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ABSTRACT

Wireless sensor networks have been widely employed in a broad range of applications. As powered

by small batteries, the scarce energy supply has constrained sensor node lifetime. The emerging wire-

less charging technology is a promising alternative to address such energy constraint problem in sensor

networks. Comparing to existing approaches, this technology can replenish energy in a more control-

lable manner and does not require accurate location of or physical alignment to sensor nodes. However,

little work has been reported on exploiting wireless charging to improve sensor network lifetime. In

this dissertation, we study the network lifetime elongation problem in wireless chargeable sensor net-

works (WCSNs). Specifically, the study is conducted in four directions. First of all, with given sensing

quality requirement, we study how to maximize the network lifetime. Secondly, with given network

lifetime requirement, we study how to maximize the sensing quality. Thirdly, we study the network

lifetime elongation in energy heterogeneous WCSNs by designing a lifetime balanced aggregation pro-

tocol. Fourthly, we jointly optimize the aggregation and MAC behaviors to further improve the WCSN

network lifetime.
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CHAPTER 1. INTRODUCTION

1.1 Wireless Charging Technology in Sensor Networks

Wireless sensor networks consist of spatially distributed sensor nodes to monitor physical or envi-

ronmental conditions, such as temperature, sound, vibration, pressure and motion of pollutants, and to

cooperatively pass their data through the network to a base station (BS). They have been widely em-

ployed in a broad range of applications related to environmental monitoring [1, 2], military [3], health

care [4], national security [5] and so on. Many of these applications require long-term operation of the

deployed sensor networks to reduce redeployment costs. However, sensor nodes are usually powered

by small batteries and the scarce energy supply has constrained their lifetime. This has been a long-

lasting, fundamental problem faced by sensor networks. To resolve this problem, various approaches

like energy conservation [6,7], ambient energy harvesting [8–11], incremental deployment, and battery

replacement [12, 13] have been proposed. However, energy conservation schemes can only slow down

energy consumption but not compensate energy depletion. Harvesting environmental energy, such as

solar [8,9], wind [10] and vibration [11], is subject to their availability which is often uncontrollable by

people. The incremental deployment approach may not be environmentally friendly because deserted

sensor nodes can pollute the environment. The battery or node replacement approach is applicable

only for scenarios that sensor nodes are accessible by people or sophisticated robots that can locate and

physically touch the sensor nodes.

The newly emerging wireless charging technology [14, 15] provides a promising alternative to ad-

dress the energy constraint problem in sensor networks. Different from energy harvesting, wireless

charging technology, together with more and more mature and inexpensive mobile robots, creates a

controllable and perpetual energy source, with which power can be replenished proactively to meet

application requirements rather than passively adapted to the availability of environmental resources.
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Comparing with sensor node or battery replacement approaches, it allows a mobile charger to trans-

fer energy to sensor nodes wirelessly without requiring accurate localization of sensor nodes or strict

alignment between the charger and sensor nodes. Figure 1.1 shows an example of the wireless charge-

able sensor network (WCSN) which is the integration of a sensor network and a mobile charger (MC).

The MC is a mobile robot carrying a wireless charger. In this figure, sensor nodes collaboratively route

the sensory data to the base station while the mobile charger moves along the trajectory and transfers

energy to nodes nearby.

Routing path

MC moving trajectory

Base Station

Mobile Charger

Sensor Node

Energy transfer

Figure 1.1 An example of the wireless chargeable sensor network.

1.2 Problem Identification

Introducing wireless charging technology into sensor networks adds a new dimension to network

protocol design. The juncture point between wireless charging and network protocols is the network

energy distribution. The former determines how the external energy flows into the network while the

latter determines how the replenished energy is consumed. Ideally, these two parts shall be optimized
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in a joint manner so that the network lifetime, e.g., the minimal nodal lifetime in the network, can be

maximized. In this dissertation, the following topics will be discussed:

• First of all, as the routing strategy and energy charging scheduling both have significant im-

pacts on nodal energy distribution and hence network lifetime, the study of joint routing and

charging is a fundamental problem. By assuming every sensor node could be charged, it is of

paramount importance to design schemes that can (i) make routing decision for individual nodes

and (ii) schedule the charging sequence for the MC, so as to maximize the network lifetime.

Such schemes should adapt to the dynamism in charging capabilities, network workload, link

conditions, etc., and should have low operational overhead.

• Secondly, as the ambient energy is free and green, it is naturally an attractive idea to explore

the possibility of building a sustainable sensor network, i.e., a network with eternal lifetime, by

utilizing both the wireless charging and ambient energy harvesting technologies. This is also

of critical importance considering the reality that, in some deployment fields, the MC may only

move along some pre-determined trajectories and charge nodes near the trajectories due to the

limited wireless power transfer range. How to maximize the collected sensory data utility under

the sustainability requirement is an interesting problem. Clearly, an ideal solution shall determine

the charging activities and nodal sensory data generation rates collaboratively while taking the

ambient energy temporal-spatial varying nature into account.

• Thirdly, unequal opportunities of being charged and the temporal-spatial varying ambient energy

harvesting rate, together with other factors like uneven workload, different battery qualities, etc.,

may result in heterogeneous nodal energy distribution. Moreover, data aggregation has been

common in sensor networks. Hence, it is of practical importance to design data aggregation

schemes in sensor networks with highly heterogeneous energy supply, so as to maximize the

network lifetime.

• Finally, different from data aggregation schemes which affect the network lifetime from the

network traffic perspective, MAC protocols affect the networks lifetime via the communication

overhead distribution between the sender and receiver node pairs. As data aggregation and MAC



4

protocols affect the network lifetime from two distinct perspectives, a joint design may better

handle the heterogeneous energy supply and further improve the network lifetime. Hence, a

cross-layer optimization shall be conducted.

1.3 Proposed Research

In this dissertation, we study the network lifetime elongation problem in WCSNs. We aim at design-

ing some deployable network protocols and the MC scheduling algorithms to fully exploit the strength

of the charging technology and hence to maximize the network lifetime. The following research topics

are included:

• Joint Routing and Charging Scheme to Prolong Sensor Network Lifetime.

We study the impact of wireless charging technology in data collection applications and propose

a practical and efficient Joint Routing and Charging scheme named J-RoC to prolong the net-

work lifetime. To evaluate its performance, we conduct experiments in a testbed consisting of

TelosB sensor nodes and Powercast [14] wireless charger plus Garcia [16] robots. Evaluation

results demonstrate that J-RoC significantly elongates the network lifetime compared to existing

wireless charging based schemes.

• Joint Charging and Rate Allocation for Utility Maximization in Sustainable Sensor Networks.

Maximizing the sensed data utility for sustainable sensor networks [17,18] is critically important

when the networks are deployed for monitoring applications. To address this issue, we build

the sustainable network with wireless charging and ambient energy harvesting technologies and

propose a distributed scheme called JCRA to jointly schedule the charging activities and data

rate allocation while considering the ambient energy temporal-spatial varying nature. NS-2 sim-

ulation results demonstrate that the network utility achieved by JCRA approaches the theoretical

optimal solution under various network settings.

• Lifetime Balanced Data Aggregation in Delay-Bounded Energy-Heterogeneous Sensor Networks.

To extend the lifetime of a network with highly heterogeneous energy supply, we first design a

data aggregation scheme with a given routing topology. Particularly, based on the idea of bal-
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ancing nodal lifetime through lifetime-aware arrangement of data aggregation holding time, we

propose LBA, a delay-bounded Lifetime-Balanced data Aggregation scheme. Extensive exper-

imental studies on a sensor network testbed show that LBA yields longer network lifetime than

other data aggregation schemes and approaches the theoretical upperbound performance.

• Joint Aggregation and MAC Design to Prolong Energy-Heterogeneous Sensor Network Lifetime.

Based on the LBA design and bounded end-to-end delay requirement, we conduct a further

study to design a joint aggregation and MAC scheme, call JAM, to balance the nodal lifetime

via co-adapting the data aggregation holding time and MAC protocol sleeping interval in energy-

heterogeneous networks. Extensive ns-2 simulation and TinyOS experiment results demonstrate

the effectiveness of JAM in prolonging the network lifetime compared with LBA.

The rest of the dissertation is organized as follows. In Chapter 2, we propose our J-RoC scheme.

Chapter 3 present our JCRA design. The LBA and JAM schemes are presented in Chapters 4 and 5,

respectively. Chapter 6 concludes this dissertation with a summary of the main contributions and

discusses possible future research topics.
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CHAPTER 2. JOINT ROUTING AND CHARGING SCHEME TO PROLONG

SENSOR NETWORK LIFETIME

2.1 Introduction

Extending the sensor network lifetime for long-term operation is a long-lasting and fundamental

problem. To address this issue, harvesting the ambient energy such as solar [8], wind [10] and vibra-

tion [11] has recently been proposed, and has attracted a lot of research [19,20]. However, a limitation

of the energy harvesting-based approach is that it is subject to the availability of the ambient energy,

which is uncontrollable.

2.1.1 Wireless Charging Technology

Complementary to harvesting the ambient energy, the emerging wireless charging technology cre-

ates a perpetual power source to provide power-over-distance, one-to-many charging, and control-

lable wireless power. Particularly, employing two strongly coupled magnetic resonant objects, Kurs et

al. [15] exploit the resonant magnetic technique to transfer energy from one storage device to another

without any plugs or wires. The reported experiment demonstrated a wireless illumination of a 60 W

light bulb from 2 meters away and achieved a 40% energy transfer efficiency. Zhang et al. [21] apply

this technique to replenish battery energy in medical sensors and implantable devices in health care

industry. Products from Powercast [14] carry out wireless charging by leveraging the electromagnetic

radiation technique, with which energy transmitters broadcast the RF energy and receivers capture the

energy and convert it to DC. Applications of the electromagnetic radiation technique for wireless charg-

ing have been reported in [22,23]. As more and more applications of wireless charging technology have

been envisioned, the Wireless Power Consortium [24] has recently been established to start the efforts

of setting an international standard for interoperable wireless charging.
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2.1.2 Literature Survey

The application of wireless charging technology to sensor networks is still in its infancy stage.

Peng et al. [22] recently study the feasibility of using the wireless charging technology to prolong the

sensor network lifetime in a prototype system. The key idea is to dispatch a mobile robot to move

around the network and charge energy to a selected set of lifetime-bottleneck sensor nodes. As the

protocols run by sensor nodes should be simple and localized, the system employs two well-known

routing protocols, i.e., energy-balanced routing and energy-minimum routing, both unaware of wireless

charging activities. The charging strategy adopted by the system is simply to charge nodes with the

lowest residual nodal lifetime. Hence, the wireless charger only passively makes up for the energy

deficiency in the bottleneck nodes caused by the routing activities; that is, the charging activities are

passively affected by the routing activities. This may result in the following undesired consequences.

If energy-minimum routing is used, nodes on the intersection of multiple energy-minimum routes may

be overused even though the charger keeps charging them. When the energy consumption rates of these

nodes exceed the charging capability, they deplete their energy quickly and the extension in the network

lifetime is limited. Alternatively, if energy-balanced routing is used, the overall energy consumption in

the network is increased as routes with longer length (and hence higher energy consumption) are used

to bypass low-energy nodes which are on shorter and more energy-efficient routes. Hence, the energy

replenished into the network may not be utilized efficiently.

In another recently reported effort, Shi et al. [25] conduct theoretical study on efficient usage of the

wireless charging technology in sensor networks. Based on the assumptions that the wireless charging

capability is high enough to maintain an eternal network lifetime, the traffic pattern is fixed and the

communication channels are perfect, they formulate and solve the problem of maximizing the ratio

of the wireless charging vehicle’s vacation time over each renewable energy cycle. Their solution is

a static, centralized joint routing and charging algorithm. Hence, it may not be practical when the

charging capability is constrained, the link qualities are imperfect and time-varying or the nodal energy

consumption rates are heterogeneous and time-varying.
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2.1.3 Contributions

To maximize the network lifetime under the constraint of limited charging capability, dynamic

and imperfect communication environment, and heterogeneous node attributes, we propose J-RoC, a

practical joint routing and charging scheme, in this study. J-RoC aims to employ energy-balanced

routing and energy-minimum routing in a balanced way to exploit their strengths while avoiding or

mitigating the problems caused by using only one of them. For this purpose, J-RoC requires periodical

information exchanges between sensor nodes and the charger. Based on the exchanges, the charger

keeps track of the global energy status of the network, schedules its charging activities accordingly, and

disseminates the charging schedule to the network. Meanwhile, sensor nodes use a carefully designed

charging-aware routing metric to estimate their routing costs and make routing decisions; this way,

sensor nodes are guided to balance between energy-balanced routing and energy-minimum routing

while the protocols run by them remain simple and localized.

We have implemented J-RoC and experimented in a small-scale TelosB sensor network testbed. In

addition, extensive simulations have been conducted to study the performance of the J-RoC scheme in

large-scale networks. Evaluation results show that J-RoC yields significantly longer network lifetime

than existing solutions.

2.2 Preliminaries

As illustrated in Figure 2.1, we consider a system composed of three main components: a mobile

charger (MC) that is a mobile robot carrying a wireless power charger, a network of sensor nodes each

equipped with a wireless power receiver, and a base station (BS) that monitors the energy status of the

network and directs the MC to charge sensor nodes.

The system works as follows. Each sensor node generates sensory data and sends the data hop-by-

hop to the sink periodically. It also measures its local energy level, monitors the channel conditions,

estimates its energy consumption rate, and reports these information along with the data packet gener-

ation rate to the BS. Based on the collected information, the BS schedules future charging activities,

and commands the MC via a long range radio to execute the schedule. The MC then travels around

the deployment field to charge sensor nodes. The BS also disseminates the schedule to sensor nodes,
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Figure 2.1 System Overview.

which may be used in routing path construction. We assume the MC’s energy can be replenished at the

BS and thus the energy for moving and charging is unlimited.

Notations used in this study are listed in Table 2.1.

2.3 J-RoC: A Joint Routing and Charging Scheme

In this section, we present J-RoC – a Joint Routing and Charging scheme. As shown in Figure 2.2,

J-RoC works through periodical interactions between the sensor nodes, the base station (BS) and the

mobile charger (MC).

Sensor 

Network

• Status report 

every Tc

• Recalculation 

of the routing 

metric

BS + MC

• Charging 

time allocation 

& scheduling 

for the next Tc

• Notify sensor 

node every Tc

• Nodal  residual energy (ei, t)

• Nodal energy consumption rate  (ci, t)

• Sensory data generation rate (ri, t)

• Set of parents on energy-minimum paths (Pi, t)

• Link qualities to every p ∈ Pi, t (ETXi, p, t)

• Charging time  allocated for next Tc (li)

Figure 2.2 Overview of the proposed J-RoC scheme.

Every Tc time, the BS determines a charging schedule (i.e., charging time li for each sensor node

i) for the next Tc interval. As detailed in Section 2.3.2, the schedule is decided based on the following

information reported by each node: its energy consumption rate, residual energy level, data packet
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Table 2.1 Notations Used in the Joint Routing and Charging Problem

notation meaning

Es battery capacity of a sensor node
etx energy consumed for transmitting a packet
erx energy consumed for receiving a packet
Λc energy consumed for the MC’s charging operation
η MC’s charging efficiency
v MC’s moving speed
Tc charging activity scheduling interval
α charging guiding coefficient
li charging time allocated to node i in one Tc interval
ri,t future sensory data packet generation rate of node i estimated at time t

φi,t amount of time that node i has been charged in the current Tc interval at time t
hi,t charging rate of node i at time t

ei,t residual energy of node i at time t

ci,t energy consumption rate of node i at time t

c′i,t energy consumption rate of node i at time t in transceiving via the energy-
minimum routing paths

ĉi,t future energy consumption rate of node i estimated at time t

Pi,t set of node i’s parents on the energy-minimum path at time t

ETXi,j,t expected number of transmissions needed to send a packet successfully from
node i to j at time t

ρi percentage of charging energy that should be allocated to node i in one Tc

interval

generation rate, set of parents on the energy-minimum paths to the sink, and the qualities of links to

each parent. The BS disseminates the schedule to nodes and commands the MC to execute it. To reduce

the control message overhead incurred by the periodical interactions between the BS and the network,

the interaction interval can be configured to be much larger than the sensor data report interval. This

will not compromise the system performance much, because the status of the network likely will not

change significantly until a relatively large amount of data have been transmitted and received. For

example, the data report interval is 2.5 seconds in our testbed experiments, and we set the interaction

interval to be one hour. Evaluation results in Section 2.5 show that such a configuration performs well

and yields a network lifetime that is reasonably close to the upper bound.

The Collection Tree Protocol (CTP) [26] is used as the routing protocol in J-RoC to report sensory

data and nodal status to the BS. CTP is the default routing protocol in TinyOS 2.x. It designates a



11

node in the network as the sink node. All other nodes recursively form routing trees rooted at the sink.

Nodes periodically broadcast beacons which serve two purposes. Firstly, they contain a field that the

link estimator component of TinyOS uses to estimate the expected number of transmissions needed

to send a packet successfully (ETX) to a node’s neighbor, which roughly reflects the reciprocal of the

packet reception ratio ( 1
PRR ) over the link. Secondly, nodes embed in these beacons an estimate of

the total cost (zero for the sink node and ∞ for others, initially) of routing a data packet to the sink

from them. Non-sink nodes then collect the advertised routing costs from their neighbors, add their

own one-hop routing costs, and select the neighbors with the lowest total routing costs as their parents.

Since the beacons are broadcasted periodically, nodes can dynamically change their parents as routing

costs fluctuate.

In J-RoC, each sensor node embeds two types of routing costs in CTP beacons. One contains the

total cost of routing a packet to the sink along a charging-aware path. The other one contains the cost of

delivering a packet along the energy-minimum path. Here, the energy-minimum path is defined as the

path with the minimum total energy consumption in delivering a packet from a source to a destination.

Link quality has been considered in estimating the energy consumption. In J-RoC, all data packets are

routed via the aforementioned charging-aware paths to the sink. Note that the paths are different from

the conventional energy-balanced or energy-minimum ones; as to be elaborated, the selection of the

paths considers simultaneously the effects of energy charging, energy balancing and energy efficiency.

2.3.1 Routing Cost

After receiving the costs from neighbor nodes, sensor node i calculates its energy-minimum routing

cost (C′i) as follows:

C′i = min
j∈Ni

{
C′j + ETXi,j,t

}
, (2.1)

where Ni is the set of node i’s neighbor nodes, C′j is the routing cost of node j and ETXi,j,t represents

the expected number of transmissions needed to send a packet successfully over link (i, j). Hence,

Equation (2.1) computes the minimum number of transmissions needed to deliver a packet from i to

the sink successfully. Note that when links are in perfect condition, e.g., ETXi,j,t = 1 for any i and j,

the energy-minimum path becomes the shortest path.
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The charging-aware routing cost at node i (Ci) is computed as follows:

Ci = min
j∈Ni

{
Cj + u1−

êi,j,t
Es

}
, (2.2)

where Ci is the routing cost of node j, Es is the battery capacity of a sensor node, and êi,j,t in routing

metric u1−
êi,j,t
Es is computed as

ei,t + (li − φi,t)Λcη − tr ∗ ci,p̂i,t,t ∗
ETXi,j,t

ETXi,p̂i,t,t
. (2.3)

In Equation (2.3), φi,t denotes how long node i has been charged in the current Tc interval, tr represents

the remaining time in the current Tc interval and p̂i,t denotes the parent of node i on the charging-aware

path at time t. The term ci,p̂i,t,t ∗
ETXi,j,t

ETXi,p̂i,t,t
estimates the nodal energy consumption rate if i switches

its parent from p̂i,t to j. As the nodal energy consumption rate ci,t is measured when p̂i,t is i’s parent,

we abbreviate ci,p̂i,t,t to ci,t in the following sections.

The purpose of using this routing cost is to balance the energy consumption in the possibly lossy

wireless environment among sensor nodes in the presence of energy charging. If there is no energy

charging, a well-known energy-balanced routing metric [27] is

u1−
ei,t
Es . (2.4)

Though the energy-balanced routing extends the network lifetime, different approaches should be

adopted when energy charging is available. With energy charging, as much as possible energy should

be replenished into nodes on the energy-minimum paths, so that these nodes can live longer and allow

others to use them for packet routing, which can improve the energy utilization efficiency and hence

prolong the network lifetime. However, as charging takes long time to be accomplished, nodes selected

to be charged may not often maintain a high residual energy level, and therefore, energy-minimum

paths may not often be chosen by other nodes to route their packets if Equation (2.4) is used to com-

pute the routing cost. Furthermore, in some environments, particularly in the 2.4 GHz frequency band,

links could be highly lossy [28]. Without the knowledge of the link quality, lots of energy may be
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wasted on packet retransmissions over lossy links.

Our proposed routing metric addresses the above problems by factoring in the effects of charging

that has been planed but not executed yet to estimate the routing cost, as well as the real-time link

quality. Specifically, êi,j,t estimates node i’s residual energy at the end of the current Tc interval when

it selects node j as parent, based on the knowledge of the charging schedule and link quality as in

Equation (2.3). Then, êi,j,t instead of ei,t is used in the routing metric as in Equation (2.2). Hence,

nodes are led to choose paths to balance their residual energy at the end of the current Tc.

Figure 2.3 demonstrates how êi,j,t is estimated at time t = tcurr. Note that, in this example,

the energy consumption rate of node i is assumed to be constant from the current time to the end of

the Tc interval to simplify the estimation. Specifically, in Figure 2.3, ci,tcurr , ei,tcurr , hi,tcurr are the

energy consumption rate, nodal residual energy and charging rate at time tcurr, respectively. φi,tcurr

is the amount of time that node i has been charged in this Tc interval, li is the amount of charging

time allocated to node i in this Tc interval and li − φi,tcurr is the amount of remaining charging time.

