal and rVolFromLBarVol are
added for each point and a specific feature and a specific root and
LBarReciprocalTildaVolume s obtained for  that point. Likewise
LBarReciprocalTildaVolume is calculated for all points.
The reciprocal of the values obtained in the previous step is taken and the results are
stored inside LBarTildaVolume(L,).

(R+Ly — H+Ly)
(@ Ty)+(1+(H/Ly)?)15)

specific feature and a specific root and applied to all points.

KappaMatrixVolume(x,) is calculated as for each point,

Steps 3 to 10 are repeated in the same way to calculate KappaMatrixShear(ky)
Equation (22) is solved to find out alpha(a) assuming that composite Kappa(k) is

minimized to O.
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To use a constant alpha(a) absolute values of alpha are taken, the absolute values
are squared and then the mean of all the values across all the dimensions are taken.
Then the positive square root of the mean is taken to be the least square alpha value
that all features of a single point will use.

Finally the composite Kappa(k) is calculated using equation (22) and using the least
square alpha(a) value. The Kappa values for all points and all features are stored in
the matrix called FinalKappaMatrix.

Moreover a composite value for LBar and LBarTilda are also calculated in the same
manner following equation (22) and using the least square alpha(a) value. These

values are stored in FinalLBarMatrix and FinalLBarTildaMatrix.

4.3 Post Kappa Processing: Categorizing Points and Assigning PDI

There are eight categories that are assigned to the points after their Kappa is calculated.

The categories specify the amount of instability that has occurred in each of the points.

Assignment of the seven categories will be explained in this section. The 8" last category is

assigned after further processing which will be explained in the next section. This section

explains only the assignment of the first seven categories. Each of these categories can be

defined to be the Path Dependent Index (PDI) as it measures the amount or severity of the

instability.

4.3a Algorithm

1.

FinalLBarMatrix and FinalLBarTildaMatrix were obtained by the previous
algorithm. Two more matrices called KappaStarShortAllFeatures and
KappaStarLongAllFeatures are created by taking reciprocal FinalLBarMatrix and
FinalLBarTildaMatrix respectively. For convenience let us call the values of the 2
matrices to be KappaShort and KappalLong respectively.

For each point, each feature and each root the following steps are done to categorize
each point into a specific category that represents the amount of instability that point
contains.

abs(Kappa) and abs(Kappa)

If the val f
the value o abs(KappaLong) abs(KappaShort)

< 1 then the point is said to be

fully stable and a category of 1 is assigned to that point.
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abs(Kappa) ~1 and abs(Kappa)

abs(KappaLong) abs(KappaShort) > 1 then the point is

unstable. It remains to be seen how much instability this point now has.

(i)

(iii)

(iv)

(v)

(vi)

(vii)

If abs(KappalLong) > abs(KappaShort) then
ModKappa = abs(KappaLong) or else
ModKappa = abs(KappaShort)

Another equation of the form k = ak, + (1 — a)k; — ModKappa is solved to
obtain a value. Here also it is attempted to reduce the curvature of that point
even further by calculating a different value for a say @, ime. Till now it is
only known that this point can be unstable but it might also become stable in
the future as the system will always attempt to minimize curvature by
adjusting the mode “mixity” between volumetric deformation and shear
deformation or shape change.

If the system manages to find a a@,,im. that is in the valid range for alpha as
determined in section 4.2a i.e. —% < @prime < 1 then the point is said to be

conditionally stable as this point has the capability to reduce its curvature to
zero. This point is assigned a category of 4.

Else if however alpha is not in valid range then this is noted as occurring in 1
dimension for that point. A vector called countDOutRange is introduced to
keep track of the number of dimensions in which this happens. Another
vector called featureMatrixOutRange stores information about the
dimensions in which this happens.

If at that particular point the count for the number of dimensions exceed
dimSize — 1 then that point is assigned a category value of 7 for those
particular dimensions. This means that that point is unstable across multiple
dimensions and the number of dimensions is definitely greater than 2 which
signify that the point is suffering from volume defect.

