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ABSTRACT

Evolution of software components may lead to compatibility problems, such as incorrect

executing results, compilation errors and system crashes. Solving those problems is a big

challenge in software engineering.

In the past decade, many automatic solutions to address this issue have been proposed.

However, all of them rely on extra change information (i.e., the information regarding the

changes of the upgraded components). Without such information, none of the existing solutions

can work. Therefore, how to fully automatically solve compatibility problems without extra

information is still an important open issue.

In the current study, I proposed an end-to-end solution to fully automatically adapt in-

compatible components without resorting to any extra information. It is composed of two

parts. The first part is TARP, an AI-planning based automatic refactoring history recon-

struction framework. For an upgraded component, TARP can automatically reconstruct the

missing refactoring history. The second part is ALTA, an automatic load-time adaptation

framework, which can adapt incompatible components on-the-fly according to the refactoring

history generated from TARP. Therefore, as an integrated solution with both TARP and ALTA,

compatibility problems among application and components can be fully automatically solved

to a very large extent.

The implementation of ALTA as ALTA*, and TARP as TARP*, were evaluated by con-

ducting five sets of tests. The experimental results show that the TARP* + ALTA* solution

can indeed fully automatically fix compatibility problems incurred to large-scale components

without any additional information.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

Software components upgrade frequently and some of the changes may lead to component

incompatibility. Component incompatibility may cause serious problems including incorrect

execution results, compilation errors and system crashes. Therefore, how to fix component

incompatibility is an important research issue. In the past decade, many solutions to address

this issue have been proposed, and most of them are semi-automatic [1, 2, 3, 4, 5, 6]. These

solutions require manually coded upgrade information, such as delta files, upgrading annotation,

or mapping rules, in order to then automatically migrate applications to fit new components.

However, developers may not be willing to manually develop such information for end users,

given that the process is usually complicated, fallible and time-consuming.

To overcome this limitation, several full-automatic solutions have been proposed [7, 8, 9].

Unlike semi-automatic ones, full-automatic solutions can work without human-coded change

information. One of the assumptions underlying these solutions is that developers use Eclipse

to refactor their components, thus the machine-recorded refactoring history can be available.

With this valuable change information, these full-automatic solutions can either replay all

changes to an application (i.e., to upgrade the application to fit the upgraded component) or to

components (i.e., to generate adapter/wrapping layers which provide both old and new API)

and solve the compatibility problems in a full-automatic fashion.

Although full-automatic solutions are impressive, all of them need to statically modify

either application or upgraded component, which may be prohibited by the license agreements

of the components. Moreover, it is not reasonable to assume that every end user can get

refactoring history of upgraded components from Eclipse. First of all, developers may use tools
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such as VI or notepad++, which do not automatically record refactoring history to refactor

their components. Second, if developers do use Eclipse but do not follow the recommended

steps (i.e., to use the refactoring wizards or hot keys) to refactor their components, Eclipse

cannot record the history. Therefore, in order to fix compatibility problems in general cases, it

is important to find a way to get refactoring history or change information directly from the

components instead of relying on machine recorded ones.

In the past decade, many static analysis methods have been proposed to get change infor-

mation directly from the source code of upgraded components. Antoniol et al. [10] formalized

information on APIs into linear algebra and vector compositions to infer possible refactorings.

Demeyer et al. [11] traced multiple versions of components and composed change metrics to

infer possible refactoring actions. Xing and Stroulia [12] applied reverse-engineering techniques

to the source code of the old (i.e., before upgrade) component and the new (i.e., after upgrade)

component to generate UML models of them. After that, they compared the generated models

to identify the changes of components. Godfrey and Zou [13] analyzed method-calling flow in

order to recognize method splitting and merging. Dig [14], Weissgerber and Diehl [15] scanned

the component’s source code and checked the similarities of all parts which shed light on the

changes being made. Kim et al. [16, 17, 18, 19] compared the similarities of all parts first, then

converted the results into template-based logic rules in order to recognize complex refactoring

activities.

Although these solutions are impressive, all of them share the same limitations:

1. Unable to detect Temporal-Dependent Refactoring Steps (TDRS): It is common

for developers to repeatedly refactor the same part of code [20]. TDRS are refactoring

steps applied to the same part of components in sequence, and each step shares at least

one transient refactoring parameter with its successor. A refactoring step is different

from a refactoring pattern because a refactoring step includes refactoring parameters but

a refactoring pattern does not. For instance, “move method C1.m1 to C2 ” is a refactoring

step but “move method” is a refactoring pattern. Transient refactoring parameters

are the refactoring parameters which do not exists either in the old or new



3

API.

Figure 1.1 illustrates this problem. Suppose when upgrading a component, you move a

method m1 from class C1 to class C2, then rename class C2 to C3 (see Figure 1.1). Since

C2.m1 (the dashed bubble in Figure 1.1 (B)) does not exist in either the old API or the

new API, it is a transient refactoring parameter. Thus, these two refactoring steps which

share it are TDRS. Because static analysis algorithms can only gather information from

the old and new API, they can never detect any refactoring steps related to transient

refactoring parameters. Therefore, none of them can detect TDRS.

2. Unable to work without source code: All methods mentioned above require source

code to do static analysis. However, compatibility problems may occur among third-

party components (see Figure 1.2). If binary releases of impacted components are the

only resources we can get (see the shadowed component X in the middle of Figure 1.2

(A) and (B)), all existing solutions cannot work.

3. Unable to verify generated results: These algorithms only generate “inferred re-

sults” without validating. Therefore, the results might contain false positives (i.e., found

refactorings did not exist in the real refactoring history) and false negatives (i.e., did not

find refactorings existed in the real refactoring history). Hence, it is risky to use the

results to conduct automatic component adaptations.

In summary, because of the critical limitations listed above, static analysis algorithms are

not applicable to discover missing change information for automated component adaptation.

1.1.1 The Proposed Solution

In the current study, a novel solution is proposed that can fully automatically adapt incom-

patible components without any extra information. It is composed of two parts (see Figure 1.3).

The first part is TARP (Testing and AI-Planning Based Refactoring Path Reconstruction

Framework), an AI-planning based automatic refactoring history reconstruction framework.

TARP is a novel solution for automatically reconstructing refactoring history (also known as

refactoring path), which overcomes the three limitations of static-analysis based solutions. The
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Figure 1.1 An example of Temporal-Dependent Refactoring Steps (TDRS): (A) shows the old

API of this component, (B) shows the intermediate API, and (C) shows the new

API. Method m1 in class C1 (denoted as C1.m1 ) was moved to class C2 and then

C2 was renamed to C3. These two refactoring steps, “move method C1.m1 to C2 ”

and “rename class C2 to C3 ”, are TDRS.

main idea of TARP is that it transfers a compatibility problems into an AI-planning problem,

while all supported refactoring patterns are available AI-planning actions (operations). In this

way, a generated plan is actually a refactoring path. TARP also uses an innovative technique

called adaptation-based testing which can verify if the generated path is correct. If incorrect,

TARP will go back to find another path, until it gets a right one. With TARP, the missing

refactoring history can be reconstructed by solely processing the old and new binary jar files.

The second part is ALTA, an automatic load-time adaptation framework for refactoring-

based evolution of software component. ALTA is an Aspect-Oriented-Programming (AOP)

[21] based on-the-fly automatic adaptation framework. By inputting refactoring history, ALTA

can generate run-time adaptation logic according to the given refactoring history, which can

dynamically weave the binary code to let an old application run with a new component without

any problem and fix compatibility problems on-the-fly. In this way, no applications or com-

ponents will be statically modified; therefore this solution is valid under all kinds of license

agreements.

Besides, ALTA is the foundation of TARP because TARP adopts ALTA internally to per-

form adaptation-based testings. The main idea of adaptation-based testing is the following.
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Figure 1.2 Example of a third-party API-caller. (A) Before upgrading component Y. (B)

After upgrading component Y. After upgrading Y, X and Y became incompatible.

Suppose that we have a set of old test cases (i.e., the tests generated for the old component)

which covers all the methods in the old API. Now, let us run the old tests directly with the new

component. If the old and new components are fully compatible, all the tests shall pass. But

if there are compatibility problems between the old and new components, we shall be able to

see problems (either errors or failures) in the test report — unless we can find a way to auto-

matically and fix all compatibility problems between these two components. Therefore, when

TARP gets a refactoring path from the internal AI planner, TARP will assume that the path

is correct, and ask ALTA to on-the-fly adapt old test cases with the new component. If there

are problems showed in the test report, TARP will know the path is incorrect. On the other

hand, if all the tests passed, TARP will know that the correct path has been found. In this

way, TARP successfully verify a generated refactoring path by performing adaptation-based

testing via ALTA.

The implementation of ALTA as ALTA*, and TARP as TARP*, were evaluated by conduct-

ing multiple sets of tests, including several open-source project’s tests. The experimental results

show that the TARP* + ALTA* solution is capable of fully automatically fixing compatibility

problems among large-scale components without any additional information.

In summary , the TARP + ALTA solution intends to achieve the following goals:

1. Can fully automatically adapt incompatible components without any extra information.
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Figure 1.3 Overview of the proposed solution. The white arrows (with solid lines) represent

data flows.

2. Can work without any source code of either applications or components.

3. Will not statically modify any application or component. In other words, all adaptations

can be done dynamically.

4. Can support Temporal-Dependent Refactoring Steps (TDRS).

1.2 Assumptions

This TARP + ALTA solution is under the following assumptions. For a given set of old

(i.e., before upgrade) and new (i.e., after upgrade) components:

1. All the refactoring actions applied to the old component are supported by ALTA as well

as TARP. In addition, no API has been deleted from the old component (i.e., no API

deletion). If this assumption does not hold, TARP will not be able to generate the correct

refactoring path, or TARP will not be able to use ALTA to verify the generated path.

2. The third-party AI planner included in TARP is able to generate a result, either a concrete

plan or a notice saying that there is no possible solution, for every model generated from

TARP as long as it is written in standard PDDL 2.1 [22]. If this assumption does not

hold, TARP may not be able to produce a reconstructed refactoring history.



7

3. The third-party test case generator included in TARP is able to generate test cases with

regression assertions [23] which cover all methods impacted by refactoring actions. In

other words, the test cases generated by TARP will be able to launch each impacted

method at least once and verify the correctness of the return value. If this assumption

does not hold, TARP will not be able to guarantee the correctness of generated refactoring

history.

1.3 Thesis Organization

The rest of this thesis is structured as follows. In Chapter 2, I introduce ALTA, and in

Chapter 3, I introduce TARP. Concluding remarks and future research direction are presented

in Chapter 4.
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CHAPTER 2. ALTA: Automatic Load-time Adaptation Technique for

Refactoring-based Evolution of Software Component

2.1 Introduction

Software evolution and maintenance is a fact of life [24, 25]. Enhancements, modifications,

and bug fixes are routinely made to a software component during its usable life. Sometimes,

upgrades can result in compatibility problems, such as incorrect executing results, compilation

errors and system crashes. Solving those problems is a big challenge in software engineering.

In past decade, a number of solutions categorized as semi-automatic have been proposed

[1, 2, 3, 4, 5, 6, 7, 8, 9]. Most of them require manually-defined “upgrading information”

for applications, such as conversion/mapping rules [4], delta files [1], communication protocols

[3] or upgrading annotations [2, 4, 5, 6]. With this information, these solutions can modify

the applications to fit the new Application Programming Interfaces (APIs) of the upgraded

components and eliminate compatibility problems in a system. Figure 2.1 illustrates this idea.

In Figure 2.1, each shape represents a public method or field. API-callers are represented in

black color, whereas API-providers in white color.

While semi-automatic solutions are promising methods, they are workable only when up-

grading information is defined. An end user of software components may not have sufficient

knowledge to define upgrading information, and the developer who upgrades the component

may not be willing to manually define upgrading rules because it is a time-consuming task.

Therefore, current semi-automatic solutions are not easily employed.

CatchUp! [7], ReBA [8] and Comeback! [9] are full-automatic solutions for component

adaptation. All of them require machine-recorded refactoring history. ‘In principle, any change

to a software program that preserves behavior can be understood as a refactoring.’ [9, P.3]



9

Figure 2.1 The main idea of fixing incompatibility problems by migrating application. (A)

System before evolution. (B) System after evolution. Application 1 (App 1) and

the upgraded Component (Cmp ver 2) are not compatible. (C) App 1 has been

migrated to App 1’; therefore compatibility problems were fixed.

When people refactor their components in Eclipse IDE (Integrated Development Environment)

[20], all refactor actions (i.e., refactorings) are automatically logged into refactoring history.

By analyzing refactoring history, these techniques can gather sufficient information to adapt

components, eliminating the need for manually-defined upgrading information.

Although full-automatic solutions are more practical than semi-automatic ones, these three

solutions have several limitations. For example, CatchUp! requires application source code,

which are not always available. ReBA and Comeback! cannot support refactorings that will

lead to conflict method signatures (called conflict-making refactorings in the rest of this

paper), such as changing the order of same type parameters, changing return types, hiding

methods, and adding new exceptions. In addition, all of them will statically modify source or

binary files, which may violate those components’ license agreements.

In this study, we proposed an automatic load-time adaptation technique for refactoring-

based evolution of software component (ALTA), a full-automatic compatibility solution for

refactoring-based evolution of software component, and ALTA*, an implementation of ALTA.

2.1.1 ALTA

The goal of ALTA is to overcome the limitations of previous methods. ALTA automatically

analyzes the refactoring history of the upgraded component, then generates a Jar file named

ALTA Aspect, which contains the logic of load-time adaptation written in AspectJ language.

By simply adding ALTA Aspect into classpath and specifying AspectJ’s class loader, users can
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Table 2.1 Comparison of full-automatic solutions. Red and Italic fonts highlighted the parts that leave

room for improvement.

Item Feature CatchUp! ReBA Comeback! ALTA

1 Static modification target Application Component Component None

2 Can work without source code? No Yes Yes Yes

3 Support load-time modification? No No No Yes

4 Support conflict-making refactorings? Yes No No Yes

correctly run the old application with upgraded components on standard JVM (Java Virtual

Machine).

ALTA has the following four important features:

1. Full-automatic adaptation: ALTA utilizes the refactoring history of upgraded com-

ponents; therefore it does not require any manually-defined upgrading information.

2. Load-time binary adaptation: ALTA uses the load-time weaving (LTW) technique

of AspectJ, which can adapt components when they are loaded. Therefore, ALTA will

not modify applications or components statically. ALTA also allows users to disable this

feature if there is no modification prohibition.

3. Source code free: ALTA does not require any source code of applications or compo-

nents.

4. Supporting conflict-making refactorings: By using the within keyword of AspectJ,

ALTA can change the behaviors of old method calls and preserve the behaviors of new

method calls. Therefore, it can support conflict-making refactorings.

ALTA is the first full-automatic compatibility solution supporting conflict-making refac-

torings. (See Table 2.1). In addition, ALTA also supports newer applications designed for

upgraded components. Because newer applications do not have compatibility problems with

upgraded components, they only need to be launched with an empty ALTA Aspect. Figure 2.2

shows the adaptation concept of ALTA.
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Figure 2.2 The main idea of ALTA’s load-time adaptation. (A) System after evolution. Ap-

plication 1 (App 1) and the upgraded Component (Cmp ver 2) are not compatible.

(B) With ALTA Aspect, App 1 can run with Cmp ver 2 correctly. App 2 also runs

under ALTA, but because it was designed with Cmp ver2, ALTA Aspect for App

2 is empty.

2.1.2 ALTA*

ALTA* is an implementation of ALTA. Currently ALTA* supports 12 categories of refac-

toring: 1) Change method signatures (including add/remove parameter, change the order

of parameters, rename method, change exception types, and change return type), 2) Move

method, 3) Rename field, 4) Move field, 5) Extract method, 6) Rename type, 7)

Move type, 8) Delete type, 9) Rename package, 10) Delete Package, 11) Remove

Package, and 12) Delete method.

We evaluated ALTA* with the following three types of experiments:

1. Compound refactoring tests: We consecutively applied different refactor actions to

one component and then asked ALTA* to adapt it to its old test cases. The experimental

results show that ALTA* can correctly adapt compound refactorings. This ability is

important because people may refactor a type, method or field repeatedly.

2. Open-source library tests: We randomly applied different refactorings to Apache

Commons library (version 3.0.1), then asked ALTA* to adapt it to its official test cases.

The experimental results show that ALTA* can effectively solve incompatibility problems

in real-world components.

3. Performance tests: We measured the performance of ALTA*. The experimental results
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show that the performance overhead of load-time adaptation feature is around 11%,

However, if users disable this feature, the performance overhead could be negligible.

The rest of this paper is organized as follows. Section 2.2 reviews information about the

refactoring process and how it is used in Eclipse. Section 2.3 discusses related works. Section

2.4 describes the proposed method. Section 2.5 shows the evaluation of our approach. Finally,

we draw conclusions in Section 2.6.

2.2 Background

Eclipse supports several types of refactorings, such as Change Method Signature and Move

Method. Suppose that there is a method printCode() defined as the following codes:

1 public void printCode ( int code ) {

2 System . out . p r i n t l n ( ”Code=”+code ) ;

3 }

If users want to add a String-typed parameter named message to the printCode() method

in Eclipse, they just need to right click on the printCode() method in Eclipse’s text editor and

click the “Refactor → Change Method Signature...” menu items. Then a GUI wizard will show

up for users to change the signature, and they just need to add a parameter here (see Figure

2.3). After pressing “Ok”, Eclipse will do the rest for them, including updating all method

callers. Moreover, by using refactoring wizards, Eclipse will automatically log all the refactor

actions. After that, users can export the refactoring history as a separate XML file, or include

the history file in exported files (see Figure 2.4). Figure 2.5 shows a sample refactoring history

file, which contains a Rename Method refactoring and a Rename Type refactoring.

2.3 Related works

2.3.1 Adapting by Aspect Oriented Programming

Using the AOP (Aspect-Oriented Programming) technique to do software adaptation is not

a new idea [26, 27, 28]. Camara et at. proposed a framework to support COTS composition [29],

Sanchez et al. used AOP to adapt synchronization policies [27]. However, ALTA is the first
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Figure 2.3 Refactoring wizard in Eclipse.

solution that conducts system-wide component adaptation without requiring any predefined

rules, protocol or middleware.

2.3.2 Full-Automatic Solutions

2.3.2.1 CatchUp!

CatchUp! [7] is the first full-automatic solution for solving compatibility problems. Two

primary assumptions are behind the solution. The first is that people use Eclipse to refactor

their components. Because Eclipse automatically logs all refactor actions into refactoring his-

tory, CatchUp! can use the refactoring history rather than human-coded upgrading information

to migrate incompatible applications. Another assumption, though indirect, is that developers

who upgrade the components are willing to share the refactoring history with users.

With CatchUp!, if the refactoring history of component is available, CatchUp! will replay

each refactor action one by one to the application; therefore CatchUp! will upgrade the



14

Figure 2.4 Exporting refactoring information in Eclipse.

application to fit the new APIs.

Although the solution is promising, it does not work if API-callers’ source code are unavail-

able. For example, all Eclipse plugins call the APIs of Eclipse framework but many of them

are released only in binary form [8]. In addition, one binary-released component may rely on

some other components. If there are any compatibility problems among those components,

CatchUp! cannot function. Figure 2.6 illustrates this idea. To sum, requiring source code is

a significant limitation of CatchUp!. ALTA does not have this limitation because ALTA does

not require any source code.

2.3.2.2 ReBA and Comeback!

ReBA [8] and Comeback! [9] followed same assumptions of CatchUp!. They overcame

limitations by instrumenting binaries of components instead of modifying their source code.

ReBA starts with the upgraded components (i.e., the components which have new APIs).

Next, it reads the refactoring history, then REVERSELY (i.e., from tail to head) processes

each refactor action to create a backward-compatible layer.
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Figure 2.5 Sample refactoring history file (in XML format).

Comeback! is slightly different. It starts with the old component. First, it copies the old

APIs into a wrapping layer. Unlike ReBA, these APIs are all empty stubs. Next, Comeback!

migrates the APIs in the binary wrapping layer by repeatedly replaying the refactoring history.

Finally, the stubs in the wrapping layer delegate all calls to the real (upgraded) components.

ReBA and Comeback! are both practical solutions because they can work without source

code. However, they share two limitations. First, both of them need to modify or copy the

binaries of components statically, which may be prohibited by the license agreements of the

components. Comeback! hides the upgraded components under the wrapping layer, and thus

needs to change the type information of the upgraded components. Although ReBA will not

modify any components directly, it needs to copy part of the bytecodes of components to the

backward-compatible layer. In other words, both solutions will be invalid under certain license

agreements. ALTA has the advantage of working with all kinds of license agreements before it

adapts components during the load-time.
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Figure 2.6 Example of a third-party API-caller. (A) Before upgrading Cmp (i.e., component)

B . (B) After upgrading Cmp B. Cmp B and A became incompatible, while only

the source of App (i.e., the application) is available.

Both ReBA and Comeback! provide old APIs and new APIs simultaneously. Therefore,

they are not able to support conflict-making refactorings. Figure 2.7 shows an example refactor

action. To handle this situation, ReBA will insert a new stub into the compatible layer (note

that it starts from the new APIs) shown in Figure 2.8.

1 Change method ’ pub l i c i n t u t i l .Math . div ( i n t i , i n t j , S t r ing msg) ’ to ’ pub l i c i n t
div ( i n t j , i n t i , S t r ing msg) ’

Figure 2.7 A refactoring which switches the first two parameters of method div().

1 u t i l .Math . div ( int j , int i , S t r ing msg) ; // beg inn ing
2 u t i l .Math . div ( int i , int j , S t r ing msg) ; //added

Figure 2.8 The stub generated by ReBA

However, this insertion will fail because the new stub (line 2 in Figure 2.8) has the same

method signature with the existing one (line 1 in Figure 2.8). Comeback! will create a wrapping

layer (note that it starts from the old APIs) shown in Figure 2.9, which also fails to put the

conflicting interfaces together. If ReBA and Comeback! skip the refactoring, then the entire

adaptation result will become incorrect. ALTA is unique in this aspect because it is able to

adapt conflict-making refactorings.
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1 u t i l .Math . div ( int j , int i , S t r ing msg) ; //added
2 u t i l .Math . div ( int i , int j , S t r ing msg) ; // beg inn ing

Figure 2.9 The stub generated by Comeback!

2.4 Method

2.4.1 Framework and Process

Figure 2.10 Architecture diagram of ALTA.

There are three main parts of ALTA (see Figure 2.10): Refactoring Dependency Resolver

and Path Finder (denoted as “Resolver” in the rest of this paper), ALTA Aspect Generator

(denoted as “Generator”), and Refactoring Categories Plugins (denoted as “Plugins”). Plu-

gins are the foundation of Resolver and Generator, because Resolver and Generator will ask

Plugins to provide critical information regarding specific refactoring categories.

When a refactoring history file is given, Resolver will first convert the history into a set of

refactoring paths, then Generator will use those refactoring paths to generate adapting logic

written in AspectJ. Next, ALTA will use AJC (the compiler of AspectJ) to compile the aspects

and produce a single Jar file (called ALTA Aspect). Finally, by indicating AspectJ class loader

and the ALTA Aspect, users can run the old applications with the upgraded components on

standard Java Virtual Machine (JVM).



18

2.4.2 Refactoring Nodes and Paths

The goal of Resolver is to analyze a given refactoring history and produce a set of refactoring

paths. A refactoring path is composed of linked refactoring nodes. Refactoring nodes in one

path are related to one another. Figure 2.11 (A) shows a refactoring path as well as the basic

structure of a refactoring node. A refactoring node is composed of three elements: 1) the

identity (signature) before this refactoring, 2) detailed information regarding this refactoring

(i.e., the raw data of this XML entry) 3) the identity after refactoring. For any two linked

nodes NodeX → NodeY, NodeX’s identity-after-change should always be equivalent to NodeY’s

identify-before-change. Figure 2.11 (B) shows an example of this concept. The identities

inside the two red circles are the same. After Resolver processes all the refactorings, the first

refactoring node’s identity-before-change in each path should exist in the old component (i.e.,

before upgraded), and the last refactoring node’s identity-after-change should exist in the new

(i.e., upgraded) component (see Figure 2.11 (C)).

(A)

(B)

(C)

Figure 2.11 Refactoring paths which contains many linked refactoring nodes.

2.4.3 Refactoring Dependency Resolver and Path Finder

Figure 2.12 shows the algorithm of Resolver.

In the beginning, Resolver will process one refactoring at a time (line 1 in Figure 2.12),

then find the correspondent plugin to construct the refactoring node. A plugin knows how to

retrieve the identity-before/after-change from XML. Then, Resolver will create a refactoring
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1 for each r e f a c t o r i n g R in the r e f a c t o r i n g h i s t o r y {
2 Get R ’ s r e f a c t o r i n g type T.
3 Use T to get R ’ s cor re spond ing p lug in P.
4 Create one r e f a c t o r i n g node N which r ep r e s en t s R by P.
5 i f (N can be appended in to an e x i s t i n g path H) {
6 Append N to the end o f H.
7 }
8 else {
9 Create a new ( empty ) path H.