Assuming the future energy consumption rate does not change, Equation (2.3) estimates the residual

nodal energy at time (n+ 1)Tc.

(n+1)TcnTc

ci, t

ei, t

hi, t

c

tcurr

êi, j, tcurr

li, - φi, tcurr

φi, tcurr tr

Figure 2.3 Computation of êi,j,t.

2.3.2 Charging Scheduling Algorithm

Every Tc time, sensor nodes report their nodal status to the BS, including residual energy level

(ei,t), energy consumption rate (ci,t), sensory data packet generation rate (ri,t), set of parents on the
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energy-minimum paths to the sink (Pi,t), and the expected number of transmissions to deliver a packet

successfully to each parent p ∈ Pi,t (ETXi,p,t), based on which the BS schedules the charging activities

for the next Tc interval. t is the time when node i reports these information to the BS. The charging

scheduling algorithm works in two phases. Firstly, it selects a set of sensor nodes that should be charged

in the next Tc interval. Secondly, it determines a sequence in which the sensor nodes are charged so

that the movement time is minimized. It also distributes the amount of charging time li for the next Tc

interval to each node in the sequence.

2.3.2.1 Charging Energy Allocation

To allocate charging energy to sensor nodes, the BS first estimates the future nodal energy con-

sumption rate, denoted as ĉi,t, for every sensor node i. Let ρi be the percentage of charging energy

that should be allocated to sensor node i in one Tc interval. To maximize the network lifetime is to

maximize

min
i

{
ei,t

ĉi,t − ρi ∗ Λc ∗ η

}
, (2.5)

where 0 ≤ ρi ≤ 1 and
∑

i ρi ≤ 1. Algorithm 1 applies the binary search method to solve the

optimization problem.

Algorithm 1 Charging scheduling algorithm to maximize the minimal nodal lifetime
Input: ei,t and ĉi,t for every sensor node i

Output: ρi
1: low ← min

ei,t
ĉi,t

, up←∞
/* low/up is the lower/upper bound of the network lifetime */

2: target← low

/* target is the maximum achievable network lifetime */
3: while up− low > ϵ do
4: calculate ρi by solving target =

ei,t
ĉi,t−ρi∗Λc∗η , ∀i ∈ V

5: if
∑

i,ρi>0 ρi > 1 then
6: up← target

7: target← low+up
2

8: else
9: low ← target

10: target← (up =∞)?2 ∗ low : low+up
2

11: return ρi
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Next, we discuss how to estimate ĉi,t. For a sensor network without energy charging, the energy-

balanced routing is favored to extend the network lifetime. The strategy, however, has a side-effect that

packets may be routed through less energy efficient paths to the sink when the energy-minimum paths

have nodes with low residual energy. Hence, compared to the energy-minimum routing, the energy-

balanced routing consumes more energy in transmitting packets. In a sensor network with wireless

charging, the MC is able to charge the energy bottleneck nodes. Therefore, energy-minimum paths

should be employed more often to improve the energy utilization efficiency in communication and

thus to elongate the network lifetime. Based on this observation, the proposed charging scheduling

algorithm should intentionally allocate more energy to nodes on energy-minimum paths in order to

guide sensor nodes to utilize these paths more frequently. For this purpose, ĉi,t is computed as

ĉi,t = αc′i,t + (1− α)ci,t, (2.6)

where ci,t is the actual energy consumption rate reported by node i, c′i,t is the energy consumption rate

of node i if all sensor nodes use energy-minimum paths, and α is a value between 0 and 1, called the

charging guiding coefficient. In the following, we present how to determine c′i,t and α.

Based on the collected Pi,t information from each sensor node, the BS can build a directed acyclic

graph. Note that, if sensor node i has multiple energy-minimum paths towards the sink (e.g., several

paths from i have the same value of Equation (2.1)), we assume that it transmits packets evenly among

these paths. Specifically, if i has k energy-minimum paths, it embeds all k energy-minimum parents

and the corresponding link qualities to each parent in the status report to sink. As link qualities are

usually stable in a relatively long run [29], we assume that the energy-minimum paths do not change

much during one Tc interval as long as Tc value is in a reasonable range. Suppose each sensor node

generates a packet at rate ri,t in future, and all sensor nodes use energy-minimum paths to transmit

packets. To transmit the packets for itself, the energy consumption rate at sensor node i is

∑
s∈Si,t

etx ∗ ETXi,ns
i,t,t
∗ ri,t
|Si,t|

, (2.7)

where Si,t denotes the set of energy-minimum paths from sensor node i to the sink and ns
i,t denotes the
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next hop node of i on the energy-minimum path s. To successfully forward packets generated by other

nodes, the energy consumption rate at i is

∑
j ̸=i

∑
s∈Sj,t

(erx ∗ ETXbsi,t,i,t
+ etx ∗ ETXi,ns

i,t,t
) ∗ rj,t
|Sj,t|

∗ Ii∈s, (2.8)

where Ii∈s is an indicator function whose value is 1 if and only if node i is on path s and bsi,t denotes the

previous hop node of i on the energy-minimum path s. etx and erx are the expected energy consumed

to transmit and receive a packet, respectively, and the values depend on the specific underlying MAC

protocols. Hence, c′i,t can be computed by summing up Equation (2.7) and Equation (2.8). Figure 2.4

shows an example of the above procedure. Suppose ∀i, j, ri,t = 1 pkt/s, etx = erx = 0.06 J/pkt and

ETXi,j,t = 1 except ETX3,sink,t = 3 and ETX1,sink,t = 2. (a) shows the topology of a network

with 10 source nodes and the black square represents the sink. (b) shows the c′i,t value for each node.

All routing paths connecting the sensor nodes and the sink are the energy-minimum ones. As node 4

needs two transmissions to reach the sink while node 3 needs three transmissions, path 6 → 4 → 2 is

the energy-minimum path. Take node 4 for instance; for each of the nodes 7, 8, 9, and 10, it has three

energy-minimum paths to the sink and two of them pass through node 4; for node 5, it has two energy-

minimum paths to the sink and only one of them passes through node 4; for node 6, it only has one

energy-minimum path to the sink and it passes through node 4. Therefore, the energy consumption rate

for node 4 to relay the packets for nodes 5, 6, 7, 8, 9 and 10 is (23 ∗4+
1
2 +1)∗ (0.06+0.06) = 0.5 J/s,

the energy consumption rate for transmitting its own packets is 0.06 J/s; hence we have c′4,t = 0.56 J/s.

The value of the charging guiding coefficient α is related to two factors. One factor is the relative

charging capability of the MC, which is reflected by the ratio between the amount of energy that can

be charged per time unit (i.e., Λc ∗ η) and the whole network energy consumption rate (i.e.,
∑

i ci,t).

When the charging capability is relatively strong, e.g., Λc∗η∑
i ci,t

is large, a larger α values is favorable.

This means that the charging scheme should guide more packets to be delivered along the energy-

minimum paths as the capability of the MC is strong enough to compensate the energy deficiency in

time, and accordingly, more energy should be allocated to nodes on the energy-minimum paths. When

the capability is low, a smaller α value should be used instead. In addition, the u value also affects the

allocation of the chargeable energy. When u = 1, each sensor node uses a fixed shortest path to route
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Figure 2.4 An example of calculating c′i,t values.

packets, and therefore is not affected by the charging schedule. When u > 1, each sensor node selects

its path based on the routing metric. As the routing metric in Equation (2.2) is affected by the charging

schedule, the routing decision can be guided by adjusting the charging schedule. Besides, the larger is

u, the more effective is the guidance. Considering both factors, we define α as:

α = 1− u
− Λc∗η∑

i ci,t . (2.9)

With this formula, when u = 1, α is equal to 0 and c′i,t has no impact on the consumption rate estima-

tion. When u > 1, the stronger is the relative charging capability, the larger is α and the more weight

is given to c′i,t when computing ĉi,t.

2.3.2.2 Charging Sequence Determination

In practice, the moving speed of a robot is limited [30] (e.g., between 0.2 and 2 m/s). Too frequent

movement may waste time that can be used to charge sensor nodes. Hence, given an allocation plan of

charging energy, as computed above, it is important to determine a charging sequence to implement the

allocation with as little movement as possible.

The procedure of the charging sequence determination works as follows and an example is given in

Figure 2.5. Figure 2.5(a) shows the positions of 5 nodes and triangle 0 stands for the MC. Figure 2.5(b)
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gives a naive charging sequence where the MC visits the nodes in the ascending order of nodal lifetime

ei,t
ĉi,t

. The shadow width represents the moving time. Figure 2.5(c) shows the procedure of merging ρ1

and ρ4 into ρ2. Figure 2.5(d) shows the final charging sequence rearranged by the VRPTW solver.
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Figure 2.5 An example of the movement refinement.

• Given the percentage of the charging energy ρi, the sensor nodes are sorted ascendingly accord-

ing to their nodal lifetime ei,t
ĉi,t

. For example, Figure 2.5(a) illustrates the position and nodal

lifetime of 5 nodes where the ei values are 750, 300, 150, 750, 900 J and the ĉi,t values are

0.015, 0.02, 0.03, 0.015, 0.01 J/s. The output of Algorithm 1 produces ρi values as 4%, 32%,

60%, 4%, 0% and target as 55714 s assuming Λcη = 0.045 J/s. Figure 2.5(b) shows the
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sorting result. It also gives us a naive charging sequence with possibly high movement over-

head, e.g, Te = Tc − T 0,3,2,1,4
m where T 0,3,2,1,4

m is the total moving time along the trajectory

0 → 3 → 2 → 1 → 4 and Te is the effective charging time. ρi ∗ Te is the amount of charging

time allocated to node i.

• The ρi value of the maximum lifetime node is iteratively merged to that of the minimum lifetime

node until the the battery ceiling of the minimum lifetime node is reached, i.e., Es−ei,t
Λcη

< ρi ∗Te.

For example, in Figure 2.5(c), ρ4 is merged into ρ3 at first. If the updated ρ3 does not result in a

battery ceiling hit, we update Te = Tc − T 0,3,2,1
m and ρ3 = ρ3 + ρ4. Then, the algorithm tends

to merge ρ1 into ρ3. If the merging leads to a battery ceiling hit, we merge a part of ρ1 value

into ρ2. This procedure ends when the maximum nodal lifetime is less than Tc or only one node

exists after merging.

• VRPTW solver [31], which solves the vehicle routing problem with time window [32], is called

to rearrange the visiting sequence to further reduce the movement time. Here, the nodal lifetime

is the deadline for each node to be visited. For example, in Figure 2.5(d), the rearranged sequence

has T 0,2,3
m < T 0,3,2

m and Te = Tc − T 0,2,3
m . ρi ∗ Te is the amount of charging time allocated to

node i and the final charging sequence ready for execution is ⟨⟨2, ρ2Te⟩, ⟨3, ρ3Te⟩⟩. Obviously,

the amount of effective charging time after the movement refinement is much larger than the one

before and thus more energy is replenished into the network.

2.3.3 Performance Upper Bound

Here, we assume the sensory data packet generation rate ri,t of a node does not change during the

network lifetime and thus ri,t is denoted as ri. When the MC’s movement delay is ignored and the

link qualities are perfect, the optimal solution can be described by the following linear programming

formulation.

max T ,

s.t.:

T ∗ ri +
∑
j∈Ni

fj,i =
∑
j∈Ni

fi,j , (2.10)
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T ∗
∑
i

ri =
∑

j∈NBS

fj,BS , (2.11)

etx ∗
∑
j∈Ni

fi,j + erx ∗
∑
j∈Ni

fj,i ≤ Es + ai ∗ Λc ∗ η, (2.12)

∑
i

ai ≤ T, (2.13)

fi,j , ai ≥ 0. (2.14)

Here, T is the network lifetime. fi,j is the total number of packets transmitted from nodes i to j

during the network lifetime. ai is the total amount of time that the MC charges i.

Constraints (2.10) and (2.11) reflect the flow conservation requirements. Constraint (2.12) reflects

that the energy used for transmission and reception should be smaller than Es – the battery capacity of a

sensor node – plus the energy charged from the MC. Constraint (2.13) states that the MC could charge

one node at a time and thus the total charging time cannot exceed the network lifetime. The output

⟨fi,j , ai⟩ is the joint routing and charging solution. It specifies the number of data packets transmitted

over the link (i, j) and the total charging time on node i so that the network lifetime can be maximized.

However, the LP formulation does not take the MC’s movement and packet retransmissions into

account. Hence, it provides an upper bound of the achievable network lifetime. This formulation is

used in both testbed experiment and simulation to evaluate the performance of the proposed J-RoC

scheme.

2.4 Design and Implementation

To evaluate the performance of the proposed J-RoC scheme, we have built a prototype system, and

the design details of this system are as follows.
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2.4.1 Hardware Component

In the prototype system, a Powercast wireless power charger [14] is installed on an Acroname

Garcia robot [16] which works as the MC, and a Powercast wireless power receiver is connected to

the batteries of a sensor node. The MC communicates with the BS (a PC in the experiments) via an

IEEE 802.11b interface to receive the charging scheduling information. When the MC moves into close

proximity of a sensor node, the power receiver can collect the energy transferred wirelessly from the

MC and use it to charge the batteries of the node.

The energy charging is carried out in the 903-927 MHz band while sensor nodes communicate in

the 2.4 GHz band. The power consumption is 3 W when the MC is charging, and the effective amount

of energy that can be captured by a receiver varies with the distance between the receiver and the MC;

that is, the charging efficiency decreases exponentially when the distance increases. In our system, the

MC moves at 1 m/s and the average distance between it and the node charged is about 10 cm which

results in 45 mW received power. Note that we use the Powercast products only to evaluate J-RoC’s

performance in our prototype system.

2.4.2 Software Component

Figure 2.6 shows the software architecture where the shaded parts were elaborated in Section 2.3.

The software running on the base station is developed in JAVA, and the sensor node software is devel-

oped based on TinyOS 2.1.

In the node software, the routing engine module periodically broadcasts beacons containing the

information about the energy-minimum path cost and the current routing path cost from the node to the

BS. The costs are computed using Equations (2.1) and (2.2) respectively with the latest information of

ci,t, ei,t, φi,t and li from the power manager component and ETXi,j,t from the link estimator module.

Once receiving a beacon, a node selects the neighbor with the least routing cost to be its next-hop node

and updates the energy-minimum parent. The forwarding engine module is responsible for forwarding

the sensor data packets for the application component, and the status reports for the power manager

component. The dissemination engine module informs the power manager component of the latest

li value when it receives the charging scheduling messages from the BS. The application component
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Figure 2.6 Conceptual sketch of the software component.

notifies the power manager component of the future sensory data packet generation rate ri,t.

The power manager component boots up automatically with the system and maintains all the charg-

ing and nodal energy related information. The power controller module records the elapsed charging

time φi,t during a Tc interval. It also reports the latest nodal residual energy ei,t (provided by the energy

monitor module), the energy consumption rate ci,t (provided by the workload estimator module) and

the ri,t value, together with the Pi,t and ETXi,p,t, p ∈ Pi,t (provided by the routing engine module) to

the BS periodically. In our implementation, the workload estimator module employs the exponentially

weighted moving average (EWMA) method to estimate the ci,t values.

At the BS, after the energy reports from each node have been received, the network monitor compo-

nent updates ei,t, ci,t, ri,t, Pi,t and ETXi,p,t, p ∈ Pi,t of a node accordingly in a timely manner. Every

Tc interval, new charging activities are determined by the charging scheduler component with the al-

gorithm described in Section 2.3.2; then, the BS informs the MC of the new schedule and disseminates

the messages containing the latest li value to the network.
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2.5 Experimental Study

2.5.1 Experimental Setup

In the experiments, 10 TelosB sensor nodes are deployed according to the topology shown in Fig-

ure 2.4(a). The neighboring nodes are two meters apart and the CC2420 radio transmission power is set

to level 3 which results in a 3.5 m communication range. The sink node is connected to a PC with stable

power supply and does not need to be charged. During the experiments, each sensor node generates

a data packet every 2.5 seconds. A modified X-MAC [33] protocol is run on each sensor node with a

Low Power Listening interval of 250 ms and default channel checking time of 50 ms. The Tc length is

one hour to reschedule the charging activities.

Each sensor node is powered by two 1.5 V 2000 mAh alkaline rechargeable batteries, and Figure 2.7

shows the mapping between the residual energy and battery voltage level. Particularly, 3000 J energy

is consumed in the voltage range 3 V∼2.6 V with running time of 8.4 hours, 7000 J is consumed in the

voltage range 2.6 V∼2.2 V in a slower pace with 23 hour running time and 2000 J is consumed in the

voltage range 2.2 V∼1.9 V with 5.3 hour running time. The running time is measured with 100% radio

duty cycle. The result is achieved through five trials of experiments with 100% radio duty cycle.
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Figure 2.7 Battery energy profile.

To save experiment time, the evaluation is conducted when the voltage varies from 3 V to 2.6 V in

which range more serious battery leakage is accompanied as illustrated in Figure 2.7. For each node,

the energy level is 100% when the voltage reading is 3 V and the battery is assumed to be completely

depleted at voltage level 2.6 V.
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2.5.2 Evaluation Results

In the experiments, we evaluate (i) the network lifetime upper bound according to 2.3.3 and the ac-

tually achieved network and nodal lifetime, when the energy-balanced routing is used without charging

(tagged as no charge in the figures), the energy-balanced routing combined with greedyPlus scheme [22]

is used, and the J-RoC scheme is used, respectively; (ii) the average packet rate (including both the self-

generated and the forwarded data packets) of individual nodes; and (iii) the distribution of charging time

to individual nodes. As simulation results in [22] have shown that greedyPlus scheme performs better

with energy-balanced routing than with energy-minimum routing, we only show the results of greedy-

Plus with energy-balanced routing in the experiment and simulation evaluations. Parameter u is set to

1000.

2.5.2.1 Overall Evaluation Result of J-RoC

Figure 2.8(a) shows the network lifetime upper bound and the nodal lifetime of individual nodes.

The network lifetime upper bound is 30 hours while the achieved network lifetime is 14.9 hours

(bounded by node 3), 20.5 hours (bounded by node 5) and 25.5 hours (bounded by node 1) for

no charge, greedyPlus and J-RoC respectively. The advantage of J-RoC on prolonging the network

lifetime is demonstrated in two aspects in the figure. First of all, compared to the no charge case, the

ratio of network lifetime improvement is about 71% (from 14.9 hours to 25.5 hours); compared to the

greedyPlus scheme, the ratio of improvement is about 24% (from 20.5 hours to 25.5 hours). Moreover,

J-RoC achieves 85% of the network lifetime upper bound (25.5 hours out of 30 hours). Secondly, the J-

RoC scheme helps to reduce the standard deviation of the nodal lifetime which results in more efficient

usage of the energy. Specifically, the standard deviation of the nodal lifetime is 6.6 hours for J-RoC,

8.6 hours for greedyPlus and 12.3 hours when there is no energy charging.

The improvement in network lifetime shown by Figure 2.8(a) is achieved by guiding nodes to

use energy-minimum paths more frequently and allocating more charging energy to nodes on these

paths. The average packet rate shown in Figure 2.8(b) and the charging time allocation depicted in

Figure 2.8(c) reveal these behaviors in detail.

As shown by Figure 2.8(b), nodes 1, 2 and 3 have forwarded quite different numbers of packets
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Figure 2.8 Experimental results.

when different schemes are used, though they are all one-hop away from the sink. With no charge,

these nodes are equally used and their packet rates are all around 1.3 pkt/s because the energy-balanced

routing is used. When J-RoC is used, node 2’s packet rate drops to 0.95 pkt/s, which is significantly

lower than the packet rates of nodes 1 and 3 (i.e., 1.45 pkt/s and 1.55 pkt/s, respectively). When the

greedyPlus scheme is used, node 2’s packet rate is approaching 1.3 pkt/s and the packet rate of node 3 is

much higher than that of node 1 and node 2 respectively. Figure 2.8(c) shows that the charging patterns

to nodes 2 and 4 are different when different schemes are used. With greedyPlus, both nodes 2 and 4

are charged with 4 hours in total, but only node 2 is charged in J-RoC and the charging time is less than
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1 hour. These differences are attributed to the following reasons. First of all, in greedyPlus, the routing

decisions are made without the knowledge of charging activities, and therefore, packets are routed in

the energy-balanced manner by using paths through nodes 1, 2 and 3 evenly. The J-RoC scheme, on

the other hand, tends to guide nodes to utilize the energy-minimum paths more frequently. Also, if

a node has multiple energy-minimum paths that can be used, it is guided to use them in a balanced

way. Hence, fewer packets go through node 2, more packets are forwarded by nodes 1 and 3, and

the numbers of packets passing nodes 1 and 3 are similar. Secondly, the charging decisions made by

greedyPlus is simply to balance nodal lifetimes, without considering routing activities in the network.

Therefore, both nodes 2 and 4 are charged with a significant amount of energy as they consume a

significant amount of energy to forward packets toward the sink. Differently, the J-RoC scheme makes

charging decisions through considering two factors in a balanced manner: guiding nodes to use energy-

minimum paths more often, and balancing nodal lifetimes. Consequently, nodes 2 and 4 are seldom

charged as they are not on energy-minimum paths and they consume less energy to forward packets

than nodes 1 and 3.

In general, the differences in the nodes’ packet rates and the allocated charging time among indi-

vidual nodes reveal the principle behind the design of the J-RoC scheme.