Else if however the count of number of dimensions at that point exceeds 1
then the point is assigned a category value of 6 for those particular
dimensions. This means that there are 2 or more dimensions across which
the point is unstable and hence the point is suffering from area defect.

Else if the count of number of dimensions at that point is equal to 1 then the

point is assigned a category value of 5 for that single dimension. This means
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that there is 1 dimension across which the point is unstable and hence the
point is suffering from line defect.
5. Else if however the point was never unstable then after step 4 it is checked whether

point is short term or long term unstable.

abs(Kappa) C e . . .
6. abs(KappaShors) > 1 then the point is said to be short term unstable and is assigned
a category value of 2. This signifies that this point might become stable in the long

term or in the future but form now it is unstable.

7. __absKappa) _ 1 then the point is said to be short term stable and is assigned a
abs(Kappalong)
category value of 3. This signifies that this point might become unstable in the long

term or in the future but form now it is stable.

Thus except the category value of 1, 2 and 3 all the other categories represent some form
of full instability. There is another category value 8 that is done after this to get an idea of
the length of the defect that has been produced at each point. Assignment of category value

8 is another full algorithm that is described below.

4.4 Chain Length Calculation

The chain length determination is done at every point for each dimension and each root.
This is done to check how long does a defect continue in either directions from one point to
another point in order of their ranks. In a materialistic system like the balloon burst the points
are oriented geometrically with respect to each other, but in an abstract system like an
economical system there is no geometry information. Hence the continuation of defects is
checked along the points in order of their ranks so that the algorithm can have a generic
approach. Then depending on the threshold chain length value that is obtained from Zoom
Out or Critical Localization Index calculations a category of 8 is assigned to such points

indicating that these can give rise to highest instability in the future.

4.4a Algorithm

1. The long term or projected rank Rank(R) values of all points are sorted in
descending order.

2. The curvature Kappa(x) values of all points are sorted in descending order.
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The highest Kappa Value is taken as the reference point say P. The procedure starts

with the point which has the highest curvature.

The PDI Category value of the reference point P is checked that had been assigned

in the previous algorithm.

If PDI Category value is greater than 5 following steps are done :-

(i)

(i)

(iv)

(v)

The position in the descending Rank Array where this reference point P
occurs is found out.

The Rank Array is traversed in both directions from the above position as
long as the upper Index does not reach the full sample size (total number of
points in the sample) and the lower index does not hit 0. 2 points above and
below the reference point/chain are considered in this manner.

For simplicity (and for initially starting the procedure) these 2 points are
considered, one above the reference point P say U and the other below the
reference point P say D.

It is checked whether the absolute Kappa Value of the reference point is
greater than the absolute Kappa Values of both points U and point D. If it is
greater than both, then following steps are done.

¢ Find out the minimum of combination of Kappa Values. Combination
is done by +Kappa(P) + Kappa(U) + Kappa(D) and this value is
called KappaMix.

¢ Find out the addition of L and LTilda absolute Values and call these
LMix and LTildaMix.

o |If KappaMix > 1/LTildaMix then these 2 points (U and D) along
with the reference point will form a chain. So the points U and D are
also considered to be a part of the chain.

¢ The plotted PDI category values corresponding to these points (U and
D) can be changed to 5 and the Chain Length of all these points (P,
U, D) is incremented by 2.

e The Upper Index is incremented by 1 and the Lower index is
decremented by 1 for continuing along the chain.

Else it is checked whether the absolute Kappa Value of the reference point is
greater than the absolute Kappa Values of point U. If is greater than U then

the following steps are done :-
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Find out the minimum of combination of Kappa Values. Combination
is done by Kappa(R) + Kappa(U) and this values is called as
KappaMix.

Find out the addition of L and LTilda absolute Values and call these
LMix and LTildaMix.

If KappaMix > 1/LTildaMix then this 1 point (U) along with the
reference point will form a chain.

