IOWA STATE UNIVERSITY

Digital Repository

Jowa State University Capstones, Theses and
Graduate Theses and Dissertations y-ap ’)
Dissertations

2012

Semi-automated parallel programming in

heterogeneous intelligent reconfigurable
environments (SAPPHIRE)

Sean Stanek
Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

b Part of the Computer Sciences Commons

Recommended Citation

Stanek, Sean, "Semi-automated parallel programming in heterogeneous intelligent reconfigurable environments (SAPPHIRE)"
(2012). Graduate Theses and Dissertations. 12560.
https://lib.dr.iastate.edu/etd /12560

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at lowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University

Digital Repository. For more information, please contact digirep@iastate.edu.

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12560&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12560&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F12560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/12560?utm_source=lib.dr.iastate.edu%2Fetd%2F12560&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Semi-automated parallel programming in heter ogeneous intelligent reconfigurable
environments (SAPPHIRE)

by

Sean Stanek

A dissertation submitted to the graduate faculty
in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science
Program of Study Committee:
Carl Chang, Major Professor

Johnny Wong
Wallapak Tavanapong

Les Miller
Morris Chang

lowa State University
Ames, lowa
2012

Copyright © Sean Stanek, 2012. All rights reserved.

TABLE OF CONTENTS
LIST OF TABLES ...ttt e ettt ettt e ettt e e e e ekttt e e 44 e st e e e e e e e e et e e e e snn e e e e e e e e nnnnes viii
LIST OFFIGURES. ...ttt e e et e e e e o4 e et ettt ettt et e e e e e e e e e e e e e e e e e nnannnenne e IX
PROJECTSUMMARY ..iiiiittttitititea st e ettt ettt s e e a4 e e e e e e e et e et e e s s e e e bbb s e e e e e e e e e e e e neeeennnnnns Xi
CHAPTERZL. INTRODUCTIONtttttttteatttesuteeessseeassseesseesasseeessseeaassessnssessnseesssseesssnessnssessnseeens 1
CHAPTERZ. RELATED WORK ... iiiiiiiie ettt e e e e a e e e e e e e e e e e nnnnnes 5
21 Program CONSIIUCTIONiiiiii et e et e e e e e e e e e eees 5
211 DIFECESIIOW ... e e e e e e 5
2.1.2 (O] (ol U1 =T g o U= o =P 6
2.1.3 Aspect Oriented Programmingccoooevviiieiiiiiiiiiiise e e e e e e e e eeeeeeseern e 6
2.2 Parallel COMPULINGoeeiiiiiiiia e e e e e e e e e e e 7
221 Data ParalleliSIm ... 7
2.2.2 Task Parallelism and Stream Programming...........cccoovvvvvieiiiiiiiiiiiiiiniee e eeeeeeee 8
2.2.3 Hybrid Task and Data ParalleliSmcccoooiiiiiiiieiiiiiecsr e 9
2.3 Multiprocessor Task SChedUIING.........uuu i 10
231 Homogeneous Task Scheduling..........oooi 10
2.3.2 Heterogeneous Task Scheduling............ccooiiiiiiiiiiiiiiiicice e 11
2.3.3 Stream Task SChedUliNgcooiiiiiii e 13
234 Heterogeneous Stream Task Scheduling ... 15
2.3.5 WINdows Task SCheAUIET ... 16

2.4 ENdoSCOPY VIidE0 ANAIYSISciiiiii e e et e e e e e e e e 17

24.1 Picture Archiving and Communication Systems (PACS)cocvvvvviveciiennnnn. 17
2.4.2 Scene Segmentation and Object Detection for Colonoscopyccevvvvvvnnnns 18
CHAPTERS. OVERVIEW OF SAPPHIRE.......oiiiiiiii e 20
3.1 Design and Overview Of SAPPHIRE ... 20
3.2 Features and Strat@gieScoiviiiiiiiiiiiiiiie e e e e e e e e e s s e e e e e e e e e e e e e e eaa 25
3.2.1 Semi-Automated Program CONSIIUCHIONuvvvveiiiiiieee e eeee e 26
3.2.2 Module ImplemeNntation.............oooeiiiiiiiiiii e 28
3.2.3 Data PACKELSt e e e e e 30
3.24 COMMUNICALIONceeeiie ettt e e e e e s e e e e e s e e e e e e 32
3.25)Y 101 T (0] 11 1o o U 33
3.2.6 [=T=To] o= Tod 1 o To] o PR UUPPPPPPPRTTURRRTIN 35
3.2.7 D= 1= B 11 (=TT o [P UUURPPPPPPRTPRRPRI 35
3.2.8 (0 1T Vo PP 36
3.29 Memory Leak DeteCHiONooiviiieiiiiiiiee et e e e e e e e e e e e 38
3.2.10 Crash REPOIMING ..uuuuiiiiei it e et e e e e e e e e e e e e aeeeeas 40
3.3 Common Modules and Data TYPES.....uuuuu i ettt e e e e e e eeeeeeeees 40
331 Video Data and MOAUIESooiiiiiiiiiiiicce e 41
3.3.2 Simple ANalySiS MOUUIESuueeiiiiie e e e e 44
3.3.3 Helper and EXtension MOAUIESuuueiiiiiiiiie e 45
3.4 Example ENdOCaPIUrE.INIooiiiiiiiieieiiiieee et e e e e e e e 46
3.4.1 Example Task Graph...........oooeiiiiiii e 47
CHAPTERA4. SAPPHIRBEINTERNALS......iiiiiiiiii et e et e e e e e e e e e s e e eeenes 48
4.1 Pseudocode for a Main Program ... 48

4.2 Program and Virtual Graph CoNnStruCtioNooviiiiiiiiiiiiiii e 48

42.1 Packet Filters and Priority OVEITIAESuuuuvrviiiiiiieeeeeeeeeeeeeeeeeeeviene s 50
4.2.2 Generating the Virtual Parallel Task Graph.........cccccvvvviiiiiiiiciiiiie e 51
4.2.3 Data and Module Pruningcceeeeeiiuiiiiii et 53
4.2.4 Updating the Internal Stateoooieiiiiiiiiiiiie e 53
4.2.5 Starting the Program ... e 53
4.2.6 D= 1= W o (0 1o =171 | o 53
4.3 Work Loop using WIindows Scheduler ... 54
4.4 DAtA SIUCTUIES ...ttt e e e e e e e e e e e e nnanee 57
44.1 PACKELS ... 57
4.4.2 IMOUIES.......ceeeeeee e e 59
4.4.3 Internal Arrays and LiStS......ccoooi oo 59
4.4.4 Common Data Packet FOrMatScoooiiiiiiiiiiiiiie e 59
T Y T o1 0] 12 1 (o) o S SO 61
45.1 Middleware SYNChroNIZatioNcccoieeeeeeieiiiieiieirer e e e e e e e 61
45.2 Application SYNChronizationeueeeiiiiii e 62
4.6 RUNEIME ProfiliNg.....ccoo o 64
4.7 Memory Leak DEetECLIONcoveeeiiiiiiiiie et e e e e e e e e e e e e eeeeeeennnnes 65
0 T O = 11 T =T o o] ¢ 11 o PSSR 66
4.9 Video Processing CONSIAEIatiONSuuuuiiiiiiiieeeeiiieiieieiiiiiieesa e e e e e e e e eeeeeeeeeees 68
4.10 Evaluation of SAPPHIREcooiiiiiii e 69
4.10.1 Case Ctudy Implementation...........cccoueeeeeeeeeiiieeeeeiiirsss e e e e e e e e e e e e eeeeeanaennnans 69
4.10.2 ConsSistenCy CheCKING........ccooiiiiiiieee e e e e e e e e 70
4.10.3 SHESS TOSHNG .evvuuuuiiii i ettt e e e e e e e e e et e e e e e abb et e e e e e e e e eeeaaeeeeesennees 70

4.00.4 EITOr REPOITING ..uuiiiieeie ettt e e e e ettt ee et e e e e e e e e e e e e aeeeeeeenenees 71

411 Summary and FULUre WOTK.........ooooeiiiieiee s a e e e e e e e e e eees 71

CHAPTERS. TASK SCHEDULING OFSTREAM PROGRAMS ONHETEROGENEOUSSYSTEMS... 73

5.1 OUr CONMDULIONS ..o e e e r e e e e e e aeeeas 74
5.2 Drawbacks of Related Work and Features of Our Work............ccccceveeiiiiiiiinnennns 75
5.3 Problem Formulation of Task Allocation of Stream Programscccccevvvvvvnnns 77
5.4 Load Balancing Algorithms for Task Allocation..............cccceeeiiiieieeeeeeeieeeeeeeiiiiienens 85
54.1 Brute Force With Pruning........cccooo o 85
5.4.2 K-HIT Greedy AIGOrthm ... 85
5.5 Algorithm for Task SChedulingoooviiriiii e 86
5.6 Experimental Setup and RESUILSooovviiiiiiiiiiiii e 86
5.6.1 Graph GeNEIAtIONceeeeiiiiieee e e e e b 86
5.7 Task Scheduling Algorithms and FEatUresceeiiiiniiieeiieeeeeeeeei e 88
5.8 RESUIS ... 88
5.9 DISCUSSION ...eiiiieiiiitte it e ettt et e e e e e et e e e e e e e e e e e e e e e e 91
5.10 User-Mode Task SChedUIET..............uuuiiiiiiiiiieie e 92
5.10.1 Design and ImMplementation ... 94
5.10.2 DynamicC SCheAUIINGccoiiii i e e e e e e e 96
5.11 Summary and FULUre WOTK..........cooiiiiiiiiiiies e e e e e e e e e e e eeees 98
CHAPTERG. BEVALUATION OF SAPPHIRE ..o 100
6.1 ENdOoSCOoPIC VIAE0 DELECHION.ceviiiiiiiiiiiiiiee et e e eeeeeees 100
6.2 Drawback of Old MethOdcooiiiiiiiiiiiiiie e 103
6.3 NEW MEIIICS ...ttt e e e e e e e e 104
6.4 LOF=1 o (1 [(=TT PPPPPRTRTRPPPPPIN 105

B.5 ANAIY SIS . ittt aaaa e 107

Vi

6.5.1 Characteristics of Inside-Patient and Outside-Patient Video....................... 108
6.5.2 BASIC FEALUIES ...ttt 109
6.5.3 New Temporal FEALUIEScooo i 110
6.6 Algorithm for Identifying the Start of a Procedure............ccccoeeeiiiiiiiiiiiiiiiiiienn, 117
6.7 Algorithm for Identifying the End Frame of a Procedure...........cccccovvvvvvciiinnnnnn. 119
(GRS TV T [=To T =t o To'o o [T [PPSR 121
6.9 Experimental RESUILScoooiiiiiiiiie e 122
6.10 Porting EM-Capture to0 SAPPHIRE ... 124
6.11 Case Study 1: EM-Capture (Procedure Detection)..........cccceeeeeiieeeeeeeeeeeenneeenennnnnns 126
6.12 Case Study 2: EM-Automated-RT for Real-Time Feedback.............cccccceceeeennnnn. 126
6.13 Summary and FUTUIE WOIK.........cooiiiiiiiii i 128
CHAPTER7. CONCLUSION ANDDISCUSSION OFFUTUREWORKcccvviiiiiiiiiiiiiiiieee e 130
4% S 7o a1] o TV i o EF PP TP PP PPPPRRPPPI 130
7.2 Limitations and FULUIre WOIK..........couriiiiiiiiie e 130
REFERENCES ...uiiiiitttii ettt e ettt e e e e e e st e s e e e s e e e s e e e e e e e st e e e e e e aba e e e e et e e b e e e e nennnaaas 132
APPENDIXA. SAPPHIREAPoee e 140
N A o 1T B =Y LY g = Vo o 1SR 140
A2 COre AP TUNCHIONSoviieiiieiiiiiiee et e e e s e e e e 142
A21 REGISIIALION ...t e e e e e as 142
A.2.2 PaACKELS ... 147
A2.3 CONIIOL e 152
A2 4 PErfOMMANCEoiiiiiiiiiiiie ettt e e r e e e e e re e e e e 153
A.2.5 MISCEIIANEOUS ... e e e e 154

vii

APPENDIXC. MODULES AND THEIR PACKET TYPES.....ccettutttteeeeessitetreeeeesasnssnseeesesssnnnneeeeeeans 157
APPENDIXD. SAMPLE ENDOCAPTUREINIciiutttietieeesiitiieeeeeeassnsieeeesessssnssseeeesessssseseessessanns 159
D.1 Endoscopic procedure detection and capturing (EM-Capture).........ccceeeeeeeeeeenn. 159
D.2 Real-time feedback (EM-AUtOMAIEd-RT)uuuiiiiiiiiiiieiiiieeeeeeeiii e 161
APPENDIXE. MEMORY LEAK DETECTION USAGE INFORMATION.cutteeesiurtreereessssnnnnneeeaeaans 165
A | 0151 (g F [ox 1 o] o - PP PPPPPPPP 165
E.2 Interpreting the OULPUL.........ooiiiiiie e e e e e e e e eeeenanes 165
E.3 Example output and debuggingccooiiiiiiiiiiiiiiiiii e 166
APPENDIXF. INTERNAL VARIABLES AND ARRAYS/LISTS ...uuttiiiieeesiiiirieeeeeessnnstneeeeessannnnneeeens 167
APPENDIXG: EXAMPLE MODULE SKELETONvvttteeesiuttteeeeessaannsseeeaeessssssseessessnnsssseeeesssannsens 169

APPENDIXH: EM-CAPTURE THRESHOLDS. ...t euttentntetntetateenseease e seeseaeseseaseseaseseasnseaeneen 172

viii

L1ST OF TABLES

TABLE 2.1: OVERVIEW OF SCHEDULING ALGORITHMS. .. .uuuitieeeeeeeeeeeeeeeeeesnnssnnnnnnnaaaeeeeaesaseeesees 19
TABLE 3.1:LIST OF METHODS TO BE IMPLEMENTED BY MODULE DEVELOFES......civeieeeeeeeenne. 23
TABLE 3.2:LIST OF CORE MIDDLEWARE FUNCTIONS BY TYPE ...ievuuiiiiiieeeeiieeessineeeesnneeesnnneaens 23
TABLE 3.3: COMPARISON OF FEATURES AMONG MULTIPLE TOOLKITS...ccuuiiieiieeeeiieeeeiieeennnns 25
TABLE 5.1:NOTATIONS FOR THE TASK ALLOCATION PROBLEM.......cccevvvvieeeiiiiinininnaaeeeeeeeeeaens 77
TABLE 5.2:NOTATIONS FOR PROVINGTHEOREMLuiiiiiieeeiiiiceeeeeieiiiiiess s e e e e e e e e e aeeeaeenenannnnns 80
TABLE 5.3:DESCRIPTIONS OF SCHEDULING ALGORITHMS....ccuuuiiiitiieeeiiieeeesiinesesineesesnneesennnnnns 87
TABLE 5.4 IMAKESPAN ... ctutttttt et et e et e et e e et e et e e et e e et e e et e e et e e et e e ea e e s aeeaa s e et eaeaneesaeeanneeannaes 89
TABLE 5.5: TIME TAKEN TO GENERATE ASCHEDULE (MS) +.uuuuieeeeeeeeeeeeseeeeeeeeesinnnnnnnseeeeaeaaaeas 89
TABLE 5.6:MEMORY USAGE(MB) ... oottt ettt s s e e e e e e e e e e aaeeeenennnnnes 90
TABLE 6.1:EFFECTIVENESS OF IMAGEANALYSIS METHODSuuuiiiitiieeeetiieeesieeeesneeeesnneeeennns 124

TABLE 6.2:MODULES ADDED TO CREATEEM-AUTOMATED-RT . oriie e 127

L1ST OF FIGURES

FIGURE 1.1: SAPPHIREOVERVIEWuuuuiiiiiiieteeeeeeeeeeteeettaatass s s s s e e e e aaaaaeeeeaessssnnnnnnseeaeaaaaaes 3
FIGURE 2.1: EXAMPLE OF VARIOUS SCHEDULING ALGORITHMS.......ccvuurrrnunsaaeseeeeaeeeeseeeennnnnnns 14
FIGURE 3.1: ORGANIZATION OF THE PACKET SYSTEM IN THE MIDDLEWAREccecvvvivinnnnnnnn. 31
FIGURE 3.2: EXAMPLE MODULE CODE FOR SYNCHRONIZATION USING A MUX......ccvvvunieeinins 34
FIGURE 3.3: THE REAL-TIME PERFORMANCEGUIccoiiiiiiiiiiiiiices e 37
FIGURE 3.4: AN EXAMPLE CONFIGURATION FILE..11uuuuuuutsseeeeeeesseesesesssnsnsssnnnnsaasaeeaasaesseseemmmnnne 46
FIGURE 3.5: A TASK GRAPH OF THEEM-CAPTURE PROGRAM WRITTEN USINGGAPPHIRE 47
FIGURE4.1:PSEUDOCODE FOR THE MAIN PROGRAM OBAPPHIREccooiiiiiii, 49
FIGURE4.2: PSEUDOCODE FOR MODULEHREADSTART ...evvvvvvrreruuinaaaseeeeeeesseeesennnnssnnnnnnnananns 50
FIGURE4.3: PSEUDO-CODE FOR CREATING A BIPARTITE GRAPH......cvvviiiriiiiieeeeeeeeeeeaseesennnnnnns 52
FIGURE4.4:WORK LOOP OF EACH THREAD.ccuutttitttieetiaeetiseetnsasssssansssnsssssesnssesnssssnaessnseees 55
FIGURE 4.5 DATA PACKET STRUCTURE.utttuitttettteetine et s etnssstaesstnssssnsessnsssnsssnnaesnnessnnaesnnaes 56
FIGURE4.6: STRUCTURE THAT KEEPS INFORMATION ABOUT A MODULE........uuuuuiiiieeeeeeeeaeeeennn. 60
FIGURE4.7: STRUCTURE OF AVIDEQ PACKET......iitiiiiiititiiiiiiaese e e e e e eeeeeeeeeeesaennnnnnnnsaeeeaaeees 61
FIGURE4.8: STRUCTURE OF ANINSIDE PACKET.....uiititiiiiiiiieeeeiie e este e e et e e et eeaan e e eann e e eaanes 61
FIGURE4.9: STRUCTURE OF THE MUX(MULTIPLEXER OBJECT) v.vvuuuuiasaeeeeeeeeeeeeeeeeneennnnnnnnnaeens 63
FIGURE4.10:CRASH REPORT OF THE HUMDLL MODULEuuiiiiiiiieeeiieeeeiineeesiineeesineeennnneeeannnens 67
FIGURES.L:EXAMPLE PTG ..uiiiiiii i ittt s e e e e e e e e e e e e et ettt s s s s e e e e e e e e aaaeeeeeessennnnnns 74
FIGURES.2: UNROLLED PTG OFFIGURED. L. ..uiiiiiieeececeeeeeeeetse s e e e e e e e 81
FIGURES.3: MAKESPAN OF SELECT ALGORITHMS....uuuiiittiieeitieeeeiineesssieesstneesssnesssnneeesnnaeaees 90

FIGURES5.4:EXAMPLE OF SCHEDULING ALGORITHMS .. uvttuiuiuiinisieieteteeeenenensesesesenensasnensnrerens 93

FIGURE 6.1: EXAMPLES OF COLONOSCOPY VIDEOQ........ccetvuuuuuruunnnisasaeeaaaeeaeeeesessnsnnnnnnnaeens 101
FIGURE 6.2: THE CIRCULAR FIFO VIDEO FRAME BUFFER.........cccvvvviiiriinnnniiseaeeeeeeaeessssennnnnnnns 106
FIGURE 6.3: EXAMPLES OF FEATURES GRAPHED OVER TIME ... cccvtuiiiiiieeserieeseineesesneeennnnnns 113
FIGURE 6.4:ENERGY HISTOGRAMS. .. .cuuuiitttuietttuniesatnaessssaesssnaesssneeessnasessnesesneasesneeeesns 114
FIGURE 6.5: DOUBLE-NORMALIZED ENERGY HISTOGRAMS........ccevvviruurrnnnniiaaaeeeeaaesaaseeenennnnnns 114
FIGURE 6.6: ALGORITHM TO DETECT THE ENTRANCE FRAME.......ccvvuurrrnnnniasseeeeeaeesseeseeennnnnes 119

FIGUREG.7: ALGORITHM TO DETECT THE EXIT FRAMEcut ettt teeeeeaeeeaeneeensesnseaensenensens 120

Xi

PROJECT SUMMARY

Advancements in computer hardware technology continually provide &astdaster
computational platforms. However, in recent years, as we comer dlmsapproaching
physical limits in making smaller (and faster) computer Bsoes, focus has instead been
turned toward including multiple processor cores in each device. Whdetechnically
allows more computational power in the same amount of time as cesnpéah only one
processor core, conventional software typically can only make usesofgle processor.

Multithreading is required for software to be able to effectively utilindtinore processors.

Goal: Our goal is to design and develop a middleware platform that sugbiedsn
programming and reduces the time and effort necessary to devedam gtrograms. The
middleware determines a good configuration for each softwarepanent to exploit
heterogeneity and parallelism of the hardware system. &&ftadevelopers do not need to

concern themselves with how and which computing device executes which component.

Contributions: We have three major contributions: (1) SAPPHIRE, a middleware for
semi-automated program construction of stream programs based t@ndelzendency
matching. SAPPHIRE allows stream application development to bematished with
significantly fewer lines of code and eases collaborative developmeAtn@jel static task-
scheduling framework for stream programs with heterogeneousrmeptation choices. We
proved that the maximum load approximates makespan of a streanarprogrwithin a
negligible amount of error. (3) EM-Capture, an automated realdppécation using novel

video analysis techniques for endoscopic video detection.

Impact: We contribute to three important areas of computer sciende/asefdesign,
biomedical image analysis, and high performance computing. In additionsoftware
enables automatic capture, analysis, and feedback of qualighdmscopic procedures that
has never been possible before in practice. Our endoscopy softwaaeahzsed over 50
billion frames and captured over 71,000 endoscopy videos in a real hesgpitag. Our
software has great potential to raise the quality of pate through automated real-time

feedback and documentation.

CHAPTER 1. INTRODUCTION

The computational requirements of newer computer programs haws greatly
over time; at the same time, the amount of computation a pacean do has also grown.
However, the processing speed of individual processors has not growastadof
accommodate new applications/programs desired to run on them. Aslia nesltiple
processors are utilized for some of these programs. Unfortunaedcial design and

implementation must be taken into consideration for parallel computing.

Many early implementations of parallel computing involved working aentical
computing nodes, both for the simplicity of constructing the parabtehputing cluster
hardware and for the simplicity of writing a parallel progré®nce the end-purpose of
parallel computing is to minimize completion time of a particulag@m, it is advantageous
in program execution to utilize a wide variety of computing platfofadthough perhaps
more time consuming to design) such as GPUs (graphics processtey FPGA (Field
programmable gate arrays), custom-made processors, and clusteeddarked computers.
GPUs have become a major focus in recent years, constantly dngeimproved by the
demand for faster and faster 3D graphics in games, making tlykirspeed, massively
parallel processing elements a good candidate for a multitude nefajecomputational
intensive problems. GPUs have also become commonplace in personal esnm@ustom-
made processors are also candidates for parallel computing (thouglost-effective), as
they can work on similar problems as FPGASs, but take up lese spacrun considerably

faster.

To efficiently utilize heterogeneous computing platforms, develogserautilize low-
level vendor-specific APIs and libraries. For some applications|aj@s can use existing
middleware packages such as MPI (Message Passing Injefface&common parallel
programming data management and synchronization. With MPI, seepiat©f a program
are loaded at the same time, one per processor. Each program fulhparallel during its
entire execution on independent data sets, with the exception of da¢addacy or
synchronization. The MPI programming model followdaa parallelism paradignigsame

processing task on independent data sets). It works well for preltemhich data can be

split up and processed independently. However, only certain kinds of algogdmmeasily

take advantage of this paradigm.

Pipeline parallelism(task parallelism paradigm involves the parallel execution of
different tasks on different data sets. In an environment that ga®@&econtinuously
streaming data such as a stream of images, this is aled sakbam programmingThis
paradigm also has its limitations that programs must work oansing data. That is, one
component of the program processes a piece of data, passesuits om to the next
component, which does its own processing and passes its results oméxttisemponent,
and so on. Instead of the first component remaining idle during the ctingponents’
executions, a new piece of data is fed to the first component. Tdwmsponents all
constantly receive new data from their predecessors and ath parallel with each other.
FPGAs utilize this model of computation, performing lookups (computasibeyery lookup
table (LUT) on the FPGA all of the time at each clock cy@Us themselves are an
implementation of this paradigm, performing computation on the instructen
intermediate data at each stage in its pipeline. Importantapphs of stream programs are
real-time quality monitoring of medical procedures, video survedéafor security, just to

name a few.

Currently, it is time-consuming for developers to take advantadeeteirogeneous
computing platforms to efficiently run their stream programar @oal is to design and
develop middleware name8APPHIRE: Semi-Automated Parallel Programming in
Heterogeneous Intelligent Reconfigurable Environments that supports stream
programming and requires less time to develop stream progrénes.platform does
multithreading, allows dynamically loadable components of streamicapphs, and
determines a good configuration for each software component taeetific exploit
heterogeneity of the hardware system. The software devslamemot need to concern
themselves with how and which computing device executes which componenisstig has
not been investigated in the research literature. SAPPHIRE providewbility for
developers of stream applications to get the most out of theipuwdorg platforms without

having the developers to determine these configurations themselves.

ooooo

Stream of data API and Library Runtime engine,
monitoring, feedback
. Task Allocation &
Profil
Scheduler

- %

Figure 1.1: SAPPHIRE will support any stream progta utilize heterogeneous computing platformsar@
components representing different processing taGkforms a task graph that describes the datardkpey
among the tasks. For instance, C2 waits for thatréem C1. C3, C4, and C5 cannot start until Cishes.

Our contributions:

1.

2.

SAPPHIRE — A middleware and software development kit (SDK$émoni-automatic
program construction of tasks by data dependency matching. Unligengxivork,
SAPPHIRE can support task-parallel stream applications thae harecise
requirements when accessing data. SAPPHIRE allows strepplication
development to be accomplished with significantly fewer linesoalecand eases

collaborative development.

A novel static task-scheduling framework for stream programs beterogeneous
multiprocessor system. Our framework does not require unrollirggigimal PTG as
in recent existing work, which would expand the problem size. Our Yranke
supports _bterogeneous mplemenation (HIT) choices We formulate the task
allocation problem with HIT support as a load balancing problemoitanizes the
maximum load (execution time) among all the processors inyters. Given large

inputs, we proved that this maximum load approximates makespan oéamstr
program to within a negligible amount of error. This problem formulatiwetbles us
to have a simple heuristic load balancing algorithm calledI'K-that solves the
formulated problem. For the final task scheduling, we propose a vafiadrliest

finished time first for stream programs called Stream-EFT.

3. EM-Capture — We developed novel algorithms and application for automatic
endoscopy video analysis for endoscopic procedure detection. Ourasipplidoes
not require any human intervention, making it easy to use in a rgatdiasetting.
EM-Capture is a novel automated endoscopy video capturing softwarsofbmare
has analyzed over 50 billion frames and captured over 71,000 endoscopy videos in
real hospital setting. An extension to EM-Capture, called EM-AatetiRT,
provides real-time quality analysis and feedback for colonoscopy. EM-AigorR T

was developed as a collaborative effort using SAPPHIRE.

This dissertation contributes to three important areas of compuégrcs: software
design, biomedical image analysis, and high performance computingddition, our
software enables automatic capture, analysis, and feedback ofy gizaliendoscopic
procedures in real hospital settings that has never been possibte befpractice. Our
software has great potential to raise the quality of pate through automated real-time
feedback and documentation. This dissertation resulted in several pab$cdtiring the
time of its writing [1][2][3].

The dissertation is organized as follows. Chapter 2 provides relevekgrboand
information and related work. In Chapter 3, we provide the overviewASfPEIIRE. In
Chapter 4, we describe the design, algorithms, key internal dtatectures, and
implementation in more details. In Chapter 5, we present our noued steeam task
scheduling framework, involving theory, proofs, simulation, and a proof-afeqin
implementation of a user-mode thread scheduler. In Chapter 6, watpresevaluation of
SAPPHIRE using two real-world case studies, EM-Capture addA&omated-RT. In

Chapter 7, we conclude the dissertation and describe future work.

CHAPTER 2. RELATED WORK

2.1 Program Construction

Although there are many ways to construct a program, therescane specific
methods that we are interested in for our research. As a wayatde parallel computing,
program construction methods that ease parallel program constractiaof key interest.
Using separable functions that can run independently of (and thusaitepaith) each other
on different pieces of data creates an implicit opportunity fde-pasallel computing. We
will investigate various program construction methods that enakddgdan this way. There
are some other unique advantages that these program construction techhayuehat we

will also investigate.

2.1.1 DirectShow

DirectShow is a component of DirectX, a large multimedia hprareated by
Microsoft for the Windows platform. The purpose of DirectShow igriable multimedia
drivers, devices, and software to work correctly with each otheardksgs of the format of
the data [4]. This is also sometimes referred to as device independence.

A software program creates and executes a DirectShow gitipdr, with a common
programming language (many are supported) or as a visual graghgrBiph consists of
multiple filters (components), usually some input filter likela feader, providing a source
of data; some output filters, such as a video display window; anthiedigate filters that can
decode and convert the data to the desired output format, such as adldes and color
space converters. Filters are connected via input and output pins. Eaelm jhi@ queried for
supported data formats that they accept. The programmer carallyaset the data types of
each pin and connect filters, or DirectShow itself can attemgitmatically connect filters,

inserting converter filters when needed.

While made for multimedia and perhaps not necessarily intendageasmramming
language, it could be viewed as a kind of programming languageharelare some clear
advantages to using a modular design like DirectShow. Device indemendetween

modules, potential component optimization through task parallelism fifhepéndence

between modules enables this), and graphical programming are adwantages.
DirectShow has some disadvantages, particularly as a restdtiofention to be used as a
multimedia experience. For example, if some modules are tooasldvgtart lagging behind,
DirectShow may choose to skip processing some frames offatat@rtain modules. This
may be disadvantageous for a scientific processing platform. Sotherfdisadvantages are

discussed in Chapter 3.

2.1.2 Circuit Languages

Some programs are constructed as a flow of data passing throogtoiis as
opposed functions working on sets of data. For constructing computer s;irthug is
especially the case. On the electrical engineering lexadry computing component is
“running” all the time, as opposed a procedural program, which runs ore Engeme. With
a language like Verilog [5] or VHDL [6], we can construct agsam where the data flows
through simple functions in this fashion. We synchronize data inputewpdts with the
rise and/or fall of an externally generated clock signal. Nwitdd to silicon circuit
construction, it is possible to create complex programs in the fsemen. Instead of being

restricted elementary gate logic, we can utilize complex algorithrieir place.