2.5.2.2 Summary

The experimental results have demonstrated the advantage of J-RoC on improving the network life-

time through proactively guiding the routing activities and delivering the energy to where it is needed.

When J-RoC is used, more packets are routed through the energy-minimum paths and more charging

energy is allocated to nodes on these paths.

2.6 Simulation Study

2.6.1 Simulation Setup

Extensive simulations have been conducted in a custom simulator to evaluate the performance of J-

RoC in large-scale networks. In the simulations, 100 nodes are randomly deployed to a 500 m× 500 m

field. The base station and the sink are placed in the center of the field. Table 2.2 lists the default
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simulation parameters. As the charging scheduling interval Tc is much larger than the data report

interval (default 6 hours compared to 4 minutes), the overhead of the nodal status information collection

and charging scheduling information dissemination is neglected in the simulation.

Table 2.2 Simulation Parameters
Parameter Value

communication range of a sensor node (m) 70

battery capacity of a sensor node: Es (KJ) 10

energy consumed for MC’s charging operation: Λc (W) 3

energy consumed for transmitting a packet: etx (J/pkt) 0.05

energy consumed for receiving a packet: erx (J/pkt) 0.06

MC’s charging efficiency: η (%) 1.5
MC’s moving speed: v (m/s) 1

system parameter u 1000
data generation rate: ri (pkt/h) 15

charging scheduling interval Tc (h) 6

2.6.2 Simulation Results

We measure the network lifetime achieved by the J-RoC scheme, the greedyPlus scheme [22], and

the upper bound network lifetime derived in Section 2.3.3 under different scenarios with varying Tc

interval, routing metric parameter u, charging efficiency η, data generation rate ri and the moving

speed of the MC v. In order to compare with the upper bound network lifetime whose calculation

assumes a fix data packet generation rate over time, we assume ri,t = ri in the simulation. Note

that the calculation of the upper bound of network lifetime does not factor in Tc, u and v; hence, its

value remains constant as these parameters change. In addition, we also study the effectiveness of the

movement refinement strategy described in Section 2.3.2 through comparing the J-RoC scheme with

its naive version that does not have this refinement (tagged as J-RoC-Naive in the figures).

2.6.2.1 Network lifetime with varying Tc

In the proposed scheme, the charging scheduling happens every Tc interval, and the length of Tc

affects both the movement overhead of the MC and the amount of energy that an individual node can
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be charged. To investigate how the scheduling frequency affects the network lifetime, we first evaluate

the performance of all the schemes when the Tc interval changes.

Figure 2.9(a) shows that the network lifetime achieved by J-RoC outperforms greedyPlus and J-

RoC-Naive under various Tc values and approaches 95% of the upper bound of network lifetime. In

Figure 2.9(a), the lifetimes achieved by both the J-RoC and the greedyPlus schemes decrease slightly

as Tc increases. This is due to the fact that the charging decisions are made based on the prediction of

the network status for the Tc period and they cannot adapt to the network changes effectively if Tc is

long. However, even when Tc is as long as 24 hours in our simulation, J-RoC can still achieve 90% of

the upper bound of the network lifetime.

Figure 2.9(a) also shows that the difference between the network lifetime achieved by J-RoC and

J-RoC-Naive decreases as Tc increases. This is because the number of nodes to be charged in the J-

RoC-Naive scheme is independent of the length of Tc. When Tc increases and charging is scheduled

less frequently, the MC stays with a node for a longer time and moves less frequently as well. Therefore,

the total movement time decreases and more time could be utilized for charging. Finally, J-RoC and

J-RoC-Naive achieve the similar lifetime when Tc is long enough (e.g., 24 hours in the simulation).

2.6.2.2 Network lifetime with varying u

As the value of u affects both the routing metric and the charging schedules in J-RoC, we vary u

and measure the achieved network lifetime by all schemes. The results are plotted in Figure 2.9(b).

Compared to u = 1, the performance of all schemes improves significantly once u is greater than 1,

as the energy-balanced routing avoids depleting the energy of a partial set of nodes and hence elongates

the network lifetime. Among them, J-RoC outperforms greedyPlus and J-RoC-Naive under various u

values. For instance, when u = 1024, greedyPlus, J-RoC-Naive and J-RoC achieve 69%, 82% and

95% of the upper bound of network lifetime, respectively.

When the value of u increases, the performance of J-RoC gradually improves since the charging

scheme can guide the routing activities more effectively as described in Equation (2.9). For example,

J-RoC achieves 90% of the upper bound of network lifetime when u = 2, and achieves 95% of the

upper bound when u ≥ 64.
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Figure 2.9 Achieved network lifetime comparison with varying Tc and u.

2.6.2.3 Network lifetime with varying η

As the energy charging efficiency (e.g., η) depends on how close the MC could reach each sensor

node, we show the performance of all the schemes as the charging efficiency η varies in Figure 2.10(a).

Compared to other schemes, the network lifetime achieved by the greedyPlus scheme ascends the

most slowly when η increases. This is because a larger η value allows more energy to be captured by

a sensor node. Once a node is charged by the MC, its high nodal energy attracts more traffics, which

easily makes itself the energy depletion hot-spot and thus the MC has to keep charging and saving it

from being depleted. As the trend continues, the charger is stuck with this node and the opportunities

of other nodes to be charged are deprived of. The larger is η, the more intense is this effect. This effect

is eliminated in J-RoC which jointly plans the routing and charging activities.

It is also found that the performance of J-RoC-Naive, which does not refine the movement, drops the

fastest among all schemes when η is large. This phenomenon can be explained as: the increased η value

enables the MC to visit and charge more nodes in one Tc interval, and the movement time increases

accordingly without careful movement planning; the J-RoC scheme, on the other hand, alleviates the

increasing movement time problem via the movement refinement procedure and outperforms all other

schemes.
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Figure 2.10 Achieved network lifetime comparison with varying η, ri and v.

2.6.2.4 Network lifetime with varying ri

Different sensory data generation rates may result in different network-wide distribution of energy

and workload, which may affect the performance of J-RoC. To study the impact, we vary the values of

ri, measure the network lifetime achieved by all the schemes and plot the results in Figure 2.10(b).

Compared to other schemes, J-RoC performs the best and well adapts to various distribution of

energy and workload. It accomplishes around 94% of the upper bound of network lifetime as the value

of ri varies widely. On the other hand, both greedyPlus and J-RoC-Naive achieve a smaller fraction of

the upper bound when ri is small, e.g., only 58% of the upper bound when ri = 10 pkt/h. This is due to

the following reasons. When η is fixed, the smaller is ri, the stronger is the relative charging capability

of the MC. J-RoC can make better use of the relatively stronger charging capability to prolong the
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network lifetime, while the performance of greedyPlus may be degraded because the afore-mentioned

effect that the MC is stuck to a energy-depletion hot-spot and J-RoC-Naive may waste time and energy

for movement.

2.6.2.5 Network lifetime with varying v

In practice, the moving speed of the MC affects the movement time in all the evaluated schemes

and the impact is shown in Figure 2.10(c). Obviously, as the moving speed of the MC increases, less

time is wasted on the movement and more energy can be replenished into the network. Therefore, the

network lifetime achieved by all schemes improves as v increases. Since J-RoC conducts the movement

refinement, its performance remains almost the same as v changes and achieves about 95% of the upper

bound of network lifetime when v ≤ 0.5 m/s. On the other hand, J-RoC-Naive approaches 88% of the

upper bound when v = 2 m/s while the achieved fraction is only 33% when v = 0.1 m/s. This result

illustrates the effectiveness of the movement refinement in Section 2.3.2.

2.6.2.6 Summary

To summarize, the following observations can be obtained from the simulations:

• Compared to greedyPlus, where the MC only passively makes up for the energy deficiency

caused by the routing activities to bottleneck nodes, J-RoC improves the network lifetime more

significantly due to its proactive guide on the routing activities. The simulation results also show

that J-RoC can effectively approach the upper bound network lifetime under various system con-

figurations.

• The movement refinement strategy helps the J-RoC scheme significantly to reduce the movement

overhead and achieve a longer network lifetime compared to J-RoC-Naive and greedyPlus.

2.7 Conclusions

In this section, we propose a practical and efficient joint routing and charging scheme, called J-

RoC, to prolong the sensor network lifetime. We present the design and implementation of the J-

RoC scheme and evaluate its effectiveness and advantage on prolonging the sensor network lifetime
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through both experiments on a prototype system and simulations in large-scale networks, under various

configurations. The results show that, through proactively guiding the routing activities and delivering

energy to the most energy-demanding places in a joint way, the J-RoC scheme can extend the sensor

network lifetime significantly.

Some more issues are left open for future research. For example, the geographical conditions may

constrain the movement trajectory of the MC and make some nodes inaccessible. This issue will be

factored into the J-RoC scheme. In addition, the J-RoC scheme is designed for a single charger. How to

schedule multiple chargers simultaneously is an interesting and more complicated problem, which will

also be studied in the future. To evaluate the performance of J-RoC more thoroughly, more theoretical

analysis and experiments on larger scale sensor networks will be conducted as well.
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CHAPTER 3. JOINT CHARGING AND RATE ALLOCATION FOR UTILITY

MAXIMIZATION IN RECHARGEABLE SENSOR NETWORKS

3.1 Introduction

3.1.1 Motivations

Maximizing the network utility, which is a non-decreasing function of nodal sensory data genera-

tion rate [17, 18], is critically important when the networks are deployed for monitoring applications.

For such networks, the major constraint for utility maximization is the limited energy supply of sensor

nodes. One solution to this problem is to devise ambient energy harvesting techniques such as solar [8],

wind [10], and vibration [11] to replenish energy into the network at run-time. Although ambient en-

ergy is free and green, harvesting-based approaches [9, 34–36] are forced to adapt nodal sensory data

rates to the ambient energy availability, which it usually temporal-spatially varying and uncontrollable.

Hence, the resulted network utility may not be optimized. For example, a close-to-sink node with low

energy harvesting rate may fail to relay data packets generated in its subtree.

Complementary to ambient energy harvesting, the emerging wireless charging technology [14] cre-

ates a perpetual power source to provide power-over-distance, one-to-many charging, and controllable

wireless power. Applications of this technology to sensor networks have been reported in [37, 38]. In

these applications, a mobile charger (MC), which is a mobile robot carrying a wireless charger, moves

around the deployment field and transfers energy to sensor nodes wirelessly. With the controllable

power source, energy can be delivered to where it is needed. Therefore, sensory data rate can be ad-

justed proactively to achieve the optimal network utility. However, the energy transfer range is usually

limited and the effective amount of energy that can be captured by a node decreases exponentially as

the distance between the node and the MC increases [15, 22]. In many practical deployment scenarios,
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the MC can only move along some pre-determined trajectories and hence nodes deployed far away

from the trajectories may not be charged.

As the aforementioned ambient energy harvesting (free and universally available) and wireless

charging (controllable but only a subset of nodes can be charged) technologies are complimentary to

each other, it is naturally an attractive idea to combine them for network utility maximization. Ideally,

to maximize the network utility, the sensory data rates and charging activities shall be jointly scheduled

while taking the ambient energy availability into account. On one hand, the wireless charging energy

shall be allocated in the manner such that nodes who contribute more for the network utility increase

shall have enough energy to continue such contribution. On the other hand, the sensory data rates

shall be determined carefully so that each node can efficiently utilize the replenished energy while not

overusing it and thus degrading the network operational time. When scheduling the charging activities

and sensory data rates, the temporal-spatially varying ambient energy availability and the fact that the

MC can only move along pre-determined trajectories shall not be neglected.

To address this challenging problem, it is important to develop an innovative approach to jointly

optimize the tightly coupled three components: (i) charging activities, (ii) sensory data rate, and (iii)

ambient energy availability. This is also the focus of the study. Particularly, given a harvesting-enabled

and wireless-chargeable sensor network with a pre-determined trajectory, our goal is to maximize the

network utility while guaranteeing the network sustainability, which means that sensor nodes shall

always maintain positive energy levels to avoid operation interruption.

3.1.2 Literature Survey

3.1.2.1 Rate allocation in ambient energy harvesting sensor networks

Various ambient energy sources like solar [8], wind [10], thermal [39] and vibration [11] have been

employed to build sustainable sensor networks. Among them, solar is the most thoroughly studied one.

To deal with the time-varying nature of the solar energy, many rate allocation schemes have been

explored [9,34,40,41] to adapt sensory data rates to solar energy availability. In [9], authors extend the

framework in [42] by including solar energy and propose to maximize the lexicographic rate of solar

rechargeable sensor nodes. The rate assignment problem is formulated as a linear optimization prob-



35

lem and solved optimally by both centralized and distributed algorithms. [34] proposes a rate control

approach for a single energy harvesting node to achieve a series of objectives including the maximiza-

tion of average sensing rate over time. These objectives are formulated as optimization problems and

solved with multi-parametric control algorithms. [40, 41] propose a flow control algorithm for energy

harvesting sensor networks. [41] proposes an energy budgeting algorithm that defines the amount of

energy a node can use for each epoch. The derived energy budget assignment is optimal in the sense

that the variance of energy assigned across epochs is minimized. Using this formulation, the flow con-

trol algorithm in [40] maximizes the amount of data collected from the network, given that no node

consumes more energy than the assigned budget. However, these works assume that the system utility

increases linearly with the sensory data rates. However, for many applications, the utility increases in

a sub-linear fashion as the data rates increase (the diminishing return principle).

Using this observation, [35, 36] model the system utility as a concave and non-decreasing function

of data rates. Particularly, [35] proposes a dual decomposition and sub-gradient based algorithm, called

QuickFix, to compute the data sampling rates. To deal with the issue that the convergence rate is slower

than the energy fluctuation rate and thus the possible battery outage and overflow scenarios, a local

algorithm, called SnapIt, is designed to adapt the sampling rates with the objective of maintaining the

battery at a target level. [36] proposes both a centralized and a distributed scheme to maximize the

total utility achieved by all the nodes while ensuring eternal network lifetime. Different from JCRA, all

these works are forced to passively adapt sensory data rates to the ambient energy availability, which it

uncontrollable. Hence, the resulted network utility may not be optimized,

3.1.2.2 Wireless charging applications

One potential problem with ambient energy harvesting based protocols is that they need to passively

adapt to the availability of the ambient energy. In order to actively control the network behaviors, a

mobile robot carrying a wireless charger (MC) [14,15] has been employed to deliver energy to where it

is needed. Based on the wireless charging model, existing works can be classified into two categories.

Particularly, Peng et al. [22] build a prototype system to study the feasibility of using the wireless

charging technology to prolong the sensor network lifetime. A greedy algorithm is develop to dispatch
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the MC to charge a selected set of lifetime bottleneck sensor nodes. Based on the assumptions that a

single MC’s capability is strong enough to maintain eternal network lifetime, the traffic pattern is fixed

and the communication channels are perfect, Shi et al. [25] conduct a theoretical study and propose a

static, centralized scheme to maximize the ratio of the MC’s vacation time over each renewable energy

cycle. To handle practical issues like limited charging capability, dynamic and imperfect communi-

cation environment, and heterogeneous node attributes, a joint routing and charging scheme, named

J-RoC is proposed in [37] to maximize the network lifetime. Compared with the charging model used

in JCRA, [22, 25, 37] assume that the MC can only charge one node at a time, which does not fully

utilize the broadcast nature of the wireless energy transfer.

Based on the simultaneous charing model, authors in [43] propose to jointly determine the sensor

node deployment and routing strategies to minimize the overall energy consumption at the chargers.

The problem is formulated and proven to be NP-complete. Partitioning the two-dimensional deploy-

ment filed into adjacent hexagonal cells and requiring the MC to charge sensor nodes from the center

of a cell, [44] jointly optimizes the traveling path, routing flow and charging time. A provably near-

optimal solution for any desired level of accuracy is developed. [23] studies the energy provision

problem and discusses how to deploy the WISP readers so that the WISP tags can harvest sufficient

energy for continuous operation. In the same framework, [45] explores how to minimize the time

required to charge all RFID tags to a target energy level with a given RFID reader while [46] studies

the on-demand charging problem. Although schemes in [23, 45, 46] are designed for RFID systems,

similar ideas can be applied to sensor networks as well. However, all the aforementioned works assume

that the MC can move freely in the deployment field. Such assumption may not hold in practice.

[38] studies the problem of co-locating the mobile base station on the MC and the MC can only

move along some pre-determined trajectories. However, its goal is to minimize the energy consumption

of the entire system while ensuring none of sensor nodes runs out of energy, instead of maximizing the

network utility. Moreover, as ambient energy harvesting is not considered in [38], to achieve eternal

network lifetime, all nodes have to be deployed near the trajectories. Therefore, application of [38] is

limited.
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3.1.3 Contributions

In this study, we propose a scheme, called JCRA (Joint Charging and Rate Allocation), to jointly

optimize the charging activities and data rates allocation to maximize the network utility while guar-

anteeing perpetual network operation. Particularly, through periodical information exchanging be-

tween sensor nodes and the MC in JCRA, the MC keeps track of the global energy status of the net-

work, schedules charging activities accordingly, and disseminates the charging schedule to the network.

Meanwhile, sensor nodes in a neighborhood adjust their data rates in a collaborative manner, with the

target of improve the total neighborhood utility. As such coordination happens in all neighborhoods,

the network utility may be improved. The contributions of this work are summarized as follows.

• To the best of our knowledge, JCRA is the first design to maximize the network utility in a MC

movement confined, ambient energy harvesting and wireless charging enabled sensor network

with the network sustainability requirement.

• We formulate the joint charging and rate allocation problem and develop a centralized, off-line

solution, which provides a theoretical foundation to the proposed JCRA scheme.

• JCRA has been thoroughly evaluated via ns-2 simulations. It approaches the performance of the

centralized, off-line solution under various network settings while guaranteeing the sustainability

requirement.

3.2 System Model

As illustrated in Figure 3.1, our system is composed of three main components: a mobile charger

(MC) which can only move along a pre-paved trajectory, a network of sensor nodes equipped with both

wireless power receivers and ambient energy harvesting devices like solar panels, and a base station

(BS) that collects data from and monitors the energy status of the network as well as directs the MC to

charge sensor nodes.

The system works as follows. Each sensor node determines its sensory data generation rate and

sends the periodically generated data hop-by-hop to the BS. Besides harvesting ambient energy, a node

can receive wireless charging energy from the MC if their distance is less than a certain threshold.
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Figure 3.1 System Overview.

Wireless charging model details are described in Section 3.2.2. MC charging activities are scheduled

by the BS. To facilitate the scheduling, each node measures its local energy level, estimates its future

ambient energy harvesting rate based on a historical ambient energy profile, and reports these informa-

tion to the BS. With the collected information, the BS schedules the charging activities and commands

the MC via a long range radio to execute the schedule. The MC then travels along the trajectory to

charge sensor nodes. Meanwhile, the BS also disseminates the schedule to sensor nodes to help them

determine their data generation rates. Charging activities are scheduled and executed round by round.

In each round, the MC starts from the BS with a full energy battery, moves along the trajectory, charges

sensor nodes nearby, and returns to the BS at the end to replace the battery before energy depletion.

The system objective is to maximize the network utility (defined in Section 3.2.1) while satisfying the

sustainability requirement (defined in Section 3.2.3) .

3.2.1 Network Utility Model

Network utility in many sensor network applications [17, 18, 36] presents the diminishing return

property, which means that the network utility increases in a sub-linear fashion as the sensory data

rate increases. For instance, in an intrusion detection system, as humans can only move at a certain
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speed, increasing the sensing rate above a specific threshold only marginally increases the utility of the

application. For this reason, the network utility model used in the work is:

∑
i

U(ri), (3.1)

where ri is node i’s sensory data generation rate. Ui(·) is an application specified non-decreasing,

concave utility function, e.g., ∀∆ > 0, U(x+∆)− U(x) > U(y +∆)− U(y) if and only if x < y.

3.2.2 Wireless Charging Model

We assume that the MC can only charge nodes when it stops somewhere along the trajectory. De-

note Λi(s) the wireless charging power received by node i when the MC is at point s on the trajectory,

we have

Λi(s) =

 ηi(s)Λc : d(i, s) ≤ Dmax,

0 : otherwise,
(3.2)

where ηi(s) is the wireless energy transfer efficiency, Λc is the charging power output at the MC and

Dmax is charging distance threshold. When the distance between node i and the MC, namely d(i, s), is

larger than Dmax, the received charging power becomes zero. In general, ηi(s) is a decreasing function

of d(i, s). In this work, efficiency model in [15] is employed.

3.2.3 Network Sustainability

A sustainable network [47] requires perpetual network operation and no node runs out of energy

forever. As the charging activities in the system are scheduled round by round, to maintain network

sustainability, we require that (i) no node runs out of energy during each charging round and (ii) the

nodal residual energy at the end of a charging round is no smaller than Et. Et is a system parameter.

The amount of Et energy serves as the energy buffer to tolerate environmental and network uncer-

tainties, like weather changes, MC cannot move to the exact charging point as expected and packet

retransmissions due to deteriorated channel conditions.
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3.3 Analytical Study

To provide a theoretical foundation for the proposed JCRA scheme, in this section, we first formu-

late the joint charging and rate allocation problem and then develop a centralized, off-line algorithm

with provably (1 − ϵ) approximate ratio to solve the formulated problem. ϵ is the system tolerable

inaccuracy level. The analytical study results will be used in JCRA to schedule the charging activities

(see Section 3.4.1 for details). Notations commonly used in this study are summarized in Table 3.1.