The plot value corresponding to these points (U) can be given as 5
and the Chain Length of all these points (P, U) is incremented by 1.
Increment the Upper Index by 1 for continuing along Upper part of the
Rank Array.

(vi)  Else it is checked whether the absolute Kappa Value of the reference point is

greater than the absolute Kappa Values of point D. If is greater than D then

the following steps are done :-

Find out the minimum of combination of Kappa Values. Combination
is done by Kappa(R) + Kappa(D) and call this value KappaMix.
Find out the addition of L and LTilda absolute Values and call these
LMix and LTildaMix.

If KappaMix > 1/LTildaMix then this 1 point (D) along with the
reference point will form a chain.

The plot value corresponding to these points (D) can be given as 5
and the Chain Length of all these points (P, D) is incremented by 1.
Decrement the Lower Index by 1 for continuing in the Lower part of
the Rank Array.

(vii)  Continue in step (ii).

(vii)  Once all the Rank Array points are finished break from the main Loop.

6. Else go to the next highest Kappa Value Point and continue from step (4).

4.5 Critical Localization Index Calculation

This algorithm is done to calculate the critical value of chain length. If the system forms a

chain of length equal to this or larger than this value then the system is said to be path
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dependent. After the system attains path dependency it can go towards failure depending

upon certain other conditions as well.

4.5a Algorithm

1.

First the sample data is extracted from the file. The sample data is quite large in this
case and preferably a matrix of 3™ % 3™ or 4™« 4™ where m is the number of
aggregation levels. The algorithm is explained taking the sample data size to be an
81 x 81 matrix. Hence the numbers of levels are 4.

In each level, the sample data is divided into squares of size 3 * 3 or4 x 4 matrix
based on what initial size of matrix was chosen. For each of the small squares
Kappa, LTilda, L is calculated for every point.

The Kappa, LTilda, L values at each point is combined with the Kappa, LTilda, L
values at every other point. If combined kappa value of a previous point is
Kappap,., and the Kappa value for the next point is Kappac,» then the
combinations is done by Kappap,., + Kappac,,~ This leads to a total number of
2ne of points—1 combinations for each of the small matrices.

Next average, maximum and minimum of all the combined values of Kappa,
LTilda, L from all the small matrices is taken and stored. This unique value so
obtained is called to be the Kappa, LTilda, and L for that level. If initially an 87 x 81
matrix was chosen then at the first level there were 729 (27 x 27) small matrices.
Kappa, LTilda, L s were calculated for all such matrices and combined in the above
fashion and the mean, max or min of all such values were taken to produce a
unique Kappa, LTilda, L value for that level. The first level had an aggregation of 3 x
3 points.

Next the root mean square value of each of the small matrix is calculated. In the
case of 81 x 81 initial data points, there are actually 729(27 x 27) small matrices of 3
x 3 points. So in the 2™ level the full sample data of 87 x 81 points is reduced into a
matrix of 27 x 27 root mean square values. In the 3™ level the 27 x 27 matrix is
further reduced into a matrix of 9 x 9 root mean square values. In the 4™ level again
root mean square is taken for 9(3 x 3) small matrices and 9 x 9 matrix is reduced into
a matrix of 3 x 3 root mean square values. After this this matrix can be further

reduced into a single root mean square value but such a point will not have a
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curvature (Kappa) or any length scale (LTilda, L) value. Hence for a set of 81 x 81
points the number of levels are 4 as 3* = 81.

6. The aggregation levels are the number of points in the smallest matrices which are
getting used for Kappa, LTilda, L calculations. The first aggregation level is 9 since
only a 3 x 3 matrix of points is getting used individually. The second aggregation
level is 81 as root mean square is calculated for each 3 x 3 matrixes and then
Kappa, LTilda, L is calculated for 3 x 3 such root mean square points. In this way
the 3" aggregation level is 729 and the 4™ aggregation level is 6561.

