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ABSTRACT

This research focuses on the exploration of software and methods to support natural

interaction within a virtual environment. Natural interaction refers to the ability of the

technology to support human interactions with computer generated simulations that most

accurately reĆect interactions with real objects. Over the years since the invention of

computer-aided design tools, computers have become ubiquitous in the product design

process. Increasingly, engineers and designers are using immersive virtual reality to

evaluate virtual products throughout the entire design process.

The goal of this research is to develop tools that support verisimilitude, or likeness to

reality, particularly with respect to human interaction with virtual objects. Increasing the

verisimilitude of the interactions and experiences in a virtual environment has the potential

to increase the external validity of such data, resulting in more reliable decisions and better

products.

First, interface software is presented that extends the potential reach of virtual reality

to include low-cost, consumer-grade motion sensing devices, thus enabling virtual reality

on a broader scale. Second, a software platform, VR JuggLua, is developed to enable rapid

and iterative creation of natural interactions in virtual environments, including by end-user

programmers. Based on this software platform, the focus of the rest of the research is on

supporting virtual assembly and decision making. The SPARTA software incorporates a

powerful physically-based modeling simulation engine tuned for haptic interaction. The

workspace of a haptic device is both virtually expanded, though an extension to the bubble

technique, and physically expanded, through integration of a haptic device with a multi-

directional mobile platform. Finally, a class of hybrid methods for haptic collision detection

and response is characterized in terms of Ąve independent tasks. One such novel hybrid

method, which selectively restores degrees of freedom in haptic assembly, is developed

and assessed with respect to low-clearance CAD assembly. It successfully maintains the

high 1000 Hz update rate required for stable haptics unlike previous related approaches.

Overall, this work forms a pattern of contributions towards enabling natural interaction

for virtual reality and advances the ability to use an immersive environment in decision

making during product design.
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CHAPTER 1. GENERAL INTRODUCTION

This dissertation synthesizes research in a number of related areas that follow from

the general theme of enabling natural interaction for virtual reality. The particular kind of

Şnatural interactionŤ varies according to context, but is typically taken to mean verisimili-

tude: making some aspect of a computerized environment more like the real world. The

motivating context for the overall work is supporting decision making in engineering. Data

obtained in virtual experiences is used in the decision making process, and increasing the

verisimilitude of the interactions and experience has the potential to increase the external

validity of such data.

Several threads of investigation emerged in developing this work for both Human-

Computer Interaction and Computer Science. These threads are intentionally multidisci-

plinary and at times divergent; however, they remain complementary and linked to an idea

of natural interaction. The research contributions presented take varied forms, as suits an

intentionally multidisciplinary approach. They include not only published advancements

in the literature of their respective Ąelds, but also software components developed during

or as the result of the research process. The software components developed, often released

as open source software or contributed as improvements to existing open source projects,

serve a dual purpose. They represent a public advancement of the state of the art in a

tangible, applied way. Furthermore, when they have been released publicly, they contribute

to the integrity of our application of the scientiĄc method. In a research Ąeld where so many

results follow from software, that software becomes an important part of our methods and

its availability becomes key to reproducibility of our results [5].

1.1. Dissertation Organization

This dissertation takes the ŞmanuscriptŤ format, in which, with the exception of this

chapter and Chapter 9, each following chapter is a self-contained paper, with its own

introduction, conclusion, and bibliography. The purpose of this overall introduction and

of the overall conclusion in Chapter 9 is to highlight the cohesive research threads as

woven through the chapters. As already noted, the title ŞEnabling Natural Interaction for
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Virtual RealityŤ is the key to this cohesive whole, while the chapters interpret the title and

emphasize portions of it in difering ways.

The work included starts with Chapter 2, which presents an advancement in virtual real-

ityŠs potential reach, enabling virtual reality at a broader scale. At the time of its composition,

the Nintendo Wii Remote had been recently released and was the Ąrst of a wave of low-cost,

consumer-grade motion sensing devices intended for gaming. Work had hit the hobbyist

scene using the infrared sensor in the Wii Remote along with a simple modiĄcation to

commercially-available lighted safety glasses to provide head-tracked perspective [6], an

important component of virtual reality [1], in a fairly simplistic virtual environment. The

hardware required for such a setup was minimal and simple to construct. In academic

research, more complex constellations of multiple Wii Remotes and/or LED infrared emit-

ters were being investigated for use in more conventional virtual environments [7, 2]. My

contribution was to join the two clusters of investigation, by designing and implementing

a driver for VRPN [8] that allowed use of the Wii Remote and the simple two-point tracked

safety glasses with commercial and academic virtual reality software that accepts VRPN

tracker input, a de facto standard.

The software presented in Chapter 3, VR JuggLua, is the base for the work in the

remaining chapters in addition to being a contribution on its own. Beyond just a Lua

binding for VR Juggler, it provides for interactive virtual environment creation through an

interactive code entry console during execution of an immersive application, provides an

embedded domain-speciĄc language for scene graph creation, and more. It furthers the

goal of the dissertation in two ways. On one level, the domain-speciĄc language and other

features for the programmer-user provide a more natural interaction with environment

construction; in this way it enables natural interaction through usability for programmers,

especially end-user programmers. On another level, the more natural, iterative development

techniques possible with VR JuggLua allow faster iteration in development of interaction

techniques for virtual reality.

The narrower focus on virtual assembly simulations begins with Chapter 4. Virtual

assembly, particularly with haptic force feedback, is a tool for simulating assembly, disas-

sembly, and maintenance procedures through manipulation of CAD models in a virtual

environment. The uses and goals of virtual assembly are many, but often include evaluating

designs and capturing user knowledge as individuals interact with a given assembly situa-

tion. Thus, virtual assembly relies on natural interaction, in the sense of realistic, lifelike

interaction, to arrive at correct conclusions and provide the best input to the engineering

decision making process. Haptic force feedback devices add an additional sensory output

beyond simply visual virtual reality, permitting the simulation of weight, inertia, and forces
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and torques from part-to-part or part-to-environment interaction. Including haptic force

feedback supports natural interaction, but the devices required can limit it. Due to the need

to deliver absolute forces, haptic devices are typically grounded by being aixed to a single

spot in the real world. Their working area is often much smaller than the working area

that an environment is trying to simulate. Chapters 4 and 5 address the limited workspace

problem from two diferent angles. A method of virtually expanding the workspace of

a haptic device is discussed in Chapter 4. Known as the Şbubble technique,Ť this hybrid

position-rate control scheme provides a zone of 1-1 interaction in the main workspace of the

haptic device, and responds to movement toward the edges (past a spherical boundary) by

moving the virtual environment to shift the efective virtual workspace. It was presented

in [3] in the context of another use of haptic devices: exploration of and interaction with

simulated surfaces. In applying it to virtual assembly situations involving grasping and

moving objects, we discovered a number of issues. This chapter presents those issues, as

well as one technique to address some of them. While a virtual workspace expansion is

not fully Şnatural,Ť interaction with an artiĄcially small region of the virtual environment

is much less so. Thus, this work to advance virtual workspace expansion furthers natural

interaction in virtual assembly scenarios by addressing limitations of force feedback devices and

techniques.

A diferent approach to expanding the workspace of haptic devices is presented in

Chapter 5. In this work, a novel integration of an omni-directional mobile robot base with

a conventional grounded haptic device together with control algorithms and software

systems are developed to physically enlarge the workspace. Using the system presented

in this chapter, a user can move throughout a large-volume virtual reality system such as

a CAVE while using the haptic device, and the mobile robot will transparently move to

keep the base of the haptic device in a neutral position relative to the end efector. The

experience is as if the workspace of the haptic device were physically enlarged greatly while

maintaining the other properties of the haptic device as constructed. The contribution here

is the combined fully-functioning system providing an enlarged workspace, with a number

of custom software components, custom Ąrmware on the mobile robot, and integration

between the components. Clearly, a larger workspace for haptic interaction furthers natural

interaction for virtual environments.

Chapters 6, 7, and 8 delve deeper into a particular aspect of haptic virtual assembly.

One challenge in this Ąeld is handling assembly of parts with low clearances between them.

Fundamentally, this challenge arises from collision detection and response algorithms

that require the use of tessellations of the original precise models in order to achieve high

enough performance to permit stable haptic force feedback. These tessellations result in
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artifacts that artiĄcially limit the degrees of freedom that should be present between two

parts. These three chapters elaborate on aspects of a hybrid technique that combines the

use of a fast tessellation-based algorithm with knowledge of the precise original model. The

overall goal of this work is to permit natural interaction with low-clearance CAD models

loaded directly into a virtual assembly system, with no manual preprocessing steps. The

work presented here builds on the basic process presented in [4], where the idea is to use

an tessellated geometry algorithm for the bulk of the interaction while looking up the

corresponding precise representation, recognizing geometric constraints, and responding

to them to improve interaction particularly during low-clearance tasks.

An overview of the data structures and algorithms involved in my work building on this

hybrid method, with a view to their computational complexity and speciĄc optimizations

applied to make the algorithm more eicient, is presented in Chapter 6. The novel design of

the software for one particular step of the process, that recognizes constraints given two sets

of boundary representations, forms the contribution in Chapter 7. Here again the usability

is on two levels: both maintainability and extensibility for the developer, and supporting

the broader hybrid method for natural low clearance assembly. Finally, Chapter 8 presents

the full process as a two-level hierarchy of research tasks from a more engineering-based

perspective. It also presents a fundamental distinction from [4] in how this work makes

use of the knowledge of geometric constraints within the run-time portion of the hybrid

algorithm. Rather than attempting to form a constraint system, solve it, and combine

those results with the tessellated geometry algorithm at a global, per-colliding-part-pair

level, Chapter 8 directly addresses the artiĄcial removal of degrees of freedom incurred

by the tessellation. Individually and as a group, these chapters presenting advancements

to a hybrid collision detection and response algorithm work toward the goal of realistic

interaction with CAD models in a virtual environment.
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CHAPTER 2. A MODULAR IMPLEMENTATION OF WII REMOTE

HEAD TRACKING FOR VIRTUAL REALITY

A paper published in the proceedings of the ASME 2010 World Conference on Innovative

Virtual Reality (WINVR 2010)

Ryan A. Pavlik, Judy M. Vance

Abstract

Virtual reality (VR) environments based on interactive rendering of 3D computer graph-

ics often incorporate the use of position and orientation tracking on the userŠs head, hands,

and control devices. The Wii Remote game controller is a mass-market peripheral that

can provide a low-cost source of infrared point tracking and accelerometer data, making

it attractive as a PC-based virtual reality head tracking system. This paper describes the

development of an extension to the Virtual Reality Peripheral Network (VRPN) software to

support the use of the Wii Remote game controller as a standard tracker object in a wide

range of VR software applications. This implementation permits Wii Remote-based head

tracking to directly substitute for more costly commercial trackers through the VRPN and

VR Juggler Gadgeteer tracker interfaces. The head tracker provides up to 100Hz of head

tracking input. It has been tested in a variety of VR applications on both Windows and

Linux. The discussed solution has been released as open-source software.

2.1. Introduction

Position and orientation tracking is essential to virtual reality. Head tracking, in par-

ticular, allows the calculation of an of-axis perspective projection for interactive three-

dimensional (3D) computer graphics. Such a display, whether monoscopic or stereoscopic,

Ryan A. Pavlik was the primary author and researcher.
R.A. Pavlik and J.M. Vance, ŞA Modular Implementation of Wii Remote Head Tracking for Virtual
Reality,Ť in ASME 2010 World Conference on Innovative Virtual Reality (WINVR 2010), 2010, pp. 351Ű359.
doi:10.1115/WINVR2010-3771
Copyright ©2010 by ASME
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provides enhanced depth and distance cues to the user, increasing the sense of immersion

and improving task performance [2, 1]. Immersive virtual reality displays can be used

in the engineering and design process to allow human interaction with computer-aided

design (CAD) data sets more naturally than non-immersive applications.

Recent developments in consumer game systems, such as the Nintendo Wii, have

introduced tracking peripherals and game mechanics to a broad audience. The availability

of such systems has also presented academic and hobby researchers with access to the Wii

Remote hardware, which integrates linear accelerometers, infrared point tracking, digital

and analog game controls, and a Bluetooth wireless interface into an afordable single game

controller device.

The methods presented here result in a novel modular extension to the Virtual Reality

Peripheral Network (VRPN) software that supports the use of the Wii Remote hardware for

virtual reality head tracking. This work enables easy implementation of Wii Remote tracking

with slightly modiĄed commercial of-the-shelf (COTS) hardware for use within research-

grade virtual reality frameworks. It serves as the tracking component of a simple virtual

reality system that nonetheless supports a range of existing virtual reality applications

designed for more sophisticated tracking systems.

2.2. Motivation

The present research is motivated by the need for low-cost VR head tracking. As stereo

televisions, stereo movies, game controllers, and 3D interaction devices become more

afordable and commonly available, there is the opportunity to leverage these technological

advances to support a broad range of virtual reality applications. Current magnetic,

ultrasonic, and optical tracking systems are very expensive to consider for wide use. Low-

cost VR head tracking would greatly enhance the immersive experience of some of these

common stereo conĄgurations.

At Iowa State University, researchers are also developing VR applications to encourage

K-12 students to consider careers in science, technology, engineering and math (STEM).

Outreach eforts in K-12 education require the availability of an inexpensive, portable

tracking solution that can be set up and taken down quickly, easily transported from the

lab to presentation sites, and operated independently of the physical conĄguration of the

space. Another area of need is to supplement existing small desktop commercial magnetic

trackers for research purposes. These trackers only provide two channels of tracking. Often,

desktop VR requires three channels of tracking to accommodate two-handed tracking and
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head tracking. The ability to combine the existing magnetic tracker with low-cost head

tracking provides a cost efective solution for three-channel requirements.

2.3. Background

Pintaric et al. [12] developed an optical position tracking system using infrared light

and commercially-available hardware. Their system relies on multiple cameras that are

synchronized with a pulsed infrared Ćash mounted on each camera. Arrangements of

retro-reĆective, passive markers are placed on position-tracked objects. The goal of their

work is to provide broad six degree-of-freedom (6DOF) position tracking for augmented

reality and immersive virtual reality, within a room-sized space.

Work by J. C. Lee into novel applications of the Wii Remote hardware served to drive a

variety of further research into using the Wii Remote for position tracking. Lee wrote a

number of applications, including a sample head tracking application [10], using B. PeekŠs

C# library for access to the Wii remote data under Windows [11]. His solution tracks two

IR light-emitting diodes (LEDs) attached to the sides of a pair of eyeglasses. He uses the

position data to calculate an of-axis projection that he renders on the userŠs standard

computer monitor using DirectX. LeeŠs software is widely available and has introduced

the potential for using the Wii Remote as a position tracker to a wide audience; however,

his software is limited in scope and not easily incorporated into other VR applications.

LeeŠs head tracking application attaches the IR LEDs to the dynamic object (the user)

while keeping the remote itself static. This is unlike the intended use of the Wii game

console in which a ŞSensor BarŤ (actually a pair of IR light sources located a known distance

apart) is placed in a stationary location above or below the userŠs television. In such a setup,

moving the Wii Remote itself drives the interaction. As Lee explains, a setup with a Ąxed

Wii Remote and moving IR markers instead results in a system that is primarily sensitive

to translation, and less sensitive to orientation, which suits the needs of desktop VR head

tracking. A strength of his solution is the total ease-of-use, including the fabrication of the

required hardware. Even the LED-augmented glasses are commercially available, and can

be modiĄed for infrared use by simply swapping the LEDs.

T. Sko and H. Gardner designed a conĄguration to use a hand-held Wii Remote as a

pointing controller in a two-walled virtual reality theatre [13, 14]. They placed multiple

sensor bars in the environment to provide a wider usable range for the device. Their

solution uses an agent-based algorithm to continually maintain a model of the controllerŠs

pose, based on the known physical location of the multiple sensor bars. The Wii Remote
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can only track up to four points simultaneously, so they spaced the sensor bars to avoid

greater than four visible IR points at any time.

Chow [6, 5] details a system using two Wii Remotes to provide both head tracking

and controller input to a virtual environment running on a head-mounted display. As

with the work by Lee, Chow uses a stationary Wii Remote observing head-mounted LED

markers to provide head tracking input. In this efort, four IR markers are used to provide

increased input data suicient to drive the POSIT algorithm [7] and provide accurate pose

estimation. The research also included a veriĄcation of the poses returned by the Wii

Remote-based tracker by comparison with pose estimates from a commercial magnetic

tracker. The system was able to produce estimates with less than one centimeter of average

position diference and less than one degree of average orientation diference.

Work by Wognum [17] permits Wii Remote head tracking using VRPN on Windows

only. His work ports the algorithm used by Lee to the VRPN package, using it as a versatile

platform for implementing tracking software. The algorithm interacts directly with the

Windows-speciĄc WiiYourself! software library to access the Wii Remote, and uses only the

IR point data returned by the controller. As a VRPN tracker driver, it provides compatibility

with a variety of VR frameworks. At compile-time, the user must specify whether the

remote is above or below the display, as a proxy for the orientation of the Wii Remote and

its coordinate system. It requires the user to initiate a reset of the pose estimate through

interaction with the tracker server if an inaccurate projection is noticed. It does not use any

accelerometer or gravity measurements.

The solution presented here builds on LeeŠs conĄguration. It difers from previous work

in that a standard software interface is designed which allows the Wii Remote to interface

easily with existing academic and commercial VR applications built on open platforms. The

input interface interacts with a Wii Remote over an existing standard protocol to provide

additional Ćexibility. In this way, it can also accept recorded or simulated Wii Remote data,

or even data from an alternate device preprocessed by a point-tracking computer vision

system. This method supports the use of inexpensive hardware, coupled with the Wii

Remote, to provide low-cost position tracking in place of more sophisticated commercial

tracking devices.

2.4. Design Considerations

The design of the solution discussed here was primarily driven by the dual need for

tracking in outreach programs and supplementary tracking for research applications. An
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analysis of the functional requirements led to the selection of three principles to guide the

development of the solution.

2.4.1. Limited Scope

The scope was limited to head tracking only, based on the motivating needs. A magnetic

tracker can handle hand tracking for research applications, and outreach applications

only need head-tracking at this time. This allowed an enumeration of assumptions and

constraints to simplify implementation and limit system complexity. Tracked orientations

and positions could be restricted to 3DOF translation with rotation about a sensor-normal

axis for presentation of valid stereo pairs. The importance of translation was emphasized.

Occlusion considerations were minimized, since occlusion of the tracked glasses would

imply visual occlusion of the display for the user.

2.4.2. Compatibility

In order to satisfy the dual need for Wii Remote-based head tracking, the solution

needed to be compatible with existing VR frameworks, especially VR Juggler. In order

to support multiple existing VR frameworks in the same manner as commercial trackers,

the application-facing side of the tracker driver needed to be suiciently abstracted so

as to directly substitute for other, more sophisticated trackers. This included presenting

a full rigid-body 6DOF pose, even though the basic algorithm presently only supports

calculating 4DOF. Unlike the tracking software presented by Lee, this abstraction resulted

in a tracker that is fully independent of the actual virtual environment being executed.

Furthermore, the output of the tracking module does not necessarily need to drive a head-

coupled perspective view. It can also be compared to known values for veriĄcation and

tuning.

2.4.3. Flexibility and Modularity

The software design principles of modularity and loose coupling were important in the

design process to ensure maximum Ćexibility of the Ąnal system. On the Wii Remote-facing

side of the tracker driver, accessing data via a vrpn_Analog_Remote interface provides loose

coupling. In most live uses, the provider of the data is the vrpn_WiiMotedevice that exposes

the state of a Wii Remote on Windows and Linux through vrpn_Analog channels. However,

as any data source matching this interface will suice, there are a variety of possibilities for

data sources. It permits replacement of the underlying Wii Remote access library to permit

a more cross-platform implementation. Furthermore, the algorithmŠs implementation is
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not strictly tied to the Wii Remote. The Wii RemoteŠs prevalence, high refresh rate, and

built-in computer vision processing made it a convenient choice as a data source. However,

a computer vision system processing web-cam input could also be implemented for use

with the tracker.

The tracker operates on a number of values which lie in a known range, so an ideal

solution would accept any source of suitable values. A useful implication of this is that

veriĄcation of the softwareŠs latency, accuracy, and precision may be performed by substi-

tuting the source of values. A Şvirtual Wii RemoteŤ may be implemented that calculates

the expected sensor data for a given pose, then feeds that data into the tracker to permit

comparison of the output and input.

Implementation of alternative pose estimation techniques also suggested an emphasis

on modularity. Modularity permits replacement of the basic two LED tracking with a

more sophisticated algorithm utilizing Kalman Ąltering [8], model evaluation, or more

advanced techniques to provide a more robust response. The two LED system may even

be substituted by a three LED tracker to disambiguate screen-orthogonal translation from

rotation around a vertical axis.

Figure 2.1 shows the potential producers and consumers of the generic data interfaces

manipulated by the tracking driver. The contribution described in this article is represented

by the green ŞTracking Driver ModuleŤ box. The primary producer of input data is the

live Wii Remote. The primary consumers of tracking data are the user applications shown

in orange. User applications written to use VRPN directly may directly consume the

tracking output, while the input abstractions of the VR Juggler and Vizard systems serve

as direct consumers for their respective user applications. The two pairs of sources and

sinks connected by dotted lines are automated testing and veriĄcation capabilities made

possible by the design features of the described solution.

2.5. Software Platform

This work builds on a number of existing software systems. The existing virtual assem-

bly application motivating development is written using VR Juggler, an open-source virtual

platform for virtual reality software development available at http://www.vrjuggler.org

[3]. This framework provides a cross-platform method of developing virtual environments

in C++ that can be run on multiple operating systems and on virtual reality hardware

ranging from standard desktop workstations to immersive stereoscopic projection environ-

ments.

http://www.vrjuggler.org
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Vizard is a commercial virtual reality software platform similar in scope to VR Juggler.

It provides virtual reality hardware access and scenegraph structures for VR. Vizard

applications are written in Python, an interpreted, dynamically-typed language.

The Wii Remote head tracking software itself is implemented using C++ as a module

for the Virtual Reality Peripheral Network (VRPN) software package available at http:

//www.vrpn.org. This open-source system provides a transparently networked, generic

interface to a wide range of VR devices and input systems [15]. VRPN is used directly

in a range of VR applications. Generic VRPN interfaces can also be accessed through a

Gadgeteer driver included with VR Juggler, or through the VRPN7 extension included

with Vizard. As such, any tracker, analog input, or digital input (button) device accessible

using VRPN can also be used in applications built on VR Juggler.

VRPN 07.26 provides a ŞWiiMoteŤ device exposing the raw data returned using the

WiiUse open-source library [9] to access the Wii Remote hardware over Bluetooth in

Windows and Linux. This driver provides a number of standard VRPN analog channels

to convey the sensor coordinates and relative sizes of up to four IR points, as well as the

gravity vector as returned by the three integrated linear accelerometers, among other data.

A sample tracker client application was developed to evaluate the performance of the

Wii Remote tracker. Figure 2.2 shows the head tracker data visualized in this standalone

application, with the position and orientation of the teapot matching the pose reported by

the head tracker. This client was developed using VRPN directly to access tracker data,

along with the GLUI and GLUT graphics tool-kits. In addition, the tracker was used to

demonstrate a VR Juggler-based virtual assembly application in which a user can interact

with CAD models in a natural, spatial way with haptic force-feedback.

2.6. Hardware Platform

The VR Juggler software allows the virtual assembly application to run on a variety

of systems. The primary system used in this work is a desktop workstation with an Intel

Xeon processor and an nVidia Quadro FX 1000 graphics card. Stereoscopic images are rear-

projected by a DepthQ 3120 DLP projector displaying 800×600 resolution at 120Hz on an

80cm (32 inch) diagonal screen. The projector is used in conjunction with CrystalEyes active

liquid crystal stereo shutter glasses and a Stereographics emitter, providing efectively

60Hz display refresh per eye. A Polhemus Patriot magnetic tracker provides two channels

of 6DOF position and orientation tracking in the desktop workspace area.

Another hardware system used for undergraduate engineering education consists of

two DLP projectors with circularly-polarized Ąlters to provide passive stereo. A large

http://www.vrpn.org
http://www.vrpn.org
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Figure 2.2: Head tracking data shown as teapot

silvered screen is used in a front-projection setup to provide a stereo viewing experience to

a classroom of students. This system, also running on an Intel Xeon-based workstation

with Quadro FX 3700 graphics, has no additional trackers besides the Wii Remote system

described here.

A third system, consists of an Intel Xeon workstation with an nVidia Quadro FX 5800

graphics card. This system drives one of two display systems. It can display on either a

1680×1050 56cm (22 inch) diagonal widescreen LCD monitor at 60Hz providing a high-

resolution mono display, or using a DepthQ 3120 projector, it can provide a stereoscopic

display on a 3m (10 foot) diagonal rear-projection screen. This larger screen is used for

investigating 1Ű1 scale interactions in virtual assembly and haptics, and presently features

no pose tracking system beyond this Wii Remote system.

The present research follows LeeŠs approach of using a stationary Wii Remote with

IR LEDs Ąxed to the moving object. In both the stereo and mono conĄguration, the Wii

Remote head tracking system relies on two battery-powered infrared LEDs attached to

glasses (standard eyeglasses or the CrystalEyes shutter glasses), as shown in Fig. 2.3. The

distance between the LEDs, typically 15cm, must be provided in advance to the tracking

software. Since this hardware conĄguration is similar to that used by Lee, this research

extends the utility of glasses designed or modiĄed for LeeŠs popular application to use in
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Figure 2.3: Wii Remote, tripod mount, and trackable glasses

academic and commercial virtual environment frameworks. The Wii Remote hardware

itself is available commercially for about US$40. A mounting bracket was easily constructed

to attach the Wii Remote to a variety of standard camera tripods.

2.7. Implementation Details

The head tracking driver is implemented as a Ąlter device that takes, as input, any

source of 15 VRPN analog channels. These channels carry the three components of the

measured gravity vector and up to four 3-tuples of size and x- and y-position of a tracked

point on the 1024×768 sensor. While typical usage of the driver will be in conjunction with

the vrpn_WiiMote driver that exposes these channels among other data, this generic input

interface increases the modularity of the overall tracking system by permitting substitution

of the vrpn_WiiMote device.

Implementation of the Wii Remote head tracking driver as a VRPN module permits a

variety of uses for the completed code. It can be compiled into a library for direct use by

an application, if desired. A standalone server application, shown at the module level in

Fig. 2.4, was produced that allows a user to start using the tracker by simply starting a single

application. The server, built against the VRPN server library, creates the vrpn_WiiMote

device that uses the WiiUse library to access the device. It then initializes the tracker

module with the VRPN device name of the Wii Remote. When started in this way, the head

tracker can be accessed as a standard VRPN tracker server from the local host or from across

the network. VR Juggler can be conĄgured to access this tracker device using the VRPN_drv

driver included in the upstream software suite. The position proxy corresponding to

the userŠs head can be set to use this driver as its data source, providing head-coupled

rendering.
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Figure 2.4: Module-level view of tracker server

Regardless of whether the tracker is standalone or part of an end-user application, when

it is initialized with an analog device, it registers report callbacks for that device, so that it

is notiĄed when new data is available. When a callback is triggered, the raw data is stored

in the tracker object for processing. Only the four IR points and the accelerometer data

are retained: all other channels, including the buttons and any extension controllers, are

ignored.

When the number of valid IR tracked points is equal to 2, calculations are performed

using the Ąxed Ąeld of view and the known distance between the LED points to arrive at

an estimate of x-, y-, and z-translation, as well as rotation about the sensor-normal z-axis.

This calculation step is modular in the code, to support substitution of pose estimation

techniques. Calculation proceeds in the coordinate system aligned with the Wii Remote.