10 i f (R i s not about changing package ) {
11 Generate compensative anc i ent nodes .
12 Add these compensative anc i ent nodes to H.
13 }
14 Add N to H.
15 }
16 i f (R i s not about changing method ) {
17 Generate impacted nodes .
18 Append these impacted nodes in to a l l r e l a t e d l i s t s .
19 }
20 }

Figure 2.12 The algorithm of Resolver (Refactoring Dependency Resolver and Path Finder).

node for this refactoring, then find out if this node can be appended to an existing refactoring

path. If the answer is yes, Resolver will append it to that path (line 6). If not, Resolver will

create a new (empty) path for it. However, before adding this node to the new path, we need to

consider refactorings that happened before. For example, suppose that there are two refactor

actions in the following history file:

1 rename ClassA to ClassB ;

2 rename ClassB .methodX ( ) to ClassB .methodY ( ) ;

When Resolver processes line 1 above (i.e., rename ClassA to ClassB), it will create one node

(denoted as nodeOfLine1), and its identity-before-change is ClassA and identity-after-change is

ClassB. Next, Resolver will create one new path, then add nodeOfLine1 to that path. Later,

when Resolver processes line 2 above, it will create a node (denoted as nodeOfLine2), and its

identity-before-change is ClassB.methodX() and the identity-after-change is ClassB.methodY().

Because ClassB is not equivalent to ClassB.methodX(), nodeOfLine2 cannot be appended to the

path which contains nodeOfLine2. In this case, Resolver will create a new path for adding

nodeOfLine2. However, nodeOfLine1 cannot be the first node of any path because its identity-
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before-change (i.e., ClassB.methodX()) does not exist in the old component. The reason for

this nonexistence is that the refactoring in line 1 above already renamed ClassA to ClassB.

Therefore, Resolver will create a special node called compensative ancient node, and its

identity-before-change is ClassA.methodX() and identity-before-change is ClassB.methodX() (see

line 11 and 12 in Figure 2.12). It is important to note that the identity-before-change of the

created compensative ancient node exists in the old component. Finally, Resolver will add

the compensative ancient node and the nodeOfLine2 into the new path respectively.

Similarly, if we rename a method ClassA.methodX() to ClassA.methodY() first and then re-

name ClassA to ClassB, Resolver will generate an additional node given that ClassA.methodY()

cannot be found in the new component. The identity-before-change of this new node is

ClassA.methodY() and its identity-after-change is ClassB.methodY(). Later, Resolver will ap-

pend it after the node which represents the rename method refactoring. We call this additional

node an impacted node (see line 17 and 18 in Figure 2.12). In this manner, Resolver will

produce a set of refactoring paths which satisfies Generator’s needs at the end.

2.4.4 ALTA Aspect Generator

The goal of Generator is to generate adaptive aspects based on a given set of refactoring

paths. Figure 2.13 shows a sample aspect generated by Generator. In the following situations,

Generator will apply different strategies to adapt components.

2.4.4.1 If there is a missing method

Generator will use AspectJ’s inter-type declaration to declare the missing method. The

content of the declared method is to delegate the call to the correct target. See line 8-12 in

Figure 2.13.

2.4.4.2 If there are conflict method signatures

Generator will use pointcuts with the within keyword in AspectJ to delegate old method

calls and keep new method calls unchanged. See line 19-24 in Figure 2.13.



21

2.4.4.3 If there is a deleted type (i.e., a class or a interface) or package

Generator will do nothing, but ALTA can use the classpath priority to let the application

search the required type or packages inside the upgraded components first, then search the old

components1. Because the application will not find the deleted type or package in the new

components, the deleted type or package will be loaded from the old components.

2.4.4.4 If there is a renamed class

Generator will use inter-type declaration to declare a hidden field in the old (before renamed)

class, and the hidden field’s type is the renamed class. Generator will use AspectJ’s wild card

pointcuts to forward all method calls toward the old type to the hidden object’s corresponding

method calls. In other words, this is indeed an AOP-based realization of an object-wrapping

technique. See line 4-6, 14-17 and 26-50 in Figure 2.13.

2.4.4.5 If there is a renamed interface

Generator will use inter-type declaration’s Declare Parents technique to declare the miss-

ing interface.

2.4.4.6 If there is a deleted method

Generator will copy the method body of the deleted method (in binary form) and stati-

cally inject it into the original owner type of this method. Because it will change the upgraded

component, this walk-around solution can only be applied when there is no modification re-

strictions.

2.4.5 Complete Example

Suppose that there is a ClassA.divide(int i, int j) API in the old component before

upgrade. During upgrade, it is first renamed to ClassA.division(int i, int j), then re-

named AGAIN to ClassA.div(int i, int j). Therefore, in the new component, there is

1To support deletion of types or packages, uses need to append the paths of old (before-upgrade) components
to the end of runtime classpath.
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a ClassA.div(int i, int j) API. And the refactoring history contains these two rename

method refactorings.

When ALTA receives the refactoring history file mentioned above, Resolver will build a

path that contains only two nodes. In the first (heading) node, the identity-before-change

is ClassA.divide(int i, int j), and the identity-after-change is ClassA.division(int i, int

j). In the second (tailing) node, the identity-before-change is ClassA.division(int i, int j),

and the identity-after-change is ClassA.div(int i, int j).

After retrieving the paths, Generator will generate adaptation logics via predefined strate-

gies. In this example, Generator will use AspectJ’s inter-type declaration to declare a ClassA.divide(int

i, int j) method, and its content simply forwards this call to ClassA.div(int i, int j).

Generator will skip all intermediate identities so that methods calls will not be forwarded

many times. With this load-time adapting rule, old applications can invoke divide(...) in the

upgraded components without any problem.

Regarding the switching parameter example mentioned in Section 2.3.2.2, the first two

parameters in method int ClassA.div(int i,int j,String msg) will be switched. However,

because this refactoring will not change the method signature, ReBA [8] and Comeback! [9]

will fail to generate adapting layers. In this case, ALTA will use AspectJ’s pointcut to define

the following rules:

1 around the method c a l l

2 ” i n t ClassA . div ( i n t i , i n t j , S t r ing msg) ” i s invoked {

3 // i n t e r n a l c a l l s

4 i f ( this c a l l i s invoked from the component i t s e l f ) {

5 invoke ClassA . div ( i , j , msg) , then return the r e s u l t .

6 }

7 // e x t e r na l c a l l

8 else {

9 invoke ClassA . div ( j , i , msg) , then return the r e s u l t .

10 }

The if statement shown in line 4 above is made possible by the within keyword of AspectJ

(you can also see line 19-24 in Figure 2.13.). With the rules above, all div(int,int,String)
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calls invoked from the component itself will simply use the upgraded version (see line 5 above),

but all external calls including old applications will call the same method while the first two

parameters are swapped (see line 9 above). In this way, ALTA successfully supports conflict

APIs.

2.5 Evaluation

We conducted three types of experiments to evaluate ALTA*, the implementation of the

ALTA framework. All experiments were conducted on a laptop with Intel Core i5 2.50 GHz

processor, and 4.00 GB of RAM.

2.5.1 Compound Refactoring Tests

Because developers may refactor a type, method or field repeatedly (these related refactor-

ings are called compound refactorings), it is important to verify if ALTA* can correctly sup-

port compound refactorings. Therefore, we customized a set of components named Component

version 1, then generated a set of test cases named Tests for Component version 1 by running

Randoop [23], a state-of-the-art automatic test case generator. Randoop will generate not only

the tests but also the regression assertions [23] for the components.

Next, we used Eclipse to consecutively apply different refactorings to some types or meth-

ods in the components, E.g., rename method pkg1.ClassA.methodX() to pkg1.ClassA.methodY(),

rename package pkg1 to pkg2, and add one parameter to methodY(). This gave us upgraded

components Component version 2, which was not compatible with Tests for Component version

1. Next, we exported the refactoring history as an XML script and passed it to ALTA* in order

to generate ALTA Aspect. Finally, by designating AspectJ’s class loader and ALTA Aspect, we

ran Tests for Component version 1 with Component version 2 on standard JVM. Figure 2.14

shows the test process.

Row 1 to 6 of Table 2.2 shows the test results. The “CRT 1” experiment (see row 1 in

Table 3.1) shows that the component was applied for two consecutive refactorings: rename a

type and then rename one of its methods (see column 2). A totoal of 4,299 tests were run with
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this upgraded component, which took 3,747 seconds. All passed, and the branch coverage of

the tests was 100% (see column 3).

CRT 2 was a complex case that changed a single method three times. CRT 3 contained a

hide method refactoring and CRT 4 had a change return type refactoring. Both are conflict-

making refactorings. In CRT 5, we added a String-typed parameter into method methodB(),

then removed one parameter. CRT 6 is the same example discussed in Section 2.3 that ReBA

[8] and Comeback! [9] could not support. All the CRT tests passed perfectly, showing that

ALTA* can correctly adapt compound refactorings, including conflict-making refactorings. This

ability is important because people may apply different refactor actions to one method (or type)

consecutively.

2.5.2 Open-Source Library Tests

We aimed to evaluate ALTA* with real-world components and their official test cases. To

achieve this goal, we conducted open-source library tests. The test process of Open-Source

Library Tests (OSLT) was similar to the process of CRT. However, in OSLT, we used real-

world open-source libraries as the subjects rather than self-created components. In addition,

we used official test cases released with the libraries to be the applications instead of auto-

generating test cases. In this experiment, we selected Apache Commons library version 3.0.1

as our subject, and its lines of code (LOC) is 104K. We randomly applied different refactorings

to it and then asked ALTA* to adapt the refactored library to the old official tests. The results

displayed in Table 2.2 row 7 and 8 show that ALTA* can effectively solve the incompatibility

problems in real-world components.

2.5.3 Performance Tests

We measured three different aspects of ALTA*’s performance. First of all, we tried to

understand the relation between adapted method count in one class and overall execution

time. In the target component, there was only one class which contains 10 methods. During

the tests, the application called all of the 10 methods in sequence 10 to 100 times. In each

method, we just use a FOR loop to call sum+=sum*a 1,000,000 times. Figure 2.15 shows the
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Table 2.2 Compound Refactoring Tests (CRT) and Open-Source Library Tests (OSLT) Re-

port.

Exp
No.

Refactoring Information Test Result and
Branch Coverage

CRT 1 Rename type ‘b.ClassA’ to ‘ClassA ren’;
Rename method ‘b.ClassA ren.methodB(...)’ to ‘methodB REN’;
Rename package ‘b’ to ‘b ren’

Tests run: 4299, Fail-
ures: 0, Errors: 0,
Time elapsed: 3.747
sec, 100%

CRT 2 Rename method ‘kslu.libA.LibClassA.methodD(...)’ to ‘methodD REN’;
Rename package ‘kslu.libA’ to ‘kslu.libA REN’ ;
Rename method ‘kslu.libA REN.LibClassA.methodD REN(...)’

to ‘methodD REN2’;
Rename method ‘kslu.libA REN.LibClassB.methodC(...)’ to ‘methodC REN’;
Rename type ‘kslu.libA REN.LibClassB’ to ‘LibClassB REN’;
Rename method ‘kslu.libA REN.LibClassB REN.methodB(...)’

to ‘methodB REN’

Tests run: 280, Fail-
ures: 0, Errors: 0,
Time elapsed: 0.929
sec, 100%

CRT 3 Change method ‘public int A.ClassA.methodA(int a)’
to ‘private int methodA(int a)

Tests run: 562, Fail-
ures: 0, Errors: 0,
Time elapsed: 0.706
sec, 100%

CRT 4 Change method ‘public int b.ClassA.methodB(int c, int d, int f)’
to ‘public long methodB(int c, int d, int f)’;

Change method ‘public int b.ClassA.methodA(int a)’
to ‘public long methodA(int a)’

Tests run: 3883, Fail-
ures: 0, Errors: 0,
Time elapsed: 2.224
sec , 100%

CRT 5 Change method ‘public void A.ClassA.methodB(int c, int f, int d)’
to ‘public void methodB(int c, String pig, int f)’;

Rename package ‘A’ to ‘A REN’;

Tests run: 1610, Fail-
ures: 0, Errors: 0,
Time elapsed: 2.634
sec, 100%

CRT 6 Rename method ‘util.Mathematics.divide(...)’ to ‘div’;
Rename type ‘util.Mathematics’ to ‘Math’;
Change method ‘public int util.Math.div(int i, int j)’

to ‘public int div(int i, int j, String msg)’;
Change method ‘public int util.Math.div(int i, int j, String msg)’

to ‘public int div(int j, int i, String msg)’

Tests run: 3442, Fail-
ures: 0, Errors: 0,
Time elapsed: 4.146
sec , 100%

OSLT 1 Rename method ‘org.apache.commons.lang3.text
.CompositeFormat.getFormatter()’ to ‘getFormatter REN’;

Rename type ‘org.apache.commons.lang3.builder.EqualsBuilder’
to ‘EqualsBuilder REN’

Tests run: 2039, Fail-
ures: 0, Errors: 0,
Time elapsed: 21.432
sec (no coverage data)

OSLT 2 Rename method ‘org.apache.commons.lang3.text
.CompositeFormat.reformat(...)’ to ‘reformat REN’ ;

Rename type ‘org.apache.commons.lang3.text
.CompositeFormat’ to ‘CompositeFormat REN’

Tests run: 2039, Fail-
ures: 0, Errors: 0,
Time elapsed: 22.647
sec (no coverage data)



26

result, where all methods were adapted by AspectJ’s inter-type declaration technique in (A)

and the pointcuts technique in (B). There are 3 lines in Figure 2.15 (A) and (B): the blue

line with the diamond-shaped legend represents the performance of NO AOP (i.e., running

the compatible applications and components without any adaptation), the red line the square-

shaped legend shows the performance of Static AOP adaptation (i.e., the LTW feature was

disabled), and the green line the triangle-shaped legend shows the performance of LTW AOP

(load-time weaving AOP adaptation). Figure 2.15 shows that if there is only one class, then the

performance difference among these three modes can be ignored. This is reasonable because

if there is only one class, the AspectJ’s class loader only needs to change one class definition

during the load time; therefore the overhead is negligible.

Second, we wanted to know the relation between the number of created objects and per-

formance. We generated 100 component classes, with each one containing 10 methods. All of

these methods were incompatible with the application and adapted by the inter-type declara-

tion technique. During the tests, the application called all of the 10 methods of each created

object 100 to 1000 times. In this set of tests, we ran sum+=sum*a 10,000 times in each method.

Figure 2.16 (A) shows the results. The performance difference between No AOP and LTW

AOP was close to a constant value 0.71 (second). (B) shows the overhead ratio. Because

the performance difference is a constant value, the overhead ratio decreased when the number

of created objects increased. This result is reasonable due to the fact that LTW AOP only

change the class definition when the classes are loaded. If the number of classes is fixed, the

performance overhead should be fixed as well.

Third, we wanted to know the relation between class count and performance. We generated

lots of classes, each one containing 10 methods, and all the methods were incompatible with an

application, so all of them needed to be adapted. We used inter-type declarations to adapt those

methods. In this set of tests, we ran sum+=sum*a 1,000,000 times in each method. Figure 2.17

(A) showed the result: when the class count increased, the performance difference between No

AOP and LTW AOP was also increased. Figure 2.17 (B) showed the overhead ratio: when there

were 700 classes, LTW AOP took almost 200% of time to finish the test. This is unacceptable.

However, the test results shown in Figure 2.17 were driven from extreme cases. In reality,
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people rarely upgrade every method in all classes. Therefore, we adjusted the setting, adapting

2 (out of 10) methods in a class only. This setting was much more reasonable. According to

the data shown in Figure 2.18 (A) and (B), ALTA’s LTW AOP adaptation overhead decreased

when the class count was less than 300, but it slightly increased after class count ≥ 400. We

think that AspectJ’s class loader did some performance optimizations so the local minimum

appeared when the class count equaled to 300. The average overhead ratio of all tests shown in

2.18 (B) was 0.1135. Therefore, we conclude that the performance overhead of the load-time

adaptation feature (if enabled) was around 11%. In addition, all the test results showed that

the performance overhead of Static AOP was negligible.

2.6 Conclusion

Upgrading software components may lead to compatibility problems. Generally speaking,

people should upgrade their applications to adopt new APIs. However, modifications of existing

applications can be risky and costly. In this study, we proposed ALTA, a complete solution that

can perform full-automatic load-time binary adaptation, and ALTA*, a tool that implements

ALTA. As long as the refactoring history of upgraded components is available, ALTA can run

old applications directly with upgraded components. In ALTA’s LTW mode, ALTA will not

modify any part of the system statically. Therefore, it can work under all kinds of license

agreements.



28

1 import java . lang . r e f l e c t . ∗ ;
2 p r i v i l e g e d aspect SampleAspect {
3
4 // in t e r−t ype d e c l a r a t i on : d e f i n e a hidden f i e l d .
5 public packageA . ClassA REN
6 packageA . ClassA . hiddenObj=null ;
7
8 // in t e r−t ype d e c l a r a t i on : d e f i n e a method .
9 public stat ic int packageA . ClassC . methodInClassC

10 ( java . lang . S t r ing var1 ) {
11 return packageA . ClassC . methodInClassC REN( var1 ) ;
12 }
13
14 // po in t cu t and adv i ce : handle a l l methods in ClassA .
15 Object around ( ) : c a l l (∗ packageA . ClassA . ∗ ( . . ) ) {
16 . . . // s k i p
17 }
18
19 // po in t cu t and adv i ce : handle c o n f l i c t−APIs
20 int around ( int var1 ) throws IOException :
21 c a l l ( int packageA . ClassA . go ( int ) throws IOException )
22 && args ( var1 ) && ! with in ( packageA . ∗ ) {
23 . . . // s k i p
24 }
25
26 // po in t cu t and adv i ce : handle a l l c on s t ru c t o r s o f ClassA
27 packageA . ClassA around ( ) :
28 c a l l ( packageA . ClassA .new ( . . ) ) {
29 . . . // s k i p
30 }
31
32 // po in t cu t and adv i ce : handle the ‘ s e t ’ a c t i on s
33 // o f a l l f i e l d s in ClassA
34 void around ( Object input , packageA . ClassA targ )
35 : s e t (∗ packageA . ClassA . ∗ ) && args ( input )
36 && ta rg e t ( targ )
37 && ! s e t (∗ packageA . ClassA . hiddenObj ) {
38 . . . // s k i p
39 }
40
41 // po in t cu t and adv i ce : handle the ‘ g e t ’ a c t i on s
42 // o f a l l f i e l d s in ClassA
43 Object around ( packageA . ClassA targ )
44 : get (∗ packageA . ClassA . ∗ )
45 && ta rg e t ( targ )
46 && ! get (∗ packageA . ClassA . hiddenObj ) {
47 . . . // s k i p
48 }
49 }

Figure 2.13 Sample aspect generated by Generator.
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Figure 2.14 The process of compound refactoring tests.

(A) (B)

Figure 2.15 Performance report. X-axis: number of method adapted in one class; y-axis:

performance.
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(A) (B)

Figure 2.16 Performance report. X-axis: number of object created; y-axis: performance.

100% of the methods in each class were adapted.

(A) (B)

Figure 2.17 Performance report. X-axis: the number of class adapted; y-axis: performance.

100% methods in each class were adapted.
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(A) (B)

Figure 2.18 Performance report. X-axis: adapted class count; y-axis: performance. 20% of

the methods in each class were adapted.
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CHAPTER 3. TARP: A Testing and AI-Planning Based Refactoring Path

Reconstruction Framework for Full-Automatic Component Adaptation

3.1 Introduction

Software components upgrade frequently and some of the changes may lead to component

incompatibility. Component incompatibility may cause serious problems including incorrect

execution results, compilation errors and system crashes. Therefore, how to fix component

incompatibility is an important research issue. In the past decade, many solutions to address

this issue have been proposed, and most of them are semi-automatic [1, 2, 3, 4, 5, 6]. These

solutions require manually coded upgrade information, such as delta files, upgrading annota-

tion, or mapping rules, in order to automatically migrate applications to fit new components.

However, developers may not be willing to manually develop such information for end users,

given that the process is usually complicated, fallible and time-consuming.

To overcome this limitation, several full-automatic solutions have been proposed [7, 8, 9, 30].

Unlike semi-automatic ones, full-automatic solutions can work without human-coded change

information. One of the assumptions underlying these solutions is that developers use Eclipse

to refactor their components, thus the machine-recorded refactoring history can be available.

With this valuable change information, these full-automatic solutions can either replay all

changes to an application (i.e., to upgrade the application to fit the upgraded component) or to

components (i.e., to generate adapter/wrapping layers which provide both old and new API)

and solve the compatibility problems in a full-automatic fashion.

Although full-automatic solutions are impressive, it is not reasonable to assume that every

end user can get refactoring history of upgraded components from Eclipse. First of all, devel-

opers may use tools such as VI or notepad++, which do not automatically record refactoring
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history to refactor their components. Second, if developers do use Eclipse but do not follow

the recommended steps (i.e., to use the refactoring wizards or hot keys) to refactor their com-

ponents, Eclipse cannot record the history. Therefore, in order to fix compatibility problems

in general cases, it is important to find a way to get refactoring history or change information

directly from the components instead of relying on machine-recorded ones.

In the past decade, many static analysis methods have been proposed to get change infor-

mation directly from the source code of upgraded components. Antoniol et al. [10] formalized

information on APIs into linear algebra and vector compositions to infer possible refactorings.

Demeyer et al. [11] traced multiple versions of components and composed change metrics to

infer possible refactoring actions. Xing and Stroulia [12] applied reverse-engineering techniques

to the source code of the old (i.e., before upgrade) component and the new (i.e., after upgrade)

component to generate UML models of them. After that, they compared the generated models

to identify the changes of components. Godfrey and Zou [13] analyzed method-calling flow

in order to recognize method splitting and merging. Dig [14] scanned the component’s source

code and checked the similarities of all parts which shed light on the changes being made. Kim

et al. [16, 17, 18, 19] compared the similarities of all parts first, then converted the results into

template-based logic rules in order to recognize complex refactorings activities.

Although these solutions are impressive, all of them share the same limitations:

1. Unable to detect Temporal-Dependent Refactoring Steps (TDRS): It is common

for developers to repeatedly refactor the same part of code [20]. TDRS are refactoring

steps applied to the same part of components in sequence, and each step shares at least

one transient refactoring parameter with its successor. A refactoring step is different

from a refactoring pattern because a refactoring step includes refactoring parameters but

a refactoring pattern does not. For instance, “move method C1.m1 to C2 ” is a refactoring

step but “move method” is a refactoring pattern. Transient refactoring parameters

are the refactoring parameters which do not exists either in the old or new

API.

Figure 3.1 illustrates this problem. Suppose when upgrading a component, you move a
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Figure 3.1 An example of Temporal-Dependent Refactoring Steps (TDRS): (A) shows the old

API of this component, (B) shows the intermediate API, and (C) shows the new

API. Method m1 in class C1 (denoted as C1.m1 ) was moved to class C2 and then

C2 was renamed to C3. These two refactoring steps, “move method C1.m1 to C2 ”

and “rename class C2 to C3 ”, are TDRS.

method m1 from class C1 to class C2, then rename class C2 to C3 (see Figure 3.1). Since

C2.m1 (the dashed bubble in Figure 3.1 (B)) does not exist in either the old API or the

new API, it is a transient refactoring parameter. Thus, these two refactoring steps which

share it are TDRS. Because static analysis algorithms can only gather information from

the old and new API, they can never detect any refactoring steps related to transient

refactoring parameters. Therefore, none of them can detect TDRS.

2. Unable to work without source code: All methods mentioned above require source

code to do static analysis. However, compatibility problems may occur among third-party

components (see Figure 3.2). If binary releases of impacted components are the only

resources we can get (see the shadowed component X in the middle of Figure 3.2 (A) and

(B)), all existing solutions cannot work.

3. Unable to verify generated results: These algorithms only generate “inferred results”

without validating. Therefore, it is risky to use these potentially invalid results as the

input of any full-automatic compatibility solutions.
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Figure 3.2 Example of a third-party API-caller. (A) Before upgrading component Y. (B)

After upgrading component Y. After upgrading Y, X and Y became incompatible.

3.1.1 The Proposed Framework

In this study, we introduce TARP (Testing and AI-Planning Based Refactoring Path

Reconstruction Framework). It is a novel solution for automatically reconstructing refactoring

paths to overcome three limitations in the existing solutions. Unlike static-analysis based

solutions, TARP embraces TDRS by adopting AI planning techniques [31]. We will briefly

introduce the AI Planning technique in Section 3.2.1.

3.1.1.1 Innovation of TARP

Figure 3.3 shows an overview of TARP. When we input the old and new components into

TARP, the problem modeling and solving module (PMSM) will model the APIs into an AI

planning problem. Then TARP will send this model with all predefined AI planning actions

(i.e., supported refactoring patterns) into an AI planner. The planer will generate a solution,

which is a sequence of AI-planning actions with parameters, e.g., {moveMethod(m1,C1,C2 );

renameClass(C2,C3 )}. In other words, it is a sequence of refactorings steps which changes the

old API to the new API.