7. After the root mean square value of the matrix is calculated at any level, the resultant
reduced matrix actually becomes the data for the next level. And in a similar fashion
as explained above Kappa, LTilda, L for each point is calculated, combined and
average/maximum/minimum is taken across all combined values. This process is
repeated until we are left with 1 root mean square point for which Kappa, LTilda, L
cannot be calculated.

8. The unique value of Kappa, 1/LTilda, and 1/L obtained like this is plotted against
the aggregation levels. A log plot is more preferable as it is easier to visualize the
nature of the plot.

9. Next the plot is used to find the critical value of the localization index. The vertical
line (parallel to X Axis) at log 9 is taken to be the line of symmetry. Taking this line as

the symmetry line another line is drawn which is the mirror image to Kappa graph

1

TTilda line is extended

(the part of the graph between log 9 and log 81). After this the

to intersect the mirror of Kappa line. The X value of this intersection point is
measured. And the log value of this point is converted to number of points. This

number of points represents the chain length that is occurring in a total of 9 points.

4.5b Critical localization index for any number of points
The Zooms-Out plots are drawn on log 10 scales. [Figure 5.2] The different X Axis values

representing aggregation levels are log 9, log 81, log 729, and log 6561. The aggregation
level represents the number of points that were considered for measuring K,ﬁ % The
vertical line (parallel to X Axis) at log 9 is taken to be the line of symmetry. The information
before the aggregation level of Log 9 is not present due to the limitations in resolutions in
camera. The first aggregation level should be an absolute flat surface (i.e. when there is no

curvature present). So it is attempted to extrapolate the Kappa graph even before the Log 9
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aggregation level which for a log graph should start well before zero( at a negative value).

Hence the Log 9 is taken as the symmetry line. Another line is drawn which is the mirror

1
LTilda

image to Kappa graph (the part of the graph between log 9 and log 81). After this the

line is extended to intersect the mirror of Kappa line. Every mechanism (the blowing of a

balloon or the Gulf Stream) has some process zone. The explanation behind extension of

the L

LTilda

line to be intersected with the mirror line is that when the process reaches an X

value corresponding to point A it jumps to the X value corresponding to point B. This means
once localization index (or chain length) of the process reaches point A it very rapidly
spreads to the localization index of point B. Hence the X value corresponding to point A is
the critical localization index. The X value of this intersection point is measured. And the log
value of this point is converted to number of points. This number of points represents the
chain length that is occurring in a total of 9 points. If the number of unstable points forms a
chain greater than the above length then the system is said to be path dependent. Since this
chain length is only valid for 9 points, these needs to be converted to a value that can be
applicable to a set of 100 points or even more as required by the experimental analysis.
Chain length calculations for 9 points are given as:-

logi, 0.68

= — —=0.715=>x= 9%715=-48 =5
loggo 0.95

Keeping the ratio constant as 0.715 the chain length can be translated to a value in 100

points as given below:-

logi, 0.68
T O 0.715 => x = 102°0715 = 10143 = 26,9 =27
log1o 2

So the critical localization index value is 27 for a set of 100 points. Following the above

procedure chain length can be translated to any number of points.

4.6 Hole Formation Calculation
This algorithm is done to locate the ring formations in the Gulf Stream system. For this
algorithm geometric length scale and material length scale were both considered in the

analysis.

4.6a Algorithm
1. A minimum value of L from the previously calculated values of L is calculated

across all points and across all dimensions considering only the first time index.
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. A matrix LMateLGeomRatio containing the material versus geometric ratios

MGRatio (i—’") is initialized. For the first time instant this ratio is 1 for all points and
G

across all dimensions. For the first time index it is assumed that the material and
geometric length scale contribute evenly to the ratio. The algorithm calculates the

ratio based on some conditions for the next time indices.

. Another matrix called LGeometric is also initialized. For the first time instant the

geometric length scale (Lg) is equal to the square root of the calculated length scale
(L) as explained in section 4.1. For the first time instant it is assumed that the
material length scale and geometric lengths contribute equally to the actual length
scale.