Later, during the VRPN main loop, the presence of new Wii Remote data or suicient

elapsed time since the last report trigger a Ąnal pose preparation and report.

To eliminate the need to adjust for the pitch and roll of the Wii Remote for every

installation, an algorithm to achieve gravity correction was developed and applied before

calculating the Ąnal pose. It is imperative to eliminate Wii Remote pitch and roll variability

because, unlike other trackers with a more permanent installation method, the tracker

base in this system is easily portable and attached to a tripod-style mount that introduces

orientation variability over the long term. Implementing this correction provides a more
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Figure 2.5: Transforms and coordinate systems

accurate tracking result without the need for a user-initiated reset, unlike the work by

Wognum [17]. The stored accelerometer data is used to rotate the estimated pose to account

for the pitch and roll of the Wii Remote, and by extension, its IR sensor, as shown in

Fig. 2.5. The reported pose is thus relative to a virtual tracker whose z-axis is along the

projection of the Wii Remote position down on to a plane perpendicular to gravity, with

the y-axis directly opposed to gravity and the x-axis proceeding from their intersection in

a right-hand coordinate system. Efectively, the user may consider the tracker base to be

level with respect to gravity, even when it is not. This approach also permits the user to

freely position the Wii Remote at an incline as needed to ensure that head movements stay

within the limited Ąeld-of-view of the Wii RemoteŠs sensor. This calculation is performed

in a Şjust-in-timeŤ manner to ensure that the freshest data is reported in case multiple

reports from the Wii Remote were received since the last main loop execution due to system

performance. Finally, the gravity-corrected pose estimate is packed and transmitted as a

VRPN tracker pose update.

Figure 2.6 describes the entire tracking and VR system. The three lanes denote the

three concurrent processes; the Ąrst occurs in the Wii Remote hardware, while the second

and third take place on the computerŠs processor. The interfaces between all concurrent

processes are asynchronous. The elements of the Ćowchart within the green box are part

of the present contribution. They correspond to the steps taken by the tracking Ąlter driver

to transform the analog input into a tracker pose estimate.
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2.8. Results

The described system has been successfully implemented and used for its intended

purposes. The tracking device, vrpn_Tracker_WiimoteHead, and the standalone server

application, wiimote_head_tracker, have been contributed back to the VRPN community

for inclusion with the package as open source software, downloadable from http://www.

vrpn.org. The tracker software described is able to update its pose estimate at the full

100 Hz rate of the Wii Remote. It provides continual tracking inputs for stereo and mono

view calculation by VR Juggler. The trackerŠs CPU usage on a wide range of desktop

workstations is very low. Execution does not interfere with the applicationsŠ displays

nor with a high-frequency 1000 Hz haptic rendering thread updating a force-feedback

device in the test virtual assembly application. Running the head tracker server in a

standalone mode results in tracking calculations taking place in a separate process from the

virtual environment application, which suits the multi-processor architecture of modern

personal computers. While the overall system latency has not yet been measured, anecdotal

experiences using the tracker to provide head-coupled immersive display conĄrm the

suitability of the head tracking server for the task.

The tracking system is easy to prepare and use. It generally only requires executing the

tracker server application before starting the VR application. No run-time conĄguration or

maintenance is required for the driver. Because of the gravity compensation feature, the

user can conĄgure the VR system as if the Wii Remote, as the tracker base, were completely

level. The level tracker coordinate system simply needs to be located within the virtual

world, as with any tracking device. The source of the tracking data should be entered

as the VRPN device Tracker0@localhost in the most common case. On Linux, the only

hardware-related setup required is for the user to press the 1 and 2 buttons on the Wii

Remote to place it in visible mode immediately prior to starting the tracking application.

Pairing is completed automatically. On Windows, the tested Bluetooth stacks require a

more involved procedure immediately prior to each execution of the tracking server. The

user must remove any existing Wii Remote pairing from the computer, press the 1 and 2

buttons on the Wii Remote, and initiate a new pairing without a passcode in a short amount

of time. This slightly complicates the process of using the tracker on Windows. However,

this seems to be an issue with the interaction between the Windows operating system

and the modiĄed Bluetooth Human Interface Device (HID) protocol used by Nintendo to

communicate with the Wii Remote, rather than any aspect of the implementation of this

tracker.

http://www.vrpn.org
http://www.vrpn.org
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The relatively narrow Ąeld of view (FOV) of the Wii Remote sensor has been the most

challenging aspect of using this system so far. As no attempts are made with the current

pose estimation algorithm to update pose predictions when fewer than two IR points

are observed, both the left and right extremes of the userŠs head must remain within the

sensorŠs view volume or pose estimation stops until they return to view. The Wii Remote

was experimentally measured to have a horizontal FOV of Θh � 43◦and a vertical FOV

of Θv � 32◦. So, given a Ąxed distance between the LEDs dLED (typically 0.15 m), and

considering only translation of the userŠs head, the trackable area of a plane located a

distance d away from the sensor and orthogonal to its view vector can be calculated, as

given in eq. 2.1.

A(d) �

(

2d tan
Θh

2
− dLED

) (

2d tan
Θv

2

)

(2.1)

The volume of the trackerŠs efective region between two such planes (e.g., a minimum

and maximum distance) d1 and d2, where d1 < d2, can be calculated as the volume of the

view frustum with base of A(d2) truncated at d1, as given in eq. 2.2.

V �

A(d2) · d2 − A(d1) · d1

3
(2.2)

The limited Ąeld of view is mitigated by the gravity auto-correction feature of the

implemented driver, as the user may adjust the tilt of the Wii Remote at run-time without

further conĄguration in order to track a greater percentage of likely head poses if loss of

tracking in normal motion is noted. This works well in practice in both desktop and large

projection situations.

Depending on the speciĄc IR LEDs chosen for the glasses, the emission angle and

alignment of the LEDs can somewhat impact performance of the tracker. When battery

levels become low, LEDs with a narrow Ąeld of view may be less consistently detected by a

Wii Remote far above or below the userŠs head. In practice, manual adjustment to aim the

LEDs toward the Wii Remote, as well as replacement of nearly-depleted batteries minimize

the impact of this limitation.

2.9. Future Work

In addition to (x , y) coordinates for each sensor point, the Wii Remote returns a size

value, with 16 possible values (4 bits). This information is not presently used in the

estimation. Integration of Ąltering, such as a single-constraint-at-a-time (SCAAT) Ąlter

[16, 4], may permit improved pose estimation through use of all available data in standard
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cases, as well as continued tracking updates in case the user moves outside the sensorŠs

Ąeld of view.

The addition of a third LED to the glasses, forming a triangle, can be used to deter-

mine the diference between a rotation around a vertical axis and a translation along a

sensor-normal axis. When using only the sensor location of two LEDs, both of these trans-

formations are observed by the sensor as a decreased distance between IR points and

therefore are indistinguishable motions. However, their impact on an of-axis projection

rendered using the tracking data is quite distinct. Implementation of a additional tracker

module that handles this three LED case is currently being pursued.

The relative utility of the sensorŠs view volume varies based on the position and orien-

tation of the Wii Remote. Accordingly, analysis of head-tracking data recorded with an

alternate tracking system during similar virtual reality tasks on a similar display could be

used to create a tool that suggests an optimal position for the Wii Remote to capture the

most probable positions and orientations accurately, based on user-input data about the

physical conĄguration of the workstation.

Finally, multiple Wii Remotes are accessible simultaneously over the same Bluetooth

protocol. The low cost of the hardware means that even a multi-view setup can be cost-

efective for widespread use. An extension to the described Ąlter driver can be implemented

that takes two Wii Remote-like inputs and calculates a more accurate pose estimation for

the tracked glasses.

2.10. Conclusion

A dual need for low-cost head position and orientation tracking for use in virtual reality

applications led to the design of a loosely-coupled software system specialized for desktop

VR head-tracking with cross-platform capabilities and transparent compatibility with

existing VR software frameworks. The implementation of a tracker based on the use of

IR sensors and accelerometers on a stationary Wii Remote and two IR LEDs mounted on

glasses worn by the user builds on the hardware designs and basic calculations from LeeŠs

widely popular work in Wii Remote-based head tracking. The VRPN-based Ąlter module

provides for loose coupling on both the hardware-facing and application-facing side. This

design enables the system to be used to provide high-rate head tracking input inexpensively

to a wide range of existing VR applications compatible with VRPN, including applications

based on Vizard or VR Juggler. The standalone Wii Remote head tracker server builds on

VRPN and the Ąlter module to provide a tracking data source in a single step, and has

been tested to function smoothly on both Windows and Linux platforms.
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CHAPTER 3. BEYOND THE BINDING: VIRTUAL REALITY REPL

AND APPLICATION DEVELOPMENT WITH VR JUGGLUA

A paper submitted to IEEE Transactions on Computer Graphics and Visualization

Ryan A. Pavlik, Judy M. Vance

Abstract

VR JuggLua is a software library, virtual reality framework, and virtual environment

development system originating as Lua bindings of VR Juggler and OpenSceneGraph. This

combines a high-level, high-performance interpreted language for application development

with the extensive conĄgurability and virtual reality hardware support of VR Juggler, as

well as the established interactive graphics and rendering power of OpenSceneGraph. It has

been extended from this base by the development of an interactive code execution GUI that

permits REPL-like interactivity while the frame loop of the virtual reality system continues

to execute, even executing new code in parallel and maintaining consistent state across a

cluster. An embedded domain-speciĄc language has been built in Lua to provide for more

declarative scene graph construction without introducing new Ąle formats or syntax rules.

Additionally, to ease development and maintenance of virtual environments, coroutines

have been employed to provide the programmer with the ability to write functions that

appear to run linearly and in parallel, containing a draw-like call and controlling the timing

of drawing, while transparently maintaining state between frames and hiding the repeated

Ryan A. Pavlik was the primary author and researcher.
Based on an earlier paper presented as:
R.A. Pavlik and J.M. Vance, ŞVR JuggLua: A Framework for VR Applications Combining Lua,
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Realtime Interactive Systems (SEARIS) in IEEE Virtual Reality, Singapore: 2011. Published as
doi:10.1109/searis.2012.6231166.
That previous publication is Copyright ©2012 IEEE. Reprinted with permission. With regard to the
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update callback idiom. The full system is open source and freely available online, and has

been applied in a number of capacities.

3.1. Introduction

Virtual reality software frameworks span a wide range of capabilities and areas of

focus. Each virtual reality (VR) framework provides some subset of the following features:

operating system portability layer, input device abstraction, display view-port conĄguration,

VR system simulation, cluster support, three-dimensional (3D) scene data structures, event

system, and scripting. Frameworks that emphasize the systems level provide little or no

higher-level content authoring support. Conversely, frameworks that explore the experience

of content creation generally fall short in system independence and compatibility with

complex or high-end virtual reality systems. This gap limits the ability of experience

designers and researchers to both develop real-time interactive environments using high-

level constructs and run their environments on a broad range of VR computing systems.

This research builds upon existing mature software to produce a framework supporting

rapid development and iteration of virtual environments (VEs) with the potential to run

on the broadest possible range of VR systems. VR Juggler was selected as the basis for this

development. The VR Juggler open source virtual reality software platform ([10]) supports

a broad range of VR systems, including large multi-node clusters such as the 49-node C6

facility. VR Juggler also supports Windows, Mac, and Linux. The dynamically-typed Lua

programming language ([29, 30]) was selected for integration both as a scripting language

to extend C++ applications and as a fully-capable development language for building

complete immersive applications. LuaŠs clear and minimal syntax, ease-of-use for end-user

programmers, and ease of interoperability with C++ supported this choice.

The resulting framework, dubbed VR JuggLua, supports the same wide range of VR

systems as its VR Juggler core. It uses the OpenSceneGraph1 (OSG) graphics library to

provide scene organization, model loading, and rendering support. Using VR JuggLua, VR

applications can be written entirely in Lua, or use Lua in a lesser capacity in an application

written using the VR JuggLua C++ API. On top of the basic binding layer, functionality

for interactive programming during the execution of a virtual reality application was

added. A domain-speciĄc embedded language built within Lua was developed to provide

a more intuitive method of scene graph creation while maintaining compatibility with the

full functionality of the raw binding of OpenSceneGraph. The programming language

construct of coroutines was applied to allow programmers to perceive a linear control Ćow

1 http://www.openscenegraph.org/

http://www.openscenegraph.org/
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despite the frame loop of the underlying software, as well as to run efectively parallel

tasks without simultaneous access concerns.

The paper proceeds as follows. Relevant literature in three distinct areas is discussed

in section ğ3.2. The basic design of the framework and binding of VR Juggler and OSG

functionality to Lua, including design challenges overcome, is detailed in section ğ3.3.

Developments beyond the binding of software libraries to Lua that provide valuable func-

tionality for virtual reality application development are presented in section ğ3.4. A few

instructive examples demonstrating the value and capability of VR JuggLua follow in

section ğ3.5.

3.2. Background

3.2.1. Virtual reality frameworks

A wide variety of software frameworks for building virtual reality applications have

been developed. The CAVE Library initially developed for use with the CAVE Auto-

mated Virtual Environment ([16, 37]) is an example of early work in the systems category of

virtual reality frameworks. It has evolved into a commercial solution integrating clustering

support and focusing on multi-screen application development. VR Juggler introduced a

highly modular architecture for VR applications to provide a Şvirtual platformŤ for develop-

ment and execution on diverse systems ([10, 11]). Later development extended its use from

high-end graphics systems to commodity computer clusters ([2, 11]). The FlowVR platform

was developed based on experience in using VR Juggler in a clustered environment, and

emphasizes a data-Ćow model for distributed real-time interactive computation with high

modularity ([3, 4]). The Syzygy system presents multiple frameworks for VR application

development, and was developed with an explicit focus on clustered execution ([43]).

Other frameworks focus more on the content authoring experience, often integrat-

ing an interpreted scripting language for rapid development. Colosseum3D integrates

OpenSceneGraph, physics capabilities, and audio rendering, and combines the use of C++,

a custom object-description format, and Lua scripting ([6]). Colosseum3D generates bind-

ings of its C++ classes using the tolua++ utility. The commercial VR authoring environment

Virtools2 integrates a custom scripting language, VSL, for content creation. AVANGO/NG

applies a generic Ąeld and Ąeld container programming interface to a scene graph based

on OpenSceneGraph, with Python scripting support ([31]).

A programming model more closely linked to the use of an interpreted language

has also found success in creating several varieties of immersive interactive experiences.

2 http://www.virtools.com/

http://www.virtools.com/
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WorldViz Vizard3 is a commercial application framework, using the Python language with

a custom integrated development environment (IDE) to create experiences rendered using

OpenSceneGraph. However, it has limited clustering support when compared to some of

the systems-focused frameworks designed explicitly for distributed execution. TINT is an

augmented reality (AR) and mixed reality (MR) framework designed to present a pure

Python programming interface, with optional interaction with C++ modules compiled for

improved performance ([19]). By delegating computationally-intensive tasks to compiled

code, the bulk of applications can be written using Python for development eiciency and

still achieve interactive performance. The HECTOR platform takes a similar approach

integrating compiled code and interpreted Python, with an event-driven architecture for

virtual reality applications ([48]).

3.2.2. Domain-specific languages

The work presented here builds a domain-speciĄc language within Lua. Domain-

speciĄc languages, or DSLs, ([47]) became widely known and used as the many Şlittle

languagesŤ developed in early computing and expanded by UNIX utilities ([8]). These little

languages allow programmability of software in terms of the problem domain, rather than

the general-use programming language they interact with, by abstracting the implementa-

tion. These particular languages feature their own parser and interpreter, often generated

with tools such as Lexx and Yacc. A common reason for using a domain-speciĄc language

is to solve a problem in a given application domain with concise, clear code. The DSL

might be developed and maintained by a software engineer working with knowledge of

the domain, with programs in the DSL written or veriĄed by domain experts themselves.

Such code can be easier to maintain and trace to domain requirements. In many cases, the

creation of a DSL parallels the process of developing a software product line family, where

programs written in the DSL specify members of the family ([46, 24, 38]).

A speciĄc kind of DSL is a domain-speciĄc embedded language, or DSEL ([26, 27]),

referred to by some as an internal domain-speciĄc language to avoid confusion with

embedded device programming ([22]). A DSEL difers from the Şlittle languagesŤ by

building upon and within an existing programming language, rather than starting from

scratch. A clear advantage of DSELs over external DSLs is that the developer is spared

the overhead of developing a syntax, parser, and lexer entirely from scratch, reducing the

startup cost of the DSL approach. Additionally, tooling for the existing language can be

re-used. This lowers the startup cost of using a domain-speciĄc language as compared

with developing applications for a problem domain in a general purpose language ([27]).

3 http://www.worldviz.com/products/vizard/

http://www.worldviz.com/products/vizard/
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Some languages are particularly well-suited to hosting DSELs. Common LISP idioms

have been considered DSELs, and the functional language Haskell is also considered

well-suited to DSEL development ([26]). Notably, Lua was developed to replace an earlier

data description language (a limited type of DSL) called SOL, and features minimal base

functionality with syntactic sugar targeted toward development of DSELs that resemble

the bibliographic data Ąle format BibTEX ([30]).

3.2.3. Read-Eval-Print loop (REPL)

Many commonly-used modern interpreted languages, including Python, Ruby, and

Lua, provide a REPL-style interactive shell as a development tool. The concept of a Şread-

eval-print loopŤ provides an interactive programming environment by reading user input,

evaluating the input as an expression, printing results, then looping to allow further

execution in the same context. The history of REPLs traces back to the origins of the

programming system LISP (LISt Processor) ([33]). In LISP, all data, including programs

themselves, were represented as nested structures based on lists. Printing such structures

was an early Ąrst step in the development of LISP, and for the sake of data persistence

beyond a single session reading list structures soon followed. As even programs were

represented in this way, development of the eval function produced the Ąrst interpreter,

which could be called in an inĄnite loop ([34]). An interactive interpreter could then be

implemented with just the functions read, eval, print, and loop, which led to the term

commonly used today. It is diicult to trace when exactly these function names became

combined into a name for all such similar systems, but Sandewall does use the phrase in a

publication from 1978 when describing the ŞincrementalityŤ requirement of an interactive

programming system ([42]).

The concept of incrementality and interactive computing (what would now be referred

to as interactive programming) dates at least back to 1964. Lombardi and Raphael conceive

of an Şinteractive computer,Ť whose focus is on evaluating expressions, as distinct from

executing stored code ([32]). The implementation of these ideas as REPL environments

for both programmer support and pedagogical purposes were well-established by the

DrScheme environment ([21]). Scheme, a LISP dialect, was used as a teaching programming

language in a number of computer science curricula, often based on or inspired by the

well-known ŞStructure and Interpretation of Computer ProgramsŤ (SICP) text developed

at MIT ([1]). By providing enhanced features on top of a bare REPL, DrScheme provided a

useful environment to experiment and incrementally develop programs in Scheme. Based

on the merits of a REPL environment for teaching programming, DrJava was developed

providing a similar experience built on a Java interpreter instead of Scheme ([5]). While not
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Figure 3.1: System diagram

all interpreter interactive shells rise to the level of these two teaching-focused programming

environments, they do provide a useful tool for both beginning and experienced developers.

They may not meet the theoretical requirements of a LISP REPL as strictly constructed, but

common usage refers to them as such, and as the example of DrJava demonstrates, they

provide a number of the beneĄts of interactive computing.

3.3. System Design

This section describes the implementation of the VR JuggLua framework starting from

the foundation of existing software and extending and continuing toward higher levels

of the platform. Section 3.3.1 discusses the base levels of existing software used in this

framework. Section 3.3.2 addresses integrating these systems and presents a coherent,

logical interface for application development.

As a full framework, VR JuggLua encompasses its foundational software, bindings for

this software to Lua, the Lua interpreter library itself, and basic host applications. A typical

application will have only one Lua interpreter state with access to all bindings included in

VR JuggLua. A VR JuggLua application uses both the osgLua module and the VR Juggler

bindings included in the VR JuggLua framework to access a complete set of virtual reality

functionality from Lua (Fig. 3.1).

3.3.1. Foundational software

The VR Juggler software framework is a Şvirtual platformŤ for development of VR

software that can be used on a wide variety of VR computing systems ([10]). It consists of
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several components that together allow virtual reality applications to be written in C++

and executed using various hardware conĄgurations. The VR Juggler library provides

display management and transfers control during speciĄc periods of the frame loop to

application objects. Application objects are the highest-level of content authoring interface

presented by VR Juggler. Specializations of the base application object are included that

support using scene graph libraries, including OpenSceneGraph and OpenSG ([41]). The

VR Juggler kernel, however, is intentionally independent of any particular scene system,

and can even support DirectX graphic rendering in addition to OpenGL and OpenGL-based

scene-graphs.

Binding to Lua

The Lua language is a high-performance language designed for embedding and exten-

sion ([29, 30]). The Lua language must always be tied to a host application. A minimal host

application that presents a basic Read-Eval-Print loop (REPL) as well as script execution is

included with the standard Lua implementation. The canonical Lua source code is included

in the VR JuggLua source tree and built as a library during the software build.

On top of Lua, the Luabind4 library provides an intuitive method of wrapping C++

classes, methods, and functions for access from Lua. It uses template metaprogramming

techniques to generate appropriate Lua C API calls for binding at compile-time, which

allows it to automatically deduce function signatures in most cases and compile directly to a

binding in a single step. VR JuggLua applies Luabind to create bindings to VR Juggler com-

ponents. These bindings function like any other Lua module, extending the functionality

of any interpreter state in which they are loaded.

OpenSceneGraph and osgLua

OpenSceneGraph (OSG) was selected as the graphics subsystem of VR JuggLua. It is a

mature scene graph, supported in VR Juggler, with good interoperability across platforms

and import plug-ins for a wide variety of image and model Ąle formats. Importantly,

reasonably up-to-date bindings for OpenSceneGraph to Lua were available, in a package

called osgLua.5 Rather than manually creating bindings for all of OpenSceneGraph, or

preprocessing the OSG headers, osgLua uses the osgIntrospection library to provide access

to nearly all OSG classes. As a part of OSG 2.8.x, osgIntrospection loads wrapper dynamic

libraries generated automatically from the source. By dealing only with osgIntrospection

4 http://www.rasterbar.com/products/luabind.html
5 http://svn.pplux.com/lab/osgLua/

http://www.rasterbar.com/products/luabind.html
http://svn.pplux.com/lab/osgLua/
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types, values, and methods, rather than statically binding to speciĄc types and methods,

osgLua is able to avoid falling behind upstream OSG development and ofer nearly complete

coverage of the libraryŠs capabilities. Though public development of osgLua seems to have

stalled in late 2007, this introspection-based approach allows it to work on newer versions

with only minor updates.

Developing the VR JuggLua software framework also resulted in developing a large

number of improvements to osgLua and osgIntrospection, to both Ąx errors and extend

functionality. Among the improvements include direct access to object properties without

using set/get functions, providing a more natural and Lua-like interface. The introspection-

based binding was also augmented with generated code to speciĄcally recognize the vector,

matrix, and quaternion data-types, selectively deĄning additional Lua metatable methods

for these values to allow the direct use of the normal math and comparison operators in

Lua code.

Connecting osgLua and Luabind

The distinct representations of Luabind-wrapped objects and osgLua-managed objects

in Lua state presented a challenge during VR JuggLua implementation. A key insight is

that once osgLua is loaded, OSG types can efectively be considered Şnative typesŤ in Lua.

Luabind provides a template-based system allowing seamless conversion between C++

string types and Lua strings, C integer and Ćoating point types and Lua numbers, and so

on. Luabind has a public native_converter_base interface to allow developers to provide

similar converters for their own specialized classes wrapping these basic data-types. This

converter interface was applied to allow osgLua-managed objects to be passed to and

returned from methods bound with Luabind.

OpenSceneGraph types can be divided into two groups: reference types, which are

always allocated on the heap and passed by pointer, and value types, which may be

allocated on the stack. Templated subclasses of the Luabind native converter template base

class were made to handle these two categories of data types. The Boost Type Traits library

was used to selectively enable a specialized default converter when a given type inherits

from osg::Object. This approach results in the need for only a few-line class to specify

the type name for each OSG value type is involved in the Luabind-wrapped method. C

preprocessor macros were employed to reduce this to a single line per OpenSceneGraph

value type. When VR JuggLua is compiled, it invokes the macros for the common OSG

types that it uses. If a client application written in C++ wishes to bind functions to Lua

and requires support for additional OSG types in the binding, the header can be included
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and the preprocessor macros can be invoked for any available type. This solution allows

OSG types to be passed seamlessly between Lua and Luabind-bound C++ code.

3.3.2. Low-level API

The approach taken to binding the VR Juggler components to Lua was to keep the

interface simple and allow the most common use cases to be written entirely in Lua. From

the applicationŠs point of view, interaction with the VR Juggler kernel is limited to specifying

the jconf conĄguration Ąles, and starting and stopping the application thread. In the C++

API, all kernel interactions take place with the singleton ([23]) instance of the kernel. In

the Lua binding, then, the singleton kernel instance is implied, and small free functions

were bound that look up the singleton pointer and call the method.

Access to device input takes place through a variety of device interface classes in Gad-

geteer, the input device management library of VR Juggler. These classes were bound

one-to-one, but with slight modiĄcations. The need to separately call an init function

with the name of the device alias, mandated in C++ by the smart-pointer pattern imple-

mented by these device interfaces, was eliminated in favor of a parameter to the constructor.

Getter methods are used in the C++ interface, while in Lua, the input device data can

be easily presented as directly-accessible properties. VR Juggler uses the GMTL matrix

and vector math template library6 that, while suiting the purposes of VR Juggler applica-

tions without a scene graph system, does not directly inter-operate with the equivalent

types in OpenSceneGraph. The Lua binding ofers the opportunity to standardize on the

OpenSceneGraph types, so positions and transforms are accessible as OSG vector and

matrix types, using meters as the units.

To provide a fully-featured VR software framework, VR JuggLua also includes Lua

bindings to the main data types of Sonix, the VR Juggler sound library. As with the

Gadgeteer device interfaces, the Lua binding exposes read-only or read-write properties

instead of getter/setter methods where feasible. Sounds can be conĄgured either externally

in a jconf conĄguration Ąle, or at run-time in Lua code, and triggered by Lua code when

applicable. The ability to keep sound triggering code in Lua improves the clarity of C++

simulation code by separation of concerns ([28]).

To complete the binding of VR Juggler to Lua, a method for creating application objects,

the basic unit of the VR application, was needed. Application objects implement a C++

interface specifying action to take during initialization and each of the steps in the kernel

frame loop: preFrame, latePreFrame, draw, intraFrame, and postFrame. In applications

based on VR Juggler and OpenSceneGraph, the osgApp specialization of the application

6 http://ggt.sourceforge.net/

http://ggt.sourceforge.net/
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object interface contains an implementation of the draw method to render the scene graph.

Most application logic is called during the preFrame or latePreFrame stages, which can

update the scene graph based on newly-received input device data.

To allow an application to be written entirely in Lua, an implementation of the osgApp

interface was needed. To allow kernel calls to application object methods to invoke Lua

functions, an application object proxy class was created, using a synthesis of the proxy

and delegation design patterns ([23]). The proxy class derives from the VR Juggler osgApp

class. Lua code can instantiate this application proxy and pass a Lua table data-structure to

it, which serves as an application object delegate. If this table has function elements whose

names match the methods in the application object interface, the application proxy will

call those functions during the appropriate phase of the kernel frame loop. DeĄning an

application object this way is an application of latent or Şduck typingŤ 7 as popularized by

the Python programming language ([20]). If a Lua table has one or more method that an

application object would have, it can be considered an application object, without requiring

the introduction of a specialized type.

