
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2012

Semi-automated parallel programming in
heterogeneous intelligent reconfigurable
environments (SAPPHIRE)
Sean Stanek
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Stanek, Sean, "Semi-automated parallel programming in heterogeneous intelligent reconfigurable environments (SAPPHIRE)"
(2012). Graduate Theses and Dissertations. 12560.
https://lib.dr.iastate.edu/etd/12560

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12560&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12560&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F12560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/12560?utm_source=lib.dr.iastate.edu%2Fetd%2F12560&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Semi-automated parallel programming in heterogeneous intelligent reconfigurable
environments (SAPPHIRE)

by

Sean Stanek

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:
Carl Chang, Major Professor

Johnny Wong
Wallapak Tavanapong

Les Miller
Morris Chang

Iowa State University

Ames, Iowa

2012

Copyright © Sean Stanek, 2012. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF TABLES .. viii

LIST OF FIGURES ... ix

PROJECT SUMMARY .. xi

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. RELATED WORK .. 5

2.1 Program Construction ... 5

2.1.1 DirectShow ... 5

2.1.2 Circuit Languages ... 6

2.1.3 Aspect Oriented Programming ... 6

2.2 Parallel Computing ... 7

2.2.1 Data Parallelism .. 7

2.2.2 Task Parallelism and Stream Programming .. 8

2.2.3 Hybrid Task and Data Parallelism .. 9

2.3 Multiprocessor Task Scheduling... 10

2.3.1 Homogeneous Task Scheduling .. 10

2.3.2 Heterogeneous Task Scheduling ... 11

2.3.3 Stream Task Scheduling ... 13

2.3.4 Heterogeneous Stream Task Scheduling .. 15

2.3.5 Windows Task Scheduler ... 16

2.4 Endoscopy Video Analysis ... 17

iii

2.4.1 Picture Archiving and Communication Systems (PACS) 17

2.4.2 Scene Segmentation and Object Detection for Colonoscopy 18

CHAPTER 3. OVERVIEW OF SAPPHIRE... 20

3.1 Design and Overview of SAPPHIRE ... 20

3.2 Features and Strategies ... 25

3.2.1 Semi-Automated Program Construction ... 26

3.2.2 Module Implementation .. 28

3.2.3 Data Packets .. 30

3.2.4 Communication ... 32

3.2.5 Synchronization .. 33

3.2.6 Feedback Loop .. 35

3.2.7 Data Filtering .. 35

3.2.8 Profiling .. 36

3.2.9 Memory Leak Detection ... 38

3.2.10 Crash Reporting .. 40

3.3 Common Modules and Data Types... 40

3.3.1 Video Data and Modules .. 41

3.3.2 Simple Analysis Modules ... 44

3.3.3 Helper and Extension Modules ... 45

3.4 Example EndoCapture.ini ... 46

3.4.1 Example Task Graph... 47

CHAPTER 4. SAPPHIRE INTERNALS ... 48

4.1 Pseudocode for a Main Program ... 48

4.2 Program and Virtual Graph Construction ... 48

iv

4.2.1 Packet Filters and Priority Overrides .. 50

4.2.2 Generating the Virtual Parallel Task Graph .. 51

4.2.3 Data and Module Pruning ... 53

4.2.4 Updating the Internal State ... 53

4.2.5 Starting the Program ... 53

4.2.6 Data Processing ... 53

4.3 Work Loop using Windows Scheduler ... 54

4.4 Data Structures .. 57

4.4.1 Packets .. 57

4.4.2 Modules... 59

4.4.3 Internal Arrays and Lists ... 59

4.4.4 Common Data Packet Formats ... 59

4.5 Synchronization .. 61

4.5.1 Middleware Synchronization .. 61

4.5.2 Application Synchronization .. 62

4.6 Runtime Profiling.. 64

4.7 Memory Leak Detection ... 65

4.8 Crash Reporting .. 66

4.9 Video Processing Considerations ... 68

4.10 Evaluation of SAPPHIRE ... 69

4.10.1 Case Ctudy Implementation .. 69

4.10.2 Consistency Checking ... 70

4.10.3 Stress Testing .. 70

4.10.4 Error Reporting ... 71

v

4.11 Summary and Future Work ... 71

CHAPTER 5. TASK SCHEDULING OF STREAM PROGRAMS ON HETEROGENEOUS SYSTEMS ... 73

5.1 Our Contributions ... 74

5.2 Drawbacks of Related Work and Features of Our Work .. 75

5.3 Problem Formulation of Task Allocation of Stream Programs 77

5.4 Load Balancing Algorithms for Task Allocation.. 85

5.4.1 Brute Force with Pruning .. 85

5.4.2 K-HIT Greedy Algorithm ... 85

5.5 Algorithm for Task Scheduling .. 86

5.6 Experimental Setup and Results ... 86

5.6.1 Graph Generation .. 86

5.7 Task Scheduling Algorithms and Features ... 88

5.8 Results ... 88

5.9 Discussion ... 91

5.10 User-Mode Task Scheduler... 92

5.10.1 Design and Implementation .. 94

5.10.2 Dynamic Scheduling ... 96

5.11 Summary and Future Work ... 98

CHAPTER 6. EVALUATION OF SAPPHIRE ... 100

6.1 Endoscopic Video Detection... 100

6.2 Drawback of Old Method ... 103

6.3 New Metrics .. 104

6.4 Capture .. 105

6.5 Analysis... 107

vi

6.5.1 Characteristics of Inside-Patient and Outside-Patient Video 108

6.5.2 Basic Features ... 109

6.5.3 New Temporal Features .. 110

6.6 Algorithm for Identifying the Start of a Procedure ... 117

6.7 Algorithm for Identifying the End Frame of a Procedure 119

6.8 Video Encoding .. 121

6.9 Experimental Results .. 122

6.10 Porting EM-Capture to SAPPHIRE .. 124

6.11 Case Study 1: EM-Capture (Procedure Detection) ... 126

6.12 Case Study 2: EM-Automated-RT for Real-Time Feedback 126

6.13 Summary and Future Work ... 128

CHAPTER 7. CONCLUSION AND DISCUSSION OF FUTURE WORK .. 130

7.1 Contributions... 130

7.2 Limitations and Future Work .. 130

REFERENCES ... 132

APPENDIX A. SAPPHIRE API .. 140

A.1 High-level macros ... 140

A.2 Core API functions ... 142

A.2.1 Registration ... 142

A.2.2 Packets .. 147

A.2.3 Control .. 152

A.2.4 Performance .. 153

A.2.5 Miscellaneous ... 154

APPENDIX B. MODULES AND FUNCTIONALITY .. 156

vii

APPENDIX C. MODULES AND THEIR PACKET TYPES .. 157

APPENDIX D. SAMPLE ENDOCAPTURE.INI ... 159

D.1 Endoscopic procedure detection and capturing (EM-Capture) 159

D.2 Real-time feedback (EM-Automated-RT) .. 161

APPENDIX E. MEMORY LEAK DETECTION USAGE INFORMATION ... 165

E.1 Instructions .. 165

E.2 Interpreting the output... 165

E.3 Example output and debugging .. 166

APPENDIX F. INTERNAL VARIABLES AND ARRAYS/LISTS ... 167

APPENDIX G: EXAMPLE MODULE SKELETON ... 169

APPENDIX H: EM-CAPTURE THRESHOLDS ... 172

viii

LIST OF TABLES

TABLE 2.1: OVERVIEW OF SCHEDULING ALGORITHMS ... 19

TABLE 3.1: LIST OF METHODS TO BE IMPLEMENTED BY MODULE DEVELOPERS 23

TABLE 3.2: LIST OF CORE MIDDLEWARE FUNCTIONS BY TYPE .. 23

TABLE 3.3: COMPARISON OF FEATURES AMONG MULTIPLE TOOLKITS 25

TABLE 5.1: NOTATIONS FOR THE TASK ALLOCATION PROBLEM ... 77

TABLE 5.2: NOTATIONS FOR PROVING THEOREM 1 .. 80

TABLE 5.3: DESCRIPTIONS OF SCHEDULING ALGORITHMS .. 87

TABLE 5.4: MAKESPAN .. 89

TABLE 5.5: TIME TAKEN TO GENERATE A SCHEDULE (MS) .. 89

TABLE 5.6: MEMORY USAGE (MB) .. 90

TABLE 6.1: EFFECTIVENESS OF IMAGE-ANALYSIS METHODS .. 124

TABLE 6.2: MODULES ADDED TO CREATE EM-AUTOMATED-RT ... 127

ix

LIST OF FIGURES

FIGURE 1.1: SAPPHIRE OVERVIEW .. 3

FIGURE 2.1: EXAMPLE OF VARIOUS SCHEDULING ALGORITHMS ... 14

FIGURE 3.1: ORGANIZATION OF THE PACKET SYSTEM IN THE MIDDLEWARE............................. 31

FIGURE 3.2: EXAMPLE MODULE CODE FOR SYNCHRONIZATION USING A MUX 34

FIGURE 3.3: THE REAL-TIME PERFORMANCE GUI .. 37

FIGURE 3.4: AN EXAMPLE CONFIGURATION FILE .. 46

FIGURE 3.5: A TASK GRAPH OF THE EM-CAPTURE PROGRAM WRITTEN USING SAPPHIRE 47

FIGURE 4.1: PSEUDOCODE FOR THE MAIN PROGRAM OF SAPPHIRE 49

FIGURE 4.2: PSEUDOCODE FOR MODULETHREADSTART .. 50

FIGURE 4.3: PSEUDO-CODE FOR CREATING A BIPARTITE GRAPH ... 52

FIGURE 4.4: WORK LOOP OF EACH THREAD.. 55

FIGURE 4.5: DATA PACKET STRUCTURE ... 56

FIGURE 4.6: STRUCTURE THAT KEEPS INFORMATION ABOUT A MODULE 60

FIGURE 4.7: STRUCTURE OF A VIDEO PACKET .. 61

FIGURE 4.8: STRUCTURE OF AN INSIDE PACKET ... 61

FIGURE 4.9: STRUCTURE OF THE MUX (MULTIPLEXER OBJECT) .. 63

FIGURE 4.10: CRASH REPORT OF THE HUD.DLL MODULE .. 67

FIGURE 5.1: EXAMPLE PTG ... 74

FIGURE 5.2: UNROLLED PTG OF FIGURE 5.1 .. 81

FIGURE 5.3: MAKESPAN OF SELECT ALGORITHMS .. 90

FIGURE 5.4: EXAMPLE OF SCHEDULING ALGORITHMS. ... 93

x

FIGURE 6.1: EXAMPLES OF COLONOSCOPY VIDEO .. 101

FIGURE 6.2: THE CIRCULAR FIFO VIDEO FRAME BUFFER ... 106

FIGURE 6.3: EXAMPLES OF FEATURES GRAPHED OVER TIME .. 113

FIGURE 6.4: ENERGY HISTOGRAMS .. 114

FIGURE 6.5: DOUBLE-NORMALIZED ENERGY HISTOGRAMS .. 114

FIGURE 6.6: ALGORITHM TO DETECT THE ENTRANCE FRAME ... 119

FIGURE 6.7: ALGORITHM TO DETECT THE EXIT FRAME ... 120

xi

PROJECT SUMMARY

Advancements in computer hardware technology continually provide faster and faster

computational platforms. However, in recent years, as we come closer to approaching

physical limits in making smaller (and faster) computer processors, focus has instead been

turned toward including multiple processor cores in each device. While this technically

allows more computational power in the same amount of time as compared with only one

processor core, conventional software typically can only make use of a single processor.

Multithreading is required for software to be able to effectively utilize multicore processors.

Goal: Our goal is to design and develop a middleware platform that supports stream

programming and reduces the time and effort necessary to develop stream programs. The

middleware determines a good configuration for each software component to exploit

heterogeneity and parallelism of the hardware system. Software developers do not need to

concern themselves with how and which computing device executes which component.

Contributions: We have three major contributions: (1) SAPPHIRE, a middleware for

semi-automated program construction of stream programs based on data dependency

matching. SAPPHIRE allows stream application development to be accomplished with

significantly fewer lines of code and eases collaborative development. (2) A novel static task-

scheduling framework for stream programs with heterogeneous implementation choices. We

proved that the maximum load approximates makespan of a stream program to within a

negligible amount of error. (3) EM-Capture, an automated real-time application using novel

video analysis techniques for endoscopic video detection.

Impact: We contribute to three important areas of computer science: software design,

biomedical image analysis, and high performance computing. In addition, our software

enables automatic capture, analysis, and feedback of quality for endoscopic procedures that

has never been possible before in practice. Our endoscopy software has analyzed over 50

billion frames and captured over 71,000 endoscopy videos in a real hospital setting. Our

software has great potential to raise the quality of patient care through automated real-time

feedback and documentation.

1

CHAPTER 1. INTRODUCTION

The computational requirements of newer computer programs have grown greatly

over time; at the same time, the amount of computation a processor can do has also grown.

However, the processing speed of individual processors has not grown as fast to

accommodate new applications/programs desired to run on them. As a result, multiple

processors are utilized for some of these programs. Unfortunately, special design and

implementation must be taken into consideration for parallel computing.

Many early implementations of parallel computing involved working on identical

computing nodes, both for the simplicity of constructing the parallel computing cluster

hardware and for the simplicity of writing a parallel program. Since the end-purpose of

parallel computing is to minimize completion time of a particular program, it is advantageous

in program execution to utilize a wide variety of computing platforms (although perhaps

more time consuming to design) such as GPUs (graphics processing units), FPGA (Field

programmable gate arrays), custom-made processors, and clustered or networked computers.

GPUs have become a major focus in recent years, constantly driven and improved by the

demand for faster and faster 3D graphics in games, making their high-speed, massively

parallel processing elements a good candidate for a multitude of general computational

intensive problems. GPUs have also become commonplace in personal computers. Custom-

made processors are also candidates for parallel computing (though not cost-effective), as

they can work on similar problems as FPGAs, but take up less space and run considerably

faster.

To efficiently utilize heterogeneous computing platforms, developers can utilize low-

level vendor-specific APIs and libraries. For some applications, developers can use existing

middleware packages such as MPI (Message Passing Interface) for common parallel

programming data management and synchronization. With MPI, several copies of a program

are loaded at the same time, one per processor. Each program runs in full parallel during its

entire execution on independent data sets, with the exception of data dependency or

synchronization. The MPI programming model follows a data parallelism paradigm (same

processing task on independent data sets). It works well for problems in which data can be

2

split up and processed independently. However, only certain kinds of algorithms can easily

take advantage of this paradigm.

Pipeline parallelism (task parallelism) paradigm involves the parallel execution of

different tasks on different data sets. In an environment that processes continuously

streaming data such as a stream of images, this is also called stream programming. This

paradigm also has its limitations that programs must work on streaming data. That is, one

component of the program processes a piece of data, passes its results on to the next

component, which does its own processing and passes its results on to the next component,

and so on. Instead of the first component remaining idle during the other components’

executions, a new piece of data is fed to the first component. These components all

constantly receive new data from their predecessors and all run in parallel with each other.

FPGAs utilize this model of computation, performing lookups (computation) at every lookup

table (LUT) on the FPGA all of the time at each clock cycle. CPUs themselves are an

implementation of this paradigm, performing computation on the instructions and

intermediate data at each stage in its pipeline. Important applications of stream programs are

real-time quality monitoring of medical procedures, video surveillance for security, just to

name a few.

Currently, it is time-consuming for developers to take advantage of heterogeneous

computing platforms to efficiently run their stream programs. Our goal is to design and

develop middleware named SAPPHIRE: Semi-Automated Parallel Programming in

Heterogeneous Intelligent Reconfigurable Environments that supports stream

programming and requires less time to develop stream programs. The platform does

multithreading, allows dynamically loadable components of stream applications, and

determines a good configuration for each software component to efficiently exploit

heterogeneity of the hardware system. The software developers do not need to concern

themselves with how and which computing device executes which component. This issue has

not been investigated in the research literature. SAPPHIRE provides flexibility for

developers of stream applications to get the most out of their computing platforms without

having the developers to determine these configurations themselves.

3

API and Library Runtime engine,
monitoring, feedback

Task Allocation &
Scheduler

SAPPHIRE

Profiler

C7C4
Sink

C1

C2

C5

C3 C6

Stream of data

Figure 1.1: SAPPHIRE will support any stream program to utilize heterogeneous computing platforms. Ci are
components representing different processing tasks. Ci forms a task graph that describes the data dependency
among the tasks. For instance, C2 waits for the result from C1. C3, C4, and C5 cannot start until C2 finishes.

Our contributions:

1. SAPPHIRE – A middleware and software development kit (SDK) for semi-automatic

program construction of tasks by data dependency matching. Unlike existing work,

SAPPHIRE can support task-parallel stream applications that have precise

requirements when accessing data. SAPPHIRE allows stream application

development to be accomplished with significantly fewer lines of code and eases

collaborative development.

2. A novel static task-scheduling framework for stream programs on a heterogeneous

multiprocessor system. Our framework does not require unrolling an original PTG as

in recent existing work, which would expand the problem size. Our framework

supports heterogeneous implementation (HIT) choices. We formulate the task

allocation problem with HIT support as a load balancing problem that optimizes the

maximum load (execution time) among all the processors in the system. Given large

4

inputs, we proved that this maximum load approximates makespan of a stream

program to within a negligible amount of error. This problem formulation enables us

to have a simple heuristic load balancing algorithm called K-HIT that solves the

formulated problem. For the final task scheduling, we propose a variant of earliest

finished time first for stream programs called Stream-EFT.

3. EM-Capture – We developed novel algorithms and application for automatic

endoscopy video analysis for endoscopic procedure detection. Our application does

not require any human intervention, making it easy to use in a real hospital setting.

EM-Capture is a novel automated endoscopy video capturing software. Our software

has analyzed over 50 billion frames and captured over 71,000 endoscopy videos in a

real hospital setting. An extension to EM-Capture, called EM-Automated-RT,

provides real-time quality analysis and feedback for colonoscopy. EM-Automated-RT

was developed as a collaborative effort using SAPPHIRE.

This dissertation contributes to three important areas of computer science: software

design, biomedical image analysis, and high performance computing. In addition, our

software enables automatic capture, analysis, and feedback of quality for endoscopic

procedures in real hospital settings that has never been possible before in practice. Our

software has great potential to raise the quality of patient care through automated real-time

feedback and documentation. This dissertation resulted in several publications during the

time of its writing [1][2][3].

The dissertation is organized as follows. Chapter 2 provides relevant background

information and related work. In Chapter 3, we provide the overview of SAPPHIRE. In

Chapter 4, we describe the design, algorithms, key internal data structures, and

implementation in more details. In Chapter 5, we present our novel static stream task

scheduling framework, involving theory, proofs, simulation, and a proof-of-concept

implementation of a user-mode thread scheduler. In Chapter 6, we present our evaluation of

SAPPHIRE using two real-world case studies, EM-Capture and EM-Automated-RT. In

Chapter 7, we conclude the dissertation and describe future work.

5

CHAPTER 2. RELATED WORK

2.1 Program Construction

Although there are many ways to construct a program, there are some specific

methods that we are interested in for our research. As a way to enable parallel computing,

program construction methods that ease parallel program construction are of key interest.

Using separable functions that can run independently of (and thus in parallel with) each other

on different pieces of data creates an implicit opportunity for task-parallel computing. We

will investigate various program construction methods that enable parallel in this way. There

are some other unique advantages that these program construction techniques allow that we

will also investigate.

2.1.1 DirectShow

DirectShow is a component of DirectX, a large multimedia library created by

Microsoft for the Windows platform. The purpose of DirectShow is to enable multimedia

drivers, devices, and software to work correctly with each other, regardless of the format of

the data [4]. This is also sometimes referred to as device independence.

A software program creates and executes a DirectShow graph, either with a common

programming language (many are supported) or as a visual graph. This graph consists of

multiple filters (components), usually some input filter like a file reader, providing a source

of data; some output filters, such as a video display window; and intermediate filters that can

decode and convert the data to the desired output format, such as video codecs and color

space converters. Filters are connected via input and output pins. Each pin can be queried for

supported data formats that they accept. The programmer can manually set the data types of

each pin and connect filters, or DirectShow itself can attempt to automatically connect filters,

inserting converter filters when needed.

While made for multimedia and perhaps not necessarily intended as a programming

language, it could be viewed as a kind of programming language, and there are some clear

advantages to using a modular design like DirectShow. Device independence between

modules, potential component optimization through task parallelism (the independence

6

between modules enables this), and graphical programming are some advantages.

DirectShow has some disadvantages, particularly as a result of its intention to be used as a

multimedia experience. For example, if some modules are too slow and start lagging behind,

DirectShow may choose to skip processing some frames of data for certain modules. This

may be disadvantageous for a scientific processing platform. Some further disadvantages are

discussed in Chapter 3.

2.1.2 Circuit Languages

Some programs are constructed as a flow of data passing through functions as

opposed functions working on sets of data. For constructing computer circuits, this is

especially the case. On the electrical engineering level, every computing component is

“running” all the time, as opposed a procedural program, which runs one line at a time. With

a language like Verilog [5] or VHDL [6], we can construct a program where the data flows

through simple functions in this fashion. We synchronize data inputs and outputs with the

rise and/or fall of an externally generated clock signal. Not limited to silicon circuit

construction, it is possible to create complex programs in the same fashion. Instead of being

restricted elementary gate logic, we can utilize complex algorithms in their place.

The biggest advantage to constructing a program in this fashion is that all functions in

the system are expected to run in parallel. A program written this way can implicitly take

advantage of any multiprocessing available in a computing system, since all of its

components can run in task-parallel.

2.1.3 Aspect Oriented Programming

While conventional programming relies on functions with their defined inputs and

outputs, with functions running in the order in which a program is written, aspect oriented

programming allows a programmer to statically or dynamically change the data routing of a

function [7][8]. For example, a program might pass an image as an input to a file output

function. Instead, the program might be changed to deblur the image before it is written out.

Instead of explicitly calling a deblur function before calling the file output function, the

programmer could instead attach a deblurring function to the input of the file output function.

7

The output of the deblurring function would be the new input to the file output function. Any

time any part of the program calls the file output function with an image, the image is first

deblurred before it is actually passed to the file output function. Although aspect-oriented

programming is actually much more than the simple example presented, this is the main

concept of interest to us.

2.2 Parallel Computing

In this section, we discuss common types of parallel computing paradigms and

parallel computing middlewares.

2.2.1 Data Parallelism

Message Passing Interface (MPI)

MPI [9][10] was introduced in 1993 was one of the earliest standards developed

toward making development on distributed computing and distributed memory systems

easier. It is implemented as an API in the programmer’s language of choice (typically C or

Fortran). Most of the API functions are simple: delegating and identifying computation

nodes; sending and receiving data from one node to another, or perhaps any number of nodes

to any other number of nodes; and providing barrier synchronization. Although task

parallelism would be possible with MPI, its design leans toward making data parallelism

easier. The data distribution and collection functions are especially useful for distributing

data equally among all nodes.

CUDA

NVIDIA’s CUDA (Compute Unified Device Architecture) is a parallel programming

infrastructure especially designed for their graphics processors [11]. Programmers write a

GPU “kernel” (a small data-parallel program) in a modified C language that provides some

GPU primitives. The CUDA compiler compiles the kernel code to the native GPU’s machine

code and the non-kernel code to the host CPU’s machine code. When a program is executed,

the CPU code tells CUDA what GPU code to load, and then executes it on the massively

parallel GPU computing cores. These are run in single-instruction multiple-data (SIMD)

8

fashion in “warps” containing 32 threads which each execute the same instruction on 32

different pieces of data. A collection of warps are run inside a “block” (up to 768 threads). A

collection of blocks runs inside a “grid” that executes the same code on a “multiprocessor.”

An individual multiprocessor can schedule different kernels to be run, but only one kernel is

actually run at any given time for a multiprocessor (similar to how an OS does task/context

switches). Separate multiprocessors inside a single GPU device can run different kernels

simultaneously. In recent years, a significant effort in both academia and industry has been

made to utilize GPUs for general purpose computing in several application areas such as

image analysis [12][13][14][15], computational biology and chemistry, and simulation. To

fully utilize the power of GPUs, developers have to take into account several aspects of the

underlying device architecture as well as program characteristics in their design. These

aspects include data dependency, efficient memory access (e.g., use of fast shared memory,

memory coalescing and banking), task allocation, and task scheduling to reduce the required

bandwidth between CPU RAM and GPU memory. An analytical model for a GPU

architecture has also been proposed [16].

2.2.2 Task Parallelism and Stream Programming

Microsoft DirectShow, previously mentioned as a method of program construction,

has the side effect of implicit task parallelism due to its programming model. Because each

DirectShow filter is a computationally independent and separated component from other

filters, each filter automatically has the capacity to run in task-parallel. The programmer that

uses DirectShow does not necessarily know how DirectShow schedules the execution of each

filter. Some filters might run in serial and some in parallel, and some might even have their

data dropped if DirectShow feels that there is insufficient CPU time to run all filters in the

time allotted. This real-time ability of DirectShow is also an important aspect of task-parallel

scheduling of computationally intensive programs.

9

2.2.3 Hybrid Task and Data Parallelism

StreamIT

MIT’s SteamIt introduced in 2002 is a programming language constructed for the sole

purpose of describing streaming programs [17]. It works similarly to a circuit language,

describing components, the inputs and outputs they read or write, and the how the

components connect to each other. The StreamIt compiler reads source code, determines a

stream mapping from that code, and can potentially find the most optimal, finest grain (down

to the arithmetic level) parallelism possible. Because it is its own language, this means that a

programmer must learn a new language and convert most of his or her code to the StreamIt

language. Although it would be possible to link in external code in the linking stage of code

generation, only code written in the StreamIt language benefits from the fine-grained

streaming parallelism optimization.

OpenCL

Khronos Compute Working Group introduced OpenCL (Open Computing Language)

in 2008. OpenCL [18][19] is a recent specification and framework for developing

heterogeneous programs with as much cross-platform support as can be expected in a

heterogeneous environment. It provides functions for setting up program components,

queuing program communication flow between components, and executing the program as a

whole. It provides some intrinsic data types for commonly misrepresented data types

between platforms (e.g., integer size). The goal of OpenCL is to allow developers to write a

heterogeneous program in data parallel, task parallel, or any combination of either.

Other

Chen et al. proposed a system for allocating tasks on GPUs at a finer granularity than

that normally allowed by CUDA or OpenCL by using a job queueing system [20]. Jobs are

submitted by the host system to a job queue in memory, where they are run in granularities of

thread blocks by their proposed scheduler. In order to execute properly, all task kernels must

be combined along with the job scheduler and loaded to the GPU at the same time, where the

custom GPU thread block scheduler dispatches tasks from the job queue.

10

2.3 Multiprocessor Task Scheduling

Multiprocessor task scheduling has long been studied. Dutot et. al. provides a

summary of the related work in this area [21] as follows. (1) Makespan – the application

execution time is often used as the performance metric. (2) The task scheduling problem on

homogeneous platforms is NP-Complete. (3) Algorithms with performance guarantees where

the performance metric was defined as the maximum ratio between the produced makespan

and the optimal makespan has been developed. Different heuristic methods such as variants

of list-based scheduling and simulated-annealing based scheduling were proposed [21]. List

scheduling-based methods are most popular.

The majority of previous work focuses on homogeneous platforms or heterogeneous

clusters of homogeneous systems within a cluster. Furthermore, platform heterogeneity is in

terms of variety in CPU processing capabilities or communication among various sites. The

majority of previous work does not focus on task scheduling of stream programs.

2.3.1 Homogeneous Task Scheduling

Given (1) some program tasks, each with some inputs and outputs, where some task’s

inputs (dependencies) may be derived from some previous tasks’ outputs, (2) a set of

identical processors with which to run the tasks on, and (3) their expected execution times on

the given processors – we wish to find both (1) the optimal allocation of a number of

processors to tasks and (2) the optimal placement which set of processors will run each task,

such that the result minimizes the overall execution time. Some task scheduling algorithms

will do the allocation and placement in separate stages (usually considered easier since the

allocation can be done heuristically without finding the placement ahead of time), and some

algorithms will attempt to do both simultaneously. Because multiprocessor task scheduling is

NP-Complete [22], task scheduling algorithms are usually heuristic algorithms in practice.

Scheduling Algorithms

The FIFO (first in first out) scheduling algorithm [23] is the simplest of scheduling

algorithms. As soon as a task’s dependencies are satisfied, the task is queued to run on the

next available processing node(s). When a task finishes, its outputs are used to satisfy the

11

dependencies (inputs) of other tasks. When a new task’s dependencies are all satisfied, the

task is queued. Whenever a processor is free, it may be used to schedule the next task in the

FIFO queue, and the process repeats. The problem with this algorithm, while extremely

simple, is that it is greedy and may perform poorly or allow a slow task to hog processor

resources when a different task may have been better overall (in terms of minimizing overall

program execution time). This is an example of an algorithm that performs allocation and

placement at the same time.

Round robin (RR) [23] is a naïve algorithm that creates an absolute ordering of tasks

(not necessarily in an order based on any kind of optimality) and then schedules each of them

one at a time until all have been scheduled. In a stream program, the amount of time given

per task could be one iteration's worth of work. Once all tasks have been given their first

block of time, the tasks are once again scheduled in the same order, and the process repeats.

Earliest finish time (EFT) [23] first creates an ordering based on the earliest possible finish

time of each task, which changes based on when a task's dependencies can be satisfied.

Dynamic list scheduling (DLS) [24] is a more complex algorithm than RR or EFT in

making use of more global information. A task's static level is the critical path length from a

task's node to the sink node (without regard for scheduling, only satisfying dependencies).

The static level of a task minus that task's earliest start time yields a dynamic list ordering by

which tasks are scheduled. This approach favors tasks with a higher static level (we need to

complete these tasks in order to reduce global execution time) and an earlier start time (in

order to schedule tasks soon after they become available).

2.3.2 Heterogeneous Task Scheduling

In heterogeneous task scheduling, we remove the constraint that the processors be

identical. Homogeneous processors make scheduling easier, since it makes little difference as

to which processors you allocate to a task: they will all take the same amount of time to work

on a task. In heterogeneous task scheduling, different processors may take a different amount

of time to finish the same task. Because of this possibility, it does matter which processors

you allocate to a task. For example, allocating a long task to a slow processor and a short task

to a fast processor may not be as effective (in terms of wall clock time) as allocating the long

12

task to the fast processor and the short task to the slow processor. In the later case, the end

time of the longest task would have been earlier (and thus, usually preferred).

One such example is that of [25]. A two-stage scheduling algorithm is utilized: first

allocation of a number of processors to each task, followed by the placement of each task

onto a set of that many processors. To account for heterogeneity, an attempt is made to first

convert the problem into a homogeneous task-scheduling problem. Suppose we have a set of

N processors that run at different speeds. Instead of attempting to schedule on N

heterogeneous processors, a uniform reference-speed virtual processor is established. The

relative computing power of each heterogeneous processor is converted to the speed of the

uniform processor. For example, a 1.5GHz processor may be equal to 1.5 1GHz virtual

processors. Upon summing the number of virtual processors, where M is the sum of virtual

processors, we now use a homogeneous scheduling algorithm on those M processors.

In the allocation step, a processor is allocated iteratively to the critical path of a given

task graph. The critical path of a task graph is a path from source to sink with length equal to

the makespan. Reducing the overall execution time of the program means reducing the

makespan, and this cannot be accomplished without reducing the execution time of each

critical path. Thus, to determine how many processors to allocate to which tasks, a critical

path is identified, and a task along that critical path is allocated more computing resources.

This is done until all processors have been allocated.

In the placement step, we already know how many processors we will use for each

task. So, we can estimate the duration each task for that number of processors allocated to it.

The task that has the earliest finish time and is also ready to execute (all dependent tasks

have finished and the number of processors that the task has been allocated are available) is

given its number of allocated processors. As tasks are completed, dependencies are satisfied,

and more tasks may become ready to execute. This is repeated until all tasks have been

scheduled. In the end, the virtual processors are translated back to real processors to define

the final mapping of processors to tasks.

Many varations on scheduling algorithms have been investigated for both

homogeneous and heterogeneous scheduling [26][27][28][29][30], specifically including list

13

scheduling [31], dominant sequence clustering [33], genetic algorithm based [34], dynamic

level scheduling [35], best imaginary level [36], mapping heuristic [37], levelized min time

[37], scalable task duplication [38], fast critical path [39], fast load balancing [40], and

heterogeneous earliest finish time first [41]. A summary of algorithms is provided in Table

2.1.

2.3.3 Stream Task Scheduling

The aforementioned algorithms can all be extended to stream program scheduling by

a method called graph unrolling: unrolling a stream program's parallel task graph by

potentially millions of iterations, so that each iteration of each task has its own node in the

task graph [24]. Then, a chosen task scheduling algorithm is used on the larger, unrolled

graph. Although this is a working general solution for stream task scheduling, it is inefficient

as it requires expanding an already NP-Complete problem by many orders of magnitude.

Cyclic scheduling

Cyclic scheduling is a well-studied field in manufacturing that is also applicable to

stream task scheduling. There are many variations of cyclic scheduling [42], but they share

the same objective of minimizing the cycle time – the amount of time between the start and

end times for each processor of a static task schedule – after which, the cyclic schedule can

be repeated. See Figure 2.1(d). The cycle time is different than the makespan in that the

makespan is the time difference between the earliest start time and latest end time of all tasks

across all processors, whereas the cycle time is computed as the largest difference across all

processors between start and end times within a single processor. This may yield a smaller

and more optimal schedule for repetition as the cycle time may often be less than the

makespan.

14

A

C

B

A

C

B A

C

B

A

C

B A

C

B A

C

B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A

C

B

makespan

cycle
time

CPU1

CPU2

CPU1

CPU2

CPU1

CPU2

A

C B

A C

A C

B B CPU1

CPU2

A

B

C
(a)

(b)

(c)

(d)

(e)

cycle
time

Figure 2.1: Example of various scheduling algorithms. In this example, there are three tasks, A, B, and C; with
execution time costs of 2, 1, and 3, respectively. The only dependency is that task C depends on task A (a).
There are no other restrictions (e.g., CPU bindings, self-dependencies). In (b), a single iteration of this task
graph is scheduled. Because task C cannot start until task A completes, task C cannot be scheduled until time 2.
Task B could be scheduled at any of the unused times, and its location in (b) is arbitrary. The total execution
time (makespan) for this single iteration is 5. In (c) through (e), we want to schedule the task to run three times.
The iteration number of each task is indicated by the solid diagonal lines for iteration 2 and dashed diagonal
lines for iteration 3. A naïve approach is performed in (c), where we run schedule (b) to completion, then rerun
it to completion, and finally repeat it a third time. The total execution time for (c) is 15. The arrows in (c)
indicate potentials for optimization, as this is mainly unused execution time. In (d) we show the cyclic schedule
for these three iterations. As there are 2 time units free on CPU1 after task B completes, and 2 time units free on
CPU2 before task C starts, the next iteration can fit if we slide it 2 time units earlier. This can be repeated for as
many iterations as necessary. The cyclic schedule, specifically, is just a shorter schedule (e.g., a single iteration,
such as (b)) that will be repeated every 'cycle time' time units. In (d), the cycle time is 3 time units, as the short
schedule can be repeated every 3 time units. For scheduling 3 total iterations, the makespan is equal to 11 time
units. In (e), we have unrolled the graph and scheduled all tasks together, while still allowing for the
dependency that each iteration's task C be schedule after it's task A. This expands the problem size, but yields a
more optimal solution of 10 time units. Although not shown here, it would be easy to see that (e) could be used
as a schedule for cyclic scheduling, where 3 iterations could be performed with a 3-iteration cycle time of 8
time units. This would reduce the average time per iteration down to 8/3 or 2.67 time units.

15

The variation chosen may alter the optimization goal or change the set of formal

restrictions (e.g., whether each iteration is independent of each other). Given a task-to-

processor allocation ahead of time, an optimal cyclic schedule can usually be determined in

polynomial time [42]. Otherwise, this usually becomes an NP-Complete problem (depending

on a set of assumptions and constraints). Although a schedule may be optimal given a set of

formal restrictions, the schedule might not be optimal with a different set of restrictions. A

major advantage of this approach is that only a small static schedule is generated for one or a

few iterations, reducing the problem size dramatically from the full graph unrolling method.

2.3.4 Heterogeneous Stream Task Scheduling

Satish et al

The most related work to our research is that of Satish [22]. He investigated a

heterogeneous task-scheduling problem on multicore CPUs and a GPU for stream programs.

His method aims to partially unroll only a few (one to ten) iterations of the original PTG

rather than fully unroll the PTG across potentially millions of iterations. This restricts the

problem size to the number of tasks times only a few iterations, rather than having a million

times blow-up in problem size as in full PTG unrolling. A scheduling algorithm (such as

DLS) is then performed on this partially unrolled graph to achieve a schedule of only a few

iterations. Figure 2.1(e) might be the result of a schedule with the original parallel task graph

unrolled three times. The schedule is then concatenated to itself, repeated end-to-end, until all

iterations of a fully unrolled task graph are accounted for. While being less optimal since the

entire problem set is not used, the resource requirement to compute a schedule on a partially

unrolled graph is significantly less.

He applied a variety of heuristic methods including dynamic list scheduling (DLS),

simulated annealing (SA), and a decomposition-based constraint programming approach

(DA) on the partially unrolled graph. In many cases of his results for some algorithms, the

true optimal mapping was not found, and usually considerable computing time was spent just

16

to achieve the results they did compute. The time required to make use of the model might be

much more than desired for the heuristic solutions described.