The plot categories or path dependency index of the all points across all dimension
are calculated following the procedure in section 4.3 and section 4.4. The points are
now analyzed from the time indices after time instant 1.

If the current plot category of this point is greater than the previous plot category then

loading is taking place. During loading the ratioLL—” remains same as the ratio during
G

the previous time index. The LGeometric (L) at this point for the this time index is
given by square root of L/MGRatio.

Else if the current plot category of the point is lesser than previous plot category then
unloading is taking place. While in unloading there are 2 conditions that need to be
checked.

(i) If the point was path dependent (i.e. if previous plot category value was 5 or
above) and unloading was occurring then the LGeometric does not change
while LMaterial changes. The value of LMaterial (Ly) at this point for this
time index is calculated as é The new MGRatio is calculated as i—’z

e To change the MGRatio of this point at this current time index, a ratio

(MGRatio—1)

needs to be checked. This ratio is given as ( VCRatio

) . This ratio is

calculated for current and previous time indices. If this ratio has
increased from its previous value then the MGRatio of the point at the
current time is changed to the calculated new value of MGRatio.

e To change the category value of this point at this current time index

another ratio needs to be checked. This ratio is given
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abs(MGRatio—1)

as abs ( MGRatio

)+ abs(1 — MGRatio) . If this ratio is greater

than the minimum value of L as calculated in step 1 then the
category value of this point is changed to its previous plot category
value. This essentially means that the unloading has failed and the
point cannot change its category value.

(i)  If the point was path independent (i.e. if previous plot category value was less

than 5) then at this current time index the ratioLL—M remains same as the ratio
G

during the previous time index. The LGeometric (L) at this point for this time
index is given by square root of L/MGRatio.

7. The above process is continued for all points across all dimensions starting from time
index 2. After all points have undergone categorization again, those points which are
having category of 8 and 9 are noted.

8. Since originally L had 2™ roots where m = number of dimensions such points

(category 8 or category 9) can occur across 2™ roots. Out of the above points the
points which have category 8 or 9 in more than % — 1 roots are noted again.

9. For ring formations across the Gulf Streams such points must be occurring in more
than 1 dimension. So next, out of the noted above points again those points are

noted that have category 8 or category 9 in more than 1 dimension.
10.Finally these points which have been triggered in more than % —1roots and in

more than 1 dimension are said to have formed a hole or ring in the Gulf Stream.

4.7 Trend Reversal Calculation

This procedure is done to notice the changes in trend in the Economics System over a time
period and across all 4 dimensions (Inflation GDP Deflator, Unemployment, GDP Per
Capita, and Lending Rate). For this algorithm the long term rank (R) and short term rank (H)
of all the points are considered to assign them a negative or positive path dependency

index.
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4.7a Algorithm

1.

Firstly the Curvature (Kappa) of all the points for all dimensions and across all
times are calculated following the algorithm described in section 4.2. This information
can be also used from the Kappa results if previously stored.

Similarly all the points are categorized and assigned a path dependency index
following the algorithm described in section 4.3. This information can also be used
from previous results if stored.

Since there are 24imSize nymber of roots for Kappa calculation, it is required to
aggregate the Path Dependency Index information for all roots of a point into a single
value so that as single index can be assigned to each point.

In order to do so, the 24imSize nymber of categories is noted. Out of so many values
the Path Dependency Index that occurs most frequently (or the maximum number of
times) is taken to be the true Path Dependency Index of that point.

Lastly the values of Path Dependency Indices are plotted for all countries and for all
years.

If the absolute Path Dependency Index is greater than category 5 then a trend

reversal can be expected from the current trend.
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CHAPTER 5. VERIFICATION OF ALGORITHM-BALLOON BURST

The verification experiment consisted of blowing a balloon and ultimately popping it.