Luabind does permit binding of classes with virtual methods and the sub-classing of

those classes entirely in Lua, so a strict typing approach to creating Lua application objects

is possible. However, the application proxy object approach taken in VR JuggLua has

several advantages over direct sub-classing in Lua. For instance, the application proxy

object can perform some error checking. If an application delegate has not been set by the

time the kernel requests application object and scene initialization, a useful error message

can be produced and execution can be stopped. Similarly, if a delegate has been set, but no

forwarded calls have succeeded in an entire frame loop, the application proxy can assume

that a logic error has occurred and stop execution. The application proxy layer also allows

simplifying standards to be implemented. For example, despite display conĄguration

taking place in meters, the default projection with VR Juggler produces a foot unit-based

scaling. As VR JuggLua standardizes on meters for positional device data, the application

proxy creates a root scaling transform node to produce an apparently meter-based display

setup for VR JuggLua applications.

3.4. Extensions Beyond the Binding

To this point, a fairly direct binding of VR Juggler to Lua has been described, with

some novel work to connect distinct Lua binding systems and a relaxing of strict type

requirements for application objects as posed by C++. This work forms the foundation for

7 Originating in a quotation attributed to nineteenth-century poet James Whitcomb Riley: ŞWhen I see a
bird that walks like a duck and swims like a duck and quacks like a duck, I call that bird a duck.Ť
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the development of a number of advanced capabilities above and beyond simple creation of

VR Juggler applications in Lua code resembling the equivalent C++ code. Taken together,

the following extensions beyond the binding provide useful, novel capabilities that both

lower the barrier of entry for creating virtual experiences and improve the developer

experience across the spectrum of expertise.

3.4.1. A “Run Buffer” for REPL in event loops

Despite the interpreted nature of Lua and its stock host REPL environment, the basic

binding described loses this development interactivity and essentially imposes an Şedit-

compile-testŤ cycle with an application restart substituted for the compile step. This is

due to the ŞdonŠt call us, weŠll call youŤ design of VR Juggler ([25]), which is common

to many GUI event loop architectures. Efectively, once an application completes a few

startup steps, it turns over control to an external event loop which calls it back to handle

events. Once the control transfer statement starting the event loop is executed, it may not

return until the application exits. This removes the interactivity produced by a REPL such

as the basic Lua interactive interpreter. In the speciĄc case of VR Juggler, the function to

start the kernel event loop (known in this case as the frame loop) returns after spawning a

thread. However, in practical usage, once the kernel is started by Lua, the Lua thread must

block until kernel exit, since any attempt to interpret additional new code from outside the

kernel thread would result in concurrent threading problems as the kernel thread and the

initial thread both attempt to interact with a single Lua interpreter state simultaneously.

In extending the REPL to this type of architecture, consider that in event loop/frame

loop programming, idle operation consists of a continuously executing event loop, rather

than a blocking input call as found in a command-line REPL-type application. As such, a

separate user interface (UI) thread is the simplest way to implement the ŞreadŤ portion

of a REPL independent from the idle loop. The UI can efectively block waiting for the

userŠs input of code to evaluate. The evaluation of new code input, however, must still take

place within the event loop. The ŞprintŤ portion of such a REPL consists both of optional

text print output (logically directed back to the UI) as well as a change in the continually-

running environmentŠs state. In VR Juggler, the latePreFrame step of the kernel loop

is the most logical place to evaluate new code, since the application state at that point

corresponds neatly to a mental model of interactive execution: accessing device interfaces

will return the most recent data, and changes to the graphical state are possible and will

be immediately reĆected in the display in the subsequent draw step. A delay of at most

a frame-length between code entry and evaluation does occur due to the asynchronous

nature of the GUI console and the kernel frame loop, though this is imperceptible.
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Figure 3.2: Thread-safe run bufer for interactive execution

Based on these concepts, VR JuggLua includes a thread-safe run bufer system support-

ing interactive code execution during application run-time, illustrated in Fig. 3.2. Code can

be added to this circular bufer at any time from C++ (including an interactive console) or

Lua. A single method call on the bufer runs all contents, in order. This run bufer method

call is bound to Lua and can be placed in the application delegate function corresponding

to the latePreFrame state. An interface for an interactive GUI console, with text-based

stub, FLTK8, and Qt9 implementations, exposes this code-entry functionality to a user.

Any VR JuggLua-based application can use this GUI console as a drop-in component,

supporting not only REPL-style code entry and display of print output from Lua, but also

additional functionality built into the GUI such as script Ąle loading/saving and drag and

drop handling.

Applying the run bufer and GUI console, an interactive virtual reality REPL capability

was created. An application initially designed to serve as a testbed for scene creation

and manipulation, referred to as ŞNavTestbed,Ť is the immersive parallel of the minimal

Lua host REPL. All details of setting up a VR Juggler application are handled behind the

scenes. A minimal Lua application object provides navigation capability and runs the

code accumulated in the run bufer. An empty scene and console are presented on start-

up, and user code is executed interactively and apparently immediately. This interactive

console allows learning of syntax to proceed more rapidly than the edit-compile-run cycle

of C++ or even the edit-run cycle of a bare Lua VR JuggLua application. Lua errors are

presented immediately in the GUI console, and by default do not halt the execution of

8 http://www.fltk.org/
9 http://qt-project.org/

http://www.fltk.org/
http://qt-project.org/
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Figure 3.3: Interactive testbed application with console and simulator window

the application. The user is thus encouraged to try the code again, with modiĄcations as

errors would point out. In anecdotal experience, the console serves well to localize errors in

longer, more complex virtual environments: if the full script does not produce the desired

results, users quickly learn to try pasting code incrementally. In efect, the debugging

behavior of stepping through problem code arises spontaneously as a user works with the

environment. The testbed application does not impose any speciĄc structure on application

code developed interactively. Executed code, interspersed with text output formatted as

Lua comments, is logged and available for saving to a script Ąle or copying and pasting

into a text editor. While this application was initially intended to be a minimal testing host,

when combined with the control structures discussed in 3.4.3, it has become the host for

nearly all VR JuggLua-based development and operation.

Figure 3.3 shows this ŞNavTestbedŤ application running on Windows 7, on a desktop

system in simulator mode. The window in the background is the simulator view, showing

a representation of the room coordinate system as well as the simulated head and wand

position. VR Juggler simulator mode allows keyboard and mouse inputs to be translated

into immersive device inputs, such as head and wand position tracking and wand button

presses. Though simulator mode loads by default, conĄguration Ąles for an immersive VR

system can also be loaded, allowing experimentation with virtual environment design to

take place in the actual hardware system used for running completed applications. The

GUI console can either Ćoat above the windows rendering the immersive display or be

moved to an additional non-immersive display.

The solution described to this point provides an efective REPL for the VR Juggler

event loop system in VR JuggLua when run on a single node. However, many target

environments for VR Juggler include a cluster of render nodes in addition to an interactive

head node. VR Juggler provides a system for synchronize user data across a cluster

along with the input device data every frame. By registering the run bufer with this

user data synchronization mechanism, code entered interactively on the head node is
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synchronized and run simultaneously on all nodes of the cluster. By only running the code

that had accumulated in the bufer by the time of the pre-frame data synchronization during

that frame, consistent execution state down to a per-frame resolution can be guaranteed.

Essentially, the code entered by the user/developer between the start of consecutive pre-

frame states is held and run on all nodes only once it has been synchronized. When the

GUI console is launched in a cluster environment, render nodes can either replace the GUI

console with a stub text console, or allow the GUI console to automatically detect its cluster

state and disable code input on that node.

3.4.2. Embedded domain-specific language for scene graph description

Lua allows rapid development of experience authoring techniques, primarily due to its

concise ŞconstructorŤ syntax and table data structures that allow for development of data

description and domain-speciĄc languages. The osgLua library provides a fairly direct

translation of the C++ API of OpenSceneGraph to Lua. While this approach allows access

to the full potential of the library, it can make common tasks repetitive and unclear. For

instance, using pure osgLua syntax, the following code would be used to load a model,

attach it to a transform, and attach this transform to a root scene graph node.

t = osgLua.loadObjectFile("teapot.osg")

xform = osg.PositionAttitudeTransform()

xform:setPosition(osg.Vec3(1, 0, 0))

xform:addChild(t)

root:addChild(xform)
Lua allows tables, which are a data structure like associative arrays, to be created in-

line with {}, and function calls passing a single table argument may be made simpler

by abbreviating functionCall({data, data}) as functionCall{data, data}, which is

known as the constructor syntax. Clearly-named functions designed for constructor syntax

can replace the scene graph creation code listed above with this simpler, yet equivalent

alternative:

root:addChild(

Transform{

position = {1, 0, 0},

Model("teapot.osg")

}

)
Here, Transform is a function taking some named arguments specifying property values

for a PositionAttitudeTransform, as well as any number of unnamed arguments corre-
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sponding to OSG nodes to add as children. It is being called with a position argument,

as well as the results of a call to Model, a simple wrapper around osgLua.loadObjectFile to

load a given Ąle and report an error if the load is not successful. The PositionAttitudeTransform

node created and returned by Transform is passed directly to the original C++-style

addChild call to connect it to the scene graph root.

This DSEL more clearly indicates the values assigned to node properties, and also

directly conveys the nesting of the model node within the transform node, an important

aspect of the sceneŠs organization that might be missed in the more procedural original

code. In a sense, the code resembles the data structure it represents. In this way, an

embedded domain-speciĄc language was developed for the most commonly-used scene

graph components, including Transform, MatrixTransform, Group, Switch, and Geode

(a geometry node). By building this language within Lua instead of externally such as

in Colosseum3D ([6]), it could be developed incrementally, and it avoids introducing an

additional set of syntax rules and a new Ąle format. Since each DSL function returns the

standard osgLua data type, interoperability is maintained between the DSL and C++-style

osgLua code. By incrementally creating wrapping functions for the existing API, the DSEL

in VR JuggLua can be characterized as applying the API-to-DSL notation decision pattern

([35]).

3.4.3. Coroutines for parallel linear control flow

Coroutines are a control abstraction that allow control Ćow to re-enter at the point where

it exited, essentially suspending and resuming an independent thread ([15, 18, 17]). Note

that here, thread does not necessarily imply concurrent execution, or the synchronization

and locking concerns that come with it. Rather, Lua coroutines provide multiple threads of

control, with full lexical scoping and independent call stacks, in a single operating system

thread. The application of coroutines to virtual environment creation was reinforced by

anecdotal experience working with a novice developer. When considering how one might

make an element of a scene continuously rotate, the Ąrst reaction of the new developer

was to volunteer the idea of an inĄnite loop. More experienced developers familiar with

event loops will quickly recognize that this is not feasible in the traditional way, as the

update callback must return for the system to begin drawing. One implementation might

transform this concept by preserving state between update callbacks in a member variable

or similar structure that persists between calls. However, coroutines transparently preserve

execution state between suspend and resume. This provides the basics to efectively

inverting the control structure, allowing a user to write code that appears to control drawing

and execution.
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This is implemented in VR JuggLua as follows. A collection of coroutines resumed each

frame, called Şframe actions,Ť is managed by the application delegate, which resumes each

one in turn during every latePreFrame state. A developer can create a Şframe actionŤ pro-

cedure that appears to run with linear control Ćow, in parallel with other such procedures,

by passing a function to a function called Actions.createFrameAction(), which creates a

coroutine for that function and adds it to the collection of frame actions. Frame actions may

freely call other functions, interact with state, and create additional frame actions. VR Jug-

gLua provides number of wrappers around the coroutine.yield() Lua function for use

within frame actions, the simplest being called Actions.waitForRedraw(). When each

still-active frame action is resumed by the application delegate, the duration between the

previous frame and the current frame is passed. The result is that waitForRedraw() and

its peers appear to pause the calling procedure to draw, then return the amount of time that

they paused. It is important that this duration be returned, so that frame-rate-independent

animation or simulation can be performed in the frame action.

With this system in place, the combination of the run bufer and the frame action system

in the application delegate provides a base for application development without the need

for developing additional application delegates. Pure Lua VR JuggLua applications are

typically constructed with some immediately-executed code (often setting up the scene

graph) and typically one or more frame actions, handling interactions, navigation, and

other behaviors. The run bufer and REPL allows additional code to be added during run-

time, whether it executes immediately, creates a new frame action, or both. No expressive

power is lost by avoiding the use of custom update functions in an application delegate: the

idiom of repeated calls to an update function can be emulated by a frame action containing

a loop with just an update call and a wait for redraw. The conĄguration of the frame action

collection is similar to the description of the audio synthesis scheduler in Lua presented in

[45], also implemented in Lua using coroutines.

3.5. Examples

Immersive applications have been successfully written using the VR JuggLua system,

both in pure Lua and in a combination of C++ and Lua. Students in a graduate-level

introduction to virtual reality course have used it across several semesters to produce Ąnal

projects. VR JuggLua has been the platform for research in virtual reality and related Ąelds

leading to a number of publications ([39, 12, 36, 9, 13, 40, 14, 7]). This section will highlight

a few samples of the results achieved using VR JuggLua notable for illustrating particular

aspects of the frameworkŠs design.
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3.5.1. Learning Virtual Reality Interactively

The interactive testbed application was applied in an unstructured undergraduate

learning environment which focused on concepts of scene-graphs and 3D virtual real-

ity. A sample task of scene design was assigned, with the goal of prototyping a more

sophisticated application. A reasonably-complex scene was built from multiple models,

sourced internally as well as from the Google 3D Warehouse10. An iterative process on

typical laptop and desktop computers was observed, with rapid iterations of the applica-

tion script tested interactively using the testbed application. The script constructed in this

way was then launched in a single-machine two-walled immersive environment for more

thorough testing. It was ultimately demonstrated in the C6, a six-wall high-resolution

CAVE-like system powered by a 49-node cluster. The application performed smoothly and

as designed.

3.5.2. Testing Navigation Techniques

In the course of a summer program for undergraduates, a scenario was developed for

testing navigation in a user study in the C6 environment. An application was written,

entirely in Lua, by undergraduate and graduate students. The application loaded sophisti-

cated models, and supported comparison of two navigation techniques based on device

input. The necessary transforms and manipulations to display the externally-sourced

models were developed on desktop machines using the interactive testbed. The navigation

techniques interpreted analog and positional data from sensors on an instrumented real ob-

ject, to provide an on-screen registered virtual version of the object and to allow movement

in a natural way. Logging of navigation data was implemented, and a successful user study

was completed, in a limited time frame, eventually leading to publication ([12]). High

performance of the application was observed, despite the use of an interpreted language

and very complex graphical model. This is made possible due to the delegation of graphics

rendering to the C++-based OpenSceneGraph. Lua code traversed and modiĄed models

at load time and updated transforms during run-time, but the actual rendering code in a

VR JuggLua application remains part of OpenSceneGraph.

3.5.3. Integrating with C++ Simulations

Research into applications of virtual reality technology to manufacturing engineering

led to the development of virtual assembly simulations with haptic force-feedback capabil-

ity. The Scriptable Platform for Advanced Research and Teaching in Assembly (SPARTA) is the

10 http://sketchup.google.com/3dwarehouse/

http://sketchup.google.com/3dwarehouse/
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Figure 3.4: SPARTA in simulator mode showing Lua console

successor to the System for Haptic Assembly and Realistic Prototyping (SHARP) as developed

by Seth et al. ([44]). SPARTA is an application built on VR JuggLua in which C++ code

performs physically-based simulation of interactions between part models, rendering cor-

responding haptic force feedback to haptic devices such as the Geomagic® Touch™ and

the Virtuose™ 6D35-45 by Haption at a rate of 1000 Hz.

Classes in SPARTA representing the physics simulation, physical bodies, and manip-

ulator devices are bound for Lua access by Luabind. Lua code executed using the GUI

console and run bufer is used to conĄgure interaction devices and techniques, load parts to

interact with, and start the physics simulation. Lua scripts performing these tasks are used

in place of conĄguration Ąles, ofering extended functionality for complex conĄgurations

and eliminating the task of writing a conĄguration Ąle parser. Scripts are either loaded

from the command line, or interactively using the GUI console, which has been included

as a Şdrop-inŤ component and allows incremental development of SPARTA conĄgurations

akin to the incremental development of VR JuggLua applications enabled by the interac-

tive testbed application. Figure 3.4 shows SPARTA running in simulator mode with the

GUI console visible along with the simulator window. Of course, like all VR JuggLua

applications, SPARTA can be run in a fully-immersive mode without any changes beyond

conĄguration Ąles.

Furthermore, while C++ code performs the physics computations and high-rate sim-

ulation in SPARTA, the visual and audio feedback is written entirely in Lua. A simple

application object delegate handles updating the positions and orientations of models in

the scene graph based on the current simulation state. Collision statistics are monitored by

separate Lua code to trigger appropriate sounds using the Sonix binding in VR JuggLua.

Frame actions are used for additional functionality, as well as automation of user study
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procedures. In efectively providing a superset of VR JuggLuaŠs capabilities, most Lua-only

functionality developed in VR JuggLua can be used directly in SPARTA.

The case of SPARTA illustrates a high-end application of VR JuggLua: it is a sophisticated

application taking advantage of the VR JuggLua C++ API and binding its own internal

objects to Lua. It uses Lua code to conĄgure the C++ core and translate simulation state into

visual and audio displays. The Lua interface provides an extension point for investigating

interaction techniques.

3.6. Conclusions and Future Work

VR JuggLua began as a binding of VR Juggler and OpenSceneGraph to Lua. Subsequent

research and development have extended its potential in three major ways. Interactive code

execution in the manner of a REPL was re-introduced using a cluster-capable, thread-safe

run bufer. An embedded domain-speciĄc language for scene graph description in Lua was

built. Finally, coroutines were applied to invert apparent control Ćow to permit more linear

execution and formulation of virtual environment behavior. The software is developed

under an open-source license and both source and Windows binaries are provided online.11

The interactive GUI prompt adds code to a run bufer asynchronously from the frame

loop. The run bufer concept allows interactive code execution simulating the behavior

of a blocking REPL while the frame loop continues. Just syncing the bufer when device

data is synchronized is not suicient to extend this to a cluster because itŠs possible to enter

code after synchronization but before the contents of the bufer are run. This problem

was solved by only executing those run bufer entries that have been synchronized, and

delaying code entered between sync and run until the next frame. This allows interactive

code execution, in a running frame loop, across a cluster maintaining consistent state on

all nodes.

Building bindings for VR Juggler and providing a base application shell eliminates the

boilerplate required for a simple application. Between new bindings written for VR Juggler

and the enhanced introspection-based OpenSceneGraph bindings, a large proportion of the

underlying functionality is available. However, this functionality was primarily available

through imperative-style code strongly resembling its C++ equivalent. By building an

embedded DSL for scene graph description in Lua, common scene graph construction

tasks can now be written in a way that reĆects the structure in a more declarative style. By

employing the API-to-DSL notation decision pattern, the DSL is seamlessly compatible

with the fullness of functionality accessible through the imperative C++-style API. The DSL

11 https://github.com/vancegroup/vr-jugglua

https://github.com/vancegroup/vr-jugglua
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simpliĄes common code in a way that is both useful to novice VR programmers learning

about scene graphs and helpful to experienced programmers working on development

and maintenance of a virtual environment.

Typical control Ćow in VR software involves relinquishing control to an event loop

that will periodically call a particular function for application-speciĄc logic and updates.

In the context of developing a virtual environment, it can be more natural to think of

program logic proceeding somewhat linearly, rather than as repeated calls to an update

function. Coroutines provide a model and method of multiple parallel, non-concurrent

threads of control that can pause and resume execution. By implementing a collection

of coroutines resumed each frame during the update function, and wrapping a ŞyieldŤ

(return and suspend) call as a Şwait for redraw,Ť a system of Şframe actionsŤ was developed

for providing more linearly-structured execution with state transparently preserved across

multiple frames. The frame action coroutine system can trivially emulate the per-frame

Şupdate callbackŤ idiom, so it loses no expressive power.

Future work includes collaborative work to broaden usage of VR JuggLua outside of

Iowa State University courses and research. Some technical changes could be made to

more easily permit use of third-party Lua modules for orthogonal functionality. While

the package runs on Windows, Linux, and Mac OS X, some additional work is needed

to provide an easily-distributable application bundle on Mac. Formal evaluation of the

systemŠs usability with novice programmers is also being considered.
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CHAPTER 4. INTERACTING WITH GRASPED OBJECTS IN

EXPANDED HAPTIC WORKSPACES USING THE BUBBLE

TECHNIQUE

A paper submitted to the ASME Journal of Computing and Information Science in Engineering

Ryan A. Pavlik, Judy M. Vance

4.1. Abstract

Haptic force-feedback can provide useful cues to users of virtual environments. Body-

based haptic devices are portable but the more commonly used ground-based devices have

workspaces that are limited by their physical grounding to a single base position and their

operation as purely position-control devices. The Şbubble techniqueŤ has recently been

presented as one method of expanding a userŠs haptic workspace. The bubble technique is

a hybrid position-rate control system in which a volume, or Şbubble,Ť is deĄned entirely

within the physical workspace of the haptic device. When the deviceŠs end efector is within

this bubble, interaction is through position control. When the end efector moves outside

this volume, an elastic restoring force is rendered, and a rate is applied that moves the

virtual accessible workspace. Publications have described the use of the bubble technique

for point-based touching tasks. However, when this technique is applied to simulations

where the user is grasping virtual objects with part-to-part collision detection, unforeseen

interaction problems surface. Methods of addressing these challenges are introduced,

along with discussion of their implementation and an informal investigation.

Ryan A. Pavlik was the primary author and researcher.
Based on an earlier paper presented as:
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4.2. Introduction

Virtual assembly involves manipulation of computer-aided design (CAD) models to

simulate assembly processes. Haptic force-feedback augments visual and audio feedback

to provide physical feedback indicating the interaction between grasped objects and the en-

vironment [13, 2]. However, the limited physical workspace of ground-based haptic devices

reduces the utility of these devices in large virtual environments. The bubble technique has

been presented as one method of allowing a user to interact within a large virtual environ-

ment using a grounded haptic device with a smaller workspace. This technique holds great

promise for expanding the potential of haptic interaction in virtual environments. This

paper proposes improvements to the bubble technique to support force-feedback for users

when they are manipulating grasped objects in large virtual environments. A discussion

of current methods to increase the haptic workspace is followed by speciĄc evaluation and

algorithmic development of improvements to the bubble technique.

4.2.1. Increasing the Haptic Workspace for Ground-Based Devices

Ground-based haptic force feedback devices result in a limited workspace. Some devices,

such as the SPIDAR, are speciĄcally designed for large workspaces without modiĄcation

[5]. Other techniques involve physical modiĄcations to the haptic device which allow

the device to travel within the virtual environment [17, 4, 11, 22, 12, 14, 21]. The focus

of this paper is on increasing the haptic workspace of a Ąxed-base haptic device, such as

the Haption Virtuose™ 6D35-45 in a CAVE with displays on two walls plus the Ćoor as

shown in Fig. 4.1. One technique of increasing the haptic workspace is to apply scaling in

position control. As proposed by Fischer and Vance, the ratio of virtual workspace size to

physical workspace size can be used to ensure an entire virtual volume is reachable [10].

Scaling increases the reachable workspace and eases coarse manipulation, but makes Ąne

manipulation more diicult.

Pioneered by Dominjon et al. [8, 9], the bubble technique is a hybrid haptic control

technique for expanding the haptic workspace. It supports Ąne manipulation as well

as access to a larger efective working volume by moving the workspace under some

conditions. The bubble technique uses pure position-control within a spherical volume,

referred to as the Şbubble.Ť The bubble is centered in the deviceŠs physical workspace and

sized to encompass the speciĄc haptic deviceŠs working volume. Movement of the haptic

end efector outside of the bubble applies a velocity to the workspace, efectively moving

the workspace to another position within the virtual scene. The user feels a slight elastic

restoring force as he/she pulls the bubble to the new location. Once the bubble reaches its
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Figure 4.1: Haption Virtuose™ 6D35-45 in a large workspace virtual environment

Figure 4.2: Wire-frame workspace display in virtual assembly application SPARTA

new location, the user freely operates the haptic device in that area of the virtual scene,

feeling appropriate forces. For a device like the Haption Virtuose™ 6D35-45 that has a

relatively large working volume, the bubble technique provides users with the ability to feel

forces from interactions in areas of the virtual scene that are beyond the deviceŠs physical

working volume. For smaller desktop-size devices like the Sensable Phantom Omni®,

which has a limited working volume, this technique provides a valuable method to increase

the overall haptic working volume, provided frequent movement outside the bubble is

acceptable. The original research [8, 9] discussed a number of variations on the original

bubble technique. These include the presence or absence of a visual indication of the

workspace, such as the wire-frame sphere shown in Fig. 4.2, the implementation of a small

scaling factor to control the quality of Ąne manipulation incrementally, and the potential of

moving the camera (the userŠs viewpoint) with the bubble, efectively permitting navigation

based on haptic interaction with the environment. Another related hybrid position-rate

control technique, which is designed for a two-dimensional, non-haptic input device, is

RubberEdge [6].
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In Dominjon et al. [9], the bubble technique is described and studied in the context of a

point-touching application, without grasped objects or object-to-object interaction. The

implementation as found in the VirtuoseAPI allows application of the bubble technique to

both point-touching and grasped object simulations. However, we have found that the use

of the bubble technique with grasped object manipulation presents interaction challenges.

This paper outlines those challenges and describes proposed solutions.

4.2.2. Interaction Device Design and Bubble Restoring Forces

Zhai and Milgram [25, 24] enumerate a few dimensions of the design space for in-

put devices, of which transfer function, typically ranging from position to rate controlled,

and controller resistance (isotonic through isometric) are most applicable to the current

discussion. Isotonic devices allow muscle contraction and movement with low resistance:

essentially the default mode of haptic devices as well as desktop computer mice. Isomet-

ric resistance refers to contraction with high resistance and little or no movement, e.g.

Spaceball/SpaceMouse™-type devices or pointing sticks found on laptop computer key-

boards. The range between these two extremes, in which the sensor provides some stifness,

includes elastic resistance (varying with displacement), viscous resistance (varying with

velocity), and inertial resistance (varying with acceleration). Zhai and Milgram studied

the performance of various devices in a two-dimensional design space. As the examples

of desktop mice and laptop pointing sticks might suggest, isotonic resistance devices per-

formed best for actions where position control was critical and isometric resistance devices

performed best where rate or velocity control was most critical. Their data analyses showed

a clear interaction of these two dimensions. Applying the bubble technique efectively

turns a haptic device (typically an isotonic-position control device) into a device with both

position and rate control transfer functions. It follows, then, that when rate control is active,

the user would be well-served to feel isometric device resistance, which can be simulated

by the force output capabilities of the haptic device. In the bubble technique, when the user

moves the haptic end efector outside of the bubble, an elastic restoring force transforms

the haptic device from an isotonic to an isometric device. This serves an important purpose

in not only signaling to users an exit from the bubble, but also pulling the user back out

of rate control into position control. Though later discussion will reveal problems related

to the inclusion of an elastic restoring force, it serves an important function in the overall

bubble technique and its removal is not a practical option.
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4.3. Investigation of Interaction Challenges

Three interaction challenges were observed when applying the bubble technique in

a virtual assembly application. Two challenges involved the experience of object-object

collision while outside of the bubble. The elastic restoring forces of the bubble and the

forces due to the manipulation of objects cannot be distinguished. This can confuse the user

when object collisions occur when the end efector is outside of the bubble. In addition, the

movement of the bubble when objects are colliding can result in a perceived ŞstickinessŤ

when attempting to separate colliding objects. Finally, the visualization of the reachable

workspace as a spherical volume or ŞbubbleŤ can distract from the other visual feedback

provided by the simulation.