2.3.5 Windows Task Scheduler

In standard operating system multitasking, fairness is usually preferred in design

more than overall completion time for a set of tasks. This is done in practice for many

reasons. An operating system usually does not have a priori knowledge about task durations,

and so, cannot predict how long a task will take. Also, task dependencies are usually not

explicitly specified to the OS. When user interaction exists, the OS usually does not know

which task a user prefers to finish first (although Windows handles this somewhat, as

discussed later). Response time may also be an issue, where a cooperative task scheduler

could have a single long-running thread blocking many other threads from completing. So,

overall completion time, which may be impossible without a priori knowledge and

significant metainformation about the tasks to be run, is usually sacrificed for fairness.

In Windows, preemptive multitasking is used at the granularity of threads (not

processes) [43]. Each thread is given a certain amount of time to run, called a time slice.

After a thread has run for its full time slice on a given processor (if it has not already yielded

cooperatively), it is forcefully preempted by the operating system and a different task is

swapped in to run on that processor. On a modern Windows system, the time slice is

approximately 15 ms. Round robin scheduling is typically used to provide overall fairness.

Foreground threads are given three times the normal time slice duration in order to prefer

applications the user is actively using to increase perceived system responsiveness. Windows

also supports process and thread priorities, which together form an overall thread priority

level, which is used to allow some threads to run before others. A "real time" priority is

allowed, which prevents other threads from preempting a time critical thread. Windows also

employs many other complex scheduling heuristics that may temporarily boost a thread's

priority to reduce resource locks that could cause performance problems (for example, a

mutual exclusion lock immediately followed by a task switch could cause other threads that

also depend on that mutual exclusion object to waste time, as the lock has already been

acquired by a previous thread).

17

2.4 Endoscopy Video Analysis

Colorectal cancer is currently the second leading cause of cancer related deaths in the

United States, just behind lung cancer. It is estimated that more than 141,000 people in the

US were diagnosed with colorectal cancer in 2011, and over 49,000 people died from it [44].

The standard procedure for identification of colorectal cancer and removal of precancerous

lesions is a colonoscopy [45]. In this procedure, an endoscope, which is a long tube with a

tiny video camera and wide-angle lens on the tip of it, is inserted into the rectum and

advanced through the colon to the cecum or terminal ileum. Then, the endoscope is slowly

removed from the colon by retracting it, while the endoscopist carefully inspects the inner

lining or mucosa of the colon. Abnormalities such as polyps that may develop into cancer can

be removed during the examination. In some cases visual documentation of findings or the

applied therapy is desirable; recording of images or video of the findings or therapy is then

performed allowing repeat inspection at a later time.

Over 14 million colonoscopic procedures are performed annually [46]. The current

Medicare guidelines suggest that each US citizen undergo colonoscopy at least once every 10

years starting at age 50. While colonoscopy has contributed to a decline in the number of

colorectal cancer-related deaths, recent data suggests that there is still a significant miss-rate

for the detection of even large polyps and cancers [47][48][49]; the colonoscopy adenoma

miss rate may be as high as 4% to 12% [50]. Evidence suggests that endoscopist-related

factors influence polyp detection rate. For instance, a landmark study published in 2006

reported that polyp detection rate of screening colonoscopy increases with increasing time

spent during the withdrawal phase of the procedure [51]. Other factors may also influence

polyp detection rate, such as speed of withdrawal, effort to visualize all of the mucosal

surface, bowel preparation and experience of the endoscopist.

2.4.1 Picture Archiving and Communication Systems (PACS)

The most related work is in the area of video capture and PACS (Picture Archiving

and Communication Systems) for endoscopy. Typically, the endoscope video signal is

directed into a video capture device on a computer, where the video from the endoscope can

be saved as individual snapshot images or captured as video. Video and images are typically

18

captured manually, either through interaction with the computer, by using a button on the

endoscope, or by using a special foot switch. Many of these video capture systems are

connected to electronic medical record systems (e.g., Cerner, Pentax, Gtech Information

Systems). There are no practical automated tools that allow one to keep very precise records

reflecting a colonoscopy exam.

2.4.2 Scene Segmentation and Object Detection for Colonoscopy

Endoscopic video detection can be seen as a specialized scene segmentation

algorithm that segments a sequence of frames into two types of scenes: procedure scenes and

non-procedure scenes. There are many scene segmentation techniques that have been

proposed for specific application domains such as news and movies [52]. Scene segmentation

has never specifically been applied to endoscopic video detection.

In the Wireless Capsule Endoscopy (WCE) field, some existing work focused on

dividing a procedure video into several segments corresponding to major anatomical

landmarks [53][54][55] or groups of similar frames [56]. These techniques assume that the

input video is a real procedure video.

Other previous work on endoscopy image analysis are for polyp detection

[57][58][59][60][61][62], automated objective quality measurements of colonoscopy based

on motion features, quality of images, and types of clear images [63], presence of a clearly

seen appendiceal orifice [64], and 3D reconstruction of the colon structure [65] and colon

surface [66][67][68].

Manual analyses for specific features in recorded videos would require an

experienced endoscopist or assistant to review every procedure; this would be redundant,

expensive, difficult to implement, and subjective. Indeed, to conduct quality control tests for

every procedure, automated analyses would need to be available.

19

Table 2.1: Overview of scheduling algorithms

Platform For non-stream programs For stream programs

Homogeneous

First-in first-out (FIFO)

Earliest finish time (EFT)

Round robin (RR)

Shortest job first (SJF)

List scheduling

Loop unrolling: slow

Partial loop unrolling: fast

Cyclic scheduling: slow, but yields small solution

Heterogeneous

Dynamic level scheduling (DLS)

Critical path on a processor (CPOP)

Generalized dynamic level (GDL)

Best imaginary level (BIL)

Task duplication scheduling (TDS)

Mapping heuristic (MH)

Levelized minimum time (LMT)

Heterogeneous earliest finish time (HEFT)

Fast critical path (FCP)

Fast load balancing (FLB)

Heterogeneous N-predecessor decisive path (HNDP)

Loop unrolling: very slow

Partial loop unrolling: fast, good results, does not
support heterogeneous choice well

Cyclic scheduling: slow, but yields small solution

Stream-EFT + K-HIT: very fast, good results, no
unrolling necessary for NP-Complete part,
supports heterogeneous choice

20

CHAPTER 3. OVERVIEW OF SAPPHIRE

The primary goals of SAPPHIRE are to (1) provide an implicit multithreaded

environment for complex data analysis, especially for stream programs such as video

processing, (2) ease the programming process for writing such a program, (3) ease the

collaboration process between parts of a large program, (4) modularity, (5) program

scalability, (6) extensibility and configurability, and (7) provide a framework for a proof of

concept for our research.

We designed our middleware from scratch, using years of past experience developing

a multiprocessing application, as well as coming up with solutions to numerous issues that

those previous generations of software encountered. The design methodology and

implementation address these goals. We support any environment or extension capable of

generating or being called from executable code, including popular APIs such as CUDA and

OpenCV [69]. Thus, we can generate heterogeneous programs to take advantage of GPU

computation. We support both task-parallel and data-parallel design methods, specifically for

stream programs. We attempt to ease the process of porting existing code by allowing the

programmer to choose the language they want (as long as it is capable of generating

executable code – although additional header files for their language may be needed). We

attempt to simplify most of the redundant and complex requirements of related work, while

also correcting some serious problems, such as DirectShow’s synchronization problems.

These problems are discussed in more detail in the next section.

3.1 Design and Overview of SAPPHIRE

Several aspects of program construction were considered when creating SAPPHIRE.

In particular, we wanted to remove as much redundancy of the development process and

automate as much as possible, particularly in regards to multithreading and collaboration.

The result is a very modular system consisting of well-defined tasks and data.

We have designed our middleware to take advantage of both task and data

parallelism. The programmer creates a program based on several separable tasks, which we

21

call modules. These modules may receive any number of inputs and generate any number of

outputs (as memory allows). Inputs and outputs are formatted pieces of data, which we call

packets. A whole program is constructed by putting together invididual modules that, when

combined, represent the overall intention of the program. Some initial inputs and

configurations are given to the modules, which provide a flow of data through the program,

eventually resulting in some final outputs representing the result of the program.

Modules do not need to worry about how or where they receive their inputs from –

they only need to request types of data. Then, the modules will automatically receive those

types of data packet-by-packet through a callback function. Some additional synchronization

setup functions are provided to synchronize different types and multiple packets worth of

data. This design frees up the programmer from complex tasks involving communication and

manual synchronization.

For example, an MPEG video compressor may consist of several components: (1)

converting a source video to the YUV colorspace, (2) estimating the motion of 2D blocks of

image data between frames, (3) transforming blocks of image signal data with the discrete

cosine transform (DCT), (4) quantizing the resulting DCT to provide input to (5) entropy

encoding that compresses individual blocks of video data, and (6) combining all the outputs

into a final MPEG video stream, which may be written to a file. The above components work

in a streaming manner, repeating with each frame of video provided as input. In this example,

there are divisible components that can perform tasks independently of other tasks, as long as

they have different pieces of data to process. The different pieces of data are the different

frames of video as well as the intermediate results of each component. The quantizer outputs

the quantized DCT matrices as some form of data which is then used as input by the entropy

encoder.

Every piece of data that is used as input or written as output by a module is explicitly

specified as a data type. For example, VIDEO could be a data type representing the video

stream. QUANTIZED_DCT could be a data type representing the output of the quantization

step. These pieces of data are put into a packet, which contains the data, a description of the

data (called the metadata), and some bookkeeping information about the packet itself. The

22

metadata defines a structure for the data of a packet that is used by the modules. For a

VIDEO packet, this includes the width, height, stride, etc., as well as a pointer to the video

data itself. A module calls SAPPHIRE to create the packet, but defines its structure and fills

it out with data itself. The packet is then pushed to SAPPHIRE, where all the routing of data

is done automatically by the system. The exact format of a packet's metadata is specified by a

module programmer for each type of data. A structure for this format is provided by the

module programmer to other module programmers that need to use that data type, typically

as a header file. Some documentation should also be written by the programmer so that exact

usage details are provided in order to avoid unexpected misuse of data.

By design, no module generally needs to explicitly communicate with any other

modules. Because the middleware handles nearly all of the communication aspect, modules

work more independently and thus are able to take more advantage of parallelism. Removing

the need for explicit synchronization and communication between modules as well as

implicitly giving each module its own thread makes creating a multithreaded application

much easier from a developer standpoint.

The middleware provides an API for modules to communicate with the middleware

(as opposed to modules communicating directly with other modules). An interface is also

defined for modules – each module implements several callback functions, which the

middleware calls in order to do things like initialization and commucation. The Register

function, implemented by each module, is called by the middleware to give each module the

chance to request types of input data it can process and specify what data types it will output.

After all modules' Register functions have been called, the middleware knows every input

and output data type that each module needs. From this, the middleware can build a complete

picture of all the communication and routing involved between modules for packets. This can

be represented by the parallel task graph.

23

Table 3.1: List of methods to be implemented by module developers

Table 3.2: List of core middleware functions by type (a more detailed list of API functions
can be found in Appendix A)

API functions provided by SAPPHIRE Purpose

Registration:

 emcAddInput Request data type as an input

 emcAddOutput Register data type as an output

 emcAddMuxInput Request logical grouping of data types as input

Communication:

 emcNewPacket Create a new data packet

 emcPushPacket Submit a packet of data to the middleware

 emcReleasePackets Release a reference to one or more data packets

 emcReleaseMuxPackets Release a set of data packets grouped by mux

Synchronization:

 emcMuxPacket Insert a single packet into a mux and check for mux satisfaction

 emcInheritPacket Inherit synchronization properties from a parent packet

 emcSetFinished Set a source module to a finished state

The core of execution of each module is the work loop – a loop that continuously

waits for more data to become available, and then processes it. The work loop along with all

its synchronization is implemented within SAPPHIRE itself (not each module individually),

so the programmer has less to worry about. The Data function is implemented within a

module by the programmer, where it is called by the middleware when data becomes

available. After a packet has been pushed to the middleware by a module, the middleware

routes that packet to every module that requests it through the Data callback function. Once

Methods implemented by each module Purpose

emmRegister Receives configuration data from the middleware

emmStart Middleware notifies module to start execution

EmmData Middleware submits single packet of data to module

EmmStop Module should stop execution

emmShutdown Module should free all resources

24

pushed, this packet is read-only, so that every module can then process it in parallel of other

modules. A module's result of the processing is in the form of a new packet, which is pushed

back into the system via a call to the middleware's PushPacket function. Once all pieces of

data have been processed, the middleware finishes up and notifies each module to shut down

before shutting down itself.

Repetitive obligatory code that might normally appear in a multithreaded

environment where synchronization is important is minimized by design. The middleware

handles most of the synchronization. Also, for other common repetitive tasks, the

middleware either handles or otherwise provides easy interfaces to make programming less

tedious. A bare-bones SAPPHIRE module could be written in about 10 lines of code,

although this would not accomplish much without actually processing data received. As the

incoming data packets are immediately exposed by the design of the middleware, it also

takes relatively few lines of code to be able to process the data and write new data back to the

system.

In order to create an actual program from a set of modules, a configuration file is

specified which consists of a list of of modules and their parameters, inputs, and outputs.

SAPPHIRE loads this configuration file, which in turn loads each module, passing along the

parameters from the configuration file. The modules perform individual tasks in a "black

box" methodology, while the configuration file specifies which components to use and how

those components make up the larger program. Overall, the design of the system actualizes

implicit parallel processing, speeding up the programming process, and making collaboration

easy.

We improve upon related work, such as DirectShow, by vastly simplifying the

development process. We remove the need for overly complex APIs and COM (Component

Object Model) as well as removing the complex synchronization problems and negotiation of

data types. A simple module with our middleware can be written in about 15-30 lines of

code, whereas a simple DirectShow filter like the SampleGrabber filter takes several hundred

lines of code. We also provide more guarantees in synchronization and completion of tasks,

where DirectShow may never correctly stop at the same frame being processed for every

25

task, and is overly aggressive toward skipping frames when processing appears to be lagging

behind. This is mainly because DirectShow is intended for use as a multimedia experience

(where a loss of a frame every so often is not noticed by the user, such as watching a movie);

it is not necessarily designed for use as a precise scientific analysis framework. A brief

comparison of SAPPHIRE and related work is summarized in Table 3.3.

Table 3.3: Comparison of features among multiple toolkits that support data or task
parallelism

Criterion MPI CUDA StreamIT DirectShow SAPPHIRE

Programming
Method

API+Library
Extended-
C +
Compiler

StreamIt
Lang. +
Compiler

API+Library API+Library

Types of
Parallelism

Data Data Task+Data Task Task+Data

Program
Construction

Explicit Explicit Explicit
Semi-
automatic

Semi-automatic

Accuracy in
Data
Processing

Accurate

Accuracy
often
sacrificed
for speed

Accurate
Skip some
frames

Accurate

Memory Leak
Assistance

No No No No Yes

Performance
Profiling

3rd Party Yes Unknown No Yes

Debugging
Assistance

Debugger Debugger Unknown Debugger
Some built-in assistance;
Other debuggers supported

3.2 Features and Strategies

Unlike traditional multiprocessing middlewares, SAPPHIRE requires very little effort

from the programmer in handling communication and synchronization. In programs that do

their own multiprocessing, typically the programmer handles some complex synchronization

issues, which in turn allows safe communication between modules. The code that handles

these issues and communication may need to be replicated with each additional thread or task

added to the system. For large programs, this is very repetitive and may require significant

26

work. However, for programs that utilize our middleware, this is unnecessary, as SAPPHIRE

handles this internally. SAPPHIRE is also additionally designed to be able to handle the

stream programming paradigm and implicitly take advantage of the added parallelism it

provides.

SAPPHIRE is able to automatically build a program simply by listing a set of

modules, parameters, and desired initial inputs and final outputs. Furthermore, the listed

modules then provide their desired inputs and outputs. This information is enough for

SAPPHIRE to construct a parallel task graph which can be used to determine all the

synchronization and communication necessary for program execution. This collective

information, as well as some additional API functions within the SDK, provide a powerful

development and runtime environment for multiprocessing programs without a lot of effort

on the part of the programmer.

3.2.1 Semi-Automated Program Construction

We further explore the stream programming paradigm and show some specific

advantages that it allows. We make some further refinements to the realization of this

paradigm by showing how to construct a new program from predefined components without

the need for additional code. Program components (tasks) are automatically connected

together based on their inputs and outputs, and run in parallel. Our method also allows for the

pruning of unneeded code and data from the program.

Program Graph Construction

In constructing a program that conforms to the stream programming model, it may be

useful to view a program as a directed graph since this representation provides a useful way

to model aspects of a program. Individual, separable components or tasks can be viewed as

nodes of a graph, and communication between components can be viewed as edges. Nodes

can be labeled with costs associated with the execution time, and edges can be labeled with

costs associated with communication time.

For a streaming program, working on n data sets in its data stream may be represented

by a single node per task, where each node processes up to n data sets each over the course of

27

a program. Or, the same program could be represented by an “unrolled” version of the graph,

consisting of up to n of each task, where each node processes only a single data set. This

representation can become exceedingly complex when large amounts of data are used.

Data Dependencies

In the stream model, we recognize that every component in a program performs the

same repetitive task on different pieces of data, much like an assembly line. Each task

expects certain types of input data and produces specific types of output data. The input can

come from program arguments, interactive user input, or the output of another task. Most

parallel computing middlewares provide a method to the application programmer to pass the

data from one task to another. This would typically be done manually by writing code to call

the middleware API, sending and receiving or scattering and gathering data to and from other

nodes. Depending on the application, the sending and receiving of data can become

increasingly complex with the number of tasks in the system.

Instead of manually coding the passing of information to explicit nodes, suppose that

instead, each task simply registers with the middleware what types of data it will accept and

what types of data it will produce. A computer algorithm can very easily match up the

outputs of any task to the inputs of any other task. This frees the application programmer

from having to do explicit communication between tasks. Instead, the application

programmer would do whatever processing needs to be done in a given task, and then simply

write the data out to the middleware, along with the data type. The middleware searches for

tasks that would like to receive that type of data and sends the associated data to those tasks.

This is precisely what SAPPHIRE does.

Compared to conventional message and data passing in parallel computing

middleware, this is very much like a broadcast operation. However, the targets of the

broadcast are more limited and implicit to the application, making the software design

simpler. Additionally, the middleware has the opportunity to automatically optimize the

communication of the entire system. For example, using shared memory when possible to

avoid the communication cost almost entirely, or perhaps it can choose good spatial locality

for faster data transfers. Designing the middleware in this way also allows the application

28

programmer to design the software with more modularity than calling explicit

communication functions. A side effect of modularity is that the separable tasks are much

more easily run within a stream computing system – the stream model prefers modular tasks.

As long as two tasks are separable, they can be run in parallel in some fashion, even if it is

within a different iteration of processing.

Programming Methodology

We consider modularity to be important to the programming paradigm. Although

programs are often designed with modularity in mind anyway, modularity is also a way to

enforce separable tasks. By designing each task modularly, developers implicitly improve on

the amount of parallelism that can be achieved.

An interesting caveat of having a modular program with automatic data dependency

matching is that a full program can be constructed by specifying desired final outputs,

possible module configurations, and program arguments or inputs. The framework can

construct an actual program based on a library of modules available to it and the desired

parameters. The modules capable of writing the final outputs are added to the program,

modules with specific configurations are added and configured, modules related to the

program arguments and inputs are added, and then the framework can automatically find,

add, and configure all the modules in between (using some defaults or automated

configuration), to create a complete program. Little programming knowledge would actually

be required to construct a program in this fashion; only a few settings and final desired output

need be entered into a configuration file.

3.2.2 Module Implementation

Implementing a module for the programmer is similar to writing a class in a

programming language. Each module is implemented as a dynamic-link library (.dll) or a

shared object (.so) file, which may be written in any programming language capable of

producing such a file. A module implements and makes available five functions for the

middleware to call: Register, Start, Data, Stop, and Shutdown. The Register function is called

by the middleware to query for information such as a module’s inputs, outputs, and version

29

information. The registration information describes the functionality and requirements for

each module. Each module is then assigned its own thread. The Start function is called by the

middleware to tell a module it may start processing. Additional threads can be created for

additional parallelism if desired. The Stop function is used to tell a module it should stop

producing new source data, but that it can finish processing its remaining data. The

Shutdown function is called as a final cleanup and destruction of the module.

Actual processing is handled by the Data function as a callback. As a packet of data

that the module is listening for becomes available, it is automatically passed to the Data

function on that module’s execution thread. The module may then decide to process it, buffer

it and wait for more data before processing it, or release it. Some tasks may require several

pieces of data before processing (such as computing the motion between two video frames).

In other situations, the programmer might want to wait for several different data types to be

available before processing any one by itself (such as an MPEG encoder writing both video

and its corresponding audio to a file). The middleware’s API handles these kinds of common

synchronization problems. A “mux” can be setup to combine multiple types of data into a

single virtual data type that can be processed more easily.

After processing its input data, a module usually outputs some result data back to the

middleware for other modules to use as input. This is accomplished by using the middleware

to construct a packet, attach some data and metadata, then pushing the packet back to the

middleware. The delivery of these packets of data to other modules’ Data functions is

handled strictly by the middleware, so no additional communication logic by the programmer

is necessary.

To port an existing piece of software, a programmer should first attempt to break

apart the existing program into separable tasks of reasonable size. Required inputs and

outputs between those tasks should be declared as data types and packets should be created

for each data type. A module implementing each of the five necessary functions with some

minimal setup and synchronization is easily created from a provided module skeleton (which

consists of very few lines of code). Usually, the original code can be encapsulated inside a

function, using the data packets provided to the Data function as inputs to the function. As

30

long as a program can be broken into parts, with the data required for each part clearly

labeled, very little additional work is necessary for porting existing code (even serially

executing code) to our middleware (which implicitly provides task parallelism). More

complex handling or synchronization of data is still possible.

Programs are described by a configuration file, and optionally, additional arguments

on the command line. The middleware initially loads a configuration file that describes the

library of modules and configuration information for each module. This information is

passed to the Register function for each module. The modules are automatically connected as

described in the program graph construction method discussed. Some modules may be source

modules – for example, a video camera or MPEG file reader may generate video frames that

other modules can use to start a complex image processing chain. The configuration specified

for an MPEG file reader module might simply be the input filename(s). For these special

source modules that do not require any other inputs, the Data function may never be called;

instead, a separate thread is created when Start is called, whose sole job is to push data

packets. These data packets are pushed into the system where other modules that do need

them as input can process them. Each module in a task graph continues with its processing

until some final output(s) are created. This is repeated for each time quantum of data for the

stream program until all pieces of data are processed. When no more data is available, the

source module(s) report that they are finished, and each future module in the task graph

finishes up with the data they have remaining. Eventually, each module’s Stop and Shutdown

is called, and the program exits.

3.2.3 Data Packets

The primary focus of our middleware is the processing of stream data. Although this

is usually in the form of video, we do not restrict the type of data processed. The input data

streams are split into separable, quantized packets of data. Each packet is assigned a

timestamp to give its position in the stream. For video, this equates to individual images or

frames of the video. Other data types, like audio, are split as closely as possible into relatable

time quanta. For example, for a video frame packet that corresponds to the time interval 67-

100 milliseconds (ms), the audio samples corresponding to the same time interval will be

31

fully and exclusively contained in their own packet as well. The input stream for a particular

type of data can be reconstructed by concatenating the packets of that same data type in

chronological order. Different data types may be captured or processed at different frame

rates. Because we consider video to be the most significant type of data (used often, difficult

to split, but easy to logically quantize), we generally assign a reference time quantum based

on a single, complete frame of video data. Then, we split other types of data based on the

same corresponding time quantum. This makes it easier to synchronize across different data

types; however, it is not a requirement of the system.

Each packet of data consists of some bookkeeping information for the packet itself,

the actual data it contains, and some metadata describing that data. The actual format of this

data and metadata is specified by the programmer and shared between tasks. For example, a

video data packet would contain the video frame’s pixel data, but also metadata in the form

Figure 3.1: Organization of the packet system in the middleware. Packets are stored in a linked list, allowing
both dynamic allocation and traversal to temporally close packets of similar type. Each type of data (e.g.
VIDEO) is stored in its own linked list. The system maintains all the packets of the system through an array of
linked lists (storing both the head and tail of each list), which each array index corresponding to a unique data
type.

 type: video
 data:
 metadata:

 next_time:
 referencecount: 2

 size: 0x20
 timestamp: 0.5339

x
x

 type: video
 data:
 metadata:

 next_time:
 referencecount: 3

 size: 0x20
 timestamp: 0.5672

x
x

 type: video
 data:
 metadata:

 next_time:
 referencecount: 4

 size: 0x20
 timestamp: 0.6006

x
x

 type: video
 data:
 metadata:

 next_time:
 referencecount: 4

 size: 0x20
 timestamp: 0.6340

x
x

null

 type: audio
 data:
 metadata:

 next_time:
 referencecount: 1

 size: 0x20
 timestamp: 0.5339

x
x

 type: audio
 data:
 metadata:

 next_time:
 referencecount: 2

 size: 0x20
 timestamp: 0.5672

x
x

 type: audio
 data:
 metadata:

 next_time:
 referencecount: 2

 size: 0x20
 timestamp: 0.6006

x
x

 type: audio
 data:
 metadata:

 next_time:
 referencecount: 2

 size: 0x20
 timestamp: 0.6340

x
x

null

 type: analysis_fft
 data:
 metadata:

 next_time:
 referencecount: 1

 size: 0x20
 timestamp: 0.5339

x
x

 type: analysis_fft
 data:
 metadata:

 next_time:
 referencecount: 1

 size: 0x20
 timestamp: 0.5672

x
x

 type: analysis_fft
 data:
 metadata:

 next_time:
 referencecount: 1

 size: 0x20
 timestamp: 0.6006

x
x

 type: analysis_fft
 data:
 metadata:

 next_time:
 referencecount: 1

 size: 0x20
 timestamp: 0.6340

x
x

null

 type: video_hsv
 data:
 metadata:

 next_time:
 referencecount: 1

 size: 0x20
 timestamp: 0.5339

x
x

 type: video_hsv
 data:
 metadata:

 next_time:
 referencecount: 1

 size: 0x20
 timestamp: 0.5672

x
x

 type: video_hsv
 data:
 metadata:

 next_time:
 referencecount: 1

 size: 0x20
 timestamp: 0.6006

x
x

 type: video_hsv
 data:
 metadata:

 next_time:
 referencecount: 1

 size: 0x20
 timestamp: 0.6340

x
x

null

32

of width, height, bit-depth, frame rate, etc. The packet’s bookkeeping data consists of

information such as the size, type of data, time quantum, reference counter, various pointers,

and other necessary information. In ordered first-in first-out linked list (FIFO) is maintained

for packets of similar type in order to form an asynchronous buffer of inputs and outputs

between tasks. The linked list may grow or shrink as necessary, although imposing a

maximum size will restrict the maximum memory usage of a program and also prevent one

task from getting too far ahead of other tasks. The middleware can automatically decide how

to optimally share or replicate (only if necessary) this data between tasks.

3.2.4 Communication

Modules do not communicate directly among each other, but, instead, by sending

packets of data to the middleware. Each module registers the data types it wants to use as

input and which data types it may output. When a data packet is output from one module, the

middleware routes the packets of data from that module to the inputs of other modules that

request the corresponding data type. This data is automatically buffered by the middleware

until the modules that use the data can finish processing each packet of data. For each packet

of data, a reference counter is incremented for each module needing the data so that the data

can be freed once every module has finished using the data. If a module is too slow to

process the data and the size of the buffer becomes too large, further buffering is temporarily

blocked until buffer space becomes available. If a task cannot process data fast enough, the

program will still run, but not in real-time. If buffer space never becomes available, the

program will eventually stall, and the middleware will automatically alert the programmer of

the situation, including which modules have stalled.

Because communication in this way is handled almost entirely by the middleware,

modules never need to explicitly call any other module. When a packet of data becomes

available for a module to use, the module is informed of this through a callback function and

passed each packet of data one at a time. A benefit of this design is that each module can

have task parallelism with every other module. Although there may be some dependencies

between modules where parallelism is not possible, we can use this design to maximize task-

parallelism of the overall program within a single time quantum and between time quanta. As

33

each module is essentially its own executable object, the middleware assigns a running thread

to each module, giving rise to semi-automated multithreading. A well-designed program

would consist of separation of many tasks (and thus many threads) in order to maximize

parallelism. In addition, if desired, each module may create additional threads to handle data-

parallelism. Alternatively, multiple instances of a module can be created to work on different

parts of each data packet to handle data-parallelism.

Because each module is separated from other modules, we can view heterogeneous

computing tasks as also separate modules. Indeed, a task running on (for example) a GPU

will run in parallel with other code running on its host CPU. Similarly, a layout uploaded to

an FPGA will run in parallel with its host CPU. Modules that are executed on different

computers or different clusters of computers are all separated. The modularity exists as both

a means to collaborative program design and to implicit parallel processing. For a large-scale

project, modularity is already an important concept to maximize concurrent development

time of modules.

The middleware abstractly handles all communication between modules and task

allocation of those modules to the available computing architecture – the programmer need

not worry about details more complex than the format of the data packets. If multiple

modules want to use the same packet of data as input, the middleware optimally decides how

to buffer and replicate the data as necessary. If multiple tasks on the same memory-sharing

processor want to use the same packet of data, the data is not replicated, but instead the same

pointer for that data is shared between tasks. Because of these communication and task

abstractions, it is possible for the middleware to optimize many aspects of overall program

execution with little to no effort on the part of the programmer.

3.2.5 Synchronization

There are two types of synchronization that occur: the synchronization of data packets

within the system with modules that use them (middleware synchronization), and the

synchronization of data packets that will be used within a module (application

synchronization). For the middleware, care must be taken to ensure all data is handled in a

thread-safe manner automatically. For the application, it is a different kind of

34

synchronization, in that the programmer (and thus module) may be interested in processing

several packets of data simultaneously (e.g., video and audio with a matching timestamp).

Because the Data function only receives one packet at a time, the application must

synchronize the data across several calls of the Data function.

Application Synchronization

Although the application need not worry (for the most part) about thread safety with

the middleware, the application must be able to synchronize the data for itself, which comes

in one packet at a time, by properly combining it. The middleware provides functionality to

aid in this. A multiplexer (mux) is a construct provided by the middleware for the logical

grouping of data types. For example, if a module wants to be notified when a data packet is

available for both audio and video, instead of registering for audio and video separately, the

module registers with a mux that contains both audio and video with the AddInputMux

function. Although the Data callback function still receives only single packets of data at a

time, the module can call a middleware function MuxPacket containing the mux and the

Figure 3.2: Example module code for synchronization using a mux

 // mux is an allocated emMux object that manages the mux synchronization of data types and packets

1 int emmRegister (emModule* module, configPair* configuration) {
2 emcAddMux(module, mux, "VIDEO", 0, 0, 0, 0); // add VIDEO type to mux
3 emcAddMux(module, mux, "INSIDE", 0, 0, 0, 0); // add INSIDE type to mux
4 emcAddInputMux(module, mux); // add the mux to actual module's inputs
5 }
6
7 int emmData (emModule* module, emPacket* pkt) {
8 emPacket* video;
9 emPacket* inside;
10
11 if(!emcMuxPacket(module, mux, pkt, 1)) { // wait for one packet of each data type
12 return 0; // else, simply break (process unfinished data later)
13 }
14
15 emcGetMeta(video, "VIDEO", mux); // fill 'video' packet with VIDEO data type from mux
16 emcGetMeta(inside, "INSIDE", mux); // fill 'inside' packet with INSIDE data type from mux
17
18 // process data packets...
19 }

35

incoming packet to determine whether all packets in the mux have been satsified (i.e., at least

one packet of data is available for all data types within the mux). If the mux is satisfied, then

the module could decide to process the logically grouped data as a whole. Any number of

inputs may be included in a mux.

3.2.6 Feedback Loop

Although in related work, program graphs are typically represented directed acyclic

graphs (DAGs), this may impose a limitation on the types of programs that could be used.

We allow for program representation with cycles (or feedback loops) in the task graph.

Although data will flow continuously as it becomes available with no particular intelligence

associated with it (and no guarantee which module will get what data first), feedback loops

are generally used by a module programmer already knowing what data type will be a part of

that feedback loop. This data type and its feedback delay are especially important to inform

to the middleware in the case of using a mux – at least one edge in the feedback loop cycle

must have a delay attached to it in order for a mux to correctly synchronize a past piece of

data with the current frame's data. The delay would indicate that the processing of the output

from one task to the input of the next task would be processed in a future iteration of data in a

stream program.

Although this feedback loop itself could provide a restriction on the amount of

parallelism a program can achieve due to the circularly serial nature of the loop, it does allow

the representation of programs that could not properly function without the cycle. Other

components in the program can still function with full data and task parallelism as

dependencies allow. To allow for maximal performance, the cycle time of the feedback loop

should be minimized, as the cycle time of the loop can induce a minimum bound on

processing time per iteration that would not normally limit a fully acyclic graph. The

feedback loop delay is specified as an option to a mux input.

3.2.7 Data Filtering

A feature sometimes useful and desired by large modular programs and also by the

aspect-oriented programming methodology is that of data interception. Explicit inputs and

36

outputs for each module are useful, but they may lack extensibility. For example, suppose we

have a video capture module that captures video in its raw form. We also have a module that

would like to receive the raw video data to do some image analysis. So, the video capture

module outputs raw images and the image analysis reads the raw images. The system can

easily match up all the inputs and outputs automatically (in this case, just one of each).

However, this lacks versatility if the analysis module only accepts raw video data as input.

Suppose that the input video contains some confidential information. We want to

disallow this confidential information from being passed on to the analysis component.

However, the application developer might not have access to changing how the analysis

module requests its input data type (for example, a binary-only module with no source code).

Our solution to this situation is a middleware-provided method that allows other modules to

intercept data at some point in the pipeline, do some modifications, and then push the same

data type back out for other modules to use. We accomplish this through a prioritization of

whether a module receives a data type before all other modules that utilize that data type.

Communication and data processing proceed in order based on module priority if multiple

modules request a data interception.

When registering for inputs and outputs, a module registers the desired data type for

both input and output. Then, another function, SetPacketFilter, is also called during

registration to indicate the priority of the data interception. When the middleware finalizes

the registration stage, it reviews all packet filters to determine what priority each module uses

for its outputs and assigns actual inputs from this set of specified priorities. So, following the

example mentioned, a module could intercept the raw video data directly from the video

capture module, modify it, and then write it back out before any other module was able to see

the original video data. Modules that do not specify any priority will always receive the last

(lowest priority) output of this data type. More detail is available in Chapter 4.

3.2.8 Profiling

Because our middleware acts somewhat as a supervisor for each task and each piece

of data consumed and produced, we can automatically generate execution time statistics

(profiling) for each and every module. We can use that information to find bottlenecks that

37

would be reported back to the programmer (where the programmer could decide to optimize

the speed of a given module that was a clear bottleneck), automatically optimize the

scheduling and allocation of tasks to processing nodes, determine if data is able to be

processed in real-time, or vary the rate at which data should be processed to allow for real-

time processing.

Although the middleware does not require real-time processing of data, online real-

time analysis of video data is important for our case study application, so we provide this

Figure 3.3: The real-time performance GUI of our middleware for two program configurations. (a) On the left,
the average time per frame per module is reported. Each row represents a module within the system, and each
individual bar represents the time each thread takes relative to other threads. We use multiple bars within a
single module to represent the relative execution time of individual threads for that module. For example,
RTEOI.dll takes about 29 ms, on average, total time across all threads. Because there are 8 main compute
threads, each thread in takes about 3.5 ms on average. (b) On the right, the -perf option is used to get more
accurate readings and also worst case frame time over the previous five seconds. For example,
spiralCounting.dll only takes 4 ms on average, but in the worst case, it took nearly 60 ms to process a frame.
This is because spiralCounting.dll skips some frames to be able to process without lagging behind. However, if
there were a real-time deadline processing constraint of finishing each frame before the next one was received
(33 ms for 29.97 fps video), then that module would not have been able to satisfy the deadline.

38

capability. An example of some of our real-time profiling capability is shown in Figure 3.3.

One problem with profiling and optimizing a program is that some components of a

program may be data-dependent for how much computing time they take. For example, we

know that some of our video may be completely black (e.g., when the endoscope is

unplugged but video is continued to be captured). This video will generally be very fast to

process, because there is no useful data in it. If we collect runtime profiles based on

completely black video frames, our profiles will not be very useful. Similarly, there could

exist some data that causes a module to take much longer to process than normal. A simple

average of time taken per module might not be accurate for good scheduling.

We can collect this profile data automatically on a per-iteration level (i.e., each frame

or data packet) per module so that we can gather not just average time per module, but also

worst case, best case, and if the developer desires, every individual time to process every

single iteration. For profile data collected on a per-iteration level, we can even construct a

time-context-based schedule. When estimating the execution time of a program for

scheduling purposes, a black frame might be processed fast by both modules A and B,

whereas a non-black frame might be processed in some amount of time represented by some

normal distribution. When estimating the execution time of a program in a specific iteration,

instead of using only the average time, which could include both black and non-black frames,

or a completely random value from some distribution of profile times, where module A could

use a randomly chosen value derived from a black frame and module B used a randomly

chosen value derived from a normal frame, it makes more sense to use a value derived from

black frames for both A and B, or derived from normal frames for both A and B. This gives a

more accurate estimation of the execution time for a program, and thus, more precise

scheduling is possible.