The biggest advantage to constructing a program in this fashioat isll functions in
the system are expected to run in parallel. A program writtisnway can implicitly take
advantage of any multiprocessing available in a computing sysseme all of its

components can run in task-parallel.

2.1.3 Aspect Oriented Programming

While conventional programming relies on functions with their defimg@dts and
outputs, with functions running in the order in which a program is writtgrech oriented
programming allows a programmer to statically or dynamiadignge the data routing of a
function [7][8]. For example, a program might pass an image aspam to a file output
function. Instead, the program might be changed to deblur the image hafowritten out.
Instead of explicitly calling a deblur function before callifg tfile output function, the

programmer could instead attach a deblurring function to the input Gketloeitput function.

The output of the deblurring function would be the new input to the file ofitpation. Any
time any part of the program calls the file output functioth\an image, the image is first
deblurred before it is actually passed to the file output functiothoAgh aspect-oriented
programming is actually much more than the simple example prdse¢hie is the main

concept of interest to us.

2.2 Paralld Computing

In this section, we discuss common types of parallel computingdigans and

parallel computing middlewares.
2.2.1 Data Parallelism

M essage Passing I nterface (MPI)

MPI [9][10] was introduced in 1993 was one of the earliest standandsdoged
toward making development on distributed computing and distributed mesystems
easier. It is implemented as an API in the programmergulage of choice (typically C or
Fortran). Most of the API functions are simple: delegating alehtifying computation
nodes; sending and receiving data from one node to another, or perhaps anyafurodes
to any other number of nodes; and providing barrier synchronization. Althtasih
parallelism would be possible with MPI, its design leans towaa#limy data parallelism
easier. The data distribution and collection functions are edlyeaseful for distributing

data equally among all nodes.

CUDA

NVIDIA’'s CUDA (Compute Unified Device Architecture) is a pdel programming
infrastructure especially designed for their graphics proce44di. Programmers write a
GPU “kernel” (a small data-parallel program) in a modif@danguage that provides some
GPU primitives. The CUDA compiler compiles the kernel code to#iere GPU’s machine
code and the non-kernel code to the host CPU’s machine code. When anpsogracuted,
the CPU code tells CUDA what GPU code to load, and then exetwasthe massively
parallel GPU computing cores. These are run in single-instruatigitiple-data (SIMD)

fashion in “warps” containing 32 threads which each execute the sastruction on 32
different pieces of data. A collection of warps are run insidgack” (up to 768 threads). A
collection of blocks runs inside a “grid” that executes the sayde on a “multiprocessor.”
An individual multiprocessor can schedule different kernels to be run, buboalkernel is
actually run at any given time for a multiprocessor (similahow an OS does task/context
switches). Separate multiprocessors inside a single GPU demceun different kernels
simultaneously. In recent years, a significant effort in botldem#&a and industry has been
made to utilize GPUs for general purpose computing in several appliGaeas such as
image analysis [12][13][14][15], computational biology and chemising simulation. To
fully utilize the power of GPUs, developers have to take into acamwaral aspects of the
underlying device architecture as well as program charstiter in their design. These
aspects include data dependency, efficient memory accesugegf fast shared memory,
memory coalescing and banking), task allocation, and task schettulieduce the required
bandwidth between CPU RAM and GPU memory. An analytical modelafd&PU

architecture has also been proposed [16].

2.2.2 Task Parallelism and Stream Programming

Microsoft DirectShow, previously mentioned as a method of prograntraonisn,
has the side effect of implicit task parallelism due to itggmmming model. Because each
DirectShow filter is a computationally independent and separaieghanent from other
filters, each filter automatically has the capacity to rutask-parallel. The programmer that
uses DirectShow does not necessarily know how DirectShow scheduteesthiion of each
filter. Some filters might run in serial and some in paralleld some might even have their
data dropped if DirectShow feels that there is insufficient @Rig to run all filters in the
time allotted. This real-time ability of DirectShow is alsoimportant aspect of task-parallel

scheduling of computationally intensive programs.

2.2.3 Hybrid Task and Data Parallelism

Stream| T

MIT’s Steamlt introduced in 2002 is a programming language constructed fawléhe
purpose of describing streaming programs [17]. It works simil@rlha circuit language,
describing components, the inputs and outputs they read or write, and thehéow
components connect to each other. The Streamlt compiler reads sodesedetermines a
stream mapping from that code, and can potentially find the most diimest grain (down
to the arithmetic level) parallelism possible. Becauseiis iswn language, this means that a
programmer must learn a new language and convert most of his codeto the Streamlt
language. Although it would be possible to link in external code itirtkieg stage of code
generation, only code written in the Streamlt language ben&fim the fine-grained

streaming parallelism optimization.

OpenCL
Khronos Compute Working Group introduced OpenCL (Open Computing Language)

in 2008. OpenCL [18][19] is a recent specification and framework for |olewe
heterogeneous programs with as much cross-platform support akecarpected in a
heterogeneous environment. It provides functions for setting up progoanponents,
gueuing program communication flow between components, and executingdgnanpras a
whole. It provides some intrinsic data types for commonly misrepted data types
between platforms (e.g., integer size). The goal of Opea@h allow developers to write a

heterogeneous program in data parallel, task parallel, or any combinatitmeof ei
Other

Chen et al. proposed a system for allocating tasks on GPUsat granularity than
that normally allowed by CUDA or OpenCL by using a job queusiygiem [20]. Jobs are
submitted by the host system to a job queue in memory, where they are run iargres aif
thread blocks by their proposed scheduler. In order to execute pragetisk kernels must
be combined along with the job scheduler and loaded to the GPUsanttgetime, where the
custom GPU thread block scheduler dispatches tasks from the job queue.

10

2.3 Multiprocessor Task Scheduling

Multiprocessor task scheduling has long been studied. Dutot et. ald@sowi
summary of the related work in this area [21] as follows. (1kédpan — the application
execution time is often used as the performance metric. (2)askescheduling problem on
homogeneous platforms is NP-Complete. (3) Algorithms with perfocenguarantees where
the performance metric was defined as the maximum ratio éetite produced makespan
and the optimal makespan has been developed. Different heuristic metitddas variants
of list-based scheduling and simulated-annealing based schedulegmposed [21]. List

scheduling-based methods are most popular.

The majority of previous work focuses on homogeneous platforms oogeteous
clusters of homogeneous systems within a cluster. Furthermore, ipldtéterogeneity is in
terms of variety in CPU processing capabilities or commupitamong various sites. The

majority of previous work does not focus on task scheduling of stream programs.

2.3.1 Homogeneous Task Scheduling

Given (1) some program tasks, each with some inputs and outputs,seherdask’s
inputs (dependencies) may be derived from some previous tasks’ oufjuis,set of
identical processors with which to run the tasks on, and (3) theictexpexecution times on
the given processors — we wish to find both (1) the optimal gibocaf a number of
processors to tasks and (2) the optimal placement which set of gprc@sll run each task,
such that the result minimizes the overall execution time. Saskestcheduling algorithms
will do the allocation and placement in separate stages (ysumadsidered easier since the
allocation can be done heuristically without finding the placemendabfeame), and some
algorithms will attempt to do both simultaneously. Because multipsocdask scheduling is

NP-Complete [22], task scheduling algorithms are usually heurisbdthigs in practice.

Scheduling Algorithms

The FIFO (first in first out) scheduling algorithm [23] is thienplest of scheduling
algorithms. As soon as a task’s dependencies are satisfiedskhis tjueued to run on the

next available processing node(s). When a task finishes, its outputsed to satisfy the

11

dependencies (inputs) of other tasks. When a new task’'s dependenadissatisfied, the
task is queued. Whenever a processor is free, it may be used to edhedugxt task in the
FIFO queue, and the process repeats. The problem with this algowthia, extremely
simple, is that it is greedy and may perform poorly or allogloav task to hog processor
resources when a different task may have been better owergirs of minimizing overall
program execution time). This is an example of an algorithmpédiorms allocation and

placement at the same time.

Round robin (RR) [23] is a naive algorithm that creates an absmidéring of tasks
(not necessarily in an order based on any kind of optimality) andstiteedules each of them
one at a time until all have been scheduled. In a stream prodramamount of time given
per task could be one iteration's worth of work. Once all tasks haen given their first
block of time, the tasks are once again scheduled in the same order, and the prodess repea

Earliest finish time (EFT) [23] first creates an orderingelasn the earliest possible finish

time of each task, which changes based on when a task's dependencies ¢sfiede sat

Dynamic list scheduling (DLS) [24] is a more complex aldon than RR or EFT in
making use of more global information. A task's static levdiesctitical path length from a
task's node to the sink node (without regard for scheduling, only sagisfgpendencies).
The static level of a task minus that task’s earliest tatagtyields a dynamic list ordering by
which tasks are scheduled. This approach favors tasks with a higheles/el (we need to
complete these tasks in order to reduce global execution timegraadrlier start time (in

order to schedule tasks soon after they become available).

2.3.2 Heterogeneous Task Scheduling

In heterogeneous task scheduling, we remove the constraint thatottesssors be
identical. Homogeneous processors make scheduling easier, sinkestlittke difference as
to which processors you allocate to a task: they will all takesame amount of time to work
on a task. In heterogeneous task scheduling, different processotakaaydifferent amount
of time to finish the same task. Because of this possibiligpéis matter which processors
you allocate to a task. For example, allocating a long task to a slowswoeesl a short task

to a fast processor may not be as effective (in terms dfcleak time) as allocating the long

12

task to the fast processor and the short task to the slow prodessw.later case, the end

time of the longest task would have been earlier (and thus, usually preferred).

One such example is that of [25]. A two-stage scheduling digorig utilized: first
allocation of a number of processors to each task, followed by thenptat of each task
onto a set of that many processors. To account for heterogare#ytempt is made to first
convert the problem into a homogeneous task-scheduling problem. Supploaeengeset of
N processors that run at different speeds. Instead of attemptingchtedule on N
heterogeneous processors, a uniform reference-speed virtual proisesstablished. The
relative computing power of each heterogeneous processor is coneettedspeed of the
uniform processor. For example, a 1.5GHz processor may be equal to HZA virGial
processors. Upon summing the number of virtual processors, where Msignthef virtual

processors, we now use a homogeneous scheduling algorithm on those M processors.

In the allocation step, a processor is allocated iterativelyet@ritical path of a given
task graph. The critical path of a task graph is a path from stusiek with length equal to
the makespan. Reducing the overall execution time of the progreams reducing the
makespan, and this cannot be accomplished without reducing the exeautonfteach
critical path. Thus, to determine how many processors to allozatdith tasks, a critical
path is identified, and a task along that critical path is afemt more computing resources.

This is done until all processors have been allocated.

In the placement step, we already know how many processovdlese for each
task. So, we can estimate the duration each task for that nunreicegsors allocated to it.
The task that has the earliest finish time and is also rem@yecute (all dependent tasks
have finished and the number of processors that the task has beeedléveaavailable) is
given its number of allocated processors. As tasks are completedddepies are satisfied,
and more tasks may become ready to execute. This is repeatedllutssks have been
scheduled. In the end, the virtual processors are translateddoeedd processors to define

the final mapping of processors to tasks.

Many varations on scheduling algorithms have been investigated for both

homogeneous and heterogeneous scheduling [26][27][28][29][30], speyifitaliding list

13

scheduling [31], dominant sequence clustering [33], genetic algorithm [BxHedlynamic

level scheduling [35], best imaginary level [36], mapping heurj8i¢, levelized min time

[37], scalable task duplication [38], fast critical path [39]t fiemd balancing [40], and
heterogeneous earliest finish time first [41]. A summarglgbrithms is provided in Table
2.1.

2.3.3 Stream Task Scheduling

The aforementioned algorithms can all be extended to stream preghaauling by
a method calledgraph unrolling unrolling a stream program's parallel task graph by
potentially millions of iterations, so that each iteration of éask has its own node in the
task graph [24]. Then, a chosen task scheduling algorithm is used cargbe unrolled
graph. Although this is a working general solution for stream tdsddsiing, it is inefficient

as it requires expanding an already NP-Complete problem by many ordeagmitude.

Cyclic scheduling

Cyclic scheduling is a well-studied field in manufacturing tisaalso applicable to
stream task scheduling. There are many variations of cydteduling [42], but they share
the same objective of minimizing the cycle time — the amounb& between the start and
end times for each processor of a static task schedule — &ftdr, the cyclic schedule can
be repeated. See Figure 2.1(d). The cycle time is diffehamt the makespan in that the
makespan is the time difference between the earliestistarand latest end time of all tasks
across all processors, whereas the cycle time is computad Esgest difference across all
processors between start and end times within a single prac&éksmay yield a smaller
and more optimal schedule for repetition as the cycle time ofteyn be less than the
makespan.

14

(@)

(b) CPUfI A |B
CPUZ!| C L
§<—makespaﬁ—>§ i i
© CPU1| A |B %%%% e
CPUEE %//%%%
e g
) CPUl| A %%%@Z - i
CPUZ C //////}%% b

Figure 2.1: Example of various scheduling algorihin this example, there are three tasks, A, B,@nwith
execution time costs of 2, 1, and 3, respectivEhe only dependency is that task C depends onAa&y.
There are no other restrictions (e.g., CPU bindirsg#f-dependencies). In (b), a single iteratiortto$ task
graph is scheduled. Because task C cannot stalrtask A completes, task C cannot be schedulei time 2.
Task B could be scheduled at any of the unusedstimued its location in (b) is arbitrary. The toéaxlecution
time (makespan) for this single iteration is 5(d¢hthrough (e), we want to schedule the task tothuee times.
The iteration number of each task is indicated ey golid diagonal lines for iteration 2 and dasHejonal
lines for iteration 3. A naive approach is perfodnire (c), where we run schedule (b) to completibien rerun
it to completion, and finally repeat it a third #8mThe total execution time for (c) is 15. The asadn (c)
indicate potentials for optimization, as this isinflaunused execution time. In (d) we show the icysthedule
for these three iterations. As there are 2 timésunee on CPUL after task B completes, and 2 tinits free on
CPU2 before task C starts, the next iteration @ahve slide it 2 time units earlier. This can tepeated for as
many iterations as necessary. The cyclic schedpggifically, is just a shorter schedule (e.ginagls iteration,
such as (b)) that will be repeated every 'cycleetitime units. In (d), the cycle time is 3 timetspas the short
schedule can be repeated every 3 time units. Fadsting 3 total iterations, the makespan is etudll time
units. In (e), we have unrolled the graph and saleed all tasks together, while still allowing fohet
dependency that each iteration's task C be schafteleit's task A. This expands the problem dig,yields a
more optimal solution of 10 time units. Althought silown here, it would be easy to see that (e)dcbalused
as a schedule for cyclic scheduling, where 3 ii@natcould be performed with a 3-iteration cycladiof 8
time units. This would reduce the average timeiteeation down to 8/3 or 2.67 time units.

15

The variation chosen may alter the optimization goal or chamgesdt of formal
restrictions (e.g., whether each iteration is independent of ethan). Given a task-to-
processor allocation ahead of time, an optimal cyclic schedule catiyuse determined in
polynomial time [42]. Otherwise, this usually becomes an NP-Compleiblem (depending
on a set of assumptions and constraints). Although a schedule may bal gpten a set of
formal restrictions, the schedule might not be optimal with a@mifft set of restrictions. A
major advantage of this approach is that only a small stdtedste is generated for one or a

few iterations, reducing the problem size dramatically from the full graphlimgrotethod.
2.3.4 Heterogeneous Stream Task Scheduling

Satish et al

The most related work to our research is that of Satish [22]inkestigated a
heterogeneous task-scheduling problem on multicore CPUs and #oGBtteam programs.
His method aims to partially unroll only a few (one to ten) itens of the original PTG
rather than fully unroll the PTG across potentially millionstefations. This restricts the
problem size to the number of tasks times only a few iteratiatiggrrthan having a million
times blow-up in problem size as in full PTG unrolling. A scheduétgprithm (such as
DLS) is then performed on this partially unrolled graph to achiesehadule of only a few
iterations. Figure 2.1(e) might be the result of a schedule heétloriginal parallel task graph
unrolled three times. The schedule is then concatenated to itself, repeateeeadduntil all
iterations of a fully unrolled task graph are accounted for. Whileghess optimal since the
entire problem set is not used, the resource requirement to comgultecule on a partially

unrolled graph is significantly less.

He applied a variety of heuristic methods including dynamicstisieduling (DLS),
simulated annealing (SA), and a decomposition-based constraint progigrapproach
(DA) on the partially unrolled graph. In many cases of his redait some algorithms, the

true optimal mapping was not found, and usually considerable computingvéisngpent just

16

to achieve the results they did compute. The time required to maké tiieemodel might be

much more than desired for the heuristic solutions described.

2.3.5 Windows Task Scheduler

In standard operating system multitasking, fairness is usuadferped in design
more than overall completion time for a set of tasks. This is dorgactice for many
reasons. An operating system usually does not have a priori knowlenlgietadk durations,
and so, cannot predict how long a task will take. Also, task dependeneiesually not
explicitly specified to the OS. When user interaction exisis,@S usually does not know
which task a user prefers to finish first (although Windows hanttiss somewhat, as
discussed later). Response time may also be an issue, wheoperative task scheduler
could have a single long-running thread blocking many other threads énmpleting. So,
overall completion time, which may be impossible without a prikmbwledge and
significant metainformation about the tasks to be run, is usually sacrificealrfueds.

In Windows, preemptive multitasking is used at the granularityhodads (not
processes) [43]. Each thread is given a certain amount of éimént called a time slice.
After a thread has run for its full time slice on a given preaeéf it has not already yielded
cooperatively), it is forcefully preempted by the operatingesysand a different task is
swapped in to run on that processor. On a modern Windows system, thslitiengs
approximately 15 ms. Round robin scheduling is typically used to providalbfarness.
Foreground threads are given three times the normal time sliceoduira order to prefer
applications the user is actively using to increase percepstens responsiveness. Windows
also supports process and thread priorities, which together foroveaall thread priority
level, which is used to allow some threads to run before others.ah tinee" priority is
allowed, which prevents other threads from preempting a timeatrihread. Windows also
employs many other complex scheduling heuristics that magaemly boost a thread's
priority to reduce resource locks that could cause performanceeprelffor example, a
mutual exclusion lock immediately followed by a task switch coaldse other threads that
also depend on that mutual exclusion object to waste time, as thddscalready been

acquired by a previous thread).

17

2.4 Endoscopy Video Analysis

Colorectal cancer is currently the second leading cause oérceglated deaths in the
United States, just behind lung cancer. It is estimated that tinane141,000 people in the
US were diagnosed with colorectal cancer in 2011, and over 49,000 pesapfeodn it [44].
The standard procedure for identification of colorectal cancer emdval of precancerous
lesions is a colonoscopy [45]. In this procedure, an endoscope, whicbrig &ube with a
tiny video camera and wide-angle lens on the tip of it, igrted into the rectum and
advanced through the colon to the cecum or terminal ileum. Then, the epelascslowly
removed from the colon by retracting it, while the endoscopisfutlrénspects the inner
lining or mucosa of the colon. Abnormalities such as polyps that may develop into cancer ca
be removed during the examination. In some cases visual documentatiodgirgds or the
applied therapy is desirable; recording of images or video ofiridad@is or therapy is then

performed allowing repeat inspection at a later time.

Over 14 million colonoscopic procedures are performed annually [46]. Thentur
Medicare guidelines suggest that each US citizen undergo colonagdepygt once every 10
years starting at age 50. While colonoscopy has contributed tolinedas the number of
colorectal cancer-related deaths, recent data suggests tleaistbgl a significant miss-rate
for the detection of even large polyps and cancers [47][48][49]¢cdlmnoscopy adenoma
miss rate may be as high as 4% to 12% [50]. Evidence suggesentiescopist-related
factors influence polyp detection rate. For instance, a landmarl suwidlished in 2006
reported that polyp detection rate of screening colonoscopy increébemcreasing time
spent during the withdrawal phase of the procedure [51]. Other faneysalso influence
polyp detection rate, such as speed of withdrawal, effort to liasuall of the mucosal

surface, bowel preparation and experience of the endoscopist.

2.4.1 Picture Archiving and Communication Systems (PACYS)

The most related work is in the area of video capture and PAC&Ir@Archiving
and Communication Systems) for endoscopy. Typically, the endoscope sigieal is
directed into a video capture device on a computer, where the videdhiroemdoscope can
be saved as individual snapshot images or captured as video. Video ansl ameatygically

18

captured manually, either through interaction with the computer, byg @sioutton on the
endoscope, or by using a special foot switch. Many of these videareaptstems are
connected to electronic medical record systems (e.g., CermagxP&tech Information
Systems). There are no practical automated tools that allowod®zp very precise records

reflecting a colonoscopy exam.

2.4.2 Scene Segmentation and Object Detection for Colonoscopy

Endoscopic video detection can be seen as a specialized scene aggment
algorithm that segments a sequence of frames into two tygeeés: procedure scenes and
non-procedure scenes. There are many scene segmentation techhajuésive been
proposed for specific application domains such as news and movies [52]. Scendaggme

has never specifically been applied to endoscopic video detection.

In the Wireless Capsule Endoscopy (WCE) field, some existiok iocused on
dividing a procedure video into several segments corresponding to m@agdomical
landmarks [53][54][55] or groups of similar frames [56]. These techeigssume that the

input video is a real procedure video.

Other previous work on endoscopy image analysis are for polyp detecti
[57][58][59][60][61][62], automated objective quality measurementsaddnoscopy based
on motion features, quality of images, and types of clear im@&®spresence of a clearly
seen appendiceal orifice [64], and 3D reconstruction of the colonws&U&5] and colon
surface [66][67][68].

Manual analyses for specific features in recorded videos would eeanr
experienced endoscopist or assistant to review every procedureyaihid be redundant,
expensive, difficult to implement, and subjective. Indeed, to conductyjuathtrol tests for

every procedure, automated analyses would need to be available.

19

Table 2.1: Overview of scheduling algorithms

h

Platform For non-stream programs For stream programs
First-in first-out (FIFO) Loop unrolling: slow
Earliest finish time (EFT)
Homogeneous Round robin (RR) Partial loop unrolling: fast
Shortest job first (SJF)
List scheduling Cyclic scheduling: slow, but yields small solutio
Dynamic level scheduling (DLS)
Critical path on a processor (CPOP) Loop unrolling: very slow
Generalized dynamic level (GDL)
Best imaginary level (BIL) Partial loop unrolling: fast, good results, doestn
Task duplication scheduling (TDS) support heterogeneous choice well
H eterogeneous | Mapping heuristic (MH)

Levelized minimum time (LMT)
Heterogeneous earliest finish time (HEFT)
Fast critical path (FCP)

Fast load balancing (FLB)

Heterogeneous N-predecessor decisive path (HND

Cyclic scheduling: slow, but yields small solutio

Stream-EFT + K-HIT: very fast, good results, ng
unrolling necessary for NP-Complete part,
supports heterogeneous choice

P)

h

20

CHAPTER 3. OVERVIEW OF SAPPHIRE

The primary goals of SAPPHIRE are to (1) provide an impliciltithreaded
environment for complex data analysis, especially for streamgrgms such as video
processing, (2) ease the programming process for writing symogram, (3) ease the
collaboration process between parts of a large program, (4) modul@)typrogram
scalability, (6) extensibility and configurability, and (7) provaléramework for a proof of

concept for our research.

We designed our middleware from scratch, using years of pastierce developing
a multiprocessing application, as well as coming up with solut@msiierous issues that
those previous generations of software encountered. The design megyodmhd
implementation address these goals. We support any environmengepsientcapable of
generating or being called from executable code, including pop#kr fuch as CUDA and
OpenCV [69]. Thus, we can generate heterogeneous programs to takéagevaef GPU
computation. We support both task-parallel and data-parallel desigodsespecifically for
stream programs. We attempt to ease the process of poxisim@ code by allowing the
programmer to choose the language they want (as long as ipableaof generating
executable code — although additional header files for their languagédenneeded). We
attempt to simplify most of the redundant and complex requirenoémedated work, while
also correcting some serious problems, such as DirectShow’s syizelian problems.

These problems are discussed in more detail in the next section.

3.1 Design and Overview of SAPPHIRE

Several aspects of program construction were considered weeimgrSAPPHIRE.
In particular, we wanted to remove as much redundancy of theogeveht process and
automate as much as possible, particularly in regards to mnedtding and collaboration.

The result is a very modular system consisting of well-defined tasks and data

We have designed our middleware to take advantage of both task and data

parallelism. The programmer creates a program based oralssgparable tasks, which we

21

call modules. These modules may receive any number of inputseaedate any number of
outputs (as memory allows). Inputs and outputs are formatted piedesapfwhich we call
packets. A whole program is constructed by putting together invididadules that, when
combined, represent the overall intention of the program. Some init@mitsi and
configurations are given to the modules, which provide a flow of dadaghrthe program,

eventually resulting in some final outputs representing the result of the progra

Modules do not need to worry about how or where they receive theisifrout —
they only need to request types of data. Then, the modules will didaltlyareceive those
types of data packet-by-packet through a callback function. Soméadtigynchronization
setup functions are provided to synchronize different types and muyagleets worth of
data. This design frees up the programmer from complex tasks mya@emmunication and

manual synchronization.

For example, an MPEG video compressor may consist of several camgofig
converting a source video to the YUV colorspace, (2) estim#timgnotion of 2D blocks of
image data between frames, (3) transforming blocks of imiggalsdata with the discrete
cosine transform (DCT), (4) quantizing the resulting DCT to prowiget to (5) entropy
encoding that compresses individual blocks of video data, and (6) combinihg altputs
into a final MPEG video stream, which may be written to a Tilee above components work
in a streaming manner, repeating with each frame of video provided as input.drahiple,
there are divisible components that can perform tasks independeatheotasks, as long as
they have different pieces of data to process. The differenepigicdata are the different
frames of video as well as the intermediate results of eampanent. The quantizer outputs
the quantized DCT matrices as some form of data which is thenagsaput by the entropy

encoder.

Every piece of data that is used as input or written as outpainiydule is explicitly
specified as alata type For example, VIDEO could be a data type representing the video
stream. QUANTIZED_DCT could be a data type representing the ooftplé quantization
step. These pieces of data are put inpaeket which contains the data, a description of the

data (called the metadata), and some bookkeeping information about kie¢ ipsedf. The

22

metadatadefines a structure for the data of a packet that is usetieoynodules. For a
VIDEO packet, this includes the width, height, stride, etc., asage#l pointer to the video
data itself. A module calls SAPPHIRE to create the packefjdfutes its structure and fills
it out with data itself. The packet is then pushed to SAPPHIRErevall the routing of data
is done automatically by the system. The exact format ofkepaenetadata is specified by a
module programmer for each type of data. A structure for thisaforsnprovided by the
module programmer to other module programmers that need to use thatpdattypically
as a header file. Some documentation should also be written pyodf@mmer so that exact

usage details are provided in order to avoid unexpected misuse of data.

By design, no module generally needs to explicitty communicate anty other
modules. Because the middleware handles nearly all of the comtnmiaapect, modules
work more independently and thus are able to take more advantagelleliparaRemoving
the need for explicit synchronization and communication between modslesell as
implicitly giving each module its own thread makes creatingudtithreaded application

much easier from a developer standpoint.

The middleware provides an API for modules to communicate witlmibdleware
(as opposed to modules communicating directly with other modules). Affageds also
defined for modules — each module implements several callback dasictwhich the
middleware calls in order to do things like initialization and comatian. TheRegister
function, implemented by each module, is called by the middlewagiwdéoeach module the
chance to request types of input data it can process and spbaifgata types it will output.
After all modules' Register functions have been called, the middéeknows every input
and output data type that each module needs. From this, the middéandraild a complete
picture of all the communication and routing involved between modulesdketsa This can
be represented by the parallel task graph.

23

Table 3.1: List of methods to be implemented by module developers

Methods implemented by each module | Purpose

emmRegister Receives configuration data from thuelleivare
emmStart Middleware notifies module to start execout
EmmData Middleware submits single packet of datadalule
EmmStop Module should stop execution

emmShutdown Module should free all resources

Table 3.2: List of core middleware functions by type (a more detailed ligebfulactions
can be found in Appendix A)

API functions provided by SAPPHIRE | Purpose

Registration:
emcAddInput Request data type as an input
emcAddOutput Register data type as an output
emcAddMuxInput Request logical grouping of datasygs input
Communication:
emcNewPacket Create a new data packet
emcPushPacket Submit a packet of data to the middée
emcReleasePackets Release a reference to one erdatar packets
emcReleaseMuxPackets Release a set of data pgcteed by mux

Synchronization:

emcMuxPacket Insert a single packet into a muxdmeatk for mux satisfaction
emclnheritPacket Inherit synchronization propertiesn a parent packet
emcSetFinished Set a source module to a finislee st

The core of execution of each module is W&k loop— a loop that continuously
waits for more data to become available, and then processes wofkéoop along with all
its synchronization is implemented within SAPPHIRE itself @@th module individually),
so the programmer has less to worry about. Dag& function is implemented within a
module by the programmer, where it is called by the middiewehen data becomes
available. After a packet has been pushed to the middleware by aemtiduimiddleware

routes that packet to every module that requests it through thecBifback function. Once

24

pushed, this packet is read-only, so that every module can thesiboeparallel of other
modules. A module's result of the processing is in the forrmefaapacket, which is pushed
back into the system via a call to the middlewaPeishPacketunction. Once all pieces of
data have been processed, the middleware finishes up and notiies@&de to shut down

before shutting down itself.

Repetitive obligatory code that might normally appear in a thudaded
environment where synchronization is important is minimized by dedige middleware
handles most of the synchronization. Also, for other common repetiéisks,t the
middleware either handles or otherwise provides easy interfagaeske programming less
tedious. A bare-bones SAPPHIRE module could be written in about 1€ dheode,
although this would not accomplish much without actually processirgrdegived. As the
incoming data packets are immediately exposed by the desitive ahiddleware, it also
takes relatively few lines of code to be able to process the data and writataelack to the

system.

In order to create an actual program from a set of modulesnfggaration file is
specified which consists of a list of of modules and their paems)einputs, and outputs.
SAPPHIRE loads this configuration file, which in turn loads eaoldute, passing along the
parameters from the configuration file. The modules perfornvithgial tasks in a "black
box" methodology, while the configuration file specifies which compantnuse and how
those components make up the larger program. Overall, the dediga ®fstem actualizes
implicit parallel processing, speeding up the programming proaedsnaking collaboration

easy.