4.3.1. Implementation Platform

The present work was implemented in SPARTA, the Scriptable Platform for Research and

Teaching in Assembly [19]. This application, the successor to SHARP [23], provides a virtual

reality environment where arbitrary computer-aided design (CAD) models can be loaded

and manipulated using physically-based modeling and haptic force feedback. It builds on

the VR Juggler open-source virtual reality software framework to support a wide variety

of hardware and software platforms [3]. Model loading, triangulated data-structures, and

graphics rendering is provided by the OpenSceneGraph library1 working in concert with

VR Juggler. The VR JuggLua framework, which extends VR Juggler with Lua scripting

capabilities [20], maintains the visual and audio feedback, and provides rapid prototyping

of immersive interaction in the simulation. SPARTA itself uses conĄguration scripts written

in Lua code to load models, connect and conĄgure devices, and launch the simulation. A

run-time Lua console allows interactive re-conĄguration of the simulation.

Collision detection and physically-based modeling is based on the Voxmap PointShell™

(VPS) software developed by McNeely et al. [15, 16] and licensed from Boeing. VPS permits

collision detection and force rendering involving arbitrary geometries at very high rates.

It operates by performing discretization of input geometries into voxels, and performing

voxmap sampling to detect collision and compute forces. SPARTA incorporates software

that connects VPS to OpenSceneGraph, allowing arbitrary portions of the scene-graph to

be voxelized at run-time without a separate preprocessing step.

The implementation of interaction devices in SPARTA is modular [18] and polymorphic,

with wand, glove, and haptic devices all presenting a generic device interface that hides

the details of individual device types from the simulation. SPARTA also provides for

1 http://www.openscenegraph.org

http://www.openscenegraph.org
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objects that behave as virtual ŞĄlterŤ devices, modifying input and output rather than

corresponding directly to physical hardware. Instead, while these Ąlter objects present a

device interface for use in the simulation, they also take a generic device object as input.

The base class for such virtual Ąlter devices provides method implementations that directly

forward calls to the contained device, providing pass-through behavior by default. Derived

implementations then selectively override these default methods to produce speciĄc efects

as desired. For instance, SPARTA includes one such virtual Ąlter device type that scales

up position and velocity reports by a user-supplied coeicient and scales down forces

correspondingly. These Ąlter devices are akin to transformation nodes in a scene-graph

data structure, except that their more general formulation permits them to apply a range

of efects beyond spatial transformations.

In SPARTA, the bubble technique is implemented as a virtual Ąlter device that takes as

input an existing device object, the radius and center of the desired bubble with respect to

the deviceŠs workspace, the elastic stifness for the bubbleŠs restoring force, and details of

the rate control function. This permits a single implementation of the bubble technique to

be used with all supported device types. It also permits the combination of scaling with the

bubble technique, which has been useful in when working with desktop devices such as

the Phantom Omni in this research. Figure 4.2 is a screenshot of the SPARTA environment

showing three geometry models, the bubble represented as a wire-frame sphere and the

location of the haptic end efector as indicated by the virtual cone object.

Distinguishing Bubble Force from Collision-Related Force

Understanding the various forces that are calculated as a result of manipulation and/or

collision is important in understanding issues that occur when using the bubble technique.

When haptically manipulating grasped objects in a virtual environment, the primary source

of forces rendered to the haptic device is the spring-damper system of the Şvirtual coupler.Ť

Initially proposed by Colgate et al. [7] and further investigated by Adams and Hannaford [1],

the virtual coupler connects the virtual representation of the haptic end efectorŠs position

(also known as the haptic handle) to the grasped virtual object by a critically-damped

spring-damper system (see Figure 4.3). The model of the virtual coupler contains both

linear and torsional components. Stifness values are assigned to the linear and torsional

springs of the virtual coupler. The stifness constants are determined empirically and

related to the haptic deviceŠs capabilities and time step. When using the haptic device to

perform free movement of objects in the virtual scene, displacement of the haptic handle

results in the calculation of a reaction force based on the mass and inertia of the grasped

object, which is then used to calculate the objectŠs new position. The reaction force is also
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Figure 4.3: Conceptual view of the virtual coupler

rendered to the haptic device, which conveys a sense of comparative mass. Because the

system is critically-damped, the new computed location of the grasped object tends to

achieve the position and orientation of the haptic handle as rapidly as permitted by the

speciĄed stifness, without oscillations and other instabilities. This presents to the user as

if he/she were grasping the object with the haptic end efector and moving it in virtual

space. Use of the virtual coupler helps ensure overall system passivity. The virtual coupler

is conceptually illustrated in Fig. 4.3, with conventions that will be used throughout this

work: a cylinder as the haptic handle, linked by a spring-damper system to a teapot as the

grasped object. The distance between the haptic handle and grasped object is exaggerated

for clarity in this Ągure. The result of using the virtual coupler is that forces of collision

are not directly transmitted to the haptic device, but are felt because of an increase in the

virtual coupler spring displacement. Due to the high update rate, the virtual coupler can

convey fairly detailed information about the shapes of colliding objects, such as initial

contact, ridges, etc.

In the bubble technique, when the end efector moves outside of the bubble, the haptic

workspace moves in the direction of the end efector motion and an elastic restoring force

is rendered to the haptic device that pulls the haptic handle back in the direction of the

bubble. Recall that this restoring elastic force is desirable as Zhai and Milgram found that

rate control using an isotonic (non-elastic) device resulted in poor performance [25]. When

holding an object and moving outside of the bubble, as illustrated in Fig. 4.4, the grasped

object moves in the same direction that the bubble moves. When the grasped object collides

with another object, collision forces due to object-to-object interactions will be generated

on the haptic handle. These collision forces will be in the same direction as the restoring

elastic force. Since net forces are the summation of all forces acting on a body, forces due
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Figure 4.4: Grasping object while moving bubble

to collision and forces due to the bubble technique cannot be distinguished. This weakens

the haptic cues provided by collision during assembly. When the haptic handle is already

experiencing a force, the addition of a collision force appears incremental. Furthermore,

current haptic devices do not have the ability to produce large reaction forces, so a collision

may go entirely unnoticed by the user if the elastic restoring force saturates the deviceŠs

capabilities for force output. When the workspace velocity is proportional to the distance

outside the bubble, users tended to seek high velocities by Şpushing throughŤ the bubble.

This situation results in high velocities of movement and high elastic restoring forces which

are likely to saturate the deviceŠs output.

A combination of techniques can be used to convey to the user when a collision has

occurred. One approach to distinguishing these two sources of forces is to decrease the

elastic stifness of the bubble itself by setting a low stifness constant. By decreasing the

intensity of the bubble forces, the userŠs ability to move fast enough to saturate the force-

rendering capabilities of the device during bubble movement will decrease, leaving capacity

for rendering increased forces upon collision. However, this presents a trade-of between

available force capacity for collision and clarity of the elastic re-centering cues during

rate control. The use of additional sensory cues, both visual and audio, is a promising

solution. Even a simple sound efect played upon starting collision draws attention to the

transition between free-space movement and collision when manipulating an object in

the rate-control area of the workspace, yet it does not physically change the feel of the

collision. The metallic clang sound efect used in SPARTA clearly indicates a change in the

virtual environment, despite potentially unchanged or minimally changed force output.
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Similar visual changes, such as color or transparency are efective cues that a collision has

occurred.

Bubble Movement During Collision

There is another issue that occurs when the grasped object collides with another object

in the virtual environment. In a pure position-control system, moving the haptic device

away from a colliding object quickly moves the grasped object. In turn, this decreases forces

rendered because no collision impedes the restoration of the grasped object to the pose

of the haptic handle, so the spring displacement (due to the virtual coupler) between the

object and handle can quickly approach zero. However, when using the bubble technique

to move the workspace, a ŞstickinessŤ occurs during object-to-object collisions when the

end efector is outside of the bubble.

As the bubble and the grasped object move, the object may collide with other objects in

the scene. Collision forces on the object prevent it from moving through the obstruction,

normally generating a haptic cue by rendering increased forces through the haptic device.

However, as discussed earlier, sustained, swift movement of the bubble may actively

produce large bubble restoring forces that mask the forces related to the collision. When

users fail to feel the collision of objects, they continue to apply enough force to the device

to counter all forces rendered, keeping the haptic handle outside of the bubble. As a result,

the bubble continues to move, thus continuing to move the efective position of the haptic

handle in the virtual environment, as illustrated in Fig. 4.5a.

Moving the end efector back within the bubble is expected to produce a decrease

in forces felt due to the elimination of bubble restoration forces. The user also expects

the grasped object will move away from the colliding object. In fact, neither takes place.

While bubble restoring forces are eliminated, the large displacement between the handle

and the grasped object, resulting from bubble movement, continues to provide collision

forces. Furthermore, since the virtual location of the workspace has moved, the user

now must move the end efector in the opposite direction (and of equal magnitude of the

bubbleŠs movement during collision) before the colliding objects are pulled apart. These two

connected phenomena are illustrated in Fig. 4.5b. The subjective experience of this situation

is of a ŞstickinessŤ that prevents a user from being able to easily separate objects once they

have collided. Attending to the displayed location of the haptic handle and its changed

relationship with respect to the grasped object would reveal the true state of the simulation

and how to disentangle the objects. However, since the handleŠs visual representation is

generally less prominent and less subjectively meaningful than the visualization of the

grasped object itself during manipulation, this remains a frustrating challenge to users.
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Figure 4.5: Behavior of virtual coupler when colliding and moving bubble

Addressing this problem is complex. One technique is to stop the bubble from moving

during collision, even if the haptic handle is outside of the bubble. This is not a very viable

option. The nature of the collision-detection computation actually results in oscillation

between states of collision and non-collision. This requires developing a state rule to

determine when to stop bubble movement yet avoid oscillation. One solution would be

to determine a new collision by comparing the current collision count to a short-term

maximum collision count. Usually, this will avoid the cycle problem. However, stopping

the bubble during collision poses new problems (when and how should it be re-started?)

and reduces a worthwhile aspect of the bubbleŠs efect: the bubble also represents the

region of the device with the highest Ądelity feedback so keeping the handle within it has

merit on its own.

Another approach is to change the rate control law governing the bubble displacement

such that large movements outside the bubble are discouraged and therefore, force satura-

tion is less likely to occur. The bubble rate and elastic force are along the same direction as

the vector from the center of the bubble to the end efector. Thus, the end efector position,

elastic force, and bubble rate can be represented as scalar distances, forces, and rates along

this vector. As previously formulated [8], R is the radius of the bubble, and D is the distance

between the center of the bubble and the end efector. The distance of the end efector

outside of the bubble, x, is given in equation (4.1).

x � D − R (4.1)
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The restoring force, F, is modeled as a linear spring force as given in equation (4.2), where

k is a constant.

F � −k · x (4.2)

Dominjon et al. propose a cubic, monotonic relationship between distance outside the

bubble and rate of bubble movement as illustrated in equation (4.3), where V is bubble

velocity and K′ is a constant.

V � K′ · x3 (4.3)

A quadratic, monotonic relationship has also been implemented which produced similar

results as the cubic relationship of equation (4.3).

An alternate rate control law that reduces the workspace rate after reaching a peak has

been implemented and evaluated. This control law is referred to as a Şpeak ringŤ function.

In essence, the function allows increasing velocity beyond the surface of the bubble until a

predeĄned distance is achieved. At this ŞpeakŤ distance, the peak velocity of the bubble

is achieved. When a user pushes the end efector beyond this peak distance, the velocity

of the bubble is reduced so that no additional advantage is gained by the user by moving

farther away from the bubble. By producing the highest rate of bubble motion at a single

peak just outside of the position-control region of the bubble, and quickly tapering of to a

constant rate beyond this peak, the greatest bubble movement that a user will encounter

will be conĄned to the area when the bubble renders a relatively small elastic force. This

method reduces the userŠs tendency to continue to push harder against the bubble.

Choose x∗ as the distance outside the bubble at which the peak rate, v∗, is achieved.

This distance can be a function of the bubble radius, R. Let 0 < β < 1 specify the percent

of the total peak velocity that is achievable at all distances farthest away from the bubble

surface. DeĄne a quadratic function of x with its global maximum of v∗ � f (R · x∗) as

follows:

f (x) � −
v∗

x∗2
(x) (x − 2R · x∗) (4.4)

In the interval x ∈ [0, 2x∗], f (x) is positive. The velocity is determined by f (x) in what can

be called the Şpeak zone,Ť a subset of x ∈ [0, 2x∗] deĄned by the predicate

P(x) � (x < R · x∗) ∨
(

(x > R · x∗) ∧ ( f (x) > β · v∗)
)

(4.5)

In the tested implementation, parameter values of R � 0.45 (in meters), x∗ � 0.15, β � 0.3,

and v∗ � 1.5 were chosen. The bubble rate for some distance outside of the bubble x is a
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Figure 4.6: Control laws as investigated

piecewise function deĄned as

V �





f (x) if P(x) is true

β · v∗ otherwise
(4.6)

Figure 4.6 shows a monotonic quadratic control law (V � K′ · x2 with K′ � 7) and this Şpeak

ringŤ with parameters set as above. The speciĄc values are not as relevant as the overall

trends. Whereas the original bubble technique produces workspace movement in response

to pushing out of the bubble, this modiĄed control law can be described as producing

movement by touching just outside the bubble.

This contributes to resolving the issues with grasped object manipulation in two ways.

Since the most eicient movement occurs at a slight distance outside the bubble, the elastic

restoring force is relatively small. With a small elastic force from the bubble, the device

is less likely to be saturating its force-rendering ability with just the bubble force alone.

If the manipulated object collides with another object, the collision efects transmitted

through the virtual coupler will be more clearly felt with a lower Şbackground levelŤ of

force from the bubble. Secondly, as this peak rate is located physically near the pure

position-control area of the workspace, a userŠs action to move a grasped object away from

a collision will result in the device leaving the rate-control zone in a short distance and

short time. As implemented, this Şpeak ringŤ bubble rate function anecdotally improved

the perception of collision forces during bubble movement, often resulting in the user

stopping the movement of the bubble once collision occurred. This simple sample control
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law demonstrates the principle of Ąnite peak velocity for the bubble technique in grasped

object manipulation.

4.4. Bubble Visualization

The sphere-shaped volume of the workspace providing direct position-control has

previously been visualized as a semi-transparent sphere [8, 9]. Dominjon et al. assert

that dual-display of the spherical bounding volume (haptic and visual) is important and

supports association of the physical and displayed workspace. SPARTAŠs bubble technique

module includes three visualization modes: a semi-transparent sphere, a wire-frame sphere,

and a no-visualization option. An informal evaluation of these diferent visualizations

of the bubble while assembling CAD models was performed. Display of the wire-frame

bubble (Fig. 4.2) seems to serve as a useful tool to support explanation of how the bubble

technique works. However, assembly of complex CAD geometry appeared to be impeded

by display of the bubble. The semi-transparent sphere obscures the geometry when opaque

enough to clearly visualize the workspace volume. The wire-frame sphere does not occlude

the geometry, but it appeared visually distracting and cluttered. In contrast, when display

of the bubble was disabled, use of the haptic device to perform virtual assembly was natural

with little conscious attention paid to the detail of the hybrid control.

[9] concluded that visual display of the sphere aided users in interacting in the virtual

environment. Two hypotheses may explain the seeming contradiction with the assertion of

the sphere displayŠs importance. A virtual assembly application may present a higher task

load than point-touching applications such as the one studied in [9]. Visualization of the

workspace may impose a continued cognitive awareness of the hybrid position-rate control

scheme, presenting diiculties in completing the original task. A second hypothesis is that

visualization of the bubble during object manipulation presents a challenge of divided

attention, with the sphere visuals serving to distract from the features of the manipulated

geometry that facilitate or impede assembly.

In light of these Ąndings, run-time-switchable display of the workspace bounding

sphere has been implemented. This allows explanation of the bubble technique with the

workspace clearly visualized, and subsequently allows actual use of the environment and

completion of assembly tasks to proceed unobstructed with the bubble display disabled.

4.5. Conclusions and Future Work

Haptic interaction devices provide valuable cues in virtual reality simulations, but their

physical workspace is often limited by the mechanics required to render stif, realistic forces.
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One particularly promising way of extending the workspace of ground-based haptic devices

is to implement a hybrid position-rate control scheme rather than purely position-control.

Investigation into extending the haptic workspace during grasped object manipulation,

as needed for virtual assembly tasks, has identiĄed several additional challenges. The

lack of distinction between bubble and collision forces, and the fact that bubble movement

may proceed even during collision, can result in inaccurate perceptions of force and an

uncomfortable perceived stickiness between the colliding objects. A promising approach

for addressing these issues is to use a non-monotonic rate control scheme for the bubble

movement. A user can be discouraged from pushing too hard/fast against the bubble force

by creating a peak bubble velocity a short distance outside of the position-only area of

the bubble, rather than having the velocity continually increase with increased distance

from the bubble. A implementation of such a Şpeak ringŤ control has been devised which

combines quadratic and constant functions. Initial investigation of this method shows

promise.

In the future, other methods of improving the bubble technique will be explored.

An additional technique for distinguishing bubble and collision forces is to render an

augmented ŞbumpŤ efect upon the start of collision. The nature of penalty-based physics,

where an object in collision is modeled as cycling in and out of collision rapidly, requires a

careful detection of the start of a high-level collision event. Implementing an augmented

bump would afect the userŠs hand position during subsequent time-steps, leaving less

margin for error in determining the start of collision. Implementing and evaluating this

force augmentation is planned.
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CHAPTER 5. INTERACTING WITH A LARGE VIRTUAL

ENVIRONMENT BY COMBINING A GROUND-BASED HAPTIC

DEVICE AND A MOBILE ROBOT BASE

A paper published in the proceedings of the ASME 2013 International Design Engineering

Technical Conferences & Computers and Information in Engineering Conference

Ryan A. Pavlik, Judy M. Vance, Greg R. Luecke

Abstract

Ground-based haptic devices provide the capability of adding force feedback to virtual

environments; however, the physical workspace of such devices is very limited due to the

Ąxed base. By mounting a haptic device on a mobile robot, rather than a Ąxed stand, the

reachable volume can be extended to function in full-scale virtual environments. This

work presents the hardware, software, and integration developed to use such a mobile

base with a Haption Virtuose™ 6D35-45. A mobile robot with a Mecanum-style omni-

directional drive base and an Arduino-compatible microcontroller development board

communicates with software on a host computer to provide a VRPN-based control and

data acquisition interface. The position of the mobile robot in the physical space is tracked

using an optical tracking system. The SPARTA virtual assembly software was extended to

1) apply transformations to the haptic device data based on the tracked base position, and

2) capture the error between the haptic deviceŠs end efector and the center of its workspace

and command the robot over VRPN to minimize this error. The completed system allows

use of the haptic device in a wide area projection screen or head-mounted display virtual

environment, providing smooth free-space motion and stif display of forces to the user
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throughout the entire space. The availability of haptics in large immersive environments

can contribute to future advances in virtual assembly planning, factory simulation, and

other operations where haptics is an essential part of the simulation experience.

5.1. Introduction

The goal of this work is to expand the workspace of a ground-based haptic device to

encompass the full area of a multi-wall projection screen or large area position tracked

virtual reality facility. The result will support user interaction with force feedback within a

large virtual reality facility. To illustrate, the large workspace Haption Virtuose™ 6D35-45

haptic device is designed to provide forces and torques within a cube-shaped workspace

45 cm on each side. Therefore, using this device, only the collision of virtual objects within

the 45 cm cube-shaped workspace can provide force feedback to the user. Other small

ground-based haptic devices have smaller workspace areas. With todayŠs availability of

large area position tracking systems, virtual reality facilities can be constructed of any

size. Methods are needed to support using haptic devices in a large area position tracked

virtual environment that could potentially include several square meters of Ćoor space. The

assembly scenarios of interest take place in a typical work cell of 2 m to 3 m square. Thus,

expanding the efective workspace of the haptic device permits richer, more realistic simu-

lations of assembly scenarios by allowing the user to walk around in the available physical

space while still receiving haptic force and torque feedback. The approach is to mount a

commercially-available haptic device on a powered omni-directional mobile robot, further

develop a control scheme originally designed for smaller devices, and produce modular

software that provides this functionality in a way that is easy to use. The major hardware

components are commercial, of-the-shelf (COTS) components. It is the integration of

the hardware into a full system, the extension of the control system and the software to

integrate it all that is novel. The prototype system consists of a Haption Virtuose™ 6D35-45

haptic device, mounted on a stand which is placed on an omni-directional Mecanum-style

mobile robot drive base.

5.2. Background

Body-based haptic devices are inherently mobile since they are grounded to the user;

however, these devices can only provide relative forces, such as grasp forces. Ground-based

haptic devices are, as the name implied, Ąxed to the ground so these devices are able to

display absolute forces, such as weight. Our desire is to provide the ability to feel absolute
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forces and torques in a large area virtual reality facility so our research in focused on the

use of ground-based devices only.

There are several existing approaches to extending haptic force feedback to a large

working area. One approach involves simply building the haptic device as large as the

physical virtual facility work area. Tensed-cable devices are based on a system of cables

and motorized pulleys, starting with the pioneering SPIDAR [9], and proceeding on to

its family of successors [15] and commercial adaptations of the design [7]. The cables are

fastened to a Ąxed structure and are controlled with motorized pulleys. Within the virtual

reality facility, one or more handles are attached to the cables. There is typically one more

cable per handle than degrees of freedom in feedback. As the user moves the handle, the

pulley motors actuate the cables to provide force and torque feedback and also to encode

the position of the handle. One of the strengths of this design is that the size of the frame

determines the extent of the force and torque feedback area, and the frame can be built

to encompass very large spaces. However, these systems can be complex to control, and

the same cables that ofer such freedom of workspace size also present singularities which

limit the orientations that are reachable and provide feedback [6].

Other approaches consist of the addition of redundant axes to ground based haptic

devices to expand the workspace and overcome workspace singularities. Gosselin et al.

suspended the Haption Virtuose 6D35-40 six degree-of-freedom haptic (6-DOF) from an

overhead beam structure mounted to the Ćoor. A DC motor and a back-drivable cable

capstan reducer powered translation of the haptic device along the beam [5]. This extra

degree of freedom expanded the haptic workspace in one direction along the length of

the overhead beam. Borro et al. [3] took a similar, but diferent, approach. The LHIfAM

consists of a custom designed haptic device attached to a vertically oriented gantry structure.

The structure allows linear translation in the horizontal direction along a cross beam that

extends between two Ąxed vertical end supports, and vertical translation as the cross beam

slides up and down along the Ąxed vertical end supports. Both the Gosselin device and

the LHIfAM are well suited to the application situation where a single projection screen

displays virtual components for assembly and maintenance evaluation; however, this

solution only extends the haptic workspace in one direction or the 2D vertical plane, which

is not suicient for reaching into a more general large scale virtual reality facility such as

a CAVE™. Further development of GosselinŠs research led to a commercialized device

ofered by Haption called Scale 1. This consists of a Ćoor mounted structure that contains

three orthogonal motorized booms which move the Virtuose 6D35-40 in 3D space [8]. The

support structure is positioned outside of a multi-wall immersive environment with one

of the supporting motorized beams extending into the space. Ueberle et al. developed a
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specialized device called the VISHARD10 to eliminate workspace singularities present in

standard non-redundant 6DOF haptic devices [18]. VISHARD10 is a admittance controlled

robotic arm with 10 degrees of freedom and a cylindrical workspace measuring 1.7 m in

diameter and 0.6 m in height. It has the ability to produce large forces within the workspace;

however, the cylindrical workspace in this conĄguration is height limiting and not able to

support the standard reach height of a human. Like all the devices presented so far, its

ground-based design requires permanent, or at least semi-permanent, installation and the

device itself still limits the bounds of the haptic workspace.

One way of adding redundant axes to an existing haptic device to provide a theoretically

limitless range of motion is through integrating the haptic device with a mobile robot, to

produce what Nitzsche et al. call a Şmobile haptic interface,Ť or MHI [10]. The particular

MHI discussed in Nitzsche et al. couples an omni-directional mobile base with a Sens-

able Phantom Premium 1.0 device. Later the mobile base was used with the VISHARD7

[14], the mobile-targeted successor of the VISHARD10. Barbagli et al. explored mounting

Sensable Phantom Premium 1.5 devices on two diferent mobile robot bases [2]. They

investigated the performance of those bases and the functioning of the combined control

scheme through the use of a simulated user input to the haptic device. Despite the results

of the work of Nitzsche et al. and Barbagli et al., Gosselin et al. de-emphasized the cate-

gory of haptic devices with mobile bases in the general search for large-workspace haptic

interaction in a 2008 review of the Ąeld [6], citing problems with slip and the negative

visual impact of using such devices in a projection-screen environment. However, alternate

robot types and control schemes for mobile haptics interfaces have yet to be explored, thus

providing motivation for the current research presented in this paper.

5.3. Design and Implementation

Transparency when using a haptic device is highly desirable [10]. The user should

be free to move about in the space whether or not a virtual object is being manipulated.

Additionally, the user should feel appropriate collision forces throughout the space when

manipulating an object. An example of the desired experience using the virtual assembly

scenario follows. A user holds on to the end efector of the haptic device and walks within

the physical conĄnes of the virtual reality facility to the location of a virtual object of interest

displayed in the virtual reality system. The user reaches out and virtually ŞgrabsŤ the part

by selecting it using the end efector. The user can then move elsewhere in the space, such

as to a workbench, and ŞreleaseŤ or place the virtual object with the rest of the virtual
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objects on the bench. Throughout these interactions, the mobile base and haptic device

work together transparently.

To avoid confusion, the following nomenclature will be adopted for the remainder of

this work. ŞHaptic deviceŤ shall refer to a ground-based haptic interaction device, such

as a Haption Virtuose™ 6D35-45 or a Sensable Phantom Omni®. A coordinate system is

deĄned at some Ąxed location on the haptic device referred to as the Şbase.Ť ŞMobile robotŤ

shall refer to the powered omni-directional mobile robot.

On a technical level, the system works as follows. As the user manipulates the end

efector of the haptic device, the mobile robot moves the haptic device base to follow

movements of the user through the space. This expands the usable workspace of the

haptic device from the reachable volume of the haptic device to the entire position tracked

area in the virtual reality (VR) facility. The mobile robot carries a position tracking target.

The tracking system in the VR facility reports the position of the mobile robot relative

to the room. Composing the room-to-base and base-to-end-efector position transforms

results in the obtaining the overall position and orientation of the end efector in the room.

This combined system efectively functions as a haptic device with a physical workspace

encompassing a substantial portion of the volume in the virtual reality system, much larger

than the physical workspace of the haptic device on its own.

The haptic device communicates with the computer simulation to report its end efector

position and receive force commands, just as if it were on a Ąxed base. The optical tracking

system in the VR system provides the location of the base of the haptic device in the physical

space to the simulation. The mobile robotŠs velocity (translational on the plane of the Ćoor)

is driven proportionally to the error between the haptic deviceŠs end efector position and

a conĄgured neutral position relative to the base, both within the coordinate system of the

haptic device. This control system is based on the scheme described by Garlington [4].

5.3.1. Hardware

The systemŠs hardware consists of three separate conceptual parts: a haptic device, a

tracking target in the virtual reality system, and a mobile robot base. The experimental sys-

tem described here uses a Haption Virtuose™ 6D35-45 haptic device, ART optical tracking,

and an omni-directional mobile robot. The Virtuose provides substantial force capabilities

with six actuated degrees of freedom (force and torque feedback) and a workspace roughly

equivalent to a human arm pivoting at the shoulder. While this provides the desired expe-

rience and large workspace, the general system is not dependent on this speciĄc device.