This experiment allowed us to verify the prediction algorithm developed and described
above. The results from the prediction algorithm were matched with the real time when the
balloon pops truly. The balloon bursting system is a conservative one. As the balloon is
blown it gets bigger and thinner which decreases its color information while the length,
breadth and depth information increases. The input files for this experiment were a set of
XYZM files that gave the length, breadth, depth and color information of the balloon as a 3-D
object. The process of data capture and system set up is explained below.
5.1 System Set Up

The 3-D balloon video is taken as a high-speed real time 3-D shape measurement
technique based on a rapid phase-shifting. The system that is developed to take this video
takes full advantage of the single-chip DLP (Digital Light Processing) technology for rapid
switching of three coded fringe patterns. A color fringe pattern with its red, green, and blue
channels coded with three different patterns is created by a personal computer. When this
pattern is sent to a single-chip DLP projector, the projector projects the three color channels
in sequence repeatedly and rapidly. To eliminate the effect of color, the color filters on the
color wheel of the projector are removed. As a result, the projected fringe patterns are all in
grayscale. A properly synchronized high-speed black-and-white (B/W) CCD camera is used
to capture the images of each color channel from which 3-D information of the object
surface is retrieved. A color CCD camera, which is synchronized with the projector and
aligned with the B/W camera, is also used to take 2-D color pictures of the object at a frame
rate of 26.7 frames/sec for texture mapping. Along with this system, a fast 3-D
reconstruction algorithm and parallel processing software is also getting used. This helps us
to realize high-resolution, real-time 3-D shape measurement at a frame rate of up to 40
frames/sec and a resolution of 532x500 points per frame. The XYZM files are just the XYZ
points that get triangulated (one for every pixel of the 2D image) and then the BMP file is the
texture which is simply the three captured images averaged together.[ Song Zhang, Peisen
S. Huang , Dec 2006]
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Figure 5.1: Balloon in the beginning and in the end before bursting

5.2 Verification

In the balloon burst verification primarily 3 types of analysis were done. The first one
was Zoom Out procedure which was done to get critical localization index. The second and
third types of analysis was done for multiple video frames at different instants of time
(starting from the beginning and continuing till the end) to verify the predicted results with
reality. The results would predict approximately when the balloon was approaching failure.

The results would be compared with real time when the balloon had actually burst.

5.2a Critical Localization Index
The zooms out plots for the balloon analysis are given below in Figure 5.2 which shows

. . 1 . .
maximum, minimum and average of absolute values of k 7 against aggregation level.

" LTilda ’
The determination of critical chain length/localization index follows the same procedure as

explained in section 4.5b. The intersection point of the symmetrical line of k and %Iine is

taken to be the value of the localization index. The X value of this intersection point is
measured. Since the zoom out plots are log scale plots, the log value of this point is
converted to an actual number of points. This number of points represents the chain length
that is occurring in a total of 9 points. If the number of unstable points forms a chain greater
than the above length then the system is said to be path dependent. Since this chain length
is only valid for 9 points, these needs to be converted to a value that can be applicable to a

set of 100 points.
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Chain length calculations for 9 points are given as:-

logf, 0.68
T10 - 220 0715 => x = 90715 =48 =5
log{, 0.95

Keeping the ratio constant as 0.715 the chain length can be translated to a value in 100

points as given below:-

log¥, 0.68
2910 _ 22— 0.715 => x = 102*0715 = 10143 = 269 = 27
logio 2

So the critical localization index value is 27 for a set of 100 points. Following the above
procedure chain length can be translated to any number of points.
The critical localization index value of 27 is used as the threshold value for the chain length

of defects for the balloon analysis.
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Figure 5.2: Zoom Out Plots for Balloon Burst Experiment
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Figure 5.3: Chain Length Calculations for Balloon Burst

5.2b Path Dependency Index
The path dependency index is used individually as well as in conjunction with the

above localization index to monitor the process of blowing a balloon and to predict the

approximate failure time of the balloon.
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Category 1 il i __abs(Kappa) _
gory Full Stability meaning abs(Kappalong) 1 and
abs(Kappa)