We improve upon related work, such as DirectShow, by vastly éyngl the
development process. We remove the need for overly complex APIs avid C@nponent
Object Model) as well as removing the complex synchronizationgmaband negotiation of
data types. A simple module with our middleware can be writtebout 15-30 lines of
code, whereas a simple DirectShow filter like the Sample@rdilter takes several hundred
lines of code. We also provide more guarantees in synchronizatiaccoargletion of tasks,

where DirectShow may never correctly stop at the same fleimg processed for every

25

task, and is overly aggressive toward skipping frames when proceggirgrs to be lagging
behind. This is mainly because DirectShow is intended for usemadt@anedia experience
(where a loss of a frame every so often is not noticed by #resigh as watching a movie);
it is not necessarily designed for use as a precise $ceamtialysis framework. A brief

comparison of SAPPHIRE and related work is summarized in Table 3.3.

Table 3.3: Comparison of features among multiple toolkits that support data or task

parallelism

Criterion MPI CUDA StreamI T DirectShow SAPPHIRE
Proarammin Extended- | Streamit
M etflo y 9| API+Library | C + Lang. + API+Library | API+Library

Compiler | Compiler
Types Of. Data Data Task+Data | Task Task+Data
Parallelism
Program - .- - Semi- . ,
Consiruction Explicit Explicit Explicit automatic Semi-automatic
Accuracy in Qggﬁracy Skip some
Data Accurate g Accurate Accurate

. sacrificed frames

Processing for speed
'V'e'_“ory Leak No No No No Yes
Assistance
Perfprmance 3rd Party Yes Unknown No Yes
Profiling
Debugging Some built-in assistance;
AsSiStance Debugger Debugger| Unknown Debugger Other debuggers supported

3.2 Featuresand Strategies

Unlike traditional multiprocessing middlewares, SAPPHIRE rexguvery little effort
from the programmer in handling communication and synchronization. In preghat do
their own multiprocessing, typically the programmer handles smmgplex synchronization
issues, which in turn allows safe communication between modules. Thahaddeandles
these issues and communication may need to be replicated with each adthteathbr task

added to the system. For large programs, this is very repetitid may require significant

26

work. However, for programs that utilize our middleware, thisisecessary, as SAPPHIRE
handles this internally. SAPPHIRE is also additionally desigimede able to handle the
stream programming paradigm and implicitly take advantage of ddedaparallelism it
provides.

SAPPHIRE is able to automatically build a program simply Isyinly a set of
modules, parameters, and desired initial inputs and final outputs. rfruotiee the listed
modules then provide their desired inputs and outputs. This informationoigyle for
SAPPHIRE to construct a parallel task graph which can be usedtéomde all the
synchronization and communication necessary for program executiosa. cblective
information, as well as some additional API functions within the Spridvide a powerful
development and runtime environment for multiprocessing programs wahlotitof effort

on the part of the programmer.

3.2.1 Semi-Automated Program Construction

We further explore the stream programming paradigm and show spewfic
advantages that it allows. We make some further refinementsetaetlization of this
paradigm by showing how to construct a new program from predeforagdanents without
the need for additional code. Program components (tasks) are auatdiyatbnnected
together based on their inputs and outputs, and run in parallel. Our method also altbers for

pruning of unneeded code and data from the program.

Program Graph Construction

In constructing a program that conforms to the stream prognagnmaodel, it may be
useful to view a program as a directed graph since thisgeptation provides a useful way
to model aspects of a program. Individual, separable components ocaaske viewed as
nodes of a graph, and communication between components can be viewiggsas\®des
can be labeled with costs associated with the execution timedged ean be labeled with

costs associated with communication time.

For a streaming program, working on n data sets in its data stream maydsenéd
by a single node per task, where each node processes up to n data sets ¢aeltowese of

27

a program. Or, the same program could be represented by an “unroliedhwef the graph,
consisting of up to n of each task, where each node processes sintjleadata set. This

representation can become exceedingly complex when large amounts of datdare

Data Dependencies

In the stream model, we recognize that every component in a prqugdiorms the
same repetitive task on different pieces of data, much likesaendly line. Each task
expects certain types of input data and produces specific typegpnit data. The input can
come from program arguments, interactive user input, or the output dfeariask. Most
parallel computing middlewares provide a method to the applicatamrgammer to pass the
data from one task to another. This would typically be done manuailyibyg code to call
the middleware API, sending and receiving or scattering andrgajldata to and from other
nodes. Depending on the application, the sending and receiving of dathecame

increasingly complex with the number of tasks in the system.

Instead of manually coding the passing of information to explamtes, suppose that
instead, each task simply registers with the middleware wpas tof data it will accept and
what types of data it will produce. A computer algorithm cary veasily match up the
outputs of any task to the inputs of any other task. This freespfiieaion programmer
from having to do explicit communication between tasks. Instead, thecatppi
programmer would do whatever processing needs to be done in a gkieamthshen simply
write the data out to the middleware, along with the data tylpe.nfiddleware searches for
tasks that would like to receive that type of data and sendssbeiated data to those tasks.
This is precisely what SAPPHIRE does.

Compared to conventional message and data passing in parallel cgmputi
middleware, this is very much like a broadcast operation. Howelrertargets of the
broadcast are more limited and implicit to the application, makieg software design
simpler. Additionally, the middleware has the opportunity to autoniigtiogtimize the
communication of the entire system. For example, using shared sevhen possible to
avoid the communication cost almost entirely, or perhaps it can chooseggiad locality

for faster data transfers. Designing the middleware inwiaig also allows the application

28

programmer to design the software with more modularity thaningallexplicit

communication functions. A side effect of modularity is that thgassble tasks are much
more easily run within a stream computing system — the stnea@ael prefers modular tasks.
As long as two tasks are separable, they can be run in panadl@me fashion, even if it is

within a different iteration of processing.

Programming M ethodol ogy

We consider modularity to be important to the programming paradigthough
programs are often designed with modularity in mind anyway, modulardiso a way to
enforce separable tasks. By designing each task modularly, degelmypdcitly improve on
the amount of parallelism that can be achieved.

An interesting caveat of having a modular program with automati# digpendency
matching is that a full program can be constructed by specifgasijred final outputs,
possible module configurations, and program arguments or inputs. Thewfrdmean
construct an actual program based on a library of modules avakalilend the desired
parameters. The modules capable of writing the final output@dded to the program,
modules with specific configurations are added and configured, mocelEed to the
program arguments and inputs are added, and then the framework carataaly find,
add, and configure all the modules in between (using some defaulsutomated
configuration), to create a complete program. Little programming laume would actually
be required to construct a program in this fashion; only a few settings and finedl degput

need be entered into a configuration file.

3.2.2 Module | mplementation

Implementing a module for the programmer is similar to mgitia class in a
programming language. Each module is implemented as a dynakilbliary (.dll) or a
shared object (.so) file, which may be written in any programgnlanguage capable of
producing such a file. A module implements and makes available divetidns for the
middleware to call: Register, Start, Data, Stop, and Shutdown. The Registenfusicalled
by the middleware to query for information such as a module’ssnputputs, and version

29

information. The registration information describes the functionality requirements for
each module. Each module is then assigned its own thread. The Staotnfisicalled by the
middleware to tell a module it may start processing. Addititimaads can be created for
additional parallelism if desired. The Stop function is used tcateflodule it should stop
producing new source data, but that it can finish processing itsiniagmadata. The

Shutdown function is called as a final cleanup and destruction of the module.

Actual processing is handled by the Data function as a chkllBaca packet of data
that the module is listening for becomes available, it is autoafigt passed to the Data
function on that module’s execution thread. The module may then deqidecess it, buffer
it and wait for more data before processing it, or releassoime tasks may require several
pieces of data before processing (such as computing the motioeebetwo video frames).
In other situations, the programmer might want to wait for sewifarent data types to be
available before processing any one by itself (such asREG/encoder writing both video
and its corresponding audio to a file). The middleware’s API harigése kinds of common
synchronization problems. A “mux” can be setup to combine multiplestgd data into a

single virtual data type that can be processed more easily.

After processing its input data, a module usually outputs sorak data back to the
middleware for other modules to use as input. This is accomplighesifg the middleware
to construct a packet, attach some data and metadata, then pushiagkéeback to the
middleware. The delivery of these packets of data to other modDksi functions is
handled strictly by the middleware, so no additional communication ygibe programmer

iS necessary.

To port an existing piece of software, a programmer should ditempt to break
apart the existing program into separable tasks of reasonableRsguired inputs and
outputs between those tasks should be declared as data types andgbexkdibe created
for each data type. A module implementing each of the five nmgefsctions with some
minimal setup and synchronization is easily created from a pwbelule skeleton (which
consists of very few lines of code). Usually, the original codebeaancapsulated inside a

function, using the data packets provided to the Data function as inpihis fienction. As

30

long as a program can be broken into parts, with the data redaireghch part clearly
labeled, very little additional work is necessary for porting texgscode (even serially
executing code) to our middleware (which implicitly provides taskalfgism). More

complex handling or synchronization of data is still possible.

Programs are described by a configuration file, and optionally,iad@aitarguments
on the command line. The middleware initially loads a configuratienttiat describes the
library of modules and configuration information for each module. Timsrmation is
passed to the Register function for each module. The modules areaacétisnconnected as
described in the program graph construction method discussed. Some modules mayebe sourc
modules — for example, a video camera or MPEG file readergeragrate video frames that
other modules can use to start a complex image processing chain. The configuratified spec
for an MPEG file reader module might simply be the input filer(g@imd-or these special
source modules that do not require any other inputs, the Data funcipmever be called;
instead, a separate thread is created when Start is callede wblesjob is to push data
packets. These data packets are pushed into the system whermadidgs that do need
them as input can process them. Each module in a task graph contitiués processing
until some final output(s) are created. This is repeated forteaelhguantum of data for the
stream program until all pieces of data are processed. Wheromodata is available, the
source module(s) report that they are finished, and each future madtile task graph
finishes up with the data they have remaining. Eventually, each meo&itg and Shutdown

is called, and the program exits.

3.2.3 Data Packets

The primary focus of our middleware is the processing oastréata. Although this
is usually in the form of video, we do not restrict the type of gataessed. The input data
streams are split into separable, quantized packets of data. Eckét = assigned a
timestamp to give its position in the stream. For video, this eqt@ieslividual images or
frames of the video. Other data types, like audio, are splibaslglas possible into relatable
time quanta. For example, for a video frame packet that correspotits time interval 67-

100 milliseconds (ms), the audio samples corresponding to the samatemval will be

31

size: 0x2! size: 0x2 size: 0x2! size: 0x2! / null
timestamp: 0.53: 1 timestamp: 0.567 timestamp: 0.60C~ timestamp: 0.63<

next time next time next time next time

referencecount: referencecount: referencecount: referencecount:

type: vide(type: videc type: vide(type: vide«

data —» X data —» X data —» X data —P» X
metadate —» X metadatz —» X metadate —» X metadatz —» X

size: 0x2! size 0x2C size: 0x2! size: 0x2! / null
timestamp: 0.53: 1 timestamp: 0.567 A timestamp: 0.60C~ timestamp: 0.63<

next time next time next time next time

referencecount: referencecount: referencecount: referencecount:

type: audit type: audi type: audit type: audi

data —» X data —» X data —» X data —P» X
metadate —» X metadatz —» X metadate —» X metadatz —» X

size: 0x2! size: 0x2! size: 0x2! size: 0x2 / null
timestamp: 0.53: 1 timestamp: 0.567 timestamp: 0.60C~ timestamp: 0.63<

next time next time next time next time

referencecount: referencecount: referencecount: referencecount:

type: analysis f type: analysis f type: analysis fi type: analysis f

data —» X data —» X data —» X data —P» X
metadate —» X metadatz —» X metadate —» X metadatz —» X

size: 0x2! size: 0x2 size: 0x2! size: 0x2! / null
timestamp: 0.53: 1 timestamp: 0.567 timestamp: 0.60C~ timestamp: 0.63<

next time next time next time next time

referencecount: referencecount: referencecount: referencecount:

type: video hv type: video hs type: video hs type: video hs

data —» X data > X data > X data > X
metadate —» X metadatz —» X metadat: —» X metadatz —» X

Figure 3.1: Organization of the packet system mtiddleware. Packets are stored in a linked dibwing

both dynamic allocation and traversal to temporallyse packets of similar type. Each type of datay.(
VIDEO) is stored in its own linked list. The systemaintains all the packets of the system throughraay of
linked lists (storing both the head and tail ofledist), which each array index corresponding tenajue data

type.

fully and exclusively contained in their own packet as well. ifpet stream for a particular
type of data can be reconstructed by concatenating the packéist afame data type in
chronological order. Different data types may be captured oegsed at different frame
rates. Because we consider video to be the most significanbtyjaga (used often, difficult
to split, but easy to logically quantize), we generally asaigeference time quantum based
on a single, complete frame of video data. Then, we split othes tyfjpdata based on the
same corresponding time quantum. This makes it easier to synehemnass different data

types; however, it is not a requirement of the system.

Each packet of data consists of some bookkeeping information for thet piaeke
the actual data it contains, and some metadata describing that kiatactual format of this
data and metadata is specified by the programmer and shanexkbdasks. For example, a

video data packet would contain the video frame’s pixel data, butratadata in the form

32

of width, height, bit-depth, frame rate, etc. The packet's bookkeeping coatists of
information such as the size, type of data, time quantum, refereaneer, various pointers,
and other necessary information. In ordered first-in first-out dirlg¢ (FIFO) is maintained
for packets of similar type in order to form an asynchronous baoffemputs and outputs
between tasks. The linked list may grow or shrink as necesaklimpugh imposing a
maximum size will restrict the maximum memory usage pfagram and also prevent one
task from getting too far ahead of other tasks. The middlewarawtamatically decide how
to optimally share or replicate (only if necessary) this data between tasks

3.2.4 Communication

Modules do not communicate directly among each other, but, insteagnting
packets of data to the middleware. Each module registers thdygpas it wants to use as
input and which data types it may output. When a data packet is outpudhe module, the
middleware routes the packets of data from that module to the iopateer modules that
request the corresponding data type. This data is automaticalgrduaifby the middleware
until the modules that use the data can finish processing each phdi¢d. For each packet
of data, a reference counter is incremented for each module né¢leelidgta so that the data
can be freed once every module has finished using the data. If aemedwlo slow to
process the data and the size of the buffer becomes too larber tusffering is temporarily
blocked until buffer space becomes available. If a task cannot praasfast enough, the
program will still run, but not in real-time. If buffer space nebecomes available, the
program will eventually stall, and the middleware will automdticaert the programmer of

the situation, including which modules have stalled.

Because communication in this way is handled almost entirelhdyniddieware,
modules never need to explicitly call any other module. When a patladta becomes
available for a module to use, the module is informed of this throughback function and
passed each packet of data one at a time. A benefit of thgndesihat each module can
have task parallelism with every other module. Although there mapime dependencies
between modules where parallelism is not possible, we can uskedigsm to maximize task-

parallelism of the overall program within a single time quantachlzetween time quanta. As

33

each module is essentially its own executable object, the middlewaresassigming thread
to each module, giving rise to semi-automated multithreading. Adssigned program
would consist of separation of many tasks (and thus many threadsjlanto maximize
parallelism. In addition, if desired, each module may create additihreads to handle data-
parallelism. Alternatively, multiple instances of a module canrbated to work on different

parts of each data packet to handle data-parallelism.

Because each module is separated from other modules, we can \eeagéeéous
computing tasks as also separate modules. Indeed, a task runnimmg erathple) a GPU
will run in parallel with other code running on its host CPU. S| a layout uploaded to
an FPGA will run in parallel with its host CPU. Modules tha¢ axecuted on different
computers or different clusters of computers are all separBttednodularity exists as both
a means to collaborative program design and to implicit paralleégsow. For a large-scale
project, modularity is already an important concept to maxiro@eurrent development

time of modules.

The middleware abstractly handles all communication between modntkgask
allocation of those modules to the available computing architecture programmer need
not worry about details more complex than the format of the plati&ets. If multiple
modules want to use the same packet of data as input, the middgtianally decides how
to buffer and replicate the data as necessary. If multiple taskise same memory-sharing
processor want to use the same packet of data, the data is mattedpbut instead the same
pointer for that data is shared between tasks. Because of th@seunication and task
abstractions, it is possible for the middleware to optimize naapgcts of overall program

execution with little to no effort on the part of the programmer.

3.2.5 Synchronization

There are two types of synchronization that occur: the synchronization ofad&tty
within the system with modules that use them (middleware synidatoon), and the
synchronization of data packets that will be used within a module icapph
synchronization). For the middleware, care must be taken to erlsdetaais handled in a

thread-safe manner automatically. For the application, itaisdifferent kind of

34

synchronization, in that the programmer (and thus module) may bestettia processing
several packets of data simultaneously (e.g., video and audio witlichimgatimestamp).
Because the Data function only receives one packet at a thmmeagplication must
synchronize the data across several calls of the Data function.

Application Synchronization

Although the application need not worry (for the most part) aboutdtsafety with
the middleware, the application must be able to synchronize théodatself, which comes
in one packet at a time, by properly combining it. The middleware ges\vunctionality to
aid in this. A multiplexer (mux) is a construct provided by theldlaware for the logical
grouping of data types. For example, if a module wants to be doifien a data packet is
available for both audio and video, instead of registering for audio and \egacately, the
module registers with a mux that contains both audio and video witAdtdgputMux
function. Although the Data callback function still receives onlylsip@ckets of data at a

time, the module can call a middleware function MuxPacket contathemgnux and the

/I mux is an allocated emMux object that manageaux synchronization of data types and packets

1 | int emmRegister (emModule* module, configPairnfiguration) {

2 emcAddMux(module, mux, "VIDEO", 0, 0, 0, 0); a#dd VIDEO type to mux

3 emcAddMux(module, mux, "INSIDE", 0, 0, 0, 0); atd INSIDE type to mux

4 emcAddInputMux(module, mux); /[add the mwatdual module's inputs
5 }

6

7 | intemmData (emModule* module, emPacket* pkt) {

8 emPacket* video;

9 emPacket* inside;

10

11 if(lemcMuxPacket(module, mux, pkt, 1)) { // wér one packet of each data type

12 return O; /I else, simply break (pracesfinished data later)
13 }

14

15 emcGetMeta(video, "VIDEQO", mux); //fill 'video' pket with VIDEO data type from mux
16 emcGetMeta(inside, "INSIDE", mux); // fill insidpacket with INSIDE data type from mux
17

18 /I process data packets...

19}

Figure 3.2: Example module code for synchronizatisimg a mux

35

incoming packet to determine whether all packets in the muxleere satsified (i.e., at least
one packet of data is available for all data types within the.nifthe mux is satisfied, then
the module could decide to process the logically grouped data as e hgl number of

inputs may be included in a mux.

3.2.6 Feedback Loop

Although in related work, program graphs are typically represeatitedted acyclic
graphs (DAGS), this may impose a limitation on the types ofrprog that could be used.
We allow for program representation with cycles (or feedback Jowpshe task graph.
Although data will flow continuously as it becomes available with mtoquear intelligence
associated with it (and no guarantee which module will get whatfuat), feedback loops
are generally used by a module programmer already knowingdateatype will be a part of
that feedback loop. This data type and its feedback delay areadlspeeportant to inform
to the middleware in the case of using a mux — at least oneiretlye feedback loop cycle
must have a delay attached to it in order for a mux to coyregtichronize a past piece of
data with the current frame's data. The delay would indicatehtbairocessing of the output
from one task to the input of the next task would be processed in a future iteration nfadata i

stream program.

Although this feedback loop itself could provide a restriction on the amoiunt
parallelism a program can achieve due to the circularlglsgaiure of the loop, it does allow
the representation of programs that could not properly function withoutyitie. Other
components in the program can still function with full data and taskll@iesm as
dependencies allow. To allow for maximal performance, the d¢iyuke of the feedback loop
should be minimized, as the cycle time of the loop can induce amommibound on
processing time per iteration that would not normally limifully acyclic graph. The
feedback loop delay is specified as an option to a mux input.

3.2.7 Data Filtering

A feature sometimes useful and desired by large modular pregrathalso by the

aspect-oriented programming methodology is that of data intesoegExplicit inputs and

36

outputs for each module are useful, but they may lack extensibitityexample, suppose we
have a video capture module that captures video in its raw form.3&é&ave a module that
would like to receive the raw video data to do some image anaBsjshe video capture
module outputs raw images and the image analysis reads thenem®s. The system can
easily match up all the inputs and outputs automatically (in #e,cjust one of each).

However, this lacks versatility if the analysis module only accepts raw diala as input.

Suppose that the input video contains some confidential information. Wetavant
disallow this confidential information from being passed on to thedyais component.
However, the application developer might not have access to changinghboanalysis
module requests its input data type (for example, a binary-only madthi&o source code).
Our solution to this situation is a middleware-provided method tlmatsaother modules to
intercept data at some point in the pipeline, do some modificationshamgtsh the same
data type back out for other modules to use. We accomplish thiggth@a prioritization of
whether a module receives a data type before all other mathalestilize that data type.
Communication and data processing proceed in order based on module priotsiple
modules request a data interception.

When registering for inputs and outputs, a module registers thedlessita type for
both input and output. Then, another function, SetPacketFilter, is alksd ailiring
registration to indicate the priority of the data interception. Wihe middleware finalizes
the registration stage, it reviews all packet filters to determiné pvlwaity each module uses
for its outputs and assigns actual inputs from this set of spegifiorities. So, following the
example mentioned, a module could intercept the raw video data difextlythe video
capture module, modify it, and then write it back out before any otbdulle was able to see
the original video data. Modules that do not specify any priorityakitays receive the last

(lowest priority) output of this data type. More detail is available in Chapter 4.

3.2.8 Profiling

Because our middleware acts somewhat as a supervisorcfotask and each piece
of data consumed and produced, we can automatically generate @xeoug statistics

(profiling) for each and every module. We can use that informadidimd bottlenecks that

37

would be reported back to the programmer (where the programmer coidd tteoptimize
the speed of a given module that was a clear bottleneck), autallgatptimize the
scheduling and allocation of tasks to processing nodes, determingéaifisdable to be
processed in real-time, or vary the rate at which data shouldobesged to allow for real-

time processing.

Although the middleware does not require real-time processingtaf daline real-

time analysis of video data is important for our case stygyjication, so we provide this

autoresize
meanr.dll

meanr 0 s histdiff.

meannormr dv80.d 0.02 ms meanr dveo0.d 0.04[0.
3 0.04(0.
.dll

mpegwriter.dll
hud.dll

log.dll

brightness.dll

N 5 grayscale.dll

RTS.d11l 0 5 imagemask.dll

blurry.dll 2.34 ms RTS.d11 0.
spiralCounting.dll NS blurry.dll 5.98[13.6
QCMetricRT.dll 2 NS spiralCounting.dll 4.20[59.
EGD.d11 0.72 ms Q 0 0
rteoi user.dll
rteoi.dll
usbname.dll

Figure 3.3: The real-time performance GUI of ouddhéware for two program configurations. (a) On It

the average time per frame per module is repoEadh row represents a module within the system,eaoth
individual bar represents the time each threadstaké&ative to other threads. We use multiple baithinva
single module to represent the relative executiore tof individual threads for that module. For exden
RTEOI.dIl takes about 29 ms, on average, total taoeoss all threads. Because there are 8 main dempu
threads, each thread in takes about 3.5 ms ongmief) On the right, the -perf option is used &b gore
accurate readings and also worst case frame timer dhe previous five seconds. For example,
spiralCounting.dll only takes 4 ms on average, ibuithe worst case, it took nearly 60 ms to proce$ame.
This is because spiralCounting.dll skips some fiminebe able to process without lagging behind. élms;, if
there were a real-time deadline processing comstadifinishing each frame before the next one vewived
(33 ms for 29.97 fps video), then that module wadtlhave been able to satisfy the deadline.

38

capability. An example of some of our real-time profiling capability is shiowFigure 3.3.

One problem with profiling and optimizing a program is that soomeponents of a
program may be data-dependent for how much computing time they takexdfople, we
know that some of our video may be completely black (e.g., when the epdos
unplugged but video is continued to be captured). This video will generallgrigefast to
process, because there is no useful data in it. If we collecimeinprofiles based on
completely black video frames, our profiles will not be very wiseimilarly, there could
exist some data that causes a module to take much longer tospiiteesiormal. A simple

average of time taken per module might not be accurate for good scheduling.

We can collect this profile data automatically on a per-itamdevel (i.e., each frame
or data packet) per module so that we can gather not just averagper module, but also
worst case, best case, and if the developer desires, every indithdeao process every
single iteration. For profile data collected on a per-iteratemel| we can even construct a
time-context-based schedule. When estimating the execution time mfogram for
scheduling purposes, a black frame might be processed fast by bdtiiesn A and B,
whereas a non-black frame might be processed in some amount oépirasented by some
normal distribution. When estimating the execution time of a prograaspecific iteration,
instead of using only the average time, which could include both black and non-blaeg, fram
or a completely random value from some distribution of profile tinvesre module A could
use a randomly chosen value derived from a black frame and module B waedomly
chosen value derived from a normal frame, it makes more sense #ovatue derived from
black frames for both A and B, or derived from normal framegdtin A and B. This gives a
more accurate estimation of the execution time for a progeard, thus, more precise
scheduling is possible.

3.2.9 Memory Leak Detection

In a complex program with significant multithreading, synchroronatand handling
of data by many modules, it is easy to forget to deallocate pogwes of data. Although
leaking the occasional piece of data might be insignificant inespragrams, in a stream

program, the same leak of memory may occur with every subsequem¢ fr& data,

39

eventually causing the program to run out of memory. In order tofimelghese memory
leaks, SAPPHIRE provides a built-in memory leak detection methbd. dS's runtime
memory allocation, reallocation, and free functions are hooked by otregirthe starts of
these functions with a jump to our own functions. These functions thethealloriginal
counterparts, but while recording the inputs and outputs from theseofuwelis, as well as
the calling function's address. The result is a detailed m#pedllocated memory regions,
and what modules and functions called each individual allocation. Fuddéterls are
described in Chapter 4.

Although data is continuously accumulated, it is not clear how leaksletected
from this data. Although we provide the memory allocation stagigtirough a profiling
window updated in real-time which displays the memory taken foh @aodule in the
system, this is only useful for a programmer to observe absdiateges in allocation. For a
more accurate and semi-automated method of memory leak deteggohguristically
determine leaks based on several factors: (1) ignore imati|n allocations that will never
deallocate by waiting a certain amount of time after tlaet <if the program, (2) only
memory that has been allocated for longer than about 30 seconcindidate for a memory
leak (assuming about a 10 second buffering of data in the middleware), and (3yrezaker
are generally repetitive (considering that stream progemsepetitive), so when the same

caller addresses occur repeatedly and frequently, they are moyddilke real leaks.

While (1) and (2) are automatically used to cull some memdogcations as
legitimate, (3) is displayed by the middleware on-screen g@kecution time for the user to
observe and determine in individual instances whether or not thosdialscare real leaks.
When the user sees many addresses that are identical dlod/@tians that are very old, the
programmer can use the function addresses to trace back to thecsme@xactly what line
of code was causing the leak. Although this step requires sdomuggleg knowledge, it is
much better than not having the capability at all. Technical detegl available in Chapter 4

and usage details in Appendix E.

40

3.2.10 Crash Reporting

For large multithreaded programs, it is sometimes difficult tudeand/or determine
the cause of a program crash. So, we have a built-in featutetéomine which module
caused the crash as well as determining which functions causeatiie This is useful for
remote execution where a debugger is not available. However, daéemare also supports
running under a local debugger to debug crashes without interferemc@ablo reports, the
thread ID of the thread that caused the exception is availaiMelogers can look through
the list of loaded modules' thread IDs that have been kept track arvtlén to determine
which module the crashing module actually is. We also have thetexteaddress, but
sometimes this is part of an unrelated library. More detaigetisas an example crash report

are given in Chapter 4.

In debugging, we really prefer to find the crash address in tgrgmmer's original
module code. Often times the stack is still available in anpgce in which case,
developers can walk the stack back examining various addresset atazk frame. When
one stack frame's return address matches that of a loaded nmtbéufgpgrammers have
found the crash address in the original module. Some special exsepti® handled as
special cases, such as statically linked C runtime or debug runtimeselpetrt of the loaded
module but not part of the programmer's code. In these casegettial £ases are skipped

until a better candidate for a crash address if found.

3.3 Common Modulesand Data Types

Although SAPPHIRE is a completely generic framework, it is gie=i especially
with stream programming in mind, and we intend to use it @dpedor our case study
program, EM-Capture, a medical video analysis program. So, we haitenwseveral
modules to assist in this usage. For example, a module that decalésmiatideo files and
inserts the video frames into the middleware (mpegreader.dilinigar module that writes
the video frames back to a video file (mpegwriter.dll), a mochdé ¢aptures video from a
video capture device (videocapture.dll), a module that displays the \atiedocthe screen in
its own window (hud.dll), and several others. All of these modules areylaghfigurable in
order to suit a particular application's needs.

41

3.3.1 Video Data and Modules

Since we primarily work with medical video, the most importana dgipe is the
video frame. We declared a video data packet called VIDEO corgdiménpixel data, width,
height, bits per pixel, frame rate, and data source. Several mathrieproduce this type of
data, or a precursor to this data (called RAW_VIDEO), depgnadim the situation —
mpegreader.dll to read a saved MPEG2 video file from disk, videoeagtituo capture from
a video capture device such as an endoscope, and screencapture.dll # aayonputer
screen’s display to use it as an input video stream. Becawssedbeeproducers of data, they
can be viewed as a source module in the parallel task graph. Eaclerofidid a variety of

configuration options.

Mpegreader.dll can take a single file, multiple files, directurfiles, or a set of files
specified by a filemask. The starting frame, ending framermth of playback, and speed of
playback can be set for each video. Videocapture.dll can capture franstalled video
capture device that is visible to Windows and DirectShow. Most vidgue devices
include a driver to use with DirectShow, so this provides a simplenconvay to work with
most video capture devices. The parameters for videocapture.dll intledievice name,
device input line (S-Video, Composite, etc.), width and height of tpéuig width and
height to scale the RAW_VIDEO output to, framerate, and bitppet. Screencapture.dll
may be useful to feed the display of either the entire computesktop or a single window.
This could be used, for example, as a remote desktop display, if tlredatlewas sent over
a network. Or, a video of what is happening on the computer could ke teamesideo file.
Configuration for this module includes window name (or left blank toucapthe entire

desktop), optional width and height to resize to, and framerate.

Several modules can also save or display the video data type, including
mpegwriter.dll to save the video frames to an MPEG2 video fdisyrier.dll to save the
video frames to an AVI video file with any installed video codethensystem, getframes.dll
to save individual frames to disk in single images in most commageniormats, and
HUD.dIl (the heads-up display) to display the video frames tanalow on the computer
screen. In many situations, these modules are sink modulesdygsteen, in that they might

42

not write any further packet data to the middleware, but thikypsgicess and output useful

data somewhere else (e.g., to afile).