For example, a Sensable Phantom Omni® device was mounted on the mobile robot early in

the development process so software and controls integration could proceed concurrent
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with the work to develop the physical mount for the Virtuose device. Phantom Omni

devices have three actuated (force feedback) and three passive (rotation sensing without

torque feedback) degrees of freedom and a workspace roughly comparable to a human

hand pivoting at the wrist. The conceptual integration and most of the software described

in this work can be applied to many haptic devices, subject to the physical limitations of

the Mecanum-style drive base used. The combination of the haptic device and the mobile

robot needs to be tracked by the virtual reality system, so the method used varies according

to the virtual reality system in which the mobile robot will operate. This experimental

system was used within the Multimodal Experience Testbed and Laboratory (ŞMETaLŤ)

immersive facility1 at Iowa State UniversityŠs Virtual Reality Applications Center. This

4 m × 3 m × 3 m CAVE™, with three projected surfaces (two walls and the Ćoor), uses

an ART TrackPack4 optical tracking system. The base of the Virtuose is tracked within

METaL by attaching a ŞClawŤ tracking target to it. This passive optical tracking target

consists of four 20 mm diameter retro-reĆective spheres rigidly arranged, which allows the

four camera TrackPack4 system to determine the baseŠs complete position and orientation

within the room. The Virtuose is rigidly bolted to a stand holding it at a comfortable

working height above the mobile robot. The entire setup in METaL can be seen in Fig. 5.1.

One of the tracking cameras is visible in this photo above the corner between the screens,

and the tracking target is partially visible just left of center, attached to the black base of the

Virtuose. Some early testing of the software was done using a Phantom Omni instead of

the Haption Virtuose and with another ART optical tracker as well as an InterSense IS900

hybrid ultrasonic-inertial tracking system.

The omni-directional mobile robot selected, pictured in Fig. 5.2, is based on the Ş4WD

Mecanum Wheel Robot Kit,Ť model 10011, from Nexus Robot.2 This robot has four 100 mm

diameter Mecanum wheels, which each have 9 rubber rollers at a 45° angle to the axle. By

controlling the wheel directions and velocities individually, the Mecanum-style drive can

move by translation in the plane in any direction, as well as rotation in the plane with or

without simultaneous translation. Each wheel is driven by a Faulhaber 2342L012CR coreless,

brushed DC motor, running on nominally 12 VDC, with a no-load speed of 8100 RPM and

a recommended top speed of 7000 RPM. Each motor is mated to a Nexus-built 12 CPM

optical quadrature encoder, as well as to a 64:1 planetary gearhead which drives the wheel.

Driving the wheels at the recommended top speed results in an overall theoretical rate of

the robot of 0.57 m/s.

1 http://www.vrac.iastate.edu/METaL/
2 http://nexusrobot.com/product.php?id_product=67

http://www.vrac.iastate.edu/METaL/
http://nexusrobot.com/product.php?id_product=67
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Figure 5.1: Haption Virtuose on Mobile Robot in METaL Virtual Reality System

Figure 5.2: Omni-directional Mobile Robot with Mecanum-style Drive

The robot kit also includes a custom Arduino™-compatible Atmel AVR ATmega328p-

based microcontroller unit (MCU) development board and input/output expansion board.

The Nexus development boards stray from the design of the Arduino Duemilanove board

primarily by their integration of four L298-based motor driver channels. Each motor driver

channel takes as input one pulse-width modulation (PWM) pin on the MCU, as well as

an additional digital output pin to indicate direction/sign, and outputs [−12, 12] VDC to

the connected motor. Each motorŠs encoder provides an A and B phase output, which are

connected to digital input pins on the MCU so that the embedded software may monitor

the behavior of the motors. The hardware serial interface (UART) provided by the MCU

is both directly accessible via TTL-level pin-outs as well as usable through an integrated

USB-serial converter chip. Either UART access allows for communication between the

MCU and a computer, and the USB interface also allows in-circuit programming using an

Arduino-compatible bootloader and the avrdude programming software.
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Figure 5.3: Embedded Sotware Layer Diagram

5.3.2. Software

Three separate software applications are involved in this integrated solution. Embedded

software running on the mobile robot provides velocity control of the robotŠs four wheels, as

well as a translation and rotation interface to a connected computer along with performance

data. On a computer connected over a serial channel to the robot (either via USB or over

Bluetooth RFCOMM), a Şrobot serverŤ runs and adapts the serial communications with

the robot into a network-transparent collection of VRPN analog and analog output servers.

Finally, the SPARTA virtual assembly software, extended with adaptations to handle a

device with a moving base and to output error measurements to the VRPN robot server,

permits the use of the overall system as efectively one very-large-workspace haptic device

capable of taking advantage of the full range of virtual assembly and interaction features.

The following sections describe and build on software layer diagrams shown in Fig-

ures 5.3 and 5.4. These diagrams share a common notation for distinguishing novel compo-

nents from incremental improvements to existing software and stock software components

used as-is. In both these Ągures, nodes represent software components or libraries, and

edges show their dependencies in lower layers. Nodes with a solid border (colored blue)

represent new software developed in this work, as an advancement of the state of the art.

Nodes with a dashed border (colored green) are third-party libraries that were modiĄed,

typically to enable use in embedded processors, in this work and also represent advance-

ments. Nodes with a dotted border (colored yellow) are stock third-party libraries used

relatively as-is, and are shown to describe the base upon which this work builds.



78

Mobile Robot Software

A custom embedded software stack was developed for the Arduino-compatible MCU

in the mobile robot. Initially, the Arduino integrated development environment (IDE)

was used for development and testing, later being mostly supplanted by the arduino-mk

MakeĄle system. The software was written in C++ using a toolchain consisting of avr-gcc

4.7, avr-libc 1.8.0, and binutils-avr 2.20.1. In the interest of developing a modular,

maintainable codebase [11], the MCU software consists of a small main application calling

into a number of libraries. Figure 5.3 is a layer diagram showing the libraries used and their

dependencies, with the appearance of each node in the diagram holding the signiĄcance

discussed earlier. In particular, in this diagram, the top node, with the thick border,

represents the main loop of the embedded software.

A discussion of these components in more detail is warranted to describe the role they

play and the contributions involved. A subset of the Arduino 1.0.2 core library, modiĄed

for GCC 4.7 compatibility, was used for some basic functionality. Registration and dispatch

of pin-change interrupt handlers, used to monitor the encoders, was performed using the

PinChangeInt 1.73 Arduino library developed by Lex Talionis and Michael Schwager. Three

open-source third-party libraries were modiĄed to support use on AVR microcontrollers

during the course of this work. The STLport C++ standard library implementation was

ported to AVR, and the modiĄed version is publicly available4 with instructions for use in the

Arduino environment. Some AVR-speciĄc porting and Arduino convenience modiĄcations

were also made to the header-only portions of the Boost C++ libraries version 1.51.0,

released5, and used in the embedded software. Additionally, the Eigen C++ template

library for vector and matrix math was modiĄed to avoid name collisions with avr-libc

and remove assumptions about type sizes that do not hold when compiling for a 16-

bit address space, and made available along with corresponding Arduino convenience

headers6. These libraries form the base upon which the higher-level functionality for robot

control was built.

In the interest of modularity, software written from scratch for use in this project was

also divided up into logical libraries. The Ştuple-transmissionŤ library uses typelists and

C++ template metaprogramming techniques to generate eicient code for serializing and

de-serializing Ąnite, known collections of messages. Template metaprogramming allows

substantial portions of the code to be specialized and optimized automatically at compile

3 http://arduino-pinchangeint.googlecode.com
4 https://github.com/vancegroup/stlport-avr
5 https://github.com/vancegroup/arduino-boost
6 https://github.com/vancegroup/EigenArduino

http://arduino-pinchangeint.googlecode.com
https://github.com/vancegroup/stlport-avr
https://github.com/vancegroup/arduino-boost
https://github.com/vancegroup/EigenArduino
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time, rather than invoked with branches incurring performance costs at run-time. The

tuple-transmission library, by design, is used on both the MCU and the computer to

permit two-way communication. The full protocol used is deĄned in a single header Ąle,

designed for use in identical form on both ends of communication, allowing more eicient

code and minimal overhead by not requiring message contents to be self-describing. The

tuple-transmission library has been open sourced under the Boost Software License and

published online7, and the protocol header used is also publicly available8.

Some additional libraries were written to encapsulate the details of elements of the

system. A custom C++ microcontroller support library provides, among other features, a

virtual Şsigned analog outputŤ port for motor control, where a signed output value is turned

into a PWM duty cycle and a direction bit on a pair of physical output pins. A template-

based, layered proportional-integral-derivative (PID) controller library is used for velocity

PI control of each individual wheel. A library for reporting rates based on quadrature

encoder input, built using policy-based design principles [1], handles pin-change interrupts

for all four quadrature encoders and computes instantaneous motor rotational velocity. This

library successfully handles the 7000 RPM × 12 CPR × 4 transitions per click × 4 wheels �

1344000 interrupts per minute, or 22400 interrupts per second, generated during maximum

recommended velocity robot motion. Finally, a library encapsulating velocity-controlled

individual wheel drive and, from that, four-wheel Mecanum drive, provides the highest

level interface to mobile robot motion to the embedded software. This permits not only the

Şproduction Ąrmware,Ť but also a number of veriĄcation and testing applications, to be

built with concise, expressive high-level code.

Robot Server Software

The robot server is the simulation computerŠs counterpart to the embedded software.

It communicates using the same tuple-transmission library and protocol headers as the

embedded software, and serves to interface the established serial protocol of the robot

with network-transparent VRPN (Virtual Reality Peripheral Network) [17] server devices.

Figure 5.4 shows the layers of software libraries involved in the robot server, using the

same conventions as Fig. 5.3 to indicate component origin. Two library components appear

here that did not appear earlier. The Ąrst, TCLAP, is an open-source command line option

parsing/handling library9. Internally, the server application is actually a front-end to an

internal Şvrpn-error-serverŤ library providing a common subset of robot server features.

7 https://github.com/vancegroup/tuple-transmission
8 https://github.com/vancegroup/NexusRobotProtocol
9 http://tclap.sourceforge.net/

https://github.com/vancegroup/tuple-transmission
https://github.com/vancegroup/NexusRobotProtocol
http://tclap.sourceforge.net/
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Figure 5.4: Robot Server Sotware Layer Digram

The front-end application used with the haptic device system provides control of the robot

by a vrpn_Analog_Output server set up to receive two-dimensional, Ćoating-point error

vectors, scale them by a command-line-conĄgurable proportional gain, then send them to

the mobile robot as signed integer velocity commands. As with the embedded software,

the creation of a library layer with a thin application layer over it permits additional

applications for testing and veriĄcation to be easily built. The entire package, which has

been built and tested on both Linux and Windows, is available as open-source software10.

SPARTA Simulation Software

The Ąnal piece of the integration puzzle is the actual virtual assembly simulation

software. In this work, SPARTA, the Scriptable Platform for Advanced Research and Teaching

in Assembly [12], was extended with two modules to enable the use of the haptic device

on the mobile robot. SPARTA, as the successor to the SHARP family of applications [16],

provides a virtual environment for physically-based, haptic interaction with computer-

aided design (CAD) models. Its physics simulation and range of haptic device drivers

are written in object-oriented C++, while the graphics, audio feedback, and high-level

interactions are written in Lua, taking advantage of the VR JuggLua framework [13] based

on OpenSceneGraph and VR Juggler. Haptic device conĄguration, as well as virtual

assembly scenario creation, is done with a domain-speciĄc language built within Lua.

A particularly relevant aspect of SPARTAŠs design is the generic interaction device inter-

face deĄned and used by the simulation. As a Ąrst step, this permits diferent types of input

devices to present a uniform API, including haptic devices from diferent vendors, devices

without haptic feedback, and so on. Adding a device driver to SPARTA by implementing

this interface for a given device makes it immediately usable with all applicable function-

10 https://github.com/vancegroup/vrpn-error-server

https://github.com/vancegroup/vrpn-error-server
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ality of the software: the design of the simulation is very loosely coupled to particular

interaction devices. Furthermore, the generic device interface can also be implemented

by ŞvirtualŤ or ŞĄlterŤ devices: software objects that behave like input devices, but do

not correspond directly to physical hardware, instead wrapping another input device

and observing or modifying the data Ćow. It follows that supporting interaction with a

haptic device on a mobile robot in SPARTA can be reduced to including a driver for the

haptic device and producing one or more Ąlter devices to interact with the mobile robot

and account for its efects on the data reported by the haptic device. SPARTA already

included support for the Haption Virtuose, as well as the Phantom Omni used for early

testing, before this research began. The remaining additions to SPARTA are neatly split

into two Ąlter devices. The Ąrst, called TrackedTransform, is not strictly limited to use

with a powered mobile robot base. Its function is to appropriately transform data both

going to and coming from the simulation, based on the position of a tracker target assumed

to be Ąxed to the base of its contained device.

The remaining task is to control the movement of the mobile robot based on data

from the haptic device. In this research, based on the control scheme investigated by

Garlington [4], the error (vector) between the position of the haptic deviceŠs end efector

and a predeĄned neutral position (roughly centered in the physical workspace of the haptic

device) drives the robot. The control seeks to minimize that error and move the base so

the end efector is neutrally located at all times. The SPARTA Ąlter device for driving the

robot is conĄgured by providing the contained device and its corresponding neutral end

efector position, as well as the device name of a vrpn_Analog_Output device that should

receive the error vector. VRPNMobileBase does not modify any of the data Ćows, but on

each position update it computes an updated error, connects to the robot server (which

may be running on the same computer), which applies a gain to the error and passes it on

to the mobile robot embedded software as a goal velocity.

5.4. Results

The full system as described successfully provides haptic interaction within a large

workspace by having a mobile robot drive a ground-based haptic device around within the

tracked area. Figure 5.5 shows the system in use, with the same hardware as pictured in

Fig. 5.1. Before this image was captured, the user grasped the white pin (currently seen on

the right side of the image) with the purple cursor (representing the end efector location

in the simulation) and removed it from the rest of the assembly (green object and blue

object). In the photographed moment, the user is now physically walking across the space
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while grasping the pin in order to set it down on the other side of the room, and the mobile

robot is moving the base of the haptic device to keep up and allow this single movement to

span a wider area than could be reached with the haptic device alone. Haptic feedback of

colliding and sliding parts was felt during the removal of the pin, and now the simulated

mass of the pin is all that is felt during movement of the haptic device.

The modularity and loose coupling described in the preceding sections produced

a highly robust system: any one or more of the SPARTA simulation, robot server, VR

system tracker, or mobile robot motor power can be shut down and started up again

without bringing down any other part of the system. The ability to restart the robot server

application was particularly useful during tuning of the proportional gain used to compute

velocity from end efector positional error, since the gain was speciĄed as a command-line

argument to the robot server. Stopping it and starting it again with a diferent value while

leaving the rest of the system operational and ready to use supported a very short test cycle

time.

Following implementation of all components, the gain was found interactively by

increasing the gain incrementally until the experience of moving a grasped object in space

began to produce undesired haptic artifacts. A very high gain was able to be used, resulting

in the mobile robot quickly ŞfollowingŤ the movement of the end efector and keeping up

with movement throughout the space. Free space movement in the entire area is possible

and the user feeling is subjectively light and transparent. With the Haption Virtuose 6D35-

45 device, capable of 35 N peak force and 10 N continuous, mounted on the mobile robot,

simulated collision forces are stif and crisp, and subjectively comparable to the experience

of using the device on a Ąxed base. As intended, the full tracked area in the virtual reality

system was made usable for haptic interaction with this work, allowing direct interaction

with a larger, fuller simulation than with the ground-based haptic device alone.

5.5. Conclusions and Future Work

The full system is operational and suitable for further use, analysis, and development.

Because the design of the SPARTA software allowed the necessary parts of the solution to

be interposed essentially invisibly between the haptic device hardware and the simulation,

the Şhaptic-device-on-powered-mobile-robot-baseŤ can be used with all the scenarios and

interactions built on SPARTA already; Fig. 5.5 is in fact one such example.

There are many opportunities for future work. One area of improvement involves

implementing a method to allow the user to operate in a virtual world that is larger than

the physical workspace of the optical tracking system. We are currently exploring various
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Figure 5.5: System in use simulating disassembly in METaL virtual reality system with Haption Virtuose

methods of navigating within a large virtual environment in which the user has haptic

capabilities. Navigation in this sense refers to interacting with environments larger than

the physically tracked area in a given VR system by moving the physical room around in

the virtual space. Combining navigation and this system would allow, for example, factory

or large assembly line walk-throughs, while still retaining the ability to interact haptically

in the full physical workspace due to the mobile base.

Another area of future work involves exploring how to limit the mobile robot to avoid

collisions in the physical space. In a virtual reality system of any sort, there are always

physical limits, whether they are projection-screen walls or walls of an area with wide-

area tracking and head-mounted displays. Physical object avoidance by the mobile robot

needs to be implemented. Possibilities include use of on-board sensors on the mobile

robot to detect limits and modify the velocity commands received accordingly, as well

as computer-side approaches using the tracked position of the base to modify velocity

commands before they are sent. There are presently no speciĄc safeties, other than operator

interaction, integrated into this system to prevent the mobile robot from contacting the

projection screens or the walls in the space.

There also exist conditions in the projection-screen environment where the haptic

device occludes the userŠs view of the virtual environments. This is only an issue in

projection-screen based systems, as full head mounted display systems do not project the

real environment onto the userŠs view. One approach would be to place the robot behind

the user but this would create other issues, such as needing a larger Ćoor area than the

projected Ćoor area. We will continue to explore the possibility of this conĄguration.
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Cable management for the haptic device could also be improved. Presently no explicit

cable management beyond bundling/looming and the inherent stifness of the cables is

being performed; however, the stifness of the cable efectively kept it away from the mobile

robot wheels. Future work will include exploring cable management techniques.

Additional work is needed on the control scheme to counteract reaction torques at the

interface between the Ćoor and the mobile robot. In the current setup, the system assumes

that the mobile robot begins and moves aligned with the axes established for the room.

This is generally true, however, as noticed particularly during extended testing, a powerful

or extended simulated collision with the haptic deviceŠs arm extended produces a torque

about the axis between the mobile robot and the haptic deviceŠs base. This can result in

some rotational slippage of the mobile base so that it is no longer aligned with the room

axes, which violates assumptions presently made at some layers of the system. Work on

a rotational control scheme to keep the robot aligned with the axes could improve the

experience. Applying rotational control to the mobile robot based on the rotation of the end

efector, the behavior of the user, or both, could improve usability by keeping the haptic

device base both appropriately located and conveniently oriented. This would also require

appropriately handling rotation of the base at all layers in the combined conĄguration,

revisiting assumptions.
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CHAPTER 6. MEMOIZATION AND REDUNDANCY IN MULTIPLE

GEOMETRIC REPRESENTATIONS FOR CONSTRAINT

RECOGNITION IN HAPTIC VIRTUAL ASSEMBLY

A paper in preparation for submission to ASME Journal of Computing and Information

Science in Engineering

Ryan A. Pavlik, Leslie L. Miller

Abstract

Haptic virtual assembly applications allow users to interact with CAD models in a

realistic way in a virtual environment, with haptic force feedback to complement the visual

display. Haptic display requires performing collision detection and response at a very high

rate, so methods that use tessellations of original exact CAD geometry predominate. We

discuss a hybrid method combining tessellated geometry collision detection and response

with precise geometry. Several steps of look-ups and computations are required to obtain

actionable geometric constraint information automatically given the results of a tessellated

geometry algorithm, traversing multiple redundant geometric representations. After

discussing the algorithms, we present the Şhash-consingŤ data structures and memoization

that, in concert with facts about the input arising from multiple geometric representations

and interactive collision detection, provide a much more eicient solution than an initial

analysis would suggest. Implementation details are discussed, and the C++ Şhash-consingŤ

class template is made available.

6.1. Introduction

Virtual assembly is a process that involves manipulation of a computerized represen-

tation of a part in a virtual environment that allows some form of partŰpart interaction.

Among other purposes, it can be used as a tool to develop manufacturing and assembly

Ryan A. Pavlik was the primary author and researcher.
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processes, train workers, and evaluate a part, assembly, or product design for ability to be

assembled, disassembled, or serviced. Haptic force-feedback in a virtual assembly simula-

tion provides another sensory output besides visual display, conveying more information

and making the simulation more similar to real life. It maintains the relationship between

the control (userŠs hand grasping a device) and the display when collision detection and

response are available, so the user can feel, not only see, when objects in the environment hit

each other and are prevented from moving. However, simulating assembly with collision

detection and response at haptic rates is diicult, particularly with low clearances between

parts to be assembled. Haptic force-feedback requires simulation at a much higher rate

(typically 1000 Hz) than purely graphical feedback (often 15 Hz to 120 Hz), and virtual

assembly can involve complicated models that must be simulated with detail rather than

as simpliĄed primitive shapes.

6.1.1. Scope and Contributions

This paper presents a new explicit high-level decomposition of a ŞhybridŤ collision

detection/response algorithm incorporating fast discretized representations as well as

precise b-reps into distinct components. Additionally, the theoretical complexity (time and

space) and data structures are discussed. Due to the origin of the data involved, we were

able to incorporate a number of optimizations, so performance difers greatly from the

theoretical worst case performance. These optimizations are presented both in general and

with reference to a C++ implementation.

6.2. Background

The context of this work assumes physically-based modeling of collisions between arbi-

trary three-dimensional models. These models are not necessarily convex, and correspond

to parts of mechanical assemblies designed with CAD software. Models provide the shape

information for the rigid bodies simulated in the physics engine. A penalty method of

collision response is chosen. Collision detection detects a small degree of interpenetra-

tion between bodies, which is resolved by a penalty force to each of the bodies involved

proportional to the depth of interpenetration and directed to eliminate it.

6.2.1. CAD modeling, tessellations, and approximations

Computer-aided design (CAD) software used to develop these parts represents them in

mathematically-precise ways. Constructive solid geometry (Figure 6.1, left) is one such

method of modeling. It involves combining basic solid forms (rectangular prisms, cylinders,
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Figure 6.1: A computer-modeled object and its original precise definition (constructive solid geometry,

let, or parametric boundary representation, right) [12]

etc.) by Boolean operations such as diference, intersection, and union. The method of

CAD modeling considered in the context of the present work is solid or surface modeling

with parametric boundary representations, or b-reps (Figure 6.1, right). Parametric b-reps

are the mathematical representation of the bounding faces and edges deĄning an object.

B-reps can vary in complexity, but many consist of commonly-understood elements such as

spherical faces, planar faces, cylindrical faces, linear edges, and circular edges, of particular

dimensions and bounds. On the simple models shown in Figure 6.2, some of these b-reps

are pointed out. These common elements disclose how parts can interact with each other.

For instance, a straight pin in a through-hole can rotate freely and move along its axis,

which is a cylindrical constraint. Several similar geometric constraints arise in this way

from the deĄnition of part geometry.

Though CAD software maintains the deĄnition of a part using precise b-reps, the

model is often converted to other formats for use. For instance, display of 3D models is

often optimized for meshes of triangles (tri-mesh or tessellated data). CAD programs

may even internally tessellate a part for interactive preview during the modeling process,

while maintaining the precise model as ground truth for modiĄcation. Interactive physics

simulation with b-reps is also diicult because of poor performance. Thus, for interactive

physical simulation, one of the model formats (often the tessellated model) is converted into

a representation usable by a high-performance physics engine. In the broader research that

comprises this work, a common physical model format uses voxels. Voxels are small cube-
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Figure 6.2: B-reps that can easily be inspected to gain insights during collision detection [5]

Figure 6.3: Multiple representations of a single object: let to right, in collision engine (voxels), original

precise b-rep, and tessellated for graphics or physics [5]

shaped Şvolume elementsŤ (analogous to 2D pixelsŮŞpicture elementsŤ) that represent the

discretized volume of the model. In Figure 6.3, a b-rep model is shown with its boundaries

in wire-frame. To the right is the same part tessellated into a tri-mesh. To the left is

the voxelized version used in physics simulation. The holes are only truly circular in

the precise b-rep: the tessellation turns circles into n-gons, and the voxels approximate

the curve with cubes. This is one example of how the other model representations are

approximations. These approximations may result in physical simulation arriving at results

and behaviors that are not speciĄed by the b-rep, particularly during Ąne manipulation

tasks [14]. For instance, with small enough clearances between a circular pin and hole,

neither approximation will permit free rotation, and will sometimes prohibit insertion due

to collisions detected in the tessellated model that do not exist in the precise b-rep.

6.2.2. Virtual assembly

The speciĄc tessellated geometry collision detection algorithm used in the implemen-

tation of this work is VPS (Voxmap PointShell) [8, 9], a software package licensed from

Boeing and subsequently modiĄed to support this approach. VPS represents bodies as
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Cylindrical face on pin

Cylindrical face on hole

Circular edge on hole

Collision between cylindrical face and circular edge

Figure 6.4: Collision between two objects and the associated b-rep information

a voxel map and a pointshell derived from center points of surface voxels. At the basic

level, points in the pointshell of one body are transformed and tested against the voxel map

of a possible colliding body to determine depth of penetration and associated response

force. As implemented, the basic VPS algorithm is augmented with additional features

such as distance maps, pre-collision braking forces, geometric awareness, and temporal

consistency to ensure the preservation of a physically-based modeling environment with-

out interpenetration or object tunneling, while maintaining a 1000 Hz operation rate to

support haptic interaction.

The hybrid collision detection/response algorithm discussed in this work was initially

presented in Faas [4]. It fuses information from the b-rep model with the results from the

tessellated geometry to permit low-clearance virtual assembly. Based on the collisions

detected between discrete collision units (for instance, voxels), it looks up the original b-reps,

and automatically recognizes constraints to modify the force generation. For example, in

Figure 6.4, several faces and edges are labeled. Collision between voxels on the left edge of

the pin and the left edge of the hole would recall sets of b-reps that would include cylinders

and circles, and a cylindrical constraint could thus be inferred.

Other approaches to low-clearance assembly include Tching et al. [13]. It provides for

haptic Şguide planesŤ corresponding to speciĄc assembly situations, such as peg-in-hole.

Upon collision of the corresponding part with the appropriate guide planes, a constraint is
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incrementally enabled and the tessellated geometry algorithm is locally disabled. However,

models must be manually (interactively) augmented with these guide planes: it is not a

fully automatic process.

Seth [10, 11] presents a method of performing virtual assembly entirely using precise

b-reps. The proprietary D-Cubed geometry kernel was used to perform collision detection

queries and compute collision responses. In early revisions, users manually speciĄed

constraints between colliding bodies through voice commands in the virtual environment.

Further work automatically recognized constraints between colliding b-reps and enforced

the corresponding constraint until the involved bodies were released by the user. However,

this system could not sustain an update rate suicient for haptic force-feedback.

6.3. Structure of the Hybrid Method

The method presented here builds upon the work of Faas et al. [4, 5]. We begin by Ąrst

describing the whole hybrid method from an algorithmic point of view.

The overall hybrid method is split into two parts. The Ąrst part, shown in Algorithm 1,

is oline, unsupervised preprocessing of the CAD model. It is automatic and executes

when a model is initially loaded in order to set up data structures for the second part. The

second part, shown in Algorithm 2, is the Şrun-timeŤ algorithm. It executes within the

tight loop of the physics engine, under intense performance constraints. When choosing

among performance trade-ofs, it is acceptable to allow slower tasks to occur down the

oline part in order to obtain better performance for the run-time part. The algorithms

as written here refer to voxels, but can be generalized to other discrete collision units in

other physics engines, as long as it is possible to associate a number with each such unit

and receive those numbers along with the collision detection results.