After getting a refactoring path, we need to verify it, because sometimes a planner will give

us a wrong path. We need to make a clarification here that a path generated by a planner

will always be “AI-planning correct”, which means that it really changes the given world from
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Figure 3.3 Modules and conceptual data flows of TARP. There are three modules: Problem

Modeling and Solving Module (PMSM), Adaptation-based Testing Module (ATM),

and Result Analysis and Feedback Module (RAFM).

the initial state to arrive at the goal state. However, it does not refer to a “logically correct”

solution. We used an example to illustrate this idea (see Figure 3.4). In Figure 3.4, the model

(M) has more than one solutions. The solution shown in Figure 3.4 (A) contains 2 refactoring

steps, and (B) contains 4 steps. Because these two solutions can lead to exactly the same goal

state, they are both “AI-planning correct”. However, the meaning of these two solutions are

very different in that for (A) X.add() is renamed to X.deduct(), and for (B) X.add() is changed

to Y.sum(). In this case, only one solution could be correct. However, it is difficult to tell if

the generated path is correct because we don’t have the correct refactoring path to compare

with.

To verify if a generated result is “logically correct”, TARP’s Adaptation-based Testing
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Figure 3.4 A model with multiple solutions: (M) is the model, and solution (A) and (B) are

two possible solutions. While changing method X.add to Y.sum is more reasonable,

they are both seen as “AI-Planning correct” solutions given that (A) and (B) have

exactly the same initial state and goal state.

Module (ATM) will do the following:

1. Generate test cases for the old component: ATM will use a feedback-oriented test

cases generator to create test cases with assertions for the old component.

2. Run generated tests toward the new component: ATM will use an on-the-fly

adapter, such as ALTA* [30], to dynamically adapt the generated tests with the new

component according to the refactoring path generated by the AI planner.

If the generated refactoring path is logically correct, then the adaptation will be correct too.

Therefore, the test results will be positive. Otherwise, some tests must fail. For instance, if

the planner returns the path shown in Figure 3.4 (B), all the tests which want to call add(5,2 )

will be bridged to sum(5,2 ) and return 7 ; therefore, it passes the assertion statement. If the

planner returns the path shown in Figure 3.4 (A), add(5,2 ) will be adapted with deduct(5,2 )

and returns 3 ; therefore, the test result will be negative.
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If the test report shows that the generated path is correct, TARP will output this path as

the final product. If not, TARP will rerun the entire process to get another path. However,

before doing this, we need to change something in the initial state as well as the goal state of our

problem to avoid generating the same path, or the planner will definitely produce exactly the

same result. To achieve this goal, the Result Analysis and Feedback Module (RAFM) will ana-

lyze the report to generate “altering notes”, named Path Tokens, to let the Problem Modeling

and Solving Module know how to alter the initial state and the goal state when remodeling the

problem. If, for some reasons (e.g., the component was upgraded by unsupported refactoring

patterns) TARP cannot find a correct solution, it will output an empty path, meaning that

TARP is unable to solve this problem.

3.1.1.2 Implementation of TARP

We have also created TARP*, a lightweight implementation of TARP. TARP* currently

encoded 8 refactoring patterns, including “Rename Field”, “Move Field”, “Move Method”,

“Rename Method”, “Pullup Method”, “Rename Class”, “Move Class” and “Rename Package”.

TARP* chose PDDL 2.1 [22] to model AI planning problems and FF [32] as the AI planner. In

ATM, TARP* selected Randoop [23] as the test case generator, and ALTA* as the on-the-fly

binary adapting tool.

3.1.1.3 Evaluation of TARP*

To evaluate TARP*, we conducted the Open Source Component Refactoring Path

Reconstruction Test. In this test, we selected 3 open source components: Apache POI,

Apache Commons Lang, and Google Collection as our subjects. Then we carried out five

experiments. In each experiment, we picked up one of the subjects and applied different

refactoring steps. In two of these experiments, we even applied TDRS, which could not be

detected by any solutions in the existing literature. Next, we ran TARP*, as well as Refactoring

Crawler [14] and LSdiff [17], two state-of-the-art refactoring analysis tool, to detect refactoring

information of the upgraded subject. Then we compared the outputs of these three solutions.

Because the real refactoring history was available, we had no problems with verifying those
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outputs. The experimental results showed that TARP* can work well in real world projects.

More importantly, it is the only solution which can successfully detect TDRS.

In addition, to evaluate whether ALTA* can use the generated refactoring path to solve

compatibility problems, we conducted the Open Source Component Official Test Cases

Adaptation Test. In this test, we used the official test cases of these three open source

components (before upgraded) as applications, and let ALTA* adapt these applications with

the upgraded components on-the-fly. The experimental results showed that ALTA* successfully

fixed all compatibility problems.

To sum up, this work makes the following contributions:

1. Innovation: We proposed TARP, a novel and comprehensive solution, using AI planning

and on-the-fly Adaptation-based testing techniques to automatically reconstruct refactor-

ing paths for binary components.

2. Implementation: We implemented TARP*, a light-weight implementation of TARP.

3. Evaluation: We evaluated TARP* by conducting the Open Source Component

Refactoring Path Reconstruction Test and the Open Source Component Of-

ficial Test Cases Adaptation Test. The experimental results showed that TARP is a

workable solution for automatically reconstructing refactoring paths. More importantly,

it showed that full-automatic component adapting is possible.

The rest of the paper is structured as follows. In section 3.2, we briefly introduce the

background of AI planning and ALTA, followed by detailed discussions of TARP in Section

3.3. In Section 3.4, we introduce TARP*. In Section 3.5, we presented the evaluation results

of TARP*. Concluding remarks and future works were discussed in Section 3.6.

3.2 Background

3.2.1 AI Planning

AI Planning [31], or Automated planning and scheduling, is a branch of artificial intelligence.

AI planning has been widely applied to different software engineering fields. For example,
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Figure 3.5 Example of an AI planning problem

Memon et al. [33, 34] used AI-Planning to generate test cases for GUI applications. Moreover,

there are many studies applying AI-planning for web service compositions [35, 36, 37, 38, 39].

By modeling a planning problem into an initial state and a goal state of a specific world along

with a set of available actions, we can use a standard AI planner to find a sequence of actions

which will change the specific world from the initial state to arrive at the goal state. Figure

3.5 shows a common example of AI planning problems. In this problem, there are five objects:

two cargoes named Ax and Bx, one rocket named Rx, and two places named Lx (ground) and

Px (space). We can model this concept by the following types, objects and predicates:

1 ( : types

2 Cargo Rocket Place − Object

3 )

4

5 ( : p r ed i c a t e s

6 (At ?o − Object ?p − Place )

7 ( Has fue l ? r − Rocket )

8 ( In ? c − Cargo ? r − Rocket )

9 )

10

11 ( : ob j e c t s

12 Ax Bx − Cargo
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13 Rx − Rocket

14 Lx Px − Place

15 )

The “At” predicate in line 6 above tells if an object ?o is at the place ?p. The “Hasfuel”

predicate in line 7 returns true if the rocket ?r has fuel, and the “In” predicate in line 8 tells

if a cargo ?c inside a rocket ?r.

In the beginning, the rocket and these two cargoes are on the the ground, and the rocket

has enough fuel to fly to the space. So we can describe this initial state by the following model:

1 ( : i n i t

2 (At Ax Lx)

3 (At Bx Lx)

4 (At Rx Lx)

5 ( HasFuel Rx)

6 )

After a sequence of actions, we want these two cargoes to be placed in the space. We are

not concerned about the rocket in the goal state, so we don’t need to model it. Here is the goal

model:

1 ( : goa l

2 ( and

3 (At Ax Px)

4 (At Bx Px)

5 )

6 )

Now we need to provide possible actions for a planner to start planning. Suppose that we

define three possible actions of the rocket: load, unload and move. “load” can move a cargo

into a rocket in a certain place. “unload”, similar to load, can move a cargo out of a rocket in

one place. And “move” is to launch a rocket from one place to another. The followings are the

models:

1 ( : a c t i on load

2 : parameters
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3 (? r − Rocket ?p − Place ? c − Cargo )

4 : p r e cond i t i on ( and

5 (At ? r ?p)

6 (At ? c ?p)

7 )

8 : e f f e c t ( and

9 ( In ? c ? r )

10 ( not (At ? c ?p) )

11 )

12 )

1 ( : a c t i on unload

2 : parameters

3 (? r − Rocket ?p − Place ? c − Cargo )

4 : p r e cond i t i on ( and

5 (At ? r ?p)

6 ( In ? c ? r )

7 )

8 : e f f e c t ( and

9 (At ? c ?p)

10 ( not ( In ? c ? r ) )

11 )

12 )

1 ( : a c t i on move

2 : parameters

3 (? r − Rocket

4 ? from − Place ? to − Place )

5 : p r e cond i t i on ( and

6 ( not (= ? from ? to ) )

7 (At ? r ? from )

8 ( Has fue l ? r )

9 )

10 : e f f e c t ( and

11 (At ? r ? to )

12 ( not (At ? r ? from ) )
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13 ( not ( Has fue l ? r ) )

14 )

15 )

In each action, we need to define parameters, preconditions and the effects. Let us use

the “move” actions as an example. Line 2 to line 4 say that the move action will consider 3

parameters: a rocket ?r and two places ?from and ?to. Line 5 to line 9 are the preconditions.

Line 6 says that the two input places should not be the same. Line 7 and 8 say that the rocket

?r should be at the place ?from before performing this action and the rocket should have fuel.

Line 10 to 14 describe the post conditions. After performing this action, the rocket should

be at the place ?to (line 11), and the rocket should NOT be in place ?from (line 12). Finally,

it should not have fuel anymore (line 13).

Once we have the models, we can send them to a planner to get the result. The following

is a possible output from a planner, which is a sequence of actions with real parameters: {load

the cargoes to the rocket, launch the rocket and unload cargoes in the space}.

1 ( load Rx Lx Ax)

2 ( load Rx Lx Bx)

3 (move Rx Lx Px)

4 ( unload Rx Px Ax)

5 ( unload Rx Px Bx)

This solution does change the world’s status from the initial state to arrive at the goal state.

Since refactoring steps are also a sequence of actions which change a component’s API from

the initial state (i.e., the old API) to the goal state (i.e., the new API), it seems possible to use

AI planning to reconstruct missing refactoring paths.

There are mainly three famous languages designed for modeling AI Planning problems,

including STRIPS (Stanford Research Institute Problem Solver) [40], ADL (Action description

language) [41] and PDDL (Planning Domain Definition Language) [22]. Current, PDDL is the

most popular modeling language in AI planning area which includes all features of STRIPS

and ADL. Therefore TARP* chooses PDDL (version 2.1) as its modeling language. All models

shown in this section were also written in PDDL.
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3.2.2 ALTA and ALTA*

ALTA [30] is a framework which can adapt incompatible components on-the-fly. ALTA*

is an implementation of ALTA. ALTA relies on automatically recorded refactoring history

from Eclipse IDE. Because refactoring history contains enough information to do software

adaptation, the entire adaptation process is full-automatic. ALTA runs with binary files and

it does not need any source code of either application or software components.

The main idea of ALTA is to use Aspect Orient Programming (AOP) technique to do

adaptation during the execution time. For the example shown in Figure 3.1, if application

wants to call a method C1.m1 but this method was moved to C2, and C2 was renamed to C3

during upgrade progress, then this program call will fail and throw exceptions.

To fix this problem by ALTA, we need to export the refactoring history from the Eclipse

IDE. ALTA assumes that the history information is available — if this not true, then ALTA

cannot help in this case. Refactoring history is recorded automatically by default in Eclipse. In

the previous example, the history will show that there were two refactoring steps, first, move

method C1.m1 to C2. Second, rename class C2 to C3.

After this history information has been sent to ALTA, ALTA will start creating a mapping

table from the original API to the new API. The reason why ALTA wants to do that is that

ALTA wants to achieve a single-hop bridge so it wants to directly bridge the old API to the

new API. The followings are the generated mapping rules:

1 C1 .m1 −−> C3 .m1

2 C2 .m3 −−> C3 .m3

Note, although we did not touch m3 directly, it is also on the list because we renamed its

container C2 to C3.

Next, ALTA will generate adaptation logic written in AspectJ according to this mapping

table, and compile it as a Jar file. With this ALTA Jar file, the user can run their old application

(which needs C1.m1) with the new component (which only has C3.m1 ) correctly because ALTA

will dynamically redirect all method calls toward C1.m1 to C3.m1 and redirect the results back

to the caller. Figure 3.6 shows this idea.
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Figure 3.6 The concept of ALTA’s runtime adaptation. ALTA will redirect all Car.go() calls

to Car.move(), and redirect the return value back to the caller on the fly.

The biggest limitation of ALTA is that it relies on refactoring history. However, because

TARP can use AI Planning technique to reconstruct a refactoring path for ALTA, it is not a

problem anymore. Besides, since ALTA is the only solution to date which can perform on-the-

fly adaptation without requiring any source code, it is the best candidate for TARP to do the

adaptation-based testing in module ATM (see Figure 3.3).

3.3 Method

3.3.1 Preliminary Modeling Strategy

To verify if we can really use AI planning technique to reconstruct refactoring histories of

a upgraded component, we defined a preliminary modeling strategy as follows:

1. Types: We defined “class” and “method” as “Object” types. We omitted “field” and

“package” in this preliminary design. Besides, because PDDL has used the term “types”

already, we did not use this term to represent class or interface.

2. Predicates: We defined only one predicates: “(Contains ?parent - Object ?child - Ob-

ject)” to show the “containing” relation between a parent object and a child object.
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3. Actions: We defined only one pattern: “moveMethod” with 3 parameters: the method

name, parent class and the target class.

The following is the PDDL code of these settings:

1 ( : types

2 APIObject − ob j e c t

3 Class − APIObject

4 Method − APIObject

5 )

6

7 ( : p r ed i c a t e s

8 ( Contains

9 ? c − Class

10 ?m − Method

11 )

12 )

13

14 ( : a c t i on MoveMethod

15 : parameters (?m1 − Method

16 ?cFrom ?cTo − Class )

17 : p r e cond i t i on ( and

18 ( Contains ?cFrom ?m1)

19 )

20 : e f f e c t ( and

21 ( Contains ?cTo ?m1)

22 ( not ( Contains ?cFrom ?m1) )

23 )

24 )

In line 2, we define a type called APIObject which is a general type of package, class,

interface, method, and field. In line 17, we defined the precondition for this “moveMethod”

action. It says that the refactoring parameter ?cFrom must contains ?m1 in order to perform

this actions. In line 20, we described that after performing this action, class ?cTo must contains

?m1, and ?cFrom should not contain ?m1 anymore. Besides, in line 22, the negative condition,
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is very important. If we remove line 22, this “MoveMethod” action will simply build a new

“Contains” relation between ?cTo and ?m1. Meaning that the relation between ?cFrom and

?m1 will not be removed; therefore both ?cFrom and ?cTo will contain ?m1 after performing

this action. So adding negative conditions is critical when defining actions.

Moreover, for modeling a real problem, we used the following strategy to define objects, the

initial state and the goal state:

1. Objects: All objects shown in the old API and the new API. In this design, for each

object, we used its name (e.g., method name, field name, class name or package name)

as its object identity. For example, for a method C1.m1, we used m1 rather than C1.m1

as its identity. We did not use a full name (i.e., package name + class name + method

name) because we did not want to describe the “Contains” relation by anything else other

than the “Contains” predicates.

2. Initial state: The relations and facts in the old API. E.g., (Contains C1 m1 ) — which

represents that class C1 contains method m1 before refactoring.

3. Goal state: A SINGLE logic statement composed of relations and facts in the new API.

This statement needs to be true. E.g., (and (Contains C2 m1 ) (Contains C2 m3 ))

represents that class C2 will contain method m1 and m3 after applying all refactorings

steps.

Now we can start modeling real problems. The following is the PDDL code for modeling

the APIs shown in Figure 3.7 (A) and (B).

1 ( : ob j e c t s

2 C1 C2 − Class

3 m1 m2 m3 − Method

4 )

5

6 ( : i n i t

7 ( Contains C1 m1 )

8 ( Contains C1 m2 )

9 ( Contains C2 m3 )
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Figure 3.7 An example of the preliminary modeling strategy. (A) and (B) show a simplified

example from Figure 3.1. Note that Figure 3.1 (C) was removed from this example

so Figure 3.1 (B) became the new API. (C) and (D) are the model of this example

created by the preliminary modeling strategy, where (C) is the initial state and

(D) is the goal state. Note: the “C” icons represent the “Contains” relation.

10 )

11

12 ( : goa l

13 ( and

14 ( Contains C1 m2 )

15 ( Contains C2 m3 )

16 ( Contains C2 m1 )

17 )

18 )

Figure 3.7 (C) and (D) illustrates this model.

When we input this model into an AI planner, we will get the following refactoring steps:

1 { (MoveMethod m1, C1 , C2) }

This is exactly the missing refactoring history that we want to get. By showing this simple

example, we demonstrated that it is possible to reconstruct a refactoring path automatically

via the AI Planning technique.
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Figure 3.8 Example of the same-name problem. (A) shows that each class contains a method

named m2. (B) is what we want to define by our preliminary modeling strategy

but (C) is what we actually defined.

3.3.2 Handling Conflicting Names

Although the previous example shows that our preliminary modeling strategy works, this

strategy has a significant drawback: it does not allow same-named objects. Let us use an

example to describe this problem. Suppose that we want to model the API shown in Figure

3.8. In this diagram, both of classes C1 and C2 have a method m2. By applying our preliminary

modeling strategy (Section 3.3.1), we will define the following objects and predicates:

1 ( : ob j e c t s

2 C1 C2 − Class

3 m1 m2 m2 − Method

4 )

5 ( : i n i t

6 ( Contains C1 m1)

7 ( Contains C1 m2)

8 ( Contains C2 m2)

9 )

Although this model looks correct, it is actually not. The problem here is that the redundant

declarations of the two m2 methods in line 3 will only create ONE object in AI planner.
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Figure 3.9 Example of modeling a rename action. (A) is the precondition and (B) is the

post condition. Because all object’s identity cannot be changed in an AI planning

model, we model rename actions by using “HasName” predicates. In (C), the

method m001 is related to a name object called m1, and in (D), this method

object is related to another name object called m1 ren.

Therefore, although we thought that we built a model as 3.8 (B), we actually created a model

3.8 (C). In 3.8 (C), C1 and C2 share one APIObject m2, and this is not what we want.

To handle this problem, we modified our preliminary modeling strategy as follows. First of

all, we define a new type called “name”. Second, for each API object, we generate a unique id

as its identity. Third, we declare the API object’s name as a name-typed object, if it has not

been declared before. Finally, we define a new predicate “(HasName ?obj - APIObject ?name -

name)” to relate an API object with its name. In this manner, multiple API objects can share

one name. Figure 3.10 shows this idea.

In this modeling strategy, we can model all kinds of rename patterns (such as “rename

method”) into AI planning actions by manipulating the “HasName” predicates. Figure 3.9

shows this idea. In Figure 3.9 (A) and (B) we can see that a method m1 has been renamed to

m1 ren. Because we cannot really “rename” a name object in an AI planning problem, what

we need to do is to declare both name objects in the beginning, and use “HasName” predicate

to relate the method to the old name object in the init state (see 3.9 (C)) and to the new name

object (see 3.9 (D)). In addition, to support name swapping, TARP will predefine a dummy
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Figure 3.10 The solution of the same-name problem. (A) shows the API and (B) shows the

model. Each object has a unique serial number, and each icon “N” shows a

“HasName” relation, and diamond-shaped objects are name-typed objects. Note

that m0002 and m0003 share m2 because they have the same method name.

name object called DummyName in each generated model.

3.3.3 Handling Inheritance

Next challenge for us is how to model the inheritance relation in PDDL. We need inheritance

information to support some refactoring patterns such as “Pull Up Method”. But the problem

is: PDDL cannot support hierarchical relations. For example, suppose that a predicate (Parent

?parent ?child) means ?parent is the parent of ?child. Now, if we define “(Parent A B)” and

“(Parent B C )”, the planner will NOT know A is an ancestor of C because “(Parent A C )” is

still false. Of course we can define “(Parent ?grandParent ?parent ?child)” in this case, but it

is not possible and not reasonable to define an exhaustive list of this kind of predicates.

To solve this problem, TARP adopted two rules:

1. Flatten inheritance tree: TARP will flatten a inheritance tree before modeling it.

Flatten means that TARP will replace all indirect inheritances by direct inheritances.

Then all direct inheritance will be modeled by the following predicate: (Inherit ?classChild

?classParent).
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Figure 3.11 An example of modeling inheritance relations. (A) shows the API and (B) shows

the model. The icon “I” represents the “Inherit” predicate.

2. Ignore “out of scope” inheritance: If a parent class is not present in this model, then

this inheritance relation will be neglected.

Figure 3.11 shows an example. In Figure 3.11, class Vehicle is an ancestor of class Truck,

so TARP will create a predicate: (Inherit C001 C003 ). Besides, although class Vehicle extends

class Object, but because the object class is not in either the old API or the new API, TARP

will NOT mode that relation.

3.3.4 Handling Uncertain Identities in a Goal State

Although our new modeling strategy can handle conflicting names when modeling the initial

state (see Figure 3.10) and actions (see Figure 3.9), it is challenging to use this strategy to model

a goal state because the real identity behind an API object’s name is actually uncertain.

For example, suppose that we want to use the new modeling strategy to model the APIs

shown in Figure 3.12 (A) and (B). (Note that Figure 3.12 reuses the model shown in Figure

3.4). In the beginning, we need to declare all name objects which appear in either the old API

or the new API. So there will be 6 name-typed objects: X, Y, add, sub, deduct and sum. Next,

we model the initial state by assigning each API-object in the old API a unique id, then use

“HasName” and “Contains” predicates to describe their relationships. Figure 3.12 (C) shows
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Figure 3.12 An example of the uncertain identities problem. (A) is the old API, (B) is the

new API, (C) is the modeled initial state from (A), and (D) is the modeled goal

state from (B).

the result. In Figure 3.12 (C), the API object C001 has a name X and it contains another API

object m001 whose name is add, which tells us that “there is a class named X who contains a

method called add”. Similarly, this model also says that there is another class called Y who

contains a method named sub. This part is really straightforward.

However, when we start to model the goal state, we will soon realize that there is a big

problem: there are unknown identities. By observing Figure 3.12 (B), we know there are 4

API-objects, which need to be related to name objects deduct, sum, X and Y. Moreover, we

know that the API object related to name object X (denoted as a variable var3 ) will contain

another API object which is related to the name object deduct (var1 ). Similarly, we know that

var3 has a name Y, var3 contains var2, and var3 has a name sum. But the problem is how

to assign real identities to those variables.

We are in a dilemma. On one hand, we should not reuse the unique identities that we

assigned in the initial state because the identities behind the names might have already been

changed. A critical fact is that when we reuse an ID, we are actually binding all objects
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Figure 3.13 Goal state without API-object identities: all the relations cannot be built.

who share this ID. In other words, we make the planner biased. For example, if we assign a

value m001 to the variable var1 in Figure 3.12, we are telling the planner “the method named

add in the initial state is actually the method named deduct in the goal state. Under this

incorrect guidance, the planner can only produce a wrong path which contains “rename X.add

to deduct”. Therefore, it is risky to reuse any identities.

On the other hand, we should not assign new-generated unique identities to the API objects

in the goal state either. The reason is very similar: by assigning different identities to two API

objects, we are actually telling a planner that “these two objects are not the same”. For

example, if we assign m777 to var1 in Figure 3.12, the planner will not be able to produce any

result because the goal state is unreachable.

To solve this dilemma, we decided not to assign any identity to the API objects in a goal

state. As we discussed above, this is the only way that we will not bias the planner. However,

if we don’t assign identities to API objects, we cannot make predicates such as “contains” or

“HasName” because these predicates need identities as input parameters. Figure 3.13 illustrates

this idea.

Therefore, we introduced a new concept called “signature path”. In a sentence, “signature

path” combines the concept of “HasName” and “contains” predicates while bypassing object

identities. In signature paths, we simply describe a sequence of names in a structural order:

a parent’s name, a child’ name, a grandchild’ name, and so on. No matter how long a path

is, a parent’s name is always followed by one of its children’s name. Figure 3.14 (A) and (B)

show this idea. In Figure 3.14 (A), we cannot define any “HasName” or “contains” predicates
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Figure 3.14 The concept of a signature path. (A) shows a goal state without any identity

of API-objects; therefore we cannot create “HasName” or “Contains” predicates.

(B) shows a signature path that describes a path which includes a class name and

a method name.

because we don’t know any object identities in the goal state. In Figure 3.14 (B), by defining

a signature path: {X,deduct}, we successfully described that there is a class named X which

contains a method named deduct, where both of the API objects’ names are unknown.

For realizing this concept, we defined a set of predicates called “SignaturePathTillXYZ”.

“XYZ” represents the end point of this path. For example, the predicate “(SignaturePathTill-

Method ?className - Name ?methodName - Name)” describes that there is class whose name

is ?className, and it contains a method whose name is ?methodName. Similarly, the “(Signa-

turePathTillClass ?className - Name)” predicate describes that there is class whose name is

?className. Note that although a longer path may contain more information than a shorter

paths (e.g., (SignaturePathTillMethod X add) v.s. (SignaturePathTillClass X )), we cannot

neglect the shorter one because we still need to keep track of a container while it contains noth-

ing. For example, if there is no “SignaturePathTillPackage”, then we have no way to describe

an empty package in a goal state. This part is especially important when we do complexity

reduction. We will discuss this issue in Section 3.3.8.

In this way, we can redefine predicates in the goal state of the problem shown in Figure

3.12. Figure 3.15 (B) and (D) show the results. Besides, we also need to add “signaturePath”

predicates in the initial state, or the goal state will never be reachable. Figure 3.15 (A) and

(C) show an example.