Table 3.1 Notation Summary

notation meaning

ei(sk) node i’s residual energy when MC is at segment sk
gi(sk) number of packets that i generates when MC is at sk
ci(sk) amount of energy that i consumes when MC is at sk
Λi(sk) i’s charging rate when MC is at sk
Hi(t) i’s ambient energy harvesting rate at time t

Ĥi i’s estimated average ambient energy harvesting rate till the end
of the current charging round

ei i’s current residual energy level
ri i’s current data generation rate
a(sk) amount of time that the MC stops and conducts charging at sk
τ time length of a charging round
Et required minimal nodal energy at the end of a charging round
Emax nodal battery capacity

3.3.1 Problem Formulation

As the MC moving trajectory S is continuous, in the formulation, we first discretize it into K

segments with equal length and use the central point of a segment to represent it. Then, the joint

charging and rate allocation problem over one charging round can be formulated as follows:

max
∑

i U
(∑K

k=1 gi(sk)
τ

)
,

s.t.

τ =

K∑
k=1

τ(sk), (3.3)
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τ(sk) =
D(sk)

V
+ a(sk), (3.4)

ci(sk) = (etx + erx)
∑
j∈Di

gj(sk) + (etx + esx)gi(sk) (3.5)

ei(sk+1) ≤ ei(sk)− ci(k) +Hi(sk)τ(sk) + a(sk)Λi(sk) (3.6)

ei(sK+1) ≥ Et, (3.7)

a(sk), gi(sk), 0 ≤ ei(sk) ≤ Emax. (3.8)

The objective is to maximize the network utility in a charging round. gi(sk) is the amount of data

packets that node i generates when the MC is at segment sk and τ is the time length of a charging

round. τ is a system parameter. As stated in Equation (3.3), τ is the sum of τ(sk), the time that

the MC spends over each sk. τ(sk) includes two parts, the moving part D(sk)
V and the charging part

a(sk). D(sk) is the length of sk and V is the MC’s moving speed. Denote etx, erx, esx the energy cost

to transmit, receive and generate a data packet, respectively, Equation (3.5) computes the amount of

energy that node i consumes when the MC is at sk. Di is node i’s descendant node set on the collection

tree. ei(sk+1) in Inequality (3.6) is i’s residual energy level when the MC enters sk+1. It shall be no

more than ei(k) – i’s nodal energy when the MC enters sk, minuses the amount of energy consume

and pluses the energy received at segment sk. Note that ei(sk+1) could be less than the right hand side

of Inequality (3.6) due to energy overflow1. Here, Hi(sk) is i’s average ambient energy harvesting rate

when the MC is at sk and Λi(sk) is i’s charging rate when the MC is at sk. Finally, Equation (3.7)

states the sustainability requirement. In the formulation, both s0 and sK+1 represents the BS. The

output {a(sk), gi(sk), 1 ≤ k ≤ K} is the solution for the joint charging and rate allocation problem. It

specifies both the charging behaviors a(sk) and data rate allocation strategy gi(sk).

1Once a battery is charged to its capacity, its energy cannot be further increased.
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In the above formulation, we assume that each node has a historical ambient energy profile, based

on which, the average ambient energy harvesting rate when the MC is at sk (denoted as Hi(sk) in

Inequality (3.6)) can be calculated. For stable energy sources, Hi(sk) can be treated as a constant value

when k varies. For time-varying energy sources like solar, wind, etc., the value of Hi(sk) depends on

when the MC arrives at sk and how long it stays there. To ease the analysis, we use Ĥi, the average

ambient energy harvesting rate till the end of the current charging round, to represent Hi(sk), 1 ≤ k ≤

K. In Section 3.4.1, we will describe how to deal with the time-varying energy sources in practice.

Therefore, we can re-write Inequality (3.6) as

ei(sk+1) ≤ ei(sk)− ci(k) + Ĥiτ(sk) + a(sk)Λi(sk). (3.9)

Based on the facts that (i) all constraints in the formulation are linear, (ii) the utility function U(·)

is a non-decreasing concave function and (iii) the sum of concaves functions is also concave, it is easy

to derive that the above formulation is a convex optimization problem. Solvers likes [48] can be used

to solve it.

3.3.2 Approximate Algorithm

The optimization strategy developed in [38] is adopted to construct the approximate algorithm

proposed in this section. Particularly, in the above discretized formulation, the number of segments K

affects the accuracy of the solution. To determine an appropriate K value, in this section, a lower bound

and an upper bound formulations are constructed with a given K value. As shown later, when the K

value increases, the network utility achieved by the lower and upper bound formulations will increase

and decrease, respectively. Hence, as we keep increasing the K value until the gap between the lower

and upper bound network utility is less than a small threshold ϵ, the final solution of the lower bound

(or the upper bound) formulation is a (1− ϵ) approximation to the original problem.

3.3.2.1 Lower and Upper Bound Formulations

Each segment sk contains many points. The wireless energy charging rate Λi(p), p ∈ sk varies at

different points in the same segment. The idea of building the lower bound formulation is to use the
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lowest charging rate on sk to present Λi(sk). Specifically, in the lower bound formulation (denoted as

Plb), we set Λi(sk) in Equation (3.9) as

Λi(sk) = Λl
i(sk) = min

p∈sk
{Λi(p)}, (3.10)

and make all rest equations unchanged. Apparently, solutions of Plb is a lower bound of the discretized

formulation. Similarly, we set

Λi(sk) = Λu
i (sk) = max

p∈sk
{Λi(p)}, (3.11)

to construct the upper bound formulation (denoted as Pub). As both Equations (3.10) and (3.11) are

linear, Plb and Pub are still convex optimization problems and they can be solved by solver [48].

3.3.2.2 Approximate Algorithm

Details of the approximate algorithm is illustrated in Algorithm 2. χ = {ϕ, a(sk), gi(sk)} denotes

the solution of the problem formulation where ϕ represents the achieved objective value.

Algorithm 2 Approximate Algorithm for Joint Charging and Rate Allocation Problem

Input: {ei(s1), Ĥi}
Output: χ∗

1: K ← Kinit

2: repeat
3: Evenly divide trajectory S into K segments s1, ..., sK
4: χl ← solve Plb

5: χu ← solve Pub

6: K ← 2×K

7: until ϕu

ϕl < 1 + ϵ

8: return χl

In Algorithm 2, it checks the gap between the lower and upper bound objective values. If the

gap between them is larger than a system specified accuracy ϵ, the algorithm will double the segment

number K. As proved in Lemma 3.3.1, when K increases, ϕl will increase and ϕu will decrease.

Hence, the gap between them will decrease. Iteration continues until the gap in less than ϵ. Obviously,

the final output is a (1 − ϵ) approximate of the original joint charging and rate allocation problem
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without discretization.

Lemma 3.3.1 As segment number K increases, ϕl increases and ϕu decreases.

proof: 1 The proof can be done by construction. When we increase K to 2K, we split each segment

sk, 1 ≤ k ≤ K into two equal length smaller segments s1k and s2k. For Plb, we construct a feasible

solution χ̂l(2K) on the new segment set and prove that χ̂l(2K) > χl(K). As χ̂l(2K) is only a feasible

solution, we have χl(2K) > χ̂l(2K) > χl(K) and the proof is done.

One observation is that when we split the segment into two small ones, either Λl
i(s

1
k) > Λl

i(sk)

or Λl
i(s

2
k) > Λl

i(sk), depending on where the lowest charging rate point appears. Without loss of

generality, assume that the lowest charging rate point is in s2k and thus we have Λl
i(s

1
k) > Λl

i(sk) and

Λl
i(s

2
k) = Λl

i(sk). Obviously, each node will receive more charging energy when we increase K to 2K.

More charging energy means that sensor nodes can generate and relay more data packets to the BS.

Hence, the network utility ϕl will increase. Similarly, we can prove that when we split each segment

into two smaller segments, ϕu value decreases.

3.4 The proposed JCRA scheme

Algorithm 2 is a centralized, off-line algorithm. Directly disseminating data rates to the network

requires a unicast from the BS to each sensor node, which is not acceptable for resource constrained

sensor networks. Moreover, as network conditions like channel quality and ambient energy harvesting

rate are highly dynamic and hard to predict in nature, a distributed, on-line scheme is needed. For this

purpose, we propose the protocol called JCRA in this section.

In JCRA, the BS schedules the charing activities and each node determines its own data gener-

ate rate in a distributed manner. Figure 3.2 overviews how the data rate is determined. To ease the

presentation, we use the topology shown in Figure 3.3 as an example to explain the design details of

JCRA.

In general, when node i receives a data packet from its child node or an ACK from its parent node, it

extracts the control information embedded in the packet and feeds them into the Rate Allocator. Here,

the control information includes two items from each child node j of i: j’s estimated energy at the
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end of the current charging round êj and its current data generation rate rj ; and one item from parent

node p of i: ∆p,i. We will explain the meaning of ∆p,i in Section 3.4.2.2. The Harvesting Manager is

responsible to estimate the future ambient energy harvesting rate Ĥi. Based on the historical ambient

energy profile, schemes like [49] can be employed for Ĥi estimation. The Charging Manager updates

the charging schedule when node i receives a new schedule from the BS, and removes the parts that

have already been executed by the MC. It provides Rate Allocator the rest time length of the current

charging round ω and the amount of charging energy that node i can receive during ω time, denoted as

Âi.

With these information, Rate Allocator decides how node i and its child nodes shall adjust their

data generation rates to improve the total utility in the neighborhood. The decision is then piggybacked

into the ACK packet to its child nodes. Upon being notified, each child node adjusts its own data rate.
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3.4.1 Charging Scheduling

Charging activities in JCRA are scheduled by Algorithm 2. To provide necessary information

for such scheduling, every sensor node reports ei and Ĥi values to the BS. Such information can

be piggybacked to the generated sensory data packets to save bandwidth and energy cost. As the

harvesting rate of some energy sources, e.g., solar, is time-varying, the BS re-runs Algorithm 2 every

certain interval IMC with the most updated ei and Ĥi values to adapt charging activities. IMC is a

system parameter. When BS re-runs the algorithm, charging round time length τ and the trajectory

S are replaced the rest time length of the charing round ω and the rest of trajectory that the MC has

not been visited. In the output of Algorithm 2, the charging schedule {ask} is then disseminated to all

nodes in the network to help them determine their data generation rates. Unlike data rate information

which is node specific, the charging schedule dissemination can be achieved via flooding, which is a

much cheaper operation than unicasting to each node, especially when the network size is large.

3.4.2 Data Rate Allocation

Data rate allocation in JCRA operates in two phases: initial phase and adaptation phase.

3.4.2.1 Initial Phase

After the data collection tree has been established, each node needs to set its initial ri value. Consid-

ering the diminishing return property, to achieve good initial network utility, the objective is to evenly

allocate the data rates without violating the sustainability requirement. In the following, we use an

example (as shown in Figure 3.4) to explain how the initial phase works. In this example, Et = 100J ,

etx = 0.05J/pkt, erx = esx = 0.01J/pkt, τ = 4h.

• Each node reports its ei and Ĥi values to the BS, and derives the number of descendant nodes

|Di| by counting the number of reports it has relayed as shown in Figure 3.4(a).

• With the collected ei and Ĥi values, the BS runs Algorithm 2 and disseminates the first round

charging schedule {a(sk)} to all nodes. In Figure 3.4(b), the trajectory is split into four segments.
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Figure 3.4 An example of JCRA initial phase.

• Once received the charging schedule, a node computes the charging rate Λi(sk) for each segment

sk. To compute Λi(sk), the geometric center of sk is used. With Λi(sk) information, a node

estimates the total amount of energy it can receive in the current charging round as

θi = Ĥiτ +

K∑
k=1

a(sk)Λi(sk). (3.12)

In Figure 3.4(c), the charging rate at node 1 is 100 mW when the MC charges at the first segment.

When MC charges at other segments, the charging rate is zero as the charging distance is beyond

the threshold Dmax. Hence, θ1 = 1368 J in the next four hours. To evenly allocate the data rate

without violating the sustainability requirement, a node assumes that itself and its descendant
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nodes have the same initial data generation rate as

ei − Et + θi
((etx + esx)|Di|+ (etx + esx))τ

. (3.13)

In order to guarantee that its parent node is not overloaded, initial data rate is determined as

ri = max{0,min{rp,Equation (3.13)}}. (3.14)

rp is the initial data rate that p determines for itself and its descendant nodes. In Figure 3.4(c),

as the BS has infinite energy supply, it notifies its children nodes with rBS = +∞. Node 1

computes r1 = 0.40 pkt/s and sends r1 to its child node 2.

• Such procedure continues until all nodes in the network have derived their initial data rates as

shown in Figure 3.4(d).

3.4.2.2 Adaptation Phase

Every W time interval, the BS triggers a data rate adaptation round. In each round, a parent

node and its children adjust their data rates in a collaborative manner to improve the utility of the

neighborhood.

Figure 3.5 illustrates the behaviors of node i as a parent node. When it receives an ACK from

parent node p, node i extracts ∆p,i whose value can be δ,−δ or zero. δ is a system parameter. ∆p,i = δ

means that the outgoing data rate of the subtree rooted at node i (denoted as Ti) can be increased by δ

without violating the sustainability requirement at node p. ∆p,i = −δ means that the subtree’s outgoing

data rate shall be reduced by δ; otherwise, node p will be overloaded. ∆p,i = 0 means the subtree’s

outgoing data rate shall not increase. Meanwhile, node i estimates its residual energy at the end of the

charging round as

êi = ei − ω(etxr
out
i + erxr

in
i + esxri) + ωĤi + Âi, (3.15)

where routi and rini are the measured outgoing and incoming data rate at node i, respectively. ω is the

rest time length of the current charging round and Âi is the charging energy node i will received during
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Figure 3.5 Flow chart of data rate adaptation when node i acts as parent.

ω time. Depend on ∆p,i and êi values, node i behaves differently as follows:

• ∆p,i = δ and êi > Et. In this case, both nodes p and i have extra energy to allow more data

generation in Ti, which means that higher network utility can be achieved. To maximize the

utility improvement, node i runs Algorithm 3 to select a node, say n, among i and its child

nodes such that increasing its data rate by δ will result in the maximum utility gain while the

sustainability requirement in the neighborhood is still maintained. If node i is selected, ri is

increased by δ. Otherwise, node i sets ∆i,n = δ. Then, ∆i,j , ∀j ∈ Ci is appended to the ACK

for node j. For child node j ̸= n, ∆i,j value is zero.

• ∆p,i = −δ or êi < Et. In this case, either node p or node i has been overused. In either case, the

outgoing data rate of Ti shall be reduced. To minimize the utility loss due to data rate reduction,
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node i selects a node, say m, among i and its child nodes such that decreasing its data rate by

δ will result in the minimum utility loss. If node i is selected, it decreases ri by δ. Otherwise,

∆i,m is set to −δ.

• If neither Case I nor II is satisfied, it means that the outgoing data rate of Ti cannot be further

increase and it does not have to be decreased. In this case, node i ties to improve the utility in

the neighborhood by shifting the data rates among itself and its child nodes while ensuring the

outgoing data rate of Ti is not changed. Particularly, node i picks a node, say n, increasing whose

data rate by δ results in the maximum utility gain and picks another node, say m, decreasing

whose data rate by δ results in the minimum utility loss. If the utility gain is larger than the

utility loss, node i then sets ∆i,n = δ, ∆i,m = −δ and adjusts the ri value accordingly if m or n

equals i. Otherwise, ∆i,j = 0, ∀j ∈ Ci and ri is unchanged.

When child node j receives the ACK from parent node i, it also runs the adaptation algorithm as

node i does. Hence, the data rate adaptation procedure propagates from the BS to leaf nodes in each

round. When j’s data rate is low, it may take a while for node i to receive a data packet from j and then

append the ∆i,j value in the ACK. To handle this case, the ACK packet is utilized in the best-effort

manner. After adjustment, if node i has no ACK to j in a certain time interval, it will send a control

message containing ∆i,j value to node j. In this work, the interval is set to one minute.

As the BS has infinite energy supply, when it triggers the adaptation, it sets ∆BS,j = δ for its child

node j, which means the BS always has enough energy to receive more data packets from the network.

3.5 Performance Evaluation

3.5.1 Simulation Setup

NS-2 based simulations have been conducted to evaluate the JCRA performance in terms of network

utility. The changing trace of the minimal nodal energy in the network is also plotted to verify the

sustainability requirement. In the simulation, we set U(ri) in Equation 3.1 as 1 − e−ri and set ηi(s)

in Equation 3.2 as 0.0958 ∗ d2(i, s)0.0377d(i, s) + 1.0 according to [38]. We compare JCRA with the
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Algorithm 3 Node selection for data rate increase

Input: {êj , rj , j ∈ Ci}, Ĥi, Âi, ω

Output:node id that should increase its data rate

1: Compute êi with Equation (3.15)
2: n← −1, U∗ ← 0

/* Check if can increase ri by δ */
3: if êi − (etx + esx)δω > Et then
4: n← i

5: U∗ ← U(ri + δ)− U(ri)

/* Check if i can relay extra δ data */
6: if êi − (etx + erx)δω < Et then
7: return n

8: for each child node j ∈ Ci do
9: if êj − (etx + esx)δω > Et&&U(rj + δ)− U(rj) > U∗ then

10: n← j

11: U∗ ← U(rj + δ)− U(rj)

12: return n

centralized, off-line Algorithm 2, which is denoted as OPT. For both JCRA and OPT, the average data

rate over the simulation time is used to compute the network utility in Equation 3.1.

In the simulation, the deployment field is a 400 m × 400 m area and the BS is located at the center.

The trajectory is a closed curve which starts from and ends at the BS. A designated percentage of

nodes are randomly deployed within the distance Dmax of the trajectory (called near-trajectory nodes).

The rest of nodes are randomly deployed in the area. Wireless charging efficiency model in [38] is

employed in the simulation and the charging output power Λc = 3W . The topology is connected and

the CTP protocol [26] is employed to build the initial data collection tree. Solar is the ambient energy

source. Each nodes is equipped with a historical solar profile shown in Figure 3.6. The actual solar

energy for each node is a random variant of the equipped historical profile.

The evaluation results are averaged over 30 different random topologies. We vary the targeted

energy Et, charging round time length τ , MC rescheduling interval IMC , the network density and

the percentage of near-trajectory nodes in the simulation. The node battery capacity is 10000 J. The

initial nodal energy equals Et. The maximal communication range is 70 meters and RI-MAC [50] is

used as the underlying MAC protocols. Based on the default RI-MAC settings and the energy model

in [51], etx = 0.05 J/pkt, erx = esx = 0.02 J/pkt. Note that the actual packet transmission cost in the
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Figure 3.6 Historical solar power profile.

simulation may be larger than 0.05 J/pkt due to channel deterioration or interference. The BS triggers

an adaptation round every five minutes. δ = 0.05 pkt/s and the simulation lasts for 72 hours.

3.5.2 Simulation Results

3.5.2.1 Network utility with varying Et

Figure 3.7 compares the performances of JCRA and OPT with the Et values varying between

1000 J and 9000 J. τ = 12 h, IMC = 3 h, number of nodes in the network is 60 and 50% nodes are

near-trajectory nodes. Figure 3.7(b) plots changing trace of the minimal nodal energy in the network.

Figure 3.7(a) shows that JCRA achieves maximum network utility when Et = 3000 J. As mentioned
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Figure 3.7 Performance comparison under different Et.
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before, the amount of Et energy serves as the energy buffer to tolerate environmental and network

uncertainties. When the energy buffer is small, i.e., Et = 1000 J, some nodes may run out of energy

when the actual solar harvesting rate is lower than estimated or the MC charging distance is farther than

expected due to inaccurate robot localization, as illustrated in Figure 3.7(b). When a node runs out of

energy, all data packets generated at its subtree cannot reach the BS, resulting the degraded network

utility. On the other hand, when the energy buffer is large, Et = 9000 J, some nodes’ energy may

hit the battery ceiling when the actual solar harvesting rate or the wireless charging rate is higher than

expected. And the supplied energy will not be fully utilized. Therefore, Et shall be set to a value

around half of the battery ceiling. For example, when Et = 3000 and Et = 5000 J, JCRA achieves

86% and 85% of the OPT, respectively. Since the OPT scheme is an off-line algorithm with perfect

channel conditions, the achieved network utility is not affected by Et.

Figure 3.7(b) verifies that the network sustainability requirement is satisfied when Et > 1000 J as

the minimal nodal energy returns to Et value at the end of each charging round, e.g., every 12 hours.

3.5.2.2 Network utility with varying τ

We now evaluate the impact of the charging round time length τ . Results are shown in Figure 3.8.
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Figure 3.8 Performance comparison under different τ .

From Figure jcra:fig:charge-time(a), we can see that as the charging round time length τ increases,

the network utility achieved by both JCRA and OPT decreases. This is because, to satisfy the sus-
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tainability requirement, the estimated nodal energy at the end of the charing round êi shall be no less

than Et. As a node may have inaccurate estimation about future solar energy harvesting rate and other

network conditions, when τ value increases, êi value deviates farther away from its actual value. When

êi is smaller than the actual value, a node will be reluctant to increase its data rate and the possibil-

ity to hitting the battery ceiling increases. Similarly, when êi is larger than the actual value, a node

will be aggressive to increase the data rate and more likely this node will run out of energy during the

simulation. In either case, the achieved network utility will decrease. This statement can be verified

by Figure 3.8(b). As we can see, when the charging round time length increases, the minimum nodal

energy variance also increases. Note that Figure jcra:fig:charge-time(b) is the average over 30 random

topologies. The increased variance means that the minimum nodal energy will hit zero more frequently

as τ increases.

As the average solar rate over a charging round Ĥi is use in OPT, the longer the charing round is,

the less accurate that Ĥi represents the actual solar power, and the performance of OPT degrades.