Mpegwriter.dll takes in its configuration the input data type (eMiDEO), a
filename format string that determines the output filename{s¢oding parameters like
bitrate, quality, an optional "real-time" flag to ensure encodagnexceeds available CPU
time, and several other optional parameters that configure howarieglll might modify
its behavior based on the length of the video (e.g., only keep videos that are at |eage2 mi
long, write information about the file back to a data packet for tidelleware, etc.). The
filename format string is a string similar to somethiikg kprintf that converts code strings
into different strings based on some information about the video Wwritien. For example,
%YYYY% is replaced by a 4-digit year (similar codes &g other components of the date
and time), %num% for video number (number of distinct videos that haveviréiten so far
by mpegwriter.dll), and %ip% for the IP address of the machihe allows for distinct
filenames to be used when multiple video files need to be writbee{#1-Capture, we write
one video file per medical procedure performed). Aviwriter.dll perfofunctionally the
same as mpegwriter.dll, however it writes to an AVI videe ifiistead of an MPEG2 video
file. As such, the codec and its custom configuration is spdcis another parameter and as
a saved external configuration file. getframes.dll takes theotitput type (e.g. JPG, PNG,
GIF, BMP) as a configuration parameter.

Hud.dll is an important module in the system that allows us tornseeal-time the
video data and its results being processed while the system isigurmiis could be as
simple as a video display (which only specifies the input data type and autdiyaigplays
it), or a complex synchronized display of video, some textual datasenting the results of
different modules' analyses, and even graphical feedback generatemsbymodules as an
overlay on top of the video. This can be used in useful ways; for examphking the
location of a polyp during a colonoscopy. This module has numerous optionglucatién
parameters. To specify a text output of any packet in themyst text= line is used in the
configuration file. To display the width of the video frame, a lil&ke
"text=VIDEO:width/width: %d" would be used. The name of the dat&eia@d/IDEO) and

the name of the field within the data packet (width) is used to pravideurce for the

43

displayed string. Then, a format string is specified faually displaying the string on
screen. This can be done any number of times and anchored to anyarosige of the
screen in any font and color. To overlay graphical data (famgle, to draw real-time
feedback or non-textual information on top of the video), the overlay pteaspecifies an
input data packet type (which is formatted as common video data) aonkeday chroma
key specifies how the video will be mixed (e.g., with transparéasgd on a color or alpha
blending). A synchronization option allows data to either be displayedasas it becomes
available, or to wait until all data for a particular framesilable so that they can all be
displayed at once in a sychronized way. Synchronization is important for data aagote
match up with the underlying video. Some additional properties includénerhiet display
fullscreen or in a standard window, whether to record the combined harchdbw's output
to its own video stream (which could be combined with another module t® tora file),
and some other special functions. Some interactive keys arebésaf@r example, the '1'
key hides all interface elements, the '2' key shows statisibout the middleware data
streams (framerate and time to fully process each fraand)Alt-Enter causes the HUD to

become a fullscreen window.

Emlive.dll is a variation on hud.dll that allows external programsexamine or
display the video data running through SAPPHIRE in a synchronous makrsrared
memory space is setup to enable this.

Autoresize.dll is another commonly used module that can take some videot
(usually RAW_VIDEOQO) and crop/resize it in order to provide a leskindant stream of
video data. For EM-Capture, the video captured from the endoscopy hangsuelly has a
very large black border around the real video data, which could evensbeaisas half the
captured video area. This module can automatically crop this inpet v the smallest
bounding rectangle representing the non-black area and write out dat@wype (usually
VIDEO) which is then used by the rest of the system anaiysdules. This way, other
modules do not need to manually crop/resize the video data themselves.

Imagemask.dll is a module similar to autoresize.dll, exceptitisédad of cropping

video, it instead generates a video stream in the form of a bimage mask of the input

44

video stream. Because the endoscopy video we receive may noirbple rectangle, but
rather an octagon or ellipse, it can be useful for other modulesdo/e this mask of "valid"
video data rather than do this function on their own with potentiallyereifit

implementations.

Videomixer.dll is a module that can be used to combine multiple videanss into a
single video stream based on transparency or alpha blendingiskfid to combine several

overlay video streams into a single video stream that can be passed to hud.dll.

Grayscale.dll is a simple module that generates a grayiscatgee of an input video
stream. As several analysis modules may end up converting the VRléB data into
grayscale for processing, it makes sense to put this into aasepapdule so that the
operation is performed only once for all modules. This reduces dadan as well as

increases parallelism.

3.3.2 Simple Analysis Modules

The functionality of these modules is described in detail in Chd&ptdihese are
primarily used for endoscopic procedure detection for our EM-Capiagram, but may

also be used by other modules in different ways.

MeanR.dll takes video data as input, computes the mean red pixeloxedughe
entire frame, and writes out a data type called MEANR. meanmdifmdoes the same thing
except computes the mean normalized-red pixel value and writea data type called
MEANNORMR. histdiff.dll computes the motion of the input video strdagtween each
successive frames and writes out a data type called HISTDIFF.

Meanr_dv80.dll and meannormr_dv80.dll each compute the variance of difference
with outliers removed of the MEANR and MEANNORMR data types anmdesv out
MEANR_DV80 and MEANNORMR_DV80. meannormr_risefall.dll computes how the
MEANNORMR values rise and fall over time and writes sevpraperties of this out as as
MEANNORMR_RISEFALL. color_energy.dll computes the energy of asihistograms
generated over a window of time from the input video. This is ana#w®ful form of motion

and scene detection. brightness.dll computes the average brightness of a fralee. of vi

45

Inside.dll combines all of the results of these simple analystules to determine
where the start and ending frame of a procedure is from a contintneas) of images. A
data type of INSIDE contains a flag of whether or not the ponding VIDEO frame is part
of the same procedure or between procedures (outside-patient vides, fwama should be
discarded). A similar data type called INSIDE_NODELAY providies same information
except without a delay imposed on the INSIDE packet. The delagqisired because
inside.dll uses temporal features to determine whether or notna feapart of a procedure.
While INSIDE is delayed up to ten seconds (the duration is basexlr inside detection
algorithm) until a final decision can be made for the stgstocedure, INSIDE_NODELAY
gives an immediate conservative guess about whether the frpae & a procedure. It will
report false positives if it thinks a frame might end up becomary of a procedure, but

otherwise, it never reports false negatives.

3.3.3 Helper and Extension Modules
Log.dll provides a synchronized and combined logging system for momulese. A

module uses a function identical to printf (called eprintf, with sextea parameters that
include the severity of the logging event, timestamp, etc.) inrdadseend information to
log.dll. This function, in reality, creates a packet of type L& contains the necessary
information. Log.dll then listens for these packets and can Winéie out one at a time to a
logging file specified in the configuration file. Some additionabp#eters can be provided
to this in order to remove non-severe logging messages, cycleelog®\lthough modules
can certainly implement their own logging functionality or siynpkint to screen, this
module includes all the synchronization (where printing to the 1s¢seg resource shared by
all modules and may have multithreading issues) and output/sewarftgloration options

necessary for typical log files.

Tcp.dll converts SAPPHIRE from a single system middleware ttuster-visible
middleware. Some information is specified such as hosthame and port to listen ematel r
systems to connect with. Then, data types are specified thattomdee transmitted to and

from each host. Because individual modules never actually communicaibbiner modules

46

in the system, some module that expects the VIDEO data tygig get its VIDEO data

from tcp.dll from a remote system rather than a local videocapture.dll.

34 Example EndoCapture.ini

SAPPHIRE programs are specified by configuration filess&éHgées are simple text
files that are a list of modules to load and their parameterseXample, Figure 3.4 is a
configuration file specifying a program that shows the autocropjkesw of a capture device

in a window on screen:

[autoresize.dll]
[hud.dll]

1 | [videocapture.dll]

2 | video.device= # left blank to use any availatdgice
3 | video.mux=Composite # use Composite input line

4 | video.width=720 # input video width of 720

5 | video.height=480 # input video height of 480

6

7

8

Figure 3.4: An example configuration file, speaifyia SAPPHIRE program and configuration.

The '#' characters are used to insert comments. Some pasaoagtdre left out to use
the internal defaults for a given module. To change this program femturcng from a
capture device to reading from a video file without changinghemytelse about how the
program processes data, the videocapture.dll can be replaced by aeadpedll with some
parameter changes. The other modules' parameters can be deitheit. More complete
examples can be found in the Appendix D. Modules can be disabled wighoaring them
from the configuration file by inserting the comment charactéront of the module name.

The parameters listed under a commented out module will automatically be slsppelll a

3.4.1 Example Task Graph

a7

e

meannorms

meannormr

MEannorme meannormr_dv80 color_energy

autoresize

[

EM-Capture

:

raw_video
meannorme
meanr_hist_cont_area

= en=s

meannormr_risefall

vida video
(HU'D) (mpegwriter)

meant_snergy

]

raw_video

raw_video

@

meant

inside nodelay

5]
inside (meannormr_risefall)

(o1&

&
meant histdiff

. Qo
raw_video MEanormy - meant histdiff
@ o & 2 =

MEANMOTI_ENerEy meant_dva0 meatf

Figure 3.5: A task graph of the EM-Capture prognariiten using SAPPHIRE. Each module is shown in a
bubble while communications between modules aravshas directed edges. SAPPHIRE internally handies t

communication, so in reality, the data flow is s@rhat different than the task graph shows (same tyaes
may be grouped so as to not incur multiple commatiwo costs). However, the visual task graph isuider
determining data flow between modules, finding pte errors in design or missed producer moduwdés, For

every program, working or not, SAPPHIRE automaljcglenerates a .dot graph file similar to this tfeat
readable and displayable by AT&T's GraphViz program

48

CHAPTER 4. SAPPHIRE INTERNALS

Some of the internal details and usage examples for SAPPH&RE@rided. These
give a more in-depth look at how SAPPHIRE works. Some functionstaraduses for our

specific implementation of SAPPHIRE are prefixed by "em'nd&Metric), "emc

(EndoMetric-core), or "emm" (EndoMetric-module).

4.1 Pseudocodefor a Main Program

SAPPHIRE has a default program that parses and uses a cdidigdite which is
just a static text formatted file. A simple pseudocode of #fault program is provided.
Recall that emmRegister(), emmStart(), emmShutdown(), eraf)Dare functions that

developers need to implement as mentioned in Chapter 3.1.

4.2 Program and Virtual Graph Construction

Upon starting SAPPHIRE, the configuration file is loaded and pafSigdré 4.1,
Lines 1-7). Each module is loaded and its emmRegister methotleld aad configuration
parameters passed in (Figure 4.1, Lines 8-10). Modules then registearious types of
input and output data by calling the SDK's emcAddinput, emcAddOutput, iamldrs
functions. All of the registration information is then accumulatatiénmiddleware's internal
state variables. Once all modules have been loaded and finishedriegigshe middleware
takes sole control in order to determine the internal routing betmednles and data types
and starts all the worker threads by constructing a virtualtiiggraph of modules and data
types and edges between them (Figure 4.1, Lines 12-21). The middleaigseuntil each
module has no more data to process (Figure 4.1, Lines 23-25) BmcemanStop and

emmShutdown to signal all the worker threads to stop and clean up (Figure 4.1, Lines 26-31).

1
2
3
4
5
6
7
8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

28
29

30

31
32

49

Il G ={V, E}; a bipartite graph of a set of verticésand a set of edgés

IV = {V,, i} whereV,, is a set of module nodes avids a set of data type nodes
/[M is a set of modules and their properties such@s iand output data types

// P is a set of their corresponding set of parameters

// Tis a set of data types

main() {

}

initialization(); [/l initialize M, P, and T to bempty sets and initialize other variables
parseProgramArguments(); // parse arguments thenraommand line
M, P & parselnternalConfiguration(); /l parse builtmmoedules and parameters
Mtemp Ptemp< parseConfigurationFile(); /I parse modules spetiin the .ini file
M& M U Mtemp
P &< PuU Ptemp /l merge all modules into one set
foreach modulenin M and their parametepsin P {
T< T u calEmmRegisterToGetDataTypes(p); // register all modules and get their data

types

}

I/ replace modules' I/O types that have prawibther than default priorities defined
M, newType% updateDataTypesWithPriorityOverriddg(T);
T < Tu newTypes // add new override types to 3et
G < createVirtualDependencyGraphy(T); /I create graph and prune graph
M, T € getUpdatedUsefulModulesAndDataTyp8g(// updateM andT from pruned graph
foreach modulenin M {

createAThreadToRunModute(moduleThreadStart);

/ moduleThreadStart is the generic modulekesothread function
Il threads are created in a suspended state

}
startAllThreads(); /I signal all worker¢hds to start

I/l worker threads call their own emmStart amin®ata
while numberOfModulesStillProcessing() > 0 {Iadp until all modules have finished

wait;
}
foreach modulenin M {

calEmmStop(); // after all modules are done processing, signahStop of each

module
}
foreach modulenin M {
callEmmShutdowm{); // after all modules have stopped, signal emni&wn of each
module

Figure 4.1: Pseudocode for the main program of SARE. Complexity for registration itself has worsise
running time of O(nm?) where m is the number of modules and n is thebmurof data types. Complexity for
graph construction and other parts are discussetheir respective pseudocode listings. Complexiy f
subsequent execution of modules is O(1) per th¢eatdcounting the actual processing that modulg§s wbere
m threads are created.

50

/I A thread is spawned starting at this functiondach module in the system
/I mis the module that this thread was spawned for

1 moduleThreadStart] {

2 callEmmStartt);

3 /I perform work loop (a more detailed work Idslavailable in Section 4.3)

4 whilem s not finished {

5 K & findNewPacketsOfDataForModule(G, T); // get a set of packets to work on
6 foreach packet k in K {

7 callEmmbData(m, k); /l process each packet

8 }

9 if allSourceDataTypesForModuleAreProcessedAndhedMm) { /I if no more data,
10 setModuleFinished); /[then set finished
11 }

12 }

13 |}

Figure 4.2: Pseudocode for moduleThreadStart chlettie main program in Figure 4.1.

4.2.1 Packet Filtersand Priority Overrides

The first step in generating a virtual program graph is creaimggal data types if
any packet filters or priorities are specified (Figure 4ihel15). For example, if a module
wants to modify or filter some data type, rather than justvavigng the original data type, a
new virtual data type is created in its place. Although thisiadrtiata type can point to the
original data, it is internally treated as an entiredyvrdata type. Then, other modules that

use the filtered data are automatically switched over to using the new gatadype.

In order to determine the new data types for the routirig wiiority overrides, a
sorted list is created for each data type using the prilenel as the sorting key. The actual
priority level for a data type that each module uses is suppliedughr the
emcSetPacketFilter function (Appendix A) as one of its argusnénbo level is set, then by
default, the lowest level is used by consumer modules and the thighekis used for
producer modules. Using the sorted list, discrete levels of priam& determined. For each
successive level, the input data type for a module uses the pevodied by the priority, and

the output data type uses the next lowest level specified by any other module.

For example, consider the following situation. A videocapture module ou@uts

VIDEO packet as a producer with no specified priority. A HUD medlisplays the VIDEO

51

packet to screen with no specified priority. Then, two fibedules that use VIDEO packets
as input are inserted, where filterl has a high priority of 10@dCfiier2 has a lower priority
of 500. The highest priority for VIDEO in the system among all madidel000; thus, the
original producer (videocapture) will now output "VIDEO:1000" as itedgpe. The filterl
module takes "VIDEO:1000" and outputs "VIDEO:500" (with 500 being the higttest
priority). Then, filter2 receives "VIDEO:500" and outputs "VIDBEOwhich is shortened to
"VIDEQ". Because there are no other filter priorities spedifoy any other module, the
filter2 module outputs "VIDEO:0"; however, a priority of zero is stwoed to the original
data type's name "VIDEO". The HUD module, not having specified @rority, then
receives the lowest priority VIDEO packet, which is simplyDE#QO". If multiple modules
use the same priority, then they will both receive packets fair ghority, as would be
consistent with the priority system not in place.

4.2.2 Generatingthe Virtual Parallel Task Graph
A virtual graph is created based on all the modules and theirygas This graph is

a bipartite graph consisting of two sets of nodgsfor module nodes and; for data type
nodes. Every module and data type is represented in this graphddé® e@oming in to a
module represents the data it will use as inputs; the edges @airng a module represents
the data it writes to the system. The edges coming in toaatylae represents the different
modules that will output that data type; the edges going out ofaatglae represents the
different modules that will use that data type as input. It ispnesible for a module to be
directly connected to another module or for a data type to belgioectnected to another
data type. Modules and data types are all matched up and relatotimis defined in this
graph. Based on this information, we can then prune the virtual gudh) is then used for
the internal routing. Although the virtual graph represents the batabetween modules,
data is in fact never communicated directly between modules. i®aent directly to the

middleware, and only the middleware decides if and when to relay data.

52

/I G ={V, E}; a bipartite graph of a set of verticésaind a set of edgés

IV ={V, i} whereV,, is a set of module nodes avids a set of data type nodes
/I M is a set of modules and their properties sagmput and output data types

/I T is a set of data types

1 createVirtualDependencyGraph(T) {

2 /I compute a list of modules that uses a deg@ &s input, for each data type

3 foreach datatypein T {

4 t.ConsumerModule& @;

5 foreach modulenin M {

6 If mtakest as input {

7 t.ConsumerModules- t.ConsumerModules m;

8 }

9 }

10 }

11 /I compute a list of modules that produceata type as output, for each data type

12 foreach datatypein T {

13 t.ProducerModulex @;

14 foreach modulm in M {

15 ifmtakest as output {

16 t.ProducerModule%- t.ProducerModules’ m;

17 }

18 }

19 }

20 /I construct the virtual graph

21 Vi< @,V € G Il graph vertices consist of two safs:for modules and, for data types
22 E < @ // edges are directed and represent the fladeta betweei,, andV,

23 foreach modulmin M {

24 Vi € Voum; /l add each module as a vertex

25 }

26 foreach datatypein T {

27 V€ VUt // add each data type as a vertex

28 foreach modulm in t.ConsumerModule§

29 E < E U newEdget, m); // add edge from a data type& a consumer moduia
30 }

31 foreach modulm in t.ProducerModuleg

32 E < E U newEdgef, t); /l add edge from a producer moduoie> a data typée
33 }

34 }

35 V ={V,, Viuhi

36 V, E €& pruneUnusedModulesAndDataTyp¥skE); // prune unused modules and data types
38 G < GraphV, B); Il create graph froi andE and return it

39 returnG;

40 |}

Figure 4.3: Pseudo-code for creating a biparti@hrrepresenting the parallel task graph. Compleiit
creating the lists of modules for data type inmrig outputs is bounded by O@f) where m is the number of
modules and n is the number of data types. Themstaecting the virtual graph is O(1) for each ottpertex
and edge. Complexity for graph pruning could regairfull graph traversal per vertex removed — QME).
Although these may be made more efficient, thessizethese structures in practice are usually aoiel
enough to focus on this aspect of the middleware.

53

4.2.3 Data and Module Pruning

Stray data types that have no output edges indicate that no moduetowse this
data type as input. Thus, if this data type is ever sent to ithdieware, it is immediately
discarded. Furthermore, if all the outputs of a module are prum#dsi way, the module
itself does not output anything useful. Thus, it can be removed toCGRMeand memory
resources. This process is repeated over the graph until no more psupossgible (Figure
4.3, Line 38). A module can override this pruning behavior by registerirmydpecial output
data type that is not pruned by the middleware. For example, a ntbdtierites to a file
rather than sending packets of data to the middleware might mprgedlpruned off. If it
were pruned, the desired file would not be created. The module giaterdor the special
output data type to indicate that it is a necessary module isy#tem and prevent it from

being pruned. An example of this type of module is mpegwriter.dll (Section 3.1.1).

4.2.4 Updating the Internal State

Using the updated graph of modules and data types, the internal ancysther
variables of the middleware are initialized or updated. Thie stefines the final mapping

and routing between modules and data types (Figure 4.3, Line 39).

4.25 Starting the Program

The modules then each have their emmStart method called. This afiogides to
change behavior based on the modified internal routing of the sylsteexample, a module
can check whether an output it was able to provide is even necesséris not needed, the
module can update its settings to no longer spend CPU time te thaabutput). Modules

may also create new threads at this time if they want.

4.2.6 Data Processing

A work loop thread for each module is begun. The work loop is technically part of the
middleware rather than each module. This does all the behind thes seelundant checking
of inputs and outputs being satisfied, thread-safe data routing, fmaekeiry management,
and eventually, the calling of a module's emmData method. Additional bqgokgeand

performance gathering code is also placed in the work loop to &loautomated profiling

54

and statistics of each module. Manual thread scheduling is alsenrepled in the work
loop, if enabled, to allow or disallow threads from running on partidDRIJ cores (or at
all).

4.3 Work Loop using Windows Scheduler

Each module (DLL) implements a method called emmData() whigstas input an
emPacket pointer which represents a single data packet beirgl paghe module. From a
programmer's point of view, this is a very easy way to receisteeam of data. However,
internally, the middleware performs all the synchronization, setup,calithg of each
emmbData itself. For every module in the system, a threackéed. This thread works in an
endless loop to process data as it becomes available. Wetadfdas as the work loop.
Because the work loop is implemented by the middleware and not estlennot only
does this ease the development process, it is also entirely pdssithe SAPPHIRE core
system developer to change the work loop to use a different sceigedalgorithm or
communication method. In fact, the entire internals of the systamnbe abstracted from the
developer and entirely reimplemented with no change on the module progrsinparts as
long as some infrastructure exists that calls emmData irptééefined way. After the
middleware registers each module, a thread is created forneadule, which in turn calls
the emmStart for each module. The work loop of a thread for madideshown in Figure
4.4,

Processing continues until all possible input data has been comgeielysted and
the 'final' flag for each input data stream has been reachelinfiicates that no more data
will follow for that data stream for a given module. Once aticessing has completed, the

work loop is exited and a module's emmStop will be called.

55

/I G ={V, E}; a bipartite graph of a set of verticéand a set of edgés

IV = {V., i} whereV,, is a set of module nodes avids a set of data type nodes

/l K is an ordered list of packets (by timestamp im@asing order)

/I mis a single module assigned to the work loop

/I mseenPackef[is the latest timestamp of packets of tymeen by modula

I m.processedPackétfs the latest timestamp of processed packets dgutem for typet
/I Ris a set of profile data to be accumulated

1 R=@; /I set of profile data for this modinéialized to empty

2 while not moduleFinishedh) {

3 BeginCriticalSection(); /I find packets thhave not yet

4 K & findNewDataPacketsForModule(G); /I been passed to emmData for modnle
5 EndCriticalSection();

6 if K£ 3 {

7 releaseTimeslice(); /I if no data is availalyield CPU and try again later

8 continue; /l go back to the beginning ofwigle loop

9 }

10 foreach packétin K { /I for each packet of data to process...
11 bindModuleAndScheduleProcesso(// bind this thread to some CPU core(s)
12 startTime< getTime(); Il record starting time for profdata

13 packetsToFre& callEmmDataf, k); Il pass packet to emmData

14 endTime& getTime(); Il record ending time for profiletda

15 R < Ru addProfileInformationt, k, startTime endTimég; // add profile data to s&
16 t & getPacketTypé];

17 m.seenPackdf] € m.seenPackei[+ 1; // mark tham has had packet sent to emmData
18 foreach packét~reein packetsToFre¢ // for each packet to free or release,

19 tFree & getPacketTyp&fres); /I mark that we have also processed it
20 m.processedPacké#freg] € m.processedPackéfred + 1;

21 ReleasePackeat(kFred);

22 }

23 }

24 if allSourceDataTypesForModuleAreProcessedAmdRed() {

25 setModuleFinishedy); /I if no more data, set as finished

26 }

27 |}

Figure 4.4: Work loop of each thread. Finding neachkets of data is accomplished by checking the
middleware's internal latest timestamp of each eaplished with the last seen packet of an indivichadule.
This is a simple subtraction operation, and the ut@dtores an absolute reference to index of tiuzlenvare's
internal packet timestamps; thus this can be actishag in O(]\]) time. Then, emmData is called for each
packet found. The emmData function itself can hitszewn complexity, but calling it and the surrourgicode
runs in constant time. The overall runtime acrdisgasses through this loop (Lines 10-23) is efticeependent

on the number of packets processed (equal to nuaflirations times |§) and runs in constant time for each
packet, thus this loop actually has amortized cewipl of O(1) for each packet (and it does not exewnless

it has a packet to process).

56

1 | typedef struct emPacket {

2 int len; /I length of this packet

3 char* type; I type of data

4 __int64 timestamp; /l timestamp of this packet

5 struct emPacket_* next_time; // pointer to retkhched data

6 struct emPacket_* prev_time; // pointer to ptievestamp of same type packet

7 unsigned char* data; /I pointer to packet'sachata

8 unsigned int* meta; /I pointer to packet'scte timestamp of same type packet

9 int datalen; I/ length of raw attached data

10 int metalen; [/l length of raw attached metada

11 struct emPacket_* parent; /I if this packet borgsdthe data from another packet, this points
to the original data's packet

12 int PCR; /I which index in PCRhead/tail thedongs to

13 unsigned int priority; /I filter/hook priority (dput: O = normal/first generated, higher =
hook first) -- used as a subtype

14 int final; /I final packet of stream (typicalblank for some types, but still
valid; mainly used as a marker for cleanup)

15 struct emModule_* sourcemodule; /I source meduht created this packet

16 int referencecount; I reference count of plaisket

17 int dummy; [/l ignore this packet

int channel; /I for future use: multiple charmelf the same type of packet

18 that can have similar timestamps, etc; mpegreadet a
videocapture both working to produce RAW_VIDEO data
type

19 __int64 PCRid; /Il like timestamp, but a uniqdefor every packet within one
PCR (can have the same timestamps for multiplegiakk

20 __int64 pushtime; /I time of origination fiig packet, from first pushed packet (in
win32 performance counter)

21 void** releasecallbacks; Il array of callbagksen this packet is released

22 int numreleasecallbacks; I/ number of callbacks

23 | } emPacket;

Figure 4.5: Data packet structure

Because all work loops proceed in their own thread, the system picitin
multithreaded based on the number of modules in the system. Each modulocarse
start their own threads to increase the amount of parallelisnthéatthey must manually
handle their own synchronization since SAPPHIRE does not have anyekdgandbout the
module programmer's multithreading implementation. By default, th&ewdgwork loop)
threads are scheduled by the operating system. It is possifiecéothreads to individual
CPU cores and change thread priorities, however, this is very simple andadoecessarily
provide any advantage over the built-in OS scheduler. SAPPHIREI$@msmplemented a
custom scheduler for worker threads discussed in the user-mode taskilsc section in
Chapter 5.

57

44 Data Structures

We describe key data structures we use for maintaining infamabout packets
and the virtual task graph.

441 Packets

A simple example diagram of the packet linked list strudsishown in Figure 3.1.
Some of these packet fields are not used directly by the preggrémmer), but most are still

used internally.

Most of these fields are self-explanatory, but the middlewasdf idoes do some
extra work beyond what the programmer has setup. When a packeginalbripushed to the
system by a module, the middleware initializes and updates kgglela (1) The 'PCR' field
(Figure 4.5, Line 12) is set to the internal array index for treesponding data type. This
provides a fast string name to type index (int) mapping for furtheroysthe middleware
(e.g., PCRhead[pkt->PCR) (2) The 'type' field (Figure 4.5, Line 13) is updated to an
internal static string so that modules never have issues pbtauitial dynamic strings; also,
this allows direct type == type comparison (if set up propevhich can be somewhat faster
than the typical !strcmp(type, type) comparison. (3) The 'PGield' (Figure 4.5, Line 19) is
set to a unique auto-incremented value based on the order it was fughexithe packet a
program-lifetime unique identifier. (4) The 'referencecount’ fiéldyre 4.5, Line 16) is
initialized to the number of modules that will receive this packstpackets are "released"
by modules, the 'referencecount' field is decremented in adtseda manner. When the
reference count reaches zero, it is only then actually deatbéadm memory. (5) If the
‘parent’ field is set (Figure 4.5, Line 11), this means the patlkees data with that parent
packet — the parent packet should not be released until the packepbshirgl is ready to be
released. This causes the parent's 'referencecount' to be incrememned When a packet is
deallocated, its parent's 'referencecount' is decremented by omdsarmbtentially freed if
nothing else is using it. This is useful, for example, with theB@Ddata type, which crops
the RAW_VIDEO data type without actually creating a copyhef video data (by simply
using tricks with the video data pointer and stride). Since the WIpEcket uses data
directly from the RAW_VIDEO packet, it must set retaire tRAW_VIDEO packet in

58

memory by setting it as a parent. (6) Other miscellaneeldsfare updated or filled, such as
‘pushtime’ (the time the packet was pushed, for profiling) and 'soacide’ (the module
that this packet originated from). (7) After all other fielde aetup, the 'prev_time' field
(Figure 4.5, Line 6) is set to the previous tail packet for this tigte, the tail packet's
'next_time' (Figure 4.5, Line 5) is set to the new packet, and hieetait itself is updated to

point to the new packet. Critical sections are used for some steps, but only wheanyeces

This concludes the process of pushing a packet to the system.y3teen shen
maintains this internal state of packets and arrays of vasiat#scribing the data and
modules of the system so that the work loop can determine whedteerisdavailable to
process for each module. The work loop iterates through each inpuypathat the module
listens for, and compares the most recent timestamps seen dbaimswest timestamps
available for each data type. If there is new data, the wamk passes this data to the
emmData function. The data passed in may be in any order betatetypes, but is always
sequential within a data type. The work loop prefers to pass inirdatdair (round robin)
fashion if it can, so that muxes can be satisfied as eafppssble (as opposed to pushing
several of the same data type that cannot satisfy a mutsd#f). Due to the removal and
abstraction of the work loop from each module's code, it is possibleange the scheduling
and methodology of the work loop for all modules without actually cimgngny individual

module's code.

Some modules take significant time and prefer not to produce dhtawery frame,
or otherwise do not have meaningful data every frame. This cae ergatential issue with
modules that expect a timestamp-synchronized set of packetsdesgr In order to keep
synchronization, producers should push packets for every timestamp)(&eemeif they do
not have useful data. This is done by pushing a packet with the 'ddlaghget (Figure 4.5,

Line 17), or by calling emcPushDummyPacket.

Some packets created by modules might have additional resoutaeked as
pointers in the user data that have been allocated by a produceremidehtually, this
packet will be released by all modules and then freed by ithdleware. However, because

the middleware has no idea what the format of the user dataa)not know how to free

59

these attached resources. So, the middleware provides the fusrtiiddReleaseCallback
to attach a custom resource destructor that will be calleghwhe middleware is ready to

free a packet.