In addition, we also need to modify related actions so that the signature path will be

modified after those actions. For example, a new “renameMethod” action can be defined as
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Figure 3.15 Goal state without API-object identities but with signature paths: all the impor-

tant concepts have been correctly captured.

follows:

1 ( : a c t i on renameClass

2 : parameters (

3 ? class − Class

4 ?cName − Name

5 ?method − Method

6 ?oldMName − Name

7 ?newMName − Name

8 )

9

10 : p r e cond i t i on ( and

11 ; ; ob j e c t s t r u c tu r e

12 ( Contains ? class ?method )

13

14 ; ; name r e l a t i o n s

15 (HasName ? class ?cName)
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Figure 3.16 A sample “rename method” actions that supports name path. (A) is the pre-

condtion and (B) is the post condition.

16 (HasName ?method ?oldMName)

17 ( not (HasName ?method ?newMName) )

18

19 ; ; s i gna tu r e paths

20 ( SignaturePathTil lMethod

21 ?cName ?oldMName)

22 ( not ( SignaturePathTil lMethod

23 ?cName ?newMName) )

24 )

25

26 : e f f e c t ( and

27 ; ; ob j e c t s t r u c t u r e s

28

29 ; ; name r e l a t i o n s

30 ( not (HasName ?method ?oldMName) )

31 (HasName ?method ?newMName)

32
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33 ; ; change s i gna tu r e paths

34 ( not ( SignaturePathTil lMethod

35 ?cName ?oldMName) )

36 ( SignaturePathTil lMethod

37 ?cName ?newMName)

38 )

39 )

Line 19 to 23 is the preconditions regarding signature paths. Line 20 and 21 say that

there should be a signature path from ?cName to ?oldMName before performing this action,

which means there is a class object named ?cName which contains a method named ?old-

Name. Moreover, in line 22 and 23, we claim that there should be no signature path from

?cName to ?newMName. Line 26 to 37 is the post condition; in line 34 to 37, we state that

the old signature path does not exist anymore, and the new signature path from ?cName to

?mNewName appeared. In this way, signature paths in the initial state can be manipulated by

different actions so that the goal state could be reachable. Figure 3.16 shows the concept of the

“renameMethod” action that we discussed above. Note: because this “renameMethod” action

will not modify any “signatureTillClass” predicates, there is no “signatureTillClass” shown in

Figure 3.16.

3.3.5 Supporting New API

TARP can support method creation.

The main idea of method creation is that TARP will create and reserve a pseudo method

“mNew” for method creation in each model. When TARP wants to create a new method, it will

execute the action “createMethod(?class, ?className, ?method, ?methodName)” by passing an

mNew object. In this action, the predicate (Contains ?class, ?method), (HasName ?method

?methodName) and (SignaturePathTillMethod ?className, ?methodName) will be built, and

therefor fulfills our needs.

Figure 3.17 shows an example. Figure 3.17 (B) is the initial state and Figure 3.17 (D) is the

goal state. To reach the goal state, the “createMethod” action will be called, then all relations
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Figure 3.17 An example of supporting new methods.

showing in Figure 3.17 (F) will be built. If you compare Figure 3.17 (D) and Figure 3.17 (F),

you can see that all desired predicates are true.

There are two important features of mNew. First, mNew can be “contained” in many

classes, and it can contain multiple names. Second, mNew cannot be involved in any refactoring

pattern except for the “createMethod” action.

Similarly, TARP also supports creating packages, classes and fields.

3.3.6 Modeling API Deletion

Unlike method creation, TARP cannot support method deletion.

For an upgraded component, if there are some methods removed from the new API, because

the old tests which rely on the removed methods will always fail, TARP will not be able to

output a verified refactoring path. Therefore, TARP cannot support API deletion. More

discussion about verifying the correctness of a generated path can be found in Section 3.3.9.
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Figure 3.18 An example of supporting method deletions.

Even so, TARP can still model API deletion and ask the planner to generate a refactoring

path. The main idea of modeling method deletion is that when TARP wants to delete a method,

it will execute the action “deleteMethod(?class, ?className, ?method, ?methodName)”. In

this action, the predicate (Contains ?class, ?method), (HasName ?method ?methodName) and

(SignaturePathTillMethod ?className, ?methodName) will be set to false, therefore fulfills our

needs.

Figure 3.18 shows an example. Figure 3.18 (B) is the initial state and Figure 3.18 (D) is the

goal state. To reach the goal state, the “deleteMethod” action will be called, then all relations

show in Figure 3.18 (F) will be built. If you compare Figure 3.18 (D) and Figure 3.18 (F), you

can see that all desired predicates are true. Similarly, TARP can also model the deletion of

packages, classes and fields.
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Figure 3.19 The concept of Pull-up methods.

3.3.7 Supporting Variadic Refactoring Patterns

Another challenge for us is to model variadic refactoring patterns into AI planning actions.

Variadic refactoring patterns can modify arbitrary number of API objects in one refactoring

step. For example, a single pull-up method refactoring step can pull up a method from N

child classes to their parent class (see Figure 3.19), where N is a positive integer. However,

all AI planning modeling languages, including PDDL, do not support variadic actions, which

means that an action needs to have a fixed number of parameters. For instance, to support a

pull-up method action which pulls up a method from two child classes, we need to define an

action which expects two child classes as its parameters. However, this action cannot pull up a

method from three child classes because the number of parameters is unmatched. Furthermore,

it is impossible to run a pull-up method action for multiple times to gradually pull-up child’s

method to its parent because a parent class cannot own multiple copies of the (pulled-up)

method.

A näıve solution for this problem is to define a set of similar actions with different number

of parameters. For instance, we can prepare the following set of “pullUpMethod” actions to

support pull-up methods from 1 to 5 child classes (note that we neglect some parameters

regarding signature paths for saving spaces in all examples in this section. The main

idea of all examples will remain the same after this simplification):

1 ac t i on pullupMethodFrom1Child :

2 (?c1m1Name ?c1m1Obj ?c1Name ?c1Obj

3 ?cParentName ? cParentObj )
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4

5 ac t i on pullupMethodFrom2Children :

6 (?c1m1Name ?c1m1Obj ?c1Name ?c1Obj

7 ?c2m2Obj ?c2Name ?c2Obj

8 ?cParentName ? cParentObj )

9

10 ac t i on pullupMethodFrom3Children :

11 (?c1m1Name ?c1m1Obj ?c1Name ?c1Obj

12 ?c2m2Obj ?c2Name ?c2Obj

13 ?c3m3Obj ?c3Name ?c3Obj

14 ?cParentName ? cParentObj )

15

16 ac t i on pullupMethodFrom4Children :

17 (?c1m1Name ?c1m1Obj ?c1Name ?c1Obj

18 ?c2m2Obj ?c2Name ?c2Obj

19 ?c3m3Obj ?c3Name ?c3Obj

20 ?c4m4Obj ?c4Name ?c4Obj

21 ?cParentName ? cParentObj )

Line 1 to 3 define an action which can pull up a method from one child class, where line 5

and 8 define another action which can support 2 child classes. In Line 6, ?c1m1Name is the

method name of the method that we want to pull up to the parent class, where ?c1m1Obj is

the real API object which has that name. ?c1Obj is the container of ?c1m1Obj, and ?c1Name

is its name. In line 7, we define ?c2Obj, a sibling of ?c1Obj, whose name is ?c2Name. Note that

although we define ?c2m2Obj, we do not define ?c2m2Name because all the methods that will

be pulled-up to the parent should share the same name in this refactoring pattern (see Figure

3.19). Finally, in Line 8, we define the parent’s object and name.

Although this solution works in some cases, since it is impossible to provide an exhaustive

list of those actions, we can never fully support this kind of refactoring patterns.

Therefore, to fully support variadic refactoring patterns, we proposed two new mecha-

nisms called “Refactoring Transaction” and “Parameter Reducing”. The “Parameter

Reducing” mechanism provides a way to gradually reduce the number of parameters of a
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refactoring pattern until the minimum number of parameter of this pattern is reached. With

“Parameter Reducing”, we can support a variadic refactoring pattern by defining an action

with that minimum number of parameters. For example, the minimum number of parameters

is 6 in the pull-up method pattern (see line 2 to 3 in the list above), we can fully support the

pull-up method pattern by defining one 6-parameter action. Besides, “Refactoring Trans-

action” creates a pseudo atomic transaction for the parameter-reducing process so that it will

not be interrupted by any other actions.

A refactoring transaction is composed of at least three refactoring actions, where the

first one is a “transaction-start action”, the last one is a “transaction-end action”, and the

actions in between are “in-transaction actions”.

A “transaction-start action” needs to set a semaphore (i.e., a lock) to ON to prevent a

planner from executing irrelevant actions. Besides, it also needs to register this transaction

by creating a predicate which contains the name of this transaction as well as some of its

parameters. This step can prevent a planner from executing “in-transaction action” with

different parameters. With “refactoring transaction”, we can execute multiple actions as one

atomic action with arbitrary number of parameters.

A “transaction-end action” need to set the semaphore to OFF and deregister this transac-

tion. Actions which belong to this transaction can only be executed when the semaphore is

ON and the transaction is registered. In contrast, all irrelevant actions can only be executed

when all semaphores are off.

With “Refactoring Transaction” and “Parameter Reducing”, we can encode a vari-

adic refactoring pattern into a sequence of actions with a fixed number of parameters. For

example, we can define the “pull up method” as the following 3 actions:

1. pullupMethod start (?c1m1Name ?c1m1Obj ?c1Name ?c1Obj ?cParentName ?cPar-

entObj ): The “transaction-start action”. Figure 3.20 (A) shows this idea. It will do the

followings:

(a) Make sure the semaphore is set to off : Check if “NotPullingMethod” is true.

If not, do not continue.
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(b) Set the semaphore to on: Set “NotPullingMethod” to false.

(c) Register this transaction: Register all of its parameter with predicate“CurrentPulling”.

2. pullUpMethods mergingSiblings (?c1m1Name ?c1m1Obj ?c1Name ?c1Obj ?c2m2Obj

?c2Name ?c2Obj ?cParentName ?cParentObj ): The “in-transaction action”. This is the

place to do Parameter Reducing. Figure 3.20 (B) and (C) show this idea. In this step,

it will do the followings:

(a) Make sure the semaphore is ON and this transaction is registered: Check

if the “NotPullingMethod” is false and if the predicate (CurrentPulling ?c1m1Name

?c1m1Obj ?c1Name ?c1Obj ?cParentName ?cParentObj ) is true. If not, do not

continue.

(b) Make sure the two input methods can be merged: Check if ?c1m1Obj and

?c2m2Obj share ?c1m1Name, and whether both of ?c1Obj and ?c2Obj inherit

?cParentObj. If not, do not continue.

(c) Merge these two input methods: Copy all necessary properties (e.g., path to-

kens, see Section 3.3.10) from ?c2m2Obj to ?c1m1Obj and then remove ?c2m2Obj

from ?c2Obj.

3. pullupMethods end(?m1Name ?m1Obj ?c1Name ?c1Obj ?cParentName ?cParentObj ):

The transaction-end action. Figure 3.20 (D) show this idea. This is the only step which

pulls the method up. It will do the followings:

(a) Make sure the semaphore is ON and this transaction is registered: Same

as step 2 (a).

(b) Pull up the method: Move ?c1m1Obj from ?c1Obj to ?cParentObj.

(c) Set semaphore to OFF and deregister the transaction: Set “NotPulling-

Method” to true and the predicate (CurrentPulling ?c1m1Name ?c1m1Obj ?c1Name

?c1Obj ?cParentName ?cParentObj ) to false.

If the real refactoring history contains a pull-up method refactoring step shown in Figure

3.19, a planner will produce the following path:
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Figure 3.20 Model the pull-up method pattern by refactoring transaction and parameter re-

ducing.

1 ( pul lupMethod start

2 getName m001 Salesman c001

3 Employee c003 )

4 ( pul lUpMethods mergingSib l ings

5 getName m001 Salesman c001

6 m002 Engineer c002

7 Employee c003 )

8 ( pullupMethod end

9 getName m001 Salesman c001

10 Employee c003 )

Where c001 is the object identity of the class named “Salesman”, c002 is “Engineer” and

c003 is “Employee”. m001 is the object identity of the Salesman.getName(), and m002 is
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the identity of Engineer.getName(). As we mentioned above, these 3 steps simulate a single

pull-up method refactoring step. For a pull-up method pattern which includes 3 child classes

(see Figure 3.20), the planner will generate 4 steps: 1 pullupMethod start, 2 pullUpMeth-

ods mergingSiblings, and 1 pullupMethod end.

Therefore, with the parameter reducing and refactoring transaction mechanism, TARP can

support variadic refactoring patterns.

3.3.8 Handling Huge Number of Objects

There might be a huge number of packages, classes, methods and fields in an API. Do we

need to encode everything into an AI planning model? Not really. In fact, we only need to

encode the changed parts (i.e., the parts impacted by refactoring actions). Thus, TARP uses an

algorithm named “Simple Diff” to remove all unchanged packages, classes, methods or fields.

The pseudo code of this algorithm is as follows:

1 For each package P in API old{

2 I f ( e x i s t s package P ’ in API new and P. name == P ’ . name ) {

3 I f (P. content == P ’ . content ) {

4 d e l e t e P and P ’ ;

5 }

6 Else {

7 For each class C in P{

8 I f ( e x i s t s Class C ’ in P ’ and C. name == C ’ . name ) {

9 I f (C. content == C ’ . content ) {

10 d e l e t e C and C ’ ;

11 }

12 Else {

13 For each method M in C{

14 I f ( e x i s t s method M’ in C ’ and M. s i gna tu r e == M’ . s i gna tu r e ) {

15 d e l e t e M and M’ ;

16 }

17 }

18 For each f i e l d F in C{

19 I f ( e x i s t s method F ’ in C ’ and F . s i gna tu r e == F ’ . s i gna tu r e ) {
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20 d e l e t e F and F ’ ;

21 } } } } } } } }

This reduction algorithm can effectively remove unchanged parts before we start creating

an AI planning model. In this manner, we can save a lot of AI-planning computation time by

reducing the sizes of input models [32].

3.3.9 Verifying the Correctness of a Generated Path

Once we have an AI planning model, we can ask an AI planner to generate a plan for us.

If the goal state is unreachable from the initial state with given actions, the planner will also

tell us that there is no solution for this problem. Otherwise, we will get a plan. In our model,

a plan is actually a refactoring path (or history). However, as we discussed in Section 3.1 (see

Figure 3.4), there might be some incorrect paths from the old API to the new API. Therefore,

we need to verify if the path is “logically correct”. However, we only have limited information:

we don’t have the actual refactoring path to compare with, and we don’t have the source code

of any component (TARP only receives binary jar files from the components; see Figure 3.3)

either.

To achieve this goal, we invented a mechanism called “adaptation-based testing”. The

main idea of adaptation-based testing is the following: First of all, TARP will generate a set of

test cases named testsForOldAPI with assertions for the OLD API. This task can be done

by using a feedback-directed random test generation tool such as Randoop [23] or GenRed

[42]. Please note that when we execute testsForOldAPI with the OLD component, all tests

will pass. Second, TARP will use ALTA*, an on-the-fly adaptation tool which relies on a

given refactoring path, to adapt testsForOldAPI with the NEW component according to the

generated refactoring path. If the path is logically correct, the adaptation should take effect

and all tests will pass. Therefore, by running an adaptation-based testing, the rest results

directly indicate the correctness of a generated refactoring path: if all the tests passed, we

know the refactoring path is correct; otherwise, the path is incorrect.

Figure 3.21 shows an example of adaptation-based testing. In Figure 3.21, the input refac-
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Figure 3.21 Example of an adaptation-base testing with a correct input refactoring path. The

path says the “add” method was renamed to the “sum” method, and the “sub”

method was renamed to the “deduct” method; therefore there will be no errors

or fails in the test report.

toring path is correct, so ALTA* will do a correct adaptation to bridge the method “add” to

the method “sum”. When a test calls add(7,2), it will expect to get 9 as the result, and because

ALTA* forward the call to “add”, the caller will get 9 as the result; therefore this test will pass.

Similarly, the tests for deduct will pass, too. On the other hand, Figure 3.22 shows a counter

example. With the incorrect input path, ALTA* will do an incorrect adaptation to bridge the

method “add” to the method “deduct”. When a test calls add(7,2), it will expect to get 9 as

the result, but because ALTA* forward the call to “deduct”, the caller will get 5 as the result;

therefore this test will fail.

3.3.10 Retrieving Another Solution

In the previous section, we introduced how we verify a generated path. If the path is correct,

our job is done. However, if the path is not correct, we need to ask the planner the give us

a different solution. However, it is not easy. First of all, if the goal state is reachable, an AI

Planner will only generate one result rather than a set of possible results, so there is no any

alternative path for us to verify. Moreover, for a given model, a planner will always generate
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Figure 3.22 Example of an adaptation-base testing. The input refactoring is incorrect (it says

the “add” method was renamed to the “deduct” method”); therefore there must

be some errors or failures in the test report.

exactly the same result no matter how many times we run it. Therefore, how to ask for another

solution is a big problem.

In fact, for a given AI-planning model, the answer from a planner is already fixed. It will

be either “the problem is proven unsolvable” or a concrete path from the initial state to the

goal state. Hence, to ask for another solution, we need to provide a slightly different model.

Therefore, we introduce a mechanism called “path token” to address this issue of an incorrect

mapping (Src → Dest) is generated and we don’t want a planner to generate any path which

results in this mapping again. To achieve this goal, before rerunning the planner, we just need

to put a special token in Src’s hand. Then we claim that Dest will not hold that token in the

goal state. In this case, for reaching the goal state, a planner has no choice but to generate

another solution which maps Src to anywhere but Dest. We named this kind of tokens “path

tokens” and this kind of claims “negative path token assertions”.

Figure 3.23 shows an example. In Figure 3.23 (A), a planner generated a refactoring path

which maps M.add to MU.deduct. However, the path is wrong. In fact, M.add should be

mapped to MU.sum, and M.sub should be mapped to MU.deduct. Therefore, in (B), to prevent

a planner from generating any path which leads to these two maps, we added a path token
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Figure 3.23 Example of retrieving a better solution by adding path tokens. Dashed (red)

arrows are incorrect mappings and others (blue) are correct mappings.

named PT1 and related it to M.add in the initial state, and made a negative path token

assertions to ensure MU.deduct will not be related to PT1. In (C), because of the negative

path token assertion, the planner could not generate a path which maps M.add to Mu.deduct

again, so it generated a path which maps M.add to Mu.sum.

In TARP, when we want to relate a path token with an API object in the initial state, we

will use two predicates: a “contains” predicate, which connects the token and the API object’s

identity, and a “(signatureTillPathToken ?className ?methodName ?pathToken)” predicate,

which builds a signature path until that path token. Regarding the goal state, because we do not

know the real identity of any API object, we just need to make the following negative path token

assertions: “(not (SignaturePathTillPathToken ?className ?methodName ?pathToken))”.

There are two types of Path Token Assertions: Negative Path Token Assertion (NPTA)

and Positive Path Token Assertion (PPTA). Both of them use the “SignaturePathTillPath-

Token” predicate, but unlike a PPTA, a NPTA adds a negation symbol (i.e., “not” in PDDL)

in front of the predicate. The example shown in Figure 3.23 (B) includes two NPTAs. As we

mentioned above, the main function of NPTA is to prevent a planner from generating a path
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Figure 3.24 Example of using a positive path token assertion with 2 negative path token

assertions. Dashed (red) arrows are incorrect mappings and others (blue) are

correct mappings.

which leads to a specific mapping. On the other hand, a PPTA is to ask a planner to preserve

a specific mapping. Figure 3.24 shows a hybrid example. In Figure 3.24 (A), a generated path

leads to one correct mapping and two incorrect ones. In (B), we added 3 path tokens (PT1,

PT2, and PT3 ) in the initial state, and one PPTA to “lock” the correct mapping, and two

NPTA to “exclude” the two incorrect mappings. In (C), M.add maps to MU.sum because this

mapping is required in the goal state. Regarding M.m1, because the planner cannot map it to

MU.m3 (since there is already a NPTA for this mapping) or MU.sum (since M.add needs to

be mapped to MU.sum), it will be mapped to a new target M.m1. Similarly, a planner will

map M.m1 to a new target MU.m3. By comparing Figure 3.24 (A) and (C), it is clear that we

successfully enforced a planner to give us a better solution.

3.3.10.1 Complexity Analysis: NxN

Suppose that the computation time for a planner to produce a solution is a constant, and

there are N same-parameter-types methods in the old API that needs to be mapped to N
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Figure 3.25 A 4x4 mapping problem. Arrows in (A) indicate the correct mappings. By

using negative path token assertions, there are at most N − 1 = 3 combinations

which contains a wrong target of m1, and N − 2 = 2 combinations for m2,

N −3 = 1 combination for m3, and 0 combination for m4. So the total number of

combinations in the worst case is 3 + 2 + 1 + 1 = 7. Bold-typed fonts such as m12

and m11 in the first data row of (B) indicate the swapping of correct answers.

same-parameter-types targets in the new API, then there will be NPN = N ! combinations.

For example, suppose that after reduction (see Section 3.3.8) there are 15 methods in the

old API but there are only 3 methods which have the same parameter types: C1.m1 (int, float,

String, File), C1.m5 (int, float, String, File) and C7.m1(int, float, String, File). Moreover,

suppose that there are 18 methods in the new API but there are only 3 methods which have

identical parameter types: C1.m1 (int, float, String, File), C1.m4 (int, float, String, File) and

C5.m5(int, float, String, File). In this case, there are 3 methods in the old API that need be

mapped to 3 possible targets in the new API. Therefore, there are 3! = 6 possible mapping

results.

By adding path tokens with negative path token assertions, we just need to try at most

1 +
N−1∑
m=1

m times since for each method, whenever it maps to a wrong target, NPTA removes

this target from its candidate list. Moreover, when that method mapped to a wrong target, it

means that there exists another method also mapped to a wrong method (i.e., they “swapped”

their correct targets). Figure 3.25 shows this idea. Figure 3.25 shows a 4x4 method mapping

where the correct solution is (m1 → m11 ), (m2 → m12 ), (m3 → m13 ) and (m4 → m14 ).

For m1, a planner can map it to a wrong target for N − 1 = 3 times (see (B)’s combination 1
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Figure 3.26 A MxN mapping problem where M=3 and N=5. Arrows in this graph indicate

the correct mappings.

to 3). However, for m2, it only has N −2 = 2 incorrect targets because after the combination 1

TARP already eliminated the (m2 → m11 ) mapping. Similarly, for m3, it only has N − 3 = 1

wrong target, and m4 does not have any incorrect target. After all of the incorrect targets

were found invalid, we will definitely get the correct answer in the next trial. Therefore, the

time complexity retrieving a correct answer in the worst case is O(N2).

If we use the PPTA and NPTA together, in the worst case, we can still get the correct

answer in the N th time, because during the first N−1 trials, all methods already went through

all wrong targets (NPTAs will prevent any incorrect mapping from showing up twice.) So,

for each method, the N th trial will always come with the correct answer. Therefore, the time

complexity in the worst case will be O(N).

In normal cases, the correct solution may show up early. For example, in Figure 3.25 (B), by

adopting PPTA (it already adopted NPTA), after processing the combination #1, the planner

will skip #2, #4 and #6 because m3 needs to be mapped to m13. Similarly, the planner will

also skip #3 and #5 because m4 needs to be mapped to m14. Therefore, we will get the correct

result in the second trial.

3.3.10.2 Complexity Analysis: MxN

Suppose that the old API has M methods but the new API has N methods, where M < N

(i.e., there are some newly added API; see Figure 3.26). By using negative path token assertions
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Figure 3.27 A sample model: the initial state

(NPTA), in the worst case TARP need to try M × (N − 1) rounds to get the correct path.

This is because there are maximum (N − 1) rounds for each method in the old API to try out

their incorrect mapping targets. So the total maximum number of rounds will be M × (N −1).

Thus, the complexity in the worst case is O(MN).

By using positive path token assertions (PPTA), in the worst case, every round will remove

one incorrect mapping target of every method in the old API. So the total maximum number

of rounds will be N . Thus, the complexity in the worst case is O(N).

3.3.10.3 Complexity Analysis: Multiple Groups

Suppose that there are p groups of methods. Each group has Mi methods and Ni possible

targets, where 0 < i ≤ p and M ≤ N . Because after each round the NTPA or PPTA will

simultaneously remove at least one candidate in each group, the worst case will be found in the

jth group where max
0<i≤p

(Mi × Ni) = Mj × Nj , 0 < j ≤ p, and it will be O(MjNj) (when using

PPTA) or O(Nj) (when using PPTA).
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Figure 3.28 A sample model: the goal state

3.3.11 The Final Modeling Strategy

Our final modeling strategy is composed of the strategies discussed in Section 3.3.2, Section

3.3.3, Section 3.3.4, Section 3.3.5, Section 3.3.7 and Section 3.3.10.

All examples in previous sections are simplified by hiding many types such as package and

field, or properties such as modifiers. In this section, we will introduce the following new types

and predicates for modeling those details:

1. Root: For each model, TARP will create a pseudo node as the root of the entire object

tree. Its type is APIObject. It has no name, and its object identity is Root. An API

model can have only one Root. Root is very important because it is the origin of all

signature paths. A Root may contain one or more packages.