3.5.2.3 Network utility with varying IMC

Figure 3.9 shows how the MC rescheduling interval IMC affects the network utility. Et = 5000 J,

τ = 12 h, number of nodes in the network is 60 and 50% nodes are near-trajectory nodes. Since

the charging activities in OPT is not rescheduled in a charing round, the network utility achieved by

OPT does not change when IMC varies. Different IMC values also have little impact on the JCRA

performance. This is because the bottleneck nodes on the collection tree are relatively stable. Even

the MC reschedules the charging activities more frequently, the new schedule will not be significantly

different from the previous one. At different IMC values, the network utility achieved by JCRA is

around 83% of the one achieved by OPT.

3.5.2.4 Network utility with varying network density

The impact of network density on the JCRA performance is shown in Figure 3.10. Et = 5000 J,

τ = 12 h, IMC = 3 h and 50% nodes are near-trajectory nodes. As more and more sensor nodes are

deployed to generate data, the network utility achieved by both OPT and JCRA increases. Even with
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Figure 3.9 Performance comparison under different IMC .

100 nodes deployed, JCRA achieves 78% of the OPT’s network utility.
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Figure 3.10 Performance comparison under different network sizes.

3.5.2.5 Network utility with varying percentage of near-trajectory nodes

Figure 3.11 compares the performances of JCRA and OPT when the percentage of the near-

trajectory nodes varies from 25% to 100%. Et = 5000 J, τ = 12 h, IMC = 3 h and number of

nodes in the network is 60. As more and more nodes are deployed near the trajectory, the MC has more

and more control over the energy distribution and hence the data rate generation of the network. There-
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fore, the achieved network utility by both JCRA and OPT increases. Regardless of the near-trajectory

nodes percentage, the network utility achieved by JCRA is around 80% of OPT.
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Figure 3.11 Performance comparison under different percentage of near-trajec-
tory nodes.

3.6 Conclusions

In this study, we propose a practical and efficient joint charging and rate allocation scheme, called

JCRA, to maximize the network utility while ensuring eternal network lifetime. We present the design

and implementation of the JCRA scheme and show its effectiveness in improving the network utility

compared with the centralized, off-line optimal solution via ns-2 simulations, under various configura-

tions.

In the future, we will improve the design by taking routing strategy into account. As routing

behaviors shape the network traffic distribution, a joint charing, routing and rate allocation design may

improve the network utility even further.
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CHAPTER 4. LIFETIME BALANCED DATA AGGREGATION IN

DELAY-BOUNDED ENERGY-HETEROGENEOUS SENSOR NETWORKS

4.1 Introduction

4.1.1 Motivations

In a sensor network, sensor nodes are usually powered by small batteries with limited energy sup-

plies. When applying the network for long-time applications such as continuous environmental moni-

toring, how to prolong the network lifetime is of critical importance.

Through eliminating inherent redundancy in raw sensory data, in-network data aggregation [52,53]

has been widely applied as an effective technique to reduce communication cost and extend the lifetime

of a sensor network. With the data aggregation mechanism, a node should be allowed to hold data

received or generated by itself for a while, aggregate the data in bulk, and send out only the aggregated

results. The extend to which data volume can be suppressed highly depends on how long a node can

hold data before sending them out. Generally, the longer can a node hold data, the more data can

it suppress and hence the higher is the communication efficiency. However, holding data introduces

extra data delivery delay. In many sensor network applications, the value of sensory data could be

greatly depreciated or even become zero if the data is delivered to the sink with a delay longer than

a certain application-specific delay bound. Therefore, the allowed holding time is constrained by the

application-specific requirement on end-to-end data delivery delay.

It is important to make full use of the available but constrained holding time for aggregation to

prolong network lifetime. This becomes especially demanding in the context of multi-hop sensor net-

works. Along each multi-hop source-to-sink path, the allowed holding time should be allocated to

all nodes appropriately to ensure the required end-to-end data delivery delay is not violated along the
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path. Research [54] has been conducted to optimize the distribution of holding time according to the

distribution of data traffic and the network topology. However, non-uniform nodal lifetime, which is a

critical factor impacting network lifetime, has been neglected.

Due to various environment and system reasons, sensor nodes in the same network may have var-

ious nodal lifetime. For example, nodes with batteries of poorer quality, nodes that are bottlenecks

on a collection tree, and solar-rechargeable nodes deployed to shady locales may have shorter lifetime

than their peers. As the energy depletion in a sensor node may cause network disconnection or create

coverage holes, which could render the entire sensor network nonfunctional, many sensor network ap-

plications [6, 55, 56] define the network lifetime as the minimal nodal lifetime among all sensor nodes

in the network. Therefore, in order to prolong the network lifetime, it is critical to prolong the lifetime

of the shortest-nodal-lifetime nodes.

Despite the need for a multi-layer holistic approach to balance nodal lifetime and thus prolong the

network lifetime, it is necessary to design a data aggregation scheme that can take into account the non-

uniform nodal lifetime among nodes, attempt to balance their nodal lifetime, and thus more effectively

prolong the network lifetime.

4.1.2 Literature Survey

Many in-network data aggregation protocols [57–59] have been proposed, but the timeliness of the

data delivery was not a concern. Although Ye et al. [60] formulated the energy-delay tradeoff prob-

lem as a semi-Markov decision process by depreciating the data revenue as aggregation holding time

increases, no explicit end-to-end delivery delay bound was considered. To bound end-to-end delivery

delay, many existing works [61–63] require time synchronization between neighboring nodes. Solis et

al. [61] employed the concept of cascading timeout where a node’s aggregation timeout happens right

before its parent’s to achieve high aggregation degree with small delay overhead. Xiang et al. [62] ex-

plored the joint data aggregation and timeliness of data delivery problem, and proposed a utility-based

scheme called tPack to minimize the whole network communication cost. Assuming a synchronized

time-slotted system, [63] formulated the energy-delay tradeoff problem as an integer optimization prob-

lem. Different from these works, our scheme does not require synchronization. Moreover, all of the
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afore-mentioned works aim to minimize the energy consumption, without considering the lifetime bal-

ance between nodes which is critical in improving the network lifetime.

[54] investigated the problem of energy efficient data delivery within a delay bound and proposed

two distributed schemes to balance energy consumption among sensor nodes. However, the schemes

work only in homogeneous networks (e.g., the battery quality, radio energy consumption rate and initial

nodal energy are the same) whereas our scheme can deal with the heterogenous situations. There have

also been works [64, 65] on optimizing aggregation tree structure. Our scheme is orthogonal to these

works, because our scheme works under any aggregation tree structure.

4.1.3 Contributions

In this study, we present LBA, a low cost, asynchronous, delay-constrained data aggregation scheme

for duty cycle sensor networks. LBA aims to prolong the network lifetime. The key idea is to dynam-

ically adjust the aggregation holding time between two neighboring nodes and hence to balance their

nodal lifetime. As neighboring nodes keep balancing their nodal lifetime, the nodal lifetime of all nodes

in the entire network can be balanced gradually and the network lifetime can be extended.

We have implemented and experimented LBA in a testbed of 32 TelosB sensor nodes. Experimental

results show that LBA effectively achieves the design goal of balancing the nodal lifetime, and prolongs

the sensor network lifetime under various network configurations, especially the heterogeneous ones.

Through theoretical analysis, we also proposed a network lifetime upperbound. According to our

evaluation results, LBA can approach the lifetime upperbound especially when the nodes have highly

different nodal lifetime.

4.2 System Model and Problem Statement

4.2.1 System Model

We study data aggregation in a sensor network, where each sensor node could periodically generate

and report sensory data, and all the nodes form a collection tree rooted at the sink. The nodes may not

be time-synchronized or energy-synchronized (i.e., their energy supplies and consumption rates may

not be uniform). The nodes are duty-cycled for energy saving, which are typical when the network is
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deployed for long-time monitoring. To build and maintain the data collection tree, a routing protocol

such as the collection tree protocol (CTP) [26] may be employed. Underlying the routing protocol, an

asynchronous and duty cycle MAC protocol such as RI-MAC [50] may be adopted.
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Figure 4.1 System model.

A typical data aggregation process is shown in Figure 4.1. A source node may not send out sensory

data packet immediately after it is generated; instead, the node may wait a certain period of time (self-

aggregation delay), attempting to aggregate multiple data packets generated during the period and thus

reduce the amount of data sent to its parent node. Similarly, a forwarding node may not forward a data

packet immediately after the reception. It may wait for another period of time (forwarding-aggregation

delay) in order to aggregate multiple data packets received during the period. Consequently, the delay

involved in delivering a data packet from source to sink is composed of a self-aggregation delay and

multiple forwarding-aggregation delays. In the rest of this study, we denote the average data generation

rate at each node i as λi, and the average forwarding-aggregation and self-aggregation delay at node i

as wi and w′
i respectively.

We assume the total aggregation model [66] in data aggregation; that is, an arbitrary number of

data packets that are available at the aggregation time can be suppressed into a single data packet. Such

model can be seen in many sensor network applications. For example, in monitoring applications, users
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often are more interested in the maximum, minimum or average values, or the percentile statistics, of

sensory data, rather than the raw data themselves.

As we can see, the longer is the aggregation delay, the more data packets can be aggregated and

thus the higher is the communication efficiency. However, monitoring applications often also require

that data delivery delay be lower than a certain bound to assure timely awareness of the monitored

environment. We assume the following generic delay requirement: at least p percent of sensory data

should be delivered to the sink within time D after the data has been generated, where D and p are

application-specific parameters.

4.2.2 Problem Statement

Our design objective is to dynamically determine the forwarding-aggregation and self-aggregation

delays (i.e., wi and w′
i) for each node i to try to balance the lifetime of sensor nodes and hence prolong

the network lifetime, under the condition that the data delivery delay requirement is satisfied. In this

course, the differences between nodes, for example, different nodal energy levels, energy consumption

rates and data generation rates, should be considered. Specifically, the problem can be formalized as

follows:

Given:

T, {λi}, {ei}.

Objective:

maxmin{Li}

Subject to:

∀l, w′
l +
∑
i∈sl

wi ≤ Dp,where l is leaf

Output:
{wi, w

′
i}.

Here, T is the collection tree topology, ei is the residual energy and Li represents the nodal lifetime

of node i. l is a leaf node and sl denotes the path connecting the parent of l and the sink in T . Dp

represents the maximal allowed delay, including both transmission and aggregation delay, along each
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source-sink path such that at least p percent of the source’s sensory data can reach the sink within D

time. The calculation of Li and Dp is to be presented in Section 4.4.

4.3 Design Overview

Solving the above optimization problem in a centralized manner is impractical as it requires each

node to know the residual energy levels, data generation rates of all other nodes, and the topology

of the network. Acquiring these information could incur high communication overhead because of

potentially large network scale and dynamic nature of the information. Therefore, we approach the

problem in a distributed and localized manner. Specifically, coordinations only take place between

neighboring parent-child nodes, which exchange information with each other and coordinately adjust

their aggregation delays.
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Figure 4.2 Design overview.

As shown in Figure 4.2, the coordination is realized by piggy-backing some small pieces of control

information at the end of the data and ACK packets exchanged between parent-child nodes. Specifi-

cally, when sending out a data packet to its parent, a node appends to the packet its estimated nodal

lifetime and some other information related to the adjustment of aggregation delays. Upon receiving

the packet, the parent node pushes the packet into a queue while feeding the appended information to

the “Aggregation Controller” module. Based on the information, the parent node adjusts its own wi,
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and appends some information to the ACK to instruct its children nodes on how to adjust their wi val-

ues. When the ACK reaches a child node j, the node changes its wj and w′
j accordingly. This way, as

every parent-child pair keeps attempting to balance their nodal lifetime, the nodal lifetime of all nodes

in the entire network is also adjusted gradually towards the balanced status.

4.4 Analytical Study

To provide a theoretical foundation to direct and evaluate the performance of our design, we present

extensive analysis in this section. Specifically, we first provide a formulation of nodal lifetime as a func-

tion of a node’s data input/output rates. Then, the data I/O rates are formulated as functions of nodal

data generation rates, self-aggregation and forwarding-aggregation delays. This is followed by the

computation of the maximum aggregation and transmission delays that all the nodes on a source-sink

path are allowed to introduce without violating a certain application-specific data delivery delay re-

quirement. Based on the above analysis, we finally propose an algorithm to compute an upperbound for

the network lifetime through intelligently determining the self-aggregation and forwarding-aggregation

delays for each node.

4.4.1 Nodal Lifetime

As our design targets to be applicable in time-asynchronous duty cycle sensor networks, a time-

asynchronous duty cycle MAC protocol is assumed. In the analysis and detailed design presented in

this study, we take RI-MAC [50], a well-known asynchronous and duty-cycled MAC protocol, as an

example. Note that, our design can work with other MAC protocols, e.g., X-MAC [33], A-MAC [67],

after replacing the nodal lifetime analysis module of RI-MAC with that of the alternative MAC protocol.

For self-containedness, the sketch of RI-MAC is illustrated in Figure 4.3 where Tr is the receiver’s

beacon interval, ϕ is the receiver’s channel checking period and τ is the time needed by the sender and

receiver to exchange a data packet and the corresponding ACK. In this protocol, each node periodically

wakes up for time ϕ every interval Tr to check if there is any incoming packet intended for the node.

After turning on its radio, a node immediately broadcasts a beacon, announcing its readiness for re-

ceiving packets. If a node has packet to send (e.g., node S in Figure 4.3) it turns on its radio if it is off,
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and keeps the radio on to wait for the beacon from the intended receiver (e.g., node R in Figure 4.3).

Upon receiving the expected beacon, S sends out its data immediately, which will be acknowledged by

R with an ACK after R has received the data. Then, S turns off its radio, while R and any other sender

who has pending packet intended for R can start transmission. If there are no more incoming/outgoing

packets, R turns off its radio and goes to sleep. Further, due to the lossy nature of the wireless channels,

a sender may need several transmission attempts to successfully send out a packet. Let ETXi denote

the expected transmission attempts1 at node i. Let m denote the maximum number of transmission

trials before a sender gives up its transmission attempt until the next time it receives beacon from its

intended receiver. Then, we can estimate the nodal lifetime Li as follows:

ei

((Tr(⌈ETXi
m ⌉ − 1

2) + τ(ETXi%m))λ′
i +

ϕ
Tr

+ τ
∑

j∈Ci
λ′
j)P

. (4.1)

Here, P is the energy consumption rate when a node’s radio is on, λ′
i denotes the data output rate of

node i, and τ is the time to send or receive a data packet.
∑

j∈Ci
λ′
j denotes the data input rate at

node i, where Ci is the set of i’s children and λ′
j is the data output rate of node j. A node could be

both a sender and a receiver. As a sender, the node waits Tr
2 on average for its receiver to wake up

and then consumes time τ for each transmission attempt until the number of unsuccessful attempts
1Note that routing protocols such as CTP [26] in sensor networks have provide mechanisms for automatical measuring

ETXi for node i. We therefore do not describe how to measure ETXi in this study.
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reaches m, in which case it waits for another Tr and then repeats the transmission attempts. Hence,

with average number of attempts ETXi for each data packet, the overall energy consumption for the

successful transmission of a data packet is Tr(⌈ETXi
m ⌉ − 1

2) + τ(ETXi%m). As a receiver, the node

wakes up for time ϕ every interval Tr, and spends time τ
∑

j∈Ci
λ′
j on receiving data packets. Hence,

the denominator of Eq. (4.1) estimates the energy consumption rate at node i. Note that, we here

only estimate the energy consumption for communication, which is usually the most significant part

of nodal energy consumption. It can be easily extended to include the energy consumption for other

reasons such as sensing and computation.

4.4.2 Nodal Data Input/Output Rates

To facilitate theoretical analysis and evaluation of our design, we assume sensory data packets are

generated at node i with the intervals following an exponential distribution of mean 1/λi, and therefore

the flow of sensory data packets generated by a node follows a Poisson distribution of mean λi.

Our design also intentionally shapes the data packet flows after aggregations to follow the Poisson

distribution. Particularly, if node i is a leaf node, it maintains a timer A′
i which fires every time interval

W ′
i , where W ′

i is a random variable following the exponential distribution with mean w′
i. If node i

is a non-leaf node, it maintains a timer Ai which fires every time interval Wi, where Wi is a random

variable following the exponential distribution with mean wi. Every time when the timer (A′
i or Ai)

fires, data packets are aggregated into a single packet and then sent to its parent node. If there is no

packet to send when the timer fires, a dummy packet is sent to ensure that the output data flow follows

Poisson distribution. The enhancement described later reduces dummy packets as much as possible.

Based on the above assumption and mechanism, we next formulate the nodal average data output

rate (denoted as λ′
i for each node i) as a function of its data input rate (i.e.,

∑
j∈Ci

λ′
j where Ci is the

set of children nodes of i), its own data generation rate (i.e., λi) and its own forwarding-aggregation

and self-aggregation delays (i.e., wi and w′
i). Note that a node’s data input rate is the sum of the data

output rates of its children; hence, we do not need separate analysis of data input rate.

When a node is a pure source, its self-aggregation delay w′
i (i.e., the maximal time it can wait to
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aggregate its own sensory data without violating the delay requirement) can be computed as follow:

w′
i = Dp −

∑
k∈si

(wk + dk)− di, (4.2)

where di denotes the average transmission delay at node i. That is, the sum of aggregation and trans-

mission delays of all nodes on the path from node i to the sink should not exceed Dp, the maximum

aggregation and transmission delay that any source-sink path is allowed to introduce. The output rate

of node i can simply be 1
w′

i
as one packet (aggregated data or dummy) is sent every time timer A′

i fires.

However, if the average data generation interval 1
λi

is greater than w′
i, a large number of dummy pack-

ets may be generated; To reduce the bandwidth waste, we instead allow the data packet to be sent out

immediately after its generation. With the above enhancement, the data output rate of node i, denoted

as λs
i , can be calculated as follows:

λs
i =

 λi : w′
i ≤ 1

λi
;

1
w′

i
: otherwise.

(4.3)

Generally, when node i is a pure forwarder or both forwarder and source, it can use timer Ai by

default to regulate output data flow, and the output data rate would be 1
wi

. However, when the data

packets are received or generated by the node in an interval greater than wi, many dummy packets will

have to be sent. To save bandwidth, the following optimization can be applied:

• If packets from descendant nodes arrive at node i with an average interval greater than wi, timer

Ai is not needed. In this case, there are following three subcases:

– If the arrival interval of packets from descendants is no greater than w′
i, then the packets

can be sent in the following way. Whenever a packet from descendants arrives at i, it is

aggregated with any un-sent packets generated by i, and the aggregation result is sent to the

parent node.

– If the arrival interval of descent packets is greater than w′
i and node i’s self-generated pack-

ets arrive at an interval no smaller than w′
i, then any packet (no matter it is from descendants

or self-generated) is forwarded to the parent node whenever it arrives at i.
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– Otherwise, timer A′
i is set to fire every interval W ′

i , where W ′
i is a random variable follow-

ing the exponential distribution of mean w′
i. Packet aggregation and transmission rules are

as follows. Whenever a descendant packet arrives at i, it is aggregated with any un-sent

self-generated packets, and the aggregation result is then sent to the parent node. Whenever

timer A′
i fires, all packets held at node i are aggregated and the aggregation result is sent to

the parent node; if there is no un-sent packet at i, a dummy packet is sent to the parent.

• Otherwise, timer Ai is used, and the default way for packet aggregation and sending is applied.

To summarize, node i’s data output rate λ′
i can be calculated as follows:

λ′
i =



∑
j∈Ci

λ′
j : wi ≤ 1∑

j∈Ci
λ′
j
≤ w′

i

λi +
∑

j∈Ci
λ′
j : w′

i ≤ 1
λi
, w′

i ≤ 1∑
j∈Ci

λ′
j

1
w′

i
+
∑

j∈Ci
λ′
j : w′

i >
1
λi
, w′

i ≤ 1∑
j∈Ci

λ′
j

1
wi

: otherwise.

(4.4)

With the above optimization, the data output flow from i still follows the Poisson distribution.

4.4.3 Lowerbound of a Subtree’s Data Output Rate

Based on the above analysis of nodal data output rates, we next present a lowerbound of a subtree’s

data output rate in the following Lemma 4.4.1. Note that the result is also to be used in computing the

performance upperbound.

Lemma 4.4.1 Let Ti denote a subtree rooted at i, and wi and w′
i be the forwarding-aggregation and

self-aggregation delays of node i respectively. Then a lowerbound of the data output rate of Ti, denoted

as λ̂′
i is as follows.

λ̂′
i =


∑

j∈Ti
λj : w′

i ≤ 1∑
j∈Ti

λj
;

1
w′

i
: otherwise.

(4.5)

proof: 2 (sketch) There are totally two cases as in the following.
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Case I: w′
i ≤ 1∑

j∈Ti
λj

. For this case, we prove by contradiction that the data output rate of Ti

cannot be less than
∑

j∈Ti
λj . Suppose the output rate is lower than the value, then some data should

have been suppressed at some node. Suppose node k ∈ Ti is such a suppressing node but none of

its descendants can suppress data. The overall data generation rate at the subtree rooted at Tk is∑
j∈Tk

λj , which is no greater than
∑

j∈Ti
λj; i.e.,

1∑
j∈Ti

λj
≤ 1∑

j∈Tk
λj

. (4.6)

Also due to wk ≤ w′
i, w

′
k ≤ w′

i and w′
i ≤ 1∑

j∈Ti
λj

, it holds that

wk ≤ max{wk, w
′
k} ≤

1∑
j∈Tk

λj
≤ 1∑

j∈Ck
λ′
j

. (4.7)

Further, it is obvious that
∑

j∈Tk
λj ≥ λk; together with Eq. (4.7), it holds that

w′
k ≤ max{wk, w

′
k} ≤

1∑
j∈Tk

λj
≤ 1

λk
. (4.8)

According to Equations (4.4), (4.7) and (4.8), it follows that λ′
k = λk +

∑
j∈Ck

λ′
j , where, as no

descendant of k suppresses data,
∑

j∈Ck
λ′
j =

∑
j∈Ck

∑
l∈Tj

λl. Therefore, λ′
k =

∑
j∈Tk

λj; i.e., the

number of data packets does not decrease, which is a contradiction.