3.2.9 Memory Leak Detection

In a complex program with significant multithreading, synchronization, and handling

of data by many modules, it is easy to forget to deallocate some pieces of data. Although

leaking the occasional piece of data might be insignificant in some programs, in a stream

program, the same leak of memory may occur with every subsequent frame of data,

39

eventually causing the program to run out of memory. In order to help find these memory

leaks, SAPPHIRE provides a built-in memory leak detection method. The OS's runtime

memory allocation, reallocation, and free functions are hooked by overwriting the starts of

these functions with a jump to our own functions. These functions then call their original

counterparts, but while recording the inputs and outputs from these function calls, as well as

the calling function's address. The result is a detailed map of the allocated memory regions,

and what modules and functions called each individual allocation. Further details are

described in Chapter 4.

Although data is continuously accumulated, it is not clear how leaks are detected

from this data. Although we provide the memory allocation statistics through a profiling

window updated in real-time which displays the memory taken for each module in the

system, this is only useful for a programmer to observe absolute changes in allocation. For a

more accurate and semi-automated method of memory leak detection, we heuristically

determine leaks based on several factors: (1) ignore initialization allocations that will never

deallocate by waiting a certain amount of time after the start of the program, (2) only

memory that has been allocated for longer than about 30 seconds is a candidate for a memory

leak (assuming about a 10 second buffering of data in the middleware), and (3) memory leaks

are generally repetitive (considering that stream programs are repetitive), so when the same

caller addresses occur repeatedly and frequently, they are more likely to be real leaks.

While (1) and (2) are automatically used to cull some memory allocations as

legitimate, (3) is displayed by the middleware on-screen during execution time for the user to

observe and determine in individual instances whether or not those allocations are real leaks.

When the user sees many addresses that are identical and/or allocations that are very old, the

programmer can use the function addresses to trace back to the source code exactly what line

of code was causing the leak. Although this step requires some debugging knowledge, it is

much better than not having the capability at all. Technical details are available in Chapter 4

and usage details in Appendix E.

40

3.2.10 Crash Reporting

For large multithreaded programs, it is sometimes difficult to debug and/or determine

the cause of a program crash. So, we have a built-in feature to determine which module

caused the crash as well as determining which functions cause the crash. This is useful for

remote execution where a debugger is not available. However, the middleware also supports

running under a local debugger to debug crashes without interference. For crash reports, the

thread ID of the thread that caused the exception is available; developers can look through

the list of loaded modules' thread IDs that have been kept track of in order to determine

which module the crashing module actually is. We also have the exception address, but

sometimes this is part of an unrelated library. More details as well as an example crash report

are given in Chapter 4.

In debugging, we really prefer to find the crash address in the programmer's original

module code. Often times the stack is still available in an exception, in which case,

developers can walk the stack back examining various addresses at each stack frame. When

one stack frame's return address matches that of a loaded module, the programmers have

found the crash address in the original module. Some special exceptions are handled as

special cases, such as statically linked C runtime or debug runtimes that are part of the loaded

module but not part of the programmer's code. In these cases, the special cases are skipped

until a better candidate for a crash address if found.

3.3 Common Modules and Data Types

Although SAPPHIRE is a completely generic framework, it is designed especially

with stream programming in mind, and we intend to use it especially for our case study

program, EM-Capture, a medical video analysis program. So, we have written several

modules to assist in this usage. For example, a module that decodes data from video files and

inserts the video frames into the middleware (mpegreader.dll), a similar module that writes

the video frames back to a video file (mpegwriter.dll), a module that captures video from a

video capture device (videocapture.dll), a module that displays the video data to the screen in

its own window (hud.dll), and several others. All of these modules are highly configurable in

order to suit a particular application's needs.

41

3.3.1 Video Data and Modules

Since we primarily work with medical video, the most important data type is the

video frame. We declared a video data packet called VIDEO containing the pixel data, width,

height, bits per pixel, frame rate, and data source. Several modules can produce this type of

data, or a precursor to this data (called RAW_VIDEO), depending on the situation –

mpegreader.dll to read a saved MPEG2 video file from disk, videocapture.dll to capture from

a video capture device such as an endoscope, and screencapture.dll to capture a computer

screen’s display to use it as an input video stream. Because these are producers of data, they

can be viewed as a source module in the parallel task graph. Each module offers a variety of

configuration options.

Mpegreader.dll can take a single file, multiple files, directory of files, or a set of files

specified by a filemask. The starting frame, ending frame or length of playback, and speed of

playback can be set for each video. Videocapture.dll can capture from an installed video

capture device that is visible to Windows and DirectShow. Most video capture devices

include a driver to use with DirectShow, so this provides a simple common way to work with

most video capture devices. The parameters for videocapture.dll include the device name,

device input line (S-Video, Composite, etc.), width and height of the capture, width and

height to scale the RAW_VIDEO output to, framerate, and bits per pixel. Screencapture.dll

may be useful to feed the display of either the entire computer's desktop or a single window.

This could be used, for example, as a remote desktop display, if the video data was sent over

a network. Or, a video of what is happening on the computer could be saved to a video file.

Configuration for this module includes window name (or left blank to capture the entire

desktop), optional width and height to resize to, and framerate.

Several modules can also save or display the video data type, including

mpegwriter.dll to save the video frames to an MPEG2 video file, aviwriter.dll to save the

video frames to an AVI video file with any installed video codec on the system, getframes.dll

to save individual frames to disk in single images in most common image formats, and

HUD.dll (the heads-up display) to display the video frames to a window on the computer

screen. In many situations, these modules are sink modules to the system, in that they might

42

not write any further packet data to the middleware, but they still process and output useful

data somewhere else (e.g., to a file).

Mpegwriter.dll takes in its configuration the input data type (e.g., VIDEO), a

filename format string that determines the output filename(s), encoding parameters like

bitrate, quality, an optional "real-time" flag to ensure encoding never exceeds available CPU

time, and several other optional parameters that configure how mpegwriter.dll might modify

its behavior based on the length of the video (e.g., only keep videos that are at least 2 minutes

long, write information about the file back to a data packet for the middleware, etc.). The

filename format string is a string similar to something like sprintf that converts code strings

into different strings based on some information about the video to be written. For example,

%YYYY% is replaced by a 4-digit year (similar codes exist for other components of the date

and time), %num% for video number (number of distinct videos that have been written so far

by mpegwriter.dll), and %ip% for the IP address of the machine. This allows for distinct

filenames to be used when multiple video files need to be written (for EM-Capture, we write

one video file per medical procedure performed). Aviwriter.dll performs functionally the

same as mpegwriter.dll, however it writes to an AVI video file instead of an MPEG2 video

file. As such, the codec and its custom configuration is specified as another parameter and as

a saved external configuration file. getframes.dll takes the file output type (e.g. JPG, PNG,

GIF, BMP) as a configuration parameter.

Hud.dll is an important module in the system that allows us to see in real-time the

video data and its results being processed while the system is running. This could be as

simple as a video display (which only specifies the input data type and automatically displays

it), or a complex synchronized display of video, some textual data representing the results of

different modules' analyses, and even graphical feedback generated by those modules as an

overlay on top of the video. This can be used in useful ways; for example, marking the

location of a polyp during a colonoscopy. This module has numerous optional configuration

parameters. To specify a text output of any packet in the system, a text= line is used in the

configuration file. To display the width of the video frame, a line like

"text=VIDEO:width/width: %d" would be used. The name of the data packet (VIDEO) and

the name of the field within the data packet (width) is used to provide a source for the

43

displayed string. Then, a format string is specified for actually displaying the string on

screen. This can be done any number of times and anchored to any corner or side of the

screen in any font and color. To overlay graphical data (for example, to draw real-time

feedback or non-textual information on top of the video), the overlay parameter specifies an

input data packet type (which is formatted as common video data) and an overlay chroma

key specifies how the video will be mixed (e.g., with transparency based on a color or alpha

blending). A synchronization option allows data to either be displayed as soon as it becomes

available, or to wait until all data for a particular frame is available so that they can all be

displayed at once in a sychronized way. Synchronization is important for data and overlays to

match up with the underlying video. Some additional properties include whether to display

fullscreen or in a standard window, whether to record the combined hud.dll window's output

to its own video stream (which could be combined with another module to write to a file),

and some other special functions. Some interactive keys are available. For example, the '1'

key hides all interface elements, the '2' key shows statistics about the middleware data

streams (framerate and time to fully process each frame), and Alt-Enter causes the HUD to

become a fullscreen window.

Emlive.dll is a variation on hud.dll that allows external programs to examine or

display the video data running through SAPPHIRE in a synchronous manner. A shared

memory space is setup to enable this.

Autoresize.dll is another commonly used module that can take some input video

(usually RAW_VIDEO) and crop/resize it in order to provide a less redundant stream of

video data. For EM-Capture, the video captured from the endoscopy hardware usually has a

very large black border around the real video data, which could even be as small as half the

captured video area. This module can automatically crop this input video to the smallest

bounding rectangle representing the non-black area and write out a new data type (usually

VIDEO) which is then used by the rest of the system analysis modules. This way, other

modules do not need to manually crop/resize the video data themselves.

Imagemask.dll is a module similar to autoresize.dll, except that instead of cropping

video, it instead generates a video stream in the form of a binary image mask of the input

44

video stream. Because the endoscopy video we receive may not be a simple rectangle, but

rather an octagon or ellipse, it can be useful for other modules to receive this mask of "valid"

video data rather than do this function on their own with potentially different

implementations.

Videomixer.dll is a module that can be used to combine multiple video streams into a

single video stream based on transparency or alpha blending. It is useful to combine several

overlay video streams into a single video stream that can be passed to hud.dll.

Grayscale.dll is a simple module that generates a grayscale image of an input video

stream. As several analysis modules may end up converting the RGB video data into

grayscale for processing, it makes sense to put this into a separate module so that the

operation is performed only once for all modules. This reduces redundancy as well as

increases parallelism.

3.3.2 Simple Analysis Modules

The functionality of these modules is described in detail in Chapter 6. These are

primarily used for endoscopic procedure detection for our EM-Capture program, but may

also be used by other modules in different ways.

MeanR.dll takes video data as input, computes the mean red pixel value over the

entire frame, and writes out a data type called MEANR. meannormr.dll does the same thing

except computes the mean normalized-red pixel value and writes out a data type called

MEANNORMR. histdiff.dll computes the motion of the input video stream between each

successive frames and writes out a data type called HISTDIFF.

Meanr_dv80.dll and meannormr_dv80.dll each compute the variance of differences

with outliers removed of the MEANR and MEANNORMR data types and writes out

MEANR_DV80 and MEANNORMR_DV80. meannormr_risefall.dll computes how the

MEANNORMR values rise and fall over time and writes several properties of this out as as

MEANNORMR_RISEFALL. color_energy.dll computes the energy of various histograms

generated over a window of time from the input video. This is another useful form of motion

and scene detection. brightness.dll computes the average brightness of a frame of video.

45

Inside.dll combines all of the results of these simple analysis modules to determine

where the start and ending frame of a procedure is from a continuous stream of images. A

data type of INSIDE contains a flag of whether or not the corrsponding VIDEO frame is part

of the same procedure or between procedures (outside-patient video frames, which should be

discarded). A similar data type called INSIDE_NODELAY provides the same information

except without a delay imposed on the INSIDE packet. The delay is required because

inside.dll uses temporal features to determine whether or not a frame is part of a procedure.

While INSIDE is delayed up to ten seconds (the duration is based on our inside detection

algorithm) until a final decision can be made for the start a procedure, INSIDE_NODELAY

gives an immediate conservative guess about whether the frame is part of a procedure. It will

report false positives if it thinks a frame might end up becoming part of a procedure, but

otherwise, it never reports false negatives.

3.3.3 Helper and Extension Modules

Log.dll provides a synchronized and combined logging system for modules to use. A

module uses a function identical to printf (called eprintf, with some extra parameters that

include the severity of the logging event, timestamp, etc.) in order to send information to

log.dll. This function, in reality, creates a packet of type LOG that contains the necessary

information. Log.dll then listens for these packets and can write them out one at a time to a

logging file specified in the configuration file. Some additional parameters can be provided

to this in order to remove non-severe logging messages, cycle logs, etc. Although modules

can certainly implement their own logging functionality or simply print to screen, this

module includes all the synchronization (where printing to the screen is a resource shared by

all modules and may have multithreading issues) and output/severity/configuration options

necessary for typical log files.

Tcp.dll converts SAPPHIRE from a single system middleware to a cluster-visible

middleware. Some information is specified such as hostname and port to listen on and remote

systems to connect with. Then, data types are specified that need to be transmitted to and

from each host. Because individual modules never actually communication to other modules

46

in the system, some module that expects the VIDEO data type might get its VIDEO data

from tcp.dll from a remote system rather than a local videocapture.dll.

3.4 Example EndoCapture.ini

SAPPHIRE programs are specified by configuration files. These files are simple text

files that are a list of modules to load and their parameters. For example, Figure 3.4 is a

configuration file specifying a program that shows the autocropped video of a capture device

in a window on screen:

Figure 3.4: An example configuration file, specifying a SAPPHIRE program and configuration.

The '#' characters are used to insert comments. Some parameters can be left out to use

the internal defaults for a given module. To change this program from capturing from a

capture device to reading from a video file without changing anything else about how the

program processes data, the videocapture.dll can be replaced by an mpegreader.dll with some

parameter changes. The other modules' parameters can be left untouched. More complete

examples can be found in the Appendix D. Modules can be disabled without removing them

from the configuration file by inserting the comment character in front of the module name.

The parameters listed under a commented out module will automatically be skipped as well.

1 [videocapture.dll]
2 video.device= # left blank to use any available device
3 video.mux=Composite # use Composite input line
4 video.width=720 # input video width of 720
5 video.height=480 # input video height of 480
6
7 [autoresize.dll]
8 [hud.dll]

47

3.4.1 Example Task Graph

Figure 3.5: A task graph of the EM-Capture program written using SAPPHIRE. Each module is shown in a
bubble while communications between modules are shown as directed edges. SAPPHIRE internally handles the
communication, so in reality, the data flow is somewhat different than the task graph shows (same data types
may be grouped so as to not incur multiple communication costs). However, the visual task graph is useful for
determining data flow between modules, finding potential errors in design or missed producer modules, etc. For
every program, working or not, SAPPHIRE automatically generates a .dot graph file similar to this that is
readable and displayable by AT&T's GraphViz program.

48

CHAPTER 4. SAPPHIRE INTERNALS

Some of the internal details and usage examples for SAPPHIRE are provided. These

give a more in-depth look at how SAPPHIRE works. Some functions and structures for our

specific implementation of SAPPHIRE are prefixed by "em" (EndoMetric), "emc"

(EndoMetric-core), or "emm" (EndoMetric-module).

4.1 Pseudocode for a Main Program

SAPPHIRE has a default program that parses and uses a configuration file which is

just a static text formatted file. A simple pseudocode of the default program is provided.

Recall that emmRegister(), emmStart(), emmShutdown(), emmData() are functions that

developers need to implement as mentioned in Chapter 3.1.

4.2 Program and Virtual Graph Construction

Upon starting SAPPHIRE, the configuration file is loaded and parsed (Figure 4.1,

Lines 1-7). Each module is loaded and its emmRegister method is called and configuration

parameters passed in (Figure 4.1, Lines 8-10). Modules then register for various types of

input and output data by calling the SDK's emcAddInput, emcAddOutput, and similar

functions. All of the registration information is then accumulated in the middleware's internal

state variables. Once all modules have been loaded and finished registering, the middleware

takes sole control in order to determine the internal routing between modules and data types

and starts all the worker threads by constructing a virtual bipartite graph of modules and data

types and edges between them (Figure 4.1, Lines 12-21). The middleware waits until each

module has no more data to process (Figure 4.1, Lines 23-25) and calls emmStop and

emmShutdown to signal all the worker threads to stop and clean up (Figure 4.1, Lines 26-31).

49

Figure 4.1: Pseudocode for the main program of SAPPHIRE. Complexity for registration itself has worst case
running time of O(m⋅n2) where m is the number of modules and n is the number of data types. Complexity for
graph construction and other parts are discussed in their respective pseudocode listings. Complexity for
subsequent execution of modules is O(1) per thread (not counting the actual processing that modules do), where
m threads are created.

 // G = {V, E}; a bipartite graph of a set of vertices V and a set of edges E
 // V = {Vm, Vt} where Vm is a set of module nodes and Vt is a set of data type nodes
 // M is a set of modules and their properties such as input and output data types
 // P is a set of their corresponding set of parameters
 // T is a set of data types

1 main() {
2 initialization(); // initialize M, P, and T to be empty sets and initialize other variables
3 parseProgramArguments(); // parse arguments from the command line
4 M, P � parseInternalConfiguration(); // parse built-in modules and parameters
5 Mtemp, Ptemp � parseConfigurationFile(); // parse modules specified in the .ini file
6 M � M ∪ Mtemp;
7 P � P ∪ Ptemp; // merge all modules into one set
8 foreach module m in M and their parameters p in P {

9 T � T ∪ callEmmRegisterToGetDataTypes(m, p); // register all modules and get their data
types

10 }
11 // replace modules' I/O types that have priorities other than default priorities defined
12 M, newTypes � updateDataTypesWithPriorityOverrides(M, T);
13 T � T ∪ newTypes; // add new override types to set T
14 G � createVirtualDependencyGraph(M, T); // create graph and prune graph
15 M, T � getUpdatedUsefulModulesAndDataTypes(G); // update M and T from pruned graph
16 foreach module m in M {
17 createAThreadToRunModule(m, moduleThreadStart);
18 // moduleThreadStart is the generic module worker thread function
19 // threads are created in a suspended state
20 }
21 startAllThreads(); // signal all worker threads to start
22 // worker threads call their own emmStart and emmData
23 while numberOfModulesStillProcessing() > 0 { // loop until all modules have finished
24 wait;
25 }
26 foreach module m in M {

27
 callEmmStop(m); // after all modules are done processing, signal emmStop of each

module
28 }
29 foreach module m in M {

30
 callEmmShutdown(m); // after all modules have stopped, signal emmShutdown of each

module
31 }
32 }

50

Figure 4.2: Pseudocode for moduleThreadStart called by the main program in Figure 4.1.

4.2.1 Packet Filters and Priority Overrides

The first step in generating a virtual program graph is creating virtual data types if

any packet filters or priorities are specified (Figure 4.1, Line 15). For example, if a module

wants to modify or filter some data type, rather than just overwriting the original data type, a

new virtual data type is created in its place. Although this virtual data type can point to the

original data, it is internally treated as an entirely new data type. Then, other modules that

use the filtered data are automatically switched over to using the new virtual data type.

In order to determine the new data types for the routing with priority overrides, a

sorted list is created for each data type using the priority level as the sorting key. The actual

priority level for a data type that each module uses is supplied through the

emcSetPacketFilter function (Appendix A) as one of its arguments. If no level is set, then by

default, the lowest level is used by consumer modules and the highest level is used for

producer modules. Using the sorted list, discrete levels of priority are determined. For each

successive level, the input data type for a module uses the level specified by the priority, and

the output data type uses the next lowest level specified by any other module.

For example, consider the following situation. A videocapture module outputs a

VIDEO packet as a producer with no specified priority. A HUD module displays the VIDEO

 // A thread is spawned starting at this function for each module in the system
 // m is the module that this thread was spawned for

1 moduleThreadStart(m) {
2 callEmmStart(m);
3 // perform work loop (a more detailed work look is available in Section 4.3)
4 while m is not finished {
5 K � findNewPacketsOfDataForModule(m, G, T); // get a set of packets to work on
6 foreach packet k in K {
7 callEmmData(m, k); // process each packet
8 }
9 if allSourceDataTypesForModuleAreProcessedAndFinished(m) { // if no more data,
10 setModuleFinished(m); // then set finished
11 }
12 }
13 }

51

packet to screen with no specified priority. Then, two filter modules that use VIDEO packets

as input are inserted, where filter1 has a high priority of 1000 and filter2 has a lower priority

of 500. The highest priority for VIDEO in the system among all modules is 1000; thus, the

original producer (videocapture) will now output "VIDEO:1000" as its data type. The filter1

module takes "VIDEO:1000" and outputs "VIDEO:500" (with 500 being the next highest

priority). Then, filter2 receives "VIDEO:500" and outputs "VIDEO:0" which is shortened to

"VIDEO". Because there are no other filter priorities specified by any other module, the

filter2 module outputs "VIDEO:0"; however, a priority of zero is shortened to the original

data type's name "VIDEO". The HUD module, not having specified any priority, then

receives the lowest priority VIDEO packet, which is simply "VIDEO". If multiple modules

use the same priority, then they will both receive packets for that priority, as would be

consistent with the priority system not in place.

4.2.2 Generating the Virtual Parallel Task Graph

A virtual graph is created based on all the modules and their data types. This graph is

a bipartite graph consisting of two sets of nodes: Vm for module nodes and Vt for data type

nodes. Every module and data type is represented in this graph. The edges coming in to a

module represents the data it will use as inputs; the edges going out of a module represents

the data it writes to the system. The edges coming in to a data type represents the different

modules that will output that data type; the edges going out of a data type represents the

different modules that will use that data type as input. It is not possible for a module to be

directly connected to another module or for a data type to be directly connected to another

data type. Modules and data types are all matched up and relations are thus defined in this

graph. Based on this information, we can then prune the virtual graph, which is then used for

the internal routing. Although the virtual graph represents the data flow between modules,

data is in fact never communicated directly between modules. Data is sent directly to the

middleware, and only the middleware decides if and when to relay data.

52

Figure 4.3: Pseudo-code for creating a bipartite graph representing the parallel task graph. Complexity for
creating the lists of modules for data type inputs and outputs is bounded by O(m⋅n2) where m is the number of
modules and n is the number of data types. Then, constructing the virtual graph is O(1) for each output vertex
and edge. Complexity for graph pruning could require a full graph traversal per vertex removed – O(|E|⋅|V|2).
Although these may be made more efficient, the sizes of these structures in practice are usually not large
enough to focus on this aspect of the middleware.

 // G = {V, E}; a bipartite graph of a set of vertices V and a set of edges E
 // V = {Vm, Vt} where Vm is a set of module nodes and Vt is a set of data type nodes
 // M is a set of modules and their properties such as input and output data types
 // T is a set of data types

1 createVirtualDependencyGraph(M, T) {
2 // compute a list of modules that uses a data type as input, for each data type
3 foreach datatype t in T {
4 t.ConsumerModules � Ø;
5 foreach module m in M {
6 If m takes t as input {
7 t.ConsumerModules � t.ConsumerModules ∪ m;
8 }
9 }
10 }
11 // compute a list of modules that produces a data type as output, for each data type
12 foreach datatype t in T {
13 t.ProducerModules � Ø;
14 foreach module m in M {
15 if m takes t as output {
16 t.ProducerModules � t.ProducerModules ∪ m;
17 }
18 }
19 }
20 // construct the virtual graph
21 Vt � Ø; Vm � Ø; // graph vertices consist of two sets: Vm for modules and Vt for data types
22 E � Ø; // edges are directed and represent the flow of data between Vm and Vt
23 foreach module m in M {
24 Vm � Vm ∪ m; // add each module as a vertex
25 }
26 foreach datatype t in T {
27 Vt � Vt ∪ t; // add each data type as a vertex
28 foreach module m in t.ConsumerModules {
29 E � E ∪ newEdge(t, m); // add edge from a data type t � a consumer module m
30 }
31 foreach module m in t.ProducerModules {
32 E � E ∪ newEdge(m, t); // add edge from a producer module m � a data type t
33 }
34 }
35 V = {Vt, Vm};
36 V, E � pruneUnusedModulesAndDataTypes(V, E); // prune unused modules and data types
38 G � Graph(V, E); // create graph from V and E and return it
39 return G;
40 }

53

4.2.3 Data and Module Pruning

Stray data types that have no output edges indicate that no modules want to use this

data type as input. Thus, if this data type is ever sent to the middleware, it is immediately

discarded. Furthermore, if all the outputs of a module are pruned in this way, the module

itself does not output anything useful. Thus, it can be removed to save CPU and memory

resources. This process is repeated over the graph until no more pruning is possible (Figure

4.3, Line 38). A module can override this pruning behavior by registering for a special output

data type that is not pruned by the middleware. For example, a module that writes to a file

rather than sending packets of data to the middleware might normally get pruned off. If it

were pruned, the desired file would not be created. The module can register for the special

output data type to indicate that it is a necessary module in the system and prevent it from

being pruned. An example of this type of module is mpegwriter.dll (Section 3.1.1).

4.2.4 Updating the Internal State

Using the updated graph of modules and data types, the internal arrays and other

variables of the middleware are initialized or updated. This state defines the final mapping

and routing between modules and data types (Figure 4.3, Line 39).

4.2.5 Starting the Program

The modules then each have their emmStart method called. This allows modules to

change behavior based on the modified internal routing of the system (for example, a module

can check whether an output it was able to provide is even necessary – if it is not needed, the

module can update its settings to no longer spend CPU time to create that output). Modules

may also create new threads at this time if they want.

4.2.6 Data Processing

A work loop thread for each module is begun. The work loop is technically part of the

middleware rather than each module. This does all the behind the scenes redundant checking

of inputs and outputs being satisfied, thread-safe data routing, packet/memory management,

and eventually, the calling of a module's emmData method. Additional bookkeeping and

performance gathering code is also placed in the work loop to allow for automated profiling

54

and statistics of each module. Manual thread scheduling is also implemented in the work

loop, if enabled, to allow or disallow threads from running on particular CPU cores (or at

all).

4.3 Work Loop using Windows Scheduler

Each module (DLL) implements a method called emmData() which takes as input an

emPacket pointer which represents a single data packet being passed to the module. From a

programmer's point of view, this is a very easy way to receive a stream of data. However,

internally, the middleware performs all the synchronization, setup, and calling of each

emmData itself. For every module in the system, a thread is created. This thread works in an

endless loop to process data as it becomes available. We refer to this as the work loop.

Because the work loop is implemented by the middleware and not each module, not only

does this ease the development process, it is also entirely possible for the SAPPHIRE core

system developer to change the work loop to use a different scheduling algorithm or

communication method. In fact, the entire internals of the system can be abstracted from the

developer and entirely reimplemented with no change on the module programmers' parts as

long as some infrastructure exists that calls emmData in the predefined way. After the

middleware registers each module, a thread is created for each module, which in turn calls

the emmStart for each module. The work loop of a thread for module m is shown in Figure

4.4.

Processing continues until all possible input data has been completely exhausted and

the 'final' flag for each input data stream has been reached. This indicates that no more data

will follow for that data stream for a given module. Once all processing has completed, the

work loop is exited and a module's emmStop will be called.

55

Figure 4.4: Work loop of each thread. Finding new packets of data is accomplished by checking the
middleware's internal latest timestamp of each packet pushed with the last seen packet of an individual module.
This is a simple subtraction operation, and the module stores an absolute reference to index of the middleware's
internal packet timestamps; thus this can be accomplished in O(|Vt|) time. Then, emmData is called for each
packet found. The emmData function itself can have its own complexity, but calling it and the surrounding code
runs in constant time. The overall runtime across all passes through this loop (Lines 10-23) is entirely dependent
on the number of packets processed (equal to number of iterations times |Vt|) and runs in constant time for each
packet, thus this loop actually has amortized complexity of O(1) for each packet (and it does not execute unless
it has a packet to process).

 // G = {V, E}; a bipartite graph of a set of vertices V and a set of edges E
 // V = {Vm, Vt} where Vm is a set of module nodes and Vt is a set of data type nodes
 // K is an ordered list of packets (by timestamp in increasing order)
 // m is a single module assigned to the work loop
 // m.seenPacket[t] is the latest timestamp of packets of type t seen by module m
 // m.processedPacket[t] is the latest timestamp of processed packets by module m for type t
 // R is a set of profile data to be accumulated

1 R = Ø; // set of profile data for this module initialized to empty
2 while not moduleFinished(m) {
3 BeginCriticalSection(); // find packets that have not yet
4 K � findNewDataPacketsForModule(m, G); // been passed to emmData for module m
5 EndCriticalSection();
6 if K ≠ Ø {
7 releaseTimeslice(); // if no data is available, yield CPU and try again later
8 continue; // go back to the beginning of the while loop
9 }
10 foreach packet k in K { // for each packet of data to process...
11 bindModuleAndScheduleProcessor(m); // bind this thread to some CPU core(s)
12 startTime � getTime(); // record starting time for profile data
13 packetsToFree � callEmmData(m, k); // pass packet to emmData
14 endTime � getTime(); // record ending time for profile data
15 R � R ∪ addProfileInformation(m, k, startTime, endTime); // add profile data to set R
16 t � getPacketType(k);
17 m.seenPacket[t] � m.seenPacket[t] + 1; // mark that m has had packet sent to emmData
18 foreach packet kFree in packetsToFree { // for each packet to free or release,
19 tFree � getPacketType(kFree); // mark that we have also processed it
20 m.processedPacket[tFree] � m.processedPacket[tFree] + 1;
21 ReleasePacket(m, kFree);
22 }
23 }
24 if allSourceDataTypesForModuleAreProcessedAndFinished(m) {
25 setModuleFinished(m); // if no more data, set as finished
26 }
27 }

56

Figure 4.5: Data packet structure

Because all work loops proceed in their own thread, the system is implicitly

multithreaded based on the number of modules in the system. Each module can of course

start their own threads to increase the amount of parallelism, but then they must manually

handle their own synchronization since SAPPHIRE does not have any knowledge about the

module programmer's multithreading implementation. By default, the worker (work loop)

threads are scheduled by the operating system. It is possible to force threads to individual

CPU cores and change thread priorities, however, this is very simple and does not necessarily

provide any advantage over the built-in OS scheduler. SAPPHIRE has also implemented a

custom scheduler for worker threads discussed in the user-mode task scheduler section in

Chapter 5.

1 typedef struct emPacket_ {
2 int len; // length of this packet
3 char* type; // type of data
4 __int64 timestamp; // timestamp of this packet
5 struct emPacket_* next_time; // pointer to next attached data
6 struct emPacket_* prev_time; // pointer to prev timestamp of same type packet
7 unsigned char* data; // pointer to packet's metadata
8 unsigned int* meta; // pointer to packet's attached timestamp of same type packet
9 int datalen; // length of raw attached data
10 int metalen; // length of raw attached metadata

11
 struct emPacket_* parent; // if this packet borrows the data from another packet, this points

to the original data's packet
12 int PCR; // which index in PCRhead/tail this belongs to

13
 unsigned int priority; // filter/hook priority (output: 0 = normal/first generated, higher =

hook first) -- used as a subtype

14
 int final; // final packet of stream (typically blank for some types, but still

valid; mainly used as a marker for cleanup)
15 struct emModule_* sourcemodule; // source module that created this packet
16 int referencecount; // reference count of this packet
17 int dummy; // ignore this packet

18

 int channel; // for future use: multiple channels of the same type of packet
that can have similar timestamps, etc; mpegreader and
videocapture both working to produce RAW_VIDEO data
type

19 __int64 PCRid; // like timestamp, but a unique id for every packet within one
PCR (can have the same timestamps for multiple packets)

20 __int64 pushtime; // time of origination for this packet, from first pushed packet (in
win32 performance counter)

21 void** releasecallbacks; // array of callbacks when this packet is released
22 int numreleasecallbacks; // number of callbacks
23 } emPacket;

57

4.4 Data Structures

We describe key data structures we use for maintaining information about packets

and the virtual task graph.

4.4.1 Packets

A simple example diagram of the packet linked list structure is shown in Figure 3.1.

Some of these packet fields are not used directly by the user (programmer), but most are still

used internally.

Most of these fields are self-explanatory, but the middleware itself does do some

extra work beyond what the programmer has setup. When a packet is originally pushed to the

system by a module, the middleware initializes and updates several fields. (1) The 'PCR' field

(Figure 4.5, Line 12) is set to the internal array index for the corresponding data type. This

provides a fast string name to type index (int) mapping for further use by the middleware

(e.g., PCRhead[pkt->PCR]). (2) The 'type' field (Figure 4.5, Line 13) is updated to an

internal static string so that modules never have issues about potential dynamic strings; also,

this allows direct type == type comparison (if set up properly) which can be somewhat faster

than the typical !strcmp(type, type) comparison. (3) The 'PCRid' field (Figure 4.5, Line 19) is

set to a unique auto-incremented value based on the order it was pushed to give the packet a

program-lifetime unique identifier. (4) The 'referencecount' field (Figure 4.5, Line 16) is

initialized to the number of modules that will receive this packet. As packets are "released"

by modules, the 'referencecount' field is decremented in a thread-safe manner. When the

reference count reaches zero, it is only then actually deallocated from memory. (5) If the

'parent' field is set (Figure 4.5, Line 11), this means the packet shares data with that parent

packet – the parent packet should not be released until the packet being pushed is ready to be

released. This causes the parent's 'referencecount' to be incremented by one. When a packet is

deallocated, its parent's 'referencecount' is decremented by one and also potentially freed if

nothing else is using it. This is useful, for example, with the VIDEO data type, which crops

the RAW_VIDEO data type without actually creating a copy of the video data (by simply

using tricks with the video data pointer and stride). Since the VIDEO packet uses data

directly from the RAW_VIDEO packet, it must set retain the RAW_VIDEO packet in

58

memory by setting it as a parent. (6) Other miscellaneous fields are updated or filled, such as

'pushtime' (the time the packet was pushed, for profiling) and 'sourcemodule' (the module

that this packet originated from). (7) After all other fields are setup, the 'prev_time' field

(Figure 4.5, Line 6) is set to the previous tail packet for this data type, the tail packet's

'next_time' (Figure 4.5, Line 5) is set to the new packet, and then the tail itself is updated to

point to the new packet. Critical sections are used for some steps, but only when necessary.

This concludes the process of pushing a packet to the system. The system then

maintains this internal state of packets and arrays of variables describing the data and

modules of the system so that the work loop can determine whether data is available to

process for each module. The work loop iterates through each input data type that the module

listens for, and compares the most recent timestamps seen against the newest timestamps

available for each data type. If there is new data, the work loop passes this data to the

emmData function. The data passed in may be in any order between data types, but is always

sequential within a data type. The work loop prefers to pass in data in a fair (round robin)

fashion if it can, so that muxes can be satisfied as early as possible (as opposed to pushing

several of the same data type that cannot satisfy a mux by itself). Due to the removal and

abstraction of the work loop from each module's code, it is possible to change the scheduling

and methodology of the work loop for all modules without actually changing any individual

module's code.

Some modules take significant time and prefer not to produce data with every frame,

or otherwise do not have meaningful data every frame. This can create a potential issue with

modules that expect a timestamp-synchronized set of packets to process. In order to keep

synchronization, producers should push packets for every timestamp (frame) even if they do

not have useful data. This is done by pushing a packet with the 'dummy' flag set (Figure 4.5,

Line 17), or by calling emcPushDummyPacket.

Some packets created by modules might have additional resources attached as

pointers in the user data that have been allocated by a producer module. Eventually, this

packet will be released by all modules and then freed by the middleware. However, because

the middleware has no idea what the format of the user data is, it cannot know how to free

59

these attached resources. So, the middleware provides the function emcAddReleaseCallback

to attach a custom resource destructor that will be called when the middleware is ready to

free a packet.

4.4.2 Modules

Each module in SAPPHIRE is an emModule object (Figure 4.6), containing

bookkeeping information about the module as well as function pointers to the implemented

methods emmRegister, emmStart, emmData, emmStop, and emmShutdown.

Generally, the user never needs to use anything in this object (as it is almost entirely

handled automatically by the middleware) except for the 'locals' variable (Figure 4.6, Line 2),

which binds a module-instance-specific variables structure to a specific instance of a module.

This allows a module to be loaded once but utilized multiple times for different kinds of

configurations (e.g., potentially having multiple HUD module instances to display multiple

video streams simultaneously). Because Windows will not load a second copy of an already-

loaded DLL module, this is a necessity for the middleware to support multiple instances of

modules.

4.4.3 Internal Arrays and Lists

A listing of the important internal variables and arrays and lists can be found in

Appendix F.

4.4.4 Common Data Packet Formats

Some common data type formats are provided both for reference and as some simple

examples. Module developers can specify their own data formats. The format should be

shared with other module developers that plan to use the data. The middleware itself does not

need to know the actual format of the data being communicated.

VIDEO

This format, shown in Figure 4.7, is a common video data format that is recognized

by many SAPPHIRE modules. It can be extended to a new data type by appending new

fields, while still being recognized by SAPPHIRE's provided modules.