2. Package: A package is an APIObject. It is similar to a class object: it has a unique

identity and it is related to a name. Moreover, there is a “SignaturePathTillPackage”

predicate to track signature paths. A package may contain one or more classes.

3. Modifier: Modifier is a new type. TARP only defines two Modifier-typed object, one is
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“static” and the other is “non-static”. If a class, method or field is static, TARP will use

“(HasModifier ?obj - APIObject ?Mod - Modifier)” predicate to model this concept.

4. Class: For a class object, TARP will use “HasName” to define its name, “Contains”

to claim its methods, “HasModifier” to declare its modifier, and “Inherits” to model its

ancestors. Besides, the “SignaturePathTillClass” predicate is used to track a signature

path until reaching a class.

5. Field: For a field object, TARP will use “HasName” to define its name, “HasModifier”

to declare its modifier. TARP will not model field types because it is not a part of a field’s

signature. Besides, the “SignaturePathTillField” predicate is used to track a signature

path until reaching a field.

6. MethodParameterTypes: MethodParameterTypes is a new type. TARP will use

MethodParameterTypes to define a method’s parameter types. Note that TARP will

model the entire parameter list as a single object, for example, “int,int” or “int,String,Car”.

TARP will use the same mapping table discussed above to store the mapping from the

name shown in a parameter list to its full name. Lastly, the predicate “SignaturePathTill-

Method” will end with a MethodParameterTypes object, not a method’s name object.

7. Method: For a method object, TARP will use “HasName” to define its name, “HasMod-

ifier” to declare its modifier, and “(HasMethodParamTypes ?method ?parameterTypes)”

to keep its parameter information. Besides, the “SignaturePathTillMethod” predicate is

used to track a signature path until reaching a method.

8. Path Token: There will be no path token objects in the original model because path

token is designed to request another AI-planning result. In an altered model, a method,

field, class or package may “Contains” one or more path tokens. Besides, “SignaturePathTill-

PathToken” is the predicate to track the signature path in the initial state, and to make

NTPA or PPTA in the goal state.

Figure 3.27 shows a sample initial-state encoding tree generated by our final modeling

strategy. Figure 3.28 shows a sample goal-state encoding tree generated by the same strategy.
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The “C” icons in Figure 3.27 represent the “Contains” predicates, the “N” icons show the

“HasName” predicate, the “P” icons denote the “HasMethodParamType” predicates, and the

“M” icons indicate the “HasModifier” predicates. It should be noted that there are no such

icons shown in in Figure 3.28 because we do not know any object identity in the goal state as

discussed in Section 3.3.4.

3.4 Implementation

3.4.1 System Architecture of TARP*

To verify TARP, we created TARP*, a lightweight implementation of TARP. As we men-

tioned in Section 3.1, TARP* supports the following patterns: “Rename Field”, “Move Field”,

“Move Method”, “Rename Method”, “Pullup Method”, “Rename Class”, “Move Class” and

“Rename Package”. Supporting “Pullup Method” confirms that TARP* is capable of support-

ing variadic refactoring patterns. Besides, TARP* is using three third-party tools: FF [32] as

the planner, Randoop [23] as the test case generator, and ALTA* as the on-the-fly adapter.

However, TARP* does not have the “adding new API” and “remove API feature”.

There are 3 modules in TARP (see Figure 3.3). Insides these modules, there are a total 6

of sub-modules and 3 third-party tools (see Figure 3.29). Details now follow:

1. Problem Modeling and Solving Module: This is the module to convert a pair of

incompatible components (the old jar and the new jar) into an AI-Planning problem and

use a planner to retrieve a solution. It contains 3 parts:

(a) Component Context Extractor and Simplifier: In this is part, the content of input

jars will be extracted and simplified in order to reduce the computational complexity.

(b) PDDL Fact File Generator: In this part, a PDDL fact file (i.e., object declarations,

initial state and the goal state) will be generated. Note: the domain PDDL (i.e.,

the type definitions, actions and predicate definitions) is predefined.

(c) (Third Party) AI Planner Engine: TARP* will use a third-party tool called FF (Fast

Forward), an award-winning AI-planner which supports PDDL 2.1 [43], to generate
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a plan according to given domain and fact PDDL files.

2. Adaptation-based Testing Module: The main goal of this module is to verify whether

a generated plan is correct. It will assume that plan is correct, and use it as the true

refactoring history to do on-the-fly adaptation. The adaptation is to connect the tests

cases designed for the old component with the new component. If the refactoring path

is not correct, then the adaptation will fail. Reasonably, if all the tests passed, we know

that the generated plan is correct. It contains 4 parts:

(a) Refactoring Path Converter: It will convert the generated plan to a refactoring

history in the Eclipse format. The output of this part is an XML file.

(b) (Third Party) Test Case Generator: TARP will use Randoop to automatically gen-

erate test cases for the old component. Randoop can not only generate the tests but

also create regression assertions. The idea is the following: Randoop will randomly

launch method calls of the old component, and record all return values. Moreover,

Randoop will assume that the old component is perfect (has no bug) so the col-

lected return values can be used as assertion values. For example, if Randoop called

a method add(5,3) and got 8, then Randoop will generate a test which assert the

return value of calls add(5,3) is 8. In this way, Randoop can efficiently generate a

lot of test cases.

(c) (Third Party) ALTA*: Once we have test cases, refactoring history in the Eclipse

format and the old and new components, TARP will use ALTA*, an implementation

of ALTA, to generate ALTA aspect, which is a jar file which contains on-the-fly

adaptation logic.

(d) Test Executor: TARP will then put the ALTA aspect, the new component and the

generated test cases together, and run those test cases by standard JUnit executor.

A test report will be generated.

3. Result Analysis and Feedback Module: Once the test report is ready, we can decide

what to do next. If all the tests passed, we can let the user know that the correct plan
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Figure 3.29 System Architecture of TARP*. There are six internal modules and three third–

party tools (i.e., the dashed bubbles).

(i.e., refactoring path) is successfully reconstructed. If not, we need to alter our model so

the planner can give us a different path. There are two parts in this module:

(a) Test Report analyzer: This tool will analyze the test report, and create a mapping

correctness report that tells us which mapping (e.g., method A → method B) is

correct and which is not.

(b) Path Token Generator: This tool will generate path tokens into our old model

according to the mapping correctness report. The idea of path token was discussed

in Section 3.3.10. Then TARP* will run the entire process again to get a new plan.

3.4.2 Encoding Details

For reducing computation complexity, we reduced the granularity of many concepts. For

example, we define “PackageName”, “ClassName”, “MethodName” and “FieldName” to repre-

sent a general concept “name”. Similary, for real API objects, we defined “Package”, “Class”,
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“Method” and “Field” rather than just a general type “APIObject”. In this way, we can rede-

fine predicates and actions with specific parameter types. For example, “ContainsPackage ?r -

APIRoot ?p - Package)”. With specific parameter types, an AI planner can directly eliminate

many incorrect combinations of solutions.

The following is a complete list of all types and predicates. After this list, we provided the

definition of the “rename method” action as a sample of standard actions in TARP.

1 ( : types

2

3 ; ; ob j e c t s t r u c t u r e s

4 APIObject − ob j e c t

5 APIRoot − APIObject

6 Package − APIObject

7 Class − APIObject

8 Method − APIObject

9 F i e ld − APIObject

10

11 ; ; names

12 PackageName − ob j e c t

13 ClassName − ob j e c t

14 MethodName − ob j e c t

15 FieldName − ob j e c t

16

17 ; ; types

18 MethodParamTypes − ob j e c t

19

20 ; ; mod i f i e r

21 MethodModifer − ob j e c t

22 F i e l dMod i f i e r − ob j e c t

23

24 ; ; path tokens

25 PackagePathToken − Object

26 ClassPathToken − Object

27 MethodPathToken − Object

28 FieldPathToken − Object
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29

30 )

31

32 ( : p r ed i c a t e s

33

34 ; ; t r e e s t r u c t u r e s

35 ( ContainsPackage ? r − APIRoot ?p − Package )

36 ( Conta insClass ?p − Package ? c − Class )

37 ( ContainsMethod ? c − Class ?m − Method )

38 ( Conta insFie ld ? c − Class ? f − Fie ld )

39

40 ; ; path token

41 ( ContainsPackagePathToken ?p − Package ? t − PackagePathToken )

42 ( ContainsClassPathToken ?c − Class ? t − ClassPathToken )

43 ( ContainsMethodPathToken ?m − Method ? t − MethodPathToken )

44 ( ContainsFieldPathToken ? f − Fie ld ? t − FieldPathToken )

45

46 (HasPackageName ?p − Package ?pName − PackageName )

47 (HasClassName ?c − Class ?cName − ClassName )

48 (HasMethodName ?m − Method ?mName − MethodName)

49 (HasFieldName ? f − Fie ld ?fName − FieldName )

50

51 ; ; types

52 (HasMethodParamTypes ?m − Method ? types − MethodParamTypes )

53

54 ; ; mod i f i e r s

55 ( HasMethodModifier ?m − Method ?mod − MethodModifier )

56 ( HasFie ldModi f i e r ? f − Fie ld ?mod − Fi e ldMod i f i e r )

57

58 ; ; s i gna tu r e paths

59 ; ; package

60 ( S ignaturePathTi l lPackage ? r − APIRoot ?pName − PackageName )

61 ( SignaturePathTil lPackagePathToken ? r − APIRoot ?pName − PackageName ?

pToken − PackagePathToken )

62
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63 ; ; class

64 ( S ignaturePathTi l lC la s s ? r − APIRoot ?pName − PackageName ?cName −

ClassName )

65 ( SignaturePathTi l lClassPathToken ? r − APIRoot ?pName − PackageName ?cName

− ClassName ?cToken − ClassPathToken )

66

67 ; ; method −− remember to in c lude types

68 ( SignaturePathTil lMethod ? r − APIRoot ?pName − PackageName ?cName −

ClassName ?mName − MethodName ? types − MethodParamTypes )

69 ( SignaturePathTillMethodPathToken ? r − APIRoot ?pName − PackageName ?cName

− ClassName ?mName − MethodName ?mParamTypes − MethodParamTypes ?

mToken − MethodPathToken )

70

71 ; ; f i e l d

72 ( S i gna tu r ePathT i l lF i e l d ? r − APIRoot ?pName − PackageName ?cName −

ClassName ?fName − FieldName )

73 ( SignaturePathTi l lF ie ldPathToken ? r − APIRoot ?pName − PackageName ?cName

− ClassName ?fName − FieldName ? fToken − FieldPathToken )

74

75 ; ; i n h e r i t

76 ( I nh e r i t ? c l a s sCh i l d − Class ? c l a s sPar en t − Class )

77

78 ; ; pu l l−up t r an s a c t i on s

79 ( notPullingUpMethods )

80

81 ; ; note : a l l ob j ec t s , not names

82 (MethodDuringPullingUp ?m1 − Method ?m1ParamTypes − MethodParamTypes ?

cFrom − Class ?cTo − Class )

83 )

1 ; ; rename method

2 ( : a c t i on renameMethod

3

4 : parameters (

5 ? root − APIRoot

6 ?p1 − Package
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7 ?p1Name − PackageName

8 ? c1 − Class

9 ?c1Name − ClassName

10 ?m1 − Method

11 ?m1Name − MethodName

12 ?m1NewName − MethodName

13 ?m1ParamTypes − MethodParamTypes

14 )

15

16 : p r e cond i t i on ( and

17

18 ( notPullingUpMethods )

19 ; ; Object s t r u c tu r e check

20 ( ContainsPackage ? root ?p1 )

21 ( Conta insClass ?p1 ? c1 )

22 ( ContainsMethod ? c1 ?m1)

23

24 ; ; name check

25 (HasPackageName ?p1 ?p1Name)

26 (HasClassName ? c1 ?c1Name)

27 (HasMethodName ?m1 ?m1Name)

28 ( not (HasMethodName ?m1 ?m1NewName) )

29 (HasMethodParamTypes ?m1 ?m1ParamTypes )

30

31 ; ; s i gna tu r e path

32 ( S ignaturePathTi l lPackage ? root ?p1Name)

33 ( S i gnaturePathTi l lC la s s ? root ?p1Name ?c1Name)

34 ( SignaturePathTil lMethod ? root ?p1Name ?c1Name ?m1Name ?m1ParamTypes )

35 ( not ( SignaturePathTil lMethod ? root ?p1Name ?c1Name ?m1NewName ?

m1ParamTypes ) )

36

37 )

38

39 : e f f e c t ( and

40
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41 ; ; change unique id ob j e c t s t r u c tu r e

42 ; ; nothing needs to be changed in this case

43

44 ; ; change name part

45 ( not (HasMethodName ?m1 ?m1Name) )

46 (HasMethodName ?m1 ?m1NewName)

47

48 ; ; change r e l a t e d s i gna tu r e paths

49 ; ; 1 . s igpathTi l lmethod m1, v ia c1

50 ( not ( SignaturePathTil lMethod ? root ?p1Name ?c1Name ?m1Name ?

m1ParamTypes ) )

51 ( SignaturePathTil lMethod ? root ?p1Name ?c1Name ?m1NewName ?m1ParamTypes )

52

53 ; ; 2 . s igpathTi l lMethodPathtoken : m1 ’ s token

54 ( f o r a l l (? oneMethodPathToken − MethodPathToken )

55 (when ( and

56 (ContainsMethodPathToken ?m1 ?oneMethodPathToken )

57 )

58 ( and

59 ; ; remove the s i g path

60 ( not ( SignaturePathTillMethodPathToken ? root ?p1Name ?c1Name ?

m1Name ?m1ParamTypes ?oneMethodPathToken ) )

61 ; ; adding the path

62 ( SignaturePathTillMethodPathToken ? root ?p1Name ?c1Name ?m1NewName

?m1ParamTypes ?oneMethodPathToken )

63 )

64 )

65 )

66 )

67 )
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3.5 Evaluation

3.5.1 Open Source Component Refactoring Path Reconstruction Test

To verify TARP*, we chose three open source components as our subjects. They were:

Apache POI version 3.1, whose lines of code (LOC) is 136K, Google Collections version 1.0,

whose LOC is 32K, and Apache Commons Lang version 3.0.1, whose LOC is 55k. We designed

5 experiments toward these 3 components. In each experiment, we manually refactored one

subject, and asked TARP* to reconstruct the refactoring path. Because we knew the real

refactoring history, we could precisely verify if the generated results from TARP* is correct.

Besides, because we have claimed in section 3.1 that TARP is capable of handling TDRS, we

designed several experiments which contains TDRS. In addition, in each experiment, we also

used Refactoring Crawler and LSdiff, two state-of-the-art static analysis tools, to find the path.

In this way, we can compare TARP* with these two solutions to know its performance and

effectiveness.

Table 3.1 shows the result. The first column of Table 3.1 is the experiment number, and

the second column shows the subject of this experiment and its LOC. The third column shows

the summary of the real refactoring steps that we applied to the subject. Column 4 tells

us if there are TDRS in real refactoring paths. Columns 5-6 are about Refactoring Crawler.

Column 5 shows the summary of the results retrieved by Refactoring crawler, and column 6

is the computation time. Similarly we have columns 7 and 8 for LSdiff. Columns 9 to 11

are about TARP*. Column 9 is the summary of the results, column 10 is the computation

time, and column 11 shows the test report of the output path. Moreover, we recorded detailed

refactoring steps regarding the columns 3, 5 7 and 9 of Table 3.1 in Table 3.2.

From the two tables, the results of Exp. 1 show that all of these three solutions successfully

detected two independent “Rename Method” steps. LSdiff, however, produced 2 false positives:

1 “Inline Method” and 1 “Extract Method”. If we go check Table 3.2 (in the 3rd row of Exp. 1,

line 2 and 4), we can see that these two actions are simply counteractions. Besides, Refactoring

Crawler used 50.110 seconds and LSdiff used 49.610 seconds to get these results.

In Exp. 2, we renamed 1 package, and renamed 1 irrelevant class. In Exp. 3, we renamed
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Figure 3.30 The result screen of the Exp. 3 from LSdiff.

2 classes and renamed 4 methods. There are no TDRS in Exp. 2 and Exp. 3, so Refactoring

Crawler and LSdiff should work in these two cases. However, In Exp. 2, Refactoring Crawler

returned 2 false positives, and LSdiff produced 2 false negatives and 11 false positives. In Exp.

3, Refactoring Crawler returned 4 false negatives and 3 false positives, while LSdiff produced

5 false negatives and 21 false positives (see Table 3.2, Exp. 3, row3, and Figure 3.30).

Exp. 4 and 5 contains TDRS. In Exp. 4, we moved 1 static method from one class to

another, then renamed that method. In Exp. 5, we renamed 1 method in a class, and renamed

that class. As we expected, in these two experiments, both of Refactoring Crawler and LSdiff

did not detect anything. On the other hand, TARP* successfully reconstruct the refactoring

paths. Actually, in all of these 5 experiments, TARP* returned correct answer.

Regarding TARP*’s computation time, if we compare Table 3.1 row 1 and row 2, we can

realize the LOC of the component is not the key factor of computation time. The key factor is

the patterns. Because “Rename Package” will affect all the classes, methods and fields inside

that package, the planner spent almost double amount of time to produce a plan.

As a conclusion, the verification results show that TARP* could really reconstruct the
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Table 3.1 Open Source Component Refactoring Path Reconstruction Test Report

Exp. Component Applied Has Refactoring Crawler LSdiff TARP*
ID (LOC) Refactorings TDRS? Result

Correct?
Comput.
Time
(Sec.)

Result
Correct?

Comput.
Time
(Sec.)

Result
Correct?

Comput.
Time
(Sec.)

Adaptation-
based
Testing
Result

1 Apache POI
3.1 (136K)

Renamed 2
independent
methods in a
class.

No Yes 50.110 Partially.
Found all
but also
found
1 Inline
Method
and 1
Extract
Method

49.610 Yes 66.102 618 test,
100%
passed

2 Google Col-
lection 1.0
(32K)

Renamed 1
package and
renamed 1
irrelevant
class.

No Partially.
Found all
but also
found 2
Change
Method
Signature

30.544 No –
Only
found
11 Move
Method.

25.725 Yes 116.031 207 test,
100%
passed

3 Apache
Commons
Lang 3.0.1
(55K)

Renamed 2
classes and
renamed 4
methods (all
independent)

No Partially.
Correctly
found 2
Rename
Method,
but also
found
3 Move
Method
inside the
renamed
class.

17.975 Partially.
Correctly
found 1
Renamed
Method,
but also
found
13 Move
Method,
6 Move
Field, 1
Inline
Method,
and 1
Extract
Method.

11.197 Yes 55.196 559 test,
100%
passed

4 Apache POI
3.1 (136K)

Renamed
a static
method and
moved it
to another
class.

Yes No –
Found
nothing.

51.300 No –
Found
nothing.

329.958 Yes 49.111 618 test,
100%
passed

5 Apache POI
3.1 (136K)

Renamed a
class and
renamed
one method
insides this
class.

Yes No –
Found
nothing.

91.526 No –
Only
found
2 Move
Field.

268.054 Yes 42.253 618 test,
100%
passed

refactoring path in large-scale components, even if there are TDRS in the refactoring history.

3.5.2 Open Source Component Official Test Cases Adaptation Test

To evaluate whether ALTA* can use the generated refactoring path to solve compatibility

problems, we conducted the Open Source Component Official Test Cases Adaptation

Test for each experiment shown in Table 3.1 and Table 3.2. In this test, we used the official

test cases of these three open source components (before upgraded) as applications, and let

ALTA* adapt these applications with the upgraded components on-the-fly according to the

refactoring paths generated by the Open Source Component Refactoring Path Reconstruction

Test.

Before we started, we ran those tests with the old components, and removed unsuccessful
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Table 3.2 Open Source Component Refactoring Path Reconstruction Test: Refactoring De-

tails

Exp.
ID

Tool Detected Refactoring History

1

Real History
Rename method ’org.apache.poi.hpsf.Section.getOffset()’ to ’getOffset REN’
Rename method ’org.apache.poi.hpsf.Section.getCodepage()’ to ’getCodepage REN’

Refactoring
Crawler

Rename method ’org.apache.poi.hpsf.Section.getOffset()’ to ’getOffset REN’
Rename method ’org.apache.poi.hpsf.Section.getCodepage()’ to ’getCodepage REN’

LSdiff

Consolidate duplicate cond fragments (invalid refactoring step)
Inline method ’org.apache.poi.hpsf.Section.toString()’
Rename method ’org.apache.poi.hpsf.Section.getOffset()’ to ’getOffset REN’
Extract method ’org.apache.poi.hpsf.Section.toString()’
Rename method ’org.apache.poi.hpsf.Section.getCodepage()’ to ’getCodepage REN’

TARP*
Rename method ’org.apache.poi.hpsf.Section.getOffset()’ to ’getOffset REN’
Rename method ’org.apache.poi.hpsf.Section.getCodepage()’ to ’getCodepage REN’

2

Real History
Rename package ’com.google.common.annotations’ to ’com.google.common.annotations REN’
Rename class ’com.google.common.collect.ForwardingList’ to ’ForwardingList REN’

Refactoring
Crawler

Rename package ’com.google.common.annotations’ to ’com.google.common.annotations REN’
Rename class ’com.google.common.collect.ForwardingList’ to ’ForwardingList REN’
Change method signature ’com.google.common.collect.ForwardingList.listIterator()’
to ’ForwardingList REN.listIterator(int)’
Change method signature ’com.google.common.collect.ForwardingList.listIterator(int)’
to ’ForwardingList REN.listIterator()’

LSdiff

Move method ’com.google.common.collect.ForwardingList.listIterator()’ to ’ForwardingList REN’
Move method ’com.google.common.collect.ForwardingList.subList()’ to ’ForwardingList REN’
Move method ’com.google.common.collect.ForwardingList.indexOf()’ to ’ForwardingList REN’
Move method ’com.google.common.collect.ForwardingList.lastIndexOf()’ to ’ForwardingList REN’
Move method ’com.google.common.collect.ForwardingList.hashCode()’ to ’ForwardingList REN’
Move method ’com.google.common.collect.ForwardingList.add()’ to ’ForwardingList REN’
Move method ’com.google.common.collect.ForwardingList.get()’ to ’ForwardingList REN’
Move method ’com.google.common.collect.ForwardingList.addAll()’ to ’ForwardingList REN’
Move method ’com.google.common.collect.ForwardingList.set()’ to ’ForwardingList REN’
Move method ’com.google.common.collect.ForwardingList.remove()’ to ’ForwardingList REN’
Move method ’com.google.common.collect.ForwardingList.equals()’ to ’ForwardingList REN’

TARP*
Rename package ’com.google.common.annotations’ to ’com.google.common.annotations REN’
Rename class ’com.google.common.collect.ForwardingList’ to ’ForwardingList REN’

tests (if any) until all tests passed. We called the new set of tests “clean the no-error test”.

We took this step because we want to have “applications” which work without any problem

before component upgrades. If not, when we check the test reports, we cannot tell if an error

or failure resulted from the original application or ALTA*.

For each experiment shown in Table 3.1 and Table 3.2 we conducted three sub-tests. First,

we ran the official tests with the old (i.e., before upgrade) component. Because we already

removed all unsuccessful cases, all tests passed (see column 5 of Table 3.3).

Second, we ran the the official tests with the new (i.e., after upgrade) component. In column

6 of Table 3.3), the test report of Exp. 2 shows 44 errors, Exp. 3 shows 7 errors, and Exp. 5

shows 3 errors. Those errors indicated compatibility problems which resulted from component

upgrades. Besides, there was no compatibility problem in Exp. 1 and 4 because the official

tests did not cover (i.e., execute) the changed methods.

Finally, the column 7 of Table 3.3 shows the test results via ALTA* on-the-fly adaptations.