Case II: w′
i >

1∑
j∈Ti

λj
. In this case, the data output rate of Ti is 1

w′
i

when wi is set to w′
i; that

is, totally A =
∑

j∈Ti
λj − 1

w′
i

amount of data is suppressed. We can show that, in other settings,

the amount of suppressed data cannot exceed A. Specifically, suppose nodes j1, j2, · · · , jn in Ti can

suppress data. Then the amount of suppressed data is at most A′ =
∑

j∈Ti
λj −

∑n
k=1

1
wjk

, according

to Eq. (4.10). Also note that, for each k = 1, · · · , n, wjk ≤ w′
jk
≤ w′

i; hence,
∑n

k=1
1

w′
jk

≥ 1
w′

i
.

Therefore, A′ ≤ A.

4.4.4 Maximum Total Aggregation and Transmission Delay Allowed for Each Source-Sink Path

Suppose the application-specific data delivery requirement is that at least p percent of data should

be delivered to the sink within time D after being generated. The maximum total aggregation and
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transmission delay that all the nodes on a source-sink path are allowed to introduce is estimated as

follows. Let

i0 → i1 → · · · → in → sink (4.9)

be a path from leaf node i0 to the sink, and dj be the transmission delay at node ij . Then, the maximum

total aggregation and transmission delay allowed for all nodes on the path is

Dp = −
D −

∑n
j=0 dj

ln(1− n
√
p)

. (4.10)

The rationale is explained by the following Lemma 4.4.2 and its proof.

Lemma 4.4.2 If the maximum delay allowed for a source-sink path defined in Eq. (4.9) is as Eq. (4.10)

and the transmission delay at node ij is dj , then at least p percent of the data can arrive at the sink

within time D after being generated.

proof: 3 For any j = 1, · · · , n, let us define

Dj = (D −
n∑

k=0

dk)
wij

w′
i0
+
∑n

k=1wik

+ dj . (4.11)

As the forwarding-aggregation delay interval Wij at node ij follows the exponential distribution of

mean wij , the percentage of packets experiencing delay no more than Dj at node ij is

1− e
−

Dj−dj
wij = 1− e

− D−
∑n

k=0 dk
w′
i0

+
∑n

k=1
wik . (4.12)

Let

D0 = (D −
n∑

k=0

dk)
w′
i0

w′
i0
+
∑n

k=1wik

+ d0. (4.13)

Similarly, we can get the percentage of packets generated by node i0 that experiences delay no more

than D0 at node i0 is

1− e
−D0−d0

w′
i0 = 1− e

− D−
∑n

k=0 dk
w′
i0

+
∑n

k=1
wik . (4.14)

Hence, the percentage of packets generated by source i0 and experiencing delay no more than
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∑n
j=0Dj = D during their trips to the sink is

(1− e
−D0−d0

wi0 )
n∏

j=1

(1− e
−

Dj−dj
wij ) = (1− e

−
D−

∑n
j=0 dj

w′
i0

+
∑n

j=1
wij )n, (4.15)

according to Eq. (4.11) and (4.13).

Furthermore,

w′
i0 +

n∑
j=1

wij ≤ Dp = −
D −

∑n
j=0 dj

ln(1− n
√
p)

. (4.16)

Combining Eq. (4.16) into Eq. (4.15), we have

(1− e
−

D−
∑n

j=0 dj

w′
i0

+
∑n

j=1
wij )n > (1− eln(1−

n
√
p))n = p. (4.17)

4.4.5 Performance Upperbound

In this section, we develop an algorithm (formally presented in Algorithm 4) to compute the per-

formance upperbound, based on the nodal lifetime model built in Sections 4.4.1 and 4.4.2, the output

data rate lowerbound analyzed in Section 4.4.3, and the maximum allowed end-to-end delivery latency

computed in Section 4.4.4. The algorithm adopts the binary search approach to seek the maximum

nodal lifetime that can be achieved by every node through attempting all legal ways of aggregation de-

lay distribution which does not violate the delay requirement. In the computation, we have introduced

several relaxations:

• Perfect channel condition has been assumed for each link; i.e., for each node i, ETXi is always

set to 1.

• When computing the output data rate for a node i using Eq. (4.4), its data input rate is assumed

to be the sum of the lowerbounds of its children subtrees’ output rates, where the result presented

in Lemma 4.4.1 is applied. Hence, the computed output data rate for node i is also a lowerbound.

• When computing the nodal lifetime of a node i using Eq. (4.1), its data input rate is also assumed

to the sum of the lowerbounds of its children subtrees’ output rates.



71

Algorithm 4 Computation of the Performance Upperbound
Input: {ei}, {λi}, Dp, T

Output: network lifetime upperbound L̂

1: low ← ϵ, up←∞
/* low/up is the lower/upper bound of the network lifetime */

2: target← low

/* target is the maximum achievable network lifetime */
3: calculate Dp according to Lemma 4.4.2
4: while up− low > ϵ do
5: wsink ← 0, w′

sink ← Dp

6: reacheable← false

7: for each node i in the pre-order traversal of T do
8: for wi from 0 to Dp −

∑
k∈si wk with step σ do

9: calculate λ̂′
i according to Eq. (4.4) and (4.5) with wi

10: if ei
((Tr

2
+τ)λ̂′

i+
ϕ

2Tr
+τ

∑
j∈Ci

λ′
j)P
≥ target then

11: reacheable← true

12: break
13: if reacheable = false then
14: up← target

15: target← low+up
2

16: else
17: low ← target

18: target← (up =∞)?2 ∗ low : low+up
2

19: return low

4.5 Detailed Design

The scheme operates in two phases: initial phase and adaption phase.

4.5.1 Initial Phase

After the collection tree has been built (i.e., the routing process has completed), each node i needs

to compute the initial values of wi and w′
i. For this purpose, our scheme requires each on-tree node i to

know (i) the maximum allowed aggregation and transmission delay Dp, (ii) the average transmission

delay di for transmitting a data packet from itself to its parent, and (iii) how many hops (Hi) it is

away from its furthest descendant. Knowing these information but unaware of either the data rates or

energy levels of individual nodes, our scheme intends to distribute the maximum allowed aggregation

delay (i.e., Dp minus transmission delays) in a fair manner. Specifically, the initial value wi can be
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determined using the following protocol:

• Denote D̄i the maximal allowed delay for the subtree rooted at node i. Hence, the sink has

D̄sink = Dp and sends it to its children.

• Upon receiving D̄i from parent node i, node j acts as follows:

– If node j is non-leaf (i.e., Hj > 0), it sets wj = D̄i
Hj+1 − dj and w′

j = D̄i − dj . Then, it

sets D̄j = D̄i − D̄i
Hj+1 and sends D̄j to its children.

– If j is a leaf, it sets wj = w′
j = D̄i − Tr

2 as it does not forward any data and sets w′
j =

D̄i − Tr
2 .

The three pieces of information needed by each node can be obtained in the following ways.

• The sink can compute and broadcast to all on-tree nodes Dp after the tree has been built. Note

that, the sink can get the average per-hop transmission delay and the length of the longest branch

on the tree through querying the nodes on the tree. Using these information, together with the

application-specified parameters D and p, the sink can compute Dp by using Eq. (4.10).

• For the routing and route maintenance purposes, it is typical that neighboring nodes are required

to exchange beacons periodically to know the expected number of transmission needed for suc-

cessful delivery of a packet over a link (i.e., ETX). With the knowledge of ETX , it is easy to

estimate per-transmission delay. Particularly, if the underlying MAC protocol is RI-MAC with

period Tr and the ETX of the link from node i to its parent is denoted as ETXi, then the ex-

pected per-packet transmission delay for i is Tr(⌈ETXi
m ⌉ − 1

2) + τ(ETXi%m) as in Eq. (4.1),

where Tr and m are parameters in RI-MAC.

• To help a non-leaf node know how many hops it is away from its furthest leaf node, a simple

method is as follows. Each data packet sent from a leaf node is piggy-backed with a field H

which is initiated to 0. As the packet is forwarded hop-by-hop upwards, the value in the field is

incremented. By observing the H values of forwarded packets for a certain period of time, each

non-leaf node i can obtain its Hi.
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4.5.2 Adaption Phase

In this phase, each node interacts with its parent unless its parent is the sink; it also interacts with its

children nodes unless it is a leaf node. In both types of interaction, the node and its parent or children

need to adjust their forwarding-aggregation and self-aggregation delays, attempting to gradually bal-

ance their lifetime. The behaviors of a node in such interactions are different depending on whether it

acts as a parent (i.e., interacting with its children) or a child (i.e., interaction with it parent). As a basic

difference, a child node j needs to report to its parent its current lifetime (Lj), forwarding-aggregation

delay (wj), self-aggregation delay (w′
j), data output rate (λ′

j) and data input rate (
∑

k∈Cj
λ′
k). To save

communication overhead, these information can be piggy-backed to data packets sent to its parent.

As a parent node, on the hand, needs to make decision on how to adjust the forwarding-aggregation

and self-aggregation delays of its own and its children, and notify the decision to its children. More

specifically, the parent and child behaviors are described as follows.

4.5.2.1 Behaviors of a Parent Node

Figure 4.4 illustrates the behaviors of node i as a parent node. When receiving a data packet from

its child node j, parent node i extracts Lj , wj , w′
j , λ

′
j and

∑
k∈Cj

λ′
k. Every a certain time interval,

the parent node is triggered by a timer to start checking the lifetime difference between itself and its

children, which may be followed by adjustments of the aggregation delays when necessary. Particularly,

only if the lifetime difference between node i and the its shortest-lifetime child is greater than a certain

threshold α, the adjustments are performed. The timer interval and the threshold α are both adjustable

system parameter that should be appropriately set, not too large or too small, in order to not miss the

opportunity of lifetime balance or introduce unnecessary trashes.

When it is necessary to adjust aggregation delays, there are two cases as follows.

• Case I: Node i has longer lifetime than its shortest-lifetime child (i.e., Li > minj∈Ci Lj +α). In

this case, the scheme will attempt to increase the lifetime of the shortest-lifetime child. Letting

∆ = min(δ, wi), where δ is a small value, the following adjustments are applied.

– For node i: wi = wi −∆ and w′
i remains unchanged.
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= w’j – for all j Ci

Li
tmp

> Li?

n ≤ wi OR n ≤ minj Ci{wj}?
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n = n + 1
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Timer fires

Figure 4.4 Flowchart of adjusting wi when node i acts as a parent node.

– For every child node j of node i: wj = wj +∆ and w′
j = w′

j +∆.

The adjustment strategy is based on the following observations. From Equation( 4.4), we can

see that λ′
j is a non-increasing function of wj and w′

j . Particularly, λ′
j remains unchanged if

w′
j ≤ 1

λj
and wj ≤ 1∑

k∈Cj
λ′
k

; it increases otherwise. If λ′
j decreases, as node j’s input rate

does not change, node j’s lifetime will be increased according to Equation (4.1). If λ′
j does not

change, wj and w′
j will be further increased in the follow-up adjustment rounds. Hence, at least

one of the conditions of w′
j ≤ 1

λj
and wj ≤ 1∑

k∈Cj
λ′
k

will be eventually broken, and then node

j’s lifetime can be extended.

• Case II: Node i has shorter lifetime than each child (i.e., Li < minj∈Ci Lj −α). In this case, the
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scheme will attempt to increase the lifetime of node i.

According to Equation (4.1), node i’s lifetime is affected by two factors: its data output rate λ′
i

and data input rate
∑

j∈Ci
λ′
j . To extend lifetime, node i may increase its wi to reduce its data

output rate; on the other hand, its children j ∈ Ci will have to reduce their wj values to satisfy the

delay requirement. resulting in an increased input rate
∑

j∈Ci
λ′
j . The combination of the above

two effects may or may not lead to lifetime increase. Similarly, decreasing wi and increasing wj

for each child i will decrease its data input rate but may increase its data output rate, which may

or may not lead to lifetime increase.

Due to the above uncertainty, the scheme will not immediately increase (or decrease) its wi or

ask its children to decrease (or increase) their aggregation delays as in the previous case. Instead,

it tries the possible increase/decrease strategies, estimate their effects on its lifetime locally, until

an effective strategy has been found or all possible strategies have been tried. If an effective

strategy is found, i.e., a ∆ (which could be positive or negation) is found such that adding ∆

to wi and subtracting it from wj of every child j will result in a lifetime increase in node i, the

strategy will be applied on node i and ∆ will be sent to the children nodes.

4.5.2.2 Behaviors of a Child Node

As shown in Figure 4.5, a child node simply updates its wi and w′
i according to its parent node’s

instruction.

Receive an ACK 

from parent node
Extract from ACK

wi = wi + 

wi’ = wi’ + 

Update aggregation 

timer interval

Figure 4.5 Flowchart of adjusting wi when node i acts as a child node.
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4.6 Implementation and Evaluation

4.6.1 Implementation

Our proposed LBA scheme has been implemented in TinyOS 2.1.0 as a middleware component,

which takes 248 bytes of RAM and 9180 bytes of ROM for a tree network where each non-leaf node

has 10 children nodes on average. This component sits between the application and routing layers. If

it is disabled, data from the application layer is sent down to routing layer transparently; otherwise,

self-generated data from application layer and received sensory data from routing layer are aggregated

inside it, and the aggregated data will be sent to the routing component after the aggregation timer fires.

CTP [26] is adopted as the routing layer protocol to build the data collection tree and RI-MAC [50]

is used as the MAC layer protocol. RI-MAC is a receiver-initiated protocol for low duty cycled sen-

sor networks, its energy consumption model matches with our lifetime estimation model analyzed in

Section 4.4.1.

In the implementation, there are three types of existing messages required by different components

and we take advantage of the availability of these messages to enable the aggregation information ex-

change with the minimum overhead. In each data message, the aggregation information including nodal

lifetime, self-data generation interval, aggregation interval, incoming and outgoing intervals are pig-

gybacked, and a parent node can collect these information of its child node when data communication

happens between them. In each ACK message (software ACK used in RI-MAC), the updated aggrega-

tion interval value is added to notify the child node. In a receiver’s beacon (required by RI-MAC), the

parent node’s lifetime is added.

4.6.2 Testbed Experiment Results

4.6.2.1 Setup

We evaluate the performance of the proposed adaptive assignment scheme (denoted as LBA in

figures) in terms of network lifetime and end-to-end data delivery delay. The results are compared to

the theoretical upperbound which is computed using Algorithm 4 (denoted as UPPER in figures) and

the following two aggregation schemes:
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• PTL (pushing aggregation delays to leaves): aggregation delays are only assigned to leaf nodes;

the aggregation delays do not change after assignment. The delay assignment is implemented

as follows. After tree has been built, the sink broadcasts to all nodes on the tree the maximum

allowed aggregation and transmission delay Dp; then, each leaf node i takes Dp − di (recalling

di is its average transmission delay) as its aggregation delay.

• AVG (average assignment of aggregation delays): aggregation delays are assigned to nodes as

in the initial phase of our proposed scheme; but the aggregation delays do not change after

assignment.

We set up a testbed network of 32 TelosB motes, forming a tree topology shown in Figure 4.6,

where Node 0 is the sink (i.e., root). RI-MAC parameter Tr and the average data packet generation

interval at source nodes are both set to 1 second, RI-MAC parameters ϕ and τ are 40 milliseconds. The

end-to-end delivery requirement D changes from 20s to 140s, and p = 80%. At the beginning of each

experiment, the initial nodal energy level is uniform or non-uniform. When the initial energy level is

uniform, each sensor node’s battery is in the full energy level; when it is non-uniform, some nodes start

with 1/4, 1/2 or 3/4 of the full energy level, while others still start with the full energy level. To save

experiment time, the full energy level is set to 200 Joules which can support a mote running for 45

minutes at 100% radio duty cycle.
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Figure 4.6 Network topology in testbed experiments.
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4.6.2.2 Performance Under Uniform Initial Energy Distribution

Figures 4.7 and 4.8 show the performance evaluation results when the initial energy levels of nodes

are uniform.

When all nodes are data sources As shown in Figure 4.7(a), the network lifetime achieved by

LBA and AVG is significantly higher than that of PTL. Note that Figure 4.7(a)(c) and Figure 4.7(a)(d)

plot the standard deviation and average of nodal residual energy when the first node dies. This is not

surprising because PTL does not allow nodes to aggregate data they forward while LBA and AVG

allow nodes to aggregate data generated or forwarded by them. Due to the uniform distribution of

nodal energy level, LBA and AVG do not have significant different performance. Indeed, as shown in

Figures 4.7(c) and 4.7(d), both schemes result in small deviation in nodal lifetime among all nodes,

which indicates that the strategy of fairly and statically assigning aggregation delay adopted by AVG

can already achieve good performance and therefore LBA does not bring much extra benefit. Fig-

ure 4.7(b) shows the CDF of end-to-end delay when LBA is applied. As can be seen, the end-to-end

delay requirements can be met.

When only leaf nodes are data sources As shown in Figure 4.8(a), the network lifetime achieved

by LBA and AVG is still significantly higher than that of PTL. The results show that self-aggregation

does not fully exploit the aggregation opportunities. Data packets resulted from self-aggregations can

be further aggregated at joint points of multiple branches on the tree, and such opportunities can be

seized by LBA and AVG. Also due to the uniform distribution of initial nodal energy level, the per-

formance superiority of LBA over AVG is still small. However, as we can see from Figure 4.8(c) and

4.8(d), LBA can balance nodal energy levels more effectively than AVG, which explains the longer

lifetime achieved by LBA.

4.6.2.3 Performance Under Non-uniform Initial Energy Distribution

The network lifetime is affected by the degree of deviation in nodal lifetime, which is in turn

affected by the degree of deviation in nodal residual energy level. Hence, we also evaluate the perfor-

mance of aggregation schemes when the initial nodal energy levels are different among nodes. Partic-
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Figure 4.7 Performance comparison when all nodes generate data packets.

ularly, in the experiments, we randomly chose a certain percentage of nodes to start working at a lower

energy level than others who are with full initial energy level.

Performance comparison Figure 4.9 demonstrates that LBA can achieve larger network lifetime

improvement over both AVG and PTL in this scenario. Particularl, two nodes start with a low energy

level equal to 1/4 of the full energy level while others start with the full energy level.

As the performance superiority of AVG over PTL has been obvious from previous experiments, we

here focus on explaining the difference between LBA and AVG. With LBA and AVG, nodes start with

the same distribution of aggregation delays, and the distribution of delays is unaware of the difference in

nodal residual energy level or nodal lifetime. With AVG, the distribution of delays does not change after

the initial distribution. Hence, if significantly differences of nodal residual energy (and hence lifetime)
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Figure 4.8 Performance comparison when only leaf nodes generate data packets.

are present among the nodes, nodes with the lowest nodal lifetime will die much earlier than those with

longer nodal lifetime, leading to shortened network lifetime. On the other hand, LBA can dynamically

adapt the distribution of aggregation delays among nodes such that nodes with lower nodal lifetime can

gain more aggregation delays from those of higher nodal lifetime, leading to balanced distribution of

nodal lifetime among nodes and hence prolonged network lifetime.

A working trace To better understand how LBA prolongs the lifetime of low energy (and hence

short lifetime) nodes in the network, Figure 4.10 shows the changing trace of aggregation delays and

nodal energy of all nodes on the path from node 28 to the sink. In this experiment, node 8 starts with a

low energy level equals to 1/4 of the full energy level while others start with the full energy level and

D = 35 s, p = 80%. We can find that when node 8’s own aggregation delay keeps increasing while its
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Figure 4.9 Performance comparison under non-uniform initial nodal energy.

ancestor’s (node 3) and successors’ (node 16) keep dropping accordingly. When node 16’s aggregation

delay reaches 0, it gains aggregation delay from its subtree (nodes 21, 24 and 28) to compensate node

8. In other words, node 8 can get help not only from its direct parent or child directly, but also from

other nodes in the network indirectly. As a result, node 8’s energy drops slowly compared to all other

nodes on the path, and the network lifetime is significantly extended.
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Figure 4.10 Trace of aggregation delays and nodal energy.
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Impact of the degree of deviation in nodal energy levels To evaluate the impact of the different

degrees of deviation in nodal energy levels, we conduct two sets of experiments.

In the first set, we fix the initial energy level of each low-initial-energy node to 1/4 of the full energy

while varying the number of such low-initial-energy nodes in the 32-node network same as the above.

As shown in Figure 4.11(a), as the number of low-initial-energy nodes increases, the performance of

AVG and PTL does not change much because the lifetime they can achieve can be affected by even

a single such low-initial-energy node. The performance of LBA, however, decreases as the number

of low-initial-energy nodes increases. This is because, with limited amount of total aggregation de-

lays, less compensation can be obtained by each low-initial-energy node as the number of such nodes

increases.

In the second set of experiments, we fix the number of low-initial-energy nodes while varying the

initial energy level from 75% to 25% of the full energy and D = 35 s, p = 80%. As can be observed

from Figure 4.11(b), as the energy level decreases, the performance of AVG and PTL drops much faster

than that of LBA. This is because the network lifetime achieved by AVG and PTL is bounded by the

shortest-nodal-lifetime node; but with LBA, the nodal lifetime of such nodes can be increased through

re-distribution of aggregation delays. Though the decrease of initial energy level demands more re-

distribution efforts and thus can decrease the network lifetime, the decrease is shared among the nodes

and thus the decreasing speed is slow.