4.4.2 Modules

Each module in SAPPHIRE is an emModule object (Figure 4.6), containing
bookkeeping information about the module as well as function pointers tmpihemented

methods emmRegister, emmStart, emmData, emmStop, and emmShutdown.

Generally, the user never needs to use anything in this ¢agedtis almost entirely
handled automatically by the middleware) except for the 'locatible (Figure 4.6, Line 2),
which binds a module-instance-specific variables structure toc#fispestance of a module.
This allows a module to be loaded once but utilized multiple tirneslifferent kinds of
configurations (e.g., potentially having multiple HUD module instanto display multiple
video streams simultaneously). Because Windows will not loadomd@opy of an already-
loaded DLL module, this is a necessity for the middleware to suppdtiple instances of

modules.

4.4.3 Internal Arraysand Lists

A listing of the important internal variables and arrays and ksin be found in

Appendix F.

4.4.4 Common Data Packet Formats

Some common data type formats are provided both for reference anthasimple
examples. Module developers can specify their own data formatsfofihat should be
shared with other module developers that plan to use the data. The raiddiself does not

need to know the actual format of the data being communicated.

VIDEO

This format, shown in Figure 4.7, is a common video data format tihetagnized
by many SAPPHIRE modules. It can be extended to a new daabiymppending new
fields, while still being recognized by SAPPHIRE's provided modules.

30
31
32
33
34
35
36
37
38
39
40
41
42
43

typedef struct emModule_ {

void* locals;

int localsize;

int moduleversion;
int (*emmRegister)

(struct emModule_*

60

/l local data for this instanafea module

/I size of locals; not necegsarcept for some functions
// version of this module

module, dgRRir* configuration,
emCallbacks_* callbacks);

struct

int (*emmStart) (struct emModule_* module);

int (*emmData) (struct emModule_* module, emRatlpkt, void* perf);
int (*emmsStop) (struct emModule_* module);

int (*emmShutdown) (struct emModule_* module);

emPacket* inputs;
emPacket* outputs;

int ninputs;

int nOutputs;

__int64* nextpacketTS;
__int64* lastpacketTsS;
int* maxchainlen;
HINSTANCE dll;
char* dllname;
HANDLE hthread;
unsigned int threadid;
int finished;

int ninputsNoDelay;
int stopped;

int shutdown;

int maxdelay;

char* versionstring;

int buildnumber;

char* builddate;
HANDLE mutex;

int nThreads;
HANDLE* allthreads;
int* allthreadids;
__int64* threadtime;
int* whichcore;

char* versionstring2;
char* description;

int internal,

__int64 worstthreadtime;
int processing;

int* memcount;
__int64* memtotal;
__int64 memtotaltotal,
int outstandingpackets;

44 | } emModule;
45 | emModule* allModules;

46

int nModules;

/[array of input/outputaygefinitions for this module
I/l the emPacket structuxg omly be partially defined as needed
/l number of inputs/output types

Il timestamp of nextaarspacket this module should process
/I timestamp of oldestex packet this module retains
/[maximum buffer length foparticular type
/ Windows handle to this modul
/I filename of the module
// handle of the main workethd for this module
/ threadid of the maork thread
/I flag to define whether thimdule is in the finished state
/l number of non-feedbémip inputs this module uses
/I flag to define whether thisdule is in the stopped state
/I flag to define whether thisdule is in the shutdown state
/[l maximum feedback-loop delexoas all feedback delays
I/ version string forgimodule
// SDK build version this mbel was compiled with
// build date string for thimdule
/l may be used to avoid asynstHRacket, when multiple threads
for the same module want to push
I/ thread local storage andilprg variables/arrays
/I all thread handles forstmodule
/I all thread ID's for thisodule
/I profiling for CPU feach thread
/l which core each thread ésibd to
/I textual descriptiardaversion of the module

/I whether this module is albii module or 3rd party
/l worst case thréae for this module
// whether this module is ently processing data or sleeping
/ memory leak detection — nembf allocations for each thread
/[total memory allocated éach thread
/I overall memory usageoss all threads for this module
/I every allocated paskould be submitted to the middleware
by a PushPacket, or else this variable continugxtement

/! list of all modules
/I count of number of modules

Figure 4.6: Structure that keeps information alzontodule

61

INSIDE
This data type, shown in Figure 4.8, is an example of a user g@&aRgr the EM-

Capture program, this is used to mark a frame as inside-patientside-patient. For each
VIDEO packet, a corresponding INSIDE packet is generated. Thvesean be combined
and synchronized with a mux for various purposes (e.g., only procelsingDEO packet

if the video frame is an inside-patient frame).

1 typedef struct meta_video_ {

2 int width, height; /I width/height of virtual videframe (may be different than
width/height of original video frame)

3 int stride; /I stride of video frame (same agimal video frame)

4 int bpp; /I bits per pixel -- usually 32 bpp faylor or 8 bpp for grayscale

5 double framerate; /[set from source video -- lig289.97

6 unsigned char* data; /l pointer to new data (thia ghointer is the original video)

7 __int64 source_frame; /I frame number from videwrse (different sources may
increment/reset this differently)

8 char* source_filename; /1 0 by default, but camptd an internal buffer for a source

filename if available -- pointer not valid aftergiat is freed
9 } meta_video;

Figure 4.7: Structure of a VIDEO packet

1 typedef struct meta_inside_ {

2 int inside; // O=outside, 1=inside, 2=set upomsigon from inside to outside

3 int frame; /I current frame number within a segtr(@fl outside or all inside) of video
4} meta_inside;

Figure 4.8: Structure of an INSIDE packet

45 Synchronization

Although many operations are designed to be implicitly thesde, some operations
do require the use of a mutex, which is used internally by the middée Most middleware

API functions that modules call will take care of the thread safety issues.

4.5.1 Middleware Synchronization

Because significant amounts of data passing between modules iddiéware is

constantly happening, and no specific synchronization is done by the rprogra the

62

middleware undertakes full responsibility for this. The primaryhaeiof synchronization is
with the use of a mutual exclusion object (mutex) in the formsd@maaphore. Although the
system has several of these mutex objects, the primary dnis tnsed is for inserting and
deleting packets. When a call is made to the middleware's Rik&tPtne packet must be
finalized and inserted into the middleware's linked lists of packedsinternal arrays. Some
finalization is performed, such as parsing the packet's dalds fifor correctness and
consistency, and to prepare the packets for insertion into thensy=te example, the type of
the packet is converted from the type specified by the module antonternal type
recognizable by the middleware; and, a reference cowdsigned to the packet based on
how many other modules intend to use the packet. Some profiling information is alsatsetup
this time. If the number of packets pushed (for the type offdathat packet) has exceeded
its maximum, then the middleware blocks the thread until other modalescaught up, and

previous iterations' packets of that data type have been released.

Once this finalization is performed, a critical section isrtsth by using the
middleware's packet mutex object. The packet, middleware linkisg &isd internal arrays
are further updated by modifying pointers such as 'next_time"pmad_time' (next and
previous packet in the linked list). A unique packet identification nunsbassigned to the
packet. Some internal consistency checking is performed (to cotifatthere will be no
issues in the system once pushing this packet), and then the igdakaity "in" the system,
ready for other modules to use it. The critical section is theled so that the middleware
can service other modules that call functions that will use thigxrobject. For example, a
subsequent release of a packet may require a critical secticavold unnecessary thread
blocking, as much of the system as possible was designed to notonaed the mutex
objects. When they are needed, multiple mutex objects are cfeaifferent purposes so

that unrelated code does not block on each other.

4.5.2 Application Synchronization

The mux structure, shown in Figure 4.9, is updated each time dulenealls
emcMuxPacket. Most fields in the structure correspond to an arithyeach type included

in the mux representing one index in each array. Upon calliniylarigacket with a packet,

63

the corresponding index for the type of data packet is computed, anddéatin ‘count’ is
incremented by one, indicating that the mux has one more datet @evchlable of that type.
When all indices of 'count' have at leagbackets available, a call of emcMuxPacket with a
value ofn will return indicating that the mux is satisfied. The module then kribat at least

n packets of data are available and may be used. Upon finishinga&sging, the module
calls emcReleaseMuxPackets with a value,ahdicating that the module no longer needs
packets of each of the data types in the mux. Additionally, the 'cauay is decremented
appropriately to indicate the number of remaining packets available for dadyma

The mux also supports optional data types. If a data type is rs@npri@ the overall
system, then the mux will be satisfied even though that spégiicof data does not have a
‘count’ of at leash. However, if the data type is present in the system, then 'coust’be
satisfied. Thus, optional data types maintain synchronization, but only if theylettisly do

not exist, then the mux still functions by ignoring that data type.

For types indicated as a delayed packet due to a feedback looptiaizénicount' to
'delay’. When we check to see if a data type is satisfidteimux, if we had a delay of one
for a particular data type, then it means the very firsbEpiackets satisfied by the mux at
timestamp O will be satisfied without that delayed type slogant’' seems to be satisfied.
Because ‘count’ is initialized only once, subsequent calls to exiaAdket will require
actual packets to have been available. For both optional and delayets phakeo not have
real packets available, null pointers will be returned for those tgaes, indicating that no

data is available.

1 | typedef struct emMux_ {

2 int nmux; /l number of types in this mux

3 char** type; /I type of data packet

4 int* optional; /I whether this particular typeoptional

5 int* delay; I/ feedback loop time delay (iaritions)

6 int* count; /l number of packets currently idafale for this type
7 | }emMux;

Figure 4.9: Structure of the mux (multiplexer oltjec

64

4.6 RuntimeProfiling

In order to support profiling, the work loop surrounds its call to emaDath a
timer start and stop function (emcPerfStartClock and emcPerf&tdgC The time
difference is computed and used as that module's execution tineadbrpiece of data.
While this handles most cases automatically, there may beadeewhere the programmer
puts the worker thread to sleep manually while it waits foeotata to become available
(e.g., spawned threads to take advantage of multithreading). In sosee, dais is
automatically detected, by hooking some Windows calls such aateChgead and
WaitForMultipleObjects. However, it is better for the programtoesall emcPerfStopClock
manually before using these artificial sleep methods and thenttstatimer back up with
emcPerfStartClock after resuming. For the spawned threadssehes, although the
Windows CreateThread function is hooked by SAPPHIRE in order to autdaihatetect
newly spawned threads, it is still better for the programmaeraioually call the start and stop
functions to also do accurate profiling, as the built-in Windows @e&ldTimes function is
only accurate when a thread expends a full timeslice (othethesesed time is not added to
a thread's execution time) [70]. To retrieve an accurate ttumgs we use the CPU
instruction 'rdtsc’, which reads the monotonically increasingstanep counter from the
CPU. This generally increases at the rate of the processse clock speed per second (e.g.,
a 3GHz processor will increase by three billion in one second, weith high resolution,
potentially incrementing by one for each clock cycle). SAPPHR&ers to use the high
resolution timestamp counter whenever it is possible to encapshteds’ code (e.g.,
through emmData or manual calls to the emcPerf functions). When ribt possible,
SAPPHIRE falls back to using GetThreadTimes.

The profiling window (shown in Figure 3.3) can be brought up at ang taring
execution by pressing a key combination (Ctrl+Shift+Alt+R)tHe normal running mode of
SAPPHIRE, a lower overhead method of performance gatheringpemented. In this
mode, only the average time per frame (over the course ohtine program execution up to
the present time) for each module is displayed, along with thebdisdn of time among
threads. By running SAPPHIRE with the '-perf' option, some enhancgdrmpance

gathering is enabled. One additional statistic is displayed, which isoits¢ @ase runtime per

65

frame for each module (which is reset every five secongseteent one long iteration of
processing from preventing recent and useful information being gésp)larhis is useful for
determining whether the worst case performance of a moduleaptable. For modules that
normally process at a low frame rate, the average timégme may seem reasonable, but
the worst case time for processing an individual frame micfioally be longer than desired

(e.g., for deadline constraints).

In the enhanced performance gathering mode, the scheduling of threhdaged to
"realtime" priority so that other threads cannot interrupt any netsl@mmData function.
While context switches by the OS would normally interrupt threadd increase the
observed execution time, this enhanced mode effectively disables tcawéxhing,
increasing the accuracy of the gathering the performantistisa Additionally, all threads
are scheduled on a single processor such that they cannot interiafptiemce each other
due to various factors such as Hyperthreading or TurboBoost. With Hgeding, two
virtual processor cores are created for each physical @Rt When one thread is run on
each virtual core, they may in fact be running on the same physice, competing for a
single computing resource. This, in turn, may extend the executiordintesks running on
hyperthreaded cores. For TurboBoost, a computer that utilizes only a ©irglaay have its
processing speed greatly increased beyond the listed processdgidpeever, when using
multiple cores, this boost in speed decreases based on the humtresdfaing used. When
all cores in a system are being used, the processing speedromayully back to the
manufacturer's listed processing speed for a processor. By asipga single core, we

attempt to avoid the varying of CPU speed from TurboBoost.

4.7 Memory Leak Detection

Our middleware hooks the Rtl* functions in ntdll.dll associated withmorg
allocation (e.g., RtlAllocateHeap, RtIReAllocateHeap, RtIFesgh). These functions are the
lowest level Windows runtime library associated with heap allmtsitof non-page sizes;
these are eventually used (after several layers of atistraby C malloc and C++ new. The
hooking is done by getting the function address of each function withrdgétiRiress,

inserting a jump opcode at the start of each function to go to our own hbokein,

66

running some of our own code in preparation for calling the originattitmccalling the
original function, running our own code again after the original funetturns, then finally
returning control back to the user program. As nearly all @llocs (including those from
3rd party libraries) go through these Rtl functions, we are ableffectively hook all

memory allocation a program does without needing to recompile or modify ang souie.

Each time one of our hooked functions is called, we walk the stadkeotalling
thread in order to determine where the allocation originallyimwed. The stack saves the
return address of every function call. While walking the stack,gemerally encounter
several different layers of abstractions in libraries, which ugeally can ignore. For
example, a C malloc call may jump from a user module's DLIhaaC runtime msvcrt.dll,
to the kernel32.dll HeapAlloc, and finally to the ntdll.dll RtlAlkdeHeap. There may be
several stack frames defined in each of these successive s)dolutleve primarily want to
find the original user's module. We can find which module owns whicberarf code
addresses by enumerating the modules and their regions of mentbryhei Windows
function CreateToolhelp32Snapshot using the TH32CS SNAPMODULE subfunction. We
continue walking the stack until we reach an address that i®fpme user's module. This
gives us the return address in the user's module, which we cantdmasieinto the original
line of source code if need be, either through a debugger or manuetyiled usage

information for the memory leak detection can be found in the Appendix E.

4.8 Crash Reporting

While crash reports and debugging may require advanced system kngqwiexige
provide some enhanced information to make this somewhat easianaétgder debugging
on remote systems, where a debugger might not be installed. An exaraph report is

shown in Figure 4.10.

If run on a local system with a debugger, similar information wdo¢ seen.
However, it may be difficult to determine the module that catisedrash, especially if the
crash address occured in a system or third-party DLL féeaBse SAPPHIRE supervises all
of its threads, it knows which thread belongs to which module. So, ttieleawiare can

immediately determine the offending module.

67

For a crash involving a trashing of the stack, it may be iniplesso get any
information from a stack trace, whereas knowing which modulehtiead belongs to would
be an important start (especially in a multithreaded systemvingotozens of threads). If
the stack is intact, a full stack trace will be provided alonf ¥Wie module that owns each
stack frame. Although symbols are not immediately available tlwmcrash report, some
common compiler tools such as dumpbin may be used to find what fun¢teoaddresses in

a stack trace belong to, providing some additional help for debugging.

For remote systems where a debugger is not available, this détdne crash report
are conveniently saved to a file on disk, which can then be senttbaitle respective
developer. With some knowledge, it may be possible to use the crashtoejpace back the

crash to the offending code.

To support crash detection in a way that allows both catchingréisé and still allow
SAPPHIRE to be run under a local debugger normally, we use the Windows
SetUnhandledExceptionFilter function to set the application's gloash drandler. Although
other methods of exception handling exist, they were unable to proieddl§r behavior to

both catching the exceptions and using a debugger to debug the exceptions.

1 --- crashed ---

2

3 exception code: c0000005

4 exception address: 7746e582

5 exception thread: 1910 (hud.dll)

6

7 eax=000004f6 ebx=00000000 ecx=76170958 edx=DO

8 esp=lacdflb8 ebp=lacdflcc esi=000004f6 edi=0€f@00

9

10 code bytes (ntdll.dll+0001e582) : fO Of ba 8000 83 e4 ca 00 00 64 ...

11

12 stack frame lacdflcc : next: lacdfld8 761172d@ ntdll.dll+0001e582
13 stack frame lacdf1d8 : next: lacdf210 760e460i7 msvcrt.dlI+000472d9
14 stack frame lacdf210 : next: lacdf72c 066e3480 msvcrt.dlI+00014697
15 stack frame lacdf72c : next: 04c18d68 004041Bahud.dll+00003430
16

17 --- end crash report ---

Figure 4.10: Crash report of the hud.dll moduleshilag when a bug is intentionally introduced

68

4.9 Video Processing Considerations

Working with video data at a full frame rate of about 30 framesspeond in real
time can require a great deal of processing power. Although sajhddwvel functions may
exist (e.g., GetPixel(image,x,y) to get the pixel value of imagethe specified X,y
coordinates), these are rarely efficient ways to accessndige data. In order to maximize
throughput, it is necessary to minimize overhead to functions like lthstead, we should
access the data directly. Images usually consist of a pointke tvideo data, width, height,
bits per pixel, and stride. Although the meaning of most of theselaious, the stride is a
lesser known term. The stride refers to the number of bytes éetvevs. Usually, this is
equal to the width (number of pixels in a row) times the numbeéwials per pixel (bits per
pixel divided by 8); however, this is not always the case. For gheartine cropping module
(autoresize) in SAPPHIRE that creates a cropped image bas#te amon-black visible
region does not create a new copy of the video data, as this would t@sof time and
memory. Instead, the cropping module refers to the original videoatat parent packet,
and then creates a new video data pointer at the top-left ofdppett position within the
image. The width and height are modified to reflect the cropped video data in aetedata
packet. The stride, however, remains the same as in the opgneait packet, since its video

memory has not changed.

To address a pixel directly, the address is calculated asavioheb->data +
y*metavideo->stride + x*metavideo->bpp/8). For an 8-bit imageg. (grayscale), this is cast
to an (unsigned char*) and read in as a single byte. For a 3@wfe (which most of
SAPPHIRE's video data is), this can be cast to an (unsigned mit*ead in all the channels
in the pixel at once. The 32-bit video data is stored in BGRA forsuath that the lowest

byte is blue, next lowest byte is green, and next byte is red.

Depending on the algorithm, as a point of optimization, it may be wuimal to
calculate the address of the start of the row only once, and énativiely read each pixel in
a row without recalculating the address from scratch. This redineeamount of pointer
arithmetic. For simple video operations where very little maticisally performed at each

pixel, this can greatly increase the performance. The key pbigc¢hat there are simply a

69

huge number of pixels — for example, 720 x 480 x 30 = 10 million pixelss@eond.
Spending even an extra 10 clock cycles (which is a very smalurnper pixel could
equate to 100 million clock cycles, which could be several percent of ovetdlu€®ye. It is
easy to see how even trivial operations at each pixel data @oinbe multiplied into a
significant costs. This is exacerbated for high-definition videoyevii820 x 1080 x 30 = 62
million pixels per second. For simple operations, the overheadcalictdating the address
could even exceed the cost of the actual video analysis. Loop untmflipgpcessing several
pixels at once may also be used to reduce overhead costs wtdhesize module always
ensures that video widths are a multiple of 8, as that is a rewntefor the mpegwriter
module. So, in many cases, processing pixels in multiples of 8khdswa good idea to
improve overall performance. Many of the common core components anaizauti using
x86 assembly code to provide extremely fast processing for tngéired or common
overhead modules that would otherwise already exceed the processiegfpowa typical

computer workstation.

4.10 Evaluation of SAPPHIRE

It is difficult to evaluate the correctness of every aspeauch a large project. We
have attempted to do this through design review, case study impégimenconsistency

checking, stress testing, crash detection, and error reporting.

4.10.1 Case Ctudy I mplementation

To show that our middleware is able to function as designed and p@violeust
environment for programming, we implemented two case study prsgfane program was
a port of an existing video analysis program, EM-Capture, to uBBMRE, while another
was an extension of EM-Capture, to perform complex analyses irpravdie real-time
feedback to physicians in a real clinical setting. Both ofdhexperiments have been
successful in their goals and in showing that SAPPHIRE could rekaiplport them. These

case studies are discussed in greater detail in Sections 6.9 through 6.11.

70

4.10.2 Consistency Checking

A special option when used to start SAPPHIRE, -check, will clneseniddleware to
enter a testing mode. SAPPHIRE will continue to function as alprexcept that various
built-in testing and debugging code will be executed at certaiestim order to validate
some operations and check the consistency of the internal stagemofddleware. This is in

addition to enforced consistency checking that is always turned on.

For example, when a module pushes a packet to the system byg callin

emcPushPacket, this normally involved several steps, where evgnthalpacket is added
to the tail of a linked list of packets. When -check is used amaPashPacket is called, the
internal state of the packet linked list is first checkedefwors. If any errors are found, a
report is displayed as such. Then, the packet is pushed. The stagelioked list is again

check for consistency. Consistency checking is also done at setleealtimes, such as
packet release, validating the continuity of modules' packetstames, etc. This automated
checking has successfully found several bugs at various sthdeselopment, both as part
of the middleware and for module developers. As a result, we have la mue robust

system.

4.10.3 Stress Testing

An option is available with the mpegreader.dll module that will cabheesource
video stream to enter a stress test mode. In this mode, whiledd®(s) specified will still
be played, the size of the video is constantly varied to simdptdly changing conditions
that could rarely occur in practice for our case study (e.g., eop@dmeing unplugged but
still giving a partial video frame). As many modules in outtesysalso depend on whether
the video is part of a procedure or not, the video stream is aldeedlaut often in order to
simulate entrance and exit segments. This causes several modsveisch states back and
forth between inside and outside, faking the occurance of many presedua short period
of time. This stress testing mode has found numerous bugs, and héaeeaisaseful for
tracking down bugs that occur too slowly to notice normally due t@¢barances of those

bugs not happening often (such as leaks of memory when a new procedure happens).

71

4.10.4 Error Reporting

As we have run SAPPHIRE in a development environment for seyesaad (since
2008) and in a live clinical environment since 2010, we have had manytwpmfes to
encounter errors, from developers implementing modules, from teBting physicians, and
from our automated error reporting systems. The combination andyvafieurces for

errors to be discovered and feedback in general has increased the robustness obmwor platf

411 Summary and Future Work

SAPPHIRE supports a wide variety of features expected framtiprocessing
middleware while simultaneously making the development process sigher compared
to traditional programming practices and other existing work. SARBtsupports a wide
variety of features. However, it is possible that in the futesunforeseen features would
be requested by developers that could require changes to the naiddleMre modular
design of the middleware has, in the past, made adding new feataps both for the

maintainer of the middleware and for the module developer.

The middleware does provide some common built-in modules, however, atteere
still relatively few modules compared to the huge libraries éxast across the internet.
Although most of these libraries can be used within SAPPHIREh weidditional
programming on the part of module developers, it would be much simpireyifwere able
to use them as built-in modules. For example, to encrypt data, ayptowrlibrary would
need to be interfaced with (or code developed) by the developers MesnJdne developer
might choose to simply include the calls to encryption in their own module (ser@baie a
new module that supports some data types that could be used to par#ieliencryption
process. It would obviously be better if these common types ofiébravere built-in to
SAPPHIRE to reduce the work for developers, and improve theesffigiof programs by
ensuring the libraries are implemented with proper parallel task design.

While SAPPHIRE has been primarily designed and tested for Iegsiem
development (e.g. a single computer and attached devices, such &3, av&®ould like to
have enhanced support for cluster, grid, and cloud computing. Although we dedmge
capabilities to handle this, it would not be as simple for a devetopgse cluster resources

72

for multiprocessing in SAPPHIRE as it currently is to ugePBHIRE for a multicore
computer.

Although SAPPHIRE has a default program that parses and wsediguration file
which is just a static text formatted file, it would also palssto change this to something
graphically configured, allowing a graphical specification of agpam. Also, instead of
static modules that are only loaded at program start, it would Isébfgoto add support for
dynamic loading/unloading of modules at runtime (e.g., if users'sneedpecifications
changed during runtime, but the system cannot be brought down due to ssnoa wkritical

software concerns).

73

CHAPTER 5. TASK SCHEDULING OF STREAM PROGRAMSON

HETEROGENEOUS SYSTEMS

In this chapter, we present a problem formulation of task schedulingtrieam
programs on heterogeneous systems such as workstations withoreul@®Us and/or
Graphical Processing Units (GPUs). Examples of streanrgregare analysis of images
during a medical procedure for computer-assisted surgery or computer-aekursgr Next,
we present a heuristic algorithm for task-to-processor allmt that assigns tasks to
processors and a scheduling algorithm that determines schedules of thesmglexlao a set
of processors. We report the evaluation results of our algorithms oesnfmathe closest

related work.

Task scheduling for non-stream programs has long been studied. Hilel gask
graph (PTG), as shown in Figure 5.1, is a commonly used data structure tenefiresasks
to perform (nodes) and communication between tasks (edgedsbatedine dependencies
between tasks). The makespan is often the main performance. r@etnisider all paths in a
PTG from the source node to the sink node in the graph. The lengtbatii & the sum of
the cost of all the nodes and the edges in the pathcritleal path from one source node to
one sink node is the length of the longest path among all the paths étvwse two nodes.
The length of the critical path from start (source) to emik)sfor an overall program is
called themakespanThe scheduling of a particular task is not just based on whe il
predecessors have completed, but also when there is availablespr@pda®me on some
processor. The step of deciding which tasks to run on which processoadied task
allocation or task-to-processor allocation. In a system wiimiged number of processors
(less than the number of tasks), task scheduling is an NP-Conpptétiem [22]. Thus,
many heuristic algorithms were proposed for homogeneous and distniaiveoiked
heterogeneous systems. The heterogeneity was typically in terms qirG&ddsing speed.

For stream program scheduling, the problem is even more complkeaclasask must
be run potentially millions of iterations over a stream of incomitaga items. When

heterogeneous processors (such as GPUs with CPUs) areghesedpblem becomes more

Figure 5.1: Seven task3y(..., F) are shown in this PTG with, as the source node aiidas the sink node.
Each node has associated cost (execution timekg Ealg no cost in this exampfon top of each node denotzas
the earliest start time of the nodedenotes the output time of a given input. Tagkannot start until both of
its inputs are ready. Hence, the earliest stam tfil;is the maximum end time of its input nodesandTsor
max{7,6}, respectively. Tracing back frofy repeatedly in a similar way to the source nodeg®il the nodes
along the critical pathf; 2T, 2T, 2Ts 2T-. The length of this path is 8 shown as the valug. o

difficult since choosing one architecture over another for a péatitask adds another level
of complexity. Differing amounts of speed up can be obtained fronreliffeasks by using
an implementation that utilizes GPUs over one that does not. Fopkxanhile one task
may run twice as fast by using GPUs, a different task mayaur times as fast. The exact
speed up cannot be easily uniformly estimated, and existing workriyadeen done by

normalizing different CPU speeds to the slowest or a reference CPU speed [25]

Task scheduling is a well-studied field with decades of relate#t. We discuss only
the most important concepts and results that are related to okirawdrsummarize most

relevant existing work in Chapter 2.

5.1 Our Contributions

We develop a new static task-scheduling framework for streamrgms on a
heterogeneous multiprocessor system defined as a computem sy#fe one or more
multicore CPU and/or one or more GPU. Our framework does not unroliginal PTG as
in a recent existing work [22]. Partial graph unrolling of theindPTG increases the graph
size. For real applications with 10 to 100 tasks, the unrolled grapgklydiecomes very
complex. Most importantly, our framework supponteterogeneousmplemerdtion (HIT)
choiceswhere one task may have several implementations: CPUmedtiling, CPU-GPU,
etc. It is not uncommon to have several implementations, espdoiallilizing GPU, since
software development is often done iteratively to improve the spédtie execution.
Running all GPU capable tasks on GPUs may not yield the bdstrpance since they all

75

compete for the same computing resource (a limited number of GBWs)framework
automatically chooses the best configuration (which implementatioich processors, and
which time to execute the task) for each task. To the best dirmwledge, we have not
found any existing task scheduling that supports HIT.

The framework has two major steps. (1) Task allocation that ressasks to
processors (CPU and/or GPU). This step is optional, but provides ficsignbenefit to the
next step. (2) Task scheduling determines schedules of the tas@gsedsto a set of
processors. Given many tasks in a stream program that runs oveanti®ws millions of
inputs, our framework reduces tedious and complicated work for proggesto manually

assign tasks to processors to achieve optimal performance.

We formulate the task allocation problem with HIT support as d lmalancing
problem that optimizes the maximum load (execution time) amortyelbrocessors in the
system. Given large inputs, we proved that this maximum load appresimatkespan of a
stream program to within a negligible amount of error. This prolftgmulation enables us
to have a simple heuristic load balancing algorithm ca{lddlT that solves the formulated

problem.

For the final task scheduling, we develop a variant of eafimshed time first for
stream programs callegtream-EFTWe evaluate the performance of our K-HIT algorithm
and Stream-EFT algorithm against cyclic scheduling a$ agebpartial unrolling [22][42].
The simulation results show that our approach outperforms the exadgjogthms in terms
of the makespan of a stream program, while maintaining reasotiaildeand memory

requirements.

5.2 Drawbacks of Related Work and Features of Our Work

Our task-scheduling framework does not require graph unrolling formtbst
computationally intensive parts, to avoid significant increase in atplof the problem as
aforementioned. Unrolling can be especially costly for algoritthatsrun in higher exponent
polynomial time or exponential time. Writing GPU code for maasks$ of a program and
then running all GPU capable tasks on GPUs may not yield thegpddstmance since they

76

all compete for the same computing resource (a limited numberPbfs}c To consider
whether it is better to run a particular task on GPU versus CPU, at least siamseaf a task
must be available: one that uses only CPU(s) and another thatlznGPU(s). For GPU
tasks, it may already be the case for two versions of adds& available, since typically a
CPU version is written for prototyping and testing before a GPtdioe is written for
improved speed. When more than one version of a task is available ammhemgeds to be
executed, we call thiseterogeneous choic&his is a feature of our proposed work that is
not discussed by the related work. Another common restrictionatedelork is that once a
task is scheduled on a processing node, it runs until completion withouaiptiee. It may
not always be necessary in practice to keep this restric®nmodern processors have
hardware preemption available. In addition, this restriction ofterepts\some related work
from yielding an optimal solution. While some variations of cyslkteduling may allow
preemption within a single iteration [42], it does not allow for preteon between iterations,
requiring unrolling and thus a blow-up of problem size. The relatmdk in partial graph
unrolling did not allow for preemption. Our proposed method allows for préamiot the
form of bubble filling where we attempt to fill unused periods of processor time (bubbles)

with tasks that have yet to be scheduled.