It shows that ALTA* successfully fixed all compatibility problems in Exp 2, Exp. 3, and Exp.
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Table 3.2 (Continued)

Open Source Component Refactoring Path Reconstruction Test Report

Exp.
ID

Tool Detected Refactoring History

3

Real History

Rename class ’org.apache.commons.lang3.builder.IDKey’ to ’IDKey REN’
Rename method ’org.apache.commons.lang3.math.NumberUtils.max(long;long;long)’ to ’max ren’
Rename class ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer’ to ’MultiBackgroundInitializer REN’
Rename method ’org.apache.commons.lang3.math.NumberUtils.toByte(java.lang.String;byte)’ to ’toByte ren’
Rename method ’org.apache.commons.lang3.math.NumberUtils.createBigDecimal(java.lang.String)’
to ’createBigDecimal ren’
Rename method ’org.apache.commons.lang3.math.NumberUtils.min(double[])’ to ’min ren’

Refactoring
Crawler

Rename method ’org.apache.commons.lang3.math.NumberUtils.toByte(java.lang.String;byte)’ to ’toByte ren’
Rename method ’org.apache.commons.lang3.math.NumberUtils.createBigDecimal(java.lang.String)’
to ’createBigDecimal ren’
Move method: ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer.getTaskCount()’
to ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer REN’
Move method: ’org.apache.commons.lang3.builder.IDKey.hashCode()’
to ’org.apache.commons.lang3.builder.IDKey REN’
Move method: ’org.apache.commons.lang3.builder.IDKey.equals’
to ’org.apache.commons.lang3.builder.IDKey REN.equals’

LSdiff

Move method: ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer.getResultObject()’
to ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer REN’
Move field: ’org.apache.commons.lang3.builder.IDKey.id’ to ’org.apache.commons.lang3.builder.IDKey REN’
Move field: ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer.childInitializers’
to ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer REN’
Move method: ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer.isException’
to ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer REN’
Move method: ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer.getTaskCount’
to ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer REN’
Move field: ’org.apache.commons.lang3.builder.IDKey.value’ to ’org.apache.commons.lang3.builder.IDKey REN’
Move field: ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer.initializers’
to ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer REN’
Consolidate duplicate cond fragments (invalid refactoring step)
Rename method ’org.apache.commons.lang3.math.NumberUtils.createBigDecimal()’
to ’createBigDecimal ren’
Move method: ’org.apache.commons.lang3.builder.IDKey.hashCode()’
to ’org.apache.commons.lang3.builder.IDKey REN’
Move method: ’org.apache.commons.lang3.builder.IDKey.equals()’
to ’org.apache.commons.lang3.builder.IDKey REN’
Move method: ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer.isSuccessful()’
to ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer REN’
Move field: ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer.exceptions’
to ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer REN’
Move field: ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer.resultObjects’
to ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer REN’
Inline method: ’org.apache.commons.lang3.math.NumberUtils.createNumber()’
Move method: ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer.getException()’
to ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer REN’
Move method: ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer.initializerNames()’
to ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer REN’
Move method: ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer.checkName()’
to ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer REN’
Move method: ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer.getInitializer()’
to ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer REN’
Extract method: ’org.apache.commons.lang3.math.NumberUtils.createNumber()’
Move method: ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer.addInitializer()’
to ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer REN’
Move method: ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer.initialize()’
to ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer REN’

TARP*

Rename class ’org.apache.commons.lang3.concurrent.MultiBackgroundInitializer’ to ’MultiBackgroundInitializer REN’
Rename class ’org.apache.commons.lang3.builder.IDKey’ to ’IDKey REN’
Rename method ’org.apache.commons.lang3.math.NumberUtils.toByte(java.lang.String;byte)’ to ’toByte ren’
Rename method ’org.apache.commons.lang3.math.NumberUtils.min(double[])’ to ’min ren’
Rename method ’org.apache.commons.lang3.math.NumberUtils.max(long;long;long)’ to ’max ren’
Rename method ’org.apache.commons.lang3.math.NumberUtils.createBigDecimal(java.lang.String)’
to ’createBigDecimal ren’
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Table 3.2 (Continued)

Open Source Component Refactoring Path Reconstruction Test Report

Exp.
ID

Tool Detected Refactoring History

4

Real History
Rename method ’org.apache.poi.util.StringUtil.hasMultibyte(java.lang.String)’ to ’hasMultibyte ren’
Move method ’org.apache.poi.util.StringUtil.hasMultibyte ren(java.lang.String)’ to ’org.apache.poi.util.IOUtils’

Refactoring
Crawler

Found Nothing

LSdiff Found Nothing

TARP*
Rename method ’org.apache.poi.util.StringUtil.hasMultibyte(java.lang.String)’ to ’hasMultibyte ren’
Move method’org.apache.poi.util.StringUtil.hasMultibyte ren(java.lang.String)’ to ’org.apache.poi.util.IOUtils’

5

Real History
Rename class ’org.apache.poi.util.TempFile’ to ’TempFile REN’
Rename method ’org.apache.poi.util.TempFile REN.createTempFile(java.lang.String, java.lang.String)’
to ’createTempFile REN’

Refactoring
Crawler

Found Nothing

LSdiff
Move Field ’org.apache.poi.util.TempFile.rnd’ to ’TempFile REN.rnd’
Move Field ’org.apache.poi.util.TempFile.dir’ to ’TempFile REN’

TARP*
Rename class ’org.apache.poi.util.TempFile’ to ’TempFile REN’
Rename method ’org.apache.poi.util.TempFile REN.createTempFile(java.lang.String, java.lang.String)’
to ’createTempFile REN’

Table 3.3 Open Source Component Automatic Adaptation Results

Exp. Component Applied Has Official Tests (as Applications) Execution Results
ID (LOC) Refactorings TDRS? Run with the Old

Component
Run with the New
Component without
ALTA*

Run with the New
Component with
ALTA*

1 Apache POI
3.1 (136K)

Renamed 2 indepen-
dent methods in a
class.

No 927 Tests, 100% Pass,
0 Errors, 0 Failures.
Time: 1.583 (Sec)

927 Tests, 100% Pass,
0 Errors, 0 Failures.
Time: 1.593 (Sec)

927 Tests, 100% Pass,
0 Errors, 0 Failures.
Time: 1.682 (Sec)

2 Google Col-
lection 1.0
(32K)

Renamed 1 package
and renamed 1 irrele-
vant class.

No 220 Tests, 100% Pass,
0 Errors, 0 Failures.
Time: 0.412 (Sec)

220 Tests, 80% Pass,
44 Errors, 0 Failures.
Time: 0.036 (Sec)

220 Tests, 100% Pass,
0 Errors, 0 Failures.
Time: 0.429 (Sec)

3 Apache
Commons
Lang 3.0.1
(55K)

Renamed 2 classes
and renamed 4 meth-
ods (all independent)

No 2013 Tests, 100%
Pass, 0 Errors, 0
Failures. Time: 7.596
(Sec)

2013 Tests, 99.7%
Pass, 7 Errors, 0
Failures. Time: 7.555
(Sec)

2013 Tests, 100%
Pass, 0 Errors, 0
Failures. Time: 8.213
(Sec)

4 Apache POI
3.1 (136K)

Moved 1 static
method from one
class to another, then
renamed that method.

Yes 927 Tests, 100% Pass,
0 Errors, 0 Failures.
Time: 1.510 (Sec)

927 Tests, 100% Pass,
0 Errors, 0 Failures.
Time: 1.489 (Sec)

927 Tests, 100% Pass,
0 Errors, 0 Failures.
Time: 1.677 (Sec)

5 Apache POI
3.1 (136K)

Renamed 1 method in
a class, and renamed
that class.

Yes 927 Tests, 100% Pass,
0 Errors, 0 Failures.
Time: 1.596 (Sec)

927 Tests, 99.7% Pass,
3 Errors, 0 Failures.
Time: 1.571 (Sec)

927 Tests, 100% Pass,
0 Errors, 0 Failures.
Time: 2.456 (Sec)

5. For all tests, we also recorded the execution time. For example, in Exp. 3 (see the third data

row of Table 3.3), column 5 shows that the execution time was 7.596 seconds when the official

tests ran with the old components. Column 7 shows that the execution time was 8.213 seconds

when the official tests ran with the new (i.e., incompatible) components via ALTA* on-the-fly

adaptation. The average delay of all the 5 experiments (shown in Table 3.3) is 16.7%.

3.6 Conclusion

Refactoring history of upgraded components is valuable for automatic software adaptation.

However, it is usually not available in the real world. In this study, we presented TARP, a
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comprehensive framework which can fully automatically reconstruct missing refactoring history.

TARP has three significant features. First, it supports temporal-dependent refactoring step

(TDRS). Second, it can guarantee that the output results are correct. Third, it does not require

any components source code.

We also evaluated TARP* by adopting it to discover refactoring paths for three well-known

open source projects: Apache Commons Lang 3.0.1, Apache POI 3.1.0, and Google Commons

1.0. In addition, we used two state-of-the-art static analysis tools, Refactoring Crawler and

LSdiff, to solve the same set of problems. The experimental results showed that TARP* can

work well in large-scale projects, and it is the only current solution which can detect TDRS.

Furthermore, we also used the official test cases of the 3 open source components to verify

if ALTA* can really solve compatibility problems according to the reconstructed refactoring

path generated by TARP*. The experimental results showed that ALTA* successfully fixed all

the compatibility problems in those experiments.

Future work is required to handle unsupported refactoring types in TARP. In our current

design, TARP will generate an empty path if there is any unsupported refactoring step in the

real refactoring history. This is the main limitation of TARP. Our goal for the next generation

of TARP is to allow it to skip unsupported ones and generate a partial refactoring path.
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CHAPTER 4. CONCLUSIONS AND FUTURE WORK

In the current work, two frameworks were proposed, ALTA (Chapter 2) and TARP (Chapter

3), to solve compatibility problems fully automatically. ALTA is an Aspect-Oriented Program-

ming (AOP) based on-the-fly component adaptation framework. By inputting the refactoring

history of an upgraded component, ALTA can generate a binary jar file, called ALTA Aspect,

which contains run-time adaptation logic. With this jar file, applications created for the old

(i.e., before upgrade) API can run smoothly with the new (i.e., after upgrade) component.

The main limitation of ALTA is that it relies on given refactoring history. Because refac-

toring history is not always available, TARP was proposed to automatically reconstruct the

missing refactoring history.

TARP is a testing and AI-Planning based refactoring path reconstruction framework. By

inputting the binary jar files of old and new version of the upgraded component, TARP can

extract APIs from both components, model the APIs as an AI-Planning problem, and use an

AI planner to solve it. The solution generated from the planner is actually a refactoring path

from the old API to the new API. Then TARP will use a novel technique called adaptation-

based testing to verify the generated path. If the path is correct, TARP will export it as an

Eclipse-styled refactoring history. Otherwise, TARP will keep generating another solutions

until it gets a correct one.

In addition, we implemented ALTA as ALTA*, and TARP as TARP*. We also evaluated

these two tools separately in Chapter 2 and Chapter 3. In addition, we evaluated the combined

solution TARP* + ALTA* in Section 3.5.2 of Chapter 3. The experimental results show that

not only these two tools are both applicable of solving compatibility problems in real-world

projects, but also they can work together to perform fully automatically component adaptation.

To sum up, the proposed TARP + ALTA solution has the following features:
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1. It can perform full-automatic component adaptation without any extra in-

formation: The TARP + ALTA solution can fully automatically solve compatibility

problems which resulted from refactoring-based software component evolution, without

any extra information.

2. It can work without any source code of components: The TARP + ALTA solution

only requires the binary jar file of applications and components, so it can fix compati-

bility problems among binary components. Moreover, it will not statically modify any

component or application, so this solution is valid under all kinds of license agreements.

3. It will not statically modify any application or component: The TARP + ALTA

solution will adapt incompatible parts dynamically, so it can work under all kinds of

license agreements.

4. It can handle Temporal-Dependent Refactoring Steps (TDRS): The TARP +

ALTA solution is the only solution to date which is able to handle TDRS.

4.1 General Discussions

In the past decade, component adaptation without extra human-coded or machine recorded

change information emerged an open issue, because we need some clue to either upgrade ap-

plication source code or to generate adapters for incompatible parts. In the current work, I

showed a possible solution composed of the TARP and ALTA frameworks for this issue.

This work could be useful for self-evolving software frameworks such as Situ [44]. In a

self-evolving software framework, components will change their API by themselves automati-

cally; therefore we will not have software specifications, requirement documents, human-coded

change information or machine-recorded refactoring information after a self-evolving process.

In this case, if there is any compatibility problem found among components after a self-evolving

process, people can apply the TARP + ALTA solution to fully automatically fix it.
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4.2 Recommendations for Future Research

Unlike all existing solutions in this field, the TARP + ALTA solution transfers an compat-

ibility problem into an AI-Planning problem, then use the adaptation-based testing technique

to verify it. Regarding this solution, future research is required to:

1. Simplify the contents of an API before converting it into a model: An API may

contain a lot of packages, classes, methods and fields. Because the computation time for

an AI-planner to process an input model has a positive correlation with the size of the

input model [32], it is critical to develop algorithms to simplify the contents of an API

before converting them into an AI-planning model. Currently, TARP uses the “Simple

Diff” algorithm to remove unchanged parts (see Section 3.3.8). However, this algorithm

cannot remove anything inside a changed container.

For example, suppose that there is a class X which contains 3 methods: m1, m2 and m3

in the old API. In the new API, X is renamed to X ren while it still contains m1, m2

and m3. In this case, when we run the “Simple Diff” algorithm, nothing will be removed

because signatures of the class and its methods are all changed. For instance, the original

method signature of m2 was X.m2 but now it becomes X ren.m2.

Therefore, it is important to design a new algorithm to handle changed containers. One

important fact that we found in the previous example is that we can get exactly the same

result from a planner without encoding m2 and m3. It is because m1, as “a representative

of same-classed methods”, has already provided enough information for an AI-planner to

generate the correct plan. Therefore, it is possible to use this “representative” concept

to create a more effective simplification algorithm.

2. Enhance the modeling strategy: The current modeling strategy adds a lot of nodes

to the encoding tree for a small component (see Figure 3.27 in Chapter 3). Thus, it

is valuable to improve the modeling strategy to reduce the sizes of encoding trees. For

example, it is possible to create NPTA or PPTA (see Section 3.3.10) by using object

identities rather than creating additional path token objects.
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3. Create a customized test case generator: There are many test case generators

such as Randoop [23] and GenRed [42] which can automatically generate test cases with

regression assertions for components. The common goal of these tools is to achieve high

code coverage (with a minimum set of test cases) [42]. However, in our application, it is

more important for a set of test cases to touch every method rather than to cover every

line. For example, for a method which requires one special object as its parameter, say,

an instance of a class Coelacanth, in order to cover more lines inside this method and

to get a reusable return value from it, Randoop will not generate any test case for this

method until it got a real instance of Coelacanth. If Randoop cannot get a Coelacanth

object in a given period of processing time (e.g., 10 minutes), it will not generate a test

case for this method. In this case, the generated test cases cannot help TARP to verify

any mapping related to this method.

We can solve this problem by creating a customized test case generator that always

generates test cases for all methods. For a method that requires hard-to-get parameters,

our test case generator may simply pass null objects into it. In this way, TARP can

get basic test cases for all methods. Moreover, our customized test case generator can

generate test cases for private and protected methods for TARP to reconstruct internal

refactoring paths.

4. Support more patterns: Currently the TARP* + ALTA* solution only supports 8

refactoring patterns (see Section 3.1.1.2). It is important to support more patterns.

5. Handle unsupported refactoring types: In the current design, TARP will generate

an empty path if there is any unsupported refactoring step in the real refactoring history.

Therefore, it is important to find a way to let TARP skip unsupported refactoring steps

and generate a partial refactoring path. Although a partial refactoring path cannot be

used to conduct automatic component adaptations, it is still valuable for people to read

in order to understand what happened to the modified component.



96

APPENDIX A. Real Refactoring History of Exp. 3 in Table 3.1
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APPENDIX B. TARP* Domain File Ver. 1.2

1 ( d e f i n e ( domain a p i r e f a c t o r i n g )

2

3 ( : cons tant s

4 Stat ic Method − MethodModifier

5 Instance Method − MethodModifier

6 S t a t i c F i e l d − Fi e ldMod i f i e r

7 I n s t an c e F i e l d − Fi e ldMod i f i e r

8 )

9

10 ( : types

11 ; ; s t r u c t u r e s

12 APIObject − ob j e c t

13 APIRoot − APIObject

14 Package − APIObject

15 Class − APIObject

16 Method − APIObject

17 F i e ld − APIObject

18

19 ; ; names

20 PackageName − ob j e c t

21 ClassName − ob j e c t

22 MethodName − ob j e c t

23 FieldName − ob j e c t

24

25 ; ; types

26 MethodParamTypes − ob j e c t

27

28 ; ; mod i f i e r
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29 MethodModifer − ob j e c t

30 F i e l dMod i f i e r − ob j e c t

31

32 ; ; path tokens

33 MethodPathToken − Object

34

35 )

36

37 ( : p r ed i c a t e s

38 ; ; t r e e s t r u c t u r e s

39 ( ContainsPackage ? r − APIRoot ?p − Package )

40 ( Conta insClass ?p − Package ? c − Class )

41 ( ContainsMethod ?c − Class ?m − Method )

42 ( Conta insFie ld ? c − Class ? f − Fie ld )

43

44 ; ; path token

45 (ContainsMethodPathToken ?m − Method ? t − MethodPathToken )

46

47 (HasPackageName ?p − Package ?pName − PackageName )

48 (HasClassName ?c − Class ?cName − ClassName )

49 (HasMethodName ?m − Method ?mName − MethodName)

50 (HasFieldName ? f − Fie ld ?fName − FieldName )

51

52 ; ; types

53 (HasMethodParamTypes ?m − Method ? types − MethodParamTypes )

54

55 ; ; mod i f i e r s

56 ( HasMethodModifier ?m − Method ?mod − MethodModifier )

57 ( HasFie ldModi f i e r ? f − Fie ld ?mod − Fi e ldMod i f i e r )

58

59 ; ; s i gna tu r e paths

60 ; ; package

61 ( S ignaturePathTi l lPackage ? r − APIRoot ?pName − PackageName )

62

63 ; ; class
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64 ( S ignaturePathTi l lC la s s ? r − APIRoot ?pName − PackageName ?cName −

ClassName )

65

66 ; ; method −− remember to in c lude types

67 ( SignaturePathTil lMethod ? r − APIRoot ?pName − PackageName ?cName −

ClassName

68 ?mName − MethodName ? types − MethodParamTypes )

69 ( SignaturePathTillMethodPathToken ? r − APIRoot ?pName − PackageName ?

cName − ClassName

70 ?mName − MethodName ?mParamTypes − MethodParamTypes ?mToken −

MethodPathToken )

71

72 ; ; f i e l d

73 ( S i gna tu r ePathT i l lF i e l d ? r − APIRoot ?pName − PackageName ?cName −

ClassName

74 ?fName − FieldName )

75

76 ; ; i n h e r i t

77 ( I nh e r i t ? c l a s sCh i l d − Class ? c l a s sPar en t − Class )

78

79 ; ; pu l l−up t r an s a c t i on s

80 ( notPullingUpMethods )

81

82 ; ; note : a l l ob j ec t s , not names

83 (MethodDuringPullingUp ?m1 − Method ?m1ParamTypes − MethodParamTypes

84 ?cFrom − Class ?cTo − Class )

85

86 )

87

88

89 ; ;

90 ; ; ========================== ac t i on s =======================

91 ; ;

92

93 ; ; rename f i e l d
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94 ( : a c t i on renameField

95 : parameters (

96 ? root − APIRoot

97 ?p1 − Package

98 ?p1Name − PackageName

99 ? c1 − Class

100 ?c1Name − ClassName

101 ? f1 − Fie ld

102 ?f1Name − FieldName

103 ?f1NewName − FieldName

104

105 )

106 : p r e cond i t i on ( and

107

108 ( notPullingUpMethods )

109

110 ; ; uuid s t r u c tu r e check

111 ( ContainsPackage ? root ?p1 )

112 ( Conta insClass ?p1 ? c1 )

113 ( Conta insFie ld ? c1 ? f1 )

114

115 ; ; name check

116 (HasPackageName ?p1 ?p1Name)

117 (HasClassName ? c1 ?c1Name)

118 (HasFieldName ? f1 ?f1Name )

119 ( not (HasFieldName ? f1 ?f1NewName) )

120

121 ; ; s i gna tu r e path

122 ( S ignaturePathTi l lPackage ? root ?p1Name)

123 ( S ignaturePathTi l lC la s s ? root ?p1Name ?c1Name)

124 ( S i gna tu r ePathT i l lF i e l d ? root ?p1Name ?c1Name ?f1Name )

125 ( not ( S i gna tu r ePathT i l lF i e l d ? root ?p1Name ?c1Name ?f1NewName) )

126

127 )

128 : e f f e c t ( and
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129

130 ; ; change unique id ob j e c t s t r u c tu r e

131 ; ; nothing needs to be changed

132

133 ; ; change name part

134 ( not (HasFieldName ? f1 ?f1Name) )

135 (HasFieldName ? f1 ?f1NewName)

136

137 ; ; change r e l a t e d s i gna tu r e paths

138 ; ; 1 . s igpathTi l lmethod m1, v ia c1

139 ( not ( S i gna tu r ePathT i l lF i e l d ? root ?p1Name ?c1Name ?f1Name ) )

140 ( S i gna tu r ePathT i l lF i e l d ? root ?p1Name ?c1Name ?f1NewName)

141

142

143 )

144 )

145

146 ; ; we only a l low to move stat ic f i e l d r i g h t now .

147 ( : a c t i on moveField

148 : parameters (

149 ? root − APIRoot

150 ?p1 − Package

151 ?p1Name − PackageName

152 ?CFrom − Class

153 ?cFromName − ClassName

154 ? f1 − Fie ld

155 ?f1Name − FieldName

156 ? f 1Mod i f i e r − Fi e ldMod i f i e r

157

158 ?p2 − Package

159 ?p2Name − PackageName

160 ?cTo − Class

161 ?cToName − ClassName

162 )

163 : p r e cond i t i on ( and
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164

165 ( notPullingUpMethods )

166

167 ; ; uuid s t r u c tu r e check

168 ( ContainsPackage ? root ?p1 )

169 ( ContainsPackage ? root ?p2 )

170 ( Conta insClass ?p1 ?cFrom)

171 ( Conta insClass ?p2 ?cTo)

172 ( Conta insFie ld ?cFrom ? f1 )

173 ( not ( Conta insFie ld ?cTo ? f1 ) )

174

175 ; ; name check

176 (HasPackageName ?p1 ?p1Name)

177 (HasPackageName ?p2 ?p2Name)

178 (HasClassName ?cFrom ?cFromName)

179 (HasClassName ?cTo ?cToName)

180 (HasFieldName ? f1 ?f1Name )

181 ( HasFie ldModi f i e r ? f 1 ? f 1Mod i f i e r )

182 ; ; c r i t i c a l part

183 (= ? f1Mod i f i e r S t a t i c F i e l d )

184

185 ; ; s i gna tu r e path

186 ( S ignaturePathTi l lPackage ? root ?p1Name)

187 ( S ignaturePathTi l lPackage ? root ?p2Name)

188 ( S i gnaturePathTi l lC la s s ? root ?p1Name ?cFromName)

189 ( S ignaturePathTi l lC la s s ? root ?p2Name ?cToName)

190 ( S i gna tu r ePathT i l lF i e l d ? root ?p1Name ?cFromName ?f1Name)

191 ( not ( S i gna tu r ePathT i l lF i e l d ? root ?p2Name ?cToName ?f1Name ) )

192

193 )

194 : e f f e c t ( and

195

196 ; ; change unique id ob j e c t s t r u c tu r e

197 ( not ( Conta insFie ld ?cFrom ? f1 ) )

198 ( Conta insFie ld ?cTo ? f1 )
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199

200 ; ; change r e l a t e d s i gna tu r e paths

201 ; ; 1 . s i g p a t hT i l l F i e l d f1 , v ia cFrom

202 ( not ( S i gna tu r ePathT i l lF i e l d ? root ?p1Name ?cFromName ?f1Name ) )

203 ; ; 2 . 1 . s i g p a t hT i l l F i e l d f1 , v ia cTo

204 ( S i gna tu r ePathT i l lF i e l d ? root ?p2Name ?cToName ?f1Name )

205

206 )

207 )

208

209

210 ; ; we only a l low to move stat ic method r i gh t now .