60

Figure 4.6: Structure that keeps information about a module

1 typedef struct emModule_ {
2 void* locals; // local data for this instance of a module
3 int localsize; // size of locals; not necessary except for some functions
4 int moduleversion; // version of this module

5
 int (*emmRegister) (struct emModule_* module, configPair* configuration, struct

emCallbacks_* callbacks);
6 int (*emmStart) (struct emModule_* module);
7 int (*emmData) (struct emModule_* module, emPacket* pkt, void* perf);
8 int (*emmStop) (struct emModule_* module);
9 int (*emmShutdown) (struct emModule_* module);
10 emPacket* inputs; // array of input/output type definitions for this module
11 emPacket* outputs; // the emPacket structure may only be partially defined as needed
12 int nInputs; // number of inputs/output types
13 int nOutputs;
14 __int64* nextpacketTS; // timestamp of next unseen packet this module should process
15 __int64* lastpacketTS; // timestamp of oldest saved packet this module retains
16 int* maxchainlen; // maximum buffer length for a particular type
17 HINSTANCE dll; // Windows handle to this module
18 char* dllname; // filename of the module
19 HANDLE hthread; // handle of the main work thread for this module
20 unsigned int threadid; // threadid of the main work thread
21 int finished; // flag to define whether this module is in the finished state
22 int nInputsNoDelay; // number of non-feedback-loop inputs this module uses
23 int stopped; // flag to define whether this module is in the stopped state
24 int shutdown; // flag to define whether this module is in the shutdown state
25 int maxdelay; // maximum feedback-loop delay across all feedback delays
26 char* versionstring; // version string for this module
27 int buildnumber; // SDK build version this module was compiled with
28 char* builddate; // build date string for this module
29 HANDLE mutex; // may be used to avoid async PushPacket, when multiple threads

for the same module want to push
30 int nThreads; // thread local storage and profiling variables/arrays
31 HANDLE* allthreads; // all thread handles for this module
32 int* allthreadids; // all thread ID's for this module
33 __int64* threadtime; // profiling for CPU for each thread
34 int* whichcore; // which core each thread is bound to
35 char* versionstring2; // textual description and version of the module
36 char* description;
37 int internal; // whether this module is a built-in module or 3rd party
38 __int64 worstthreadtime; // worst case thread time for this module
39 int processing; // whether this module is currently processing data or sleeping
40 int* memcount; // memory leak detection – number of allocations for each thread
41 __int64* memtotal; // total memory allocated for each thread
42 __int64 memtotaltotal; // overall memory usage across all threads for this module
43 int outstandingpackets; // every allocated packet should be submitted to the middleware

by a PushPacket, or else this variable continues to increment
44 } emModule;
45 emModule* allModules; // list of all modules
46 int nModules; // count of number of modules

61

INSIDE

This data type, shown in Figure 4.8, is an example of a user data type. For the EM-

Capture program, this is used to mark a frame as inside-patient or outside-patient. For each

VIDEO packet, a corresponding INSIDE packet is generated. These two can be combined

and synchronized with a mux for various purposes (e.g., only processing the VIDEO packet

if the video frame is an inside-patient frame).

Figure 4.7: Structure of a VIDEO packet

Figure 4.8: Structure of an INSIDE packet

4.5 Synchronization

Although many operations are designed to be implicitly thread safe, some operations

do require the use of a mutex, which is used internally by the middleware. Most middleware

API functions that modules call will take care of the thread safety issues.

4.5.1 Middleware Synchronization

Because significant amounts of data passing between modules and middleware is

constantly happening, and no specific synchronization is done by the programmer, the

1 typedef struct meta_video_ {
2 int width, height; // width/height of virtual video frame (may be different than

width/height of original video frame)
3 int stride; // stride of video frame (same as original video frame)
4 int bpp; // bits per pixel -- usually 32 bpp for color or 8 bpp for grayscale
5 double framerate; // set from source video -- usually 29.97
6 unsigned char* data; // pointer to new data (the data pointer is the original video)
7 __int64 source_frame; // frame number from video source (different sources may

increment/reset this differently)
8 char* source_filename; // 0 by default, but can point to an internal buffer for a source

filename if available -- pointer not valid after packet is freed
9 } meta_video;

1 typedef struct meta_inside_ {
2 int inside; // 0=outside, 1=inside, 2=set upon transition from inside to outside
3 int frame; // current frame number within a segment (all outside or all inside) of video
4 } meta_inside;

62

middleware undertakes full responsibility for this. The primary method of synchronization is

with the use of a mutual exclusion object (mutex) in the form of a semaphore. Although the

system has several of these mutex objects, the primary one that is used is for inserting and

deleting packets. When a call is made to the middleware's PushPacket, the packet must be

finalized and inserted into the middleware's linked lists of packets and internal arrays. Some

finalization is performed, such as parsing the packet's data fields for correctness and

consistency, and to prepare the packets for insertion into the system. For example, the type of

the packet is converted from the type specified by the module into an internal type

recognizable by the middleware; and, a reference count is assigned to the packet based on

how many other modules intend to use the packet. Some profiling information is also setup at

this time. If the number of packets pushed (for the type of data for that packet) has exceeded

its maximum, then the middleware blocks the thread until other modules have caught up, and

previous iterations' packets of that data type have been released.

Once this finalization is performed, a critical section is started by using the

middleware's packet mutex object. The packet, middleware linked lists, and internal arrays

are further updated by modifying pointers such as 'next_time' and 'prev_time' (next and

previous packet in the linked list). A unique packet identification number is assigned to the

packet. Some internal consistency checking is performed (to confirm that there will be no

issues in the system once pushing this packet), and then the packet is finally "in" the system,

ready for other modules to use it. The critical section is then ended so that the middleware

can service other modules that call functions that will use this mutex object. For example, a

subsequent release of a packet may require a critical section. To avoid unnecessary thread

blocking, as much of the system as possible was designed to not need to use the mutex

objects. When they are needed, multiple mutex objects are created for different purposes so

that unrelated code does not block on each other.

4.5.2 Application Synchronization

The mux structure, shown in Figure 4.9, is updated each time a module calls

emcMuxPacket. Most fields in the structure correspond to an array, with each type included

in the mux representing one index in each array. Upon calling emcMuxPacket with a packet,

63

the corresponding index for the type of data packet is computed, and that index in 'count' is

incremented by one, indicating that the mux has one more data packet available of that type.

When all indices of 'count' have at least n packets available, a call of emcMuxPacket with a

value of n will return indicating that the mux is satisfied. The module then knows that at least

n packets of data are available and may be used. Upon finishing of processing, the module

calls emcReleaseMuxPackets with a value of n, indicating that the module no longer needs n

packets of each of the data types in the mux. Additionally, the 'count' array is decremented

appropriately to indicate the number of remaining packets available for each data type.

The mux also supports optional data types. If a data type is not present in the overall

system, then the mux will be satisfied even though that specific type of data does not have a

'count' of at least n. However, if the data type is present in the system, then 'count' must be

satisfied. Thus, optional data types maintain synchronization, but only if they exist. If they do

not exist, then the mux still functions by ignoring that data type.

For types indicated as a delayed packet due to a feedback loop, we initialize 'count' to

'delay'. When we check to see if a data type is satisfied in the mux, if we had a delay of one

for a particular data type, then it means the very first set of packets satisfied by the mux at

timestamp 0 will be satisfied without that delayed type since 'count' seems to be satisfied.

Because 'count' is initialized only once, subsequent calls to emcMuxPacket will require

actual packets to have been available. For both optional and delayed packets that do not have

real packets available, null pointers will be returned for those data types, indicating that no

data is available.

Figure 4.9: Structure of the mux (multiplexer object)

1 typedef struct emMux_ {
2 int nmux; // number of types in this mux
3 char** type; // type of data packet
4 int* optional; // whether this particular type is optional
5 int* delay; // feedback loop time delay (in iterations)
6 int* count; // number of packets currently available for this type
7 } emMux;

64

4.6 Runtime Profiling

In order to support profiling, the work loop surrounds its call to emmData with a

timer start and stop function (emcPerfStartClock and emcPerfStopClock). The time

difference is computed and used as that module's execution time for each piece of data.

While this handles most cases automatically, there may be the case where the programmer

puts the worker thread to sleep manually while it waits for other data to become available

(e.g., spawned threads to take advantage of multithreading). In some cases, this is

automatically detected, by hooking some Windows calls such as CreateThread and

WaitForMultipleObjects. However, it is better for the programmer to call emcPerfStopClock

manually before using these artificial sleep methods and then start the timer back up with

emcPerfStartClock after resuming. For the spawned threads themselves, although the

Windows CreateThread function is hooked by SAPPHIRE in order to automatically detect

newly spawned threads, it is still better for the programmer to manually call the start and stop

functions to also do accurate profiling, as the built-in Windows GetThreadTimes function is

only accurate when a thread expends a full timeslice (otherwise, the used time is not added to

a thread's execution time) [70]. To retrieve an accurate timestamp, we use the CPU

instruction 'rdtsc', which reads the monotonically increasing timestamp counter from the

CPU. This generally increases at the rate of the processor's base clock speed per second (e.g.,

a 3GHz processor will increase by three billion in one second, with very high resolution,

potentially incrementing by one for each clock cycle). SAPPHIRE prefers to use the high

resolution timestamp counter whenever it is possible to encapsulate threads' code (e.g.,

through emmData or manual calls to the emcPerf functions). When it is not possible,

SAPPHIRE falls back to using GetThreadTimes.

The profiling window (shown in Figure 3.3) can be brought up at any time during

execution by pressing a key combination (Ctrl+Shift+Alt+F). In the normal running mode of

SAPPHIRE, a lower overhead method of performance gathering is implemented. In this

mode, only the average time per frame (over the course of the entire program execution up to

the present time) for each module is displayed, along with the distribution of time among

threads. By running SAPPHIRE with the '-perf' option, some enhanced performance

gathering is enabled. One additional statistic is displayed, which is the worst case runtime per

65

frame for each module (which is reset every five seconds to prevent one long iteration of

processing from preventing recent and useful information being displayed). This is useful for

determining whether the worst case performance of a module is acceptable. For modules that

normally process at a low frame rate, the average time per frame may seem reasonable, but

the worst case time for processing an individual frame might actually be longer than desired

(e.g., for deadline constraints).

In the enhanced performance gathering mode, the scheduling of threads is changed to

"realtime" priority so that other threads cannot interrupt any module's emmData function.

While context switches by the OS would normally interrupt threads and increase the

observed execution time, this enhanced mode effectively disables context switching,

increasing the accuracy of the gathering the performance statistics. Additionally, all threads

are scheduled on a single processor such that they cannot interrupt or influence each other

due to various factors such as Hyperthreading or TurboBoost. With Hyperthreading, two

virtual processor cores are created for each physical CPU core. When one thread is run on

each virtual core, they may in fact be running on the same physical core, competing for a

single computing resource. This, in turn, may extend the execution time for tasks running on

hyperthreaded cores. For TurboBoost, a computer that utilizes only a single core may have its

processing speed greatly increased beyond the listed processing speed. However, when using

multiple cores, this boost in speed decreases based on the number of cores being used. When

all cores in a system are being used, the processing speed may drop fully back to the

manufacturer's listed processing speed for a processor. By using only a single core, we

attempt to avoid the varying of CPU speed from TurboBoost.

4.7 Memory Leak Detection

Our middleware hooks the Rtl* functions in ntdll.dll associated with memory

allocation (e.g., RtlAllocateHeap, RtlReAllocateHeap, RtlFreeHeap). These functions are the

lowest level Windows runtime library associated with heap allocations of non-page sizes;

these are eventually used (after several layers of abstraction) by C malloc and C++ new. The

hooking is done by getting the function address of each function with GetProcAddress,

inserting a jump opcode at the start of each function to go to our own hooked function,

66

running some of our own code in preparation for calling the original function, calling the

original function, running our own code again after the original function returns, then finally

returning control back to the user program. As nearly all allocations (including those from

3rd party libraries) go through these Rtl functions, we are able to effectively hook all

memory allocation a program does without needing to recompile or modify any source code.

Each time one of our hooked functions is called, we walk the stack of the calling

thread in order to determine where the allocation originally occurred. The stack saves the

return address of every function call. While walking the stack, we generally encounter

several different layers of abstractions in libraries, which we usually can ignore. For

example, a C malloc call may jump from a user module's DLL, to the C runtime msvcrt.dll,

to the kernel32.dll HeapAlloc, and finally to the ntdll.dll RtlAllocateHeap. There may be

several stack frames defined in each of these successive modules, but we primarily want to

find the original user's module. We can find which module owns which range of code

addresses by enumerating the modules and their regions of memory with the Windows

function CreateToolhelp32Snapshot using the TH32CS_SNAPMODULE subfunction. We

continue walking the stack until we reach an address that is part of the user's module. This

gives us the return address in the user's module, which we can convert back into the original

line of source code if need be, either through a debugger or manually. Detailed usage

information for the memory leak detection can be found in the Appendix E.

4.8 Crash Reporting

While crash reports and debugging may require advanced system knowledge, we

provide some enhanced information to make this somewhat easier, especially for debugging

on remote systems, where a debugger might not be installed. An example crash report is

shown in Figure 4.10.

If run on a local system with a debugger, similar information would be seen.

However, it may be difficult to determine the module that caused the crash, especially if the

crash address occured in a system or third-party DLL file. Because SAPPHIRE supervises all

of its threads, it knows which thread belongs to which module. So, the middleware can

immediately determine the offending module.

67

For a crash involving a trashing of the stack, it may be impossible to get any

information from a stack trace, whereas knowing which module the thread belongs to would

be an important start (especially in a multithreaded system involving dozens of threads). If

the stack is intact, a full stack trace will be provided along with the module that owns each

stack frame. Although symbols are not immediately available from the crash report, some

common compiler tools such as dumpbin may be used to find what functions the addresses in

a stack trace belong to, providing some additional help for debugging.

For remote systems where a debugger is not available, the details of the crash report

are conveniently saved to a file on disk, which can then be sent back to the respective

developer. With some knowledge, it may be possible to use the crash report to trace back the

crash to the offending code.

To support crash detection in a way that allows both catching the crash and still allow

SAPPHIRE to be run under a local debugger normally, we use the Windows

SetUnhandledExceptionFilter function to set the application's global crash handler. Although

other methods of exception handling exist, they were unable to provide friendly behavior to

both catching the exceptions and using a debugger to debug the exceptions.

Figure 4.10: Crash report of the hud.dll module crashing when a bug is intentionally introduced

1 --- crashed ---
2
3 exception code: c0000005
4 exception address: 7746e582
5 exception thread: 1910 (hud.dll)
6
7 eax=000004f6 ebx=00000000 ecx=76170958 edx=00000000
8 esp=1acdf1b8 ebp=1acdf1cc esi=000004f6 edi=000004f2
9
10 code bytes (ntdll.dll+0001e582) : f0 0f ba 30 00 0f 83 e4 ca 00 00 64 ...
11
12 stack frame 1acdf1cc : next: 1acdf1d8 761172d9 cur: ntdll.dll+0001e582
13 stack frame 1acdf1d8 : next: 1acdf210 760e4697 cur: msvcrt.dll+000472d9
14 stack frame 1acdf210 : next: 1acdf72c 066e3430 cur: msvcrt.dll+00014697
15 stack frame 1acdf72c : next: 04c18d68 0040476a cur: hud.dll+00003430
16
17 --- end crash report ---

68

4.9 Video Processing Considerations

Working with video data at a full frame rate of about 30 frames per second in real

time can require a great deal of processing power. Although some high level functions may

exist (e.g., GetPixel(image,x,y) to get the pixel value of image at the specified x,y

coordinates), these are rarely efficient ways to access the image data. In order to maximize

throughput, it is necessary to minimize overhead to functions like this. Instead, we should

access the data directly. Images usually consist of a pointer to the video data, width, height,

bits per pixel, and stride. Although the meaning of most of these are obvious, the stride is a

lesser known term. The stride refers to the number of bytes between rows. Usually, this is

equal to the width (number of pixels in a row) times the number of bytes per pixel (bits per

pixel divided by 8); however, this is not always the case. For example, the cropping module

(autoresize) in SAPPHIRE that creates a cropped image based on the non-black visible

region does not create a new copy of the video data, as this would cost a lot of time and

memory. Instead, the cropping module refers to the original video data as a parent packet,

and then creates a new video data pointer at the top-left of the cropped position within the

image. The width and height are modified to reflect the cropped video data in a new metadata

packet. The stride, however, remains the same as in the original parent packet, since its video

memory has not changed.

To address a pixel directly, the address is calculated as (metavideo->data +

y*metavideo->stride + x*metavideo->bpp/8). For an 8-bit image (e.g., grayscale), this is cast

to an (unsigned char*) and read in as a single byte. For a 32-bit image (which most of

SAPPHIRE's video data is), this can be cast to an (unsigned int*) and read in all the channels

in the pixel at once. The 32-bit video data is stored in BGRA format, such that the lowest

byte is blue, next lowest byte is green, and next byte is red.

Depending on the algorithm, as a point of optimization, it may be more optimal to

calculate the address of the start of the row only once, and then iteratively read each pixel in

a row without recalculating the address from scratch. This reduces the amount of pointer

arithmetic. For simple video operations where very little math is actually performed at each

pixel, this can greatly increase the performance. The key concept is that there are simply a

69

huge number of pixels – for example, 720 x 480 x 30 = 10 million pixels per second.

Spending even an extra 10 clock cycles (which is a very small amount) per pixel could

equate to 100 million clock cycles, which could be several percent of overall CPU usage. It is

easy to see how even trivial operations at each pixel data point can be multiplied into a

significant costs. This is exacerbated for high-definition video, where 1920 x 1080 x 30 = 62

million pixels per second. For simple operations, the overhead of recalculating the address

could even exceed the cost of the actual video analysis. Loop unrolling by processing several

pixels at once may also be used to reduce overhead costs – the autoresize module always

ensures that video widths are a multiple of 8, as that is a requirement for the mpegwriter

module. So, in many cases, processing pixels in multiples of 8 as well is a good idea to

improve overall performance. Many of the common core components are optimized using

x86 assembly code to provide extremely fast processing for the required or common

overhead modules that would otherwise already exceed the processing power for a typical

computer workstation.

4.10 Evaluation of SAPPHIRE

It is difficult to evaluate the correctness of every aspect of such a large project. We

have attempted to do this through design review, case study implementation, consistency

checking, stress testing, crash detection, and error reporting.

4.10.1 Case Ctudy Implementation

To show that our middleware is able to function as designed and provide a robust

environment for programming, we implemented two case study programs. One program was

a port of an existing video analysis program, EM-Capture, to use SAPPHIRE, while another

was an extension of EM-Capture, to perform complex analyses in and provide real-time

feedback to physicians in a real clinical setting. Both of these experiments have been

successful in their goals and in showing that SAPPHIRE could reliably support them. These

case studies are discussed in greater detail in Sections 6.9 through 6.11.

70

4.10.2 Consistency Checking

A special option when used to start SAPPHIRE, -check, will cause the middleware to

enter a testing mode. SAPPHIRE will continue to function as normal, except that various

built-in testing and debugging code will be executed at certain times in order to validate

some operations and check the consistency of the internal state of the middleware. This is in

addition to enforced consistency checking that is always turned on.

For example, when a module pushes a packet to the system by calling

emcPushPacket, this normally involved several steps, where eventually, the packet is added

to the tail of a linked list of packets. When -check is used and emcPushPacket is called, the

internal state of the packet linked list is first checked for errors. If any errors are found, a

report is displayed as such. Then, the packet is pushed. The state of the linked list is again

check for consistency. Consistency checking is also done at several other times, such as

packet release, validating the continuity of modules' packets' timestamps, etc. This automated

checking has successfully found several bugs at various stages of development, both as part

of the middleware and for module developers. As a result, we have a much more robust

system.

4.10.3 Stress Testing

An option is available with the mpegreader.dll module that will cause the source

video stream to enter a stress test mode. In this mode, while the video(s) specified will still

be played, the size of the video is constantly varied to simulate rapidly changing conditions

that could rarely occur in practice for our case study (e.g., endoscope being unplugged but

still giving a partial video frame). As many modules in our system also depend on whether

the video is part of a procedure or not, the video stream is also blacked out often in order to

simulate entrance and exit segments. This causes several modules to switch states back and

forth between inside and outside, faking the occurance of many procedures in a short period

of time. This stress testing mode has found numerous bugs, and has also been useful for

tracking down bugs that occur too slowly to notice normally due to the occurances of those

bugs not happening often (such as leaks of memory when a new procedure happens).

71

4.10.4 Error Reporting

As we have run SAPPHIRE in a development environment for several years (since

2008) and in a live clinical environment since 2010, we have had many opportunities to

encounter errors, from developers implementing modules, from testing, from physicians, and

from our automated error reporting systems. The combination and variety of sources for

errors to be discovered and feedback in general has increased the robustness of our platform.

4.11 Summary and Future Work

SAPPHIRE supports a wide variety of features expected from multiprocessing

middleware while simultaneously making the development process much simpler compared

to traditional programming practices and other existing work. SAPPHIRE supports a wide

variety of features. However, it is possible that in the future, some unforeseen features would

be requested by developers that could require changes to the middleware. The modular

design of the middleware has, in the past, made adding new features simple both for the

maintainer of the middleware and for the module developer.

The middleware does provide some common built-in modules, however, there are

still relatively few modules compared to the huge libraries that exist across the internet.

Although most of these libraries can be used within SAPPHIRE with additional

programming on the part of module developers, it would be much simplier if they were able

to use them as built-in modules. For example, to encrypt data, an encryption library would

need to be interfaced with (or code developed) by the developers themselves. The developer

might choose to simply include the calls to encryption in their own module (serial) or create a

new module that supports some data types that could be used to parallelize the encryption

process. It would obviously be better if these common types of libraries were built-in to

SAPPHIRE to reduce the work for developers, and improve the efficiency of programs by

ensuring the libraries are implemented with proper parallel task design.

While SAPPHIRE has been primarily designed and tested for local system

development (e.g. a single computer and attached devices, such as a GPU), we would like to

have enhanced support for cluster, grid, and cloud computing. Although we do have some

capabilities to handle this, it would not be as simple for a developer to use cluster resources

72

for multiprocessing in SAPPHIRE as it currently is to use SAPPHIRE for a multicore

computer.

Although SAPPHIRE has a default program that parses and uses a configuration file

which is just a static text formatted file, it would also possible to change this to something

graphically configured, allowing a graphical specification of a program. Also, instead of

static modules that are only loaded at program start, it would be possible to add support for

dynamic loading/unloading of modules at runtime (e.g., if users' needs or specifications

changed during runtime, but the system cannot be brought down due to some mission critical

software concerns).

73

CHAPTER 5. TASK SCHEDULING OF STREAM PROGRAMS ON

HETEROGENEOUS SYSTEMS

In this chapter, we present a problem formulation of task scheduling for stream

programs on heterogeneous systems such as workstations with multicore CPUs and/or

Graphical Processing Units (GPUs). Examples of stream programs are analysis of images

during a medical procedure for computer-assisted surgery or computer-aided screening. Next,

we present a heuristic algorithm for task-to-processor allocation that assigns tasks to

processors and a scheduling algorithm that determines schedules of the tasks assigned to a set

of processors. We report the evaluation results of our algorithms compared to the closest

related work.

Task scheduling for non-stream programs has long been studied. The parallel task

graph (PTG), as shown in Figure 5.1, is a commonly used data structure to represent the tasks

to perform (nodes) and communication between tasks (edges that also define dependencies

between tasks). The makespan is often the main performance metric. Consider all paths in a

PTG from the source node to the sink node in the graph. The length of a path is the sum of

the cost of all the nodes and the edges in the path. The critical path from one source node to

one sink node is the length of the longest path among all the paths between these two nodes.

The length of the critical path from start (source) to end (sink) for an overall program is

called the makespan. The scheduling of a particular task is not just based on when all of its

predecessors have completed, but also when there is available processing time on some

processor. The step of deciding which tasks to run on which processors is called task

allocation or task-to-processor allocation. In a system with a limited number of processors

(less than the number of tasks), task scheduling is an NP-Complete problem [22]. Thus,

many heuristic algorithms were proposed for homogeneous and distributed/networked

heterogeneous systems. The heterogeneity was typically in terms of CPU processing speed.

For stream program scheduling, the problem is even more complex, as each task must

be run potentially millions of iterations over a stream of incoming data items. When

heterogeneous processors (such as GPUs with CPUs) are used, the problem becomes more

74

difficult since choosing one architecture over another for a particular task adds another level

of complexity. Differing amounts of speed up can be obtained from different tasks by using

an implementation that utilizes GPUs over one that does not. For example, while one task

may run twice as fast by using GPUs, a different task may run four times as fast. The exact

speed up cannot be easily uniformly estimated, and existing work has only been done by

normalizing different CPU speeds to the slowest or a reference CPU speed [25].

Task scheduling is a well-studied field with decades of related work. We discuss only

the most important concepts and results that are related to our work and summarize most

relevant existing work in Chapter 2.

5.1 Our Contributions

We develop a new static task-scheduling framework for stream programs on a

heterogeneous multiprocessor system defined as a computer system with one or more

multicore CPU and/or one or more GPU. Our framework does not unroll an original PTG as

in a recent existing work [22]. Partial graph unrolling of the original PTG increases the graph

size. For real applications with 10 to 100 tasks, the unrolled graph quickly becomes very

complex. Most importantly, our framework supports heterogeneous implementation (HIT)

choices where one task may have several implementations: CPU multithreading, CPU-GPU,

etc. It is not uncommon to have several implementations, especially for utilizing GPU, since

software development is often done iteratively to improve the speed of the execution.

Running all GPU capable tasks on GPUs may not yield the best performance since they all

Figure 5.1: Seven tasks (T1, …, T7) are shown in this PTG with T1 as the source node and T7 as the sink node.
Each node has associated cost (execution time). Edge has no cost in this example. S on top of each node denotes
the earliest start time of the node. E denotes the output time of a given input. Task T7 cannot start until both of
its inputs are ready. Hence, the earliest start time of T7 is the maximum end time of its input nodes T6 and T5 or
max{7,6}, respectively. Tracing back from T6 repeatedly in a similar way to the source node gives all the nodes
along the critical path: T1�T2�T4�T6�T7. The length of this path is 8 shown as the value of E.

75

compete for the same computing resource (a limited number of GPUs). Our framework

automatically chooses the best configuration (which implementation, which processors, and

which time to execute the task) for each task. To the best of our knowledge, we have not

found any existing task scheduling that supports HIT.

The framework has two major steps. (1) Task allocation that assigns tasks to

processors (CPU and/or GPU). This step is optional, but provides a significant benefit to the

next step. (2) Task scheduling determines schedules of the tasks assigned to a set of

processors. Given many tasks in a stream program that runs over thousands or millions of

inputs, our framework reduces tedious and complicated work for programmers to manually

assign tasks to processors to achieve optimal performance.

We formulate the task allocation problem with HIT support as a load balancing

problem that optimizes the maximum load (execution time) among all the processors in the

system. Given large inputs, we proved that this maximum load approximates makespan of a

stream program to within a negligible amount of error. This problem formulation enables us

to have a simple heuristic load balancing algorithm called K-HIT that solves the formulated

problem.

For the final task scheduling, we develop a variant of earliest finished time first for

stream programs called Stream-EFT. We evaluate the performance of our K-HIT algorithm

and Stream-EFT algorithm against cyclic scheduling as well as partial unrolling [22][42].

The simulation results show that our approach outperforms the existing algorithms in terms

of the makespan of a stream program, while maintaining reasonable time and memory

requirements.

5.2 Drawbacks of Related Work and Features of Our Work

Our task-scheduling framework does not require graph unrolling for the most

computationally intensive parts, to avoid significant increase in complexity of the problem as

aforementioned. Unrolling can be especially costly for algorithms that run in higher exponent

polynomial time or exponential time. Writing GPU code for many tasks of a program and

then running all GPU capable tasks on GPUs may not yield the best performance since they

76

all compete for the same computing resource (a limited number of GPUs). To consider

whether it is better to run a particular task on GPU versus CPU, at least two versions of a task

must be available: one that uses only CPU(s) and another that can utilize GPU(s). For GPU

tasks, it may already be the case for two versions of a task to be available, since typically a

CPU version is written for prototyping and testing before a GPU version is written for

improved speed. When more than one version of a task is available and only one needs to be

executed, we call this heterogeneous choice. This is a feature of our proposed work that is

not discussed by the related work. Another common restriction in related work is that once a

task is scheduled on a processing node, it runs until completion without preemption. It may

not always be necessary in practice to keep this restriction, as modern processors have

hardware preemption available. In addition, this restriction often prevents some related work

from yielding an optimal solution. While some variations of cyclic scheduling may allow

preemption within a single iteration [42], it does not allow for preemption between iterations,

requiring unrolling and thus a blow-up of problem size. The related work in partial graph

unrolling did not allow for preemption. Our proposed method allows for preemption in the

form of bubble filling, where we attempt to fill unused periods of processor time (bubbles)

with tasks that have yet to be scheduled.

It should be noted that the task scheduling preemption we refer to differs from typical

OS task scheduling in that OS task scheduling generally tries to be "fair" by giving each task

a time-slice in round-robin fashion. Each task is continuously preempted by other tasks,

effectively causing a worst case scenario of end times for tasks. Because future dependents

cannot run until their dependencies have been satisfied (i.e., those tasks have reached their

end time), this also causes large delays in the PTG. We are not concerned with fairness, but

rather, overall program completion time, where preemption might make sense to use in some

cases but not in others.

Our framework consists of two major steps: task allocation (optional) and task

scheduling. While some algorithms include task allocation as part of their task scheduling

step, other algorithms can significantly benefit from performing task allocation as a separate

step before doing task scheduling. Once a task is allocated to a set of processors (CPU and/or

GPU), the task is executed on the assigned set of processors for the entire duration of the

77

stream program. Different tasks processing different inputs are scheduled using our task

scheduling algorithm.

5.3 Problem Formulation of Task Allocation of Stream Programs

We use the following assumptions for our problem formulation and proofs. We use

notations in Table 5.1 to describe a set of tasks, processor specification, and other important

information for the problem formulation.

Assumptions: (1) at least one task has a dependency on itself from previous iteration

– this is suitable for applications where decision is made based on the order of processing; (2)

cost per task is static as assumed in Satish’s; (3) a task (once its profile is chosen) runs on

that same set of processors using the same profile in subsequent iterations; (4) preemption is

available. We focus on scenario where processing time greatly exceeds communication cost.

Table 5.1: Notations for the task allocation problem

Notation Description

T = {T1, T2,…, Tn} Set of n indivisible tasks in a stream program

D = {D1, D2,…, Dd},
Set of d computing devices (processors) in the system where Dk

denotes device (processor) k

P = {P1,1, P1,2,…, Pn,l}
Set of profiles where Pij denotes profile j for task i where j is an
integer corresponding to a processor configuration B

B(b1, b2, …, bd)

A processor configuration in which bm is 0 if processor m is not
used, 1 if it is used, and 2 if it is used only for a comparatively
small amount of time as a support processor (such as a CPU used
to launch GPU code)

PT
i,j,k

Time spent on task i by processor k using profile j= Σi(bi⋅3i-1); the
profile is the number represented by the trinary sequence B.

PM
i,j,k Memory required by task i on processor k using profile j

Si,j
Si,j = 1 if profile j is used for task i;

Si,j = 0 otherwise

C
Set of constraints; for instance, CM

k denotes the amount of
memory available for processor k

78

For the problems where tasks do not have dependency between iterations, steady state

scheduling algorithms may be considered instead [72].

Since a task may have different portions of itself running on different processors, we

use profiles of different processor configurations to model this requirement. Suppose D =

{D1, D2, D3, D4} where D1 and D2 represent CPU1 and CPU2, respectively and D3 and D4

represent GPU1 and GPU2, respectively. For example, the processor configuration B(1,0,1,0)

indicates that only CPU1 and GPU1 are utilized. For this configuration, the profile number is

1⋅33 + 0⋅32 + 1⋅31 + 0⋅30 = 30. PT
i,j,k is used to capture execution times taken on task i, profile

j, and by processor k. For the above profile number 30, we have values for PT
1,30,1 and PT

1,30,3.

For instance, PT1,30,1 of 3 indicates that processor 1 (CPU1) spends 3 time units to execute

task 1 whereas PT
1,30,3 of 6 indicates that processor 3 (GPU1) takes 6 time units on task 1.

Invalid profiles have special values to indicate that they are not valid. For instance,

configuration B(0,0,1,1) is not valid since we cannot run GPU kernel without CPU (even a

tiny amount of CPU time is usually spent to setup and launch a GPU kernel). While CPU

might only be used for support (e.g., to launch a GPU kernel), it may instead be taken full

advantage of in order to do additional processing. The trinary nature of B handles this

difference.

Problem Definition: Given T by a program specification, D and C by a hardware

specification, and P through automated profiling on the intended hardware, find the matrix S

that minimizes makespan approximated by the maximum load (execution time) across all

processors as shown in Objective (5.1).

 (5.1)

 () 







=∀ ∑

j
jiSi 1: , (5.2)

 () 







≤⋅∀ ∑ k

M

ji
jikji

M CSPk
,

,,,: (5.3)

() max maxload minimize

,
, , , 


















⋅ = ∑

j i
j i k j i

T
k S

S P

79

In Objective (5.1), the time spent on task i by processor k using profile j, PT

i,j,k, is

accumulated with other tasks on the same processor if Si,j is 1 (i.e., profile j is used for task i).

Constraint (5.2) allows only one profile per task. Constraint (5.3) describes a memory

constraint that the amount of memory required by all programs allocated to a particular

processor cannot exceed that processor’s associated memory capacity. Some additional

constraint equations could easily be added using this model to support real-time deadlines or

other desired effects.

The formulated problem is an integer linear programming problem, which is NP-

Complete. Before we discuss our heuristic solution, we present Theorem 1 used to justify the

validity of Objective (5.1).

Theorem 1: Minimizing makespan of a stream program over a large number of

inputs is approximately equivalent to minimizing the maximum load (execution time) across

all processors.

Makespan of a stream program is the length of the critical path of the program PTG

over all its inputs. In this paper, we focus on the set of problems where communication cost

between processors is considered negligible compared to the computation cost. GPU is a

good candidate for this problem set. We set the edge cost to zero and include in a node’s cost

any computation cost involved to transfer data between tasks. Any communication cost

incurred outside of computation cost could be accurately represented by creating a virtual

node on a virtual processor that represents the data transfer cost of that communication

(edge), but incurs no additional computation cost. We will investigate this possibility as part

of our future work.

With Assumptions (2) and (3), the execution time in different iterations is same. Our

proof does not need to consider statistically iid. Assumption (3) simplifies the problem and

avoids processor switching overhead.

80

Table 5.2: Notations for proving Theorem 1

Notation Description

Ni,j Node represents task j of iteration i for input i (e.g., frame i)

gi A graph containing nodes and edges of the original PTG for only
iteration i; all gi’s nodes and edges are same between different i's

Gi PTG consisting of all nodes from iteration 1 to iteration i including
added edges between iterations

costN(Ni,j) Node cost – execution time of node Ni,j

costP(Ni,j�Ni,k) Path cost – sum of the time taken by all nodes along the critical path
from Ni,j to Ni,k, including Ni,j and Ni,k

Ni,c A cut point node at task c in iteration i

Table 5.2 shows the notations used for the proof of Thereom 1. Figure 5.2 shows an

unrolled PTG of Figure 5.1 over a number of iterations, each processing one input. Note that

an unrolled graph is used only for the proof; with the proof, it is no longer necessary to unroll

the PTG for our heuristic solutions.

We first consider simple cases for homogeneous systems. We present the proof for

case I when the number of tasks is at most the number of processors. Each task is assigned a

distinct processor for maximum parallelization. We then map the problem with the number of

tasks more than the number of processors (case II) to that of case I and utilize the results of

the case I proof. Next, we handle choice of heterogeneous profiles. We use notations in

Tables 5.1 and 5.2 for the proof.

81

Case I: The number of tasks is at most the number of processors

Base step: G1 consists of nodes N1,1, …, N1,n with the same number of nodes and

edges as in the original PTG of the given stream program. Let N1,1 denote the source node

and N1,n denotes the sink node (virtual nodes with no cost can be created for the sake of

having a single source and single sink node if necessary). The makespan of G1 is same as that

Figure 5.2: Unrolled PTG of Figure 5.1. Notations are the same as those in Figure 5.1 and Table 5.2, where S
represents the start time of a node. The ith iteration processes frame i. A black dashed line between iterations
indicates that a task in the ith iteration must finish first before the same task can proceed in the i+1 th iteration.
For the unrolled graph of two iterations G2, the cut point node is N1,6. For unrolled graphs of three iterations or
more, the cut point node becomes N1,5 and remains at this node. The critical path of the graph of frame 1 to
frame L is labeled as a blue dashed line.

82

of the original PTG. The critical path is the path from the source node to the sink node with

the longest length. See the critical path of G1 in the upper-right corner of Figure 5.2.

We add nodes of the next iteration g2 to G1 to form G2. Each node in g1 will have a

directed edge drawn to its corresponding node in g2 to represent a temporal dependency (as

in Satish’s technique [22]). Thus, for all task j, a directed edge is added from N1,j to N2,j. We

already know the critical path of G1; we compute a new critical path for G2. Although the

source node of G2 is the same as that of G1, the sink node changes from the final node of

iteration 1 (N1,n) to the final node of iteration 2 (N2,n). The only way to draw a path from a

node in iteration 1 to a node in iteration 2 is using one of the newly added edges that goes

from N1,j to N2,j for some j (Assumption 1). It would not be possible to form a new critical

path to N2,j without going through one of these edges. The new critical path of G2 will

include a "cut" at some point j in N1,j to N2,j, with a new edge from N1,j to N2,j. The new

critical path will run as usual along nodes in the first iteration until its cut point, N1,j where it

then jumps to N2,j and continues along that path. For instance, in Figure 5.2, the critical path

of G2 results in the makespan of 11 which is derived from the earliest time its input is ready

(the maximum end time of its immediate preceding node in the same iterations and the

preceding node in the previous iteration or max{N2,6, N2,5, N1,7} which is max{10, 10, 8}. To

break the tie for the same cost, we choose the first cost. Hence, to get all nodes in the critical

path, we trace backward from N2,6 using a similar method until the source node N1,1 is

reached. The critical path of G2 goes from N1,1 to N1,6, cuts at N1,6 to N2,6, and continues from

N2,6 to N2,7.