 0

 0.7

 1.4

 2.1

 2.8

 2  4  8

n
e
tw

o
rk

 l
if
e
ti
m

e
 (

h
)

number of low-initial-energy nodes

UPPER
LBA
AVG
PTL

(a) Network lifetime under different number of low-
initial-energy nodes.

 0

 0.7

 1.4

 2.1

 2.8

 25 50 75 100

n
e
tw

o
rk

 l
if
e
ti
m

e
 (

h
)

energy level (%)

(b) Network lifetime under different low-initial-energy
levels with two fixed low-initial-energy nodes.

Figure 4.11 Impact of the degree of deviation in nodal energy levels.
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4.6.2.4 Performance Under Spatial and Temporal Various Data Generation Rates

We evaluate the performance under a more realistic situation where the data generation rates vary

during the network operational time. Specifically, in this experiment, each node changes its data gen-

eration interval randomly in a specified range after generating every 100 packets and the end-to-end

delay requirement D is 35s with p = 80%. Two nodes in the network start working with 1/4 of the full

energy while others start with full energy. Figure 4.12 shows the lifetime achieved by three compared

schemes as the data generation interval varies in different ranges, where a “1-Xs” label on the X-axis

means the range is from 1 to X seconds. As we can see, the performance of LBA is always significantly

higher than that of AVG and PTL when the data generation interval range changes. This indicates that

LBA can work adaptively to the changes in data generation rates.
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Figure 4.12 Performance comparison under various data generation rates.

4.7 Conclusions

This study introduced a lifetime balanced data aggregation scheme LBA for asynchronous duty

cycle sensor networks. Through adaptively adjusting the aggregation holding time between neighbor-

ing nodes, LBA can effectively improve the nodal lifetime of nodes of lower energy supplies and/or

higher energy consumption and thus prolong the network lifetime, which has been verified by extensive

experimental evaluations based on a sensor network testbed.
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CHAPTER 5. JOINT AGGREGATION AND MAC DESIGN TO PROLONG

SENSOR NETWORK LIFETIME

5.1 Introduction

5.1.1 Motivation

Extending the lifetime of sensor networks is critically important when the networks are deployed

for long-term monitoring applications. Besides duty cycling, balancing nodal lifetime is another major

approach for network lifetime extension, because the network lifetime is often defined as the minimal

nodal lifetime among all nodes in the network [6, 55, 56]. Following this approach, a variety of duty-

cycled MAC protocols [68–70] and data aggregation schemes [54, 71] have been proposed recently.

Duty-cycled sensor networks rely on MAC protocols to establish rendezvous between sender and

receiver nodes. The incurred MAC-layer communication overhead is distributed between sender and

receiver in different manners with different MAC protocols. To balance nodal lifetime, the authors

of [68–70] proposed to adapt the distribution of communication overhead among neighbors according

to their nodal lifetime, i.e., longer-lifetime nodes shall absorb more communication overhead than their

shorter-lifetime neighbors.

Through eliminating inherent redundancy in raw sensory data, in-network data aggregation [52,53]

can effectively reduce network traffic. For the sake of aggregation, a node needs to hold data (received

or self-generated) for a while. Clearly, a node can suppress more data traffic with a longer holding time.

However, holding data introduces extra delay, and the value of sensory data could be greatly depreciated

if the data is delivered to the sink with a delay longer than an application-specified delay bound. To

balance nodal lifetime while maintaining a required end-to-end delay bound, the authors of [54, 71]

proposed to adapt the distribution of holding time among nodes along the same route according to their
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nodal lifetime; i.e., shorter-lifetime nodes shall hold data longer to reduce its outgoing data traffic while

longer-lifetime nodes shall hold data for a shorter time so that the end-to-end delay requirement is still

guaranteed.

As the aforementioned MAC and data aggregation schemes improve the network lifetime from two

distinct perspectives, it is naturally an attractive idea to explore the possibility of a joint design of MAC

and data aggregation to further improve the network lifetime. This, however, is a challenging task due to

the following reasons. Firstly, most of the MAC protocols were designed without explicitly considering

the end-to-end delay requirement. As a result, they may yield uncontrollable end-to-end delay under

certain practical scenarios; this is unacceptable for data aggregation applications that often require a

stringent end-to-end delay bound. Secondly, even if there exists a MAC protocol that can provide a

certain delay guarantee, when it works with a data aggregation scheme, it is non-trivial to decide how

to divide the allowed end-to-end delay into two parts to serve as the delay constraints respectively

for the MAC and data aggregation protocols, such that the maximum lifetime improvement can be

accomplished. Therefore, it is important to develop an innovative approach to integrate MAC and data

aggregation protocols together via a joint adjustment of their protocol parameters.

5.1.2 Literature Survey

Research has been conducted on designing duty-cycled MAC protocols and energy-efficient or

lifetime-extending data aggregation schemes. However, there is no research on jointly adjusting data

aggregation and MAC behaviors to extend the sensor network lifetime.

Numerous MAC protocols [68–70,72] have been proposed to extend network lifetime through bal-

ancing nodal lifetime. Particularly, SEESAW [68] balances the energy consumption between sender

and receiver through adapting the data retry interval at the sender side and the channel checking period

at the receiver side. ZeroCal [70] targets at improving the fairness of energy utilization in duty-cycled

sensor networks by dynamically tuning the nodal wakeup interval. GDSIC [69] decides the individual

nodal wakeup interval through solving distributed convex optimization problems. Though the net-

work lifetime can be prolonged by these schemes, they do not consider the end-to-end delay bound.

pTunes [72] is a recently-proposed centralized solution, which formulates a multi-objective optimiza-
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tion problem, where prolonging network lifetime and guaranteeing the end-to-end delay can be solved

together.

Most of existing data aggregation schemes [60, 62, 65, 73, 74] have the objective of minimizing the

total network energy consumption instead of extending network lifetime, or do not consider the end-

to-end delay requirement. The problem of balancing nodal lifetime under a delay constraint has been

studied in [54, 71]. Particularly, Becchetti et al. [54] investigated the problem of energy-efficient data

aggregation within a delay bound, and proposed two distributed schemes to balance energy consump-

tion among sensor nodes. LBA [71] is a recently-proposed lifetime-balancing aggregation protocol.

Through dynamically adjusting the aggregation holding time among neighbors to balance their nodal

lifetime, LBA provides a low cost, asynchronous, and delay-constrained data aggregation scheme for

duty-cycled sensor networks.

5.1.3 Contributions

In this study, we propose a novel holistic approach, called JAM (Joint Aggregation and MAC), to

jointly adjust MAC and data aggregation behaviors to extend the sensor network lifetime. The key

idea of JAM is to coordinate the aggregation and MAC behaviors at each individual node as well as

between neighbors, with the target of extending the minimal nodal lifetime in the neighborhood. As

such coordination occurs in all neighborhoods, the network lifetime, i.e., the minimal nodal lifetime

among all nodes in the network, may be improved. As JAM reduces both network traffic (via data

aggregation) and communication overhead (via duty-cycled MAC), it prolongs the network lifetime

more efficiently and effectively than previous works that only use one of the two techniques. The

contributions of this work are summarized as follows.

• To the best of our knowledge, JAM is the first design on integrating and jointly configuring MAC

and data aggregation protocols to extend the lifetime of duty-cycled sensor networks.

• JAM is a distributed and lightweight solution. It works through limited control information

exchanged locally between neighbors.

• JAM has been implemented and evaluated on a sensor network testbed, and results show that it
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can achieve significant improvement on network lifetime compared to the state-of-the-art solu-

tions.

5.2 System Model and Problem Statement

5.2.1 System Models

We consider a sensor network deployed for monitoring applications where in-network data aggre-

gation is allowed. Each sensor node generates and reports sensory data periodically, and all nodes form

a data collection tree rooted at the sink. Protocols like CTP (Collection Tree Protocol) [26] could be

used to build and maintain the data collection tree.

5.2.1.1 Aggregation Model

The total aggregation model [66] is adopted, which allows an arbitrary number of data packets

generated and/or received at the same node to be suppressed into a single data packet. Such a model is

useful in many sensor network applications, for example, when users are more interested in the maxi-

mum, minimum, average, or percentile statistics of sensory data, rather than the raw data themselves.

With this model, a source node may not send out a sensory data packet immediately after it is

generated. Instead, the node may wait for a certain period of time (called the self-aggregation delay

(SAD)), and aggregates all data generated during the period to reduce the amount of data traffic to its

parent node. Similarly, a forwarding node may not forward a data packet immediately after reception;

it may wait for another period of time (called the forwarding-aggregation delay (FAD)) and aggregate

all packets received during the period. Generally, the longer time a node waits for aggregation, the

more data traffic can be suppressed; at the same time, data delivery latency is increased.

5.2.1.2 MAC Model

To conserve energy without time synchronization overhead, it is desired to employ an asynchronous

and duty-cycled MAC protocol for long-term monitoring applications. The design principle of our

proposed scheme does not require a particular MAC protocol. Instead, our design works compatibly

with any asynchronous duty-cycled MAC protocol, as long as the protocol allows a node’s duty cycle
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to be adjusted dynamically. To simplify the presentation, however, we assume each node runs an RI-

MAC [50] like protocol as shown in Figure 5.1.
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Figure 5.1 An RI-MAC like protocol but with a tunable Tr parameter.

In RI-MAC, each node wakes up every Tr interval to interact with potential senders. Upon wakeup,

it sends out a beacon and then checks the channel activity for ϕ time. If a data packet is received within

ϕ, it replies with an ACK; otherwise, it goes back to sleep. On the other hand, if a node has a data

packet to send, it remains awake and waits idly for the receiver’s beacon to start data transmission. In

the worst-case scenario, the sender has to stay awake for Tr time before rendezvous with the receiver,

which incurs a transmission delay of Tr. Different from the original RI-MAC protocol that has a fixed

Tr, we assume Tr is dynamically tunable. As can be observed, a larger Tr reduces the receiver’s channel

polling frequency and hence its energy consumption; on the other hand, it increases the sender’s energy

consumption on idly waiting for the beacon, and meanwhile increases the transmission delay over the

sender-to-receiver link.

5.2.1.3 Delay Model

Three types of delays are involved along a source-to-sink path: (i) one SAD at the source node,

(ii) multiple FADs at the forwarding nodes, and (iii) multiple transmission delays over the links. With

the aggregation and MAC models described above, to guarantee that the maximum end-to-end packet

delivery delay from any source node i to the sink node is bounded by an application-specific parameter
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D, we need to ensure that1

SAD(i) +
∑
m∈Si

(Tr(m) + FAD(m)) 6 D, (5.1)

where Si is the path from node i’s parent to sink. As larger aggregation delays would allow more traffic

to be aggregated to save more energy, the delay bound shall be fully utilized to maximize network

lifetime, meaning that the equality shall hold true in Inequality (5.1) in practical schemes.

5.2.2 Problem Statement

To effectively prolong the sensor network lifetime under the end-to-end packet delivery delay con-

straint, it is critical to have a holistic approach to adjust data aggregation and MAC behaviors of all

sensor nodes. Ideally, all sensor nodes shall work together to maximize the minimum nodal lifetime in

the entire network. Unfortunately, this global objective is impossible to accomplish in a realistic sensor

network, as it requires each node to know the residual energy levels and data generation rates of all

other nodes, and the topology of the network, which are highly dynamic and often unpredictable by

nature. Instead, we study the following localized problem for each sensor node i in the network:

Objective:

• max min
j∈{i}∪C(i)

L(j), where L(j) is j’s nodal lifetime and its computation will be explained later

in Section 5.3.3. C(i) is the set of i’s child nodes.

Subject to:

• SAD(i), FAD(i), Tr(i) > 0;

• End-to-End Delay Requirement:

SAD(i) +
∑
m∈Si

(Tr(m) + FAD(m)) = D. (5.2)

Output:
1In practice, data or ACK packets may get lost due to collision, interference, or deteriorated channel condition. As a result,

the sensor node may need to retransmit multiple times before the data packet can be delivered successfully. This issue has
been dealt with in JAM (as shown in Section 5.3.6.2) by replacing Tr with ETX ·Tr in Equations (5.1) and (5.2), where ETX is
the expected number of transmission attempts to deliver a data packet successfully over one hop. To simplify the presentation,
we set ETX = 1 during the explanation of the JAM design in the next section, while the practical Equation (5.14) (given in
Section 5.3.6.2) is used in the actual JAM implementation.
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• i’s MAC protocol parameter: Tr(i);

• i’s data aggregation parameters: SAD(i) and FAD(i).

The goal of this problem is to maximize the minimal nodal lifetime in i’s neighborhood. As such

procedure occurs in all neighborhoods, the minimal nodal lifetime in the entire network, i.e., the net-

work lifetime, may be improved gradually.

5.3 The Proposed JAM Scheme

In this section, we propose a protocol called JAM to address the problem defined above. In JAM,

coordination only occurs between a sensor node and its child nodes, through exchanging lightweight

control information as well as adjusting their aggregation and MAC behaviors together in a collabora-

tive manner. Figure 5.2 gives an overview of the JAM scheme. To ease the presentation, we use the

topology shown in Figure 5.3 as an example to explain the design details of JAM.
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Figure 5.2 JAM Overview.

JAM consists of four modules: Aggregator, OREM (Output Rate Estimation Module), LEM (Life-

time Estimation Module), and ICCM (Intra-node Cross-layer Collaboration Module). In general, when

node i receives a data packet from its child nodes or an ACK from its parent, it extracts the control

information embedded in the packet and feeds them into JAM kernel. Here, the control information
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p i j k

Figure 5.3 Topology used to describe JAM details.

needed by JAM kernel includes five items from each child node j of i: e(j), λ(j), SAD(j), the delay

introduced at node j: D(j) = FAD(j) + Tr(j), and j’s own input data rate
∑

k∈C(j) µ(k) where µ(k)

is the output data rate of a child node k of j; and two items from parent node p of i: Tr(p) and θ(p). We

will explain the meaning of θ in Section 5.3.5. With these information, JAM kernel decides how node

i shall adjust its MAC behavior (i.e., Tr) and aggregation behavior (i.e., SAD and FAD) to improve the

minimal nodal lifetime in its neighborhood. The decision is then piggybacked into the ACK packet to

its child nodes. Upon being notified, each child node adjusts its MAC and aggregation behaviors.

5.3.1 Aggregator Module

The aggregator module controls the nodal aggregation behavior. Specifically, it works as follows at

node i:

Case I:
1∑

j∈C(i) µ(j)
6 FAD(i) 6 SAD(i). In this case, node i has a data packet arrival rate

no lower than 1/FAD(i) and 1/SAD(i). A timer is fired every FAD(i) interval. When it fires, all

data packets received and self-generated since its last firing are aggregated into a single packet, and

then forwarded to the parent node. This way, we ensure that packets received from i’s child nodes are

held for no longer than FAD(i) time. Also, since the self-generated data packets are aggregated and

forwarded every FAD(i) time, which is always smaller than SAD(i) in JAM, their delay requirement

is guaranteed as well. We will prove FAD(i) 6 SAD(i) for any node i in Section 5.3.2.

Case II:
1∑

j∈C(i) µ(j)
> FAD(i) and

1

λ(i)
6 SAD(i). In this case, data packets from child nodes

arrive at a rate lower than 1/FAD(i) while the node itself generates data packets at a rate no lower than

1/SAD(i). Data received from children and self-generated data are treated differently as follows:

• Whenever a data packet is received from a child node, the packet is aggregated immediately with

all the self-generated data packets that have not yet been aggregated, and then forwarded to the
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parent node. Hence, the forwarding-aggregation delay is zero.

• A timer is fired every SAD(i) interval. When it fires, all the self-generated data packets that have

not yet been aggregated are suppressed into a single packet and then forwarded to the parent

node.

Case III:
1∑

j∈C(i) µ(j)
> FAD(i) and

1

λ(i)
> SAD(i). In this case, data packets from child nodes

arrive at a rate lower than 1/FAD(i) while the node itself generates data packets at a rate lower than

1/SAD(i). As the data packet arrival/generation rates are low, every data packet is simply forwarded

to the parent node immediately upon its reception or generation.

5.3.2 Output Rate Estimation Module (OREM)

This model is part of the JAM kernel (shown in Figure 5.4) and is used to estimate the nodal output

data rate. Before explaining how it works in detail, we first prove FAD(i) 6 SAD(i) for any node i.

According to the end-to-end delay requirement in Equation (5.2), node i shall satisfy:

SAD(i) +
∑
m∈Si

(Tr(m) + FAD(m)) = D.

Similarly, for every child node j of i, we have:

SAD(j) + (FAD(i) + Tr(i)) +
∑
m∈Si

(Tr(m) + FAD(m)) = D.

Hence, it follows that:

FAD(i) 6 D −
∑
m∈Si

(Tr(m) + FAD(m)) = SAD(i). (5.3)

With the four inputs: FAD(i), SAD(i),
∑

j∈C(i) µ(j), and λ(i), OREM estimates the output data

rate of node i according to the three cases described in Section 5.3.1 as follows:

µ(i) =



1
FAD(i) : 1∑

j∈C(i) µ(j)
6 FAD(i),∑

j∈C(i) µ(j) +
1

SAD(i) : 1∑
j∈C(i) µ(j)

> FAD(i)

and 1
λ(i) 6 SAD(i),∑

j∈C(i) µ(j) + λ(i) : 1∑
j∈C(i) µ(j)

> FAD(i)

and 1
λ(i) > SAD(i).

(5.4)

Note that a node’s input data rate is simply the sum of the output data rates from all of its children.
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5.3.3 Lifetime Estimation Module (LEM)

The LEM module is another module in the JAM kernel and is used to estimate the nodal lifetime.

Its input consists of e(i), Tr(i), Tr(p) (i.e., Tr of node i’s parent node p), µ(i), and
∑

j∈C(i) µ(j). Its

output is the estimated nodal lifetime L(i), which is computed as follows:

L(i) =
e(i)

c(i)
, (5.5)

where e(i) is the residual energy and c(i) is the energy consumption rate:

c(i) =

(
Tr(p)
2

+ τ

)
µ(i)P +

ϕ

Tr(i)
P + τ

∑
j∈C(i)

µ(j)P. (5.6)

Here, P is the power consumption rate when a node’s radio is on. To send a data packet, node i waits

for Tr(p)
2 time on average for its parent node p to wake up and then spends τ time for the transmission.

Hence, it consumes
(

Tr(p)
2 + τ

)
µ(i)P power on average for data transmissions. The second term in

Equation (5.6) represents the average amount of power consumed to monitor channel for ϕ time every

Tr(i) interval, while the third term is the average amount of power consumed for data receptions. As

radio is the most energy-consuming component, we ignore other energy consumptions such as sensing

and computation, which could be easily plugged into Equation (5.6).

5.3.4 Intra-node Cross-layer Collaboration Module (ICCM)

According to Equation (5.2), SAD value at the source node can be computed once the FAD and

Tr values of its ancestor nodes have been determined. As both MAC and aggregation behaviors affect

nodal lifetime, their behaviors should be coordinated. Specifically, as each forwarding node i introduces

a delay of D(i) = FAD(i)+Tr(i), the objective of the ICCM module in the JAM kernel is to determine

proper FAD(i) and Tr(i) values for a given D(i), so that nodal lifetime L(i) is maximized (denote as

L∗(i)). To achieve this goal, there are two cases to consider:

Case I: FAD(i) <
1∑

j∈C(i) µ(j)
. Depending on the relation between SAD(i) and λ(i), µ(i) equates

the second or third case of Equation (5.4). In these two cases, µ(i) is not affected by FAD(i) and

hence nodal lifetime is only affected by Tr(i) according to Equations (5.5) and (5.6). As the energy

consumption rate (c(i)) in Equation (5.6) is a decreasing function of Tr(i), optimal nodal lifetime is
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achieved when D(i) is fully allocated to Tr(i) and hence FAD(i) = 0:

L∗

(
i

∣∣∣ FAD(i) <
1∑

j∈C(i) µ(j)

)
= L(i | FAD(i) = 0). (5.7)

Case II: FAD(i) > 1∑
j∈C(i) µ(j)

. In this case, the output data rate is µ(i) =
1

FAD(i)
according

to Equation (5.4). In order to achieve optimal nodal lifetime in this case, we need to minimize the

following term according to Equation (5.6):(
Tr(p)
2

+ τ

)
1

FAD(i)
+

ϕ

Tr(i)
, (5.8)

which we denote as f(FAD(i)). To ease the presentation, we use α to denote Tr(p)
2 + τ . Plugging in

Tr(i) = D(i)− FAD(i), we can rewrite f(FAD(i)) as:

f(FAD(i)) =
α

FAD(i)
+

ϕ

D(i)− FAD(i)
. (5.9)

By solving f(FAD(i))′ = 0, we have:

L∗

(
i
∣∣∣ FAD(i) > 1∑

j∈C(i) µ(j)

)
=


L

(
i
∣∣∣ FAD(i) = D(i)

1+
√

ϕ
α

)
: when 1∑

j∈C(i) µ(j)
6 D(i)

1+
√

ϕ
α

6 D(i),

max
{
L (i | FAD(i) = D(i)) , L

(
i
∣∣∣ FAD(i) = 1∑

j∈C(i) µ(j)

)}
: otherwise.