Input: A model with both b-rep and tessellated (triangular mesh, or tri-mesh)
representations available

1 begin
2 breps← getBoundaryRepresentations(model)

3 trimesh← getTrimesh(model)

4 voxels← voxelizeTrimesh(trimesh)

5 foreach voxel ∈ voxels such that voxel is a surface voxel do
6 subsetbreps← computeBoundaryRepresentationSetForVoxel(breps, voxel)
7 storeBrepsForVoxel(subsetbreps, voxel)

8 end

9 end
Algorithm 1: Model loading procedure for a single model
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First consider Algorithm 1. It starts with simple data access. Line 4 contains a call,

voxelizeTrimesh, to the tessellated geometry physics engine to generate its model repre-

sentation and return its elements. In line 5 a loop over each surface voxel in the body begins.

The purpose of this loop is to establish the association between voxels and b-reps, or more

speciĄcally, between each (surface) voxel and a subset of the set of b-reps in that body.

There are two distinct parts inside the loop. The software computes the subset of b-reps

for a voxel (computeBoundaryRepresentationSetForVoxel in line 6), which is considered

to be very time-consuming. These expensive results are then stored (storeBrepsForVoxel

in line 7) in a way that enables high-speed look-up during run-time. There are a number

of possible implementations of computeBoundaryRepresentationSetForVoxel, such as

presented in [5], and implementation of this method is out of scope of this paper. The

storage of the b-rep subsets, however, is discussed further in this work, and is the Ąrst

place where redundancy inherent in geometric data can be applied to provide optimized

performance.

1 foreach pair of bodies (body1, body2) do
2 collidingVoxelPairs← getCollidingVoxelPairs(body1, body2)

3 foreach pair of colliding voxels (voxel1 ∈ body1, voxel2 ∈ body2) ∈ collidingVoxelPairs

do
4 Compute penalty force based on interpenetration.
5 subsetbreps1 ← lookupBrepsForVoxel(voxel1)

6 subsetbreps2 ← lookupBrepsForVoxel(voxel2)

7 getConstraintFromBrepSets (subsetbreps1, subsetbreps2)
8 Interpret the constraint returned, if any, to modify penalty force.
9 Compute corresponding torques from this voxel pair.

10 Accumulate forces and torques.

11 end

12 end
Algorithm 2: Run-time procedure executed every collision detection frame, which take
place at a rate of 1000 Hz

While the Ąrst algorithm focused on a single model and thus a single simulated body at

a time, Algorithm 2 considers pairs at a time (line 1). For an arbitrary n-body simulation,

where any body may interact with any other body, this is the required general format. In

fact, much of the body of this loop directly corresponds to the underlying penalty-based

tessellated geometry collision detection and response simulation. Line 2 is a call to that

algorithmŠs collision detection routine. Line 3 begins a loop iterating through the results

of collision detection, computing the penalty forces and associated torques for collision

response. Lines 5 to 8 are the portions unique to this hybrid collision simulation algorithm.
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The calls to lookupBrepsForVoxel in lines 5, and 6 are the counterparts to the call to

storeBrepsForVoxel in Algorithm 1, line 7. They perform the Ąrst step of bringing in

more precise information to the simulation, by using voxels to determine colliding b-reps.

The two subsets returned are subsets of the b-reps of their respective bodies. Line 7 calls

the function getConstraintFromBrepSets, shown in Algorithm 3 and discussed in more

detail below. Following this call, the b-reps retrieved have been mapped to an actionable

geometric constraint when possible. The getConstraintFromBrepSets call may return a

null geometric constraint, in which case the response of the overall algorithm for that voxel

is the tessellated geometry algorithmŠs response unaltered. The subsequent step at line 8 is

phrased generally because there are a number of possible algorithms to incorporate the

geometric constraint data into the initially-computed collision response.

Input: b-rep subsets subsetbreps1, subsetbreps2

Output: A constraint, possibly null.
1 begin
2 foreach pair of b-reps (brep1, brep2) ∈ subsetbreps1 × subsetbreps2 do
3 Detect constraint, if any, between brep1 and brep2

4 end
5 Reduce set of detected constraints to a single constraint.
6 return result of reduction

7 end
Algorithm 3: getConstraintFromBrepSets

The function getConstraintFromBrepSets (Algorithm 3) performs constraint recogni-

tion between sets of b-reps using a method that performs constraint recognition between

individual b-reps. Line 2 begins iteration over the Cartesian product of the two input sets,

to determine if any pair of b-reps involved between these two voxels results in a constraint.

Line 3 involves a call to an automatic constraint recognition engine. Implementation of

such an engine is out of scope for this paper, though it will be considered to be a process

of non-negligible but constant time complexity. One such implementation is presented in

Chapter 7. The loop implements a map operation, which is followed by a reduction to at

most a single geometric constraint (line 5).

6.3.1. Considering the task in terms of sets and functions

More formally, let Ri be the set of all boundary representation entities (Algorithm 1,

line 2) in some body Bi , and let Vi be the set of voxels (Algorithm 1, line 4) in the same
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body. Then, we deĄne the family of functions

ri : Vi → P(Ri) (6.1)

that map each voxel in a body to the subset of b-reps that correspond to it in the original

model. The function for a particular body is initially computed by Algorithm 1, line 6. The

range of this function for a given body is the power set of the bodyŠs b-reps, so potentially

2|Ri | distinct subsets of b-reps might be associated with voxels of the body.

At run-time during the simulation, consider a collision detected between bodies Bi and

B j (Algorithm 2, line 1). The collision detection engine returns a set of pairs of voxels,

H � {(vi , v j) | vi ∈ Vi , v j ∈ Vj , vi and v j are colliding} (6.2)

which can be called the collision pairs (Algorithm 2, line 2).

We can formalize the interface of an automatic geometric constraint recognition engine,

as applied in line 3. It deĄnes C as the set of recognizable constraints, including the

null/unrecognized constraint ∅. On execution it applies the function

g : {(x , y) | x ∈ Ri , y ∈ R j } → C (6.3)

determining if the interaction of two boundary representation entities from distinct bodies

results in a geometric constraint.

Each element (vi , v j) of a collision set is a pair of voxels that are interacting. Each such el-

ement implies a potential interaction between a b-rep subset ri (vi) and a b-rep subset r j (v j).

The constraint recognition engine directly considers only pairwise interactions between

individual b-reps, thus it must be invoked on all elements of RP � {(x , y) : x ∈ ri (vi), y ∈

r j (v j)}. This set RP is the Cartesian product seen in getConstraintFromBrepSets (Algo-

rithm 3, line 2). Constraint recognition is applied as a ŞmapŤ operation on these b-rep pairs.

The Ąrst part of a trivial corresponding ŞreduceŤ operation can be described by deĄning

the set of non-null detected constraints

DC � {c | c ∈ g(RP), c , ∅} (6.4)

The trivial ŞreduceŤ operation currently applied returns a single constraint if and only if

only one non-null constraint was recognized. Thus, forming a layer over the constraint
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Right-side Circular Edge

Right-side Planar Face

Figure 6.5: A cylinder and its b-reps, uniquely labeled

detection engine is the function comprising both map and reduce steps,

h(ri (vi), r j (v j)) �





c ∈ DC |DC| � 1

∅ otherwise
(6.5)

We compute the run-time of getConstraintFromBrepSets, full constraint detection be-

tween sets of b-reps as follows. For simplicity, we will assume that the size of both

|Ri | ,
���R j

��� ∼ O(n) for some n. Similarly, the b-rep subsets corresponding to a single pair of

colliding voxels |ri (vi) | ,
���r j (v j)

��� ∼ O(n). The constraint recognition engine is thus run on a

set of size |RP| ∼ O(n2) (the Cartesian product in Algorithm 3).

6.4. Optimizations

The computational (time and memory) complexity of this problem appears to be high

in theory, but facts about the context provide useful opportunities for optimization. For

instance, the family of b-rep subsets deĄned by the range of ri for a given body is likely to be

much smaller than the theoretical 2|Ri | because discretization resolution (voxel resolution in

this case) is chosen to be high enough to capture the details of a model for rough collision

detection. Typically, voxel size must be set to smaller than the smallest feature of a body

involved in collision. If more than a small fraction of the b-reps of a body were encompassed

by a given voxel, substantial detail would be lost in the discretization process and the voxel

size would be considered too large for the model. Thus, each voxel maps to at most a

few b-reps under ri . For illustration, consider a cylindrical pin and its b-reps, as shown in

Figure 6.5. A voxel on the edge of such a cylindrical pin, as shown in Figure 6.6 contains two

faces and an edge. A voxel located at the corner of a cube is likely to be the worst common

case, since it may refer to six b-reps: three edges and three faces. Furthermore, as also seen
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Voxels with b-rep set
{Cylindrical face, Right-side circular edge,

Right-side planar face}

Voxels with b-rep set
{Right-side planar face}

Voxels with b-rep set
{Cylindrical face}

Figure 6.6: Some sample voxels from Figure 6.5 and their sets of associated b-reps

in Figure 6.6, many voxels will map to the same set of b-reps- all voxels along a given edge,

all voxels on a face away from an edge, etc. Together this implies that the number of unique

b-rep subsets in a body at a reasonable voxelization resolution is small: smaller than the

number of voxels and much smaller than 2|Ri |. In the diagram, 20 voxels are shown, yet

they share just 3 unique b-rep subsets. Though the voxels shown are just a fraction of all

the surface voxels in the model, the full model would contain only 5 unique b-rep subsets.

These 5 sets would comprise the 3 shown, plus the set containing the left-side face, and the

left-side equivalent of the set (of size 3) associated with the edge voxels pictured.

This small number of unique b-rep subsets per body suggests that constraint recognition

between any two given b-rep subsets may be a repeated computation. This is reinforced

by temporal and spatial consistency. Voxels colliding this frame are likely to be colliding

(or near to those colliding) next frame. Voxels colliding in a single frame are likely to be

located near each other. (Remember, voxels near each other are likely to have the same

b-rep subset.)

6.4.1. Data types

Space for a small integer in the voxel representation is all that is needed to store the

index to the b-rep subset within each voxel representation. Taking advantage of the low

number of unique sets in the range of ri , a container named CountedUniqueValues was

designed to store b-rep subsets for each body. The principle is to collapse the storage

space needed by storing each unique value only once, and to assign a constant integer

ID to each stored value allowing rapid recall later. This is an application of the Şhash-
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1
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1

CountedUniqueValues<BrepSet>

Index

Figure 6.7: The CountedUniqueValues data structure with values from Figure 6.5
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consingŤ technique [3, 6], most widely discussed in Lisp literature, which involves keeping

only one copy of each unique value in an environment. While the subsets might not be

very expensive to construct or particularly space-intensive, they may be too large to Ąt

within space provided for expansion in the voxels themselves. Furthermore, merging

identical values means that comparisons can be based on identity, rather than equality. The

integer identity of each subset is fast to compare and easy to use as a part of a dictionary

key, which will be important later. Note that for this application, storing a value is not

performance-critical, since this only happens at startup, but retrieving a value must be very

fast, since this happens in the inner loop. The design of CountedUniqueValues combines a

dynamically-sized array of values and a dictionary mapping values to integers, as shown

in Figure 6.7. A store operation (Algorithm 4) checks the dictionary Ąrst to see if the value

has already been stored, simply returning the existing ID if it has been. If the value has

not yet been stored, it is appended to the array and its index in the array is stored in the

dictionary and returned. In both cases, an ID is returned that can be used to recall the

value with just an array index (Algorithm 5). As the Ągure illustrates, this small integer

ID can be directly associated with voxels, with the index identifying the unique subset of

b-reps associated with a given voxel.

The run-time complexity of this compound data structure depends on the character-

istics of its contained dictionary and array. Here, the term array refers to an indexed

container with constant time retrieval and amortized constant time appends. This provides

CountedUniqueValues with constant-time retrieval, as well, which suits our need for high

performance in the simulation loop. By keeping track of the size of the array, all array

operations in the structure are constant time or amortized constant time. Stores are then

dominated by the selected dictionary typeŠs Ąnd, get, and insert complexity.

Data: A CountedUniqueValues structure (a dictionary and an array)
Input: A value x to store
Output: An integer ID to use as a retrieval key

1 if dict[x] exists then
2 i ← dict[x]
3 else
4 i ← size of arra y
5 append x to the array
6 dict[x]← i

7 end
8 return i

Algorithm 4: CountedUniqueValues::Store
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Data: A CountedUniqueValues structure (a dictionary and an array)
Input: An integer ID i (from the Store method)
Output: A value

1 return array[i]
Algorithm 5: CountedUniqueValues::Retrieve

6.4.2. Applying memoization

Applying the CountedUniqueValues data structure collapses multiple objects repre-

senting the same set of b-reps into just a single object, referred to by a number. In addition

to the storage beneĄts of using this structure, these numeric identiĄers can be used as

opaque, unique identities of the theoretical b-rep subsets suitable for equality comparison

as well as usage as part of a dictionary key. Each body contains a CountedUniqueValues

structure, storing its b-rep subsets. For each pair of bodies, a Şcollision linkŤ object is

maintained to compute collision detection and response between those bodies. During

a collision event, the results of getConstraintFromBrepSets (modeled in equation (6.5)

as the function h) are needed for each colliding voxel pair. The collision link contains a

structure that implements a memoization layer for getConstraintFromBrepSets. It is pro-

vided with two b-rep subset identities from CountedUniqueValues, and before invoking

getConstraintFromBrepSets, it looks up that pair of IDs in a dictionary structure contain-

ing cached, already-computed results. If the given pair has been computed previously,

the constraint can be returned immediately without further computation. Otherwise, the

constraint recognition is performed, and the results are added to the dictionary for future

use before being returned. The fruitful combination of hash-consing and memoization has

been noted in other applications, as well [1, 2].

We selected a dictionary without any cache-expiry logic to use as our memoization

structure, since the inputs and outputs stored are small and the number of entries are

low. To elaborate, recall that there are theoretically 2|Ri | possible b-rep subsets in a body,

so in a pair of bodies, there might be up to 2|Ri |+|R j | unique inputs to the function h.

However, as discussed earlier, the geometry and discretization resolution limit the number

of unique b-rep subsets actually found in a body. Furthermore, due to physical constraints

of interaction, not all combinations of b-rep subsets between the two bodies can be the

result of a collision. Thus, if n and m are the number of unique b-rep subsets actually

associated with a collision element on two bodies, and p is the maximum number of unique

pairs of b-rep subsets actually physically capable of interacting in the simulation, we know
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that

n ≪ 2|Ri |

m ≪ 2|R j |

p < n · m

The dictionary may be a hash table, with O(1) look-up, or as slow as O(lg p) for look-ups

in a binary search tree. We consider the constraint-detection code to be costly, dominating

even the O(lg p) naive dictionary look-up cost. The advantage of hash-consing here as

described for CountedUniqueValues is that during the time-sensitive collision operations,

retrieval of values is a known O(1) operation with a small constant (an array index).

Memoization of the constraint-detection results provides increased performance since a

given result is likely to be needed for multiple collision units during a single frame, again

for physical reasons. Any additional computations with the constraint result that are based

on the bodiesŠ positions and orientations in space can also be cached for at least one frame.

Additionally, due to temporal consistency, the same results are likely to be needed in the

following frame, indicating the value of preserving the cache.

6.5. Implementation and Results

The hash-consing data structure CountedUniqueValues was implemented as a tem-

plated container class, parameterized by its stored value type.1 As implemented, a C++

std::map<value_type, size_t> is used as the dictionary, with a std::vector<value_type>

as the array. All the operations on std::map that are used in the CountedUniqueValues

implementation are mandated by the C++ standard to be of logarithmic complexity in

the size of the structure [7, cross-ref map.access]. The dictionary look-up dominates the

cost of Store, resulting in O(lg n) run-time where n is the number of unique values stored.

The run-time cost of Retrieve is O(1), since this is an array indexing and implementation

independent. In the C++ implementation developed, as a consequence of the selection

of std::map as the dictionary type, it is important that the value_type have value (not

reference/pointer) semantics and provide equality and comparison overloads for use by

the dictionary.

In the proof of concept implementation of these techniques in the context of the hy-

brid collision detection/response algorithm, which uses VPS as the tessellated geometry

collision detection method, some 12 bits of storage are made available in the opaque data

1 Source code available at https://github.com/vancegroup/util-headers

https://github.com/vancegroup/util-headers
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structure per voxel. These 12 bits are used to store the small integer identifying the cor-

responding b-rep subset, as stored by a per-body CountedUniqueValues structure. An

object is created and retained per pair of bodies (a CollisionLink) that is responsible

for performing collision detection and response. This was a natural location to store the

memoization data structure for constraint recognition. Here again, a std::map was used

for a Ąrst implementation. It performs well enough in practice, primarily due to the small

number of entries, even though a hash table would have better asymptotic performance.

As an additional level of computation reduction, we considered that constraint response

computation might be expensive. As such, constraint detection results are stateful objects.

Upon their retrieval, the transformation matrices (pose) of the associated bodies are sub-

mitted as input to a method. The method caches the two poses and computes constraint

response outputs. If the input poses are the same as the cached poses, such as the case

where multiple collision pairs in a frame result in the same constraint, no redundant re-

computation is performed. This implicitly behaves as a memoizing function object, where

constraint results and the corresponding response computations are the function objects.

In operation, debug statements were inserted at key points to determine the efec-

tiveness of the combined hash-consing and memoization. Even in the Ąrst frame with

collisions, cache hits for the memoized constraint recognition function greatly outnum-

bered cache misses (required computations). In immediately subsequent frames, essentially

all constraint detection results had already been computed and could be returned from

the memoization cache, with new operations occurring only when colliding geometry

interacted in a novel way for the Ąrst time.

The performance of these techniques was dramatic: the full b-rep set look-up and

constraint recognition process was only required in 4 out of 7, 273, 610 collisions during a

long sample trial with two bodies interacting (that is, 4 cache misses). In the remaining

events, previously-calculated results could be used. Of the 4 unique computation events, 3

resulted in no constraint, while one resulted in exactly one constraint. Note that the count

of 7, 273, 606 cache hits is essentially unbounded as surfaces that had already interacted

may freely interact again without requiring full computation.

6.6. Conclusion

The hybrid method of collision detection and response for haptic virtual assembly,

initially presented in Faas [4], addresses the diiculties posed by low-clearance CAD

assemblies. We presented a concise description of the algorithms involved in a method

patterned after [4], as well as the theoretical complexities in the absence of optimizations
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that may have contributed to performance issues seen in that previous work. The limited

nature of the input data, namely redundant geometric representations including Ąne

discretizations, permitted the development of several layers of de-duplication of data

and computation. Combining a data structure based on the principle of hash-consing to

store each unique set of b-reps just a single time, with memoization to eliminate repeated

computation of functions with identical input data, eliminated a substantial proportion

of the computation required in the time-sensitive portion of the hybrid method. An

implementation in C++ was developed, with the CountedUniqueValues hash-consing

template data structure released publicly. Run-time veriĄcation indicated that the layers of

optimizations performed as desired, dramatically reducing the total amount of computation

required to perform collision detection and response combining an tessellated geometry

method with precise b-rep and constraint knowledge.
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CHAPTER 7. AUTOMATIC GEOMETRIC CONSTRAINT

RECOGNITION FOR HAPTIC ASSEMBLY APPLYING

DISCRIMINATED UNIONS, MULTI-METHODS, AND TEMPLATE

SPECIALIZATION

A paper in preparation for submission to ASME Journal of Computers and Information

Science in Engineering

Ryan A. Pavlik, Judy M. Vance

Abstract

The research goal was develop a new software system for recognizing geometric con-

straints arising from the interaction of pairs of boundary representations, for use in a haptic

virtual assembly collision detection and response algorithm. The problem was modeled

as a multi-method operating on a pair of b-reps. Each used b-rep type was designed as a

concrete class, then applied in a discriminated union type using the Boost.Variant library

for generic handling. The core of the recognition engine consists of template specializa-

tions for pairs of b-rep types that lead to constraints. The applied C++ metaprogramming

techniques automatically handle commutativity of arguments for constraint recognition,

avoid explicit conditionals and case statements, and allow easy extension and maintenance.

These are zero-overhead abstractions that are inlined and optimized away at compile

time. The resulting constraint recognition engine performs well, with per-pair recognition

performance scaling with the number of specializations included in the engine, which

is smaller than the total number of cases considered due to commutativity. The modern

C++ techniques and the overall software design resulted in an an automatic constraint

recognition engine suitable for use in a high-performance physics simulation application.

Ryan A. Pavlik was the primary author and researcher.
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7.1. Introduction

Geometric constraints are an important element of CAD assemblies. Many CAD systems

generate or use them in the modeling process. Virtual assembly applications permit a

user to interact with models originating in a CAD package, typically in a physically-based

manner. Such interaction may take place to investigate or evaluate assembly and dis-

assembly of the parts, or provide training for the same [22]. However, in virtual assembly

applications, constraint data is often not available to be loaded from CAD-speciĄc model

formats, or alternately it may be used as the only source of part-part interaction simulation.

When constraint-aware collision detection and response is used, it may not complete

quickly enough to support the kind of interactive experience desired. When the user

is given freedom of movement to manipulate parts, this allows for non-designed part-

part interactions, whether mis-assembly or simple exploration. These interactions may

nevertheless logically imply a constraint.

This work forms part of an efort to augment high-performance but lower-precision

collision detection and response algorithms with constraint-based precision. As a part of

the process, collision detection identiĄes parametric boundary representations (b-reps)

from the original CAD models (e.g., cylindrical faces, circular edges, planar faces). Any

constraints arising from the interaction of those b-reps may afect part-part interaction and

might thus afect the collision response. This requires a constraint-recognition engine to

automatically recognize constraints. This work presents a novel design and implementation

of such an engine applying modern C++ programming techniques.

7.2. Previous Work

Previous virtual assembly applications have exploerd the use of constraints to aid as-

sembly. Virtual assembly applications could be considered as primarily constraint-based

or primarily physically-based. Early work relied on knowing the assembled position of

parts and sub-assemblies within an assembly to provide a form of constraint interaction.

They provided a Şsnap-to-ĄtŤ experience for the user [9, 21]. The goal in those works was

to aid in the creation of assembly procedures, so the absence of constraint-enhanced inter-

action for mis-assembly was not a substantial weakness. However, snap-to-Ąt necessarily

sacriĄces some of the physical verisimilitude of the simulation by providing an unnatural

environment behavior.

Other constraint-based interaction required and used constraint data from the CAD

system combining snap-to and more free motion [29]. A rule-based constraint recognition

engine is described in part in [19], incorporating thresholds for tracker error and notifying
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the user with opportunity to cancel before applying the efect of a detected constraint.

Seth et al. [22, 23] investigated the use of geometric constraints in a more free-form virtual

assembly environment. Initial work required the user to manually identify constraints

in-simulation, while later work performed some automatic constraint recognition to en-

force constraints during the duration of a userŠs grasp of an object. Most closely related to

the present work, Faas et al. [10, 12, 11] investigated combining a physically-based virtual

assembly simulation providing haptic force-feedback with automatic constraint recognition

and solution. Providing haptic feedback poses a particular problem for virtual assembly

development, as much higher simulation rates are required to provide a stable environment

than with visuals only. Physically-based modeling based on discretized model data (i.e.,

not the original b-reps) is essential to operating at haptic rates with arbitrary geometry, but

results in diiculties with low-clearance assembly. A hand-written series of conditionals

considering the b-reps interacting performed the constraint recognition. In an alternate

approach to combining physically-based interaction with constraints for haptic virtual

assembly, Tching et al. [25] introduced the concept of guide planes. During interaction,

collision of speciĄc points with the guide planes would engage a constraint (with two inter-

secting planes deĄning a cylindrical constraint), replacing the physically-based simulation

for that part.

The goal was to create a constraint-recognition engine that could Ćexibly recognize

that two boundary representation elements, if found to be interacting, would give rise to a

geometric constraint. More formally, an implementation was needed for a function from

the set of all pairs of boundary representation elements to the set of geometric constraints

including a null constraint. As this is to be used in conjunction with existing simulation

techniques, exhaustively recognizing all constraints is not necessary, and adding additional

constraints to the recognition engine to improve the output is expected in the life cycle of

the software. Performance is important.

A technique based on the C++ type system with static typing and avoiding explicit run-

time branches (if/switch statements) and inheritance-based polymorphism was chosen

for reasons of maintainability and performance. The problem can be considered as invoking

a function whose implementation varies based on the type (broadly construed) of both of

its two arguments. This suggests the need for multi-methods.

7.2.1. Discriminated unions and multi-methods

In computer programming, a union is a data type that can hold any one of several,

predeĄned data types. The C language provides a simple implementation of unions, in

which each possible contained type appears like a Ąeld in a struct, but sharing the same
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memory [16, 17]. Usage of the C union facility requires the programmer to keep track of

which Ąeld was last stored to (and thus what type of data the union contains). Reading

diferent Ąelds has been used as a way of re-interpreting data (type-punning) but can

also result in undeĄned behavior, depending on the compiler and language speciĄcation

version adhered to. This undeĄned behavior can lead to not just logic errors but whole-

sale invalidation of the containing code, or Şcausing demons to Ćy out your noseŤ as C

programming lore holds [28].

Tagged unions, in which storage suicient for several diferent data types is accompanied

by a separate Ąeld indicating the currently-stored data type, are both a general data structure

concept and a method of more safely using the union facility in C for non-type-punning

applications. Tagged unions in the conceptual sense are also known as variant types or

discriminated unions. They can be used to provide polymorphic behavior in a diferent way

than typical inheritance-based polymorphism. Values held in discriminated unions can be

passed around indiscriminately, yet acted upon uniquely based on their contained value

type, just as virtual functions implemented in derived classes allow derived instances to be

passed around by a pointer to the base object while providing distinct, specialized behavior.

Careful, clever use of the C++ type system can permit implementation of discriminated

union facilities in ways that retain and enforce type safety at the interface. Early work made

substantial use of the free store (heap allocations) and did not bound the types a variant

could contain [8], producing a facility that more closely resembles the modern purpose

and use of the Boost.Any library [14, 15] than a typical variant type. Another approach,

motivated by serialization requirements, used a function-static map from instance pointers

to typed values within a member function template to permit arbitrary type ŞholdingŤ, also

without bounding the set of containable types [24]. These two early techniques provide

compile-time type-safety over a C union, but require an idiom resembling the following to

provide polymorphic behavior:

void handleVariant(variant v) {

if (v.isType<std::string>()) {

handleString(v.get<std::string>();

} else if (v.isType<int>()) {

handleInt(v.get<int>());

} // etc...

}

This requires the user of the variant type to make sure that their list of cases (efectively

equivalent to a switch on an enum union type tag as in C) is complete and consistent.
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The C++ compiler can enforce type-safety of access, but cannot enforce completeness

of polymorphic behavior over a set of types with this idiom. Furthermore, since the

two implementations discussed so far have unbounded contained types, no approach for

applying polymorphic behavior would allow compile-time checking of completeness.

The 2001 book ŞModern C++ DesignŤ by Andrei Alexandrescu pioneered more ad-

vanced C++ techniques, among them compile-time abilities through use of templates [2].

Typelists are compile-time, template-based structures whose values are types. A discrimi-

nated unionŠs bounded contained types, then, could be enumerated in a typelist. Through

C++ metaprogramming, explored through the ŞLokiŤ library introduced in [3] and widely

disseminated through the Boost Metaprogramming Library (MPL) [1], the types in the type-

list could be used to produce speciĄc variant data types capable of containing only those

types and permitting access in a type-safe way. Alexandrescu [2, 4, 5] built on the earlier

examples discussed and these compile-time techniques to develop such an implementation.

Notably, Alexandrescu applied the Visitor pattern using a template- and typelist-driven

generic implementation based on Loki. This allows the idiom above to be replaced with a

visitor class with methods accepting each of the possible types in the variant. In situations

where all cases should be handled, the visitor class can be derived from a ŞStrictVisitorŤ

base so that missing cases become compile-time errors [6]. This implementation inspired

the design of the Boost.Variant library in the Boost library collection [13]. It similarly

accepts a list of types as its template parameter, provides for type-safe storage and retrieval,

and provides strict visitor functionality. It relies more on template metaprogramming, and

even many of its internal operations are implemented as visitors, rather than with the Şfake

vtableŤ in [2]. By using placement-new for value construction, it holds values in stack (not

heap) allocations in most circumstances for improved performance.