Let N1,c be the current cut point. The critical path length of G2 or the makespan

considering only 2 iterations can be derived using Expression (5.4) where i = 2.

 costP(N1,1�N1,c) + (i-2)*costN(N1,c) + costP(Ni,c�Ni,n) (5.4)

Inductive Step: We consider the critical path in the base case and a new candidate

critical path created in a similar way to form G2. Let N1,nc represent a cut point of a new

iteration i>2 . N1,nc is different from N1,c when there exists node N1,nc different from N1, c that

83

satisfies Inequality (5.5). In other words, a new critical path cutting through a new cut point

results in a higher execution time.

 costP(N1,1�N1,c) + (i-2)*costN(N1,c) + costP(Ni,c�Ni,n) <

 costP(N1,1�N1,nc) + (i-2)*costN(N1,nc) + costP(Ni,nc�Ni,n) (5.5)

As the number of iterations increases, the critical path will divert to use the maximum

node cost as the cut point since the length of the critical path of each Gi increases the most

when costN(N1,nc) is the highest. Figure 5.2 shows that in iteration 3, the cut point changes to

N1,5 instead of N1,6.

Over a large number of inputs (thousands or millions of inputs), the iteration term (i-

2)*costN(N1,c) dominates the other two critical path terms. This is because the maximum

value of the critical path terms combined is approximately limited by, at most, the sum of the

costs of all the nodes in the original PTG (as in the case of a serial program where the critical

path runs through every task). The iteration term will eventually converge to using the node

with the highest cost. When i is equal to the number of nodes plus three, the iteration term is

still at least the sum of the critical path terms, in the worst case. As i increases, the iteration

term continues to grow while the critical path terms remain the same. The significance of the

critical path terms, in the worst case, may be approximated by the number of nodes divided

by the number of iterations. Because we expect the number of iterations i to exceed the

number of nodes of the original PTG by a significant amount – perhaps 10-100 nodes in the

original PTG compared to over a million iterations for the overall program – the significance

of the critical path terms could be lower than 100 ÷ 1 million = 0.01%. Hence, minimizing

makespan is approximately equivalent to minimizing the maximum cost node.

Case II: The number of tasks is more than the number of processors

The primary difference when there are fewer processors than tasks is that some tasks

must share a processor with another task. This creates competition or contention for a

processor’s compute time. Instead of all tasks running in parallel, tasks that use the same

84

processor need to run in serial of each other, but tasks that run on different processors can

still run in parallel.

To handle this difference, we need to modify Expression (5.4). While the meaning of

the expression remains the same, we modify the per-iteration cost, which originally used the

cost of a single node (representing a single task). Instead, the per-iteration cost uses the

maximum processor load among the processors on which that task executes. Because the

load of a processor is the sum of the costs of all tasks that run on that processor, it is easy to

see that the effective time between a task being executed on successive iterations is the total

load of the processor that task runs on. Thus, it is correct to use the processor load time

instead of the node’s cost, as seen in Expression (5.6). We use the maxload as defined in

Objective (5.1). For tasks that utilize multiple processors, we use the maximum load out of

all the processors the task uses, as this will determine the time between successive iterations

of the same task. While the meaning of the costs representing the critical paths to and from

the cut point remain the same from Expression (5.4), these critical paths must reflect the

critical path taking processor contention into account. These terms are still insignificant

compared to the iteration term from Expression (5.6).

 costP(N1,1�N1,c) + (i-2)*maxload + costP(Ni,c�Ni,n) (5.6)

Dealing with heterogeneous choice among tasks: When we have heterogeneous

processors, the same task is likely to take different times on different processors, resulting in

different costs for the same task. While some have proposed a normalization of all costs to a

single reference processor speed [25], this approach does not work in practice due to variable

speedups dependent on the task implementation and processor types (e.g., when running on

GPU instead of only CPU, one task might get 4x speedup and another task might only get 2x

speedup). To properly minimize the overall cost, we choose the profile (and thus allocation)

that will minimize this maximum load across all processors.

85

5.4 Load Balancing Algorithms for Task Allocation

5.4.1 Brute Force with Pruning

We implemented a simple brute force solver for load balancing. Because our method

does not require loop unrolling, the number of tasks can remain fairly small for many

programs. The brute force algorithm tries every combination of load balancing of tasks

(based on their profiles); however, it prunes duplicates to reduce redundancy (e.g., having

two homogeneous processors' loads exactly swapped) and also keeps a running best solution

to prune searches when any load already exceeds the best solution. With our generated PTG

benchmarks described in the performance evaluation, we can compute an exact solution for

20 tasks on 2 CPUs and 2 GPUs in under one second. Even though 20 tasks may be

completely realistic in many cases, brute force does not scale well. Therefore, we introduce a

simple greedy algorithm called K-HIT.

5.4.2 K-HIT Greedy Algorithm

K-HIT considers all combinations of profiles using K tasks at once out of the total

number of tasks in the PTG and selects the one combination with the minimum makespan.

This is applied repeatedly until no further improvement can be made. This is applied to load

balancing for a single iteration. This is a greedy solution and will eventually result in what is

probably a local minimum rather than a global minimum. Increasing K allows the algorithm

to break local minima more easily; however, it also increases the exponent of this polynomial

time algorithm O(mK) where m is the maximum number of profiles for a task. We found that

K=3 works well for most of our simulated graphs described in Section 5.5 and that K=4 does

not improve the quality of the solution by much, if at all. Without HIT, this problem is

similar to the n-partition problem, a well-known NP-Complete problem [22], for which

several heuristic algorithms exist. There are also other heuristic algorithms specifically

targeted toward load-balancing. It may be possible for such algorithms to be augmented to

support HIT and used in place of K-HIT.

86

5.5 Algorithm for Task Scheduling

We schedule all tasks for one iteration at a time, starting from the first iteration until

the last iteration when the last input is processed. Within a single iteration, we use EFT to

schedule all tasks for that iteration. We call this variation on EFT for stream programs

Stream-EFT. Although scheduling is performed for each iteration, it is done independently of

other iterations; thus, unrolling the task graph is not necessary, saving time and memory.

However, some state information is saved between iterations. Bubble filling is able to reduce

idle time between iterations compared to methods that only repeat the same schedule of one

iteration for all the iterations.

5.6 Experimental Setup and Results

In order to compare our proposed algorithm with related work, we generate various

synthetic stream parallel task graphs as input. The goal is to determine how well each

scheduling algorithm works with different types of stream programs. We generated our own

PTGs for benchmarking.

5.6.1 Graph Generation

Problems with Existing Benchmarks

Although some existing PTG data sets exist for benchmarking purposes (e.g., [73]),

they are not necessarily intended for stream programs. We also did not find any that

supported HIT. Because we wanted better control over the parameters of the graph (such as

the degree of parallelism, number of tasks that support HIT, and to what varying degree they

support HIT), we implemented our own graph generator and simulator for testing.

Types of Graphs and Graph Generation

A common target stream program used for benchmarking is that of MPEG

compression. The program usually involves a long pipeline of steps that includes some small

amount of parallelism and, overall, many serial tasks [22]. We wanted to generate similar

graphs as seen in real-world scenarios. Thus, with our graph generator, we can specify the

minimum, average, and maximum degree of dependencies between each task; this

87

determines the amount of parallelism in the overall graph. We also wanted to compare

algorithms against mostly serial and mostly parallel task graphs to see the effects that those

have on performance. We primarily focus on the hybrid PTG, which contains a realistic

amount of both serial and parallel computation. We simulated and averaged the results for

the simulations of 20 hybrid PTGs.

For the serial graph, we chain together 20 nodes in series so that each node has only

one dependent, except for the final sink node. For the parallel graph, we start with one source

node, link 18 dependent nodes directly from the source node, then link all those nodes into a

final sink node. So, those 18 node can all run in parallel.

Table 5.3: Descriptions of scheduling algorithms

Algorithm Description

Cyclic
Cyclic scheduling with HIT added; brute-force is used
to compute the optimal cyclic schedule for one cycle,
which is repeated.

PU w/o Pre. (10)

Partial unrolling (PU) without preemption; PTG
unrolled 10 iterations for computing a schedule with
DLS augmented to support heterogeneous choice,
which is then repeated as necessary to fill all required
iterations (e.g., 220 iterations).

PU w/ Pre. (10) Same as previous, but with preemption enabled.

K-HIT + S-EFT w/o Pre.

Proposed K-HIT and Stream-EFT algorithm without
preemption; load balancing is computed over a single
iteration, then the resulting task-processor allocation is
applied to the original PTG for every iteration.

K-HIT + S-EFT w/ Pre. Same as previous, but with preemption enabled.

K-HIT + S-EFT w/o Pre. (10)

Proposed work limited to scheduling for only 10
iterations, without preemption; load balancing is
computed over a single iteration with K-HIT, then the
resulting task-processor allocation is applied to the
original PTG for 10 iterations for computing a schedule
with Stream-EFT. The resulting schedule is replicated
end-to-end to account for all required iterations.

K-HIT + S-EFT w/ Pre. (10) Same as previous, but with preemption enabled.

K-HIT + S-EFT w/ Pre. (1000)
Same as previous, with preemption, but scheduling on
the original PTG for 1000 iterations.

88

For generating the randomized hybrid PTGs, we chose an average of 20 tasks for the

PTG, 1-3 dependents for each task, execution time for each task on the CPU from 1-1000

time units, an average of 40% of those tasks as being HIT-enabled, and a realistic speedup

range for HIT-enabled tasks on GPU from 0-9 times speedup, where zero represents the same

cost (no speed gain) from heterogeneous processor (GPU) usage. The ranges for these

parameters were chosen in an attempt to get benchmarks to be as realistic as possible with

real-world programs and GPU speedups.

5.7 Task Scheduling Algorithms and Features

The variations of task scheduling algorithms are listed in Table 5.3. Some minor

variations have been included to show the impact that those variations have on various

algorithms.

5.8 Results

The results of each scheduling algorithm and their variations are shown in Tables 5.4

through 5.6. The makespan as well as the time taken to generate a schedule and memory

usage of the scheduling algorithm used to achieve that makespan are included. All programs

were scheduled for 220 iterations (equivalent to about 10 hours worth of video frames at 30

frames per second). Results are shown for a purely serial task graph, purely parallel task

graph, and the average of 20 randomly generated hybrid task graphs, which include some

degree of serial and parallelism between tasks. For the makespan, a percent relative to the

baseline algorithm "K-HIT + S-EFT w/ Pre." is used. For example, a value of 200% indicates

that the algorithm takes twice as long. For all three tables, a lower value is more desirable.

All of these were computed on a quad-core 1.73GHz i7 (x64) computer with 8GB of RAM.

The optimal cyclic schedule could not be computed with brute force for many parallel task

graphs because brute force examines too many permutations (over one day of computation

time was spent without any reasonable result). We also simulated DLS with preemption on a

fully unrolled graph, and it did not complete within one day of computation time.

89

Table 5.4: Makespan

Algorithm Serial Hybrid (20) Parallel

Cyclic 186.92% 126.08% * -

PU w/o Pre. (10) 153.53% 137.10% 116.52%

PU w/ Pre. (10) 151.27% 135.06% 112.53%

K-HIT + S-EFT w/o Pre. 368.22% 231.63% 100.00%

K-HIT + S-EFT w/ Pre. 100.00% 100.00% 100.00%

K-HIT + S-EFT w/o Pre. (10) 368.23% 226.26% 100.10%

K-HIT + S-EFT w/ Pre. (10) 139.13% 115.04% 100.10%

K-HIT + S-EFT w/ Pre. (1000) 100.46% 100.20% 100.04%

Table 5.5: Time Taken to Generate a Schedule (ms)

Algorithm Serial Hybrid (20) Parallel

Cyclic 47 1879452 * > 1 day

PU w/o Pre. (10) 26 18 42

PU w/ Pre. (10) 42 33 41

K-HIT + S-EFT w/o Pre. 13961 22853 39590

K-HIT + S-EFT w/ Pre. 32542 48890 116561

K-HIT + S-EFT w/o Pre. (10) 60 42 66

K-HIT + S-EFT w/ Pre. (10) 64 64 71

K-HIT + S-EFT w/ Pre. (1000) 92 126 173

* Due to the enormous computation time required, the result for only the cyclic schedule is shown for one hybrid
graph rather than an average of the 20.

90

Table 5.6: Memory usage (MB)

Algorithm Serial Hybrid (20) Parallel

Cyclic 1 1 * -

PU w/o Pre. (10) 1 1 1

PU w/ Pre. (10) 1 1 1

K-HIT + S-EFT w/o Pre. 1 1 1

K-HIT + S-EFT w/ Pre. 852 819 640

K-HIT + S-EFT w/o Pre. (10) 1 1 1

K-HIT + S-EFT w/ Pre. (10) 1 1 1

K-HIT + S-EFT w/ Pre. (1000) 1 1 1

Figure 5.3: Makespan of select algorithms with respect to the baseline for variable number of iterations for a
hybrid PTG. Although some variability exists at lower numbers of iterations, as the number of iterations
becomes very large, the relative makespan stabilizes to show a clear pattern.

91

5.9 Discussion

The proposed work, K-HIT for load balancing and Stream-EFT for scheduling, with

preemption, yields a theoretical near-optimal result that can be compared against. For

example, this algorithm yields a final result for 220 iterations that is, on average, only

0.00026% larger than the maximum processor load (from the load balancing step) multiplied

by the 220 iterations. If the load balance chosen is optimal, then this scheduling algorithm

also yields an optimal schedule to within a negligible amount of deviation.

In Figure 5.3, several algorithms are shown, simulated with varying numbers of

iterations from 1 to 220. Although at lower numbers of iterations, results are too variable to

draw any conclusions, when higher numbers of iterations are simulated (as would be seen in

stream programs), results become consistent. Additionally, for our baseline algorithm, as the

number of iterations increases, the makespan asymptotically approaches the load balance

multiplied by the number of iterations, as shown in Section 5.3.

Thus, computing an optimal load balance is very important. For small task graphs

(e.g., 20 tasks), regardless of the amount of serial or parallelism between tasks, the actual

optimal load balance is fast to determine with brute force; thus, an overall optimal schedule

can be found in a short amount of time. For larger task graphs where brute-force is

unrealistic, the heuristic algorithm used to compute the load balance is the most influential

factor to the final makespan, as the final makespan can still be computed to within a

negligible amount of deviation from the load balance result multiplied by the number of

iterations.

K-HIT is useful even by itself, when applied to existing task scheduling algorithms. It

can be used to supplement or as an alternative to the task allocation step of task scheduling

algorithms. For existing scheduling algorithms that were augmented with heterogeneous

choice, this is an especially important step, as these existing algorithms do not function well

with the additional nondeterminism of having to choose between different implementations

of the same tasks. K-HIT makes that choice in the task allocation step, allowing existing

algorithms to work in the same way that they were originally designed to work.

92

For Stream-EFT, we schedule using the original PTG that is not unrolled; however, to

allow preemption, we consider free time created from bubbles in prior iterations. Keeping

track of these bubbles over millions of iterations requires high (but manageable) bookkeeping

costs of time and memory. This cost may be somewhat reduced by computing a schedule on-

the-fly during execution time since prior bubbles of time that have already elapsed no longer

need to be considered. Most of the time and memory is spent traversing and maintaining a

complex tree and linked list structure that efficiently keeps track of the bubbles. Near the end

of a program's execution, it is unlikely that the bookkeeping for bubbles at the beginning of

the program are useful. So, these resources could be freed at the potential cost of a less

efficient makespan.

Preemption is very important for Stream-EFT to get good results. Thus, if preemption

is not desired, while K-HIT is still useful, it should be combined with an alternate stream

scheduler.

These algorithms establish a baseline proof-of-concept of our approach. The

combination of using the proposed K-HIT and Stream-EFT algorithms along with an idea

similar to the partial unrolling work where fewer iterations are scheduled, but with many

more iterations "unrolled" (1000) than originally proposed (10) by [22], yields nearly as good

a result without the disadvantages of high computation time and memory requirements as in

the proposed work alone. Note that the PTG is never actually unrolled in this combination

since K-HIT and Stream-EFT do not require unrolling – only the number of iterations

scheduled is different. Because there are fewer bubbles created in the process of scheduling

over only 1000 iterations, the memory usage never exceeded 1MB for the graphs tested. It is

then relatively fast to replicate the resulting schedule of 1000 iterations to account for all 220

iterations. Due to its very low memory and computation cost, this approach may be the

preferred method in practice.

5.10 User-Mode Task Scheduler

In order to make our theoretical task scheduler practical, we investigated options to

implement a task scheduler without modifying the operating system kernel. Because

operating systems generally implement their task scheduler in kernel-mode, it is not possible

93

to easily specify our own scheduling algorithm for an existing operating system. So, we use

an alternate method where we approximate a task scheduler completely in user-mode.

In an operating system, the task scheduler is responsible for choosing a thread or

process (depending on scheduling granularity) to run on each processor at any given time.

Although the actual algorithm for task scheduling may vary, the mechanisms for multitasking

– actually getting tasks to switch – are typically the same. There are two major types of

multitasking: cooperative and preemptive. In cooperative multitasking, a task runs for as long

as it wants, until it decides to yield its processing time to another task. This means that one

task can completely block a processor from being utilized by any other task if it never yields.

In many situations, this is undesireable. With preemptive multitasking, a task is given a set

amount of time to run, after which it may be forcefully swapped out for another task by the

operating system. This is usually made possible through some protected processor

functionality only available to the operating system.

Figure 5.4: An example of (a) preemptive round-robin multitasking, left, and (b) cooperative multitasking, right.

Although preemptive multitasking is generally used to give some fairness to all

threads by forcefully cycling through them in some fashion, it can also prove to be less

optimal for a given program. This can be shown with a simple example in Figure 5.4.

Consider a two processor system with three tasks, A, B, and C, each taking 3 time units to

finish. As a restriction, tasks A and B can only run on the first processor (e.g., some

processor-specific code in a heterogeneous system), while task C can only be run on the

second processor. Task C depends on task A finishing. In the case of preemptive

multitasking, suppose that each task is allowed to run for one time unit before it is forcefully

swapped out for another task, and that tasks are switched in round robin fashion. In this

situation, shown in Figure 5.4(a), the first processor would run A for one time unit, then B

Time

CPU1

CPU2

A A A B B B

0 1 2 3 4 5 6 7 8 Time

B

C

CPU1

CPU2

0 1 2 3 4 5 6 7 8

C

A

94

for one time unit, then A, B, A (where it finishes at time 5), and finally B (where it finishes at

time 6). Task C can finally start at time 5, where it takes 3 time units, so the entire program

finishes at time 8. If, instead, we were to use a cooperative task scheduler, shown in Figure

5.4(b), we could have run A first continuously for 3 time units where it would finish at time

3. Then, task B can run on the first processor starting at time 3 while task C can run on the

second processor also starting at time 3. Both tasks finish at time 6, so the overall program

would finish at time 6. Operating system schedulers generally do not know anything about

the underlying thread dependencies of a program, so it is possible that a preemptive

scheduler (which is what typical operating systems like Windows and Linux use) will result

in a less optimal program execution.

For our theoretical static task scheduler, we can construct a complete schedule based

on the execution times of each task. In the simple case where one task finished and another

starts immediately after, it is easy to see that cooperative multitasking directly applies. In the

case where we have scheduled a task to fill in a bubble that is shorter than the total duration

of a task (and thus it must be broken into more than one part), we may need to use

preemptive multitasking to forcefully halt a task at a given moment in time, then start the

other task. Thus, to implement our user-mode task scheduler, we will utilize both cooperative

and preemptive strategies.

In Windows, there are several key functions used to make this possible (Linux and

some other operating systems have similar functions) – CreateThread to create new threads

corresponding to tasks, SetThreadAffinityMask to lock individual threads to specific

processors, SuspendThread to pause threads, ResumeThread to resume threads, and Sleep to

yield a task's currently scheduled timeslice.

5.10.1 Design and Implementation

Although there are several ways to implement a user-mode scheduler, we implement

it as follows. We begin by creating all task threads initially suspended from a supervisor

thread. The supervisor thread represents the functionality of an operating system task

scheduler and is therefore responsible for suspending and resuming threads. Although we do

not have access to the true hardware preemption resources that the operating system does, we

95

can emulate this to some degree. We use only a single supervisor thread to control all

processors. The supervisor thread uses some task scheduling algorithm to choose a thread for

each processor. In order to execute a task for a specified amount of time on a given

processor, it first sets the thread's processor affinity mask to that single processor, then

resumes that thread (which was created in a suspended state). This is done for each processor

in the system.

In this way, as long as there are no outside factors, each processor is running the

specified task we gave to it and nothing else. All other threads of our program have been

suspended, so they are not considered for scheduling by the operating system scheduler. Only

the active threads are scheduled, and they all have unique processor affinities, so they will

not interfere wih each other. In reality, though, there will be outside factors (other threads

running in the system from other programs), there is little we can do to guarantee complete

non-interference for our user-mode task scheduler. However, we can attempt to reduce this

interference by increasing thread priority (making it less likely that other threads will be

swapped onto our specified processor) and making sure not to run other programs while we

run our user-mode task scheduled program. So, with some uncertainty, the operating system

closely obeys our task scheduler.

When a thread has finished processing its data, it calls Sleep to yield its timeslice in a

cooperative multitasking way, so that a new thread can be scheduled. Our user-mode task

scheduler (now running as the task's thread as opposed to the supervisor thread) intercepts

this call to Sleep in order to choose a new task to run for the processor that task was running

on. The old thread must be stopped with SuspendThread while a new thread to be scheduled

will be started back up with ResumeThread. A new task is chosen, and the appropriate

functions are called to perform these operations, setting the same processor affinity for the

new task as the old task (to reuse that specific processor). SuspendThread is called last in the

sequence of events, since the scheduler is being run from the same thread that will become

suspended. If the thread suspends itself before resuming a new thread, then the scheduler will

have effectively stopped itself, and the other thread would not have been resumed. We can

repeat this scheduling process until all tasks have completely finished and their threads

96

exited. When all worker threads have exited, the user-mode task scheduler determines that

the program has effectively finished.

While the supervisor thread is not necessary to support cooperative multitasking, we

utilize it to support preemptive multitasking. Because the underlying operating system works

with a preemptive scheduler, it is possible to schedule a non-suspended thread (the supervisor

thread) to wake up based on a timer, thereby potentially preempting a running task, with

some margin of error that is based on the underlying operating system's preemptive

scheduler. We schedule the supervisor thread to wake up based on the time of the earliest

expected task that should be preempted. When our supervisor thread wakes up, it verifies that

the expected thread is still running, suspends it, then resumes a different thread on that same

processor that completes the schedule. The supervisor thread again determines the next

earliest time it should wake up and goes back to sleep based on that timer.

5.10.2 Dynamic Scheduling

The method described is sufficient to implement a task scheduler in user-mode on top

of a preemptive multitasking operating system. However, because there are outside factors,

and the granularity of our preemption is based on the granularity of the underlying operating

system (potentially, the length of a timeslice), there are some variable factors that our

original statically generated schedule did not and could not necessarily account for.

Additionally, for a real program, the time a specific task takes to execute for an iteration may

not necessarily remain static, but instead, follow some distribution depending on its input

data, the time a task takes may vary by a non-trivial amount.

We can somewhat account for this with a static scheduler by using the worst case

time of a task for every iteration (so that the static schedule remains static), but then we waste

processor time when those tasks finish before their worst case time. We could also use the

average case time (or some other composited time based on each task's profile), but then the

static schedule would not be able to be followed exactly.

Instead of following a precomputed static schedule exactly, we can apply a set of

rules to determine which tasks should be scheduled at a given point in time based on what

tasks have already finished which iterations. Although this does not follow exactly all the

97

conditions of the static scheduler proposed, it is still a close approximation, and would work

in a practical implementation. Currently, the static task scheduler attempts to schedule each

iteration one at a time, using EFT within an iteration. Thus, it follows that a dynamic

scheduler should prioritize tasks based on iteration number first, and EFT second. Because

dependencies might not always be immediately satisfied, some future iterations of some tasks

may be able to run before an earlier iteration of a different task. However, we still want to

enforce the priority of iteration number. So, we need to potentially preempt some task (which

has filled a bubble) with another task. The design of our user-mode scheduler allows for this,

as long as we know when to preempt.

At any given point in time, we know the latest iteration that each task has processed,

and we also have the dependencies between tasks. So, we know which tasks and which

iterations are available to be scheduled – call this set S. Its initial state consists of the first

iterations of any tasks that do not depend on any other tasks (i.e., purely producer tasks with

no inputs). While we continue to lock tasks to processors, we keep only a single set S for the

whole system. At some point in time, then, we can properly schedule based upon our priority

of iteration number, and then EFT next, from our set S. This scheduling would not change

until our set S changes. This only occurs when another task in the system has finished,

potentially satisfying some dependencies. At this point, the finished task is removed from S

and all of the fully satisfied dependent tasks can be inserted into S. For each of these new

tasks, if their priority (based on iteration number and then EFT) for their specified processor

is higher than a currently executing task on that processor, then we preempt the currently

running task for the new task. In this way, we follow the philosophy of the statically

scheduled Stream-EFT, but we never rely on scheduling for specific points in time that our

static schedule relied on. We can schedule entirely dynamically based on the changes in

satisfied dependencies.

In the case where all tasks have static execution times across all iterations (as in the

static scheduler), this method for dynamic scheduling would result in the same schedule

being generated. However, because a dynamic scheduler also works for dynamic execution

times, and we expect execution time to be dynamic in practice, it may be more realistic to

implement a dynamic user-mode scheduler than a static user-mode scheduler.

98

For a proof of concept, we implemented a round-robin dynamic user-mode scheduler

in SAPPHIRE with promising results. Just by using the user-mode scheduler, we saw a

reduction in the execution time of some sample SAPPHIRE benchmarks by about 20%. This

speedup compared to letting the OS do all scheduling is attributed to several factors,

including longer virtual timeslices, less contention of threads for processors (i.e., threads can

finish processing on their own before the OS interrupts their execution with another thread),

and the ability to lock out certain processor cores (for example, we found that disabling

hyperthreading by disabling scheduling on certain virtual CPU cores yielded a non-trivial

speedup for some types of tasks for which hyperthreading provided little to no benefit, but

increased the time to finish of both tasks executing).

Although we implemented a round-robin scheduler, due to some design limitations in

SAPPHIRE's work loop, it would have been a significant undertaking to implement the user-

mode scheduler for Stream-EFT in our middleware. SAPPHIRE's work loop automatically

queues and processes all available input data at some given point in time (as an

optimization), whereas Stream-EFT needs more fine grained control over which pieces of

data are processed. For example, if ten VIDEO packets are available to process, all ten will

be processed before the work loop yields execution. Stream-EFT would demand that we

potentially reschedule tasks in the system after reconsidering what new tasks were satisfied

after completing each iteration of a VIDEO packet (as well as dependencies satisfied by other

tasks in the system). From simulations of our scheduling algorithm, without this fine grained

control, we saw an increase in execution time. Therefore, without redesigning our work loop,

a user-mode scheduler for Stream-EFT would not be effective.

5.11 Summary and Future Work

In this chapter, we present a theroetical framework for static sheduling for stream

programs considering execution profiles of each task on a heterogeneous system. Our

proposed K-HIT and Stream-EFT method achieves near optimality for high numbers of

iterations and is comparable to or better than existing work in many respects. We also

proposed a faster approach that further reduces memory and computation cost, while still

achieving a high quality schedule. For future work, we plan to extend our method to work

99

with statistical profiles of tasks as opposed to a single static cost and to implement the

discussed bandwidth virtualization to support memory-intensive style tasks. As a proof of

concept, we show that implementation of a user-mode scheduler is possible for round-robin

scheduling, but a significant change in the design is needed to fully support Stream-EFT

scheduling.

100

CHAPTER 6. EVALUATION OF SAPPHIRE FOR DEVELOPMENT OF

MEDICAL VIDEO ANALYSIS APPLICATIONS

Two medical video analysis applications were developed using SAPPHIRE. We

developed the first application called “EM-Capture” for automatic detection of endoscopic

videos, which takes a stream of images and records those corresponding to an endoscopic

procedure in an MPEG-2 file, one file per procedure. The software automatically discards

outside-patient images. EM-Capture has been running at Mayo Clinic in Rochester,

Minnesota since 2009 and captured over 71,000 anonymized endoscopic procedures thus far.

The software itself is novel and eases the process of data collection significantly. We took

part in developing the second application “EM-Automated-RT”, which extends EM-Capture

with other real-time analysis and feedback of quality of the colon exam. The second

application was developed collaboratively by a team of seven reseachers and has been in

used at Mayo Clinic Rochester since the 4th quarter of 2011.

This chapter describes our contribution in algorithms for real-time automatic

detection of endoscopic procedures as well as software development for the two applications

using SAPPHIRE and evaluation results.

6.1 Endoscopic Video Detection

In order to conduct quality control tests for every colonoscopy exam, we needed to

digitally record and store a complete video of each individual procedure for later

examination. The ideal system would be able to: (1) function without any user intervention

(i.e., be transparent to all medical staff and physicians); (2) integrate well into the current

medical infrastructure; (3) automatically turn itself on and off; (4) perform required analysis

of the video stream in real-time; and (5) generate compressed video files. There were a

number of challenges to overcome. First, complete system autonomy and integration with

existing infrastructure varied from institution to institution. Second, analysis of colonoscopy

video content was an underdeveloped area of research. Third, a combination of medical

knowledge and expertise in computer science or engineering was necessary to develop the

101

required algorithms. And lastly, developing and combining potentially dozens of algorithms

into a single system while retaining a high level of accuracy was a complicated task.

As part of the first step toward objective quality analysis for endoscopy video, we

introduced an automated colonoscopy video capturing and analysis system called “EM-

Capture” that could automatically detect individual procedures and digitally compress and

store these to the hard disk of a local workstation [74]. The videos were then uploaded from

one or more workstations to a central server, where automated quality metrics could be

performed. No people interaction was required at any step of the process. Since our system

ran concurrently with actual colonoscopy exams as they occurred, our system needed to run

in real-time to capture and analyze the video without dropping any important information.

This was achieved through multithreading, using high or real-time prioritized threads, and

assembly code for CPU intensive analysis. The accuracy of this step was extremely

important, since a complete (i.e., not fragmented) video is needed to perform a

comprehensive analysis reflecting the entire procedure. The solution we developed may also

work – with minimal modifications – for other endoscopic procedures such as upper

gastrointestinal endoscopy, cystoscopy, arthroscopy, and bronchoscopy.

Figure 6.1: Examples of (a) inside-patient (left) and (b) outside-patient (middle) frames. An example of (c) an
outside-patient frame (right) that resembles the color and brightness of an inside-the-patient frame due to an
external light.

102

We first tested the system in two endoscopy rooms at the Mayo Clinic in Rochester,

Minnesota. Each room consisted of a completely separate set of hardware (including the

workstations) for our software. Each workstation is a PC-compatible computer with a

Pentium 4 CPU running at 2.8 GHz with 2 GB of RAM. Fujinon endoscopes were used for

all procedures. The video signal from the endoscopes is converted to a digital signal for the

computer by Turtle Beach Video Advantage USB video capture devices. Testing was done

over the course of two weeks and totaled about 230 hours of raw video, with the system

running from 6:00 am to 5:30 pm every day except weekends. It extracted 173 videos

totaling 70 hours of recorded video, but contained 171 true procedures. The correct output of

the system would be exactly one video file for each procedure. Improperly combining frames

of multiple procedures into the same file is considered a false-join and improperly splitting a

single procedure into multiple files is considered a false-cut. No videos had false-joins or

false-cuts. Two video files did not have a procedure in them, but instead consisted of the

camera laying on a table, pointed toward a bright light with a reddish hue or a white sheet of

linen with a similar reddish hue. Although these types of videos are undesired, we prefer to

capture more videos and not miss any procedures. Some videos contained, in addition to

procedures, a period of time with the camera pointing toward a light shortly before or after

the actual procedure. The extra images of such a light in a video are also undesirable, but

obviously preferable to missing the beginning or end of a procedure by using too weak of

thresholds.

We achieved segment-based sensitivity of 100% and specificity of 99% out of 173

videos. As it was difficult to determine the exact number of frames our software detected as

being inside or outside a procedure, we calculated sensitivity and specificity based on the

number of segments of video stream determined to be inside or outside a procedure. A true

positive (TP) is a segment of video stream that the software correctly determined was part of

a procedure. A true negative (TN) is a segment of video stream that was correctly determined

to not be part of a procedure, and therefore was not captured. The TN number therefore

consists of the summation of counts of all segments of video stream before, between, and

after true positive and false positive videos. A false positive (FP) is a segment of video

stream that was determined to be part of a procedure when in fact that segment of video

103

stream was not. A false negative (FN) is a segment of video stream that was part of a

procedure that our system determined was not. Sensitivity is defined as TP / (TP + FN); that

is, the percentage of procedures we were able to capture out of all procedures. Specificity is

defined as TN / (FP + TN); that is, the percentage of segments of video stream that we did

not record out of all segments of video stream that we should not have recorded. More details

can be found in [74] and [75].

6.2 Drawback of Old Method

The previous method of splitting endoscopy videos apart involved a temporal analysis

of the red, normalized-red, and motion metrics of the video stream. Although we achieved a

high segment-based sensitivity and specificity (the original goal), we wanted to improve on

the frame-based sensitivity and specificity.

A segment-based sensitivity separates the result data into segments of video

containing inside-patient and outside-patient data. The transitions between inside and outside

are recorded and compared against the ground truth transitions. Note that the exact time of a

transition is not as important as attempting to find the transition from outside to inside either

prior to or just at the real transition from outside to inside, and likewise from inside to

outside. The main priority was to separate individual procedures into their own videos

without missing any inside-patient data. The second priority was to eliminate as much

outside-patient data as possible.

The previous method had very good results; but sometimes as much as forty minutes

of outside-patient video data would exist in a video. As the intended use of the captured

video would eventually be quality analysis by analyzing the video of each endoscopy,

outside-patient data is undesirable. Additionally, outside-patient data can contain patient-

identifiable images, which we must remove. With these new goals in mind, it makes more

sense to use a frame-based sensitivity and specificity. That is, all video frames are classified

as inside-patient or outside-patient frames and compared against the ground truth.

Using a frame-based sensitivity and specificity, the results of the previous method

were not satisfactory. Although the sensitivity was still good (it had virtually 100% true

104

positives of inside-patient data and no false negatives), the specificity was as low as 80%

(due to many false positives).

Also, while the thresholds of the old method worked well for the specific brand of

endoscope we tested, they did not work well for different models or brands of endoscopes.

Furthermore, video settings such as brightness, contrast, and tint greatly affected how well

our thresholds worked. For example, enabling the tint button on one endoscope machine

increased the normalized-red value for a frame by as much as 100. A white background could

appear pinkish-red and possibly be detected as inside-patient data. To be robust, we need

more flexible thresholds and potentially new video metrics.

6.3 New Metrics

To get better results, it is logical to find some metrics that differentiate the most

between inside-patient and outside-patient video. For example, a metric that has a range of 0

to 100 and a value of 49 for outside-patient and 51 for inside-patient would not differentiate

as much as a metric with the same range that had a value of 1 for outside-patient and 100 for

inside-patient. Although it is possible that some frames could be classified as false-positive

or false-negative using an individual metric, we want each individual metric to correctly

classify as many frames as possible as strongly as possible. We choose different style metrics

that strongly classify different kinds of frames, such that we would not choose several

metrics that classified the same set of frames as false-positives, for example.

The three original metrics were very hardware and user dependent. We wanted to add

metrics that would be able to adjust to the video regardless of hardware change or user

settings. The metrics we added include: variance of middle 80% of the derivative of the

mean-red signal over time, and the same for the mean-normalized-red signal; several

histogram “energy” metrics of the mean-red, mean-normalized-red, and a special version of

each containing filled histogram bins for every value between two successive data points; the

mean-normalized-red rise and fall; and a long-term metric based on the energy histograms.

Most of these metrics work well by “calibrating” to the data as it is seen – then when we

transition from inside to outside or outside to inside, the metrics change drastically. The

software including the new metrics was run in 8 endoscopy rooms at Mayo Clinic Rochester.

105

We first present our original EM-Capture application, followed by details on how we

ported it to SAPPHIRE. EM-Capture consists of three separate major components that are

run as a parallel pipeline: capture, analysis, and encoding. The capture component

continually captures video from the video capture hardware and buffers it for the analysis

phase. The analysis component analyzes each frame to determine the start and the end frames

of a procedure. The encoding component writes only the inside-patient frames to video files

on hard disk, with one complete procedure per file. As some components (each implemented

as at least one application thread) are more response-time sensitive than others, we set

specific priorities for each thread (e.g., video capture is of the highest priority).

6.4 Capture

The capture component captures audio and video data from the capture hardware,

which receives the video from the endoscope hardware as a series of images, and stores it in

a circular FIFO (First In/First Out) data buffer in memory (see Figure 6.2). Since features of

a single frame are not sufficiently accurate to decide whether the frame is part of a procedure

or not, a buffer (about ten seconds in our environment) is used to keep the most recent video

data in memory. These frames stay in memory while being analyzed by the analysis

component until a decision is made whether to use or discard the frames. For example,

storing ten seconds of raw video data in 720 x 480 x 24 bits-per-pixel format at 29.97 frames

per second in memory requires about 296 MB of memory. Since all threads in our system use

the buffer, we allocate the buffer as a large chunk of shared memory. We ensure thread-safe

access of this memory such that no component adversely affects another when it needs to

read from or write to this memory. The buffer is used in a circular first-in first-out (FIFO)

fashion, where new data is appended to the head end of the FIFO buffer as indicated by A in

Figure 6.2. As newly captured frames become available, they will be analyzed in the same

order they were captured. This corresponds to the frames between B and A in Figure 6.2.