It should be noted that the task scheduling preemption we refdfdrsdrom typical
OS task scheduling in that OS task scheduling generally drigs tfair" by giving each task
a time-slice in round-robin fashion. Each task is continuously prednipteother tasks,
effectively causing a worst case scenario of end timetasis. Because future dependents
cannot run until their dependencies have been satisfied (i.e., thosdnaaskseached their
end time), this also causes large delays in the PTG. We acemmdrned with fairness, but
rather, overall program completion time, where preemption might make sensdrcsame

cases but not in others.

Our framework consists of two major stepiask allocation (optional) andtask
scheduling While some algorithms include task allocation as part eif ttask scheduling
step, other algorithms can significantly benefit from perforntas allocation as a separate
step before doing task scheduling. Once a task is allocatesktabfprocessors (CPU and/or

GPU), the task is executed on the assigned set of procéssoin® entire duration of the

77

stream program. Different tasks processing different inputsselmeduled using our task

scheduling algorithm.

5.3 Problem Formulation of Task Allocation of Stream Programs

We use the following assumptions for our problem formulation and proofsusé/e
notations in Table 5.1 to describe a set of tasks, processor semifiand other important

information for the problem formulation.

Assumptions: (1) at least one task has a dependency on itself from previcatsoite
— this is suitable for applications where decision is made based on the order of pgo¢2ssi
cost per task is static as assumed in Satish’s; (3) adask (ts profile is chosen) runs on
that same set of processors using the same profile in subséqtegians; (4) preemption is
available. We focus on scenario where processing time greatly exceedsmoation cost.

Table 5.1: Notations for the task allocation problem

Notation Description

T={Ty, To,..., T} Set of n indivisible tasks in a stream program

Set of d computing devices (processors) in the system wkere D

D ={Dy, Dy,..., Oy}, denotes device (processor) k

Set of profiles where;Rlenotes profile j for task i where j is an

P={P11 Pra-... A} integer corresponding to a processor configuration B

A processor configuration in whichybis O if processor m is not

B(by, by b) used, 1 if it is used, and 2 if it is used only for a comparatively
e small amount of time as a support processor (such as a CPU used

to launch GPU code)

Time spent on task i by processor k using profilgijsi3™); the

Pijx profile is the number represented by the trinary sequence B.
P'V'i,j,k Memory required by task i on processor k using profile |
s, S, = 1if profile j is used for task i;
! S, = 0 otherwise
c Set of constraints; for instance,"C denotes the amount pf

memory available for processor k

78

For the problems where tasks do not have dependency between iterteehs state

scheduling algorithms may be considered instead [72].

Since a task may have different portions of itself running on difteprocessors, we
use profiles of different processor configurations to model #asirement. Suppode =
{D1, Dy, D3, D4} whereD; andD, representCPU; and CPU,, respectively andd; andDg4
represenGPU, andGPU,, respectively. For example, the processor configurdidr0,1,0)
indicates that only CP{and GPY are utilized. For this configuration, the profile number is
1.3+ 03* + 1.3' + 03° = 30.P;« is used to capture execution times taken onitgsiofile
j, and by processdt For the above profile number 30, we have value®¥og 1andP’ 303
For instance, R 301 of 3 indicates that processor 1 (GPdpends 3 time units to execute
task 1 whereas P33 0f 6 indicates that processor 3 (GfPttakes 6 time units on task 1.
Invalid profiles have special values to indicate that they reoe valid. For instance,
configurationB(0,0,1,1)is not valid since we cannot run GPU kernel without CPU (even a
tiny amount of CPU time is usually spent to setup and launch a keRi¢l). While CPU
might only be used for support (e.g., to launch a GPU kernel),\itinséead be taken full
advantage of in order to do additional processing. The trinary natuB hefndles this
difference.

Problem Definition: Given T by a program specificatiol) andC by a hardware
specification, andP through automated profiling on the intended hardwiard,the matrix S
that minimizes makespan approximated by the maximum load (execote)natross all
processors as shown in Objective (5.1).

minismize{maxload: mka{Z(PTi,;,k ‘S,)D (5.1)
ME Z(S.,j)zl (5.2)

‘v’k[Z(PMi,j,k-SJ)SCMk} (5.3)

79

In Objective (5.1), the time spent on tasky processok using profilej, PTi,j,k, is
accumulated with other tasks on the same procésSgiis 1 (i.e., profilg is used for task).
Constraint (5.2) allows only one profile per tagkonstraint (5.3) describes a memory
constraint that the amount of memory required Bypabgrams allocated to a particular
processor cannot exceed that processor’'s assoaméedory capacity. Some additional
constraint equations could easily be added usiisgniiodel to support real-time deadlines or
other desired effects.

The formulated problem is an integer linear prograng problem, which is NP-
Complete. Before we discuss our heuristic solutvoem present Theorem 1 used to justify the
validity of Objective (5.1).

Theorem 1. Minimizing makespan of a stream program over gdanumber of
inputs is approximately equivalent to minimizing thnaximum load (execution time) across

all processors.

Makespan of a stream program is the length of thieal path of the program PTG
over all its inputs. In this paper, we focus on $eé of problems where communication cost
between processors is considered negligible cordpréhe computation cost. GPU is a
good candidate for this problem set. We set the @dgt to zero and include in a node’s cost
any computation cost involved to transfer data ketwtasks. Any communication cost
incurred outside of computation cost could be aately represented by creating a virtual
node on a virtual processor that represents tha wlahsfer cost of that communication
(edge), but incurs no additional computation c@ét. will investigate this possibility as part

of our future work.

With Assumptions (2) and (3), the execution timeliffierent iterations is same. Our
proof does not need to consider statistically Adsumption (3) simplifies the problem and

avoids processor switching overhead.

80

Table 5.2: Notations for proving Theorem 1

Notation Description
Nij Node represents task j of iteration i for inp@eig., frame i)
o] A graph containing nodes and edges of the origiRdlG for only

iteration i; all g’s nodes and edges are same between different i's

Gi PTG consisting of all nodes from iteration 1 terdtion i including
added edges between iterations

cosk(Ni;) Node cost — execution time of nod¢e N

cosb(N;; ?Nix) | Path cost — sum of the time taken by all nodeagthe critical path
from N, to N, including N;j and N

Nic A cut point node at task c in iteration i

Table 5.2 shows the notations used for the prodfh@reom 1. Figure 5.2 shows an
unrolled PTG of Figure 5.1 over a number of itenas$i, each processing one input. Note that
an unrolled graph is used only for the proof; vitie proof, it is no longer necessary to unroll

the PTG for our heuristic solutions.

We first consider simple cases for homogeneoussystWe present the proof for
case | when the number of tasks is at most the suifipprocessors. Each task is assigned a
distinct processor for maximum parallelization. YWen map the problem with the number of
tasks more than the number of processors (case tiat of case | and utilize the results of
the case | proof. Next, we handle choice of hetmegus profiles. We use notations in
Tables 5.1 and 5.2 for the proof.

81

i
! /
1
. v .
Iu \‘S.max{S.S}’ ~ Sax{4.6}
!
|

Simax{S1+1, ; S:imax{S_o+1,
Si12t1} l Si1.472}
]

lteration L

Frame L ﬁ
. Simaxd{S, z+1,
S:max{Syi+1, Su1 ot}

St}

Stmax{S_ 42,5 15+3}
]

Critical Path of
G1=N1‘1—)N1‘2—)N1‘4—)

S:max{7,6,0} Nig> Niz

1
| Critical Path of
l, GZ=N1‘1—)N1‘2—)N1‘4—)

| Nig> Nz Nay
! S:max{10,10,8}

Critical Path of
Ga=N1 12Nj 32Ny 5>
Nzs=> N3s=> Ni7

S:max{13,14.11}

E:15

Critical Path of
Gy=N1 12N 32N>
\ Nzs> Nys> Nas> Na7
| S:max{16,18,15} '

Critical Path of
GL=N112Ni32>Ni52
N2‘59 N359 N4I59 I

Simax{S s+3, SN >N
Ty Ls L7

Figure 5.2: Unrolled PTG of Figure 5.1. Notatioms the same as those in Figure 5.1 and Table Hi@&enS
represents the start time of a node. Tthdteration processes frameA black dashed line between iterations
indicates that a task in thi iteration must finish first before the same taak proceed in thie-1th iteration.
For the unrolled graph of two iterations,@e cut point node i, ¢. For unrolled graphs of three iterations or
more, the cut point node becoméss and remains at this node. The critical path ofgreph of frame 1 to

framelL is labeled as a blue dashed line.

Casel: The number of tasks is at most the number ofge®sars

Base step: Gconsists of nodeBl; 1,

..., N.n with the same number of nodes and

edges as in the original PTG of the given streaognam. LetN; ; denote the source node

and N;, denotes the sink node (virtual nodes with no cast be created for the sake of

having a single source and single sink node if e&ag). The makespan Gf is same as that

82

of the original PTG. The critical path is the p&ibm the source node to the sink node with
the longest length. See the critical patltgin the upper-right corner of Figure 5.2.

We add nodes of the next iteratignto G; to form G,. Each node im; will have a
directed edge drawn to its corresponding nodg:ito represent a temporal dependency (as
in Satish’s technique [22]). Thus, for all tgsla directed edge is added frdp; to N,;. We
already know the critical path @,;; we compute a new critical path f@,. Although the
source node o6, is the same as that Gf, the sink node changes from the final node of
iteration 1 Ny) to the final node of iteration ¢ ,). The only way to draw a path from a
node in iteration 1 to a node in iteration 2 isngsone of the newly added edges that goes
from Nz to N, for somej (Assumption 1)It would not be possible to form a new critical
path to N; without going through one of these edgé&he new critical path oG, will
include a "cut" at some pointin Ny to N»;, with a new edge fronN;; to N,;. The new
critical path will run as usual along nodes in tfiest iteration until its cut point, i, where it
then jumps to i and continues along that pathiFor instance, in Figure 5.2, the critical path
of G, results in the makespan of 11 which is derivedhftbe earliest time its input is ready
(the maximum end time of its immediate precedinglenan the same iterations and the
preceding node in the previous iteration or npg N2 5, N1 7} which is max{10, 10, 8}. To
break the tie for the same cost, we choose thieciit. Hence, to get all nodes in the critical
path, we trace backward froM, using a similar method until the source ndde; is
reached. The critical path & goes fromN; ; to N1 g, cuts atN; g to N2 g, and continues from
N2.6t0 N2 7.

Let N1 be the current cut point. The critical path lengfhG, or the makespan

considering only 2 iterations can be derived ugrgression (5.4) whelie= 2.

coSh(N1,1 N1 o) + (i-2)*costy(Ny o) + cosk(Nic >Nin) (5.4)

Inductive StepWe consider the critical path in the base caseandw candidate
critical path created in a similar way to foi@». Let N; . represent a cut point of a new

iterationi>2. Ny ¢ is different fromN, c when there exists nod¢ . different fromN; . that

83

satisfies Inequality (5.5). In other words, a newical path cutting through a new cut point

results in a higher execution time.

COSB(N1,19N1,C) + (i-Z)*COStN(lec) + COSb(Ni,c 9Ni,n) <

CcOSk(N1,12N1 ng + (i-2)*costy(N1ng + cOSH(N;i nc >Nin) (5.5)

As the number of iterations increases, the crifieh will divert to use the maximum
node cost as the cut point since the length otthieal path of eaclt; increases the most
whencosiy(N1,nd is the highest. Figure 5.2 shows that in iteraBptthe cut point changes to

N1 s instead oNj 6.

Over a large number of inputs (thousands or miliohinputs), the iteration term (
2)*cosky(N1, dominates the other two critical path terms. Tlsishecause the maximum
value of the critical path terms combined is appr@tely limited by, at most, the sum of the
costs of all the nodes in the original PTG (ahim¢ase of a serial program where the critical
path runs through every task). The iteration terthaventually converge to using the node
with the highest cost. Wharis equal to the number of nodes plus three, #ratibn term is
still at least the sum of the critical path terimsthe worst case. Asincreases, the iteration
term continues to grow while the critical path terramain the same. The significance of the
critical path terms, in the worst case, may be @yprated by the number of nodes divided
by the number of iterations. Because we expectntimaber of iterations to exceed the
number of nodes of the original PTG by a significamount — perhaps 10-100 nodes in the
original PTG compared to over a million iteratidos the overall program — the significance
of the critical path terms could be lower than 200 million = 0.01%. Hence, minimizing

makespan is approximately equivalent to minimizimg maximum cost node.
Casell: The number of tasks is more than the numberatgssors

The primary difference when there are fewer pramessthan tasks is that some tasks
must share a processor with another task. Thistegeeompetition or contention for a

processor’'s compute time. Instead of all tasks inghnim parallel, tasks that use the same

84

processor need to run in serial of each othertdmks that run on different processors can

still run in parallel.

To handle this difference, we need to modify Expi@s (5.4). While the meaning of
the expression remains the same, we modify thet@@tion cost, which originally used the
cost of a single node (representing a single tdsisfead, the per-iteration cost uses the
maximum processor load among the processors onhvihat task executes. Because the
load of a processor is the sum of the costs dhaks that run on that processor, it is easy to
see that the effective time between a task beiegugrd on successive iterations is the total
load of the processor that task runs on. Thuss ttarrect to use the processor load time
instead of the node’s cost, as seen in Expres&d). (We use thenaxloadas defined in
Objective (5.1). For tasks that utilize multipleopessors, we use the maximum load out of
all the processors the task uses, as this willraete the time between successive iterations
of the same task. While the meaning of the cogisesenting the critical paths to and from
the cut point remain the same from Expression (3hBse critical paths must reflect the
critical path taking processor contention into asdo These terms are still insignificant
compared to the iteration term from Expression)(5.6

cosb(N1,12Ny o + (i-2)*maxload + cost(N; . 2Nin) (5.6)

Dealing with heterogeneous choice among task#ien we have heterogeneous
processors, the same task is likely to take diffetienes on different processors, resulting in
different costs for the same task. While some lmeposed a normalization of all costs to a
single reference processor speed [25], this apprdaes not work in practice due to variable
speedups dependent on the task implementation racdgsor types (e.g., when running on
GPU instead of only CPU, one task might get 4x dppend another task might only get 2x
speedup). To properly minimize the overall cost,ceose the profile (and thus allocation)

that will minimize this maximum load across all pegsors.

85

54 Load Balancing Algorithmsfor Task Allocation

5.4.1 Brute Forcewith Pruning

We implemented a simple brute force solver for Ibathncing. Because our method
does not require loop unrolling, the number of saslan remain fairly small for many
programs. The brute force algorithm tries every loioration of load balancing of tasks
(based on their profiles); however, it prunes digibs to reduce redundancy (e.g., having
two homogeneous processors' loads exactly swagmedalso keeps a running best solution
to prune searches when any load already exceedse#tesolution. With our generated PTG
benchmarks described in the performance evaluavencan compute an exact solution for
20 tasks on 2 CPUs and 2 GPUs in under one sedoreh though 20 tasks may be
completely realistic in many cases, brute forcesdua scale well. Therefore, we introduce a

simple greedy algorithm calld¢-HIT.

5.4.2 K-HIT Greedy Algorithm

K-HIT considers all combinations of profiles usidgtasks at once out of the total
number of tasks in the PTG and selects the one ioatitn with the minimum makespan.
This is applied repeatedly until no further improent can be made. This is applied to load
balancing for a single iteration. This is a greediution and will eventually result in what is
probably a local minimum rather than a global mimm Increasing K allows the algorithm
to break local minima more easily; however, it disreases the exponent of this polynomial
time algorithm O(rfl) where m is the maximum number of profiles fomskt We found that
K=3 works well for most of our simulated graphsadsed in Section 5.5 and that K=4 does
not improve the quality of the solution by much,aif all. Without HIT, this problem is
similar to the n-partition problem, a well-known M®mplete problem [22], for which
several heuristic algorithms exist. There are a#wer heuristic algorithms specifically
targeted toward load-balancing. It may be posditmesuch algorithms to be augmented to

support HIT and used in place of K-HIT.

86

55 Algorithm for Task Scheduling

We schedule all tasks for one iteration at a tistaiting from the first iteration until
the last iteration when the last input is proces$¥dhin a single iteration, we use EFT to
schedule all tasks for that iteration. We call thegiation on EFT for stream programs
Stream-EFT. Although scheduling is performed farheiéeration, it is done independently of
other iterations; thus, unrolling the task grapma necessary, saving time and memory.
However, some state information is saved betwesations. Bubble filling is able to reduce
idle time between iterations compared to methods ahly repeat the same schedule of one

iteration for all the iterations.

5.6 Experimental Setup and Results

In order to compare our proposed algorithm witlated work, we generate various
synthetic stream parallel task graphs as input. gb& is to determine how well each
scheduling algorithm works with different typesstfeam programs. We generated our own
PTGs for benchmarking.

5.6.1 Graph Generation

Problemswith Existing Benchmarks

Although some existing PTG data sets exist for berarking purposes (e.g., [73]),
they are not necessarily intended for stream prograWe also did not find any that
supported HIT. Because we wanted better controt thes parameters of the graph (such as
the degree of parallelism, number of tasks thapstHIT, and to what varying degree they

support HIT), we implemented our own graph generama simulator for testing.

Types of Graphsand Graph Generation

A common target stream program used for benchmgrks that of MPEG
compression. The program usually involves a lomglpe of steps that includes some small
amount of parallelism and, overall, many seriak$a®?]. We wanted to generate similar
graphs as seen in real-world scenarios. Thus, euthgraph generator, we can specify the

minimum, average, and maximum degree of dependenbetween each task; this

87

determines the amount of parallelism in the ovegaiph. We also wanted to compare
algorithms against mostly serial and mostly para#iek graphs to see the effects that those
have on performance. We primarily focus on the ity#TG, which contains a realistic
amount of both serial and parallel computation. $\eulated and averaged the results for
the simulations of 20 hybrid PTGs.

For the serial graph, we chain together 20 nodesiiies so that each node has only
one dependent, except for the final sink node tRk@parallel graph, we start with one source
node, link 18 dependent nodes directly from the@®unode, then link all those nodes into a

final sink node. So, those 18 node can all runairajtel.

Table 5.3: Descriptions of scheduling algorithms

Algorithm Description

Cyclic scheduling with HIT added; brute-force ids
Cyclic to compute the optimal cyclic schedule for one egycl
which is repeated.

u)

Partial unrolling (PU) without preemption; PT(
unrolled 10 iterations for computing a schedulehwit
PU w/o Pre. (10) DLS augmented to support heterogeneous choice,
which is then repeated as necessary to fill alluiesp
iterations (e.g., 2 iterations).

PU w/ Pre. (10) Same as previous, but with preemnpghabled.

Proposed K-HIT and Stream-EFT algorithm without
preemption; load balancing is computed over a sngl
iteration, then the resulting task-processor alltea is
applied to the original PTG for every iteration.

K-HIT + S-EFT w/o Pre.

K-HIT + S-EFT w/ Pre. Same as previous, but withgonption enabled.

Proposed work limited to scheduling for only [10
iterations, without preemption; load balancing |is
computed over a single iteration with K-HIT, théwe t
K-HIT + S-EFT w/o Pre. (10) | resulting task-processor allocation is applied toe
original PTG for 10 iterations for computing a scluge
with Stream-EFT. The resulting schedule is repédat
end-to-end to account for all required iterations.

K-HIT + S-EFT w/ Pre. (10) Same as previous, buhywreemption enabled.

Same as previous, with preemption, but schedulmg o

K-HIT + S-EFT w/ Pre. (1000) the original PTG for 1000 iterations.

88

For generating the randomized hybrid PTGs, we chosaverage of 20 tasks for the
PTG, 1-3 dependents for each task, execution tonedich task on the CPU from 1-1000
time units, an average of 40% of those tasks awmghdiT-enabled, and a realistic speedup
range for HIT-enabled tasks on GPU from 0-9 tinpeeslup, where zero represents the same
cost (no speed gain) from heterogeneous proces¥BU) usage. The ranges for these
parameters were chosen in an attempt to get bemkbrt@be as realistic as possible with

real-world programs and GPU speedups.

5.7 Task Scheduling Algorithms and Features

The variations of task scheduling algorithms astetl in Table 5.3. Some minor
variations have been included to show the impaat those variations have on various

algorithms.

58 Reaults

The results of each scheduling algorithm and thairations are shown in Tables 5.4
through 5.6. The makespan as well as the time tékegenerate a schedule and memory
usage of the scheduling algorithm used to achieaerhakespan are included. All programs
were scheduled for?2iterations (equivalent to about 10 hours worthvidieo frames at 30
frames per second). Results are shown for a pwaipl task graph, purely parallel task
graph, and the average of 20 randomly generateddhtdsk graphs, which include some
degree of serial and parallelism between tasks.tfi®makespan, a percent relative to the
baseline algorithm "K-HIT + S-EFT w/ Pre." is us&dr example, a value of 200% indicates
that the algorithm takes twice as long. For aleéhtables, a lower value is more desirable.
All of these were computed on a quad-core 1.73GHz64) computer with 8GB of RAM.
The optimal cyclic schedule could not be computdtth Wwrute force for many parallel task
graphs because brute force examines too many pationg (over one day of computation
time was spent without any reasonable result). 8@ simulated DLS with preemption on a

fully unrolled graph, and it did not complete wittone day of computation time.

89

Table 5.4: Makespan

Algorithm Serial | Hybrid (20)Parallel
Cyclic 186.92% 126.08% * -
PU w/o Pre. (10) 153.53% 137.10% | 116.52%
PU w/ Pre. (10) 151.27% 135.06% | 112.53%

K-HIT + S-EFT w/o Pre. | 368.22%231.63% | 100.00%
K-HIT + S-EFT w/ Pre. 100.00% 100.00% | 100.00%
K-HIT + S-EFT w/o Pre. (10) 368.236226.26% | 100.10%
K-HIT + S-EFT w/ Pre. (10)] 139.13P0115.04% | 100.10%
K-HIT + S-EFT w/ Pre. (1000)L00.46% 100.20% | 100.04%

Table 5.5: Time Taken to Generate a Schedule (ms)

Algorithm Seria|Hybrid (20)| Parallel
Cyclic A7 | 1879452 | >1 day

PU w/o Pre. (10) 26 18 42
PU w/ Pre. (10) 42 33 41

K-HIT + S-EFT w/o Pre. 13961 22853 39590
K-HIT + S-EFT w/ Pre. 32542 48890 116561

K-HIT + S-EFT w/o Pre. (10 60 42 66
K-HIT + S-EFT w/ Pre. (10) 64 64 71
K-HIT + S-EFT w/ Pre. (1000) 92 126 173

" Due to the enormous computation time requiredrékalt for only the cyclic schedule is shown foedrybrid
graph rather than an average of the 20.

90

Table 5.6: Memory usage (MB)

Algorithm Seria|Hybrid (20)(Parallel
Cyclic 1 1 -
PU w/o Pre. (10) 1 1 1
PU w/ Pre. (10) 1 1 1
K-HIT + S-EFT w/o Pre. 1 1 1
K-HIT + S-EFT w/ Pre. 852 819 640
K-HIT + S-EFT w/o Pre. (10) 1 1 1
K-HIT + S-EFT w/ Pre. (10) 1 1 1
K-HIT + S-EFT w/ Pre. (1000) 1 1 1

180% -
B R N—————— A H S S kb
L U B B
PU w/ Pre. (10)
120% 4 - o T e Byl L
B
&100% K-HIT + S-EFT w/ Pre. (1000)
3 K-HIT + S-EFT w/ Pre.
2
L1 S
©
[
1 S I
T B B . B e B
1 Y i B s B e B
0% ; ; ; ; . . .
— [=] w — (=T o} o =+ ao o=t o ™ (] - -— - - o ™ =+ Lo w o [=] — [=] =+ 0 w - — o = (]
— o4 o =t w [==] — L=} o o w L — (=2} — L o w o4 o L=} =t L] = = -— L=} w [z=] =t o oW L]
— — ™ Ly =t w [=2] o o w w [=] -— [= — @ [™ ™ o = [=1 - [=] o™ o @
— — (o] ™ w - o o m - (=] o M= O =t w w (=] (o] (=]
T T o Mew 2 20 RYE R
Iterations

Figure 5.3: Makespan of select algorithms with eesfo the baseline for variable number of iteragifor a
hybrid PTG. Although some variability exists at Emnumbers of iterations, as the number of itengtio
becomes very large, the relative makespan stabit@show a clear pattern.

91

59 Discussion

The proposed work, K-HIT for load balancing ande&m-EFT for scheduling, with
preemption, yields a theoretical near-optimal reshht can be compared against. For
example, this algorithm vyields a final result fof® 2terations that is, on average, only
0.00026% larger than the maximum processor loan(the load balancing step) multiplied
by the 2° iterations. If the load balance chosen is optirtien this scheduling algorithm
also yields an optimal schedule to within a negligiamount of deviation.

In Figure 5.3, several algorithms are shown, sitedlawith varying numbers of
iterations from 1 to 2. Although at lower numbers of iterations, resuaits too variable to
draw any conclusions, when higher numbers of i@matare simulated (as would be seen in
stream programs), results become consistent. Aadilly, for our baseline algorithm, as the
number of iterations increases, the makespan asyicgity approaches the load balance

multiplied by the number of iterations, as showisettion 5.3.

Thus, computing an optimal load balance is veryartgmt. For small task graphs
(e.g., 20 tasks), regardless of the amount of Iseriparallelism between tasks, the actual
optimal load balance is fast to determine with &érairce; thus, an overall optimal schedule
can be found in a short amount of time. For largesk graphs where brute-force is
unrealistic, the heuristic algorithm used to comepiite load balance is the most influential
factor to the final makespan, as the final makespam still be computed to within a
negligible amount of deviation from the load bakarresult multiplied by the number of

iterations.

K-HIT is useful even by itself, when applied to &g task scheduling algorithms. It
can be used to supplement or as an alternativieettask allocation step of task scheduling
algorithms. For existing scheduling algorithms tlhadre augmented with heterogeneous
choice, this is an especially important step, asehexisting algorithms do not function well
with the additional nondeterminism of having to abe between different implementations
of the same tasks. K-HIT makes that choice in #sk tallocation step, allowing existing
algorithms to work in the same way that they wargimally designed to work.

92

For Stream-EFT, we schedule using the original Bia@sis not unrolled; however, to
allow preemption, we consider free time createanfiaubbles in prior iterations. Keeping
track of these bubbles over millions of iteratioeguires high (but manageable) bookkeeping
costs of time and memory. This cost may be somevéuaiced by computing a schedule on-
the-fly during execution time since prior bubblédime that have already elapsed no longer
need to be considered. Most of the time and mensospent traversing and maintaining a
complex tree and linked list structure that efintig keeps track of the bubbles. Near the end
of a program's execution, it is unlikely that thmokkeeping for bubbles at the beginning of
the program are useful. So, these resources caulfteled at the potential cost of a less

efficient makespan.

Preemption is very important for Stream-EFT togmad results. Thus, if preemption
is not desired, while K-HIT is still useful, it shldl be combined with an alternate stream

scheduler.

These algorithms establish a baseline proof-of-epnhcof our approach. The
combination of using the proposed K-HIT and StrdafT- algorithms along with an idea
similar to the partial unrolling work where feweenations are scheduled, but with many
more iterations "unrolled” (1000) than originallsoposed (10) by [22], yields nearly as good
a result without the disadvantages of high compmnaime and memory requirements as in
the proposed work alone. Note that the PTG is nagarally unrolled in this combination
since K-HIT and Stream-EFT do not require unrolliagonly the number of iterations
scheduled is different. Because there are feweblbalrreated in the process of scheduling
over only 1000 iterations, the memory usage nexeeeded 1MB for the graphs tested. It is
then relatively fast to replicate the resultingestie of 1000 iterations to account for & 2
iterations. Due to its very low memory and compatatcost, this approach may be the

preferred method in practice.

510 User-Mode Task Scheduler

In order to make our theoretical task schedulectmral, we investigated options to
implement a task scheduler without modifying theerating system kernel. Because

operating systems generally implement their tasledaler in kernel-mode, it is not possible

93

to easily specify our own scheduling algorithm &or existing operating system. So, we use

an alternate method where we approximate a tagdstdr completely in user-mode.

In an operating system, the task scheduler is resple for choosing a thread or
process (depending on scheduling granularity) toan each processor at any given time.
Although the actual algorithm for task schedulingywary, the mechanisms for multitasking
— actually getting tasks to switch — are typicdlhe same. There are two major types of
multitasking: cooperative and preemptive. In coapree multitasking, a task runs for as long
as it wants, until it decides to yield its procagstime to another task. This means that one
task can completely block a processor from beiiiged by any other task if it never yields.
In many situations, this is undesireable. With prpeve multitasking, a task is given a set
amount of time to run, after which it may be fordsf swapped out for another task by the
operating system. This is usually made possibleutin some protected processor

functionality only available to the operating syste

Time ([0[{1]2|3|4|5|6|7|8 Time ([0({1]2|3|4|5|6|7|8
CPU1|A|B|A|B|A|B CPU1 A B
CPU2 C CPU2 C

Figure 5.4: An example of (a) preemptive round-naiiultitasking, left, and (b) cooperative multitagk right.

Although preemptive multitasking is generally usedgive some fairness to all
threads by forcefully cycling through them in somfashion, it can also prove to be less
optimal for a given program. This can be shown watlsimple example in Figure 5.4.
Consider a two processor system with three task®,/Aand C, each taking 3 time units to
finish. As a restriction, tasks A and B can onlyiran the first processor (e.g., some
processor-specific code in a heterogeneous systehile task C can only be run on the
second processor. Task C depends on task A figshin the case of preemptive
multitasking, suppose that each task is alloweditofor one time unit before it is forcefully
swapped out for another task, and that tasks areh®d in round robin fashion. In this

situation, shown in Figure 5.4(a), the first pramswould run A for one time unit, then B

94

for one time unit, then A, B, A (where it finishastime 5), and finally B (where it finishes at
time 6). Task C can finally start at time 5, whirakes 3 time units, so the entire program
finishes at time 8. If, instead, we were to useaperative task scheduler, shown in Figure
5.4(b), we could have run A first continuously ®time units where it would finish at time
3. Then, task B can run on the first processotistpat time 3 while task C can run on the
second processor also starting at time 3. Bothstéisksh at time 6, so the overall program
would finish at time 6. Operating system scheduggserally do not know anything about
the underlying thread dependencies of a programit 98 possible that a preemptive
scheduler (which is what typical operating systédikes Windows and Linux use) will result

in a less optimal program execution.