(5.10)

To summarize, for a given D(i), L∗(i) and the corresponding optimal FAD(i) and Tr(i) can be

computed by:

L∗(i) = max{Equation (5.7),Equation (5.10)}, (5.11)

FAD∗(i) = argFAD(i) max{L∗(i)}, (5.12)

Tr∗(i) = D(i)− FAD∗(i). (5.13)

5.3.5 JAM Kernel

As the core of the JAM scheme, the JAM kernel of node i is triggered to execute periodically every

W time, or on demand whenever its parent node p changes Tr(p) or FAD(p) and consequently the

delay D(p). We use θ(p) to denote the change in D(p). The JAM kernel is executed to decide:
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• how the extra delay θ(p) introduced at parent node p shall be absorbed by node i (in the amount

of θ(p)−∆ via updating D(i) to D′(i) = D(i)− (θ(p)−∆)) and its child nodes (in the amount

of ∆ via updating D(j) to D′(j) = D(j)−∆); and

• how node i shall split D′(i) into Tr′(i) and FAD′(i),

so that the minimal nodal lifetime within node i’s neighborhood can be increased. Detailed working

procedure of the JAM kernel is illustrated in Figure 5.4 and explained below, while the effect of W will

be discussed in Section 5.3.6.3. The figure only shows the interactions between ICCM, OREM, and

LEM modules for child node j of i. In the actual JAM implementation, these interactions are executed

for every child node of i.
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Figure 5.4 JAM kernel of node i.

The JAM kernel of node i takes the following inputs: Tr(p) and θ(p) from parent node p, and

λ(j), SAD(j), D(j), and
∑

k∈C(j) µ(k) from each child node j. Based on these inputs, it checks the
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candidate values of ∆ from an ordered sequence Ω = ⟨0, δ,−δ, 2δ,−2δ, · · · ⟩ one by one till the first

feasible ∆ value has been found to increase the minimal nodal lifetime within node i’s neighborhood,

or till all values in Ω have been exhausted. Here, δ is a system parameter. To ensure D′(i) > 0, the

smallest element in Ω is set to −
⌊
D(i)−θ(p)

δ

⌋
δ. Similarly, to ensure D′(j) > 0, the largest element in

Ω is set to
⌊
minj∈C(i) D(j)

δ

⌋
δ. For each candidate value of ∆, the JAM kernel executes the following:

• Iteratively, FAD′(i) takes a value from range [0, D′(i)] with a small step ε. Here, ε is a system

parameter. For each FAD′(i) value, Tr′(i) = D′(i)− FAD′(i).

• Based on FAD′(i), Tr′(i), and the inputs from each child node j, the ICCM module is called to

compute the maximum lifetime that node j can achieve, denoted as L∗(j), and the corresponding

FAD∗(j), according to Equations (5.11) and (5.12), respectively.

• FAD∗(j) is fed into the OREM module to compute the output data rate µ∗(j) of node j. With

µ∗(j) from all child nodes, the output data rate µ′(i) of node i is also computed using the OREM

module.

• Then, the LEM module is called to estimate the nodal lifetime L′(i). If min{L′(i), L∗(j), ∀j ∈

Ci} is larger than the highest L∆ that has been found so far, L∆ is updated, and the corresponding

FAD′(i) and Tr′(i) values are recorded as FAD∆(i) and Tr∆(i).

• When FAD′(i) reaches the boundary condition, i.e., FAD′(i) > D′(i), if the best achievable L∆

improves the minimal nodal lifetime within node i’s neighborhood, i.e., L∆ > min{L(i), L(j), ∀j ∈

Ci}, FAD∆(i) and Tr∆(i) are output, θ(i) = ∆ − θ(p) is appended to ACK packets to all child

nodes, and search completes; otherwise, the next candidate ∆ value will be tested.

Note that, if all the candidate values of ∆ in Ω have been checked but none of them improves the

minimal nodal lifetime within node i’s neighborhood, FAD(i) and Tr(i) remain unchanged and θ(i) =

0.

In our implementation of the JAM scheme, we set δ = 0.5 s and ε = 0.1 s. This means that,

when the average per-hop delay is 10 s, there is a total of 40 candidate values for ∆, and 100 candidate

values for FAD′. Therefore, in the worst-case scenario, the JAM kernel needs to iterate 4000 times to
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complete the execution, which is acceptable in practice. To further reduce the complexity, we adopt a

two-step heuristic as follows. We first use a larger ε value (i.e., 1 s) to conduct the initial search; when

a feasible FAD′ has been found, we use a smaller ε value (i.e., 0.1 s) to refine the search around it. With

this simple heuristic, the search space for FAD′ is reduced to 30 and the total number of iterations in

the worst-case scenario is reduced to 1200 in the above example.

5.3.6 Other Design Considerations

5.3.6.1 JAM Initialization

After the data collection tree has been established (i.e., the routing table of each node becomes

stable), each node i needs to decide its initial FAD(i) and Tr(i) values. In JAM, all nodes start with

a default Tr value and the rest of the end-to-end delay bound is evenly distributed to nodes along

the source-to-sink path. For this purpose, each node i periodically measures the most updated (i)

accumulative delays from its parent node to the sink (D(i → s)), i.e., the second term in the end-to-

end delay requirement in Equation (5.2), and (ii) hop count to its farthest descendant (h(i)).

We assume that the sink’s radio is always on and its wakeup interval is Tr(s) = 0 s. As the sink is

the end of data delivering paths, FAD(s) = 0 s. D(s→ s) = 0 s is then broadcast to all of its children.

Upon receiving D(i→ s), each child node j acts as follows:

• If node j is not a leaf node, it sets D(j) = D−D(i→s)
h(j)+1 , FAD(j) = D(j) − Tr(j), SAD(j) =

D −D(i→ s), and sends D(j → s) = D(i→ s) +D(j) to all of its children. In the example

shown in Figure 5.5, node 1 sets D(1) = 15/3 = 5 s, FAD(1) = 4 s, SAD(1) = 15 s, and sends

D(1→ s) = 5 s to nodes 2 and 3.

• If node j is a leaf node, it simply sets SAD(j) = D − D(i → s). In the example shown in

Figure 5.5, leaf node 4 sets SAD(4) = 15− 10 = 5 s.

5.3.6.2 Handling of Packet Loss

In practice, data or ACK packets may get lost due to collision, interference, or deteriorated channel

condition, and the sensor node may need to retransmit multiple times before the data packet can be
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Figure 5.5 JAM initialization example where the default Tr is 1 s and D is 15 s.

delivered successfully. This issue has been dealt with in JAM by replacing Tr with ETX ·Tr in the end-

to-end delay requirement (i.e., Equation (5.2) in Section 5.2.2), where ETX is the expected number of

transmission attempts to deliver a data packet successfully over one hop:

SAD(i) +
∑
m∈Si

(ETX(mc,m)Tr(m) + FAD(m)) = D. (5.14)

Here, mc is the child node of m along the path from i to the sink. Similarly, Equations (5.6) and (5.10)

have also been updated to include the ETX information. Note that measurement of ETX is readily

available in many routing protocols such as CTP [26], and thus not an extra overhead.

5.3.6.3 Adaptive Adjustment Interval W

The JAM kernel is triggered to execute periodically every W interval, which poses a tradeoff. A

small interval, i.e., frequent adjustment, makes JAM more responsive to the changes in the network

and allows it to approach a balanced nodal lifetime distribution in the network sooner, but uses more

computational resources. A large interval, on the other hand, uses less computational resources but

may let nodes stay in suboptimal states for a longer time.

We adopt an adaptive approach to adjust W dynamically (between Wmin and Wmax) to the network

condition. Specifically, if the current state is already the best that can be found, i.e., no ∆ in Ω improves

the minimal nodal lifetime within the neighborhood as described in Section 5.3.5, W is doubled till

reaching Wmax. Otherwise, W is reset to Wmin. This way, when the nodal lifetime distribution is

heterogeneous or the network configuration changes, JAM allows the network to re-converge quickly to

the balanced nodal lifetime distribution; otherwise, it decreases the adjustment frequency exponentially
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to save the control overhead in the long term. In the JAM implementation, we set Wmin and Wmax

conservatively to 1 minute and 16 minutes, respectively.

5.4 JAM Implementation

5.4.0.4 Software Component

We have implemented JAM in TinyOS 2.1.0. As shown in Figure 5.6, the shaded parts illustrate the

core components of JAM in the software architecture: (i) the aggregation component that sits between

application and routing layers, and (ii) the MAC component that is designed based on RI-MAC [50].

CTP [26] is adopted as the routing layer protocol to set up the data collection tree.

SelfAggMFwdAggM

NeighborMgmtM

SenderMReceiverM

MACControllerM

SendReceive

SendReceive

SendReceive

SendReceive PowerControl

RoutingInfo

JAMKernelM

Routing

MACSchedulerM

RadioCore

Application

Figure 5.6 Implementation of JAM in TinyOS.

When data packets from a child node j arrives at node i’s MAC layer, the piggybacked control

information will be extracted, passed to, and processed at the JAMKernelM module, which implements

the JAM kernel. The NeighborMgmtM module manages all senders’ information while the FwdAggM

and SelfAggM modules maintain the aggregation timers. After deciding the new Tr(i) and FAD(i)

values, the JAMKernelM module notifies the MACControllerM module to adopt the latest wakeup
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interval, and the FwdAggM and SelfAggM modules to adjust the aggregation timers. JAMKernelM

also informs MACControllerM of θ(i) and piggybacks it in the ACKs to child nodes.

5.4.0.5 Hardware Component

Among all the control information piggybacked in data packets, nodal residual energy is an im-

portant piece. As TelosB motes do not provide an interface to measure nodal residual energy, we

have designed and fabricated a TelosB power meter kit as shown in Figure 5.7. This kit measures the

nodal power consumption rate, based on which we can calculate the total energy consumed so far. The

nodal residual energy is then the difference between the battery energy capacity [75] and the consumed

energy.

Figure 5.7 TelosB power meter kit used in JAM.

5.5 Performance Evaluation

NS-2 based simulations and TinyOS testbed experiments have been conducted to evaluate the JAM

performance in terms of network lifetime, average nodal power consumption, and end-to-end delivery

delay. We compare JAM with a naive scheme called AVG which simply sets FAD and Tr values

according to Section 5.3.6.1 without runtime adjustment, and LBA [71] which is a state-of-the-art

lifetime-balancing aggregation protocol under delay constraint.

5.5.1 NS-2 Simulations

In the simulation, nodes are randomly deployed in a 500 m × 500 m area and the sink is located

at the center of the area. The evaluation results are averaged over 30 different random topologies. We
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vary the end-to-end delay requirement, initial nodal energy distribution, and the network density in

the simulation. The default initial nodal energy is 4500 Joules. The maximal communication range

is 70 meters and the power consumption is 69 mW when radio is on. All nodes are sources and the

data generation rate is a random value between 0.1 and 1 packet per second. The packet size is 128

bytes. In both simulations and testbed experiments, δ = 0.5 s, ε = 0.1 s, Wmin = 1 minute, and

Wmax = 16 minutes.

5.5.1.1 Performance under Different End-to-End Delay Requirements

Figure 5.8 compares the performances of all the evaluated schemes with the end-to-end delay re-

quirement varying between 20 s and 50 s. Number of nodes in the network is 60, and initial Tr is 1.5 s.

First row of Figure 5.8 shows evaluation results when all nodes start with 4500 J energy while second

row shows results when the initial nodal energy is a random value between 4500 ∗ (1± 40%) J.
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Figure 5.8 Simulation results under different end-to-end delay requirements.
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Different from LBA which does not improve the network lifetime much when the initial nodal

energy distribution is homogeneous as shown in Figure 5.8(a) (similar finding has also been observed

in [71]), JAM consistently improves the network lifetime in both homogeneous and heterogeneous

initial energy settings under all end-to-end delay requirements. Specifically, when all nodes start with

the same amount of energy, compared with LBA, JAM improves the network lifetime by 158% and 59%

when the end-to-end delay requirement is 20 s and 50 s, respectively. When nodes start with different

energy, the improvement ratio is 165% and 50% when the requirement is 20 s and 50 s, respectively.

JAM yields more significant network lifetime improvement when the end-to-end delay requirement

is more stringent because smaller delay bound means more limited FAD values for each node along

source-to-sink paths, which may result in insufficient data suppression and hence heavier network

traffic. As MAC behaviors in AVG and LBA are not jointly adjusted with aggregation behaviors,

the communication overhead could be expensive. Hence, the heavy traffic could soon deplete the

nodal energy and constrain the network lifetime. In comparison, JAM yields a much lower average

nodal energy consumption due to its joint MAC and aggregation design, as shown in Figures 5.8(b)

and 5.8(e).

Figures 5.8(c) and 5.8(f) plot the CDF (Cumulative Distribution Function) of the end-to-end delay

for the JAM scheme. Results show that all the end-to-end delay requirements are well-satisfied. Sim-

ilar to RI-MAC, JAM drops a data packet after a certain number (4 in our implementation) of failed

transmission attempts. Therefore, when the end-to-end delay requirement is relatively small, i.e., 20 s,

the heavy traffic deteriorates channel contentions and about 4% of data packets are dropped, while the

data delivery ratio approaches 100% when the end-to-end delay requirement increases to 50 s. Due to

space limitation, we omit the CDF results of the end-to-end delay for other evaluation scenarios, where

JAM exhibits a similar performance as the ones shown in Figures 5.8(c) and 5.8(f).

5.5.1.2 Performance under Different Initial Energy

We now evaluate the impact of the initial nodal energy heterogeneity level (denoted as β). It is

defined as follows. With a heterogeneity level of β, the initial nodal energy is a random value between

4500 ∗ (1 ± β) Joules. Results are shown in Figure 5.9. Number of nodes in the network is 60,
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end-to-end delay requirement is 40 s, and initial Tr is 1.5 s.
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Figure 5.9 Simulation results under different initial energy heterogeneity levels.

With AVG, as Tr and FAD are not adjusted at runtime, network lifetime is bounded by the initial

minimal-lifetime node. As the initial energy distribution becomes more and more heterogeneous (i.e.,

β increases), network lifetime achieved by AVG drops quickly. On the other hand, both LBA and JAM

re-distribute the end-to-end delay so that energy bottleneck nodes could be saved by other high-energy

nodes along the same route and hence yield a significantly longer network lifetime. As a larger β de-

mands more re-distribution efforts, the network lifetime drops as well with LBA and JAM. However, as

all the nodes along the route absorb this effect collaboratively, the network lifetime drops less quickly.

For example, network lifetime drops 21% with JAM when β increases from 0% to 60%, in comparison

to 46% with AVG. Finally, thanks to the joint MAC and aggregation design, JAM yields a consistently

70% longer network lifetime than LBA under different β values.

5.5.1.3 Performance under Different Densities

As shown in Figure 5.10, JAM always yields a significantly longer network lifetime than other

schemes, regardless of the network density. The end-to-end delay requirement is 40 s, initial Tr is 1.5 s,

and initial nodal energy level is a random value between 4500 ∗ (1± 40%) J. It is interesting to see (in

Figure 5.10(b)) that the average nodal power consumption decreases as the network density increases.

This is because, with a higher network density and consequently a higher node degree on average, a

source node may reach the sink via a shorter path. This means less nodes are involved in the path and
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the overall energy consumption is thus reduced.
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Figure 5.10 Simulation results under different network densities.

5.5.2 Testbed Experiments

We set up a testbed network of 32 TelosB motes, forming a fixed tree topology shown in Figure 5.11.

All nodes are sources, and the data generation interval is uniformly distributed between 0.8 and 1.2 s.

The default Tr value is 1.5 s, and the end-to-end delay requirement varies between 20 s and 40 s.
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Figure 5.11 Network topology in testbed experiments.

In order to complete the experiments within a reasonable amount of time, we study how fast a

node consumes a small designated amount of energy, and evaluate its nodal lifetime as the time period

during which the designated amount of energy is consumed. We run two sets of experiments. In the first

set, the initial available energy distribution is uniform and all nodes have 450 Joules; results are shown

in the left column of Figure 5.12. In the second set, the initial available energy at an individual node
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is a random value between 250 and 450 Joules; results are shown in the right column of Figure 5.12.

Overall, experiment results confirm our observations in the simulation study.
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Figure 5.12 Experiment results under different end-to-end delay requirements.

To illustrate how JAM adaptively tunes MAC and aggregation operational parameters to balance

nodal lifetime within the neighborhood, we plot in Figure 5.13 the changing traces of the operational

parameters of the nodes along the path 24→ 21→ 16. We observe that during time period [0, 0.2] h,

as shown in Figure 5.13(a), node 21 has a lower nodal lifetime than nodes 16 and 24. To improve node

21’s lifetime, (i) node 16, as node 21’s parent, decreases its Tr to save node 21’s energy cost on idly

waiting during transmissions; (ii) node 21 increases its FAD to reduce the amount of outgoing traffic;

and (iii) node 24 decreases its Tr to ensure the delay requirement is satisfied. As a result, their nodal

lifetimes are balanced gradually. During time period [0.2, 0.5] h, as all three nodes have reached a

similar level of nodal lifetime, their operational parameters are relatively stabilized.
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Figure 5.13 Changing traces of nodal lifetime, FAD, and Tr values.

5.6 Conclusions

In this study, we present a new holistic approach called JAM to prolong the sensor network life-

time. Different from the existing works which adapt either MAC or aggregation behavior alone, JAM

integrates the advantages of both approaches and therefore can extend the network lifetime more effec-

tively. In addition, JAM can also meet the end-to-end delay requirement specified by the applications.

JAM was designed to work with static data collection trees. In the future, we will improve the

JAM design by taking into account the routing strategy. As routing behavior also affects the network

traffic distribution, a joint MAC, routing, and aggregation design may prolong the network lifetime

even further.
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CHAPTER 6. CONCLUSIONS AND POSSIBLE FUTURE TOPICS

In this chapter, we summarize the main contributions in this dissertation. Moreover, we discuss

several potential research topics related to wireless chargeable sensor networks (WCSNs) based on our

past research efforts.

6.1 Research Contributions

In this dissertation, we proposed several practical solutions for WCSN lifetime elongation and

sensed data utility maximization. We have demonstrated their effectiveness via extensive experimental

and simulation studies. The main contributions of our work are:

• Efficient Joint Routing and Charging Scheduling to Improve Sensor Network Lifetime

In Chapter 2, we study the problem of prolonging network lifetime with a single MC in WCSNs.

We propose a practical and efficient scheme, name proposed J-RoC, to improve the network

lifetime. Through proactively guiding the routing activities in the network and delivering energy

to where it is needed, J-RoC not only replenishes energy into the network but also improves the

network energy utilization efficiency. Extensive experimental and simulation studies demonstrate

that J-RoC significantly elongates the network lifetime compared with existing wireless charging

based schemes.

• Efficient Joint Charging and Rate Allocation to Maximize Sustainable Sensor Network Utility

In Chapter 3, we propose a practical and efficient joint charging and rate allocation scheme, called

JCRA, to maximize the network utility while ensuring eternal network lifetime. We present

the design and implementation of the JCRA scheme and show its effectiveness in improving

the network utility compared with the centralized, off-line solution via ns-2 simulations under
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various network configurations.

• Lifetime Balanced Data Aggregation in Delay-bounded and Energy-Heterogeneous Sensor Net-

works

In Chapter 4, we investigate how to extend energy-heterogeneous sensor network lifetime with

a given application-specific end-to-end data delivery delay bound requirement. We propose a

data aggregation scheme named LBA. In contrast to existing aggregation schemes that focus on

reducing the energy consumption and extending the lifetime of each individual node, LBA has

a unique design goal to balance the nodal lifetime and thus prolong the network lifetime more

effectively. To achieve this goal in a distributed manner, LBA adaptively adjusts the aggregation

holding time between neighboring nodes to balance their nodal lifetime; as such balancing takes

place in all neighborhoods, nodes in the entire network can gradually adjust their nodal lifetime

towards the globally balanced status. Experimental studies on a sensor network testbed show that

LBA can achieve the design goal and approach the theoretical performance upperbound.

• Efficient Joint Aggregation and MAC Design to Prolong Sensor Network Lifetime

In Chapter 5, we present a new holistic approach called JAM to prolong the sensor network

lifetime. Different from the existing works which adapt either MAC or aggregation behavior

alone, JAM integrates the advantages of both approaches and therefore can extend the network

lifetime more effectively. In addition, JAM can also meet the end-to-end delay requirement spec-

ified by the applications. Extensive ns-2 simulation and TinyOS experiment results demonstrate

the effectiveness of JAM in prolonging the network lifetime compared with the state-of-the-art

schemes.

6.2 Possible Future Research Topics

The past research experiences greatly help us understand various problems in WCSNs. In this

section, we share some of our opinions on these problems and discuss several potential research topics

that are essential for future WCSN research.

• First of all, multiple MCs may be deployed in large scale WCSNs due to the limited charging
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capabilities of a single MC. How to efficiently coordinate the charging behaviors of multiple MCs

and jointly optimize the charging activities and networking protocol design, pose as practically

important research problems.

• Secondly, the broadcast characteristic of wireless charging shall be further investigated. It is

known that the efficiency of wireless charging is approximately linearly related to the number

of nodes being charged simultaneously [43]. If we intentionally deploy multiple sensor nodes

around lifetime bottleneck nodes, e.g., nodes close to the base station, the network lifetime may

be improved dramatically. However, as the networks conditions are highly dynamic, it may be

hard to predict where the bottleneck nodes will appear. In this case, efficient node redeployment

strategies shall be considered.

• Finally, besides data aggregation and MAC protocols, routing behavior also affects the network

traffic distribution. Therefore, a joint routing, aggregation and MAC design may better handle

the energy heterogeneity problem in WCSNs and prolong the network lifetime even further.
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