Once analyzed, a frame is either discarded if it is determined that it is not part of a procedure

or saved in the buffer until a decision can later be made whether the frame is part of a

procedure or not from analyses of later frames. In Figure 6.2, C points to the oldest buffered

frame and the distance from C to B indicates the number of frames saved in this fashion. If

106

analysis on a future frame determines that the previously saved frames were not part of a

procedure, these frames are discarded by repositioning C and D to point to B. As a result, all

frames older than the frame pointed to by B are discarded. If the analysis of a frame

determines that all the saved frames were in fact part of a procedure, all the saved frames

need to be encoded and written to disk. The oldest saved frame that must be encoded to disk

is the tail of the FIFO buffer, and is pointed to by D in Figure 6.2. Once frames are encoded

and written to disk, they can be discarded, and the next frame can be encoded. This is done

by advancing D one frame at a time toward C. However, D cannot advance past C since the

frames still being buffered in C are not yet ready to be encoded. C cannot advance past B

since the frames indicated by B have not yet been analyzed. B cannot occur before A since

we cannot analyze frames that have not yet been captured. Finally, A cannot occur before D

(in a circular fashion), since in that situation, the FIFO buffer would overflow, which would

result in dropped frames.

Circular FIFO buffer of video frame pixel data

Empty

ABCD

CaptureEncode Saved frames pending analysis

Mean-red feature values

Mean-normalized-red feature values

Variable-sized entrance analysis window

Mean-normalized-red rise

T
em

poral
feature

Figure 6.2: The circular FIFO video frame buffer contains several internal pointers based on how much each
frame in the FIFO buffer has been processed. A indicates the head of the FIFO buffer where newly captured
frames are written. B points to the oldest unanalyzed frame. C points to the oldest potential procedure image
whose classification of inside or outside is still unknown. D points to the tail of the FIFO buffer where images
are either written to disk or discarded. Each tick mark represents a single frame.

107

6.5 Analysis

The analysis component computes features from consecutive video frames in an

analysis window. The output of the image analysis component is a value of a variable called

inflag, which tells the video encoding component whether the image is part of a procedure

(inflag = true) or not (inflag = false). Most procedures contain only images of the patient’s

colon mucosa for the entire duration of the procedure. However, occasionally, some

procedures contain outside-patient images when the endoscope is briefly pulled out of the

colon and re-inserted. A new procedure is started when inflag transitions from false to true,

and a procedure is completed when inflag transitions from true to false. The actual start and

end frames of a video file can be different from the exact frame of the transition, since, for

example, we may elect to keep a few seconds before the actual procedure starts in order to

see the insertion of the endoscope into the rectum (during testing of the software to verify

that this is indeed the start of the procedure). The same applies for the end of the procedure

where we can add a few seconds of video to provide evidence that the procedure indeed has

finished.

The difficulty of the analysis is as follows. We are working with (1) an analog video

source, which is prone to a large amount of noise, (2) a real-world environment where the

contents of consecutive procedures can change significantly from procedure to procedure

(e.g., upper-endoscopy followed by colonoscopy), and (3) the human factor, which presents

many challenges such as changes in display settings (e.g., brightness, contrast, tint) by the

physician, or the physician forgetting to switch on the video source of the endoscope or the

endoscope light source until after the endoscope has been inserted into the colon (called a

sudden start hereafter) when it is too late to calibrate or detect an entrance event. The latter

two issues are the most difficult to deal with. We, therefore, designed novel features to

achieve the following goals: (1) all procedures are recorded, (2) a very small percentage of

false procedures are recorded, and (3) a tiny percentage of outside-patient images are

included in the recorded procedure videos.

108

6.5.1 Characteristics of Inside-Patient and Outside-Patient Video

The video received from an endoscope may have an actual viewing area that is a

rectangle, octagon, or part of a circle inside the video frame; pixels outside the viewing area

are very dark, but not necessarily completely black (see Figure 6.1). These irrelevant pixels

need to be discarded. Inside-patient images are primarily red or reddish-orange colored.

Although there is usually a higher chance of the washed-out images (low amount of red) in

outside-patient images, a high amount of red occasionally occurs when the endoscope points

at some object (e.g., orange floor) very closely for minutes to an hour. Therefore, color

features alone are insufficient. While inside the patient, the endoscope is constantly moving

in and out as well as moving up, down, or sideways. Much more motion activity typically

occurs during a procedure compared to between procedures. However, there are times of low

motion inside the patient. For example, when pictures are being taken for reporting purpose,

or biopsy/excision material is being inserted or withdrawn through the endoscope, the

endoscope tip may not move for seconds to several minutes. Once a procedure has been

completed (i.e., the endoscope is outside the patient), there usually is very little motion since

most of the time the endoscope lays stationary on a tray or there is no video signal as the

endoscope is unplugged from the video processor. However, high motion occurs occasionally

(e.g., the endoscope has been removed but not set down on a tray yet). Additionally, there are

often times where video noise is significant enough in that even though the camera is still and

the objects are still, the noise causes significant motion.

Given the real-time constraints and the above characteristics of the input video signal,

we use two sets of features: (1) basic features to discard obvious irrelevant pixels or outside-

patient frames and (2) our new temporal features derived from change in certain information

among consecutive frames over time to deal with more complex cases. To derive frame

features, we first discard pixels that are unlikely part of the endoscope viewing area as

follows. We use a conditional filter to accept only pixels whose red, green, and blue

components are all at least a mucosa threshold value. Pixels that do not meet the criterion are

treated as invalid pixels and completely ignored by the analysis algorithms. If less than the

minimum area threshold of the video area contains valid pixels, some features (e.g., mean-

109

red and mean-normalized-red to be discussed shortly) are also set to zero, since we consider

this frame to contain an insignificant amount of information to be part of a real procedure.

As frames are analyzed using the actual frame data in the video FIFO buffer (Figure

6.2), values of basic features and temporal features are generated. Each feature value is

usually represented by one or more number, which is significantly smaller than the video

frame data. These temporal features are either derived from the video frame data in the time

window or the basic features in a different time window. Some temporal features (e.g.,

variance of differences of mean-normalized-red values) require a constant-sized buffer while

other features (e.g., mean-normalized-red rise area) operate on a variable-sized window of

basic feature values. This variable-sized window may correspond to the video frame data

stored in the circular FIFO buffer between C and B in Figure 6.2. Some other features may

operate on their own window of recent frames.

6.5.2 Basic Features

Let I be the image for a given frame, with each pixel having a red (I(x,y).r), green

(I(x,y).g), blue (I(x,y).b) component values between 0 and 255 in RGB color space, and n is

the number of pixels whose r, g, b values are all at least mucosa threshold.

Mean-Red, Mean-Normalized-Red, and Accumulated Mean-Normalized-Red

The mean-red for each frame is the average red intensity value in the RGB color

space of all valid pixels over a single frame of video as shown in Equation 1. The mean-

normalized-red (mean red saturation) calculated using Equation 2 is the amount of red

saturation within each pixel (compared to green and blue), averaged over all valid pixels in a

single frame. Red saturation is useful to detect dark red, where the mean red would give too

small a value, and to exclude red containing colors such as white, which has equal quantities

of green, blue, and red. The accumulated mean-normalized-red (AMR) is defined in Equation

3. AMR is initialized to zero and is occasionally reset based on the inside-outside detection

logic discussed in Section 6.6.

These features are simple and extremely fast to calculate, which makes them suitable

for real-time applications. However, they are ineffective in many situations. For example, a

110

camera pointed at a bright white cloth or some close object in the room with a bright reddish

tint will have a very large mean-red value, which does not distinguish it very well from being

inside the colon. If a physician changes the video settings (e.g., tint), the amount of red

saturation for an ambient outside-patient video frame could be unnaturally high; for instance,

when the endoscope is pointed toward a white wall in the procedure room, a solid white wall

may instead look like a solid pink wall. The values of mean-red for outside-patient images

from our experience vary from 10 to 252 (although skewed toward the lower end) and inside-

patient images from 30 to 255 (usually skewed toward the higher end).

 mean-red = ∑
yx

ryxI
n ,

).,(
1

 (6.1)

 mean-normalized-red = ∑ 








++
⋅

yx byxIgyxIryxI

ryxI

n ,).,().,().,(

).,(2551 (6.2)

 AMR = mean− normalized− red
time window

∑ (6.3)

Histogram Difference

To measure the amount of motion, there are several complex methods such as optical-

flow or block-based motion estimation [76]. However, these methods are too time-

consuming for real-time applications. In our previous work, we elect to use a variation of the

chi-squared histogram difference [69] to capture the motion between two frames. This

feature is no longer used in this work since we have new temporal features that provide better

performance; however, it is mentioned for completeness.

6.5.3 New Temporal Features

The basic features are insufficient for achieving the three aforementioned goals for

the analysis. Thus, we introduce new features that all rely extensively on temporal

information rather than just on one or two frames worth of information. We calculate our

new features using the video already in the buffer.

Mean-Red and Mean-Normalized-Red Variance of Differences Without Outliers

Figure 6.3 shows that the video before and after a procedure typically has little

variation in its mean-red and mean-normalized-red values, but the video during a procedure

111

has a high amount of variation. In order to capture variation of mean-red values over a longer

duration, we can calculate the variance of mean-red values and mean-normalized-red values

over a number of frames. However, this simple variance cannot readily distinguish the start

and end of a procedure. Instead, we use the variance of the differences of mean-red values of

a pair of consecutive frames for all w-1 pairs of w consecutive frames in the video buffer

after removing the outliers (the mean-red differences outside the 10 and 90 percentiles of the

differences). The outliers are due to the scene changes (e.g., endoscope repositioned from

dimly lit far away wall to nearby brightly lit cloth). Let K be the set of the mean-red

differences without the outliers and |K| denotes the size of this set. Let DiffMeanRi be the i-th

mean-red difference in the set. We calculate the mean of the mean-red differences and the

mean-red-difference variance using Equation (6.4) and Equation (6.5), respectively.

 DiffMeanR=
DiffMeanRi

i∈K

∑
|K |

 (6.4)

DiffVariance= DiffMeanRi −DiffMeanR()

i∈K

∑
2

 (6.5)

Similar equations are used to calculate the variance of the mean-normalized-red

differences by substituting the mean-red difference with the mean-normalized-red difference.

In a real endoscopy video, when we remove the outliers and calculate the variance this way,

the variance at the start and end of a procedure is non-zero and is significantly higher than

the variance during a procedure (usually non-zero). The variance during the procedure is

typically higher than the variance for the outside–the-patient images, which is zero, or very

close to zero. Figure 6.3(b) demonstrates the effectiveness of this feature.

While this feature works well to correctly remove a large number of outside-patient

frames that would have otherwise been recorded, there are four problems. The first problem,

mentioned before, is that when the endoscope is inside the patient but idle, the variance will

be zero. The second problem is that occasionally continuous motion changes of the

endoscope while it is outside-patient also have high variance. The third problem is that a

“sudden start” procedure (a procedure that begins inside the colon – e.g., the video feed was

112

not plugged in until after the endoscope was inserted) may be difficult to detect using this

feature alone, since the scene change from solid black (or very dark) to endoscopy frame

signal does not produce as high variance as we normally see during a regular colon entrance.

The fourth problem involves noise in the video capture. Not infrequently, the mean-red and

mean-normalized-red values can rapidly oscillate in intensity from one frame to the next

(similar to a square wave from 0 to 255). Sometimes, the oscillation is less predictable and

occurs every few frames. If we rely on differences between frames, the differences

themselves are similar to a square wave, resulting in very large variance. We, therefore,

propose another feature to address this oscillation problem.

Mean-Red and Mean-Normalized-Red Energy Histogram Area

In the simplest case, the oscillation problem mentioned above will have two values

between which the mean-red or mean-normalized-red oscillates. We address this problem by

creating a histogram of all the data points (mean-red or mean-normalized-red) within a time

window, with one bin per integer intensity between 0 and 255. We call this histogram an

“energy histogram”. With a simple square-wave type oscillation between 0 and 255, our

energy histogram has two non-zero bins (0 and 255). In a less trivial example, there could be

several non-zero bins. In an endoscopy procedure, as the endoscope moves, the mean-red and

mean-normalized-red values generally rise and fall quickly and often throughout most of the

video. Thus, a procedure’s histogram should have many bins filled in seemingly random

amounts. If our energy histogram has only a few bins filled, or a few bins containing the vast

majority of data points, it is very likely that the video segment is not part of a procedure.

113

Figure 6.3: Examples of features graphed over time of (a) a sample procedure entrance, shown top, and (b) exit,
shown bottom. In the top half of each image, the red line corresponds to the mean-red feature, the magenta line
to mean-normalized-red, the yellow line to the histogram difference; and the green and red areas correspond to
the mean-normalized-red rise and fall differences, respectively. On the bottom half of the figure, the red line
corresponds to the mean-red variance of differences, the magenta line to mean-normalized-red variance of
differences, the tan line to mean-red energy histogram, the pink line to the mean-normalized-red energy
histogram, and the light yellow line to the hybrid mean-red/mean-normalized-red energy histogram. In the
middle, the red, green, and blue bars correspond to frames being detected as frames inside a procedure by our
algorithm. The white bar is the ground truth for frames being part of a procedure, set by a real person observing
the actual video and marking the precise entrance and exit frames. A sharp rise in mean-normalized-red, one of
the features shown on the top half of each graph, is indicative of the precise entrance frame.

114

Figure 6.5: Double-normalized energy histograms generated from two different sets of data. For the right
histogram, a typical signal of a procedure has its “area” (the space taken by the actual bin data) computed within
a rectangle whose left and right bounds are the first nonzero bin and the last nonzero bin, respectively. This is
shown as the yellow rectangle. We normalized the area computed inside the rectangle, as if the area inside the
yellow rectangle were 1.0. This is different than the previous feature in that the width was always 256 bins,
whereas in this feature, the width adjusts to the data. For the left histogram, a somewhat flat signal outside the
patient has resulted in a large peak, similar to the histogram in Figure 6.4. Although the rectangle that can fully
encompass the nonzero bins can be much smaller than the yellow box indicates, we restrict the minimum width
of the histogram to 128 bins; otherwise, this peak could cover a considerable area in the resized boundaries,
generating a high value.

Figure 6.4: Energy histograms generated from two different sets of data. For the left histogram, a very high
peak of one value causes the other bins to be scaled to a smaller value. The high peak is likely due to a flat
signal, indicating very little change, and usually only occurs outside a procedure. The “area” computed is the
space filled (the histogram bins) within the overall histogram graph (the yellow box). When a high peak causes
the rest of the values to be scaled very low, the overall area will also be low. For the right histogram, we have
more regular variation in the mean-red values. As a result, more of the histogram bins are allowed to retain a
higher value when scaled. The overall area occupied by the bins in the histogram will be significantly larger in
this case. This usually occurs during a procedure.

115

 To derive a useful feature from the energy histogram, we normalize the histogram

and calculate the “area” of the normalized energy histogram as follows. The largest bin count

in the histogram is scaled to 1.0, and all other bin counts are scaled similarly with respect to

the largest bin. The width of the histogram is scaled from 256 to 1.0 as well, so that the

“area” of the histogram becomes a unit square of 1.0. We sum up all of the scaled bin count

values and divide by 256, resulting in the “area” of the normalized energy histogram. A

smaller area means that few bins contained most of the data points, as they appear as large

spikes in the histogram, and other bins become insignificant. Summing the maximum bin

count value for just a few bins results in a small area. If, on the other hand, there is a good

spread of data points, many bins have a significant non-zero value, and the area of the

histogram is much larger. This feature successfully addresses the oscillation problem.

Double-Normalized Mean-Red Energy Histogram Area

This is derived from the previous feature for detecting a sudden start. This feature

involves normalizing the number of bins to the width of observed values. Instead of

calculating the area of the histogram as a 1.0 by 1.0 square, from bins 0 to 255, we calculate

the area as a 1.0 by 1.0 rectangle from bins X to Y, where X and Y are the minimum and

maximum indices of nonzero bins. The width of the histogram is considered from the

smallest observed value to the largest observed value within the histogram. Thus, if for some

window of time, we never see a mean-red value below a certain threshold, for example 60,

we normalize the histogram using that value as a lower bound for calculating the area. The

maximum area value in this case would be normalized to 1.0 and allows for a range of widths

of histograms. To prevent small fluctuations (such as the simple oscillation problem) from

having high areas, we restrict the minimum width of the histogram to 128 bins (half of the

histogram). We have empirically observed that this variation is very effective for finding

sudden starts within a one-minute window. Although not ideal, since we already miss some

data in a sudden start and additional data in the one-minute window, we will at the very least

begin capturing some of the otherwise possibly completely missed video.

116

Hybrid Mean-Red/Mean-Normalized-Red Energy Histogram

This feature counts the number of bins with the bin count above a specific threshold

(e.g., the bin count is at least 5% of the largest bin). While similar in nature to the previous

feature, this feature is less sensitive to the height of each bin (which contribute to the area),

and is more dependent on how many bins have a significant number of samples.

All the features presented thus far are not able to find precise entrance and exit

frames. They all work in a window of time and can provide only the general vicinity for an

entrance or exit. The following features help to detect the precise entrance or exit.

Mean-Normalized-Red Rise/Fall Area (Entrance/Exit)

Figure 6.3(a) shows that the mean-normalized-red rises very suddenly at the precise

entrance for most videos, which can be used to detect the precise entrance. Features based on

differences of successive input data points over time (like a derivative) are not very useful

since noise in the signal causes many positive and negative values to occur. We shift the

mean-normalized-red signal by w frames forward in time and subtract the shifted signal from

the original signal. The area between the plots of the two signals is analogous to the sum of

the differences over a window of time. In other words, we compute the difference at each

data point as the value of the original mean-normalized-red at that point less the value of the

shifted mean-normalized-red at the same point. We compute the sum of the differences in a

time window as follows. Initially, the sum is zero. We add to this sum if the difference is

above a threshold value. If the difference is negative and smaller than a threshold value

(representing a fall instead of a rise), we reset the sum. At the frame when the value of the

sum goes over a threshold value, we determine that the frame is an entrance frame, as seen in

Figure 6.3(a). Video encoding starts recording at this frame.

To determine an exit instead of an entrance, we derive another feature by shifting the

signal backward in time by w frames and subtracting the shifted signal from the original

signal. If the shifted signal is smaller than the original signal, a fall in the mean-normalized-R

signal occurs. We compute the cumulative sum representing the area as follows. We reset the

sum if it is above a threshold value and add to the sum if the difference is smaller than a

117

threshold value. When the value of the sum becomes lower than a threshold value, we

determine that the frame is an exit frame, as seen in Figure 6.3(b).

Because there may be several rises and falls before, during, and after a procedure, this

feature must rely on other features first for locating the general vicinity of an entrance and

exit. When given that approximate location, we utilize these rise and fall features to pinpoint

the entrance and exit frames to within fractions of a second. This feature is very effective in

removing every outside-patient image and including every inside-patient image.

Because all features are computed continuously, the rise and fall features are

available whenever a candidate entrance or exit is detected. There may be many rise/fall

areas, even before or during a procedure. The specific rise or fall area used may be chosen

due to the other features being strong enough to indicate an entrance. The start of a rise or the

end of a fall indicates the frame of entrance or exit, whereas the other features only indicate

that a procedure has started/finished within some given time frame.

Unfortunately, there are some drawbacks to this method. In particular, it requires

several outside-patient frames and inside-patient frames to derive the features. If these frames

do not exist (e.g., the sudden start scenario), these features are not reliable. To improve the

overall accuracy of this feature, we exclude rises when the video signal starts at zero (black).

This is to prevent the signal generated by an endoscope that has just been plugged in from

being considered a procedure, since it usually is just displaying outside-patient data (which is

clearly a rise from black). Unfortunately, a side effect is that if we plug in the endoscope

after insertion, we cannot determine immediately whether the camera is inside or outside the

patient. Instead, we must rely on the other features. Another drawback, which occurs rarely,

is that the rise is very subtle. Since the primary requirement of the system is to record every

procedure and miss no procedures, we are forced to use a low threshold to avoid missing

these rare cases, which in turn increases the false positive frame capture rate.

6.6 Algorithm for Identifying the Start of a Procedure

Figure 6.6 shows our algorithm that utilizes the above features to determine the

entrance frame. The algorithm sets the value of inflag as either true (the camera is inside the

118

patient) or false (the camera is outside the patient) and determines the start frame of a

procedure. We set the initial state of inflag to false. We keep a variable-sized window to

retain frames in memory to compute temporal features from these frames. Step 1 in Figure

6.6 resets the variable-sized analysis window if the specified conditions are met. Step 2

detects different entrance scenarios. For a sudden start, we generally cannot rely on many

features since they need to calibrate on the outside-patient video to detect the outside-to-

inside transition. For a normal procedure entrance scenario, several features are used together

for accuracy. For mean-red variance, mean-normalized-red variance, and mean-normalized-

red rise area, each of these features has two sets of thresholds. This is because some

procedure videos vary considerably in brightness, contrast, tint, and quality. The threshold

for the accumulated mean-normalized-red is either set to require a small amount of red

saturation for each frame within the past analysis window of video analyzed, or a much

larger amount of red saturation within a shorter time period. The list of thresholds and values

used in our experiments is shown in Appendix H. As part of our future work, we will use a

machine-learning classification algorithm to find optimal threshold values. Step 3 sets values

to indicate the transition to the “inside-patient” state. The precise start frame of the procedure

is the earliest frame used in the mean-normalized-red rise area (i.e., the frame following the

last time the sum was reset). The analysis component then sets inflag to true and signals the

video encoding component to begin processing at that start frame. The processing continues

until the system has decided that the endoscope has been fully removed from the patient.

119

Step 1: Check conditions for resetting the analysis window size to zero.

1. Area of the double-normalized mean-red histogram below its threshold
2. One of the following is true. a) Mean-red below its threshold; b) Mean-normalized-red below its

threshold; c) Variable-sized analysis window above a window size threshold; or d) Mean-normalized-
red difference (calculated from one time step of the mean-normalized-red rise area feature) below its
difference threshold.

If both conditions 1 and 2 are satisfied, reset the variable-sized analysis window size to zero and reset the
accumulated mean-normalized-red to zero.

Step 2: If inflag is false and the below condition for transition from outside to inside is satisfied, go to Step
3; otherwise, skip Step 3.

The transition happens if either the area of the double-normalized mean-red histogram above its threshold (a
sudden start case) or all of the following are true. a) Mean-red above its threshold; b) Accumulated-mean-
normalized-red above its threshold; and c) At least one of the following conditions is true:

1. Either all of the following are true:
• Variance of mean-red differences above its high threshold
• Variance of mean-normalized-red differences above its high threshold
• Mean-normalized-red rise area above its low threshold
• Mean-red energy histogram above its threshold
• Mean-normalized-red energy histogram above its threshold

2. Or all of the following are true:
• Variance of mean-red differences above its low threshold
• Variance of mean-normalized-red differences above its low threshold
• Mean-normalized-red rise area above its high threshold

Step 3: Do all of the following.

1. Set inflag to true (transition to inside the patient)
2. Mark the first frame of the variable-sized analysis window of frames as the actual entrance frame
3. Set the accumulated-mean-normalized-red to zero

Figure 6.6: Algorithm to detect the entrance frame; the threshold values are based on training.

6.7 Algorithm for Identifying the End Frame of a Procedure

The inter-procedure duration varies depending on the start time of the next procedure.

If the next procedure is on a different patient, the inter-procedure duration is long since the

current patient needs to be removed from the room followed by the new patient entering the

room. The inter-procedure time is typically shorter if the next procedure is on the same

patient (for instance, colonoscopy followed by upper endoscopy). We keep a running total of

the number of potentially outside-patient frames since the first candidate end frame is

identified. If we find that at least a certain percent of the past five minutes are identified as

outside-patient frames, we have a high confidence that we have found the end of the

120

Step 1: If all of the following are true, flag current frame as a potential outside-patient frame; otherwise,
flag it as an inside-patient frame:

1. Area of the double-normalized mean-red histogram below its threshold
2. Any of the following is true:

• Variance of mean-red differences below its threshold
• Variance of mean-normalized-red differences below its threshold

3. Any of the following is true:
• Mean-red below its threshold
• Mean-normalized-red below its threshold
• Hybrid mean-red/mean-normalized-red-energy-histogram-area below its threshold

Step 2: If either of the following is true:

1. Area of the double-normalized mean-red histogram above its threshold
2. All of the following are true:

• Mean-red above its threshold
• Accumulated mean-normalized-red above its threshold
• Variance of mean-red differences above its threshold
• Variance of mean-normalized-red differences above its threshold
• Hybrid mean-red/mean-normalized-red-energy-histogram-area above its threshold

Then, do all of the following:

1. Reset the running total of potentially outside-patient frames to zero
2. Reset the position that an exit might occur to the next frame
3. Reset the accumulated mean-normalized-red to zero

Step 3: If the running total of flagged potentially outside-patient frames is at least four and a half minutes
worth, transition to an outside-patient state and continue to Step 4. Otherwise, skip Step 4.

Step 4: Find the exit frame: Scan backward from the current frame until we find the exit frame in which all
of the following are true at that frame.

1. Mean-normalized-red fall area above some threshold
2. Mean-red variance of differences above some exit threshold
3. Hybrid mean-red / mean-normalized-red energy histogram area above its threshold

procedure. The duration of five minutes is based on domain knowledge that the minimum

time between procedures is at least five minutes.

Algorithms for identifying the end frame cannot rely on detecting low motion alone

since the content of a frame may be same for a few seconds to minutes even though the

endoscope is inside-patient, for example, when the endoscopist carefully examines a specific

region of the colon, takes a picture of a frame, or waits for specific equipment not

immediately available. The amount of motion can be very low during such events.

Figure 6.7: Algorithm to detect the exit frame; the threshold values are based on training.

121

The algorithm is shown in Figure 6.7. Step 1 flags individual frames as inside-patient

or outside-patient. We maintain the running total of the number of potentially outside-patient

frames over the five minute window mentioned. This is used later to determine whether we

should transition to outside-patient. Step 2 attempts to avoid a prematurely detected exit by

continually checking every frame for detection of the outside-to-inside transition. If at any

frame, we would have made that transition to the inside state (ignoring the fact that we are

already in the inside state), we reset the running total, reset any potentially outside frames as

instead being inside-patient, and reset the first potential end frame to the current frame – we

know with high certainty that those frames are still those of inside-patient. The combination

of both of these steps is more robust than either step alone. Step 3 makes the final decision

about whether or not to transition to the outside state based on the number of frames that

were marked as outside-patient. Step 4, finally, identifies the precise exit frame. In the best

case, we find the exit frame exactly as the ground truth. In the worst case, the detected exit

frame is after the actual exit frame. In other words, we include extra frames after the

procedure has ended. This is to avoid missing the end part of the procedure in which an

important quality indicator such as retroflexion typically occurs. Figure 6.7 shows the details

of the algorithm. The algorithm is threshold-based by design to ensure that the analysis can

be done in real-time to prevent frames in the FIFO buffer from being overwritten.

6.8 Video Encoding

Once the analysis component decides the start frame of a procedure, the video

encoding component creates a new MPEG-2 video file and writes the audio and video data

available to the file. After each individual video frame is written to the MPEG-2 file and no

further analysis of that particular frame is required, its space in the FIFO buffer is marked as

free, and the video capturing component may safely overwrite it. Video encoding continues

until the analysis component has determined that the next frame in the video buffer is no

longer part of a procedure. When this happens, the video file is closed, and the process

repeats when the analysis component determines that a new procedure has started. As

explained so far, the first frame that is encoded in a video file is the first frame of the window

122

mentioned in the “entrance” step, and the last frame that is encoded is a frame four and a half

minutes after the determined “exit” frame.

For the end of a video file, we have only specified that the procedure ends four and a

half minutes prior to the actual time that the analysis component determines as the end of a

procedure (to make sure we avoid reentrance conditions where we might accidentally split a

single procedure into multiple procedures). Since we only buffer ten seconds worth of video

data at any given time, these four and a half minutes have already been written to disk by the

time we determine the procedure has ended. We can delete the outside-patient frames written

to disk by seeking four and a half minutes back from the end of the MPEG-2 file and

truncating the file at that point. The four and a half minutes are based on the domain

knowledge that the time between procedures is at least five minutes, and we allow a

misdetection rate of 10%.

Another component of interest is a Windows system service that we developed to

automatically start and stop EM-Capture at specific time points. We configured our capture

system to run from 6:00 am to 8:00 pm every day except weekends. The service also started

EM-Capture if the computer is turned on between these hours. We use a system service

instead of a standard Windows task scheduler event to execute the software automatically

when Windows has loaded but no user has logged in. Once installed, no user intervention is

required for our software.

6.9 Experimental Results

We derive the values of the thresholds from experiments with a training image set

recorded prior to our experimental testing image set. These thresholds are shown in

Appendix H. We then tested the system in eight endoscopy rooms at the Mayo Clinic

Rochester. Each room consisted of a completely separate set of hardware (including the

workstations) for our software. Each workstation was a PC-compatible computer with a

Pentium 4 CPU running at 2.8 GHz with 2 GB of RAM. Fujinon endoscopes were used for

all procedures. The video signal from the endoscopes was converted to a digital signal for the

computer by LeadTek WinFast TV2000 XP Expert video capture devices. Testing was done

over the course of one month and totaled about 2,464 hours of raw video, with the system

123

running from 6:00 am to 8:00 pm every day except weekends. The correct output of the

system would be to create exactly one video file for each procedure with all outside-patient

frames removed from each video file. We implemented visualization software to assist frame

classification. We classified all 2,464 hours of video (over 265 million frames) as inside-

patient and outside-patient for each frame.

Since there are no other existing works that perform the same task, we only evaluated

our proposed work against our previous work. Using our previous method, no videos had

false-joins (two different procedures are put in the same file) or false-cuts (one procedure

divided into more than one files), but there were several false positive videos. These false

positive videos consisted of the camera lying on a table, pointed toward a bright light with a

reddish hue (as seen in Figure 6.1) or a white sheet of linen with a similar reddish hue. Some

videos contained, in addition to procedures, a period of time with the camera pointing toward

a light shortly before or after the actual procedure. The extra images of such a light in a video

are also undesirable, but obviously preferable to missing the beginning or end of a procedure

by using too stringent thresholds. As much as an hour of extra outside-patient data has been

captured in some videos using our previous method. The previous method on this data set

had frame-based sensitivity of 100.00% (all inside-patient images were captured), but only a

specificity of 89.22% (outside-patient images were misidentified as inside-patient images).

With the proposed work, we achieved a sensitivity and specificity of 99.90% and 99.97%, a

significant improvement. We missed a very small portion of the beginning or the end of some

videos while some videos have a few extra frames. The missed frames are the blurry,

uninformative frames that are common at the beginning and end of endoscopy videos,

containing a reddish-orange gradient similar to Figure 6.1(c). While the entrances and exits

were determined to include these kinds of frames, they are not actually useful for analysis.

We do not miss informative images, such as the retroflexion images at the end of a

procedure. While still satisfying the primary objective of not missing any informative frames

of a procedure, we significantly improved on the secondary objective of removing outside-

patient frames. Table 6.1 summarizes this result.

124

Table 6.1: Effectiveness of image-analysis methods for inside/outside patient image
classification for over 265 million frames

 Frame-based sensitivity Frame-based specificity

Previous method 100.00% 89.22%

New method 99.90% 99.97%

The system successfully ran in real-time, with the analysis pipeline only using about

25% of the CPU time available – about 8ms of computation time per frame (up from 15%

CPU time of our previous method), the capturing component using about 1%, and the

MPEG-2 encoding component varying its quality to use whatever remaining CPU time.

Encoding MPEG-2 video at the maximum possible quality in real-time can easily take more

than the maximum computing power of the workstation. Therefore, the video encoder

changes the quality settings as it encodes each frame, depending on the amount of available

CPU time. This allows our system to attain the highest possible MPEG-2 compression

quality for the amount of CPU time remaining after all other computation. CPU time is

calculated by using a software performance and optimization package to measure the amount

of time spent inside specific functions and comparing this with CPU time spent inside the

whole program. The entire process constantly utilizes about 99% of the computer’s total

available CPU time during video encoding, making full use of available processing time. No

video frames were dropped during testing, with 100% of frames going through the analysis

pipeline, and potentially available for video encoding.

6.10 Porting EM-Capture to SAPPHIRE

EM-Capture originally consisted of 4 threads, using image analysis algorithms to

distinguish inside-patient and outside-patient frames, and ran in real-time (processed at least

29.97 frames of video per second). It was not easy to add additional processing components

or update any part of the application, as the processing and communication pipelines were

explicitly coded. To insert a new image analysis stage in the processing pipeline, we had to

add another communication layer between the old analysis stages and the new analysis stage.

125

Additionally, if we wanted to give the new stage its own execution thread, we needed to add

more thread-safe synchronization code to support this.

To port EM-Capture to our middleware, we broke apart the program into separate

tasks for each major analysis component. Common data types were created for each module

to read and write (e.g. MEANR, MEANNORMR), and to functionally understand what the

data means. The original code for each task was inserted into a skeleton module (provided by

the middleware) into a new function, and each module’s Data callback function was modified

to call this function. Very little code was actually changed; in fact, a significant amount of

code was removed, since we no longer needed to explicitly perform the communication and

synchronization as part of our code. Still, a small overhead of additional code was needed to

wrap the old code with the new skeleton and middleware API.

The videocapture and/or mpegreader modules provide the stream of source data

(RAW_VIDEO) and the autoresize module crops this data and outputs the VIDEO.

Functionally, this is very similar to the original EM-Capture, except that with SAPPHIRE,

this is done implicitly and safely multithreaded and all communication is handled by the

middleware. About ten image analysis modules were created to use this data and output their

own metrics through packets. Originally, many of these image analysis components were

performed by a single module and in serial. The new EM-Capture using our middleware

consisted of 28 threads, as compared to only 4 threads in our original program, yielding a

much more balanced distribution of load between processors, as well as being able to utilize

more than only 4 processor cores, if more were available.

Instead of bottlenecking on one thread, which caused offline processing using

MPEG2 video files as the source stream (i.e., playing a video file at maximum speed and

processing input data as fast as possible) to work at about 40 frames per second on average,

we are now able to process at about 90 frames per second on average on the same computing

hardware. We validated the correctness of the new version of EM-Capture by comparing the

output metrics computed over hundreds of hours of video with the original version.

126

6.11 Case Study 1: EM-Capture (Procedure Detection)

The original version of our EM-Capture application (before using SAPPHIRE) ran in

8 procedure rooms of Mayo Clinic in Rochester, MN since 2007. This was expanded in 2009

with the beta testing of a SAPPHIRE-enabled EM-Capture to another 5 rooms. As the

stability of the new version was satsifactory, we converted all of the 13 procedure rooms to

use SAPPHIRE. In total, as of April 2012, EM-Capture has analyzed roughly 50 billion

frames of video, and from that, successfully detected and recorded over 71,000 procedures in

a real hospital setting. EM-Capture has been a very successful proof of concept program,

successfully being ported to SAPPHIRE with minimal effort, while gaining all the benefits

that SAPPHIRE offers.

6.12 Case Study 2: EM-Automated-RT for Real-Time Feedback

This case study application is motivated by the need to improve quality of

colonoscopic procedures. The American College of Gastroenterology (ACG) and the

American Society of Gastroenterology (ASGE) in 2006 published consensus objective

guidelines defining a good quality colonoscopy. The guidelines for a screening colonoscopy

after age 50 include: (1) a withdrawal time for patients without symptoms and with intact

colon anatomy of at least 6 minutes; (2) documentation of visualization of anatomical

landmarks such as appendiceal orifice and/or ileocecal valve in the cecum; and (3) an

average polyp detection rate (the percentage of patients with polyps detected during

colonoscopy) in male and female patients greater than 25 and 15 percent respectively [63].

However, there were previously no computer-aided methods to measure quality of

colonoscopic procedures as recommended by the ACG.

Using EM-Capture as a base to detect endoscopy procedures, a larger group

composed of many researchers worked collaboratively to develop EM-Automated-RT – an

application for real-time quality analysis and feedback of colonoscopy video, using

SAPPHIRE. EM-Automated-RT involved the creation of several modules listed in Table 6.2.

A full list of modules, their description, and their inputs/outputs is available in Appendixes B

and C.

127

Table 6.2: Modules added to create EM-Automated-RT

qcmetricrt.dll Quality metric reporting

blurry.dll Blurry frame detection

egd.dll EGD detection

retroModule.dll Retroflexion detection

rteoi.dll Real-time end-of-insertion detection

rteoi_user.dll Manual end-of-insertion

rts.dll Real-time stool detection

spiralcounting.dll Spiral counting

The real-time feedback program has several goals in mind: (1) detect blurry frames to

distinguish informative and non-informative frames for other modules, while also reporting a

colonoscopy quality metric of percentage of blurry frames; (2) detect various levels of stool

during the procedure for quality reporting purposes; (3) detect end of insertion of endoscope

in the colon to determine insertion time, after which the withdrawal phase begins, which is

usually the most important phase of a procedure; (4) endoscope spiral motion counting by

lumen detection and quadrant coverage, which is displayed as real-time feedback over top the

endoscopy video during real medical procedures. When the lumen (dark area in an

endoscopy video that represents the empty tunnel of the colon) is seen in a particular

quadrant of the video, that quadrant is marked. Marked quadrants are shown as video

feedback with a green triangle in that quadrant's corner of the screen. When all four

quadrants have been marked, the spiral score increments by one and the marks are cleared.

It is proposed that the spiral motion of the endoscope is indicative of looking at an

increased amount of colon wall (tissue), which is where colon polyps and cancers develop. If

the endoscope is facing the lumen directly, it will appear in the center of the video. Thus,

minimal view of the wall is achieved. When the endoscope is partially facing the wall (a

good thing, as this allows good view of the colon tissue), the lumen would appear on the side

or in a corner. In order to maximize the detection of polyps, as much surface area of the

128

colon should be covered as possible. As the endoscope is withdrawn from the colon, it is

often done so in a spiral manner such that the endoscope continues facing the colon wall

while rotating, maximizing the surface area seen. While doing this, the lumen will appear to

rotate through the various quadrants of the screen.