Standard variant visitation, as well as virtual function calls for inheritance-based poly-

morphism, are known as Şsingle dispatchŤ - their behavior is polymorphic on one object (in

the virtual function case, this). However, behavior that varies polymorphically based on

the most speciĄc types of two objects is not available natively in C++. This is whatŠs known

as the binary method problem, or more generally, multiple dispatch or multi-methods

[7, 20]. The visitor pattern is one way of applying binary multi-methods in C++, if the

visitor itself is considered to be one of the arguments. In traditional use of the visitor

pattern, the visitor derives from a base visitor class, and a polymorphic child visited class

ŞacceptsŤ a visitor object and calls the visitorŠs ŞvisitŤ method on itself. These two indirec-

tions allow recovery of derived class static type, and resultant specialized implementation

selection, for both the visited and visitor object. Relevant disadvantages of the single visitor

pattern include the inherent asymmetry between visitor and visited objects. If the visitor is
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a binary operation outside the visited classes and performs behavior dependent on the

most specialized types of two arguments, as discussed in [7], it could be considered triple

dispatch. The more general term multi-method will be used to avoid confusion between

double dispatch, binary methods, and binary methods performed by efectively triple

dispatch.

A useful feature of the Boost.Variant library not found in earlier C++ variant types is

its inclusion of not only single visitors, but binary visitors. These are function objects that

can be invoked polymorphically on the contained types of two variant objects. Binary

visitors provide multi-methods that can take two variant arguments, and keep the visitor-

speciĄc functionality out of the visited types. Just as variant visitation eliminates manual

switch or if statements, binary variant visitation can eliminate manually-coded nested if

statements. Beyond just maintenance considerations, compile-time generic and generative

programming in this way is well suited to scientiĄc programming due to its ability to shift

computation from run-time to compile time and accommodate diverse algorithms and

implementations [27].

The use of discriminated unions, rather than a single class or a polymorphic base class,

as a general container type is an important part of the present workŠs distinct approach.

They provide the ability for diferent types to be passed in as a parameter to a single

API method, much as a base class pointer, but they require no common base class and

have semantics that are ideal for types whose instances are treated as values, rather than

referenced entities. The compile-time metaprogramming functionality is also important to

this work.

7.3. Methodology

In this work, instead of a class hierarchy based on inheritance, the individual types of

boundary representation (b-rep) entities of interest were represented as unrelated types.

Generic behavior and polymorphism was provided by the use of the Boost.Variant li-

brary. The boost::variant class template specialized on the list containing every bound-

ary feature type is declared with a typedef as the generic, efectively polymorphic type

BoundaryRep. The binary visitor technique provides the compile-time multi-method ma-

chinery to allow the basics of this work to proceed: to be able to have a function called

with two generic BoundaryRep objects and returning a generic Constraint object, without

inheritance or hand-written branching.

For modularity and functionality, the binary visitor function object invoked in the

constraint recognition engine does not directly contain constraint recognition logic. The
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entire constraint recognition engine logic starting with the binary visitor is structured in

three steps, as shown in Figure 7.1. The Ąrst step is the binary visitor, whose function-call

operator is a method template which captures the speciĄc static types contained in the

two passed BoundaryRep objects. Armed with this full static type information, it invokes a

function template accumulateConstraint shown in step two. When possible, this function

will proceed to invoke code for a constraint recognition procedure speciĄc to the two types.

The design and rationale of this second step is described in a separate section below for

clarity.

Each non-null constraint recognition procedure is deĄned by explicitly specializing

a class template called ConstraintFromBrepPair with the two boundary representation

types and implementing a static method, which receives the two b-rep objects and returns

a newly-created generic constraint. These specializations are step three in Figure 7.1.

If any run-time checks are needed before actually creating the constraint, such as size

compatibility of cylindrical peg and hole, they are performed in this method, with the

option of returning a null constraint. Each of these explicit specializations, or Şrecognized

pairs,Ť forms a self-contained unit of code dependent only on the forward declaration

of the ConstraintFromBrepPair template, the two b-rep types it manipulates, and any

constraint type it may create. As such, the code for each recognized pair is located in its

own header Ąle in a directory of similar headers, keeping the code clean and readable. This

design provides high cohesion (all recognized pairs in one directory, with a header Ąle for

each) as well as loose coupling (minimal dependencies required by each recognized pair,

each header containing only the code relevant to a particular pair of b-rep types).

7.3.1. Step two: the accumulateConstraint function

Returning to the middle level of indirection, the accumulateConstraint step is made

separate to provide commutativity for the arguments of the recognition multi-method.

That is, it does not matter which body has which b-rep; detecting a constraint given the

b-rep pair (A, B) implies that a constraint should be detected given the b-rep pair (B,A).

To eliminate the risk of missed cases, handling commutativity is built-in at step two as

shown in Figure 7.1, at a level above the actual constraint recognition deĄnitions. This

makes it automatic, and the design of this step in fact makes it compile-time. There are four

function templates named accumulateConstraint and thus potentially part of the over-

load resolution set, which is the set of functions considered at compile time for resolution

of calls to a function by that name. However, through the use of the Şsubstitution-failure-is-

not-an-errorŤ technique (SFINAE) [18, 26], all but one of them is removed from the overload

resolution set for any given b-rep pair, making each call unambiguous. Compile-time meta-
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functions called IsRecognized<T, U> and NotRecognized<T,U> are used as additional,

dummy arguments to select the appropriate overload of accumulateConstraint through

application of the SFINAE technique. These metafunctions look to a given specialization of

ConstraintFromBrepPair at compile time to determine if the default implementation, im-

plying no recognized constraint, is being applied, or if an explicit specialization, implying a

possible recognized constraint, is available. The metafunctions and the SFINAE technique

operate as follows. In the case of IsRecognized<T, U>, if for the b-rep types T and U,

ConstraintFromBrepPair<T, U> exists as an explicit specialization, that is considered a

recognized pair and a nested type deĄnition IsRecognized<T, U>::type is made available.

To make a function template only available if some given T and U are recognized, a dummy

argument of type typename IsRecognized<T, U>::type*, with a default value, is added

to the end of the argument list. During overload resolution, to determine which function

to invoke when the overloaded name accumulateConstraint is called, the compiler tries

substituting in the templated types to each candidate, or Şoverload.Ť If the pair (T,U) are

not recognized, the nested typedef in the metafunction will not exist, making the argument

of invalid type and resulting in what is known as Şsubstitution failure.Ť Rather than issuing

a compiler error, the compiler simply eliminates that overload from consideration and

moves on, generating an error only if no overload exists that does not result in substitution

failure, or if multiple overloads remain that match the parameter list equally well, resulting

in an ambiguous call. A similar process occurs in the use of the opposite metafunction

NotRecognized<T,U>. Adding multiple dummy arguments results in a logical AND of

the metafunctions, requiring all of them to be true to avoid substitution failure. The four

accumulateConstraint overloads contain combinations of these metafunctions in them so

that for any given pair of b-rep types, only one of them remains available. The four cases

are:

1. For b-rep types T and U, if NotRecognized<T,U> and NotRecognized<U,T>, then re-

turn a null constraint: the given b-reps do not result in a constraint in either order.

2. For b-rep types T and U, if IsRecognized<T,U> and NotRecognized<U,T>, then call

the recognition code in ConstraintFromBrepPair<T,U>. The b-reps are recognized

as a constraint in their given order. (The seemingly-redundant NotRecognized condi-

tion here and in case 3 are to prevent this method from being available in the case

where T and U are the same type.)

3. For b-rep types T and U, if NotRecognized<T, U> and IsRecognized<U,T>, then call

the recognition code in ConstraintFromBrepPair<U,T>, Ćipping the order of the
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arguments, and passing a Ćag to indicate that the second body has b-rep T and the

Ąrst body has b-rep U. This handles the commutativity case.

4. For arguments that are both of b-rep type T, if IsRecognized<T,T>, then call the

recognition code in ConstraintFromBrepPair<T,T>. This is required in conjunction

with the NotRecognized conditions of cases 2 and 3 to ensure only one overload is

available for pairs of identical b-rep types.

While this is described as though it were implemented with if statements, it is important

to note that selection of one of these four cases happens entirely at compile time, for every

possible b-rep type pair. It is also useful to note that these four conditions cover all possible

valid cases without any overlap. If faulty conditions are introduced during the addition of a

new constraint recognizer, they will often be caught at compile time. Duplicate recognizers

would trigger a compiler error indicating a duplicate template specialization. Introducing

a recognizer for (B,A) when (A, B) is already recognized and A , B would cause all

overloads of accumulateConstraint to be eliminated, resulting in a compiler error at

that step. Compare this to an alternate implementation using if statements, in which no

indication would be given about duplicated conditions, which may either be ignored or

produce unexpected results. At most, a switch implementation might trigger a compiler

warning if warning levels are high enough. No notice would be given by an alternate

implementation if a commutative case failed to be handled, an error noted in the behavior

of existing research code. In this design, commutativity is automatically handled as it is

implied by the problem deĄnition and accommodated in step two of Figure 7.1.

The explicit specialization provided by each recognized pair must be available in the

translation unit containing accumulateConstraint for the compiler to generate code to

select it. Therefore, enabling a recognized pair simply requires adding the corresponding

header to the list of #includes in the implementation Ąle. The template-driven, compile-

time style of the code results in most code existing in header Ąles, that are eventually

included and their templates instantiated in a single translation unit (.cpp Ąle) with the

generic entry-point function as the only API exposed to code using the constraint recogni-

tion engine.

Due to compiler inlining, the additional layer of indirection used by accumulateConstraint

is eliminated during compilation and has no run-time overhead. In the binary visitor, the

compiler generates specializations of accumulateConstraint and ConstraintFromBrepPair

for every combination of b-rep types that can be held in the BoundaryRep boost::variant.

The full constraint recognition engine is thus generated in the compiler at the same time, in

a single translation unit, and optimizations like inlining are performed which eliminate the
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overhead of function calls within the engine. The three steps within the recognition engine

are whatŠs known as Şzero-overhead abstractions,Ť a hallmark of modern C++ style. The

compiler can choose the branching implementation that it judges most eicient given all

the information about the possibilities, since it is responsible for generating the equivalent

of the large switch statement that this code externally appears to implement.

7.4. Performance Characterization

The interaction between the compilerŠs optimizations and the metaprogramming within

the boost::variant visitor results in a generated algorithm performing the decision mak-

ing based on types, which is diicult to characterize by hand. A number of testing runs

were performed to determine asymptotic behavior experimentally. In each test, a test

harness Ąrst ran the task for a set number of iterations (1,000,000). Two additional times,

the time-per-iteration was computed and used to choose a new iteration count for a run

estimated to take 3-seconds. The results from the third and Ąnal run were used. This

procedure was used to account for unknown run-time while measuring over a suiciently

long period, as well as to ensure relatively uniform running conditions, including, for

instance, warm instruction and data caches. Trials were conducted on a computer running

Linux, with a 2.4 GHz Core 2 Duo processor and the software compiled with GCC 4.6.3.

The timed task consisted of running the constraint recognition engine on two sets,

each containing one of each type of b-rep. The independent variables, conĄgured at

compile time, were the number of symmetric and asymmetric pairs with a specialization

to recognize a constraint. A symmetric pair refers to a constraint recognizer operating on a

pair of types that are the same, while an asymmetric pair refers to a constraint recognizer

operating on a pair of types that are not the same. Asymmetric pairs, due to commutativity,

result in efectively two constraints recognized (the explicit one and its counterpart with

arguments in the other order). The number of recognizers included was manipulated by

simply disabling the inclusion of individual ConstraintFromBrepPair headers, starting

from an Şall enabledŤ state. We anticipated run-time to increase proportional with either

the number of specializations (symmetric + asymmetric) or constraints (2 times asymmetric

+ symmetric). The reason for the latter case is that each specialization that deĄnes an

asymmetric constraint recognition implies an auto-generated handling of the reverse-

ordered case due to commutativity.
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(a) Time vs. constraints enabled (b) Time vs. specializations enabled

Figure 7.2: Time per pair, with lines of best fit for two choices of independent variable

7.4.1. Results

The raw timing data obtained from trials of disabling and enabling the various con-

straint recognizers can be found in Table 7.1. Two linear regression models were Ątted

to the data, one with the explanatory variable Ştotal constraintsŤ (2 times asymmetric +

symmetric) plotted in Figure 7.2a, and one with explanatory variable Ştotal specializationsŤ

(symmetric + asymmetric) plotted in Figure 7.2b. For the Ąrst model, R2
� 0.7075, while

for the second model, R2
� 0.8517. Thus, the performance of the variant-based constraint

recognition engine appears to depend on the total number of specializations, rather than

the number of constraints in total. This is an interesting Ąnding, that suggests that the

visitor algorithm used by boost::variant, when combined with an optimizing compiler

and the described implementation of handling cases of asymmetric constraints, does not

impose a performance penalty for detecting reversed-order arguments. This compares

favorably with a naive handwritten generic version, which would have to consider each

constraint individually, as opposed to being able to combine that run-time cost for a pair of

constraints that difer only in order.

7.5. Discussion and Conclusion

The method of constraint recognition described here provides a high-performance

constraint recognition engine that is easy to maintain. It represents diferent b-rep elements

as distinct, data-oriented types without a common base class. Generic code for handling

b-reps is enabled by using boost::variant to create a discriminated union type that can

contain any of the b-rep element types deĄned. Constraint recognition code is kept out

of the b-rep classes, and deĄned as a multi-method applied by a binary visitor treating

both arguments equally. Run-time constraint recognition is split into minimal routines that
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Table 7.1: Recognition timing results

Asymmetric
specializations

Symmetric
specializations

Total
specializations

Total
constraints

Time (ns)
per pair

Pairs
per ms

0 0 0 0 27.928 35 806.3592
0 0 0 0 27.813 35 954.4098
0 1 1 1 30.9023 32 360.0509
0 2 2 2 32.3186 30 941.9344

0 3 3 3 32.4213 30 843.9205
0 4 4 4 34.646 28 863.3608
0 4 4 4 34.4224 29 050.8506
1 0 1 2 28.3047 35 329.8215

1 0 1 2 28.3356 35 291.2943
1 1 2 3 31.0053 32 252.5504
1 2 3 4 31.108 32 146.0718
1 2 3 4 31.0936 32 160.9592

1 3 4 5 34.3989 29 070.6970
1 3 4 5 34.6075 28 895.4706
1 4 5 6 34.4081 29 062.9241
1 4 5 6 34.337 29 123.1034

2 3 5 7 33.6412 29 725.4557
2 3 5 7 33.2519 30 073.4695
2 4 6 8 34.9714 28 594.7946
2 4 6 8 37.4733 26 685.6669

handle a given pair of b-rep types through template specialization. Additional recognizers

can be added by creating a new header Ąle with an appropriate specialization, and enabled

by including this header in a main header Ąle. Commutativity of arguments to the recog-

nizers is handled automatically and transparently through template metaprogramming,

and without impacting run-time performance. Erroneous conditions, such as adding a

duplicate constraint recognizer or a recognizer for arguments already recognized in the

reverse order, are diagnosed at compile-time by a compiler error, easing maintenance and

further development. By making all three internal layers of the recognition engine available

to the compiler in the same translation unit, the compiler can fully apply inlining and other

optimizations resulting in optimal code generation, with the abstractions introducing zero

run-time cost over an equivalent fully hand-written monolithic method. The end result is

a constraint recognition engine that is easy to develop and maintain, and easy to use with

the workings of the metaprogramming engine compartmentalized behind a single-method

public API. Future work involves applying this constraint recognition engine in the context

of a virtual assembly application to perform localized constraint recognition following
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physically-modeled collision detection, allowing an improved collision response based on

constraint knowledge.
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CHAPTER 8. IMPROVING PHYSICALLY-BASED COLLISION

RESPONSE BY RESTORING DEGREES OF FREEDOM

A paper in preparation for submission to IEEE Transactions on Haptics

Ryan A. Pavlik, Judy M. Vance

Abstract

The long term goal of our research is to improve product design through virtual assem-

bly. Our vision is to be able to assemble any arbitrary set of CAD models using immersive

technology with haptic feedback. Assembling parts that mate with very low clearances is

a challenge for traditional haptic simulations because the collision models are generally

tessellations or voxelizations of the exact CAD geometry which result in unrealistic and

infeasible assembly situations. Implementing snap-to or constraint-based methods artiĄ-

cially takes the user out of the loop and relies on preprogrammed assembly conĄgurations.

This paper presents a hybrid technique that combines a voxel-based collision detection

and force response algorithm with constraint knowledge derived from the original precise

geometry of the CAD models. This approach relates b-rep data to voxel data and uses

the b-rep data when automatically identifying potential constraints. Next, the constraint

knowledge is applied in a new way, by selectively restoring degrees of freedom at a local

(voxel) level. This approach sidesteps diiculties with constraint solving, avoids creating

phantom sources of force, and allows the algorithm to provide enhanced haptic interaction

with low-clearance assemblies. The results show that this method correctly identiĄes

various constraints and runs at speeds fast enough to support smooth and stable haptics.

8.1. Introduction

Haptic force-feedback poses a special problem for physics engines due to the need to

maintain a computation rate of 1000 Hz for haptic stability. Exact parametric boundary

Ryan A. Pavlik was the primary author and researcher.
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representations (b-reps) of CAD geometry are approximated, typically as triangulated

meshes, for graphic display, and further discretization and approximation is needed to

perform high-rate collision detection and response. However, the collision detection and

response results from discretized approximations of geometry do not necessarily reĆect

the nature of the original geometry. In particular, degrees of freedom are easily lost

when collisions are detected between tesselations of the original b-reps. If the clearance

between objects exceeds some multiple of the discretization level of detail, traditional

virtual assembly methods can be used. However, real-world CAD models often have

smaller clearances. This makes assembly artiĄcially impossible. In the general case, a model

can be created with b-reps suitable for assembly that nevertheless cannot be assembled

in any tessellated geometry-based simulation. This paper outlines a method that enables

low-clearance haptic assembly of CAD models through a hybrid usage of both a tessellated

geometry-based collision method (in coarse movement) and the original b-rep data (in Ąne

manipulation and assembly).

8.2. Previous Work

Virtual assembly systems can be generally categorized into two types: those that operate

primarily based on constraints, and those that use physically-based modeling [14]. Systems

based on constraints, including snap-to-Ąt (positional constraint) and preprogrammed

assembly constraints, allow all foreseen assembly to take place, but take the user out of the

loop by providing guidance beyond physical simulation. Physically-based modeling does

not provide nonphysical guidance, but computational limitations introduce challenges for

low-clearance virtual assembly at haptic rates.

Anantha et al. [1] describes a system for generating textual assembly plans and recog-

nizing degrees of freedom based on constraint recognition and satisfaction. Common types

of constraints are identiĄed and used to deĄne the relationship of parts in an assembly

during an initial CAD modeling process. The process involves a two-part representation

scheme where b-reps and part features are separate and re-united later in the process.

Diiculties arise in processing full constraint sets for constraint satisfaction. Further, in

the case of under-constrained systems, the degrees of freedom which are not constrained

are transformed into kinematic joints representing allowable motion under the constraints.

The system does not involve a virtual environment.

Fernando et al. [6] presents a virtual assembly application that exclusively uses constraint-

based modeling instead of physically-based modeling. The OpenGL Optimizer scene graph

maintains precise and tessellated geometry representations in the same graph structure.
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Using only constraint-based modeling can artiĄcially guide the user into a preprocessed

assembly state, reducing direct user interaction and inĆuencing subsequent evaluations of

assembly suitability.

The Virtual Assembly Design Environment (VADE) [7] is a physically-based modeling

simulation with constraints imported from design intents created in the original CAD

software. It provided interactive, two-way communication between a tightly-coupled

commercial CAD package (Pro/Engineer) and the virtual assembly simulation.

Zachmann and Rettig [18] described Şnatural interactionŤ as too challenging, and at

times unnecessary, as a goal of overall virtual reality applications in the engineering process.

They described Şintuitive interaction,Ť of which Şnatural interactionŤ is considered a subset,

as the proper standard for virtual reality simulations, and noted that virtual assembly,

by virtue of beneĄting from natural (not just intuitive) interaction, was among the most

challenging virtual reality applications. Constraints are described as a way to facilitate

precise positioning given free-space six degree of freedom user input, presuming the

absence of haptic force feedback. Zachmann and Rettig considered abstract constraints

from CAD packages, tool use-related constraints for accessibility studies, a specialized

handler for sliding contact, and a model for precise grasping.

Liu and Tan [8] describes a Şconstrained behavior managerŤ (CBM) for virtual assembly

software. This method assumes the absence of haptic force-feedback and associated ability

to afect the human interaction through any mode other than visual display. It imports

geometric constraints, as well as dimensional constraints and assembly sequence constraints,

from the CAD software package.

Yang et al. [17] presents a virtual assembly system partially based on imported con-

straints. A bounding box check, then a position-orientation proximity check, is used to

determine whether free manipulation or constrained movement between two parts should

be active. It presents a correspondence between a taxonomy of degrees of freedom and

constraints, as well as rules for reduction of the degrees of freedom from two constraints.

It describes a diferent sort of constraint recognition that focuses on designed constraints

with planes and lines.

Seth et al. [13] aimed at recognizing the colliding precise geometry and, as further

detailed in [12], identifying constraints automatically from the b-reps. While constraint

recognition and virtual assembly was possible, the process was too slow to be able to

provide haptic force feedback.
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8.2.1. Two Stage Virtual Assembly

A theoretical treatment of assembly simulation as consisting of a coarse and a Ąne stage

was presented in Vance and Dumont [16]. In the coarse manipulation stage, parts may

interact on a large scale as a user performs general positioning and alignment. In the Ąne

assembly stage, where diiculty with low clearances is found, precision in movement and

simulation is required. This research was based on a number of related projects in the

low-clearance assembly Ąeld that seemed to arrive at a similar conclusion from diferent

directions.

Tching et al. [15] combined an tessellated geometry method for coarse assembly with a

precise, constraint-based method for Ąne assembly. It detected and responded to imminent

Ąne assembly by intersection with Şconstraint planes.Ť Interaction with these planes

would eventually locally override the tessellated geometry method to provide smooth low-

clearance assembly. However, these features had to be manually predeĄned for each CAD

model in a scenario as a separate preprocessing step. Faas [3] presented a hybrid method

that relied on automatically identifying constraints based upon b-rep data, determining the

level of constraint alignment, and generating a combined force that blended the existing

contact forces to arrive at constraint satisfaction.

For the scenario in consideration, it can be reasonable to assume that the parts as

provided are possible to assemble. Faas and Vance [4] made use of this assumption to

attempt to improve low-clearance haptic assembly. That method automatically retracted the

volume of the tessellation (here, a pointshell for use with a voxmap) to increase clearances

dynamically at run-time during the Ąne assembly stage.

Initial work by Faas and Vance [2, 5, 3] on combining a tessellated geometry algorithm

(Voxmap PointShell, or VPS [9, 10]) with precise knowledge from b-reps was implemented

in an application known as SHARP-2. The work described in this paper builds conceptu-

ally on Faas, and also uses VPS as the tessellated geometry algorithm, but is otherwise

independent. This paper describes new work implemented and tested in modular soft-

ware components and in the virtual assembly application SPARTA, the Scalable Platform for

Advanced Research and Teaching in Assembly [11].

8.2.2. General Hybrid Algorithm

We decomposed the hybrid method presented in Faas [3] into several separate steps in

a two-level hierarchy. The Ąrst category of tasks takes place only once during a simulation,

and is thus not time-critical. In some ways, it can be considered a form of preprocessing.

However, since it is unsupervised preprocessing, it is not preprocessing of the type required
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by Tching et al. [15]. It can be performed at the time of model loading. The second category

consists of those steps that take place repeatedly at run-time during collision events, so-

called Şrun-time operations.Ť These steps are time-critical since their execution time must

be suiciently fast to Ąt in the 1 ms allotted for each physics iteration.

Discretized collision units (DCUs) is a generic term used here for the tessellated geome-

try data structures made available at collision time, with some member suitable for use as

a form of look-up key. In this work, surface voxels in VPS are the collision units, but the

method is not limited to use of voxelized data structures. The terms ŞvoxelŤ and ŞDCUŤ

could be interchanged in this paper in nearly all cases except for the speciĄc implementation

details speciĄc to the use of VPS.

Before run-time, such as during model loading, the following steps, the Ąrst category

of subproblems, take place:

1. The model is loaded and voxelized.

2. The set of b-reps corresponding to each voxel are determined.

3. The result of the b-repŰvoxel association is stored for fast run-time look-up.

The Ąrst step is part of the normal process used in the case where only the tessellated

geometry algorithm is being used. The second step is the initial computation of the

association of discretized collision units with original boundary representations. This

step necessitates the extraction of both the original b-reps from a model, as well as its

transformation into DCUs, such as through voxelization, to provide input data. In the

case of voxelization, only the surface voxels may be involved in collisions, so only they

need to be associated with precise representations. Informally, the second step answers the

question Şif something collides with this voxel, what b-reps is it colliding with?Ť However,

since this is a computationally-expensive step, taking several minutes for complete test

models in previous work, it is not suitable for run-time. Thus, the results are pre-calculated

and, in the third step, stored in a data structure that allows the look-up from voxel to set of

b-reps to occur quickly during run-time. In the speciĄc case of applying this work with

VPS, each opaque voxel data structure used by VPS contains 12 bits of so-called Şprivate

dataŤ that may be used by the application, set in advance and returned during collision

detection. We store an ID used to perform a look-up to a set of b-reps in this private data.

Step three forms the Ąrst half of the Şvoxel to b-rep look-up problem.Ť

At run-time, during each frame of simulation, collision detection is performed between

each pair of bodies by the tessellated geometry collision detection algorithm and response

forces are computed. The second category of tasks accomplishes this process. Rather than
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performing collision detection and response in a single step as is typical with the VPS

software, the following steps take place in the hybrid method.

1. Once a collision is detected, a list of collision pairs is returned. Each entry includes

the voxel locations in both bodies, the computed penalty force to apply at those voxels,

and the Şprivate dataŤ value for the two interacting voxels.

2. For each entry in the list:

(a) The private data values are used to look up the sets of b-reps corresponding to

the two colliding voxels.

(b) The b-rep sets are submitted to an automatic constraint recognizer that performs

all possible pair-wise comparison of b-reps looking for any pairs that would

result in a constraint.

(c) If a constraint is recognized, a measure of constraint alignment or engagement

is computed for use in varying the intensity of constraint response.

(d) The initially-computed response force is modiĄed incorporating the additional

knowledge imparted by the results of the constraint recognition and its precise

geometry knowledge to compute a Ąnal local collision response force.

(e) Finally, the appropriate torque is computed for the response force applied at the

voxel locations.

3. Response forces and torques, possibly modiĄed from the tessellated geometry algo-

rithm output, are summed, and at the end of the frame used to compute the new

position and velocity of the colliding objects.

8.3. Analysis of Tasks

We identiĄed Ąve independent tasks that together form a particular hybrid method of

collision detection and response. Rather than a single algorithm, we propose that there is

a class of algorithms or methods with common structure, but that difer in their solutions

to these individual subproblems.