211 ( : a c t i on moveMethod

212 : parameters (

213 ? root − APIRoot

214 ?p1 − Package

215 ?p1Name − PackageName

216 ?CFrom − Class

217 ?cFromName − ClassName

218 ?m1 − Method

219 ?m1Name − MethodName

220 ?m1ParamTypes − MethodParamTypes

221 ?m1Modifier − MethodModifier

222

223 ?p2 − Package

224 ?p2Name − PackageName

225 ?cTo − Class

226 ?cToName − ClassName

227 )

228 : p r e cond i t i on ( and

229

230 ( notPullingUpMethods )

231

232 ; ; uuid s t r u c tu r e check

233 ( ContainsPackage ? root ?p1 )
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234 ( ContainsPackage ? root ?p2 )

235 ( Conta insClass ?p1 ?cFrom)

236 ( Conta insClass ?p2 ?cTo)

237 ( ContainsMethod ?cFrom ?m1)

238 ( not ( ContainsMethod ?cTo ?m1) )

239

240 ; ; name check

241 (HasPackageName ?p1 ?p1Name)

242 (HasPackageName ?p2 ?p2Name)

243 (HasClassName ?cFrom ?cFromName)

244 (HasClassName ?cTo ?cToName)

245 (HasMethodName ?m1 ?m1Name)

246 (HasMethodParamTypes ?m1 ?m1ParamTypes )

247 ( HasMethodModifier ?m1 ?m1Modifier )

248 ; ; c r i t i c a l part

249 (= ?m1Modifier Stat ic Method )

250

251 ; ; s i gna tu r e path

252 ( S ignaturePathTi l lPackage ? root ?p1Name)

253 ( S ignaturePathTi l lPackage ? root ?p2Name)

254 ( S i gnaturePathTi l lC la s s ? root ?p1Name ?cFromName)

255 ( S ignaturePathTi l lC la s s ? root ?p2Name ?cToName)

256 ( SignaturePathTil lMethod ? root ?p1Name ?cFromName ?m1Name ?m1ParamTypes )

257 ( not ( SignaturePathTil lMethod ? root ?p2Name ?cToName ?m1Name ?m1ParamTypes )

)

258

259 )

260 : e f f e c t ( and

261

262 ; ; change unique id ob j e c t s t r u c tu r e

263 ( not ( ContainsMethod ?cFrom ?m1) )

264 ( ContainsMethod ?cTo ?m1)

265

266 ; ; change r e l a t e d s i gna tu r e paths

267 ; ; 1 . s igpathTi l lmethod m1, v ia cFrom
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268 ( not ( SignaturePathTil lMethod ? root ?p1Name ?cFromName ?m1Name ?

m1ParamTypes ) )

269 ; ; 2 . 1 . s igpathTi l lmethod m1, v ia cTo

270 ( SignaturePathTil lMethod ? root ?p2Name ?cToName ?m1Name ?m1ParamTypes )

271

272 ; ; 3 . s igpathTi l lMethodPathtoken : m1 ’ s token , remove a l l v ia cFrom and

add a l l v ia cTo

273 ( f o r a l l (? oneMethodPathToken − MethodPathToken )

274 (when ( and

275 (ContainsMethodPathToken ?m1 ?oneMethodPathToken )

276 )

277 ( and

278 ; ; remove the s i g path v ia cFrom

279 ( not ( SignaturePathTillMethodPathToken ? root ?p1Name ?cFromName ?

m1Name ?m1ParamTypes ?oneMethodPathToken ) )

280 ; ; adding the path v ia cTo

281 ( SignaturePathTillMethodPathToken ? root ?p2Name ?cToName ?m1Name ?

m1ParamTypes ?oneMethodPathToken )

282 )

283 )

284 )

285 )

286 )

287

288 ; ; rename method

289 ( : a c t i on renameMethod

290 : parameters (

291 ? root − APIRoot

292 ?p1 − Package

293 ?p1Name − PackageName

294 ? c1 − Class

295 ?c1Name − ClassName

296 ?m1 − Method

297 ?m1Name − MethodName

298 ?m1NewName − MethodName
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299 ?m1ParamTypes − MethodParamTypes

300 )

301 : p r e cond i t i on ( and

302

303 ( notPullingUpMethods )

304

305 ; ; uuid s t r u c tu r e check

306 ( ContainsPackage ? root ?p1 )

307 ( Conta insClass ?p1 ? c1 )

308 ( ContainsMethod ? c1 ?m1)

309

310 ; ; name check

311 (HasPackageName ?p1 ?p1Name)

312 (HasClassName ? c1 ?c1Name)

313 (HasMethodName ?m1 ?m1Name)

314 ( not (HasMethodName ?m1 ?m1NewName) )

315 (HasMethodParamTypes ?m1 ?m1ParamTypes )

316

317 ; ; s i gna tu r e path

318 ( S ignaturePathTi l lPackage ? root ?p1Name)

319 ( S ignaturePathTi l lC la s s ? root ?p1Name ?c1Name)

320 ( SignaturePathTil lMethod ? root ?p1Name ?c1Name ?m1Name ?m1ParamTypes )

321 ( not ( SignaturePathTil lMethod ? root ?p1Name ?c1Name ?m1NewName ?

m1ParamTypes ) )

322

323 )

324 : e f f e c t ( and

325

326 ; ; change unique id ob j e c t s t r u c tu r e

327 ; ; nothing needs to be changed

328

329 ; ; change name part

330 ( not (HasMethodName ?m1 ?m1Name) )

331 (HasMethodName ?m1 ?m1NewName)

332



107

333 ; ; change r e l a t e d s i gna tu r e paths

334 ; ; 1 . s igpathTi l lmethod m1, v ia c1

335 ( not ( SignaturePathTil lMethod ? root ?p1Name ?c1Name ?m1Name ?m1ParamTypes

) )

336 ( SignaturePathTil lMethod ? root ?p1Name ?c1Name ?m1NewName ?m1ParamTypes )

337

338 ; ; 3 . s igpathTi l lMethodPathtoken : m1 ’ s token

339 ( f o r a l l (? oneMethodPathToken − MethodPathToken )

340 (when ( and

341 (ContainsMethodPathToken ?m1 ?oneMethodPathToken )

342 )

343 ( and

344 ; ; remove the s i g path

345 ( not ( SignaturePathTillMethodPathToken ? root ?p1Name ?c1Name ?

m1Name ?m1ParamTypes ?oneMethodPathToken ) )

346 ; ; adding the path

347 ( SignaturePathTillMethodPathToken ? root ?p1Name ?c1Name ?m1NewName

?m1ParamTypes ?oneMethodPathToken )

348 )

349 )

350 )

351 )

352 )

353

354 ( : a c t i on pul lupMethods start

355 : parameters (

356 ? root − APIRoot

357 ?p1 − Package

358 ?p1Name − PackageName

359 ?CFrom − Class

360 ?cFromName − ClassName

361 ?m1 − Method

362 ?m1Name − MethodName

363 ?m1ParamTypes − MethodParamTypes

364
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365 ?p2 − Package

366 ?p2Name − PackageName

367 ?cTo − Class

368 ?cToName − ClassName

369 )

370 : p r e cond i t i on ( and

371

372 ; ; not running pu l l i n g up method

373 ( notPullingUpMethods )

374 ( not (MethodDuringPullingUp ?m1 ?m1ParamTypes ?cFrom ?cTo) )

375

376 ; ; uuid s t r u c tu r e check

377 ( ContainsPackage ? root ?p1 )

378 ( ContainsPackage ? root ?p2 )

379 ( Conta insClass ?p1 ?cFrom)

380 ( Conta insClass ?p2 ?cTo)

381 ( ContainsMethod ?cFrom ?m1)

382 ( not ( ContainsMethod ?cTo ?m1) )

383

384 ; ; name check

385 (HasPackageName ?p1 ?p1Name)

386 (HasPackageName ?p2 ?p2Name)

387 (HasClassName ?cFrom ?cFromName)

388 (HasClassName ?cTo ?cToName)

389 (HasMethodName ?m1 ?m1Name)

390 (HasMethodParamTypes ?m1 ?m1ParamTypes )

391

392 ; ; cFrom extends cTo

393 ( I nh e r i t ?cFrom ?cTo)

394

395 ; ; s i gna tu r e path

396 ( S ignaturePathTi l lPackage ? root ?p1Name)

397 ( S ignaturePathTi l lPackage ? root ?p2Name)

398 ( S i gnaturePathTi l lC la s s ? root ?p1Name ?cFromName)

399 ( S ignaturePathTi l lC la s s ? root ?p2Name ?cToName)
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400 ( SignaturePathTil lMethod ? root ?p1Name ?cFromName ?m1Name ?m1ParamTypes )

401 ( not ( SignaturePathTil lMethod ? root ?p2Name ?cToName ?m1Name ?m1ParamTypes )

)

402

403 )

404 : e f f e c t ( and

405 ; ; j u s t s t a r t up

406 (MethodDuringPullingUp ?m1 ?m1ParamTypes ?cFrom ?cTo)

407 ( not ( notPullingUpMethods ) )

408 )

409 )

410

411 ( : a c t i on pul lUpMethods mergingSib l ings

412 : parameters (

413 ? root − APIRoot

414

415 ?p1 − Package

416 ?p1Name − PackageName

417 ?CFrom − Class

418 ?cFromName − ClassName

419 ?m1 − Method

420 ?m1Name − MethodName

421 ?m1ParamTypes − MethodParamTypes

422 ?m1Modifer − MethodModifier

423

424 ?p2 − Package

425 ?p2Name − PackageName

426 ? cS i b l i n g − Class

427 ? cSiblingName − ClassName

428 ?m2 − Method

429 ; ; name note : m2 should be in m1Name!

430 ; ; type note : m2 should has the same param types !

431

432 ?cTo − Class

433 )
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434 : p r e cond i t i on ( and

435

436 ; ; must during pu l l i n g up proce s s

437 (MethodDuringPullingUp ?m1 ?m1ParamTypes ?cFrom ?cTo)

438 ( not ( notPullingUpMethods ) )

439

440 ; ; uuid s t r u c tu r e check

441 ( ContainsPackage ? root ?p1 )

442 ( ContainsPackage ? root ?p2 )

443 ( Conta insClass ?p1 ?cFrom)

444 ( Conta insClass ?p2 ? cS i b l i n g )

445 ( ContainsMethod ?cFrom ?m1)

446 ( ContainsMethod ? cS i b l i n g ?m2)

447

448 ; ; name check

449 (HasPackageName ?p1 ?p1Name)

450 (HasPackageName ?p2 ?p2Name)

451 (HasClassName ?cFrom ?cFromName)

452 (HasClassName ? cS i b l i n g ? cSiblingName )

453 (HasMethodName ?m1 ?m1Name)

454 (HasMethodName ?m2 ?m1Name) ; ; this part i s very c r i t i c a l

455

456 ; ; types

457 (HasMethodParamTypes ?m1 ?m1ParamTypes )

458 (HasMethodParamTypes ?m2 ?m1ParamTypes ) ; ; this part i s very c r i t i c a l

459

460 ; ; mod i f i e r

461 ; ; we don ’ t need to check the s t a t i c part .

462 ; ; t h i s i s okay because pu l l up can be mixed .

463 ; ; anyway , I th ink that e c l i p s e has a bug in t h i s i s s u e

464 ; ; so I am going to f o rb i d i t .

465 ( HasMethodModifier ?m1 ?m1Modifer )

466 ( HasMethodModifier ?m2 ?m1Modifer )

467

468 ; ; i n h e r i t
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469 ; ; cFrom extends cTo

470 ( I nh e r i t ?cFrom ?cTo)

471 ( I nh e r i t ? c S i b l i n g ?cTo)

472

473 ; ; s i gna tu r e path

474 ( S ignaturePathTi l lPackage ? root ?p1Name)

475 ( S ignaturePathTi l lPackage ? root ?p2Name)

476 ( S i gnaturePathTi l lC la s s ? root ?p1Name ?cFromName)

477 ( S ignaturePathTi l lC la s s ? root ?p2Name ? cSiblingName )

478 ( SignaturePathTil lMethod ? root ?p1Name ?cFromName ?m1Name ?m1ParamTypes )

479 ; ; t h i s part i s very c r i t i c a l

480 ( SignaturePathTil lMethod ? root ?p2Name ? cSiblingName ?m1Name ?m1ParamTypes )

481

482 )

483 : e f f e c t ( and

484 ; ; move a l l i t s path token

485 ( f o r a l l (? oneMethodPathToken − MethodPathToken )

486 (when ( and

487 (ContainsMethodPathToken ?m2 ?oneMethodPathToken )

488 )

489 ( and

490 ; ; 1 . move path token to m1

491 ( not ( ContainsMethodPathToken ?m2 ?oneMethodPathToken ) )

492 ( ContainsMethodPathToken ?m1 ?oneMethodPathToken )

493

494 ; ; remove a l l method pathtoken s i gna tu r e paths through m2

495 ( not ( SignaturePathTillMethodPathToken ? root ?p2Name ? cSiblingName

?m1Name ?m1ParamTypes ?oneMethodPathToken ) )

496

497 ; ; add new method pathtoken s i gna tu r e paths through m1

498 ( SignaturePathTillMethodPathToken ? root ?p1Name ?cFromName ?m1Name

?m1ParamTypes ?oneMethodPathToken )

499

500 )

501 )
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502 )

503

504 ; ; r e p r e s e n t a t i v e

505 ; ; remove a l l r e s t r e l a t i o n s wih m2

506 ; ; with conta ine r

507 ( not ( ContainsMethod ? cS i b l i n g ?m2) )

508 ; ; with name

509 ( not (HasMethodName ?m2 ?m1Name) )

510 ; ; with types

511 ( not (HasMethodParamTypes ?m2 ?m1ParamTypes ) )

512 ; ; with mod i f i e r

513 ( not ( HasMethodModifier ?m2 ?m1Modifer ) )

514

515 ; ; remove s i gna tu r e path t i l l m2

516 ( not ( SignaturePathTil lMethod ? root ?p2Name ? cSiblingName ?m1Name ?

m1ParamTypes ) )

517 )

518 )

519

520 ( : a c t i on pullupMethods end

521 : parameters (

522 ? root − APIRoot

523 ?p1 − Package

524 ?p1Name − PackageName

525 ?CFrom − Class

526 ?cFromName − ClassName

527 ?m1 − Method

528 ?m1Name − MethodName

529 ?m1ParamTypes − MethodParamTypes

530

531 ?p2 − Package

532 ?p2Name − PackageName

533 ?cTo − Class

534 ?cToName − ClassName

535 )
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536 : p r e cond i t i on ( and

537

538

539 ; ; must during pu l l i n g up proce s s

540 (MethodDuringPullingUp ?m1 ?m1ParamTypes ?cFrom ?cTo)

541 ( not ( notPullingUpMethods ) )

542

543 ; ; uuid s t r u c tu r e check

544 ( ContainsPackage ? root ?p1 )

545 ( ContainsPackage ? root ?p2 )

546 ( Conta insClass ?p1 ?cFrom)

547 ( Conta insClass ?p2 ?cTo)

548 ( ContainsMethod ?cFrom ?m1)

549 ( not ( ContainsMethod ?cTo ?m1) )

550

551 ; ; name check

552 (HasPackageName ?p1 ?p1Name)

553 (HasPackageName ?p2 ?p2Name)

554 (HasClassName ?cFrom ?cFromName)

555 (HasClassName ?cTo ?cToName)

556 (HasMethodName ?m1 ?m1Name)

557 (HasMethodParamTypes ?m1 ?m1ParamTypes )

558

559 ; ; cFrom extends cTo

560 ( I nh e r i t ?cFrom ?cTo)

561

562 ; ; s i gna tu r e path

563 ( S ignaturePathTi l lPackage ? root ?p1Name)

564 ( S ignaturePathTi l lPackage ? root ?p2Name)

565 ( S i gnaturePathTi l lC la s s ? root ?p1Name ?cFromName)

566 ( S ignaturePathTi l lC la s s ? root ?p2Name ?cToName)

567 ( SignaturePathTil lMethod ? root ?p1Name ?cFromName ?m1Name ?m1ParamTypes )

568 ( not ( SignaturePathTil lMethod ? root ?p2Name ?cToName ?m1Name ?m1ParamTypes )

)

569
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570 )

571 : e f f e c t ( and

572

573 ; ; change unique id ob j e c t s t r u c tu r e

574 ( not ( ContainsMethod ?cFrom ?m1) )

575 ( ContainsMethod ?cTo ?m1)

576

577 ; ; change r e l a t e d s i gna tu r e paths

578 ; ; 1 . s igpathTi l lmethod m1, v ia cFrom

579 ( not ( SignaturePathTil lMethod ? root ?p1Name ?cFromName ?m1Name ?

m1ParamTypes ) )

580 ; ; 2 . 1 . s igpathTi l lmethod m1, v ia cTo

581 ( SignaturePathTil lMethod ? root ?p2Name ?cToName ?m1Name ?m1ParamTypes )

582

583 ; ; 3 . s igpathTi l lMethodPathtoken : m1 ’ s token , remove a l l v ia cFrom and

add a l l v ia cTo

584 ( f o r a l l (? oneMethodPathToken − MethodPathToken )

585 (when ( and

586 (ContainsMethodPathToken ?m1 ?oneMethodPathToken )

587 )

588 ( and

589 ; ; remove the s i g path v ia cFrom

590 ( not ( SignaturePathTillMethodPathToken ? root ?p1Name ?cFromName ?

m1Name ?m1ParamTypes ?oneMethodPathToken ) )

591 ; ; adding the path v ia cTo

592 ( SignaturePathTillMethodPathToken ? root ?p2Name ?cToName ?m1Name ?

m1ParamTypes ?oneMethodPathToken )

593 )

594 )

595 )

596

597 ; ; end this proce s s

598 ( not (MethodDuringPullingUp ?m1 ?m1ParamTypes ?cFrom ?cTo) )

599 ( notPullingUpMethods )

600 )
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601 )

602

603

604 ( : a c t i on renameClass

605 : parameters (

606 ? root − APIRoot

607 ?p1 − Package

608 ?p1Name − PackageName

609 ?C1 − Class

610 ?c1Name − ClassName

611 ?c1NewName − ClassName

612 )

613 : p r e cond i t i on ( and

614

615 ( notPullingUpMethods )

616

617 ; ; ob j e c t s t r u c tu r e

618 ( ContainsPackage ? root ?p1 )

619 ( Conta insClass ?p1 ? c1 )

620

621 ; ; name

622 (HasPackageName ?p1 ?p1Name)

623 (HasClassName ? c1 ?c1Name)

624 ( not (HasClassName ? c1 ?c1NewName) )

625

626 ; ; s i g path

627 ( S ignaturePathTi l lPackage ? root ?p1Name)

628 ( S i gnaturePathTi l lC la s s ? root ?p1Name ?c1Name)

629 ( not ( S i gna turePathTi l lC la s s ? root ?p1Name ?c1NewName) )

630 )

631 : e f f e c t ( and

632 ; ; the ob j e c t s t r u c tu r e didn ’ t change .

633 ; ; change ob j e c t c1 ’ s name r e l a t i o n

634 ( not (HasClassName ? c1 ?c1Name) )

635 (HasClassName ? c1 ?c1NewName)
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636

637 ; ; change s i g path t i l l class

638 ( not ( S i gna turePathTi l lC la s s ? root ?p1Name ?c1Name) )

639 ( S i gnaturePathTi l lC la s s ? root ?p1Name ?c1NewName)

640

641 ; ; change s i g path t i l l method

642 ( f o r a l l (? oneMethod − Method

643 ?oneMethodName − MethodName

644 ?oneMethodParamTypes − MethodParamTypes )

645 (when ( and

646 ( ContainsMethod ? c1 ?oneMethod )

647 (HasMethodName ?oneMethod ?oneMethodName)

648 (HasMethodParamTypes ?oneMethod ?oneMethodParamTypes )

649 )

650 ( and

651 ( SignaturePathTil lMethod ? root ?p1Name ?c1NewName ?oneMethodName ?

oneMethodParamTypes )

652 ( not ( SignaturePathTil lMethod ? root ?p1Name ?c1Name ?oneMethodName

?oneMethodParamTypes ) )

653 )

654 )

655 )

656

657 ; ; change s i g path t i l l method ’ s path token

658

659 ( f o r a l l (? oneMethod − Method

660 ?oneMethodName − MethodName

661 ?oneMethodParamTypes − MethodParamTypes

662 ?oneMethodPathToken − MethodPathToken )

663 (when ( and

664 ( ContainsMethod ? c1 ?oneMethod )

665 (HasMethodName ?oneMethod ?oneMethodName)

666 (HasMethodParamTypes ?oneMethod ?oneMethodParamTypes )

667 ( ContainsMethodPathToken ?oneMethod ?oneMethodPathToken )

668 )
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669 ( and

670 ( SignaturePathTillMethodPathToken ? root ?p1Name ?c1NewName ?

oneMethodName ?oneMethodParamTypes ?oneMethodPathToken )

671 ( not ( SignaturePathTillMethodPathToken ? root ?p1Name ?c1Name ?

oneMethodName ?oneMethodParamTypes ?oneMethodPathToken ) )

672 )

673 )

674 )

675

676 ; ; change s i g path t i l l f i e l d

677 ( f o r a l l (? oneFie ld − Fie ld

678 ?oneFieldName − FieldName )

679 (when ( and

680 ( Conta insFie ld ? c1 ? oneFie ld )

681 (HasFieldName ? oneFie ld ?oneFieldName )

682 )

683 ( and

684 ( S i gna tu r ePathT i l lF i e l d ? root ?p1Name ?c1NewName ?oneFieldName )

685 ( not ( S i gna tu r ePathT i l lF i e l d ? root ?p1Name ?c1Name ?oneFieldName ) )

686 )

687 )

688 )

689 )

690 )

691

692 ( : a c t i on moveClass

693 : parameters (

694 ? root − APIRoot

695 ?p1 − Package

696 ?p1Name − PackageName

697 ?C1 − Class

698 ?c1Name − ClassName

699 ; ; t a r g e t

700 ?p2 − Package

701 ?p2Name − PackageName
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702 )

703 : p r e cond i t i on ( and

704

705 ( notPullingUpMethods )

706

707 ; ; uuid s t r u c tu r e check

708 ( ContainsPackage ? root ?p1 )

709 ( ContainsPackage ? root ?p2 )

710 ( Conta insClass ?p1 ? c1 )

711 ( not ( Conta insClass ?p2 ? c1 ) )

712 ; ; name check

713 (HasPackageName ?p1 ?p1Name)

714 (HasPackageName ?p2 ?p2Name)

715 (HasClassName ? c1 ?c1Name)

716

717 ; ; s i gna tu r e path

718 ( S ignaturePathTi l lPackage ? root ?p1Name)

719 ( S ignaturePathTi l lPackage ? root ?p2Name)

720 ( S i gnaturePathTi l lC la s s ? root ?p1Name ?c1Name)

721 ( not ( S i gna turePathTi l lC la s s ? root ?p2Name ?c1Name) ) ; ; t h i s prevents name−

c o n f l i c t a f t e r moving

722 ; ; without a f o r a l l ! ! ! !

723 )

724 : e f f e c t ( and

725 ; ; uuid s t r u c tu r e change

726 ( not ( Conta insClass ?p1 ? c1 ) )

727 ( Conta insClass ?p2 ? c1 )

728 ; ; change s i g path t i l l c l a s s

729 ( not ( S i gna turePathTi l lC la s s ? root ?p1Name ?c1Name) )

730 ( S i gnaturePathTi l lC la s s ? root ?p2Name ?c1Name)

731

732 ; ; change s i g path t i l l method

733 ( f o r a l l (? oneMethod − Method

734 ?oneMethodName − MethodName

735 ?oneMethodParamTypes − MethodParamTypes )



119

736 (when ( and

737 ( ContainsMethod ? c1 ?oneMethod )

738 (HasMethodName ?oneMethod ?oneMethodName)

739 (HasMethodParamTypes ?oneMethod ?oneMethodParamTypes )

740 )

741 ( and

742 ( SignaturePathTil lMethod ? root ?p2Name ?c1Name ?oneMethodName ?

oneMethodParamTypes )

743 ( not ( SignaturePathTil lMethod ? root ?p1Name ?c1Name ?oneMethodName

?oneMethodParamTypes ) )

744 )

745 )

746 )

747

748 ; ; change s i g path t i l l method ’ s path token

749

750 ( f o r a l l (? oneMethod − Method

751 ?oneMethodName − MethodName

752 ?oneMethodParamTypes − MethodParamTypes

753 ?oneMethodPathToken − MethodPathToken )

754 (when ( and

755 ( ContainsMethod ? c1 ?oneMethod )

756 (HasMethodName ?oneMethod ?oneMethodName)

757 (HasMethodParamTypes ?oneMethod ?oneMethodParamTypes )

758 ( ContainsMethodPathToken ?oneMethod ?oneMethodPathToken )

759 )

760 ( and

761 ( SignaturePathTillMethodPathToken ? root ?p2Name ?c1Name ?

oneMethodName ?oneMethodParamTypes ?oneMethodPathToken )

762 ( not ( SignaturePathTillMethodPathToken ? root ?p1Name ?c1Name ?

oneMethodName ?oneMethodParamTypes ?oneMethodPathToken ) )

763 )

764 )

765 )

766



120

767 ; ; change s i g path t i l l f i e l d

768 ( f o r a l l (? oneFie ld − Fie ld

769 ?oneFieldName − FieldName )

770 (when ( and

771 ( Conta insFie ld ? c1 ? oneFie ld )

772 (HasFieldName ? oneFie ld ?oneFieldName )

773 )

774 ( and

775 ( S i gna tu r ePathT i l lF i e l d ? root ?p2Name ?c1Name ?oneFieldName )

776 ( not ( S i gna tu r ePathT i l lF i e l d ? root ?p1Name ?c1Name ?oneFieldName ) )

777 )

778 )

779 )

780 )

781 )

782

783 ( : a c t i on renamePackage

784 : parameters (

785 ? root − APIRoot

786 ?p1 − Package

787 ?p1Name − PackageName

788 ?p1NewName − PackageName

789 )

790 : p r e cond i t i on ( and

791

792 ( notPullingUpMethods )

793

794 ( ContainsPackage ? root ?p1 )

795 (HasPackageName ?p1 ?p1Name)

796 ( not (HasPackageName ?p1 ?p1NewName) )

797

798 ( S ignaturePathTi l lPackage ? root ?p1Name)

799 ( not ( S ignaturePathTi l lPackage ? root ?p1NewName ) )

800 )

801 : e f f e c t ( and
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802 ; ; change uuid ob j e c t s t r u c tu r e

803 ( not (HasPackageName ?p1 ?p1Name) )

804 (HasPackageName ?p1 ?p1NewName)

805

806 ; ; change s i g path t i l l package

807 ( S ignaturePathTi l lPackage ? root ?p1NewName)

808 ( not ( S ignaturePathTi l lPackage ? root ?p1Name ) )

809

810 ; ; change s i g path t i l l class

811 ( f o r a l l (? oneClass − Class

812 ?oneClassName − ClassName

813 )

814 (when ( and

815 ( Conta insClass ?p1 ? oneClass )

816 (HasClassName ? oneClass ?oneClassName )

817 )

818 ( and

819 ( S ignaturePathTi l lC la s s ? root ?p1NewName ?oneClassName )

820 ( not ( S i gna turePathTi l lC la s s ? root ?p1Name ?oneClassName ) )

821 )

822 )

823 )