The development of these modules was crucial in order to study both the efficacy of

real-time quality measurements and also the effects of real-time feedback on the quality of a

colonoscopy procedure (i.e., would seeing the green triangles in the corner of the screen as

feedback as well as a quality score increase the achieved quality of a procedure).

The real-time feedback system has been deployed in two educational rooms at Mayo

Clinic. Although SAPPHIRE provides the HUD module with overlay support, certain clinical

standards do not allow any delay between the endoscopy machine and the display, so the

HUD is not used to display the endoscopy video itself. The purpose of this restriction is

because it could be bad, for example, if perceived movement of the endoscope was delayed

too much, potentially causing the endoscope to be pushed too far, perhaps perforating the

colon. So, instead, we use special overlay hardware that displays the endoscopy video on the

monitor as normal. For our HUD, we draw a fullscreen black background and then overlay

our feedback video data on top. This signal is fed through a video out channel to the overlay

hardware that overlays our video on top of the live colonoscopy procedure video, using the

black background as a mask similar to a green screen in video editing techniques. While our

feedback may be slightly delayed, the procedure video is displayed instantly behind it.

Because of this, there is a small perceived response time for our real-time feedback to be

presented back to the physician performing the procedure.

6.13 Summary and Future Work

From a development point of view, SAPPHIRE was used successfully to (1) port an

existing program with very little effort, to achieve a higher level of stability and

multiprocessing, and (2) create a new application by combining independently developed

modules with common data packet formats shared among their programmers. Developers

unfamiliar with SAPPHIRE were able to write modules with some effort, although some

initial learning curve is expected for any platform. Both of these programs are successfully

129

deployed in a real hospital, under complex conditions, analyzing actual endoscopy

procedures, offering real impact toward patients' quality of health care.

Although we have only presented two related case studies, SAPPHIRE is general

enough to be used for any kind of data processing that would benefit from task parallelism

(not just medical video). It is especially effective in driving task parallelism in stream

programs, increasing the potential of exploitation of parallel processing resources, effectively

yielding a faster running program. Although this parallelism is possible without SAPPHIRE

or a similar middleware, a great deal more work would be required on the part of the

programmer. The API for SAPPHIRE is very simple and it takes much less time to get a new

module written and inserted into the program's pipeline.

130

CHAPTER 7. CONCLUSION AND DISCUSSION OF FUTURE WORK

7.1 Contributions

We have provided contributions in multithreaded software development, theoretical

scheduling work, and healthcare:

• SAPPHIRE, including a semi-automated program construction method and

multiprocessing framework to enable implicit program multithreading with little

effort, allowing simplified exploitation of parallel resources to be used

• A novel static task-scheduling framework for stream programs on a heterogeneous

multiprocessor system. Stream-EFT and K-HIT, together provide a novel static

stream task scheduling algorithm yielding proveably and simulated near optimal

results (for our set of assumptions).

• EM-Capture – We developed novel algorithms and an application for automated real-

time endoscopic procedure detection. Our application does not require any human

intervention, making it easy to use in a real hospital setting. It has already been used

to capture over 71,000 endoscopy procedures. EM-Capture along with SAPPHIRE

enables deeper quality analysis programs such as EM-Automated-RT to directly

impact the quality of healthcare during important medical procedures.

7.2 Limitations and Future Work

SAPPHIRE is designed with extensions and expansion in mind, so while the design

itself is sound, the implementation always has room for expansion through built-in libraries

and support for additional platforms. Future work is as follows:

• We plan to continue using SAPPHIRE with our case study programs to examine what

additional features may be desireable by real application developers.

• To support devices other than Windows PC's, such as Linux-based servers or

handheld devices, the platform-specific code would need to have alternate

implementations.

131

• Future work could augment the SAPPHIRE work loop to support Stream-EFT

through user-mode scheduling.

• Stream-EFT can provide optimal scheduling results for our set of assumptions (which

may sometimes hold true in practice). But, these assumptions could limit the

application of Stream-EFT for other situations. Future work could investigate how to

relax some of these constraints.

• We currently expect that computation cost exceeds communication cost (which is true

for our case studies); but, this might not be true for other classes of programs. Future

work could investigate how to apply Stream-EFT to I/O bound programs.

• We can potentially expand the accuracy and effectiveness of Stream-EFT by adding

stochastic scheduling, which more accurately models real life applications with

variable task execution times each iteration (as opposed to using static times).

Furthurmore, context-based stochastic scheduling, which utilizes statistical contexts

based on correlations between tasks' execution times, could provide even more

accuracy for estimating the execution time of real programs.

• We can investigate integrating SAPPHIRE with other technologies, such as service

oriented computing and cloud computing. This would involve tighter integration with

the tcp.dll module, which currently requires explicit specification of computer IP

addresses and data types, with manually written configuration files for each system

involved. This should be more automated so that the developer has less work. The

middleware could provide more efficient load balancing and scheduling than that

decided manually by a user.

• We would also like to address security and privacy aspects. For example, if the

middleware provides access to sensitive patient information, we might wish to restrict

access of that data to specific trusted modules, rather than allow any third party

module to access the data.

132

REFERENCES

[1] S. Stanek et al. Automatic Real-Time Detection of Endoscopic Procedures Using

Temporal Features. Computer Methods and Programs in Biomedicine, May 2011.

[2] S. Stanek et al. SAPPHIRE Middleware and Software Development Kit for Medical

Video Analysis. Computer-Based Medical Systems, June 2011.

[3] N. Srinivasan et al. A Novel System Able to Provide Real-Time Feedback During

Colonoscopy. Abstract. Digestive Disease Week 2012, San Diego, CA, May 2012.

[4] Mark D. Pesce, Programming Microsoft DirectShow for Digital Video and

Television, Microsoft Press, 2003.

[5] D. Thomas, P. Moorby. The Verilog Hardware Description Language (5th Edition),

Springer, 2002. ISBN 978-0387849300.

[6] Mark Zwolinksi. Digital System Design with VHDL (2nd Edition), Prentice Hall,

2004. ISBN 978-0130399854

[7] G. Kiczales et al. Aspect-Oriented Prorgramming. ECOOP '97. Lecture Notes in

Computer Science, pp. 220-242.

[8] R. Filman et al. Aspect-Oriented Software Development. Addison-Wesley

Professional, 2004. ISBN 0321219767.

[9] M. Snir et al. MPI: The Complete Reference. MIT Press Cambridge, MA, USA,

1995. ISBN 0262691841.

[10] W. Gropp et al. A high-performance, portable implementation of the MPI message

passing interface standard. Parallel Computing, Volume 22, Issue 6, Elsevier,

September 1996, pp. 789-828.

[11] NVIDIA, CUDA Zone – The resource for CUDA developers,

http://www.nvidia.com/object/cuda_home.html

133

[12] D. Timothy, R. Hartley, U. Catalyurek, A. Ruiz, F. Igual, R. Mayo, and M. Ujaldon,

Biomedical image analysis on a cooperative cluster of GPUs and multicores, Int'l

Conf. on Supercomputing, 2008, pp. 15-25.

[13] R. Strzodka, and C. Garbe, Real-Time Motion Estimation and Visualization on

Graphics Cards, Conference on Visualization '04, 2004, pp. 545-552.

[14] J.-P. Farrugia, P. Horain, E. Guehenneux, and Y. Alusse, GG-PUCV: A Framework

for Image Processing Acceleration with Graphics Processors, IEEE ICME, Toronto,

Ontario, CA, 2006, pp. 585-588.

[15] J. Fung, and S. Mann, OpenVidia: Parallel GPU Computer Vision, 2005.

[16] S. Hong and H. Kim. An Analytical Model for a GPU Architecture with Memory-

level and Thread-level Parallelism Awareness. ICSA’09. pp. 152-163, Austin, Texas,

USA, June 2009.

[17] Thies, W., Karczmarek, M., and Amarasinghe, S. P. 2002. StreamIt: A Language for

Streaming Applications. In Proceedings of the 11th international Conference on

Compiler Construction (April 08 - 12, 2002). R. N. Horspool, Ed. Lecture Notes In

Computer Science, vol. 2304. Springer-Verlag, London, 179-196.

[18] Khronos Group, OpenCL, http://www.khronos.org/opencl/

[19] J. Stone et al. OpenCL: A Parallel Programming Standard for Heterogeneous

Computing Systems. Comput Sci Eng. May 2010; 12(3):66-72.

[20] L. Chen, O. Villa, S. Krishnamoorthy, G. Gao, Dynamic Load Balancing on Single-

and Multi-GPU Systems, IPDPS, April 2010.

[21] P. Dutot, T. N’Takpe, F. Suter. Scheduling Parallel Task Graphs on (Almost)

Homogeneous Multicluster Platforms. IEEE Transactions on Parallel and Distributed

Systems. 20(7), 940-952, July 2009.

[22] M. R. Garey and D. S. Johnson, Computes and Intractability: A guide to the Theory

of NP-Completeness.: W. H. Freeman and Company, 1979.

134

[23] Andrew S. Tanenbaum. Modern Operating Systems (3rd Edition). Prentice Hall,

2007. ISBN 978-0136006633.

[24] Nadathur Rajagopalan Satish. Compile Time Task and Resource Allocation of

Concurrent Applications to Multiprocessor Systems. University of California at

Berkeley, Technical Report No. UCB/EECS-2009-19. Jan 2009.

[25] T. N’Takpe, F. Suter. Critical Path and Area Based Scheduling of Parallel Task

Graphs on Heterogeneous Platforms. In Proc. of Int’l Conf. on Parallel and

Distributed Systems (ICPADS’06), 2006.

[26] H. Kasahara and S. Narita. Practical Multiprocessor Scheduling Algorithms for

Efficient Parallel Processing. IEEE Transactions on Computers, C-33(11), Nov. 1984.

[27] Y. K. Kwok and I. Ahmed. Static Scheduling Algorithms for Allocating Directed

Task Graphs to Multiprocessors. ACM Computing Survey, 31(4):406-471, 1999.

[28] Task Allocation and Scheduling of Concurrent Applications to Multiprocessor

Systems. PhD. Thesis, University of California, Berkeley, Nov. 2007.

[29] G. C. Sih and E. A. Lee. A Compile-Time Scheduling Heuristic for Interconnection-

Constrained Heterogeneous Processor Achitectures. IEEE Trans. On Parallel and

Distributed System. 4(2):175-187, 1993.

[30] Jie Li, Hisao Kameda. Load Balancing Problems for Multiclass Jobs in

Distributed/Parallel Computer Systems. IEEE Trans. On Computers, 47(3):322-332,

March 1998.

[31] S. Baskiyar, C. Dickinson. Scheduling Directed A-cyclic Task Graphs on a Bounded

Set of Heterogeneous Processors Using Task Duplication, Journal of Parallel

Distributed Computing, 2005, pp. 911-921.

[32] T. Adam, K. Chandy, J. Dickson. A Comparison of List Schedules for Parallel

Processing Systems. Communications of the ACM, 17(12):685-690, 1974.

135

[33] Tao Yang, A. Gerasoulis. DSC: Scheduling Parallel Tasks on an Unbounded Number

of Processors. IEEE Transactions on Parallel and Distributed Systems. 5(9):951-967,

1994.

[34] E. Hou, N. Ansari, Hong Ren. A Genetic Algorithm for Multiprocessor Scheduling.

IEEE Transactions on Parallel and Distributed Systems. 5(2):113-120, 1994.

[35] G. Sih, E. Lee. A Compile Time Scheduling Heuristic for Interconnection

Constrained Heterogeneous Processor Architectures. IEEE Transactions on Parallel

and Distributed Systems. 4(2):175–187, 1993.

[36] H. Oh, S. Ha. A Static Scheduling Heuristic for Heterogeneous Processors. Lecture

Notes in Computer Science, Euro-Par 1996, vol. 1124, pp. 573-577.

[37] H. Topcuoglu, S. Hariri, M. Wu. Task Scheduling Algorithms for Heterogeneous

Processors. Heterogeneous Computing Workshop, 1999, pp. 3-14.

[38] Y. Kwok, I. Ahmad. FASTEST: A Practical Low-Complexity Algorithm for

Compile-Time Assignment of Parallel Programs to Multiprocessors. IEEE

Transactions on Parallel and Distributed Systems. 10(2):147-159, 1999.

[39] A. Radulescu, A. van Gemund. Low-Cost Task Scheduling in Distributed-Memory

Machines. IEEE Transactions on Parallel and Distributed Systems. 13(6):648-658,

2002.

[40] A. Radulescu, A. van Gemund. Fast and Effective Task Scheduling in Heterogeneous

Systems. IEEE Transactions on Parallel and Distributed Systems. Heterogeneous

Computing Workshop, 2000, pp. 229-238.

[41] H. Topcuoglu, S. Hariri, M. Wu. Performance-Effective and Low-Complexity Task

Scheduling for Heterogeneous Computing Parallel and Distributed Systems. IEEE

Transactions on Parallel and Distributed Systems. 13(3):260-274, 2002.

[42] C. Hanen, A. Munier. A Study of the Cyclic Scheduling Problem on Parallel

Processors, Discrete Applied Mathematics, Volume 57, Issues 2-3, 24 February 1995,

pp. 167-192.

136

[43] Mark E. Russinovich, David A. Solomon. Microsoft Windows Internals. Microsoft

Press, 2005.

[44] American Cancer Society. Colorectal Cancer Facts & Figures. American Cancer

Society, 2011.

[45] D. K. Rex, J. L. Petrini, T. H. Baron, A. Chak, J. Cohen, S. E. Deal, B. Hoffman, B.

C. Jacobson, K. Mergener, B. Pertersen, M. A. Safdi, D. O. Faigel, and I. M. Pike.

Quality indicators for colonoscopy. Gastrointestinal Endoscopy, vol. 63, pp. S16-S26,

2006.

[46] S. Vijan, J. Inadomi, R. A. Hayward, T. P. Hofer, and A. M. Fendrick. Projections of

demand and capacity for colonoscopy related to increasing rates of colorectal cancer

screening in the United States. Aliment Pharmacol Ther, vol. 20, pp. 507-515, 2004.

[47] Pabby, R. E. Schoen, J.L. Weissfeld, et al. Analysis of colorectal cancer occurrence

during surveillance colonoscopy in the dietary Polyp Prevention Trial.

Gastrointestinal Endoscopy 2005;61(3):385-91.

[48] L. J. Hixson, M. B. Fennerty, R. E. Sampliner, D. McGee, H. Garewal. Prospective

study of the frequency and size distribution of polyps missed by colonoscopy. Journal

of the National Cancer Institute 1990;82(22):1769-72.

[49] D. K. Rex, C. S. Cutler, G. T. Lemmel, et al. Colonoscopic miss rates of adenomas

determined by back-to-back colonoscopies. Gastroenterology 1997;112(1):24-8.

[50] D. Simmons, G. Harewood, T. Baron, P. Bret, K. Wang, F. Enders, B. Ott. Impact of

Endoscopist Withdrawal Speed On Polyp Yield: Implications for Optimal

Colonoscopy Withdrawal Time. Gastrointestinal Endoscopy, Volume 63, Issue 5,

Pages AB81-AB81.

[51] R. L. Barclay, J. J. Vicari, A. S. Doughty, J. F. Johanson, R. L. Greenlaw.

Colonoscopic withdrawal times and adenoma detection during screening

colonoscopy. New England Journal of Medicine 2006;355(24):2533-41.

137

[52] C. Petersohn. Logical unit and scene detection: a comparative survey. (T. Gevers, R.

C. Jain, and S. Santini, Editors), Multimedia Content Access: Algorithms and

Systems II, Vol. 6820.

[53] M. Coimbra, P. Campos, and J. P. S. Cunha, Topographic segmentation and transit

times estimation for endoscopic capsule exams, in Proc. of IEEE Int’l Conf. on

Acoustics, Speech, and Signal Processing, Vol. II, pp. 1164-7 (Toulouse, France).

[54] M. Mackiewicz, J. Berens, M. Fisher, Wireless Capsule Endoscopy Colour video

segmentation. IEEE Transactions on Medical Imaging; 27 (12):1769-1781 (2008).

[55] J. Lee, J. Oh, S. K. Shah, X. Yuan, and S. J. Tang, Automatic classification of

digestive organs in wireless capsule endoscopy videos. In Proc. of ACM Symposium

on Applied Computing (Seoul, Korea, 2007).

[56] Karargyris and N. Bourbakis, "A video-frame based registration using segmentation

and graph connectivity for Wireless Capsule Endoscopy," Life Science Systems and

Applications Workshop, 2009. LiSSA 2009. IEEE/NIH, pp.74-79 (April 2009).

[57] L. Alexandre, N.N. Nobre, and J. C. Casteleiro. Color and Position versus Texture

Features for Endoscopic Polyp Detection, Proc. of Int’l Conf. on BioMedical

Engineering and Informatics, Vol. 1, pp. 38 – 42 (Sanya, China, May 2008).

[58] D. C. Cheng, W. C. Ting, Y. F. Chen, Q. Pu, and X. Y. Jiang. Colorectal Polyps

Detection Using Texture Features and Support Vector Machine, Proc. of Int’l Conf.

on Advances in Mass Data Analysis of Images and Signals in Medicine,

Biotechnology, Chemistry and Food Industry, pp. 62-72 (2008).

[59] D. K. Iakovidis, D. E. Maroulis, and S. A. Karkanis, An Intelligent System for

Automatic Detection of Gastrointestinal Adenomas in Video Endoscopy, Computers

in Biology and Medicine, Article in Press (Elsevier Science, 2006).

[60] S. Hwang, J. Oh, W. Tavanapong, J. Wong, and P. C. de Groen, Polyp Detection in

Colonoscopy Video Using Elliptical Shape Feature, IEEE Int'l Conf. on Image

Processing, pp. 465-468 (San Antonio, TX, USA 2007).

138

[61] S. Gross, M. Kennel, T. Stehle, J. Wulff, J. Tischedorf, C. Trautwein, and T. Aach,

Polyp Segmentation in NBI Colonoscopy (Bildverarbeitung für die Medizin 2009

Springer Link, pp. 252-256.

http://www.springerlink.com/content/m7418r5356t13455/).

[62] T. Stehle, R. Auer, S. Gross, A. Behrens, J. Wulfl, T. Aach, R. Winograd, C.

Trautwein, and J. Tischendorf, Classification of Colon Polyps in Endoscopy Using

Vascularization Features, Proc. of SPIE Medical Imaging, Vol. 7260 (Orlando, USA,

Feb 7-12, 2009).

[63] J. Oh, S. Hwang, Y. Cao, W. Tavanapong, J. Wong, and P. C. de Groen. Measuring

Objective Quality of Colonoscopy, IEEE Transactions on Biomedical Engineering;

56(9):2190 – 2196 (Sept. 2009).

[64] Y. Wang, W. Tavanapong, J. Wong, J. Oh, and P. C. de Groen, Detection of Quality

Visualization of Appendiceal Orifices using Local Edge Cross-Section Profile

Features and Near Pause Detection, IEEE Transactions on Biomedial Engineering;

57(3): 689-695 (2010).

[65] D. Hong, W. Tavanapong, J. Wong, J. Oh, and P. C. de Groen, 3D Reconstruction of

Colon Segments from Colonoscopy Images, Proc. of IEEE Int’l Conf. on

Bioinformatics and Bioengineering, pp. 53-60, (Taiwan, June 2009).

[66] K. Deguchi, Shape Reconstruction from Endoscope Image by its Shadings.

IEEE/SICE/RSJ Int’l Conf. on Multisensor Fusion and Integration for Intelligent

Systems, Vol. 8. pp. 321-328 (1996).

[67] D. Koppel, C. Chen, Y. Wang, H. Lee, J. Gu, A. Poirson, and R. Wolters, Toward

Automated Model Building from Video in Computer-Assisted Diagnoses in

Colonoscopy, In Proc. of SPIE Medical Imaging Conference (San Diego, CA, USA,

65091L, 2007).

[68] Kaufman and J. Wang, 3D Surface Reconstruction from Endoscopic Videos,

Mathematics and Visualization, Springer Berlin Heidelberg, pp. 61-74 (2007).

139

[69] G. Bradski and A. Kaebler, Learning OpenCV, Computer Vision with the OpenCV

Library (O’Reilly Media, Inc. 2008).

[70] Jochen Kalmbach. Why GetThreadTimes is wrong.

http://blog.kalmbachnet.de/?postid=28

[71] N. R. Satish, K. Ravindran, and K. Keutzer. Scheduling Task Dependence Graphs

with Variable Task Execution Times onto Heterogeneous Multiprocessors. In Proc. of

Int’l Conf. on Embedded Software, Atlanta, Georgia, USA. pp. 149-158, 2008.

[72] Olivier Beaumont, Arnaud Legrand, Loris Marchal, Yves Robert. Assessing the

impact and limits of steady-state scheduling for mixed task and data parallelism on

heterogeneous platforms. INRIA 5198, 2004.

[73] Kasahara Lab., Waseda University. (2011, September 30). Standard Task Graph Set.

http://www.kasahara.elec.waseda.ac.jp/schedule/index.html

[74] S. Stanek, A Soft-Real Time System for Automatic Capture of Colonoscopy Video,

MS Thesis, Department of Computer Science, Iowa State University, 2007.

[75] S. Stanek, W. Tavanapong, J. Wong, J. Oh, and P.C.d. Groen, Automatic Real-Time

Capture and Segmentation of Endoscopy Video, In Proc. of SPIE Medical Imaging,

San Jose, CA, USA, February 2008, pp. 69190X-69190X-10.

[76] M. Sonka, V. Hlavac, and R. Boyle, Image Processing Analysis and Machine Vision,

2nd ed, (Thomson Learning, 1999).

140

APPENDIX A. SAPPHIRE API

The EndoMetric core API provides a set of functions that modules can call to interact with
the middleware. An emCallbacks* object is passed during module initialization to
emmRegister containing the function pointers to the middleware. This is usually stored as an
object named 'emc', such that modules can interact with the middleware by calling emc-
>functionname(). More important functions are described in detail, while other functions are
discussed only briefly.

A.1 High-level macros

These functions are implemented as short macros to simplify common sequences of events,
such as creating a packet. They are defined outside of the 'emc' object and should not
prefaced with the 'emc' object (i.e., uses functionname() rather than emc->functionname()).
Some macros will assume a naming convention described similar to the naming convention
described in the emcGetMeta macro section.

defaultRegister ()
Should be the first statement inside the emmRegister function. This sets up important
variables like 'emc' and registers module version information. In the future, if the registration
process changes, this macro may be changed so that only a recompile of the module code is
necessary, rather than a change in the module code itself.

defaultDllMain ()
Contains a default function body for DllMain, which is called by the operating system upon
loading a DLL. This sets up some important variables which may be necessary for interacting
with the operating system.

ModuleParameters (char* version, char* description, int internal)
Should be declared somewhere in the module, preferably at the top of the implementation,
after including common.h, but before emmRegister is defined. This declares the module
version information and a description.

 Parameters:

version – a string containing the module version (e.g., "1.0.0")

description – a string containing a description of the module (e.g., "Computes average mean-
red value")

internal – a flag denoting whether the module should be hidden and grouped together as a
core component (most modules will use 0)

 Example:

ModuleParameters ("1.0.0", "End of insertion detection", 0);

141

emcPreparePacket (packet, meta, metatype, METATYPE, inherit)
Used to create a new packet and setup the metadata structure and all associated packet
variables. Specifically, it will create and assign an emPacket* pointer (packet), create and
assign a metadata pointer (meta) based on a defined structure (metatype) and string type
(METATYPE). The packet and meta variables must already be defined. This macro can be
used to setup most types of packets, but should not be used to setup packets that contain extra
data attachments like video (using the ->data pointer) or otherwise special packets that are
not typically used.

 Parameters:

packet – the variable declared as an emPacket* that will receive the newly created packet

meta – the variable declared as a meta_X structure (where X is based on the data type)

metatype – the name of the meta_X structure (e.g., meta_video)

METATYPE – the string name of the data type (e.g., "VIDEO")

inherit – a source packet used to inherit key fields in the packet chain, such as the timestamp

 Example:

emPacket* eoi;

meta_eoi* metaeoi;

 ...

emcPreparePacket(eoi, metaeoi, meta_eoi, "EOI", pktin);

emcGetMeta (name, metatype, mux)
Used to pull the first timestamp's emPacket* and meta_X* pointers out of a mux (if
available). The results are stored into variables named according to convention, where the
emPacket* variable is named 'name' and the meta_X* variable is declared as a meta_name*
structure named 'metaname'. The metatype is the string type of the data packet.

 Parameters:

name – the base name of the type that is declared as each of the packet variable, metadata
structure name, and metadata variable name

metatype – the string name of the data type (e.g., "VIDEO")

mux – the mux to retrieve the packet from

 Example:

emPacket* video;

meta_video* metavideo;

 ...

emcGetMeta(video, "VIDEO", locals->mux); // video and metavideo now filled

142

emcStartClock () / emcStopClock ()
Manually starts and stops the high-precision automated performance gathering system for the
current compute thread. Usually not necessary (since these clocks are started and stopped
automatically), unless an artificial wait is performed that the middleware does not normally
look for. For example, waiting on a mutex does not perform any useful computation, but it
does utilize computing resources while waiting. On the other hand, waiting on some other
events might not utilize any computing resources, depending on the function used. The usage
of these functions is at the discretion of the writer of the module. In general, it is
recommended to call emcStopClock() immediately before calling a wait function and call
emcStartClock() immediately after to start the clock back up.

 Example:
 ...

emcStopClock();

WaitForMultipleObjects(noOfThreads, handles, TRUE, INFINITE);

emcStartClock();

 ...

A.2 Core API functions

This section describes the core API of the middleware. Functions are grouped by type. These
functions are accessible by calling member functions of the 'emc' object, which is an internal
object setup in defaultRegister(). These functions will not be accessible until the 'emc' object
has been properly setup. Unlike the macros, these functions are called by prefacing with the
'emc' object (e.g., emc->emcAddInput(...)). Nearly all functions require the first parameter of
'module' to be specified, which is simply the module passed in through emmRegister,
emmData, etc.

A.2.1 Registration

Module registration typically consists of configuring data inputs and outputs. User
configuration information is passed to the module's emmRegister function so that the module
can properly indicate which inputs and outputs it is willing to accept or generate. Single
inputs are added with emcAddInput(), while outputs are added with emcAddOutput().
Complex inputs consisting of multiple input data types can be grouped together into a single
logical input by using a mux (multiplexer). This higher level construct helps by providing
simple synchronization functions to make working with multiple data types easier. Data
types are first added to a mux with emcAddMux(), and then the mux is registered by calling
emcAddInputMux().

Because synchronization is not guaranteed with data types added with emcAddInput(),
emcAddInputMux() is preferable in almost all cases. Even if using just a single input data
type, the mux framework will work just as efficiently (negligible overhead). The advantages
of using a mux instead of the low-level emcAddInput(), even for just a single packet type, is

143

that the middleware provides higher level functions that are useful for packet handling, and it
is much easier to add additional inputs with synchronization later, rather than changing a
significant amount of code to handle the change.

int emcAddInput (emModule* module, char* type, int* meta, int metalen)
Simple inputs are added with this function. The type of the data input is specified by the
string 'type'. Before using this function, please consider the note above about how
emcAddInputMux() is almost always preferred over this function. The 'meta' and 'metalen'
parameters optionally assign a metadata filter to the input; however, this functionality is
currently not very useful, so it is only partially implemented into the framework. Generally, a
default value of 0 should be specified for 'meta' and 'metalen'.

 Parameters:

type – the string name of the data type (e.g., "VIDEO")

meta (optional) – pointer to a metadata filter structure if desired

metalen (optional) – length of metadata structure

 Example:

emc->emcAddInput(module, "VIDEO", 0, 0); // request VIDEO data type

int emcAddOutput (emModule* module, char* type, int* meta, int metalen, int
maxchainlen)
Simple outputs are added with this function. The type of the data to be output is specified by
the string 'type'. There is no 'mux' version associated with outputs since synchronization for
muxes are handled by the middleware and by the input functions. Metadata filters can be
specified, although this is a rarely used feature. Support for this feature may not be fully
implemented; a default value of 0 is usually specified. The maximum packet chain length for
a particular output type can be overridden with the 'maxchainlen' parameter. This is the
number of packets of a particular output type that the system will buffer before considering
that buffer full, and begin blocking requested outputs until free space is available. For large
packets such as video, this value is usually specified to minimize the maximum memory
usage. For small packets, this parameter can usually be ignored. The default of 3000 packets
is used if 0 is specified.

 Parameters:

type – the string name of the data type (e.g., "MEANR")

meta (optional) – pointer to a metadata filter structure if desired

metalen (optional) – length of metadata structure

maxchainlen (optional) – maximum packet chain length

144

 Example:
emc->emcAddOutput(module, "MEANR", 0, 0, 0); // MEANR data type will be

output

int emcAddMux (emModule* module, emMux* mux, char* type, int* meta, int
metalen, int optional, int delay)
Adds a specified data type into an existing mux. The mux is currently created by the module
programmer (e.g., mux = calloc(...)) rather than by the middleware, although this may change
in a future version. The data types are not actually registered by adding them to the mux
alone; this must be followed up by registering the mux with the middleware with
emcAddInputMux(). The 'optional' flag specifies whether an input is optional or not. If false
(zero), the data type must exist in order for the mux to be satisfied. If true (non-zero), the
mux can be satisfied regardless of the existence of the specified data type. If 'optional' is true
and the data type is registered as an output in the system, mux synchronization will correctly
wait for this data type (i.e., the data type's existence itself is optional, rather than a packet of
that existing data type being available).

In some circumstances, a feedback loop for data may be desired. Because it is impossible to
receive output data for a particular timestamp from another module that does not yet have
that timestamp's input data (a circular dependence), a delay can be specified to allow the mux
to receive a previous timestamp's data packet. The 'delay' parameter is, optionally, a positive
number specifying such a delay. The default of 0 specifies that no such delay exists for that
particular data type.

Note that the first 'delay' number of packets for a satisfied mux for this data type will consist
of a null packet. For 'optional' inputs, the same is true (a null packet being returned upon
requesting a particular data type). Module programmers should take care to check optional
and delay type packets to make sure they are non-null before using them.

 Parameters:

mux – an existing mux to add this input data type to

type – the string name of the data type (e.g., "VIDEO")

meta (optional) – pointer to a metadata filter structure if desired

metalen (optional) – length of metadata structure

optional (optional) – true/false flag to specify whether the data type is optional

delay (optional) – specify an amount of delay (in time quantums) for this data type

 Example:
emMux* mux; // note: declared inside a structure named 'locals'

 ...

emc->emcAddMux(module, locals->mux, "VIDEO", 0, 0, 0, 0);

145

int emcAddInputMux (emModule* module, emMux* mux)
Adds this mux as an input for the module. This function takes all the inputs previously added
to the mux with emcAddMux() and then actually adds each of them to the module itself. No
more inputs should be added to the mux after this function is called.

 Parameters:

mux – an existing mux with input data types to register with the module

 Example:
emc->emcAddInputMux(module, locals->mux); // register this mux with the

module

Rarely used registration functions

The following functions are not normally used. The module version registration functions are
already called by defaultRegister(), and thus, they need not be called manually. However,
they are provided below for reference. The emcSetPacketFilter is not called by any macros,
but it is also not normally used – it is mainly used to set filter points on data types, similar to
hooking functions or aspect-oriented bindings.

int emcSetPacketFilter (emModule* module, char* type, int* meta, int metalen,
unsigned int priority)
Assigns a filter to a particular data type using a specific priority.

 Parameters:

type – the string name of the data type (e.g., "MEANR")

meta (optional) – pointer to a metadata filter structure if desired

metalen (optional) – length of metadata structure

priority – the priority of the packet filter (higher indicates an earlier location in the filter
chain)

 Example:
emc->emcAddInput(module, "VIDEO", ...);

emc->emcAddOutput(module, "VIDEO", ...);

emc->emcSetPacketFilter(module, "VIDEO", 0, 0, 1000);

146

int emcRegisterModuleVersion (emModule* module, char* versionstring, int
buildnumber, char* builddate)
Registers the module version information. Usually this function is called through
defaultRegister() rather than directly.

 Parameters:

versionstring – the version string of the SDK

buildnumber – the SDK build number this module was built with

builddate – the date and timestamp of the module compile

 Example:
emc->emcRegisterModuleVersion(module, EM_VERSION, EM_BUILDVER, __DATE__ ##

" " ## __TIME__);

int emcRegisterModuleVersion2 (emModule* module, char* versionstring, char*
description, int internal)
Alternative method to registering module version information.

 Parameters:

verionstring – the version string of the module

description – a textual description of the module's function

internal – f lag to indicate whether or not this module is a built-in module

 Example:
emc->emcRegisterModuleVersion2(module, EM_MODULEVERSION,

EM_MODULEDESCRIPTION, EM_MODULEINTERNAL);

int emcSetDataTypeOffset (emModule* module, char* type, char* varname, int offset,
char* vartype, int varsize, int numvar)
Registers a metadata structure variable with a friendly string name so that other modules and
programmers can access structure members by name at runtime instead of by binary
compilation with the structure format (the header file for the structure). Although binary
compilation with the structure format yields faster code, referencing by variable name may
be more friendly in some circumstances (e.g., displaying packet variable values in hud.dll by
specifying the variable names in the configuration file, rather than having to specify their
byte offsets). The code to register a full structure can be automatically generated by the
gendataoffset.exe program included as a tool with the SDK.

147

 Parameters:

type – the string name of the data type (e.g., "VIDEO")

varname – a string of the C type of the structure variable (e.g., "int")

offset – the byte offset of the structure variable (e.g., 4)

vartype – a string representing the type of the variable (e.g., "integer")

varsize – the size in bytes of the variable type (e.g., 4)

numvar – for an array, the number elements in the array

 Example:
emc->emcSetDataTypeOffset(module, "VIDEO", "height",

(int)((char*)&__tmp_meta_video.height - (char*)&__tmp_meta_video), "int",
sizeof(int), sizeof(int)/sizeof(int));

typeinfo* (*emcGetDataTypeOffset) (emModule* module, char* type, char* varname)
Retrieves the type info for a type and structure variable name set by emcSetDataTypeOffset.
Note that this is not actually a registration function, but rather, this is the counterpart to
emcSetDataTypeOffset function used in registration. It will not be valid until all modules
have registered and emmStart has been called.

 Parameters:

type – the string name of the data type to retrieve information about (e.g., "VIDEO")

varname – the string name of the structure variable to retrieve information about (e.g.
"height")

 Example:
ti = emc->emcGetDataTypeOffset(module, "VIDEO", "height");

A.2.2 Packets

Packet functions are typically used to create, modify, and release data in the system. They are
the primary method of achieving communication between modules.

emPacket* emcNewPacket (emModule* module, int metalen, int datalen)
Creates a new packet, to be filled with data by the programmer. This packet must be pushed
to the system or it will become a memory leak.

148

 Parameters:

metalen – the size of the data required by the metadata structure ->meta

datalen – the size of the data required by the attached data structure ->data

 Example:
pkt = emc->emcNewPacket(module, sizeof(meta_raw_video), width * height * 4);

 ...

emc->emcPushPacket(module, pkt);

int emcPushPacket (emModule* module, emPacket* pkt)
Pushes the packet of data to the middleware. All fields must be finished before this function
is called. Memory that was allocated inside this packet may become invalid immediately
after pushing (as it could become used and freed quickly), so modules should ensure that any
data that should persist after calling emcPushPacket should be copied somewhere else or
allocated outside of normal packet deallocation flow.

 Parameters:

pkt – an allocated, preformatted, filled out packet structure to be pushed to the middleware

 Example:
pkt = emc->emcNewPacket(module, sizeof(meta_meanr), 0);

 ...

emc->emcPushPacket(module, pkt);

int emcMuxPacket (emModule* module, emMux* mux, emPacket* pkt, int num)
Adds a packet of data to a mux. If the mux is satisfied (has at least num of each packet
available), then this function returns num. Otherwise, it returns 0.

 Parameters:

mux – the mux structure to insert the packet into

pkt – the packet passed in through emmData

num – the requested number of packets that must be inserted into the mux across all data
types

 Example:
 // this will just exit an emmData function immediately

 // if the mux is not satisfied

149

if(!emc->emcMuxPacket(module, mux, pkt, 1)) return 0;

int emcReleaseMuxPackets (emModule* module, emMux* mux, int num)
Releases num packets of each data type listed in the mux. This removes the packets both
from the mux and releases them from the module.

 Parameters:

mux – the mux structure to release packets from

num – the number of packets of each type to release from the module

 Example:
if(!emc->emcMuxPacket(module, mux, pkt, 1)) return 0;

 ... process data ...

emc->emcReleaseMuxPackets(module, mux, 1);

emPacket* emcFindPacket (emModule* module, emMux* mux, char* type)
Retrieves a packet of a specific type from the mux. If no packet of that type is available, this
function returns 0.

 Parameters:

mux – the input mux to retrieve a packet from

type – the string name of the data type (e.g., "MEANR")

 Example:
if(!emc->emcMuxPacket(module, mux, pkt, 1)) return 0;

meanr = emc->emcFindPacket(module, mux, "MEANR");

int emcPushDummyPacket (emModule* module, char* type, __int64 timestamp, int
final)
Pushes a dummy packet of a specific type, synchronized with a specific timestamp and final
flag. The timestamp and final flag are usually passed in through some parent packet. This
function manages the full creation and pushing of a packet, so no other calls to
emcNewPacket or emcPushPacket are needed for the dummy packet.