8.3.1. Voxel to B-rep Initial Association

The purpose of this task is to determine which b-reps in the original model give rise to

each particular discrete collision unit (voxel) in turn, so that at run-time, when colliding

voxels are detected, they can be traced back to the precise b-reps. This initial association is
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separate from Şvoxel to b-rep look-upŤ because known and foreseen implementations are

very time intensive. This step as implemented in [5] loaded the original model in b-rep

form as well as a voxel-sized cube into a commercial CAD modeling kernel, and asked the

kernel for intersecting b-reps as the voxel cube was moved iteratively to the position of

each of the surface voxels in the voxelized model. Other methods of implementing this

step are possible, but are not explored in the scope of this work.

8.3.2. Voxel to B-rep Look-up

This task must cache the results of the initial association in a space-eicient manner so

that at run-time, look-up from a colliding voxel to its set of b-reps is very fast. In the present

implementation using VPS, each opaque voxel structure managed by the VPS library ofers

12 bits of user-accessible storage. We use that storage for an integer index into a look-up

table containing the sets of b-reps. This provides constant-time retrieval at run-time. This

step also provides opportunities for further optimization, which are explored in Chapter 6.

8.3.3. Automatic Constraint Recognition

Given the b-rep sets of two colliding voxels, we want to detect if a geometric constraint

exists. In this case, detecting all possible constraints is not necessary. Identifying additional

constraints can further improve the quality of interaction by increasing the number of

instances in which constraint knowledge can be beneĄcially applied. However, since these

geometric constraints are being used in combination with a physically-based tessellated

geometry algorithm, we do not need to Ąnd all constraints to prevent object interpenetration.

Existing work in [3] is largely based on [12], with hand-coded conditionals used to

recognize constraints. We have implemented a more robust, Ćexible, and scalable constraint

recognition engine that eliminates most hand-coded conditionals with a novel design. The

design uses template metaprogramming and generative programming to provide for a

more declarative style of coding constraint recognition components, which provides for

simpler expansion of the engine with additional constraints. The design also automatically

handles the inherent commutativity of arguments to an abstract Şconstraint recognition

function.Ť It is discussed more fully in Chapter 7.

8.3.4. Constraint Alignment Measure

This taskŠs purpose may not be immediately apparent. It arises from the need to know

how close to fully aligned the constraint isŰand thus how strongly to apply the constraint

knowledge. It returns a value in the range [0, 1] where 1 means the constraint is fully
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aligned. Previous work in [3] proposed the formula

0.5 · e−θ/θ0 + 0.5 · e−d/d0 (8.1)

where θ is the angle between axis or vector aspects of the b-reps in the two bodies, while d

is the shortest perpendicular distance between those axes. The value θ0 is a dimensionless

scale factor found by dividing the voxel size by some measure of insertion depth, while

d0 is the voxel size. We have modiĄed this equation in the present work. The modiĄed

constraint alignment measure used in this work, for the example of a cylindrical constraint,

takes the form

0.5 · e−θ + 0.5 · e−d/dc (8.2)

The Ąrst exponent was replaced simply with the unscaled −θ. For a cylindrical constraint,

the dimensionless second exponent was computed using the clearance dc � r1 − r2, where

r1 is the radius of the hole (larger) cylinder and r2 is the radius of the pin (smaller) cylinder,

as well as an empirically-determined constant scale. Similar measures are used for other

constraints, and there are opportunities for improving these measures.

8.3.5. Application of Constraint Knowledge

A method for the Şapplication of constraint knowledge problemŤ was implied in Faas [3],

which used a proprietary geometric modeling kernel and constraint solver. In that work, a

Şconstraint forceŤ was computed as the force and torque of a 6-DoF spring between a bodyŠs

current position and the position reported as the solution to the constraint problem. The

overall response force and torque was the linear combination of the force and torque from

the discretized algorithm and the constraint force and torque. The coeicients of the linear

combination served to interpolate between these two collision response sources, using the

constraint alignment measure as a parameter. However, the computational overhead of

the constraint solver resulted in the update rate dropping from 1000 Hz to 100 Hz during

assembly. An alternate approach to the Şapplication of constraint knowledge problemŤ

forms a key part of this paperŠs contribution.

8.4. Methods of Applying Constraint Knowledge

When proceeding from a disassembled state directly toward a correct assembly of

parts, such as when seeking to develop assembly plans, the constraints found and used are

likely to match those originally designed in the product. However, in a free-form Şopen

worldŤ interaction environment, collisions take place that might not be expected during
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Figure 8.1: Conflicting cylinders. Incompatible constraints within a single part.

a precise assembly, yet would be expected to produce appropriate force feedback. It is

particularly in these cases of Şmis-assemblyŤ or exploration that the approach of computing

the ŞpreciseŤ response by constraint solving shows some distinct weaknesses. To begin, the

following examples highlight cases that are not easily handled by algorithms that rely on

constraints only. They are artiĄcial examples but represent Şcorner casesŤ that are possible

with application of virtual assembly to non-artiĄcial test scenarios.

8.4.1. Challenges for Constraint-Based Algorithms

Some situations result in constraints that cannot be simultaneously satisĄed. Figure 8.1

shows one artiĄcial instance: both of the cylinders of the top part can be in collision with

their appropriate holes at the same time; however, since they are not curved (they are

angled cylinders), they cannot be assembled. In this case, the nature of a single partŠs

geometry (two cylinders with axes that are not parallel) forbid simultaneous engagement

of a particular set of constraints. In a constraint-solving approach with a global (per part or

per colliding part pair) perspective, a decision would have to be made in implementation

on how to handle such conĆicting constraints in such a way that is physically accurate, not

allowing full assembly, while providing smooth feedback for whatever partial assembly

interaction is possible. A constraint-solving-based approach to the hybrid method that

did not explicitly consider situations such as this would result in unknown and likely

unexpected behavior when presented with such a scenario.

In Figure 8.2, though the pins of the top block could be inserted into some theoretical

block with holes, and some theoretical block with pins could Ąt in the holes of the bottom

block, this particular combination of parts wonŠt Ąt together: the distance between the

pins is diferent than the distance between the holes. Yet, as illustrated, cylinderŰcylinder

collisions could be detected on both pins at once, thus producing two cylindrical constraints.
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Figure 8.2: Incompatible parts. Conflicting constraints detected between two parts.

Detecting this situation is a diferent problem than detecting incompatible constraint

sources within a single part like in Figure 8.1. A constraint-solving approach would have

to establish how to detect this situation, and how to handle it. One approach might be

detecting and disabling both constraints when they are both recognized for a frame. This

would still allow insertion of a single pin with hybrid method, since during a feasible pin

insertion only one of the two cylindrical constraints would be recognized. However, as

noted previously, this also presents a case that would need explicit handling in a solution.

8.4.2. Alternate Approach: Restoration of Degrees of Freedom

The above examples demonstrate the diiculty involved in arriving at a meaningful

overall collision response from the hybrid method when using constraint solving and force

blending as in [4, 3] to solve the Şapplication of constraint knowledgeŤ task. However,

returning to the original motivating problem, there is an insight that permits an alternate

approach. The impetus for using this hybrid method is that algorithms using only a

tessellated geometric representation artificially remove degrees of freedom from a system of

interacting bodies. During interaction, the collisions detected and the computed responses

are known at a Ąne-grained, local level (DCU, e.g. voxel).

Instead of focusing on constraint solving, we instead use the constraint information to

reduce/eliminate the components of the forces induced by the tessellated geometry that

are countering known degrees of freedom. For instance, in plane-plane sliding, contacting

surfaces should slide freely. Therefore, any component of the force vectors impeding

movement along the surface of the plane could be reduced or zeroed. An advantage of

this approach is that it can be performed local to each DCU, and thus does not require

resolving situations of multiple constraints as discussed above. Furthermore, it completely

avoids constraint solving. This avoids ambiguity in under-constrained systems, as well as
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the generation of an artiĄcial Şconstraint forceŤ as in Faas. By operating at a local level,

degree of freedom restoration (DoF-restoration) resolves the problem of inaccurate collision

response at the Ąrst opportunity during the collision step, by modifying the individual

forces from the penalty method that are summed to produce the global collision response.

In all recognized constraint situations, in addition to details about the geo-

metric constraint, we take as input:

x The coordinates of the point (center of voxel) under consideration

f⃗ The collision response force at x computed by the tessellated geometry collision

algorithm

α A blending factor in [0, 1] where a value of 1 implies full alignment of the

constraint and full restoration of appropriate degrees of freedom (the result of

the Şconstraint alignment measureŤ task)

All input, both this common input and the constraint-speciĄc input, is transformed into

the world coordinate system before performing subsequent calculations. The recognized

constraint determines what components of the force vector would oppose a degree of

freedom that should be present. The output of the computations is a modiĄed collision

response force vector f⃗ ′ in which those components are scaled down or eliminated based

on α. This f⃗ ′ is used in place of the original f⃗ in the remainder of the collision response

algorithm for computing torque and accumulating overall collision response force.

The full list of constraints recognized in the present implementation is as follows.

• Circle-Cylinder: Cylindrical constraint

• Cylinder-Cylinder: Cylindrical constraint

• Plane-Plane: Planar constraint

Anticipated extensions include:

• Cone-Cone: Cylindrical constraint, unidirectional

• Sphere-Cylinder: Linear annular constraint

• Sphere-Sphere: Spherical constraint
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Response to a cylindrical constraint

A cylindrical constraint provides the following parameters, which partially characterize

a cylinder: a unit vector axis v⃗ and a known point along that axis c. Cylindrical constraints

should permit rotation about the axis v⃗, as well as translation along it. Finding a modiĄed

f⃗ that restores those freedoms requires scaling down all forces that exist tangent to the

surface of the cylinder described by v⃗, c, and x. The nearest point c′on the axis to x is found

by projecting x − c on to v⃗ (see Figure 8.3):

c′ � c +
(

v⃗ · (x − c)
)

v⃗ (8.3)

The vector r⃗

r⃗ � x − c′ (8.4)

is an outward-pointing normal at x on the cylinder (see Figure 8.4), and thus n⃗ computed

as
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n⃗ �

r⃗
��⃗r��

(8.5)

is the unit normal vector. It is also the only direction in which the full forces of the tessellated

geometry collision algorithm are considered accurate and should be fully preserved. The

force is then decomposed into forces along the direction of the normal, f⃗∥ , and the forces

perpendicular to the normal, f⃗⊥.

f⃗∥ �

(

f⃗ · n⃗
)

n⃗ (8.6)

f⃗⊥ � f⃗ − f⃗∥ (8.7)

With decomposition complete, we compose the modiĄed force, f⃗ ′, by scaling the forces

that oppose desired degrees of freedom.

f⃗ ′ � f⃗∥ + (1 − α) f⃗⊥ (8.8)

Response to a planar constraint

The planar constraint provides input n⃗, a unit normal vector for the plane. Response

to a planar constraint is similar to response to a cylindrical constraint, in that the goal is

restoration of movement along directions perpendicular to the normal. A planar constraint

ofers the added consideration that forces along the normal in the direction of the normal

(that is, toward the other plane) should also be eliminated. A non-negative magnitude of f⃗

along n⃗ reveals erroneous collision response force toward the other plane, and the whole

f⃗ can be scaled. Otherwise, if the magnitude is negative, the input force is decomposed

as in equation (8.6) and equation (8.7) and scaled and composed as in equation (8.8). For

eiciency, the case of zero magnitude along n⃗ is included with the positive magnitudes

since it results in a simpler, but ultimately equivalent, computation. Overall, the resulting

force is computed by the piece-wise function

f⃗ ′ �





(1 − α) · f⃗ f⃗ · n⃗ ≥ 0

f⃗∥ + (1 − α) f⃗⊥ f⃗ · n⃗ < 0
(8.9)

where the component vectors f⃗∥ and f⃗⊥ are computed as in equation (8.6) and equation (8.7)

respectively.
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Response to other constraints

By combining elements of the two above responses, appropriate responses to the re-

maining constraints under consideration can be implemented. This is made substantially

easier by the fact that DoF-restoration is performed on forces at a per-voxel level; torques

are determined based on the forces, and thus there are only three degrees of freedom for

each voxelŠs response to consider. For instance, the linear annular constraint of a sphere in

a cylinder restores the same degrees of freedom as a cylindrical constraint: the additional

rotational degree of freedom is already handled by the along-axis translational freedom

restoration.

8.5. Results

The described algorithm has been implemented in the SPARTA virtual assembly applica-

tion. The hybrid method implementation builds on the existing VPS-based virtual assembly

functionality in SPARTA. Bodies with associated b-rep data are a subtype of standard VPS

bodies. When adding a body to the simulation, the collision link creation methods deter-

mine if both bodies contain b-rep data, in which case a speciĄc hybrid method collision link

is created that performs the collision detection and response as described in this paper. This

technique allows combining bodies with b-rep data and presumably a need for accurate

low-clearance assembly in the same simulation as bodies without this data, transparently

falling back to the pure tessellated geometry algorithm in cases where a b-rep-containing

body collides with a standard body.

To permit modiĄcation of response forces at a per-voxel level, efectively splitting colli-

sion detection and collision response, the VPS software in use was modiĄed and partially

refactored. The existing VpsPbmCollidemethod was split into a VpsPbmCollideX advanced

API method that returns a container with collision pairs and a method to transform and

sum the forces listed in those collision pairs to arrive at overall response forces and torques.

The VpsPbmCollide API used previously was retained as a wrapper around these two

refactored procedures for applications that do not require the force modiĄcation that the

hybrid method requiresŮessentially in the case of using the tessellated geometry algorithm.

In the hybrid collision link, the two procedures are called individually, with the constraint

detection and degree-of-freedom restoration as described here occurring in between.

8.5.1. Results

The improvements described here result in a hybrid collision detection and response

method that can maintain required high rates for haptic interaction. The simulation was
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instrumented to count the number of overruns: occasions when greater than 1.5 ms (1.5

times the time step) passed between simulation frames. The simulation results in a few of

these in normal operation of the tessellated geometry collision detection method without

negative consequences. Tests were performed on a workstation with a quad-core 3.2 GHz

Intel Xeon processor, 6 GB of RAM, an NVIDIA Quadro FX 5800 graphics card, a Sensable

Phantom Omni haptic device, and Windows 7 64-bit edition. Even though the Omni only

provides 3-DoF haptic feedback, full 6-DoF forces and torques were computed during

the test. In a representative trial manipulating and inserting a pin through a block with

a through-hole, a total of 45,833 frames were simulated, corresponding to a run-time of

45.8 s. In 11,053 of those frames, a collision was detected and responded to. With the

hybrid method active, only 57 overruns were recorded, roughly 0.5% of collision frames

and 0.1% of total simulation frames. This indicates that the simulation kept up at the

1000 Hz rate efectively continuously throughout the manipulation. This represents a

substantial improvement over [3], which reported large, consistent slowdowns below

500 Hz and frequently as low as 100 Hz during insertion. The haptic insertion with the

solution presented here is qualitatively smooth and free of unnatural force artifacts when

tested using the Omni.

Furthermore, initial validation was performed on the suitability of the algorithm for

improving the ability to assemble low-clearance objects. A 4.5 mm voxel size was used

with a cylindrical hole and pin with radius 75 mm and 70 mm respectively. The block with

the hole was 200 mm thick, and the pin was 400 mm long. Input from the Omni was scaled

by 4 to provide access to a larger workspace. With the hybrid method disabled, it was

very diicult to align the pin, insert it in the hole, and move it through the block. Any

mis-alignment was likely to result in the pin being jostled back out of the hole, providing

unnatural resistance to assembly. In a recorded demonstration, an experienced user was

only able to pass the pin through the hole 3 times in 28 s. After turning on the hybrid

method in the same setup, the pin passed through the hole 5 times in 10 s, with little

unnatural resistance.

8.6. Conclusion

Physically-based modeling for haptic virtual assembly requires high-speed collision

detection and response. Existing solutions result in incorrectly limiting degrees of freedom

because of geometric tesselation, operate too slowly to support haptic feedback, or require

manual intervention in a preprocessing step. A hybrid collision detection and response

algorithm Ąrst presented in [3] is promising. We broke down the hybrid method presented
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in that work into Ąve research tasks: voxel to b-rep initial association, voxel to b-rep look-

up, automatic constraint recognition, constraint alignment measure, and application of

constraint knowledge. Instead of solving constraints, then generating and blending an

artiĄcial Şconstraint forceŤ with the tessellated geometry algorithm results, we investigated

the direct, local restoration of degrees of freedom. Since the diiculty with tessellated

geometry algorithms is that they result in local forces that are artifacts of the tessellation and

artiĄcially limit degrees of freedom expected in the original model, we use the constraint

knowledge computed within the overall hybrid method to locally modify collision response

forces. We scale down components of these forces that are acting counter to a known degree

of freedom. The described solution has been implemented in a virtual assembly software

system using a modiĄed version of VPS, and functions to provide expected movement

in low-clearance assembly simulations. Its performance greatly exceeds that of earlier

related work, maintaining a haptic rate of 1000 Hz, while improving the ability to smoothly

assemble low-clearance models.
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CHAPTER 9. GENERAL CONCLUSION

The work included in this dissertation has spanned a range of topics related to enabling

natural interaction for virtual reality. In Chapter 2, the Şmissing linkŤ software between low-

cost, readily-available hardware for head tracking and standard commercial and academic

virtual reality applications was presented. The software discussed in that chapter has been

integrated into the upstream VRPN software system for several years and is now widely

distributed. It works toward natural interaction for virtual reality by enabling virtual reality

on an individual scale, with head tracking experiences at every desk rather than just in

VR-dedicated spaces.

VR JuggLua, presented in Chapter 3, contains a number of contributions. It permits

virtual reality application development to take place in Lua, a very high-level language

that is easy to learn, while not sacriĄcing the broad system support of VR Juggler [1]. It

provides an embedded domain-speciĄc language for creation of the most common scene

graph structures, while not limiting access to the full power of OpenSceneGraph. In the

run bufer structure, the interactivity of live code execution in a REPL is restored to the

event loop environment of a running virtual reality application. Through the careful

synchronization algorithm of this structure, the clustering capabilities of VR Juggler are

ampliĄed by enabling a live REPL with frame-consistent state across a many-node cluster.

The development of the coroutine-based Şframe actionŤ idiom in the VR JuggLua provides

both novice and experienced developers with a powerful tool for creating interactivity

in virtual environments through an apparent inversion of control. These facilities have

been used both by researchers working in the same team as myself as well as students in a

graduate virtual reality class and outside researchers.

The SPARTA (Scriptable Platform for Advanced Research and Teaching in Assembly)

virtual assembly software, the backdrop and implementation framework for the following

chapters, builds on VR JuggLua by adding a powerful physically-based modeling simula-

tion engine tuned for haptic interaction. SPARTA efectively provides a simulation core, as

well as a domain-speciĄc language for specifying virtual assembly simulations. It contains

essentially a super-set of the functionality of VR JuggLua, which has permitted the rapid

exploration of a number of techniques for natural interaction. SPARTA replaced existing
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legacy virtual assembly software (SHARP/SHARP-2 [7]) in our research group with a

more Ćexible, easier-to-maintain system well-suited as a platform for further research.

In Chapter 4 and Chapter 5, the problem addressed is the limited workspace of haptic

devices in virtual assembly simulations. The Şbubble techniqueŤ is a recently-developed

position-rate control method for virtually expanding the haptic workspace [3]. Chapter 4

contributes observations and analysis of problems arising from the interaction of virtual

assembly simulation and the bubble technique. It also presents a modiĄcation of the bubble

technique speciĄcally designed to counter these problems. In Chapter 5, the workspace

of a large haptic device is made physically even larger by a hardware-software-controls

integration. The combination of an omni-directional mobile robot base, a commercial

haptic interaction device, a velocity control algorithm for the mobile base, and the seamless

integration of these elements into a virtual assembly application (SPARTA) as efectively a

single very-large-workspace haptic device is the novel advancement contributed in that

work.

Chapters 6, 7, and 8 present contributions based on work advancing the state of the

art in low-clearance haptic virtual assembly. They build conceptually on initial work

[4, 6, 5] toward a hybrid method combining an tessellated geometry collision detection and

response library, VPS, with knowledge of original precise b-reps, constraint recognition,

and constraint solving to enable low-clearance assembly of CAD models with haptic force-

feedback. Chapter 6 contributes layers of de-duplication and redundant computation

elimination to the general hybrid method. It contributes a data structure, complete with

C++ implementation, based on the principle of Şhash-consing.Ť The data structure stores

only one copy of each unique value and returns logical references to the values as integer

look-up keys with constant-time retrieval. The use of this data structure dovetails with the

application of memoization, a technique for caching the results of pure functions for given

inputs so that the computation on an input value is only performed once. A basic, naive

implementation of the hybrid method given just previous work and the general algorithm

descriptions that open this chapter may be possible. However, it is the optimizations

contributed here that greatly bring down the computational load of implementing the

algorithm, enabling higher performance and greater scalability.

In Chapter 7, a novel design for one of the components of the hybrid method is pre-

sented. Given b-reps from two bodies that are known to be colliding, the method needs

to know if a geometric constraint arises from those b-reps that might be used to improve

the quality of interaction. Such an automatic constraint recognition engine is presented in

this chapter. The novel design avoids explicit coding of nearly all conditional statements

by the researcher-developer through application of type-driven C++ metaprogramming
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techniques. The constraint recognition problem is modeled as a multi-method, with com-

mutativity. Multiple dispatch is achieved directly and without boilerplate code or polymor-

phic inheritance through use of the boost::variant discriminated union class template

and its type-safe visitor facilities. Recognition of new pairs can be added in what resem-

bles a declarative (rather than imperative or procedural) style, through explicit template

specialization. A metaprogramming layer applying a compile-time conditional construct

automatically handles commutativity of arguments and converts researcher-developer

errors such as duplicated recognizers into compile-time errors, helping avoid run-time

logic errors. The zero-overhead abstractions applied result in maintainable software that

the compiler transforms into an eicient recognition engine with internal workings inlined

into the main procedure.

Finally, Chapter 8 takes a second look at the procedures of the hybrid method and

decomposes them into a number of distinct research tasks. A new solution for one of them,

the automatic constraint recognition problem, was already presented in Chapter 7. The

bulk of Chapter 8 focuses on the Şapplication of constraint knowledgeŤ task. The chapter

presents a novel approach to applying constraint knowledge acquired during the hybrid

method, focusing on degrees of freedom at a local level rather than a constraint system at a

more global (per-part-pair) level. The fundamental insight behind this alternate approach is

that the motivation for incorporating constraint knowledge into the collision detection and

response algorithm is that the purely tessellated geometry algorithms artiĄcially remove

degrees of freedom that are captured in the constraint knowledge computed. The steps

leading up to application of constraint knowledge inform the algorithm about geometric

constraints, and their corresponding degrees of freedom, expected from the simulation.

Then, at a local (per-voxel or similar discrete collision unit) level, the initial penalty response

forces computed can be modiĄed in the presence of a constraint, by selective reduction

or removal of ŞerroneousŤ response forces acting counter to a known degree of freedom.

This local degree-of-freedom restoration avoids the problems with constraint solving

highlighted in this chapter, as well as the sizable performance impacts of the constraint

solver. It serves as a parallel to the per-voxel tessellated geometry collision detection and

response algorithm that produces an overall physically-modeled response, as a per-voxel

correction based on local constraint knowledge that overall improves the quality of haptic

interaction.

Overall, the works in this dissertation represent distinct contribution to the state of

the art individually. Taken as a whole, they form a substantial pattern of contributions

toward enabling natural interaction for virtual reality. The low-cost virtual reality work

highlights the changes and opportunities available in the Ąeld as technology advances
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and economies of scale bring hardware supporting virtual reality into lower price ranges,

more workplaces, and our homes. The virtual reality software engineering work reveals

the beneĄts of bringing the tools from other areas (domain-speciĄc languages, REPL

environments, scripting languages) to bear on virtual reality development, as well as the

potential for additional system-level advancements in virtual reality frameworks. The

chapters addressing the haptic workspace highlight that not all haptic techniques are

applicable directly to virtual assembly, but novel combinations and integrations can result

in improved reachable workspace for any haptic application. The work on the hybrid

method highlights the depth of the low-clearance assembly problem, as well as the diversity

of full solutions that could be conceived to implement Şthe hybrid method.Ť

9.1. Recommended Directions for Future Research

The VR JuggLua software is quite complete in its present state, but additional develop-

ment and research is possible. Its extensive OpenSceneGraph binding coverage relies on

a C++ introspection library based on dynamically-loaded modules compiled from code

generated by header-parsing software, which only needs to be run by a developer when the

OpenSceneGraph library API changes. This introspection wrapper generation software,

which uses DoxygenŠs XML output mode to analyze classes, is complex and resource-

intensive, requires an extensive conĄguration Ąle to work around Ćaws in Doxygen and

limitations in the wrapper generator, and has not been fully updated to work with versions

of OpenSceneGraph released after it was removed from the general OpenSceneGraph

distribution after the 2.8 stable version series. The approach that seems best at this time is

to replicate the functionality of the wrapper generator in a new piece of software based on

the Clang compiler front-end libraries [2]. By using the actual compiler code as a library,

a Clang-based wrapper generator can be assured of accurate class information for use in

producing introspection wrappers. It would reduce the amount of code and conĄguration

needed in the actual generator signiĄcantly. In the long term, that introspection library

itself might be replaced by one based on embedding components of Clang and LLVM.

Additionally, explicit user studies on the usability of the VR JuggLua system, and further

developments improving the functionality of the integrated code console would be valued

contributions.

The modiĄcations to the bubble technique merit further evaluation. Anecdotal evidence

suggests difering efectiveness of the modiĄcations depending on the device used and its

native workspace. A gain-tuning procedure for the rate-control region of the original or

modiĄed bubble technique would also be a valuable development.
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The omni-directional mobile base for a haptic device would beneĄt from a characteri-

zation of its run-time capabilities and the efects, if any, that it has on the quality of force

display. The addition of rotational control to keep the haptic device out of the line of sight

of the user would be valuable. The control software layer would beneĄt from the addition

of physical boundary awareness, for more transparent use in facilities such as CAVEs that

have Ąxed walls.

There is still substantial research-worthy material in the general hybrid collision detec-

tion and response technique. Chapter 8 divides the method into Ąve tasks. In addition to

the more general contributions in those chapters, Chapter 6, 7, and 8 each present a new

solution to one of the tasks, leaving two tasks at the previous level of research. They are

the initial voxel to b-rep association and the constraint alignment measure . The previous

solution to the initial voxel to b-rep association task, based on the use of intersection de-

tection between b-reps in the proprietary geometric modeling kernel D-Cubed, did work

conceptually, but the software library brought to bear on the problem results in unnecessary

overhead and challenges for other researchers attempting to reproduce the research. The

underlying operation, determining which subset of b-reps pass through a cube of given size

and location, seems likely to have a simpler, faster implementation possible. The previous

solution to the constraint alignment measure problem, on the other hand, is less satisfactory.

It depends on the distance and angle from full alignment, in addition to the voxel size and a

Şpenetration depthŤ of unknown derivation. The fundamental weakness here is that a few

degrees of misalignment for a cylindrical pin-in-hole conceptually suggests a very diferent

alignment factor than the same number of degrees of misalignment between two planes.

An alternate measure of constraint alignment unique to each constraint type would be a

valuable addition. A more quantitative evaluation of the performance of a newer instance

of the hybrid method would also merit research attention.

Finally, developments in virtual reality hardware and software systems and usability

reminds us that there is a history, and a future, of more hobbyist and consumer-grade

virtual reality capable hardware in addition to academic and industrial progress. It is in

the best interest of academic VR research to neither desert their existing work for each

new release, nor to ignore the exciting developments. Instead, researchers should remain

engaged with these communities, pointing out the lessons already learned in academia

about virtual environments, and learning the new lessons discovered by broader audiences.

There is much future work in building new generations of the Şmissing linkŤ systems

connecting new hardware to the substantial base of existing knowledge and software

that is available in more conventional virtual reality, as well as improving the usability of

conventional VR hardware and software for developers and end-users.
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