824

825 ; ; change s i g path t i l l method

826 ( f o r a l l (

827 ? oneClass − Class

828 ?oneClassName − ClassName

829 ?oneMethod − Method

830 ?oneMethodName − MethodName

831 ?oneMethodParamTypes − MethodParamTypes )

832 (when ( and

833 ( Conta insClass ?p1 ? oneClass )

834 (HasClassName ? oneClass ?oneClassName )

835 ( ContainsMethod ? oneClass ?oneMethod )

836 (HasMethodName ?oneMethod ?oneMethodName)
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837 (HasMethodParamTypes ?oneMethod ?oneMethodParamTypes )

838 )

839 ( and

840 ( SignaturePathTil lMethod ? root ?p1NewName ?oneClassName ?

oneMethodName ?oneMethodParamTypes )

841 ( not ( SignaturePathTil lMethod ? root ?p1Name ?oneClassName ?

oneMethodName ?oneMethodParamTypes ) )

842 )

843 )

844 )

845

846 ; ; change s i g path t i l l method ’ s path token

847

848 ( f o r a l l (

849 ? oneClass − Class

850 ?oneClassName − ClassName

851 ?oneMethod − Method

852 ?oneMethodName − MethodName

853 ?oneMethodParamTypes − MethodParamTypes

854 ?oneMethodPathToken − MethodPathToken )

855 (when ( and

856 ( Conta insClass ?p1 ? oneClass )

857 (HasClassName ? oneClass ?oneClassName )

858 ( ContainsMethod ? oneClass ?oneMethod )

859 (HasMethodName ?oneMethod ?oneMethodName)

860 (HasMethodParamTypes ?oneMethod ?oneMethodParamTypes )

861 ( ContainsMethodPathToken ?oneMethod ?oneMethodPathToken )

862 )

863 ( and

864 ( SignaturePathTillMethodPathToken ? root ?p1NewName ?oneClassName ?

oneMethodName ?oneMethodParamTypes ?oneMethodPathToken )

865 ( not ( SignaturePathTillMethodPathToken ? root ?p1Name ?oneClassName

?oneMethodName ?oneMethodParamTypes ?oneMethodPathToken ) )

866 )

867 )
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868 )

869

870 ; ; change s i g path t i l l f i e l d

871 ( f o r a l l (

872 ? oneClass − Class

873 ?oneClassName − ClassName

874 ? oneFie ld − Fie ld

875 ?oneFieldName − FieldName )

876 (when ( and

877 ( Conta insClass ?p1 ? oneClass )

878 (HasClassName ? oneClass ?oneClassName )

879 ( Conta insFie ld ? oneClass ? oneFie ld )

880 (HasFieldName ? oneFie ld ?oneFieldName )

881 )

882 ( and

883 ( S i gna tu r ePathT i l lF i e l d ? root ?p1NewName ?oneClassName ?

oneFieldName )

884 ( not ( S i gna tu r ePathT i l lF i e l d ? root ?p1Name ?oneClassName ?

oneFieldName ) )

885 )

886 )

887 )

888 )

889 )

890

891 )
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APPENDIX C. Fact File of Exp. 3

1 ( d e f i n e ( problem pb1 )

2 ( : domain a p i r e f a c t o r i n g )

3 ( : requirements : s t r i p s : adl )

4 ( : ob j e c t s

5 ; ; g ene ra l part

6 dummyMTk − MethodPathToken

7 dummyFieldName − FieldName ; ; for swapping method names

8 dummyMethodObject − Method

9 dummyFielObject − Fie ld

10 VOID − MethodParamTypes

11

12 ; ; Object and names used in Old API

13 RT root − APIRoot

14

15 RT root PKG PKGorgapachecommonslang3builder − Package

16 PKG PKGorgapachecommonslang3builder − PackageName

17

18 RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey − Class

19 CLS CLSidkey − ClassName

20

21 MethodParamTypes MTDTYPESclassjavalangobject − MethodParamTypes

22 RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey MTD MTDequals − Method

23 MTD MTDequals − MethodName

24

25 MethodParamTypes MTDTYPESvoid − MethodParamTypes

26 RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey MTD MTDhashcode − Method

27 MTD MTDhashcode − MethodName

28

29 RT root PKG PKGorgapachecommonslang3concurrent − Package

30 PKG PKGorgapachecommonslang3concurrent − PackageName

31

32 RT root PKG PKGorgapachecommonslang3concurrent CLS CLSmultibackgroundinitializer − Class

33 CLS CLSmult ibackgroundin i t ia l i zer − ClassName

34

35 MethodParamTypes MTDTYPESclassjavalangstringclassorgapachecommonslang3concurrent<LineWrapMark>

36 b a c k g r o u n d i n i t i a l i z e r − MethodParamTypes

37 RT root PKG PKGorgapachecommonslang3concurrent CLS CLSmultibackgroundinitializer<LineWrapMark>

38 MTD MTDaddinitializer − Method

39 MTD MTDaddinitializer − MethodName

40

41 ; ; ( a l r eady dec la r ed ! ) MethodParamTypes MTDTYPESvoid − MethodParamTypes

42 RT root PKG PKGorgapachecommonslang3concurrent CLS CLSmultibackgroundinitializer<LineWrapMark>

43 MTD MTDgettaskcount − Method

44 MTD MTDgettaskcount − MethodName
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45

46 ; ; ( a l r eady dec la r ed ! ) MethodParamTypes MTDTYPESvoid − MethodParamTypes

47 RT root PKG PKGorgapachecommonslang3concurrent CLS CLSmultibackgroundinitial izer <LineWrapMark>

48 MTD MTDinitialize − Method

49 MTD MTDinitialize − MethodName

50

51 RT root PKG PKGorgapachecommonslang3math − Package

52 PKG PKGorgapachecommonslang3math − PackageName

53

54 RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils − Class

55 CLS CLSnumberutils − ClassName

56

57 MethodParamTypes MTDTYPESclassjavalangstring − MethodParamTypes

58 RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDcreatebigdecimal − Method

59 MTD MTDcreatebigdecimal − MethodName

60

61 MethodParamTypes MTDTYPESlonglonglong − MethodParamTypes

62 RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDmax − Method

63 MTD MTDmax − MethodName

64

65 MethodParamTypes MTDTYPESclassd − MethodParamTypes

66 RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDmin − Method

67 MTD MTDmin − MethodName

68

69 MethodParamTypes MTDTYPESclassjavalangstringbyte − MethodParamTypes

70 RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDtobyte − Method

71 MTD MTDtobyte − MethodName

72

73

74 ; ; names used in New API (we don ’ t care ob j e c t in the goa l )

75 ; ; ( a l r eady dec la r ed ! ) RT root − APIRoot

76

77 ; ; ( a l r eady dec la r ed ! ) PKG PKGorgapachecommonslang3builder − PackageName

78

79 CLS CLSidkeyren − ClassName

80

81 ; ; ( a l r eady dec la r ed ! ) MTD MTDequals − MethodName

82

83 ; ; ( a l r eady dec la r ed ! ) MTD MTDhashcode − MethodName

84

85 ; ; ( a l r eady dec la r ed ! ) PKG PKGorgapachecommonslang3concurrent − PackageName

86

87 CLS CLSmult ibackgroundin i t ia l i zer ren − ClassName

88

89 ; ; ( a l r eady dec la r ed ! ) MTD MTDaddinitializer − MethodName

90

91 ; ; ( a l r eady dec la r ed ! ) MTD MTDgettaskcount − MethodName

92

93 ; ; ( a l r eady dec la r ed ! ) MTD MTDinitialize − MethodName

94

95 ; ; ( a l r eady dec la r ed ! ) PKG PKGorgapachecommonslang3math − PackageName

96

97 ; ; ( a l r eady dec la r ed ! ) CLS CLSnumberutils − ClassName

98

99 MTD MTDcreatebigdecimalren − MethodName



126

100

101 MTD MTDmaxren − MethodName

102

103 MTD MTDminren − MethodName

104

105 MTD MTDtobyteren − MethodName

106

107 )

108

109 ( : i n i t

110 ( notPullingUpMethods )

111 ( ContainsPackage RT root RT root PKG PKGorgapachecommonslang3builder )

112 ( S ignaturePathTi l lPackage RT root PKG PKGorgapachecommonslang3builder )

113 ( ContainsPackage RT root RT root PKG PKGorgapachecommonslang3concurrent )

114 ( S ignaturePathTi l lPackage RT root PKG PKGorgapachecommonslang3concurrent )

115 ( ContainsPackage RT root RT root PKG PKGorgapachecommonslang3math )

116 ( S ignaturePathTi l lPackage RT root PKG PKGorgapachecommonslang3math )

117 ; ; package name

118 ( HasPackageName RT root PKG PKGorgapachecommonslang3builder

PKG PKGorgapachecommonslang3builder )

119 ( ContainsClass RT root PKG PKGorgapachecommonslang3builder

RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey )

120 ( S ignaturePathTi l lC la s s RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey )

121 ; ; c l a s s name

122 ( HasClassName RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey CLS CLSidkey )

123 ( ContainsMethod RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey

RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey MTD MTDequals )

124 ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey MTD MTDequals

MethodParamTypes MTDTYPESclassjavalangobject )

125 ( ContainsMethod RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey

RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey MTD MTDhashcode )

126 ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey MTD MTDhashcode

MethodParamTypes MTDTYPESvoid)

127 ; ; method name

128 (HasMethodName RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey MTD MTDequals

MTD MTDequals)

129 ( HasMethodParamTypes RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey MTD MTDequals

MethodParamTypes MTDTYPESclassjavalangobject )

130 ( HasMethodModifier RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey MTD MTDequals

Instance Method )

131 ; ; method name

132 (HasMethodName RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey MTD MTDhashcode

MTD MTDhashcode)

133 ( HasMethodParamTypes RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey MTD MTDhashcode

MethodParamTypes MTDTYPESvoid)

134 ( HasMethodModifier RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey MTD MTDhashcode

Instance Method )

135 ; ; package name

136 ( HasPackageName RT root PKG PKGorgapachecommonslang3concurrent

PKG PKGorgapachecommonslang3concurrent )

137 ( ContainsClass RT root PKG PKGorgapachecommonslang3concurrent

RT root PKG PKGorgapachecommonslang3concurrent CLS CLSmultibackgroundinitializer )

138 ( S ignaturePathTi l lC la s s RT root PKG PKGorgapachecommonslang3concurrent

CLS cLSmul t ibackground in i t i a l i z e r )

139 ; ; c l a s s name
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140 ( HasClassName RT root PKG PKGorgapachecommonslang3concurrent CLS CLSmultibackgroundinitializer

CLS CLSmult ibackgroundin i t ia l i zer )

141

142 ( ContainsMethod RT root PKG PKGorgapachecommonslang3concurrent CLS CLSmultibackgroundinitializer

RT root PKG PKGorgapachecommonslang3concurrent CLS <LineWrapMark>

143 CLSmult ibackgroundinit ia l izer MTD MTDaddinit ia l izer )

144 ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3concurrent

CLS CLSmult ibackgroundin i t ia l i zer MTD MTDaddinitializer MethodParamTypes <LineWrapMark>

145 MTDTYPESclass javalangstr ingc lassorgapachecommonslang3concurrentbackgroundinit ia l izer )

146 ( ContainsMethod RT root PKG PKGorgapachecommonslang3concurrent CLS CLSmultibackgroundinitializer

RT root PKG PKGorgapachecommonslang3concurrent CLS <LineWrapMark>

147 cLSmultibackgroundinit ial izer MTD MTDgettaskcount )

148 ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3concurrent

CLS CLSmult ibackgroundin i t ia l i zer MTD MTDgettaskcount MethodParamTypes MTDTYPESvoid)

149 ( ContainsMethod RT root PKG PKGorgapachecommonslang3concurrent CLS CLSmultibackgroundinitializer

RT root PKG PKGorgapachecommonslang3concurrent CLS <LineWrapMark>

150 CLSmult ibackgroundinit ia l i zer MTD MTDinit ia l ize )

151 ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3concurrent

CLS CLSmult ibackgroundin i t ia l i zer MTD MTDinitialize MethodParamTypes MTDTYPESvoid)

152 ; ; method name

153 (HasMethodName RT root PKG PKGorgapachecommonslang3concurrent CLS <LineWrapMark>

154 CLSmult ibackgroundinit ia l izer MTD MTDaddinit ia l izer MTD MTDaddinitializer )

155 ( HasMethodParamTypes RT root PKG PKGorgapachecommonslang3concurrent CLS <LineWrapMark>

156 CLSmult ibackgroundinit ia l izer MTD MTDaddinit ia l izer MethodParamTypes <LineWrapMark>

157 MTDTYPESclass javalangstr ingc lassorgapachecommonslang3concurrentbackgroundinit ia l izer )

158 ( HasMethodModifier RT root PKG PKGorgapachecommonslang3concurrent <LineWrapMark>

159 CLS CLSmult ibackgroundinit ia l izer MTD MTDaddinit ia l izer Instance Method )

160 ; ; method name

161 (HasMethodName RT root PKG PKGorgapachecommonslang3concurrent CLS <LineWrapMark>

162 CLSmultibackgroundinitial izer MTD MTDgettaskcount MTD MTDgettaskcount )

163 ( HasMethodParamTypes RT root PKG PKGorgapachecommonslang3concurrent <LineWrapMark>

164 CLS CLSmultibackgroundinitializer MTD MTDgettaskcount MethodParamTypes MTDTYPESvoid)

165 ( HasMethodModifier RT root PKG PKGorgapachecommonslang3concurrent CLS <LineWrapMark>

166 CLSmultibackgroundinitial izer MTD MTDgettaskcount Instance Method )

167 ; ; method name

168 (HasMethodName RT root PKG PKGorgapachecommonslang3concurrent CLS <LineWrapMark>

169 CLSmult ibackgroundinit ia l i zer MTD MTDinit ia l ize MTD MTDinitialize )

170 ( HasMethodParamTypes RT root PKG PKGorgapachecommonslang3concurrent <LineWrapMark>

171 CLS CLSmult ibackgroundinit ia l izer MTD MTDinit ia l ize MethodParamTypes MTDTYPESvoid)

172 ( HasMethodModifier RT root PKG PKGorgapachecommonslang3concurrent CLS <LineWrapMark>

173 CLSmult ibackgroundinit ia l i zer MTD MTDinit ia l ize Instance Method )

174 ; ; package name

175 ( HasPackageName RT root PKG PKGorgapachecommonslang3math PKG PKGorgapachecommonslang3math

)

176 ( ContainsClass RT root PKG PKGorgapachecommonslang3math

RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils )

177 ( S ignaturePathTi l lC la s s RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils )

178 ; ; c l a s s name

179 ( HasClassName RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils

CLS CLSnumberutils )

180 ( ContainsMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils

RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDcreatebigdecimal )

181 ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils

MTD MTDcreatebigdecimal MethodParamTypes MTDTYPESclassjavalangstring )
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182 ( ContainsMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils

RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDmax )

183 ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDmax

MethodParamTypes MTDTYPESlonglonglong )

184 ( ContainsMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils

RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDmin )

185 ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDmin

MethodParamTypes MTDTYPESclassd )

186 ( ContainsMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils

RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDtobyte )

187 ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDtobyte

MethodParamTypes MTDTYPESclassjavalangstringbyte )

188 ; ; method name

189 (HasMethodName

RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDcreatebigdecimal

MTD MTDcreatebigdecimal )

190 ( HasMethodParamTypes

RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDcreatebigdecimal

MethodParamTypes MTDTYPESclassjavalangstring )

191 ( HasMethodModifier

RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDcreatebigdecimal

Stat ic Method )

192 ; ; method name

193 (HasMethodName RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDmax

MTD MTDmax)

194 ( HasMethodParamTypes RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDmax

MethodParamTypes MTDTYPESlonglonglong )

195 ( HasMethodModifier RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDmax

Stat ic Method )

196 ; ; method name

197 (HasMethodName RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDmin

MTD MTDmin)

198 ( HasMethodParamTypes RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDmin

MethodParamTypes MTDTYPESclassd )

199 ( HasMethodModifier RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDmin

Stat ic Method )

200 ; ; method name

201 (HasMethodName RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDtobyte

MTD MTDtobyte)

202 ( HasMethodParamTypes RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDtobyte

MethodParamTypes MTDTYPESclassjavalangstringbyte )

203 ( HasMethodModifier RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDtobyte

Stat ic Method )

204 )

205

206 ( : goa l ( and

207 ( notPullingUpMethods )

208 ( S ignaturePathTi l lPackage RT root PKG PKGorgapachecommonslang3builder )

209 ( S ignaturePathTi l lPackage RT root PKG PKGorgapachecommonslang3concurrent )

210 ( S ignaturePathTi l lPackage RT root PKG PKGorgapachecommonslang3math )

211 ( S ignaturePathTi l lC la s s RT root PKG PKGorgapachecommonslang3builder CLS CLSidkeyren )

212 ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3builder CLS CLSidkeyren MTD MTDequals

MethodParamTypes MTDTYPESclassjavalangobject )

213 ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3builder CLS CLSidkeyren

MTD MTDhashcode MethodParamTypes MTDTYPESvoid)
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214 ( S ignaturePathTi l lC la s s RT root PKG PKGorgapachecommonslang3concurrent

CLS CLSmult ibackgroundin i t ia l i zer ren )

215 ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3concurrent

CLS CLSmult ibackgroundin i t ia l i zer ren MTD MTDaddinitializer MethodParamTypes <LineWrapMark>

216 MTDTYPESclass javalangstr ingc lassorgapachecommonslang3concurrentbackgroundinit ia l izer )

217 ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3concurrent

CLS CLSmult ibackgroundin i t ia l i zer ren MTD MTDgettaskcount MethodParamTypes MTDTYPESvoid)

218 ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3concurrent

CLS CLSmult ibackgroundin i t ia l i zer ren MTD MTDinitialize MethodParamTypes MTDTYPESvoid)

219 ( S ignaturePathTi l lC la s s RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils )

220 ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils

MTD MTDcreatebigdecimalren MethodParamTypes MTDTYPESclassjavalangstring )

221 ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDmaxren

MethodParamTypes MTDTYPESlonglonglong )

222 ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils MTD MTDminren

MethodParamTypes MTDTYPESclassd )

223 ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils

MTD MTDtobyteren MethodParamTypes MTDTYPESclassjavalangstringbyte )

224 ; ; Miss ing paths ( should be removed )

225 ( not ( S ignaturePathTi l lC la s s RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey ) )

226 ( not ( S ignaturePathTi l lC la s s RT root PKG PKGorgapachecommonslang3concurrent

CLS CLSmult ibackgroundin i t ia l i zer ) )

227 ( not ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils

MTD MTDcreatebigdecimal MethodParamTypes MTDTYPESclassjavalangstring ) )

228 ( not ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils

MTD MTDmax MethodParamTypes MTDTYPESlonglonglong ) )

229 ( not ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils

MTD MTDmin MethodParamTypes MTDTYPESclassd ) )

230 ( not ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils

MTD MTDtobyte MethodParamTypes MTDTYPESclassjavalangstringbyte ) )

231 ; ; Miss ing paths ( should be removed ) : PART 2

232 ( not ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey

MTD MTDequals MethodParamTypes MTDTYPESclassjavalangobject ) )

233 ( not ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3builder CLS CLSidkey

MTD MTDhashcode MethodParamTypes MTDTYPESvoid) )

234 ( not ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3concurrent

CLS CLSmult ibackgroundin i t ia l i zer MTD MTDaddinitializer MethodParamTypes <LineWrapMark>

235 MTDTYPESclass javalangstr ingc lassorgapachecommonslang3concurrentbackgroundinit ia l izer ) )

236 ( not ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3concurrent

CLS CLSmult ibackgroundin i t ia l i zer MTD MTDgettaskcount MethodParamTypes MTDTYPESvoid) )

237 ( not ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3concurrent

CLS CLSmult ibackgroundin i t ia l i zer MTD MTDinitialize MethodParamTypes MTDTYPESvoid) )

238 ( not ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils

MTD MTDcreatebigdecimal MethodParamTypes MTDTYPESclassjavalangstring ) )

239 ( not ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils

MTD MTDmax MethodParamTypes MTDTYPESlonglonglong ) )

240 ( not ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils

MTD MTDmin MethodParamTypes MTDTYPESclassd ) )

241 ( not ( SignaturePathTil lMethod RT root PKG PKGorgapachecommonslang3math CLS CLSnumberutils

MTD MTDtobyte MethodParamTypes MTDTYPESclassjavalangstringbyte ) )

242

243 ) ; ; end o f and

244 )

245 )
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APPENDIX D. Planning Results of Exp. 3

1 Time 155530

2 (RENAMECLASS RT ROOT RT ROOT PKG PKGORGAPACHECOMMONSLANG3CONCURRENT

PKGPKGORGAPACHECOMMONSLANG3CONCURRENT

RT ROOT PKG PKGORGAPACHECOMMONSLANG3CONCURRENT CLS CLSMULTIBACKGROUNDINITIALIZER

CLS CLSMULTIBACKGROUNDINITIALIZER CLS CLSMULTIBACKGROUNDINITIALIZERREN)

3 (RENAMECLASS RT ROOT RT ROOT PKG PKGORGAPACHECOMMONSLANG3BUILDER PKG PKGORGAPACHECOMMONSLANG3BUILDER

RT ROOT PKG PKGORGAPACHECOMMONSLANG3BUILDER CLS CLSIDKEY CLS CLSIDKEY CLS CLSIDKEYREN)

4 (RENAMEMETHOD RT ROOT RT ROOT PKG PKGORGAPACHECOMMONSLANG3MATH PKGPKGORGAPACHECOMMONSLANG3MATH

RT ROOT PKG PKGORGAPACHECOMMONSLANG3MATH CLS CLSNUMBERUTILS CLS CLSNUMBERUTILS

RT ROOT PKG PKGORGAPACHECOMMONSLANG3MATH CLS CLSNUMBERUTILS MTD MTDTOBYTE MTDMTDTOBYTE

MTDMTDTOBYTEREN METHODPARAMTYPES MTDTYPESCLASSJAVALANGSTRINGBYTE)

5 (RENAMEMETHOD RT ROOT RT ROOT PKG PKGORGAPACHECOMMONSLANG3MATH PKGPKGORGAPACHECOMMONSLANG3MATH

RT ROOT PKG PKGORGAPACHECOMMONSLANG3MATH CLS CLSNUMBERUTILS CLS CLSNUMBERUTILS

RT ROOT PKG PKGORGAPACHECOMMONSLANG3MATH CLS CLSNUMBERUTILS MTD MTDMIN MTD MTDMIN MTD MTDMINREN

METHODPARAMTYPES MTDTYPESCLASSD)

6 (RENAMEMETHOD RT ROOT RT ROOT PKG PKGORGAPACHECOMMONSLANG3MATH PKGPKGORGAPACHECOMMONSLANG3MATH

RT ROOT PKG PKGORGAPACHECOMMONSLANG3MATH CLS CLSNUMBERUTILS CLS CLSNUMBERUTILS

RT ROOT PKG PKGORGAPACHECOMMONSLANG3MATH CLS CLSNUMBERUTILS MTD MTDMAX MTDMTDMAX MTDMTDMAXREN

METHODPARAMTYPESMTDTYPESLONGLONGLONG)

7 (RENAMEMETHOD RT ROOT RT ROOT PKG PKGORGAPACHECOMMONSLANG3MATH PKGPKGORGAPACHECOMMONSLANG3MATH

RT ROOT PKG PKGORGAPACHECOMMONSLANG3MATH CLS CLSNUMBERUTILS CLS CLSNUMBERUTILS

RT ROOT PKG PKGORGAPACHECOMMONSLANG3MATH CLS CLSNUMBERUTILS MTD MTDCREATEBIGDECIMAL

MTD MTDCREATEBIGDECIMAL MTD MTDCREATEBIGDECIMALREN METHODPARAMTYPES MTDTYPESCLASSJAVALANGSTRING)
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APPENDIX E. Readable Planning Results of Exp. 3

1 rename class : org . apache . commons . lang3 . concurrent . Mu l t iBackg round In i t i a l i z e r −−> org .

apache . commons . lang3 . concurrent . Mult iBackgroundIn it ia l i zer REN

2 rename class : org . apache . commons . lang3 . bu i l d e r . IDKey −−> org . apache . commons . lang3 .

bu i l d e r . IDKey REN

3 rename method : org . apache . commons . lang3 . math . NumberUtils . toByte ( c l a s s j a v a . lang . S t r ing

; byte ) −−> org . apache . commons . lang3 . math . NumberUtils . toByte ren ( c l a s s j a v a . lang .

S t r ing ; byte )

4 rename method : org . apache . commons . lang3 . math . NumberUtils . min (double [ ] ) −−> org .

apache . commons . lang3 . math . NumberUtils . min ren (double [ ] )

5 rename method : org . apache . commons . lang3 . math . NumberUtils .max ( long ; long ; long ) −−>

org . apache . commons . lang3 . math . NumberUtils . max ren ( long ; long ; long )

6 rename method : org . apache . commons . lang3 . math . NumberUtils . createBigDec imal ( c l a s s j a v a .

lang . S t r ing ) −−> org . apache . commons . lang3 . math . NumberUtils . c reateBigDec imal ren (

c l a s s j a v a . lang . S t r ing )
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