 Parameters:

150

type – the string name of the data type (e.g., "MEANR")

timestamp – the timestamp to use to push a dummy packet

final – a flag denoting whether or not this will be the final packet for this data stream

 Example:
if(skipframe) {

 emc->emcPushDummyPacket(module, "MEANR", pktin->timestamp, pktin->final);

} else {

 pkt = emc->emcNewPacket(...);

 ...

 emc->emcPushPacket(...);

}

int emcReleasePackets (emModule* module, int j, int r)
Releases packets of internal packet index type j and number of packets r. This is less used
due to the flexibility of the mux functionality and the fact that returning a positive number
from emmData automatically generates a call to this function.

 Parameters:

j – module's internal packet type index of which to release a packet

r – number of packets to release

 Example:
emc->emcReleasePackets(module, j, r);

int emcAddReleaseCallback (emModule* module, emPacket* pkt, int
(*callback)(emPacket* pkt))
Adds a callback function to be called upon just prior to a packet's actual deallocation. This
allows a programmer to attach dynamic memory and other objects to a packet and allows
those objects to be properly freed. The freeing of the packet data itself is handled by the
middleware; the module creating a packet need not free the packet, only extra pointer data
attached to it that the middleware would not understand how to deallocate itself.

 Parameters:

pkt – the packet to attach a custom packet destructor callback function to

callback – the callback function to call

151

 Example:
int freeColonCenter(emPacket* pkt) { delete pkt->cc; }

 ...

spiralpkt = emc->emcNewPacket(...);

spiralpkt->cc = new ColonCenter();

emc->emcAddReleaseCallback(module, spiralpkt, freeColonCenter);

emc->emcPushPacket(module, spiralpkt);

int emcInheritPacket (emPacket* packet, emPacket* inherit)
Inherits several fields from a parent packet inherit, such as the timestamp and final flag, and
copies them to packet.

 Parameters:

packet – destination packet to copy values to

inherit – source packet to inherit values from

 Example:
pktout = emc->emcNewPacket(...);

emc->emcInheritPacket(pktout, pktin);

 ... fill pktout ...

emc->emcPushPacket(module, pktout);

emPacket* emcCopyPacket (emModule* module, emPacket* pkt)
Performs a deep copy of a packet and returns the copy.

 Parameters:

pkt – packet to copy

 Example:
newpkt = emc->emcCopyPacket(module, pktin);

emPacket* emcCopyPacketShallow (emModule* module, emPacket* pkt)
Performs a shallow copy of a packet and returns the copy (data pointers will point to the
parent packet).

152

 Parameters:

pkt – packet to copy

 Example:
newpkt = emc->emcCopyPacketShallow(module, pktin);

int emcDataTypeExists (emModule* module, char* type)
Returns whether or not a data type exists in the overall system. This will not be valid until
after all modules have registered (i.e., this function cannot be called during emmRegister,
and should not be called until emmStart or later).

 Parameters:

type – the string name of the data type (e.g., "MEANR")

 Example:
if(emc->emcDataTypeExists(module, "INSIDE")) {

 ... modify module behavior due to existence of "INSIDE" data ...

}

A.2.3 Control

int emcSetFinished (emModule* module, int status)
Sets a module to a finished state. The middleware automatically determines when a module
has entered a finished state based on the completion of processing of all incoming packets as
well as the finished states of all modules producing those packets. This function is only
necessary for source type modules (e.g., mpegreader.dll) for which the middleware has no
implicit way to determine the completion of the module.

 Parameters:

status – whether this module is finished (nonzero) or not (zero)

 Example:
if(done) emc->emcSetFinished(module, 1);

153

A.2.4 Performance

double emcGetPushTime (emModule* module, __int64 pushtime)
Returns the number of seconds since SAPPHIRE started, corresponding to an arbitrary
reference clock, of a value specified by pushtime. This is usually a packet's ->pushtime
member variable.

 Parameters:

pushtime – number of clock cycles elapsed since SAPPHIRE started

 Example:
packettime = emc->emcGetPushTime(module, pktin->pushtime);

printf("time since last packet = %.3f ms\n",

 (packettime – lastpackettime)*1000.0);

lastpackettime = packettime;

int emcAddThread (emModule* module, HANDLE hthread, int threadid)
Manually adds a thread to belong to module. New threads are almost always automatically
detected and manual addition through this function is not needed.

 Parameters:

hthread – Windows handle to the created thread

threadid – Windows globally unique thread id of the created thread

 Example:
HANDLE hthread = CreateThread(..., &threadid);

emc->emcAddThread(module, hthread, threadid);

int emcPerfStartClock (emModule* module, char* filename, int line)
The explicit function that the emcStartClock macro calls.

 Parameters:

filename – file name this function is in (e.g., __FILE__)

line – line this function is being called from (e.g., __LINE__)

154

 Example:
emc->emcPerfStopClock(module, __FILE__, __LINE__);

WaitForSingleObject(...);

emc->emcPerfStartClock(module, __FILE__, __LINE__);

int emcPerfStopClock (emModule* module, char* filename, int line)
The explicit function that the emcStopClock macro calls.

 Parameters:

filename – file name this function is in (e.g., __FILE__)

line – line this function is being called from (e.g., __LINE__)

 Example:
emc->emcPerfStopClock(module, __FILE__, __LINE__);

WaitForSingleObject(...);

emc->emcPerfStartClock(module, __FILE__, __LINE__);

A.2.5 Miscellaneous

int emcGetModuleInfo (int index, emModule* resultmodule)
Gets the module info for a module specified by index and returns the module into a user-
provided emModule structure. If resultmodule is not specified, this function returns the
number of modules in the system. This function is not valid until all modules have registered
(i.e., it cannot be used until emmStart is called). Most information about a module can be
retrieved through this function, however state-specific information that may quickly expire
(such as pointers to a module's next incoming packets) is not retrieved.

 Parameters:

index – module number to retrieve info about

resultmodule – destination pointer to an emModule structure to receive information

 Example:
n = emc->emcGetModuleInfo(0, 0);

for(i=0;i<n;i++) {

 emc->emcGetModuleInfo(i, &m);

 printf("module %2d : %s %s.%d\n", i,m.dllname, m.versionstring,
m.buildnumber);

}

155

int emcGetTypeNum (char* typestr)
Returns the internal type index for a specified string-formatted data type.

 Parameters:

typestr – the string name of the data type (e.g., "MEANR")

 Example:
typeindex = emc->emcGetTypeNum("MEANR");

char* emcGetTypeName (int typenum)
Returns the string-formatted data type name for a given type index.

 Parameters:

type – the string name of the data type (e.g., "MEANR")

 Example:
 // note: this code returns "MEANR" back, but it becomes a

 // pointer to the middleware's internal string of "MEANR"

printf("%s", emc->emcGetTypeName(emc->emcGetTypeNum("MEANR"));

void emcDumpPacketChain ()
Prints out the full linked lists of packets currently in the system.

 Example:
if(inconsistency_found) emc->emcDumpPacketChain();

156

APPENDIX B. MODULES AND FUNCTIONALITY

Modules included with SAPPHIRE
Module name Task performed by the module
mpegreader.dll Read MPEG-2 video files
mpegwriter.dll and mpegwriter2.dll Write MPEG-2 video files
videocapture.dll Obtain video signal from a video capturing card

hud.dll
Display videos, feedback, and process some user keyboard
input

videomixer.dll
Combine multiple VIDEO data types and output a single
VIDEO data type that can be used by modules that accept
VIDEO data type (e.g., hud.dll or mpegwriter.dll)

screencapture.dll
Capture video from the computer desktop or specified
window and output it as a VIDEO stream

log.dll
Synchronized logging support with typical logging levels and
options built-in

emlive.dll
Export VIDEO data to external programs in real-time
through a system shared memory region

imagemask.dll
Derive image mask from a VIDEO stream and output a new
video stream of the image mask

autoresize.dll Automatically crop/resize a VIDEO stream

grayscale.dll
Generate a grayscale video stream from an input VIDEO
stream

tcp.dll
Allow SAPPHIRE to communicate data over network using
TCP, enabling cluster and grid computing.

Third-party modules
Module name Task performed by the module
blurry.dll Detect informative frames and compute related metrics

egd.dll
Detect whether the video is colonoscopy (default) or upper
endoscopy

rts.dll Detect stool pixels and calculate stool related metrics
rteoi.dll Detect end-of-insertion frame in real-time

rteoi_user.dll
Accept user-specified end of insertion frame number via
keyboard input

spiralCounting.dll Compute spiral related metrics
ecspEdgeTracking.dll,
DetectionECSP_module.dll

Detect potential polyp edges and provide feedback

QCMetricRT.dll
Generate a CSV file with quality measurements for each
video analyzed

inside.dll, meanr.dll, meannormr.dll,
histdiff.dll, meanr_dv80.dll,
color_energy.dll,
meannormr_risefall.dll,brightness.dll

Detect the start and end frame of an endoscopic procedure

eoi_eop_gt.dll
Read end-of-insertion and end-of-procedure frame numbers
from a CSV file

usbname.dll Read an encrypted endoscopist’s name from a thumb drive.

157

APPENDIX C. MODULES AND THEIR PACKET TYPES

Modules included with SAPPHIRE
Module name Input packet types Output packet types
mpegreader.dll RAW_VIDEO, LOG

mpegwriter.dll VIDEO, INSIDE
FEEDBACK_VIDEO_FILE_INF
O, MOTION_VECTORS

mpegwriter2.dll VIDEO_MIXER, INSIDE
videocapture.dll RAW_VIDEO, LOG

hud.dll

VIDEO, STOOL, BLURRY,
QCMETRIC_USER,
INSIDE_NO_DELAY, INSIDE,
VIDEO_MIXER_OVERLAY,
RAW_VIDEO, EOI, EOI_USER

USER_INPUT,
HUD_WINDOW_OUTPUT

videomixer.dll SPIRAL_OVERLAY, ECSP_OVERLAY VIDEO_MIXER_OVERLAY
screencapture.dll VIDEO
log.dll LOG NULL
emlive.dll VIDEO
imagemask.dll VIDEO, INSIDE IMAGEMASK
autoresize.dll RAW_VIDEO, INSIDE_NODELAY VIDEO
grayscale.dll VIDEO GRAYSCALE_VIDEO

tcp.dll (configurable; data to send over network)
(configurable; data to receive from
network)

158

Third-party modules
Module name Input packet types Output packet types
meanr.dll RAW_VIDEO MEANR
histdiff.dll RAW_VIDEO HISTDIFF
meanr_dv80.dll MEANR MEANR_DV80

color_energy.dll MEANR, MEANNORMR

MEAN_ENERGY,
MEANNORM_ENERGY,
COLOR_ENERGY,
MEAN_HIST_CONT_AREA

meannormr_risefall.dll
MEANR, MEANNORMR,
MEANR_DV80, INSIDE_NODELAY

MEANNORMR_RISEFALL

brightness.dll RAW_VIDEO BRIGHTNESS

inside.dll

MEANR, MEANNORMR, HISTDIFF,
MEANR_DV80,
MEANNORMR_RISEFALL,
MEAN_ENERGY,
MEANNORM_ENERGY,
COLOR_ENERGY,
MEAN_HIST_CONT_AREA,
BRIGHTNESS, STOOL, RETRO

INSIDE, INSIDE_NODELAY

rteoi.dll
VIDEO, INSIDE,
FEEDBACK_VIDEO_FILE_INFO

LOG, CDCM, EOI

EGD.dll
VIDEO, INSIDE,
FEEDBACK_VIDEO_FILE_INFO

EGD

RTS.dll
VIDEO, INSIDE,
FEEDBACK_VIDEO_FILE_INFO

STOOL, LOG

blurry.dll
VIDEO, INSIDE,
FEEDBACK_VIDEO_FILE_INFO

BLURRY, LOG

spiralcounting.dll
VIDEO, INSIDE,
FEEDBACK_VIDEO_FILE_INFO,
BLURRY, EOI_USER, EOI

LOG, SPIRAL,
SPIRAL_OVERLAY

qcmetricrt.dll

BLURRY, STOOL, INSIDE,
FEEDBACK_VIDEO_FILE_INFO,
VIDEO, SPIRAL, EGD, EOI_USER,
EOI

QCMETRICRT_USER, LOG

rteoi_user.dll
VIDEO,
FEEDBACK_VIDEO_FILE_INFO,
INSIDE

EOI_USER, LOG

eoi_eop_gt.dll
EOI_USER, VIDEO, INSIDE,
RAW_VIDEO, INSIDE_NODELAY

INSIDE_NODELAY, INSIDE,
EOI_USER, LOG

ecspEdgeTracking.dll
VIDEO, SPIRAL, IMAGEMASK,
FEEDBACK_VIDEO_FILE_INFO

LOG, EDGE,
EDGE_OVERLAY, ECSPEDGE

DetectionECSP_Module.dll

VIDEO, INSIDE, BLURRY, SPIRAL,
IMAGEMASK,
FEEDBACK_VIDEO_FILE_INFO,
ECSPEDGE

LOG, DETECTION_ECSP,
ECSP_OVERLAY

159

APPENDIX D. SAMPLE ENDOCAPTURE.INI

D.1 Endoscopic procedure detection and capturing (EM-Capture)

1 [videocapture.dll]
2 video.device=
3 video.device.width=720
4 video.device.height=480
5 video.mux=Composite
6 video.width=720
7 video.height=480
8 video.bpp=32
9 video.fps=29.97
10 video.bufferlen=30
11 video.tvformat=1 # 1=NTSC_M, 16=PAL_B
12
13 [autoresize.dll]
14
15 [meanr.dll]
16 [meannormr.dll]
17 [histdiff.dll]
18
19 [meanr_dv80.dll]
20 windowsize = 240
21
22 [meannormr_dv80.dll]
23 windowsize = 240
24
25 [color_energy.dll]
26 windowsize = 479
27 windowsize_big = 1800
28
29 [meannormr_risefall.dll]
30 windowsize = 240
31
32 [inside.dll]
33 quiet = 1
34 #recordall = 1
35 #blackframes = 60
36 vis=0
37 threshold.meanR = 8
38 threshold.meannormR = 33
39 threshold.meannormR_runningtotal = 2400
40 threshold.maxstartlength = 240
41 threshold.outside_duration = 9000
42 threshold.outside_percent = 0.90
43 threshold.outside_nosignal = 2700
44 threshold.motion = 5000
45 threshold.meanR_dv80 = 2

160

46 threshold.meanR_dv80_end = 0.05
47 threshold.meannormR_dv80 = 0.2
48 threshold.meanR_dv80_2 = 0.2
49 threshold.meannormR_dv80_2 = 0.05
50 threshold.greenarea = 4000
51 threshold.greenarea_low = 100
52 threshold.redarea = 3000
53 threshold.meanR_energy = 64
54 threshold.meannormR_energy = 16
55 threshold.count_energy = 32
56 threshold.count_energy_end = 3.2
57 threshold.count_area = 15000
58
59 [mpegwriter.dll]
60 quality = 31
61 realtime = 0
62 bitrate = 8000000
63
64 file = out\%YYYY%%MM%%DD%_%hh%%mm%%ss%_%ip%_P%num%.mpg
65 outside = 120
66 minlength = 600
67
68 [emlive.dll]
69
70 [log.dll]
71 logfile = out/log.txt
72 level = 9
73
74 [brightness.dll]
75 [grayscale.dll]

161

D.2 Real-time feedback (EM-Automated-RT)

1 [videocapture.dll]
2 video.device.width=720
3 video.device.height=480
4 video.mux=Composite
5 video.width=720
6 video.height=480
7 video.bpp=32
8 video.fps=29.97
9 video.bufferlen=90
10 video.tvformat=1 # 1=NTSC_M, 16=PAL_B
11
12 [autoresize.dll]
13
14 [meanr.dll]
15 [meannormr.dll]
16 [histdiff.dll]
17
18 [meanr_dv80.dll]
19 windowsize = 240
20
21 [meannormr_dv80.dll]
22 windowsize = 240
23
24 [color_energy.dll]
25 windowsize = 479
26 windowsize_big = 1800
27
28 [meannormr_risefall.dll]
29 windowsize = 240
30
31 [inside.dll]
32 quiet = 1
33 recordall = 0
34 #blackframes = 20
35 vis=0
36 threshold.meanR = 8
37 threshold.meannormR = 33
38 threshold.meannormR_runningtotal = 2400
39 threshold.maxstartlength = 240
40 threshold.outside_duration = 9000
41 threshold.outside_percent = 0.90
42 threshold.outside_nosignal = 2700
43 threshold.motion = 5000
44 threshold.meanR_dv80 = 2
45 threshold.meanR_dv80_end = 0.05
46 threshold.meannormR_dv80 = 0.2
47 threshold.meanR_dv80_2 = 0.2
48 threshold.meannormR_dv80_2 = 0.05

162

49 threshold.greenarea = 4000
50 threshold.greenarea_low = 100
51 threshold.redarea = 3000
52 threshold.meanR_energy = 64
53 threshold.meannormR_energy = 16
54 threshold.count_energy = 32
55 threshold.count_energy_end = 3.2
56 threshold.count_area = 15000
57
58 [mpegwriter.dll]
59 quality = 31
60 realtime = 0
61 bitrate = 8000000
62 #file = out\%YYYY%%MM%%DD%_%hh%%mm%%ss%_%ip%_P%num%.mpg
63 file=null
64 #outside = 120
65 #minlength = 600
66 outside = 0
67 minlength = 600
68
69 [mpegwriter2.dll]
70 #comment out for recording without feedback
71 quality = 31
72 realtime = 0
73 bitrate = 8000000
74 file = out\%YYYY%%MM%%DD%_%hh%%mm%%ss%_%ip%_FB_P%num%.mpg
75 #file = out\test.mpg
76 #outside = 120
77 #minlength = 600
78 outside = 0
79 minlength = 600
80 single=1
81 input=VIDEO_MIXER
82
83 [hud.dll]
84 hideuntileoi=1
85 #synchronized displayed frames and processing results
86 sync =1
87 statistics=0
88 input=VIDEO
89 #input=SPIRAL_OVERLAY
90 font=Times New Roman:14
91 color=ffffffff # green ff00ff00
92 top-left
93 #blank line
94 ##text=QCMETRICRT:168.int/Comp
95 #spiral using computed EOI
96 ##text=QCMETRICRT:172.int/S (W):%d
97 ##text=QCMETRICRT:168.int/S (I):%d
98 #computed EOI
99 ##text=QCMETRICRT:180.int/EOI:%d

163

100 #withdrawal time based on computed EOI
101 ##text=QCMETRICRT:0.string/IT:%9s
102 ##text=QCMETRICRT:10.string/WT:%9s
103 #clear withdrawal time based on computed EOI
104 ##text=QCMETRICRT:20.string/CWT:%9s
105 ##text=QCMETRICRT:60.float/Unclean (%%F) :%.2f
106 ##text=SPIRAL:12.int/spiral:%d
107
108 top-right
109 #text=QCMETRICRT_USER:168.int/User
110 #spiral count using user specified EOI
111 text=QCMETRICRT_USER:172.int/
112 text=QCMETRICRT_USER:172.int/S (W):%d
113 #text=QCMETRICRT_USER:168.int/S (I):%d
114 #user specified EOI
115 text=QCMETRICRT_USER:180.int/%d
116 # EOI removed number shown: text=QCMETRICRT:180.int/%d
117 #text=QCMETRICRT_USER:188.int/isEGD:%d
118 #withddrawal time based on user specified eoi
119 #text=QCMETRICRT_USER:0.string/IT:%9s
120 #text=QCMETRICRT_USER:10.string/WT :%9s
121 #clear withddrawal time based on user specified eoi
122 #text=QCMETRICRT_USER:20.string/CWT :%9s
123
124 #text=QCMETRICRT_USER:60.float/Dirty (%%F):%.2f
125 #text=QCMETRICRT_USER:68.float/Dirty (%%CF):%.2f
126
127 overlay=SPIRAL_OVERLAY
128 #overlaycolor=7fffffff
129 #overlaykey=ffff0000
130
131 useblackvideo=1
132 #used to show only feedback without video signal
133
134 record=2
135 #record=0 for recording without feedback
136 #record=2 for recording video without the Windows window frame
137 #records video and feedback
138
139 [log.dll]
140 logfile = out/log.txt
141 level = 1
142
143 [brightness.dll]
144 [grayscale.dll]
145
146 [RTS.dll]
147 #frames/second
148 frameAnalysisRate=1
149
150 [blurry.dll]

164

151 # frames/second
152 frameAnalysisRate=1
153
154 [spiralCounting.dll]
155 #number of frames to skip
156 frameAnalysisRate = 1 # default 3.0 frames per second for old version9
157 threshold.laterality = 0.4 # default 0.6
158 threshold.outBound = 0.95 # default 0.9

159
show.lumen=0 # show the detected lumen (do NOT show by default); set it 1 to show;

set it 0 not to show

160
show.circles=0 # show both circles (show by default); set it 1 to show; set it 0 not to
show

161
show.corners=1 # show a green triangle at the corner when that quadrant has been

inspected (show by default); set it 1 to show; set it 0 not to show

162
show.inspecting=0 # mark currently inspecting mucosa area (show by default); set it 1 to

show; set it 0 not to show
163 show.corners.size=4 #1 for smallest; 10 for biggest (default 5)
164 #input.eoi=1 #0 for system eoi; 1 for user input eoi
165 input.eoi=1
166
167 [QCMetricRT.dll]
168 outputfile=out/metric.csv
169 eoi=0
170 eoiuser=1
171
172 [EGD.dll]
173 frameAnalysisRate=3
174
175 [rteoi_user.dll]
176
177 #[rteoi.dll]
178 macroblocksize=16 # Size of a macro block (used in the searching algorithm)
179 searchareasize=8 # Size of the search area (used in the searching algorithm)
180 frameAnalysisRate=3 # Number of frames(pairs) processed per second
181 blockSkip=1 # Number of blocks skipped (1 = no skip, 2 = 1 skip and so on)
182
183 [videomixer.dll]
184 input=VIDEO
185 input=HUD_WINDOW_OUTPUT
186 output=VIDEO_MIXER

165

APPENDIX E. MEMORY LEAK DETECTION USAGE INFORMATION

E.1 Instructions

(0) (Optional) Compile your module in debug mode if you wish to trace back potential
leaks to your code. This is much easier to do now than in the previous version.

(1) Run: cap -memleak

(2) Wait about 60 seconds for various module initializations to take place, so that these
initializations that never get freed are not seen as memory leaks.

(3) Press and hold Ctrl+Shift+Alt+F to open the performance window. This will do the
first time initialization of the memory state of the program.

(4) (Optional) Repeat the key combination Ctrl+Shift+Alt+F to close the performance
window.

(5) Wait several minutes (or longer). You should change your console window to be
larger so that you can properly see all of the memory leaks without them scrolling off.
Go to the console window properties (in Windows 7 you may need to left click the
top-left icon of the window title bar). Go to the Layout tab. Change the screen buffer
size and window size. It is recommended for at least 120 for both widths and 9999 for
the screen buffer size height. This will allow you to scroll back much farther than the
default.

(6) Close the performance window if it isn't already closed.

(7) Press and hold Ctrl+Shift+Alt+M (M for memory) for about 2-3 seconds. This will
reset the "previously displayed leaks" list and cause all the previously displayed
possible leaks to be reused (if they are still allocated) when you reopen the
performance window.

(8) Press and hold Ctrl+Shift+Alt+F to open the performance window. This will cause all
the memory leak candidates from first initialization to be displayed.

E.2 Interpreting the output

Because this implementation is a very strange way to detect memory leaks (without requiring
a recompile or special binaries), there is some chance for misdetection. Age and repetition
are important factors. There is a 20 second minimum age to print a memory leak canditate.
The older it is, the more likely that some piece of data was completely forgotten about. If an
address is only seen once over a 20 minute gathering period, it may be a fluke. But, if an
address is seen 30 times per second for several minutes, there would be a strong possibility
that there is a memory leak every frame.

166

E.3 Example output and debugging

| [spiralCounting.dll+00004ea0 = 06674ea0] allocated 131064 bytes ~438792 ms ago
| [spiralCounting.dll+00004e3f = 06674e3f] allocated 16376 bytes ~247781 ms ago
| [spiralCounting.dll+00004ea0 = 06674ea0] allocated 131064 bytes ~335586 ms ago
| [spiralCounting.dll+00004ea0 = 06674ea0] allocated 131064 bytes ~335582 ms ago
| [???+00000000 = 00000000] allocated 2040 bytes ~158942 ms ago
| [spiralCounting.dll+00004ea0 = 06674ea0] allocated 65528 bytes ~253896 ms ago
| [spiralCounting.dll+00004ea0 = 06674ea0] allocated 65528 bytes ~167536 ms ago
| [spiralCounting.dll+00004ea0 = 06674ea0] allocated 32760 bytes ~39402 ms ago
| [spiralCounting.dll+00004ea0 = 06674ea0] allocated 65528 bytes ~39396 ms ago
| [spiralCounting.dll+00004ea0 = 06674ea0] allocated 65528 bytes ~22290 ms ago
| [spiralCounting.dll+00004ea0 = 06674ea0] allocated 65528 bytes ~22656 ms ago
| [spiralCounting.dll+00004ea0 = 06674ea0] allocated 65528 bytes ~22289 ms ago
+-----> [spiralCounting.dll / threadid = 15e0] to tal memory = 37 allocations / 1220768 bytes

Each DLL has each potential leaked allocation listed, followed by an overall summary,
indicating total # of leaked allocations and bytes leaked. The threadid here is now displayed
in hex (to be matched more easily with the debugger). In addition, the leak address for
individual allocations is displayed in both relative addresses and absolute addresses.

To easily backtrack these leaked allocations to the line of code that allocated them, do the
following:

(0) Open the debugger (e.g. Visual Studio).

(1) Tools -> Attach to Process... (Ctrl+Alt+P).

(2) Find cap.exe and attach to it.

(3) Pause the running program by clicking the pause button.

(4) Show disassembly if necessary. If the debugger doesn't show this by default, you can
open it in Debug -> Windows -> Disassembly.

(5) Copy the address from the leaked allocation into the Address: bar. You might need to
prefix the hexadecimal address with 0x (e.g. 0x06674ea0).

(6) If you compiled your module in debug mode, you should now see your C/C++ source
code in line with the machine code. If you don't see line numbers, you can right click
on the text and select "Show Line Numbers".

(7) You can then go to this line in your source code file. The precise line of allocation is
usually the one immediately preceeding where going to that address took you.

167

APPENDIX F. INTERNAL VARIABLES AND ARRAYS/LISTS

1 int maxstalltime = 10000; // max time (in ms) before a full buffer reports a stall

2
int stallrecovertime = 5000; // max time (in ms) before a report can be repeated for the same

data time
3
4 int nosleep = 0; // 1 = always spin and never explicitly give up timeslices

5
int worksleep = 1; // 0 = give up timeslice but will use 100% cpu; 1 = minimal

sleep time for not pure spinning

6
int useperf = 0; // 0 = do not use performance mode, 1 = use fast performance

mode, 2 = use full performance mode
7 int enablememleak = 0; // 1 = enable memory leak detection
8 int usesched = 0; // 1 = use user-mode scheduler
9 int debugmode = 0; // 1 = display extremely verbose state/debug information
10 int consistencycheck = 0; // 1 = perform state consistency checks after each operation
11 int detailedstartup = 0; // 1 = display detailed startup information
12
13 int PCRsize = 0; // number of data types currently in the system
14 HANDLE PCRmutex = 0; // thread safety mutexes for various operations
15 HANDLE PCRfinishedmutex = 0; // mutex for notification system
16 HANDLE ctmutex = 0; // mutex for createthread hooks
17 HANDLE heapallocmutex = 0; // mutex for heapalloc hooks
18 HANDLE* coremutex = 0; // mutex for individual module notifications
19
20 int PCRtype[]; // type of this data -- this is paired with priority
21 int PCRpriority[]; // priority (subtype) for this meta
22 char* typenames[]; // type of this data in friendly, static string form

23
int PCRcount[]; // number of outputs for this same type of data (aspect/priority

override)
24
25 emPacket* PCRhead[]; // global head packet (oldest packets)
26 emPacket* PCRtail[]; // global tail packet (newest packets)
27 int PCRlen[]; // length of chain for this type
28
29 __int64 PCRidused[]; // unique id for each packet within a type of data
30 int PCRfinished[]; // has this data type had its final packet pushed
31

32
int* PCRnotify[]; // each metadata type points to a list of module indexes i

(allmodules[i]) for quick routing/notification
33 int PCRnotifycount[]; // # of modules for each PCRnotify
34

35
int PCRrefcount[]; // how many modules will use this input (seed for reference

count)
36 int PCRoutcount[]; // how many modules will write this output
37 int PCRoutfinished[]; // how many modules will write this output that have finished
38
39 PCRwheretype* PCRwhere[]; // ordering data types by priority for packet filter routing
40
41 typeinfo* typeinfos[]; // friendly name bindings for user defined metadata fields
42 int numtypeinfos[]; // number of friendly name bindings within each meta type
43 char* typenames[]; // real type name (e.g., VIDEO)

168

44 int numtypes = 0; // number of non-priority-override types
45
46 meminfo allallocs[]; // memory leak allocation information gathering
47 int nalloc = 0; // number of allocations
48
49 MODULEENTRY32 ModuleList[]; // list of Windows-specific module information
50 int nmodlist = 0; // number of entries

169

APPENDIX G: EXAMPLE MODULE SKELETON FOR OUTPUTTING DATA TYPE

"MYOUTPUTTYPE"

This module skeleton can be used as a base for other modules. To use it, a search and replace
is done for 'myoutputtype' and replaced with the desired output type. By convention,
lowercase and uppercase should be maintained as it appears in the skeleton. A include file
should also be made, containing the data format, and then shared with other developers that
will read the specified data format. Commented out portions may be uncommented
depending on exact features desired.

1 #include "common.h"
2 #include "meta/video.h"
3 #include "meta/inside.h"
4 #include "meta/log.h"
5 #include "meta/myoutputtype.h"
6
7 // version 1.0.0, replace the description with your module's description
8 ModuleParameters ("1.0.0", "Example module description", 0);
9
10 typedef struct mylocals_ { // structure for data local to this module
11 emMux* mux; // by avoiding globals, we can load separate
12 char* inputtype; // instances of a module if need be
13 char* outputtype;
14 } mylocals;
15
16

17
emmFunction emmRegister (emModule* module, configPair* configuration, emCallbacks*

callbacks) {
18 int i;
19 mylocals* locals;
20
21 defaultRegister();
22
23 if(!module->locals) {
24 // create a new 'locals' for thread local storage (specific to this instance of this module)
25 module->locals = (mylocals*)calloc(1, sizeof(mylocals));
26 }
27 locals = (mylocals*)module->locals;
28
29 // initialize module local variables with defaults
30
31 locals->inputtype = "VIDEO"; // default input type
32 locals->outputtype = "MYDATATYPE"; // default output type
33 locals->mux = (emMux*)calloc(1, sizeof(emMux)); // allocate mux for this module
34
35 for(i=0;configuration[i].param;i++) {
36 if(!strcmp(configuration[i].param, "input")) locals->inputtype =

170

strdup(configuration[i].value);

37
 if(!strcmp(configuration[i].param, "output")) locals->outputtype =

strdup(configuration[i].value);

38
// if(!strcmp(configuration[i].param, "wait")) sscanf(configuration[i].value, "%f", &locals-

>wait); // float type

39
// if(!strcmp(configuration[i].param, "len")) locals->len = atoi(configuration[i].value);

 // int type
40 }
41 // add input type to mux (default was "VIDEO")
42 emc->emcAddMux(module, locals->mux, locals->inputtype, 0, 0, 0, 0);
43 emc->emcAddMux(module, locals->mux, "INSIDE", 0, 0, 0, 0); // add INSIDE type to mux
44 // register/add the mux to actual module's inputs
45 emc->emcAddInputMux(module, locals->mux);
46
47 emc->emcAddOutput(module, "LOG", 0, 0, 0); // register/add output type
48 // emc->emcAddOutput(module, locals->outputtype, 0, 0, 0); // register/add output type
49
50 return 1;
51 }
52
53 emmFunction emmStart (emModule* module) {
54 return 0;
55 }
56
57 emmFunction emmData (emModule* module, emPacket* pktin, void* perf) {
58 meta_video* metavideo;
59 meta_inside* metainside;
60 emPacket* video;
61 emPacket* inside;
62 mylocals* locals;
63
64 // meta_myoutputtype* metamyoutputtype;
65 // emPacket* myoutputtype;
66
67 locals = (mylocals*)module->locals;
68
69 // wait for 1 packet of each data type; else, don't continue
70 if(!emc->emcMuxPacket(module, locals->mux, pktin, 1)) return 0;
71
72
73 emcGetMeta(video, "VIDEO", locals->mux);
74 emcGetMeta(inside, "INSIDE", locals->mux);
75
76 // process data...
77
78 // if(metainside->inside & 1) { // if frame is inside frame...
79 // packet structure, meta structure, meta structure type, "OUTPUTTYPE", packet to inherit from
80 //

81
// emcPreparePacket(myoutputtype, metamyoutputtype, meta_myoutputtype, locals-

>outputtype, video);
82 // process the input data somehow, maybe include entire packet pointer or just specific fields...

171

83 // processdata(metavideo->data, metavideo->width, metavideo->height, metavideo->stride);
84 //
85 // metamyoutputtype->value1 = result1;
86 // metamyoutputtype->value2 = result2; // get these from somewhere, or...
87 // metamyoutputtype->value3 = result3; // pass emPacket* to a processdata function
88 //
89 // emc->emcPushPacket(module, myoutputtype); // finally, push the packet to the system
90 //
91 // } else {

92
// emc->emcPushDummyPacket(module, locals->outputtype, video->timestamp, video-

>final); // push dummy packet
93 // }
94
95 // done with this set of packets for this 1 timestamp
96 emc->emcReleaseMuxPackets(module, locals->mux, 1);
97
98 return 0;
99 }
100
101 emmFunction emmStop (emModule* module) {
102 return 0;
103 }
104
105 emmFunction emmShutdown (emModule* module) {
106 return 0;
107 }
108
109 emmFunction DllMain (HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpvReserved) {
110 defaultDllMain();
111 return 1;
112 }

172

APPENDIX H: EM-CAPTURE THRESHOLDS

The thresholds used by various EM-Capture video analysis modules for inside/outside
classification are provided in the following table.

Threshold Value Explanation

mucosa 10
Remove dark or black pixels that are not part of the mucosa
area

minimum area 1/8
At least 1/8 of the image must contain valid non-black
pixels

mean-red 8 Minimum mean-red value for an inside-the-patient frame

mean-normalized-red 33
Minimum mean-normalized-red value for an inside-the-
patient frame

variable-sized video analysis window 8 sec
Maximum use of temporal information within memory
limits of FIFO buffer

accumulated mean-normalized-red 2400
Minimum value of mean-normalized-red of 10 sustained
over 8 seconds

histdiff 5000
At least some minimum level of motion to indicate a
procedure is in progress

frame classification window for
procedure exit

5 min
Domain knowledge that the time between procedures is at
least five minutes

outside-the-patient frame threshold for
procedure exit

90%
Allow a 10% buffer for misclassification of inside/outside
images

duration of black frames for fast
procedure exit

90 sec
Allow for a faster procedure exit transition to occur when
the scope is unplugged, in case another procedure on the
same patient soon follows

variance of mean-red differences 2 Mean-red should fluctuate during a procedure
variance of mean-red differences (for
exact exit)

0.05
A very strict lower bound indicates a confident procedure
exit

variance of mean-normalized-red
differences

0.2 Mean-normalized-red should fluctuate during a procedure

variance of mean-red differences (low
threshold)

0.2
A lower, more lenient threshold for when other features
values are much higher

variance of mean-normalized-red
differences (low threshold)

0.05
A lower, more lenient threshold for when other features
values are much higher

mean-normalized-red rise area (low
threshold)

100
A lower, more lenient threshold for when other features
values are much higher

mean-normalized-red rise area (high
threshold)

4000 A stricter threshold for when other features are much lower

mean-normalized-red fall area 3000
Procedure exit mean-normalized-red usually has a very
steep fall

173

Threshold Value Explanation
mean-red energy histogram area 64 Mean-red should fluctuate constantly and evenly
mean-normalized-red energy histogram
area

16
Mean-normalized-red should fluctuate constantly and
evenly

mean-red / mean-normalized-red hybrid
energy histogram

32
A reasonable number of bins should contain a value of at
least 5% of the highest valued bin

mean-red / mean-normalized-red hybrid
energy histogram (for exact exit)

3.2
A very strict lower bound indicates a confident procedure
exit

double-normalized mean-red histogram
area

0.2289
At least somewhere between 20% and 25% of the 1.0 by
1.0 histogram area should be covered

analysis window for variance of feature
differences

8 sec
Short-term analysis window to aid in making decisions
before frames leave the FIFO buffer

histogram energy analysis windows 16 sec
A slightly larger window size than other features is more
effective at combining temporal information

double-normalized mean-red histogram
window

60 sec
A very large window size yields more temporal information
in one feature for being extremely confident in detecting a
sudden-start

mean-normalized-red difference
between frames for rise/fall

-10
Allow for a small amount of noise so that a small local fall
does not end a global rise and vice-versa

	2012
	Semi-automated parallel programming in heterogeneous intelligent reconfigurable environments (SAPPHIRE)
	Sean Stanek
	Recommended Citation

	Microsoft Word - $ASQ165497_supp_C0EB18F6-D1DA-11E1-ACD7-8F7CEF8616FA.doc