For our theoretical static task scheduler, we carstuct a complete schedule based
on the execution times of each task. In the sincpke where one task finished and another
starts immediately after, it is easy to see thapeoative multitasking directly applies. In the
case where we have scheduled a task to fill inkdlleuthat is shorter than the total duration
of a task (and thus it must be broken into morentbae part), we may need to use
preemptive multitasking to forcefully halt a taskaagiven moment in time, then start the
other task. Thus, to implement our user-mode takkduler, we will utilize both cooperative

and preemptive strategies.

In Windows, there are several key functions usethéke this possible (Linux and
some other operating systems have similar functierGreateThread to create new threads
corresponding to tasks, SetThreadAffinityMask takloindividual threads to specific
processors, SuspendThread to pause threads, ReswgadTo resume threads, and Sleep to

yield a task's currently scheduled timeslice.

5.10.1 Design and I mplementation

Although there are several ways to implement a-ogste scheduler, we implement
it as follows. We begin by creating all task threaditially suspended from a supervisor
thread. The supervisor thread represents the fhmadity of an operating system task
scheduler and is therefore responsible for suspgratid resuming threads. Although we do

not have access to the true hardware preemptionness that the operating system does, we

95

can emulate this to some degree. We use only dessupervisor thread to control all
processors. The supervisor thread uses some tas#ding algorithm to choose a thread for
each processor. In order to execute a task foremifsggd amount of time on a given
processor, it first sets the thread's processonigffmask to that single processor, then
resumes that thread (which was created in a susdestdte). This is done for each processor

in the system.

In this way, as long as there are no outside facteach processor is running the
specified task we gave to it and nothing else.otler threads of our program have been
suspended, so they are not considered for schgdwithe operating system scheduler. Only
the active threads are scheduled, and they all baige processor affinities, so they will
not interfere wih each other. In reality, thoughere will be outside factors (other threads
running in the system from other programs), therkttie we can do to guarantee complete
non-interference for our user-mode task schedtlewever, we can attempt to reduce this
interference by increasing thread priority (makihdess likely that other threads will be
swapped onto our specified processor) and making rsot to run other programs while we
run our user-mode task scheduled program. So, seithe uncertainty, the operating system

closely obeys our task scheduler.

When a thread has finished processing its datallg Sleep to yield its timeslice in a
cooperative multitasking way, so that a new thread be scheduled. Our user-mode task
scheduler (now running as the task's thread assepto the supervisor thread) intercepts
this call to Sleep in order to choose a new tagkitofor the processor that task was running
on. The old thread must be stopped with Suspendi@hnile a new thread to be scheduled
will be started back up with ResumeThread. A negk t& chosen, and the appropriate
functions are called to perform these operatioattjng the same processor affinity for the
new task as the old task (to reuse that specificgssor). SuspendThread is called last in the
sequence of events, since the scheduler is bemdrom the same thread that will become
suspended. If the thread suspends itself befotamieg a new thread, then the scheduler will
have effectively stopped itself, and the otherddrevould not have been resumed. We can

repeat this scheduling process until all tasks hawmpletely finished and their threads

96

exited. When all worker threads have exited, ther-usode task scheduler determines that

the program has effectively finished.

While the supervisor thread is not necessary tp@iooperative multitasking, we
utilize it to support preemptive multitasking. Basa the underlying operating system works
with a preemptive scheduler, it is possible to datea non-suspended thread (the supervisor
thread) to wake up based on a timer, thereby patBnpreempting a running task, with
some margin of error that is based on the undeylyaperating system's preemptive
scheduler. We schedule the supervisor thread tewakbased on the time of the earliest
expected task that should be preempted. When pengsor thread wakes up, it verifies that
the expected thread is still running, suspendbéty resumes a different thread on that same
processor that completes the schedule. The superthsead again determines the next
earliest time it should wake up and goes backdaepsbased on that timer.

5.10.2 Dynamic Scheduling

The method described is sufficient to implemerdsk tscheduler in user-mode on top
of a preemptive multitasking operating system. Hasvebecause there are outside factors,
and the granularity of our preemption is basedhengranularity of the underlying operating
system (potentially, the length of a timeslice)erth are some variable factors that our
original statically generated schedule did not amdild not necessarily account for.
Additionally, for a real program, the time a spicihsk takes to execute for an iteration may
not necessarily remain static, but instead, folkmme distribution depending on its input

data, the time a task takes may vary by a nonmatrarmount.

We can somewhat account for this with a static delee by using the worst case
time of a task for every iteration (so that thdistachedule remains static), but then we waste
processor time when those tasks finish before thenst case time. We could also use the
average case time (or some other composited timedban each task's profile), but then the

static schedule would not be able to be followealcéy.

Instead of following a precomputed static schede®actly, we can apply a set of
rules to determine which tasks should be schedafiead given point in time based on what

tasks have already finished which iterations. Aliio this does not follow exactly all the

97

conditions of the static scheduler proposed, dtilsa close approximation, and would work
in a practical implementation. Currently, the stadsk scheduler attempts to schedule each
iteration one at a time, using EFT within an itemat Thus, it follows that a dynamic
scheduler should prioritize tasks based on itenatiomber first, and EFT second. Because
dependencies might not always be immediately sadisfome future iterations of some tasks
may be able to run before an earlier iteration difeerent task. However, we still want to
enforce the priority of iteration number. So, wedé¢o potentially preempt some task (which
has filled a bubble) with another task. The desifjour user-mode scheduler allows for this,

as long as we know when to preempt.

At any given point in time, we know the latest dtigon that each task has processed,
and we also have the dependencies between tasksveSknow which tasks and which
iterations are available to be scheduled — cadl et S. Its initial state consists of the first
iterations of any tasks that do not depend on d@hgrdasks (i.e., purely producer tasks with
no inputs). While we continue to lock tasks to @ssors, we keep only a single set S for the
whole system. At some point in time, then, we caoperly schedule based upon our priority
of iteration number, and then EFT next, from ourSeThis scheduling would not change
until our set S changes. This only occurs when harotask in the system has finished,
potentially satisfying some dependencies. At tlug the finished task is removed from S
and all of the fully satisfied dependent tasks baninserted into S. For each of these new
tasks, if their priority (based on iteration numbed then EFT) for their specified processor
is higher than a currently executing task on thatcessor, then we preempt the currently
running task for the new task. In this way, we duoll the philosophy of the statically
scheduled Stream-EFT, but we never rely on scheglddr specific points in time that our
static schedule relied on. We can schedule entdghamically based on the changes in

satisfied dependencies.

In the case where all tasks have static executimestacross all iterations (as in the
static scheduler), this method for dynamic schedulivould result in the same schedule
being generated. However, because a dynamic sarealsb works for dynamic execution
times, and we expect execution time to be dynamigractice, it may be more realistic to

implement a dynamic user-mode scheduler than ia sisgr-mode scheduler.

98

For a proof of concept, we implemented a roundsralyinamic user-mode scheduler
in SAPPHIRE with promising results. Just by usihg tuser-mode scheduler, we saw a
reduction in the execution time of some sample SARE benchmarks by about 20%. This
speedup compared to letting the OS do all scheglubnattributed to several factors,
including longer virtual timeslices, less contentmf threads for processors (i.e., threads can
finish processing on their own before the OS inigts their execution with another thread),
and the ability to lock out certain processor coffes example, we found that disabling
hyperthreading by disabling scheduling on certantual CPU cores yielded a non-trivial
speedup for some types of tasks for which hypeathing provided little to no benefit, but

increased the time to finish of both tasks exegptin

Although we implemented a round-robin scheduleg ttusome design limitations in
SAPPHIRE's work loop, it would have been a sigaificundertaking to implement the user-
mode scheduler for Stream-EFT in our middlewarePBHAIRE's work loop automatically
gueues and processes all available input data mte sgiven point in time (as an
optimization), whereas Stream-EFT needs more firaéngd control over which pieces of
data are processed. For example, if ten VIDEO packe available to process, all ten will
be processed before the work loop yields execut8iream-EFT would demand that we
potentially reschedule tasks in the system afteorisidering what new tasks were satisfied
after completing each iteration of a VIDEO packet Well as dependencies satisfied by other
tasks in the system). From simulations of our sahed algorithm, without this fine grained
control, we saw an increase in execution time. dloee, without redesigning our work loop,

a user-mode scheduler for Stream-EFT would noffeeteve.

511 Summary and Future Work

In this chapter, we present a theroetical frameworkstatic sheduling for stream
programs considering execution profiles of eactk tas a heterogeneous system. Our
proposed K-HIT and Stream-EFT method achieves ogéimality for high numbers of
iterations and is comparable to or better thantiegjswork in many respects. We also
proposed a faster approach that further reducesonyeand computation cost, while still

achieving a high quality schedule. For future wosle, plan to extend our method to work

99

with statistical profiles of tasks as opposed tsirggle static cost and to implement the
discussed bandwidth virtualization to support megmotensive style tasks. As a proof of
concept, we show that implementation of a user-nsmtheduler is possible for round-robin

scheduling, but a significant change in the desggneeded to fully support Stream-EFT
scheduling.

100

CHAPTER 6. EVALUATION OF SAPPHIRE FOR DEVELOPMENT OF

MEDICAL VIDEO ANALYSISAPPLICATIONS

Two medical video analysis applications were degwetb using SAPPHIRE. We
developed the first application called “EM-Captufet automatic detection of endoscopic
videos, which takes a stream of images and redbwase corresponding to an endoscopic
procedure in an MPEG-2 file, one file per proceduree software automatically discards
outside-patient images. EM-Capture has been runmingMayo Clinic in Rochester,
Minnesota since 2009 and captured over 71,000 anizey endoscopic procedures thus far.
The software itself is novel and eases the prooéskta collection significantly. We took
part in developing the second application “EM-Autied-RT”, which extends EM-Capture
with other real-time analysis and feedback of duatif the colon exam. The second
application was developed collaboratively by a teafnseven reseachers and has been in
used at Mayo Clinic Rochester since the 4th quaft2011.

This chapter describes our contribution in algonsh for real-time automatic
detection of endoscopic procedures as well as aoétwevelopment for the two applications

using SAPPHIRE and evaluation results.

6.1 Endoscopic Video Detection

In order to conduct quality control tests for eveptonoscopy exam, we needed to
digitally record and store a complete video of eandividual procedure for later
examination. The ideal system would be able tofihgtion without any user intervention
(i.e., be transparent to all medical staff and phgss); (2) integrate well into the current
medical infrastructure; (3) automatically turn Ifsen and off; (4) perform required analysis
of the video stream in real-time; and (5) genexampressed video files. There were a
number of challenges to overcome. First, complgitesn autonomy and integration with
existing infrastructure varied from institution itestitution. Second, analysis of colonoscopy
video content was an underdeveloped area of rdsedtird, a combination of medical

knowledge and expertise in computer science ormeeging was necessary to develop the

Figure 6.1: Examples of (a) inside-patient (leftifgb) outside-patient (middle) frames. An exangfi€¢c) an
outside-patient frame (right) that resembles thiercand brightness of an inside-the-patient frarue tb an
external light.

required algorithms. And lastly, developing and bamng potentially dozens of algorithms

into a single system while retaining a high leviehocuracy was a complicated task.

As part of the first step toward objective qualiyalysis for endoscopy video, we
introduced an automated colonoscopy video captuaind analysis system called “EM-
Capture” that could automatically detect individygabcedures and digitally compress and
store these to the hard disk of a local workstafi@t). The videos were then uploaded from
one or more workstations to a central server, wiarn®mated quality metrics could be
performed. No people interaction was required gtstap of the process. Since our system
ran concurrently with actual colonoscopy examshay bccurred, our system needed to run
in real-time to capture and analyze the video withdropping any important information.
This was achieved through multithreading, usinghhog real-time prioritized threads, and
assembly code for CPU intensive analysis. The acguof this step was extremely
important, since a complete (i.e., not fragmentettjeo is needed to perform a
comprehensive analysis reflecting the entire procedThe solution we developed may also
work — with minimal modifications — for other endopic procedures such as upper

gastrointestinal endoscopy, cystoscopy, arthroscapy bronchoscopy.

102

We first tested the system in two endoscopy roontiseaMayo Clinic in Rochester,
Minnesota. Each room consisted of a completely regpaset of hardware (including the
workstations) for our software. Each workstationaisPC-compatible computer with a
Pentium 4 CPU running at 2.8 GHz with 2 GB of RAMIjinon endoscopes were used for
all procedures. The video signal from the endossapeonverted to a digital signal for the
computer by Turtle Beach Video Advantage USB vidapture devices. Testing was done
over the course of two weeks and totaled about80's of raw video, with the system
running from 6:00 am to 5:30 pm every day excepekeads. It extracted 173 videos

totaling 70 hours of recorded video, but contaifi@éd true procedures. The correct output of
the system would be exactly one video file for epdtedure. Improperly combining frames

of multiple procedures into the same file is coasgd a false-join and improperly splitting a
single procedure into multiple files is consideredalse-cut. No videos had false-joins or
false-cuts. Two video files did not have a procedur them, but instead consisted of the
camera laying on a table, pointed toward a brigjfit lwith a reddish hue or a white sheet of
linen with a similar reddish hue. Although thespety of videos are undesired, we prefer to
capture more videos and not miss any procedureseSadeos contained, in addition to

procedures, a period of time with the camera pagntoward a light shortly before or after

the actual procedure. The extra images of suchhd in a video are also undesirable, but
obviously preferable to missing the beginning od ef a procedure by using too weak of
thresholds.

We achieved segment-based sensitivity of 100% aedificity of 99% out of 173
videos. As it was difficult to determine the exadimber of frames our software detected as
being inside or outside a procedure, we calculagusitivity and specificity based on the
number of segments of video stream determined todide or outside a procedure. A true
positive (TP) is a segment of video stream thaistifevare correctly determined was part of
a procedure. A true negative (TN) is a segmeniago/stream that was correctly determined
to not be part of a procedure, and therefore wdscaptured. The TN number therefore
consists of the summation of counts of all segmentgideo stream before, between, and
after true positive and false positive videos. Asdapositive (FP) is a segment of video

stream that was determined to be part of a proeeddnen in fact that segment of video

103

stream was not. A false negative (FN) is a segnoéntideo stream that was part of a
procedure that our system determined was not. 8atysis defined as TP / (TP + FN); that
is, the percentage of procedures we were ablepmi@out of all procedures. Specificity is
defined as TN / (FP + TN); that is, the percentafyjsegments of video stream that we did
not record out of all segments of video streamweashould not have recorded. More details
can be found in [74] and [75].

6.2 Drawback of Old Method

The previous method of splitting endoscopy vidguarginvolved a temporal analysis
of the red, normalized-red, and motion metricshef ¥Yideo stream. Although we achieved a
high segment-basesensitivity and specificity (the original goal)ewvanted to improve on
theframe-basedensitivity and specificity.

A segment-based sensitivity separates the resud ddo segments of video
containing inside-patient and outside-patient dakee transitions between inside and outside
are recorded and compared against the groundttarhkitions. Note that the exact time of a
transition is not as important as attempting tal fine transition from outside to inside either
prior to or just at the real transition from outsitb inside, and likewise from inside to
outside. The main priority was to separate indigidprocedures into their own videos
without missing any inside-patient data. The secpndrity was to eliminate as much
outside-patient data as possible.

The previous method had very good results; but §omee as much as forty minutes
of outside-patient video data would exist in a vidés the intended use of the captured
video would eventually be quality analysis by amalyg the video of each endoscopy,
outside-patient data is undesirable. Additionatiyiside-patient data can contain patient-
identifiable images, which we must remove. Withsthe@ew goals in mind, it makes more
sense to use a frame-based sensitivity and spgcifihat is, all video frames are classified

as inside-patient or outside-patient frames andpeoead against the ground truth.

Using a frame-based sensitivity and specificitye tesults of the previous method
were not satisfactory. Although the sensitivity wasl good (it had virtually 100% true

104

positives of inside-patient data and no false negs), the specificity was as low as 80%

(due to many false positives).

Also, while the thresholds of the old method workeell for the specific brand of
endoscope we tested, they did not work well fofed#nt models or brands of endoscopes.
Furthermore, video settings such as brightnesdrasinand tint greatly affected how well
our thresholds worked. For example, enabling the kiutton on one endoscope machine
increased the normalized-red value for a framedoyach as 100. A white background could
appear pinkish-red and possibly be detected adafmtient data. To be robust, we need

more flexible thresholds and potentially new videetrics.

6.3 New Metrics

To get better results, it is logical to find sometnts that differentiate the most
between inside-patient and outside-patient video.example, a metric that has a range of 0
to 100 and a value of 49 for outside-patient anddsinside-patient would not differentiate
as much as a metric with the same range that watla of 1 for outside-patient and 100 for
inside-patient. Although it is possible that somenfes could be classified as false-positive
or false-negative using an individual metric, wentvaach individual metric to correctly
classify as many frames as possible as strongbpssible. We choose different style metrics
that strongly classify different kinds of framesick that we would not choose several
metrics that classified the same set of frameslaspositives, for example.

The three original metrics were very hardware aset dependent. We wanted to add
metrics that would be able to adjust to the videgardless of hardware change or user
settings. The metrics we added include: variancenofdle 80% of the derivative of the
mean-red signal over time, and the same for thenmeamalized-red signal; several
histogram “energy” metrics of the mean-red, meamnatized-red, and a special version of
each containing filled histogram bins for everyueabetween two successive data points; the
mean-normalized-red rise and fall; and a long-temetric based on the energy histograms.
Most of these metrics work well by “calibrating” tbe data as it is seen — then when we
transition from inside to outside or outside toidies the metrics change drastically. The

software including the new metrics was run in 8asedpy rooms at Mayo Clinic Rochester.

105

We first present our original EM-Capture applicatifollowed by details on how we
ported it to SAPPHIRE. EM-Capture consists of thseparate major components that are
run as a parallel pipeline: capture, analysis, @amtoding. The capture component
continually captures video from the video captuaediware and buffers it for the analysis
phase. The analysis component analyzes each faadetdrmine the start and the end frames
of a procedure. The encoding component writes thdyinside-patient frames to video files
on hard disk, with one complete procedure per A some components (each implemented
as at least one application thread) are more regptime sensitive than others, we set

specific priorities for each thread (e.g., videptaae is of the highest priority).

6.4 Capture

The capture component captures audio and video fdata the capture hardware,
which receives the video from the endoscope hamlaara series of images, and stores it in
a circular FIFO (First In/First Out) data buffernmemory (see Figure 6.2). Since features of
a single frame are not sufficiently accurate todevhether the frame is part of a procedure
or not, a buffer (about ten seconds in our envireminis used to keep the most recent video
data in memory. These frames stay in memory whéed analyzed by the analysis
component until a decision is made whether to usdigcard the frames. For example,
storing ten seconds of raw video data in 720 xX48@ bits-per-pixel format at 29.97 frames
per second in memory requires about 296 MB of mgntaince all threads in our system use
the buffer, we allocate the buffer as a large choinkhared memory. We ensure thread-safe
access of this memory such that no component aslyeatfects another when it needs to
read from or write to this memory. The buffer idsn a circular first-in first-out (FIFO)
fashion, where new data is appended to the headfahe FIFO buffer as indicated by A in
Figure 6.2. As newly captured frames become aVailabey will be analyzed in the same
order they were captured. This corresponds to ridmads between B and A in Figure 6.2.
Once analyzed, a frame is either discarded if deermined that it is not part of a procedure
or saved in the buffer until a decision can laterrbade whether the frame is part of a
procedure or not from analyses of later frameg:igjure 6.2, C points to the oldest buffered

frame and the distance from C to B indicates thalmer of frames saved in this fashion. If

106

analysis on a future frame determines that theipusly saved frames were not part of a
procedure, these frames are discarded by repdsigi@ and D to point to B. As a result, all
frames older than the frame pointed to by B arealded. If the analysis of a frame
determines that all the saved frames were in fadt @f a procedure, all the saved frames
need to be encoded and written to disk. The olslegtd frame that must be encoded to disk
is the tail of the FIFO buffer, and is pointed D in Figure 6.2. Once frames are encoded
and written to disk, they can be discarded, andhthe frame can be encoded. This is done
by advancing D one frame at a time toward C. HoweWecannot advance past C since the
frames still being buffered in C are not yet reaol\pe encoded. C cannot advance past B
since the frames indicated by B have not yet beatyaed. B cannot occur before A since
we cannot analyze frames that have not yet beeiresp Finally, A cannot occur before D
(in a circular fashion), since in that situatiome tFIFO buffer would overflow, which would

result in dropped frames.

a Circular FIFO buffer of video frame pixel data

V Pro e e rperyvrerrerrerererrerrrrrrrerrrerrr e errerrrrrerrrrrerrerpreriiirrigg /lllllll/

H H % %

@ Encode Saved frames pending analysis Capture Z/%Empty//
T T 7

TTTTTTT Ty T T T T T e T T e T I T T T T T T T T T e e T T I T T T e T T I e T T T e eI e T Iy T I T T T T T I T T IrIr Ir T TT
Mean-red feature values
PO et n v vrvgeeeererareereerrrerr e ereeprveveveereerererrerrryrrrerrrrrrrerrririiiig

Mean-normalized-red feature values
LLOL i egev et errrvererrererrevrrrrrrrrrrerrrrrrrrrrrrerrvrearrreedrrerrrerrreerrrerriiagl

Variable-sized entrance analysis window

ainyes)
jesodwa |

<

Figure 6.2: The circular FIFO video frame buffentains several internal pointers based on how naaaihn
frame in the FIFO buffer has been processed. Acatds the head of the FIFO buffer where newly gaptu
frames are written. B points to the oldest unaredyframe. C points to the oldest potential procedorage
whose classification of inside or outside is stitknown. D points to the tail of the FIFO bufferavl images
are either written to disk or discarded. Each tiekk represents a single frame.

107

6.5 Analysis

The analysis component computes features from catige video frames in an
analysis window. The output of the image analysimpgonent is a value of a variable called
inflag, which tells the video encoding componentetiier the image is part of a procedure
(inflag = true) or not (inflag = false). Most prattees contain only images of the patient’s
colon mucosa for the entire duration of the procediHowever, occasionally, some
procedures contain outside-patient images wheretit®scope is briefly pulled out of the
colon and re-inserted. A new procedure is startedninflag transitions from false to true,
and a procedure is completed when inflag transtioom true to false. The actual start and
end frames of a video file can be different frora #xact frame of the transition, since, for
example, we may elect to keep a few seconds bd#feractual procedure starts in order to
see the insertion of the endoscope into the reqturing testing of the software to verify
that this is indeed the start of the procedureg $ame applies for the end of the procedure
where we can add a few seconds of video to proswildence that the procedure indeed has

finished.

The difficulty of the analysis is as follows. Weeaworking with (1) an analog video
source, which is prone to a large amount of nq®ga real-world environment where the
contents of consecutive procedures can changefisarly from procedure to procedure
(e.g., upper-endoscopy followed by colonoscopydl) the human factor, which presents
many challenges such as changes in display setfengs brightness, contrast, tint) by the
physician, or the physician forgetting to switchtbe video source of the endoscope or the
endoscope light source until after the endoscopeblegn inserted into the colon (called a
sudden start hereafter) when it is too late tobcale or detect an entrance event. The latter
two issues are the most difficult to deal with. Weerefore, designed novel features to
achieve the following goals: (1) all procedures @eorded, (2) a very small percentage of
false procedures are recorded, and (3) a tiny ptage of outside-patient images are

included in the recorded procedure videos.

108

6.5.1 Characteristics of | nside-Patient and Outside-Patient Video

The video received from an endoscope may have aralagewing area that is a
rectangle, octagon, or part of a circle insideuitkeo frame; pixels outside the viewing area
are very dark, but not necessarily completely bi@de Figure 6.1). These irrelevant pixels
need to be discarded. Inside-patient images areapty red or reddish-orange colored.
Although there is usually a higher chance of thehea-out images (low amount of red) in
outside-patient images, a high amount of red oocatly occurs when the endoscope points
at some object (e.g., orange floor) very closely fonutes to an hour. Therefore, color
features alone are insufficient. While inside tla¢ignt, the endoscope is constantly moving
in and out as well as moving up, down, or sidewdjsch more motion activity typically
occurs during a procedure compared to between guoes. However, there are times of low
motion inside the patient. For example, when peguare being taken for reporting purpose,
or biopsy/excision material is being inserted othdfawn through the endoscope, the
endoscope tip may not move for seconds to seveiraltes. Once a procedure has been
completed (i.e., the endoscope is outside the qiitihere usually is very little motion since
most of the time the endoscope lays stationary tnayaor there is no video signal as the
endoscope is unplugged from the video processareder, high motion occurs occasionally
(e.g., the endoscope has been removed but nobwetah a tray yet). Additionally, there are
often times where video noise is significant enoumgtinat even though the camera is still and

the objects are still, the noise causes signifioaotion.

Given the real-time constraints and the above dteriatics of the input video signal,
we use two sets of features: (1) basic featurelisttard obvious irrelevant pixels or outside-
patient frames and (2) our new temporal featuresetk from change in certain information
among consecutive frames over time to deal withemmmplex cases. To derive frame
features, we first discard pixels that are unlikpbrt of the endoscope viewing area as
follows. We use a conditional filter to accept orgixels whose red, green, and blue
components are all at least a mucosa threshol@ vRixels that do not meet the criterion are
treated as invalid pixels and completely ignoredtmsy analysis algorithms. If less than the

minimum area threshold of the video area contaalsl \pixels, some features (e.g., mean-

109

red and mean-normalized-red to be discussed shartyalso set to zero, since we consider

this frame to contain an insignificant amount dommation to be part of a real procedure.

As frames are analyzed using the actual frame iddtze video FIFO buffer (Figure
6.2), values of basic features and temporal featare generated. Each feature value is
usually represented by one or more number, whicsigsificantly smaller than the video
frame data. These temporal features are eithevetkefrom the video frame data in the time
window or the basic features in a different timendow. Some temporal features (e.g.,
variance of differences of mean-normalized-red @s)uequire a constant-sized buffer while
other features (e.g., mean-normalized-red rise) aparate on a variable-sized window of
basic feature values. This variable-sized windowy ro@rrespond to the video frame data
stored in the circular FIFO buffer between C anthBrigure 6.2. Some other features may

operate on their own window of recent frames.

6.5.2 Basic Features

Let | be the image for a given frame, with each pixalitng a red K(x,y).r), green
(I(x,y).9), blue ((x,y).0) component values between 0 and 255 in RGB c@aces and n is
the number of pixels whoseg, b values are all at least mucosa threshold.

M ean-Red, M ean-Nor malized-Red, and Accumulated M ean-Nor malized-Red

The mean-red for each frame is the average reddityevalue in the RGB color
space of all valid pixels over a single frame adeo as shown in Equation 1. The mean-
normalized-red (mean red saturation) calculatechgutquation 2 is the amount of red
saturation within each pixel (compared to greenlaind), averaged over all valid pixels in a
single frame. Red saturation is useful to detedt dad, where the mean red would give too
small a value, and to exclude red containing cadoich as white, which has equal quantities
of green, blue, and red. The accumulated mean-rizedared (AMR) is defined in Equation
3. AMR s initialized to zero and is occasionalgset based on the inside-outside detection

logic discussed in Section 6.6.

These features are simple and extremely fast tuleé, which makes them suitable
for real-time applications. However, they are ieefive in many situations. For example, a

110

camera pointed at a bright white cloth or someeclugject in the room with a bright reddish
tint will have a very large mean-red value, whidesl not distinguish it very well from being
inside the colon. If a physician changes the videtiings (e.g., tint), the amount of red
saturation for an ambient outside-patient videmn&acould be unnaturally high; for instance,
when the endoscope is pointed toward a white waeé procedure room, a solid white wall
may instead look like a solid pink wall. The valu#smean-red for outside-patient images
from our experience vary from 10 to 252 (althoulgéveed toward the lower end) and inside-
patient images from 30 to 255 (usually skewed tovtae higher end).

mean-rec %Z 1 (X, y).r (6.1)
X,y
mean-normalized-red 12{ 255 1(x, y).r (6.2)
NSLTGY)r+1(xy).g+1(xy)b

AMR = Z mean- normalized- red (6.3)

time window
Histogram Difference

To measure the amount of motion, there are seeeraplex methods such as optical-
flow or block-based motion estimation [76]. Howeveéhese methods are too time-
consuming for real-time applications. In our prexsavork, we elect to use a variation of the
chi-squared histogram difference [69] to capture thotion between two frames. This
feature is no longer used in this work since weehasw temporal features that provide better

performance; however, it is mentioned for complegsn

6.5.3 New Temporal Features

The basic features are insufficient for achievihg three aforementioned goals for
the analysis. Thus, we introduce new features Hihtrely extensively on temporal
information rather than just on one or two framestiv of information. We calculate our

new features using the video already in the buffer.

M ean-Red and M ean-Nor malized-Red Variance of Differences Without Outliers

Figure 6.3 shows that the video before and aftgmracedure typically has little

variation in its mean-red and mean-normalized-raldas, but the video during a procedure

111

has a high amount of variation. In order to captaeation of mean-red values over a longer
duration, we can calculate the variance of meanvedges and mean-normalized-red values
over a number of frames. However, this simple vex@éacannot readily distinguish the start
and end of a procedure. Instead, we use the variainthe differences of mean-red values of
a pair of consecutive frames for a1l pairs ofw consecutive frames in the video buffer
after removing the outliers (the mean-red diffeemnoutside the 10 and 90 percentiles of the
differences). The outliers are due to the scenegd® (e.g., endoscope repositioned from
dimly lit far away wall to nearby brightly lit clb). Let K be the set of the mean-red
differences without the outliers afid| denotes the size of this set. DatfMeanR be the i-th
mean-red difference in the set. We calculate thamw the mean-red differences and the

mean-red-difference variance using Equation (6x)Equation (6.5), respectively.

ZDiffMeanR
DiffMeanR=1¢—————— (6.4)
K|
Diffvariance= Y (DiffMeanR - DiffMeanI%2
o (6.5)

Similar equations are used to calculate the vaeiaoic the mean-normalized-red
differences by substituting the mean-red differenitd the mean-normalized-red difference.
In a real endoscopy video, when we remove theesatiind calculate the variance this way,
the variance at the start and end of a procedunenszero and is significantly higher than
the variance during a procedure (usually non-zefbg variance during the procedure is
typically higher than the variance for the outsithe—patient images, which is zero, or very

close to zero. Figure 6.3(b) demonstrates the teffawess of this feature.

While this feature works well to correctly removdaage number of outside-patient
frames that would have otherwise been recordede r@ four problems. The first problem,
mentioned before, is that when the endoscope iddrthe patient but idle, the variance will
be zero. The second problem is that occasionaliytimeous motion changes of the
endoscope while it is outside-patient also havé hgriance. The third problem is that a

“sudden start” procedure (a procedure that begisisle the colon — e.g., the video feed was

112

not plugged in until after the endoscope was iesrtnay be difficult to detect using this
feature alone, since the scene change from sddickbjor very dark) to endoscopy frame
signal does not produce as high variance as weallyrsee during a regular colon entrance.
The fourth problem involves noise in the video capt Not infrequently, the mean-red and
mean-normalized-red values can rapidly oscillatentensity from one frame to the next
(similar to a square wave from 0 to 255). Sometjntles oscillation is less predictable and
occurs every few frames. If we rely on differendestween frames, the differences
themselves are similar to a square wave, resultingery large variance. We, therefore,

propose another feature to address this oscillgiohlem.

Mean-Red and Mean-Nor malized-Red Energy Histogram Area

In the simplest case, the oscillation problem nuev@d above will have two values
between which the mean-red or mean-normalized-sedlates. We address this problem by
creating a histogram of all the data points (meshar mean-normalized-red) within a time
window, with one bin per integer intensity betwe®mand 255. We call this histogram an
“energy histogram”. With a simple square-wave typseillation between 0 and 255, our
energy histogram has two non-zero bins (0 and 265).less trivial example, there could be
several non-zero bins. In an endoscopy procedareaendoscope moves, the mean-red and
mean-normalized-red values generally rise andgfaltkly and often throughout most of the
video. Thus, a procedure’s histogram should havaynians filled in seemingly random
amounts. If our energy histogram has only a fevs filfed, or a few bins containing the vast

majority of data points, it is very likely that th@leo segment is not part of a procedure.

113

A

MMMWWMWWMMWJ v p ﬂw}

g J“H g T U‘ Whe | A =y

i -
&J‘lluﬂbvh‘m M{ \ ‘ l.‘:"‘,ﬂuhllnﬂrr’lwfmﬂu:rd\n%HM : 'ﬂlWM,M‘].*’uﬂ‘—bi, “'V"M‘JM’LHM T

Figure 6.3: Examples of features graphed over tif{@) a sample procedure entrance, shown top(l@neiit,
shown bottom. In the top half of each image, thkliee corresponds to the mean-red feature, theentadine
to mean-normalized-red, the yellow line to the dgsam difference; and the green and red areasspamd to
the mean-normalized-red rise and fall differencespectively. On the bottom half of the figure, ted line
corresponds to the mean-red variance of differenttess magenta line to mean-normalized-red variaofce
differences, the tan line to mean-red energy hisimg the pink line to the mean-normalized-red eyperg
histogram, and the light yellow line to the hybrgean-red/mean-normalized-red energy histogramhén t
middle, the red, green, and blue bars corresporfchtoes being detected as frames inside a procdguoair
algorithm. The white bar is the ground truth farfres being part of a procedure, set by a real paisserving
the actual video and marking the precise entrandeeait frames. A sharp rise in mean-normalized-oe of
the features shown on the top half of each grapimdicative of the precise entrance frame.

114

Figure 6.4: Energy histograms generated from twiterint sets of data. For the left histagr, a very hig
peak of one value causes the other bins to bedstala smaller value. The high peak is likely daetfla
signal, indicating very little change, and usualhly occurs outside a procedure. The “area” contpigethe
space filled (thénistogram bins) within the overall histogram grdgite yellow box). When a high peak cat
the rest of the values to be scaled very low, trerall area will also be low. For the right histagr, we hav
more regular variation in the mean-red valuesaAgsult, more of the histogram bins are allowedetain
higher value when scaled. The overall area occupjetthe bins in the histogram will be significantiyger ir
this case. This usually occurs during a procedure.

Figure 6.5: Double-normalized energy histogramsegated from two different sets of data. For thenhtrig
histogram, a typical signal of a procedure haitsa” (the space taken by the actual bin data)pcded withir

a rectangle whose left and right bounds are tls¢ fionzero bin and the last nonzero bin, respdgtilidis i<
shown as the yellow reamgle. We normalized the area computed insidedbiamgle, as if the area inside
yellow rectangle were 1.0. This is different thae fprevious feature in that the width was alway8 Biks
whereas in this feature, the width adjusts to thia.dForthe left histogram, a somewhat flat signal outsih
patient has resulted in a large peak, similar éohistogram in Figure 6.4. Although the rectangkg tan full
encompass the nonzero bins can be much smallethbarellow box indicates, we test the minimum widtl
of the histogram to 128 bins; otherwise, this pealld cover a considerable area in the resized drias
generating a high value.

115

To derive a useful feature from the energy histogrwe normalize the histogram
and calculate the “area” of the normalized eneiigiolgram as follows. The largest bin count
in the histogram is scaled to 1.0, and all othardaunts are scaled similarly with respect to
the largest bin. The width of the histogram is edalrom 256 to 1.0 as well, so that the
“area” of the histogram becomes a unit square @f\We sum up all of the scaled bin count
values and divide by 256, resulting in the “are&’ttte normalized energy histogram. A
smaller area means that few bins contained mosteotlata points, as they appear as large
spikes in the histogram, and other bins becomanifszant. Summing the maximum bin
count value for just a few bins results in a snaadla. If, on the other hand, there is a good
spread of data points, many bins have a significemmt-zero value, and the area of the

histogram is much larger. This feature successadiyresses the oscillation problem.

Double-Normalized Mean-Red Energy Histogram Area

This is derived from the previous feature for deteca sudden start. This feature
involves normalizing the number of bins to the wWwiddtf observed values. Instead of
calculating the area of the histogram as a 1.0.8ysquare, from bins 0 to 255, we calculate
the area as a 1.0 by 1.0 rectangle from bins X tavlere X and Y are the minimum and
maximum indices of nonzero bins. The width of thetdgram is considered from the
smallest observed value to the largest observagwaithin the histogram. Thus, if for some
window of time, we never see a mean-red value belaertain threshold, for example 60,
we normalize the histogram using that value asaeiddound for calculating the area. The
maximum area value in this case would be normaliaeldO and allows for a range of widths
of histograms. To prevent small fluctuations (sashthe simple oscillation problem) from
having high areas, we restrict the minimum widthtte histogram to 128 bins (half of the
histogram). We have empirically observed that trasiation is very effective for finding
sudden starts within a one-minute window. Althougit ideal, since we already miss some
data in a sudden start and additional data in tigeminute window, we will at the very least

begin capturing some of the otherwise possibly detely missed video.

116

Hybrid Mean-Red/M ean-Nor malized-Red Energy Histogram

This feature counts the number of bins with the domant above a specific threshold
(e.g., the bin count is at least 5% of the lardpsy. While similar in nature to the previous
feature, this feature is less sensitive to thehtadf each bin (which contribute to the area),

and is more dependent on how many bins have dismmi number of samples.

All the features presented thus far are not abldéing precise entrance and exit
frames. They all work in a window of time and caonwde only the general vicinity for an

entrance or exit. The following features help ttedethe precise entrance or exit.

Mean-Normalized-Red Rise/Fall Area (Entrance/Exit)

Figure 6.3(a) shows that the mean-normalized-regsrvery suddenly at the precise
entrance for most videos, which can be used tactlfte precise entrance. Features based on
differences of successive input data points ovaet(like a derivative) are not very useful
since noise in the signal causes many positive reagative values to occur. We shift the
mean-normalized-red signal myframes forward in time and subtract the shiftechaigrom
the original signal. The area between the plottheftwo signals is analogous to the sum of
the differences over a window of time. In otherreg we compute the difference at each
data point as the value of the original mean-nomedtred at that point less the value of the
shifted mean-normalized-red at the same point. Wepute the sum of the differences in a
time window as follows. Initially, the sum is zeiM/e add to this sum if the difference is
above a threshold value. If the difference is negaand smaller than a threshold value
(representing a fall instead of a rise), we resetdum. At the frame when the value of the
sum goes over a threshold value, we determinghldtame is an entrance frame, as seen in

Figure 6.3(a). Video encoding starts recordindnest frame.

To determine an exit instead of an entrance, wirel@nother feature by shifting the
signal backward in time bw frames and subtracting the shifted signal from dhginal
signal. If the shifted signal is smaller than thigioal signal, a fall in the mean-normalized-R
signal occurs. We compute the cumulative sum reptasy the area as follows. We reset the
sum if it is above a threshold value and add tostn® if the difference is smaller than a

117

threshold value. When the value of the sum becolowsr than a threshold value, we

determine that the frame is an exit frame, as seéigure 6.3(b).

Because there may be several rises and falls heforig, and after a procedure, this
feature must rely on other features first for lowgtthe general vicinity of an entrance and
exit. When given that approximate location, weizgilthese rise and fall features to pinpoint
the entrance and exit frames to within fractiona@econd. This feature is very effective in

removing every outside-patient image and includingry inside-patient image.

Because all features are computed continuously, rigee and fall features are
available whenever a candidate entrance or exietected. There may be many rise/fall
areas, even before or during a procedure. Thefgpese or fall area used may be chosen
due to the other features being strong enoughdioate an entrance. The start of a rise or the
end of a fall indicates the frame of entrance ot, @hereas the other features only indicate

that a procedure has started/finished within soivengime frame.

Unfortunately, there are some drawbacks to thishowetIn particular, it requires
several outside-patient frames and inside-patramés to derive the features. If these frames
do not exist (e.g., the sudden start scenariojetlfieatures are not reliable. To improve the
overall accuracy of this feature, we exclude risaen the video signal starts at zero (black).
This is to prevent the signal generated by an exopesthat has just been plugged in from
being considered a procedure, since it usuallyssdisplaying outside-patient data (which is
clearly a rise from black). Unfortunately, a sidéeet is that if we plug in the endoscope
after insertion, we cannot determine immediatelgtbr the camera is inside or outside the
patient. Instead, we must rely on the other featudmother drawback, which occurs rarely,
is that the rise is very subtle. Since the printaguirement of the system is to record every
procedure and miss no procedures, we are forcesdoa low threshold to avoid missing

these rare cases, which in turn increases the palsiive frame capture rate.

6.6 Algorithm for Identifying the Start of a Procedure

Figure 6.6 shows our algorithm that utilizes theab features to determine the
entrance frame. The algorithm sets the value ¢dgnés either true (the camera is inside the

118

patient) or false (the camera is outside the pgtiand determines the start frame of a
procedure. We set the initial state of inflag ttséa We keep a variable-sized window to
retain frames in memory to compute temporal featfirem these frames. Step 1 in Figure
6.6 resets the variable-sized analysis window & #ipecified conditions are met. Step 2
detects different entrance scenarios. For a sudtiety we generally cannot rely on many
features since they need to calibrate on the cexsadient video to detect the outside-to-
inside transition. For a normal procedure entrasuamario, several features are used together
for accuracy. For mean-red variance, mean-nornthlied variance, and mean-normalized-
red rise area, each of these features has twoosetisresholds. This is because some
procedure videos vary considerably in brightnesstrast, tint, and quality. The threshold
for the accumulated mean-normalized-red is eitlgrts require a small amount of red
saturation for each frame within the past analysisdow of video analyzed, or a much
larger amount of red saturation within a shorteretiperiod. The list of thresholds and values
used in our experiments is shown in Appendix H.pas of our future work, we will use a
machine-learning classification algorithm to fingtional threshold values. Step 3 sets values
to indicate the transition to the “inside-patiestite. The precise start frame of the procedure
is the earliest frame used in the mean-normalieeldrise area (i.e., the frame following the
last time the sum was reset). The analysis compgdhen setsnflag to true and signals the
video encoding component to begin processing atstiaat frame. The processing continues
until the system has decided that the endoscopbédasfully removed from the patient.

119

Step 1. Check conditions for resetting the analysis wimdize to zero.

1. Area of the double-normalized mean-red histogralovbés threshold
2. One of the following is true. a) Mean-red below ftseshold; b) Mean-normalized-red below |ts
threshold; c) Variable-sized analysis window abawindow size threshold; or d) Mean-normalizgd-
red difference (calculated from one time step @f thean-normalized-red rise area feature) below its
difference threshold.

If both conditions 1 and 2 are satisfied, resetwheable-sized analysis window size to zero arsgtréhe
accumulated mean-normalized-red to zero.

Step 2: If inflag is false and the below condition for transitioonfr outside to inside is satisfied, go to Step
3; otherwise, skip Step 3.

The transition happens if either the area of thebtlsnormalized mean-red histogram above its tloielsta
sudden start case) or all of the following are tajeMean-red above its threshold; b) Accumulatezm
normalized-red above its threshold; and c) At least of the following conditions is true:

1. Either all of the following are true:
¢ Variance of mean-red differences abovéitgh threshold
¢ Variance of mean-normalized-red differences abtseigh threshold
e Mean-normalized-red rise area abovddts threshold
e Mean-red energy histogram above its threshold
e Mean-normalized-red energy histogram above itsstiolg

2. Or all of the following are true:
¢ Variance of mean-red differences abovdats threshold
¢ Variance of mean-normalized-red differences abtsdew threshold
e Mean-normalized-red rise area abovéhitgh threshold

Step 3: Do all of the following.

1. Setinflagto true (transition to inside the patient)
2. Mark the first frame of the variable-sized analygisdow of frames as the actual entrance frame
3. Set the accumulated-mean-normalized-red to zero

Figure 6.6: Algorithm to detect the entrance frathe;threshold values are based on training.

6.7 Algorithm for Identifying the End Frame of a Procedure

The inter-procedure duration varies depending ersthrt time of the next procedure.
If the next procedure is on a different patieng thter-procedure duration is long since the
current patient needs to be removed from the radlowed by the new patient entering the
room. The inter-procedure time is typically shortlethe next procedure is on the same
patient (for instance, colonoscopy followed by upgedoscopy). We keep a running total of
the number of potentially outside-patient framescai the first candidate end frame is
identified. If we find that at least a certain part of the past five minutes are identified as

outside-patient frames, we have a high confidemz# tve have found the end of the

120

procedure. The duration of five minutes is basedlomain knowledge that the minimum

time between procedures is at least five minutes.

Algorithms for identifying the end frame cannotyr@n detecting low motion alone
since the content of a frame may be same for asieeonds to minutes even though the
endoscope is inside-patient, for example, wheretifdoscopist carefully examines a specific
region of the colon, takes a picture of a frame,waits for specific equipment not

immediately available. The amount of motion carvéey low during such events.

Step 1: If all of the following are true, flag currentafime as a potential outside-patient frame; otherwfse
flag it as an inside-patient frame:

1. Area of the double-normalized mean-red histogratovbés threshold
2. Any of the following is true:
¢ Variance of mean-red differences below its threghol
¢ Variance of mean-normalized-red differences belswthreshold
3. Any of the following is true:
e Mean-red below its threshold
¢ Mean-normalized-red below its threshold
¢ Hybrid mean-red/mean-normalized-red-energy-histogaaea below its threshold

Step 2: If either of the following is true:

1. Area of the double-normalized mean-red histograovatits threshold

2. All of the following are true:

Mean-red above its threshold

Accumulated mean-normalized-red above its threshold

Variance of mean-red differences above its threshol

Variance of mean-normalized-red differences abtssthireshold

Hybrid mean-red/mean-normalized-red-energy-histogaaea above its threshold

Then, do all of the following:

1. Reset the running total of potentially outside-@atiframes to zero
2. Reset the position that an exit might occur tortbet frame
3. Reset the accumulated mean-normalized-red to zero

Step 3: If the running total of flagged potentially owtsipatient frames is at least four and a half neisiyt
worth, transition to an outside-patient state amutioue to Step 4. Otherwise, skip Step 4.

Step 4: Find the exit frame: Scan backward from the aurfeame until we find the exit frame in which gl
of the following are true at that frame.

1. Mean-normalized-red fall area above some threshold
2. Mean-red variance of differences above some epdstiold
3. Hybrid mean-red / mean-normalized-red energy histimgarea above its threshold

Figure 6.7: Algorithm to detect the exit frame; theeshold values are based on training.

121

The algorithm is shown in Figure 6.7. Step 1 flaghvidual frames as inside-patient
or outside-patient. We maintain the running tofalhe number of potentially outside-patient
frames over the five minute window mentioned. Tikisised later to determine whether we
should transition to outside-patient. Step 2 attsnip avoid a prematurely detected exit by
continually checking every frame for detection ¢ toutside-to-inside transition. If at any
frame, we would have made that transition to tlsdmm state (ignoring the fact that we are
already in the inside state), we reset the runtobg), reset any potentially outside frames as
instead being inside-patient, and reset the fios¢qtial end frame to the current frame — we
know with high certainty that those frames ard #tibse of inside-patient. The combination
of both of these steps is more robust than eittegr alone. Step 3 makes the final decision
about whether or not to transition to the outsithdesbased on the number of frames that
were marked as outside-patient. Step 4, finallgnidies the precise exit frame. In the best
case, we find the exit frame exactly as the growath. In the worst case, the detected exit
frame is after the actual exit frame. In other veprdve include extra frames after the
procedure has ended. This is to avoid missing tite part of the procedure in which an
important quality indicator such as retroflexiopitally occurs. Figure 6.7 shows the details
of the algorithm. The algorithm is threshold-babgddesign to ensure that the analysis can

be done in real-time to prevent frames in the Fieer from being overwritten.

6.8 Video Encoding

Once the analysis component decides the start frain@ procedure, the video
encoding component creates a new MPEG-2 videalfik writes the audio and video data
available to the file. After each individual vidé@ame is written to the MPEG-2 file and no
further analysis of that particular frame is reqdirits space in the FIFO buffer is marked as
free, and the video capturing component may safegrwrite it. Video encoding continues
until the analysis component has determined thatnéxt frame in the video buffer is no
longer part of a procedure. When this happens,vitieo file is closed, and the process
repeats when the analysis component determinesathaw procedure has started. As
explained so far, the first frame that is encoded video file is the first frame of the window

122

mentioned in the “entrance” step, and the last &&mat is encoded is a frame four and a half

minutes after the determined “exit” frame.

For the end of a video file, we have only specitieat the procedure ends four and a
half minutes prior to the actual time that the gsigl component determines as the end of a
procedure (to make sure we avoid reentrance conditivhere we might accidentally split a
single procedure into multiple procedures). Sineeonly buffer ten seconds worth of video
data at any given time, these four and a half remtiave already been written to disk by the
time we determine the procedure has ended. Weaatedhe outside-patient frames written
to disk by seeking four and a half minutes backnfrthe end of the MPEG-2 file and
truncating the file at that point. The four and afhminutes are based on the domain
knowledge that the time between procedures is adtléive minutes, and we allow a
misdetection rate of 10%.

Another component of interest is a Windows systemvise that we developed to
automatically start and stop EM-Capture at spetifiee points. We configured our capture
system to run from 6:00 am to 8:00 pm every dayepkaveekends. The service also started
EM-Capture if the computer is turned on betweers¢hbours. We use a system service
instead of a standard Windows task scheduler eierikecute the software automatically
when Windows has loaded but no user has logge@noe installed, no user intervention is

required for our software.

6.9 Experimental Results

We derive the values of the thresholds from expenit®: with a training image set
recorded prior to our experimental testing imagé Jdese thresholds are shown in
Appendix H. We then tested the system in eight sodpy rooms at the Mayo Clinic
Rochester. Each room consisted of a completelyraepaet of hardware (including the
workstations) for our software. Each workstationswaa PC-compatible computer with a
Pentium 4 CPU running at 2.8 GHz with 2 GB of RAMijinon endoscopes were used for
all procedures. The video signal from the endosseyses converted to a digital signal for the
computer by LeadTek WinFast TV2000 XP Expert vidapture devices. Testing was done

over the course of one month and totaled about42hirs of raw video, with the system

123

running from 6:00 am to 8:00 pm every day excepekeads. The correct output of the
system would be to create exactly one video fileefach procedure with all outside-patient
frames removed from each video file. We implemenisdalization software to assist frame
classification. We classified all 2,464 hours ofled (over 265 million frames) as inside-

patient and outside-patient for each frame.

Since there are no other existing works that perfthre same task, we only evaluated
our proposed work against our previous work. Using previous method, no videos had
false-joins (two different procedures are put ie game file) or false-cuts (one procedure
divided into more than one files), but there wesegesal false positive videos. These false
positive videos consisted of the camera lying aabde, pointed toward a bright light with a
reddish hue (as seen in Figure 6.1) or a whitetsifdmen with a similar reddish hue. Some
videos contained, in addition to procedures, aggeoif time with the camera pointing toward
a light shortly before or after the actual proceddihe extra images of such a light in a video
are also undesirable, but obviously preferable igsimg the beginning or end of a procedure
by using too stringent thresholds. As much as am bbextra outside-patient data has been
captured in some videos using our previous metfibd. previous method on this data set
had frame-based sensitivity of 100.00% (all ingidéient images were captured), but only a
specificity of 89.22% (outside-patient images wensidentified as inside-patient images).
With the proposed work, we achieved a sensitivitgt apecificity of 99.90% and 99.97%, a
significant improvement. We missed a very smaltiparof the beginning or the end of some
videos while some videos have a few extra framdse mMissed frames are the blurry,
uninformative frames that are common at the begmrand end of endoscopy videos,
containing a reddish-orange gradient similar touFeg6.1(c). While the entrances and exits
were determined to include these kinds of framesy are not actually useful for analysis.
We do not miss informative images, such as theoftekion images at the end of a
procedure. While still satisfying the primary oldjee of not missing any informative frames
of a procedure, we significantly improved on theoselary objective of removing outside-
patient frames. Table 6.1 summarizes this result.

124

Table 6.1: Effectiveness of image-analysis metHodsside/outside patient image
classification for over 265 million frames

Frame-based sensitivity =~ Frame-based specificity
Previous method 100.00% 89.22%
New method 99.90% 99.97%

The system successfully ran in real-time, with dhalysis pipeline only using about
25% of the CPU time available — about 8ms of coman time per frame (up from 15%
CPU time of our previous method), the capturing ponent using about 1%, and the
MPEG-2 encoding component varying its quality te@ wghatever remaining CPU time.
Encoding MPEG-2 video at the maximum possible dyali real-time can easily take more
than the maximum computing power of the workstatidherefore, the video encoder
changes the quality settings as it encodes eanftefrdepending on the amount of available
CPU time. This allows our system to attain the Bgihpossible MPEG-2 compression
quality for the amount of CPU time remaining aftdr other computation. CPU time is
calculated by using a software performance andropdition package to measure the amount
of time spent inside specific functions and comparthis with CPU time spent inside the
whole program. The entire process constantly esliabout 99% of the computer’s total
available CPU time during video encoding, makinij dge of available processing time. No
video frames were dropped during testing, with 108f%rames going through the analysis

pipeline, and potentially available for video enicagd

6.10 Porting EM-Captureto SAPPHIRE

EM-Capture originally consisted of 4 threads, usim@ge analysis algorithms to
distinguish inside-patient and outside-patient apand ran in real-time (processed at least
29.97 frames of video per second). It was not ¢a®dd additional processing components
or update any part of the application, as the @siog and communication pipelines were
explicitly coded. To insert a new image analységstin the processing pipeline, we had to

add another communication layer between the oltysisastages and the new analysis stage.

125

Additionally, if we wanted to give the new stage @wn execution thread, we needed to add

more thread-safe synchronization code to suppit th

To port EM-Capture to our middleware, we broke aplae program into separate
tasks for each major analysis component. Commaa types were created for each module
to read and write (e.g. MEANR, MEANNORMR), and tmé€tionally understand what the
data means. The original code for each task wastetsinto a skeleton module (provided by
the middleware) into a new function, and each m@duData callback function was modified
to call this function. Very little code was actyatthanged; in fact, a significant amount of
code was removed, since we no longer needed tacilpperform the communication and
synchronization as part of our code. Still, a sroairhead of additional code was needed to

wrap the old code with the new skeleton and middlewAPl.

The videocapture and/or mpegreader modules prothdestream of source data
(RAW_VIDEO) and the autoresize module crops thigadand outputs the VIDEO.
Functionally, this is very similar to the origineM-Capture, except that with SAPPHIRE,
this is done implicitly and safely multithreadeddaall communication is handled by the
middleware. About ten image analysis modules wegated to use this data and output their
own metrics through packets. Originally, many oédd image analysis components were
performed by a single module and in serial. The m&+Capture using our middleware
consisted of 28 threads, as compared to only 4dsrén our original program, yielding a
much more balanced distribution of load betweertgssors, as well as being able to utilize

more than only 4 processor cores, if more werel@biai.

Instead of bottlenecking on one thread, which ocdus#line processing using
MPEG2 video files as the source stream (i.e., pd video file at maximum speed and
processing input data as fast as possible) to wbdbout 40 frames per second on average,
we are now able to process at about 90 framesggend on average on the same computing
hardware. We validated the correctness of the rewian of EM-Capture by comparing the

output metrics computed over hundreds of hoursddoswith the original version.

126

6.11 Case Study 1. EM-Capture (Procedure Detection)

The original version of our EM-Capture applicati@efore using SAPPHIRE) ran in
8 procedure rooms of Mayo Clinic in Rochester, Mince 2007. This was expanded in 2009
with the beta testing of a SAPPHIRE-enabled EM-Gaptto another 5 rooms. As the
stability of the new version was satsifactory, veeerted all of the 13 procedure rooms to
use SAPPHIRE. In total, as of April 2012, EM-Capturas analyzed roughly 50 billion
frames of video, and from that, successfully detend recorded over 71,000 procedures in
a real hospital setting. EM-Capture has been a sacgessful proof of concept program,
successfully being ported to SAPPHIRE with minira#brt, while gaining all the benefits
that SAPPHIRE offers.

6.12 Case Study 2: EM-Automated-RT for Real-Time Feedback

This case study application is motivated by thednée improve quality of
colonoscopic procedures. The American College oftGanterology (ACG) and the
American Society of Gastroenterology (ASGE) in 208éblished consensus objective
guidelines defining a good quality colonoscopy. Telines for a screening colonoscopy
after age 50 include: (1) a withdrawal time forigats without symptoms and with intact
colon anatomy of at least 6 minutes; (2) documemntadf visualization of anatomical
landmarks such as appendiceal orifice and/or ilemicgalve in the cecum; and (3) an
average polyp detection rate (the percentage okrat with polyps detected during
colonoscopy) in male and female patients greatan 85 and 15 percent respectively [63].
However, there were previously no computer-aidedthots to measure quality of

colonoscopic procedures as recommended by the ACG.

Using EM-Capture as a base to detect endoscopyeguoes, a larger group
composed of many researchers worked collaboraticelyevelop EM-Automated-RT — an
application for real-time quality analysis and feack of colonoscopy video, using
SAPPHIRE. EM-Automated-RT involved the creatiorse¥eral modules listed in Table 6.2.
A full list of modules, their description, and theiputs/outputs is available in Appendixes B
and C.

127

Table 6.2: Modules added to create EM-Automated-RT

gcmetricrt.dll Quality metric reporting

blurry.dll Blurry frame detection

egd.dll EGD detection

retroModule.dll Retroflexion detection

rteoi.dll Real-time end-of-insertion detection
rteoi_user.dll Manual end-of-insertion

rts.dll Real-time stool detection

spiralcounting.dll | Spiral counting

The real-time feedback program has several goatsind: (1) detect blurry frames to
distinguish informative and non-informative franfes other modules, while also reporting a
colonoscopy quality metric of percentage of blurgmes; (2) detect various levels of stool
during the procedure for quality reporting purpgg83 detect end of insertion of endoscope
in the colon to determine insertion time, after eththe withdrawal phase begins, which is
usually the most important phase of a procedurepdloscope spiral motion counting by
lumen detection and quadrant coverage, which @alied as real-time feedback over top the
endoscopy video during real medical procedures. Wtee lumen (dark area in an
endoscopy video that represents the empty tunneghefcolon) is seen in a particular
guadrant of the video, that quadrant is marked. kit&rquadrants are shown as video
feedback with a green triangle in that quadrantmer of the screen. When all four
guadrants have been marked, the spiral score irertsnby one and the marks are cleared.

It is proposed that the spiral motion of the endpscis indicative of looking at an
increased amount of colon wall (tissue), which fgeve colon polyps and cancers develop. If
the endoscope is facing the lumen directly, it \alpear in the center of the video. Thus,
minimal view of the wall is achieved. When the eslipe is partially facing the wall (a
good thing, as this allows good view of the colissue), the lumen would appear on the side

or in a corner. In order to maximize the detectrpolyps, as much surface area of the

128

colon should be covered as possible. As the engesiowithdrawn from the colon, it is
often done so in a spiral manner such that the ssrmgbe continues facing the colon wall
while rotating, maximizing the surface area seehil®oing this, the lumen will appear to
rotate through the various quadrants of the screen.

The development of these modules was crucial ieraal study both the efficacy of
real-time quality measurements and also the effacteal-time feedback on the quality of a
colonoscopy procedure (i.e., would seeing the gteangles in the corner of the screen as
feedback as well as a quality score increase thieaed quality of a procedure).

The real-time feedback system has been deployedareducational rooms at Mayo
Clinic. Although SAPPHIRE provides the HUD moduléwoverlay support, certain clinical
standards do not allow any delay between the eoggsmachine and the display, so the
HUD is not used to display the endoscopy videdlfitSehe purpose of this restriction is
because it could be bad, for example, if perceimedement of the endoscope was delayed
too much, potentially causing the endoscope to ushed too far, perhaps perforating the
colon. So, instead, we use special overlay hardteatedisplays the endoscopy video on the
monitor as normal. For our HUD, we draw a fullscrddack background and then overlay
our feedback video data on top. This signal istfedugh a video out channel to the overlay
hardware that overlays our video on top of the teénoscopy procedure video, using the
black background as a mask similar to a green sareeideo editing techniques. While our
feedback may be slightly delayed, the procedureoics displayed instantly behind it.
Because of this, there is a small perceived resptinge for our real-time feedback to be

presented back to the physician performing thequorce.

6.13 Summary and Future Work

From a development point of view, SAPPHIRE was umattessfully to (1) port an
existing program with very little effort, to achieva higher level of stability and
multiprocessing, and (2) create a new applicatipncmbining independently developed
modules with common data packet formats shared gntlogir programmers. Developers
unfamiliar with SAPPHIRE were able to write modulegh some effort, although some

initial learning curve is expected for any platforBoth of these programs are successfully

129

deployed in a real hospital, under complex condgjoanalyzing actual endoscopy

procedures, offering real impact toward patienisility of health care.

Although we have only presented two related casdied, SAPPHIRE is general
enough to be used for any kind of data processiagwould benefit from task parallelism
(not just medical video). It is especially effeetivn driving task parallelism in stream
programs, increasing the potential of exploitatbdparallel processing resources, effectively
yielding a faster running program. Although thisgdkelism is possible without SAPPHIRE
or a similar middleware, a great deal more work Mooe required on the part of the
programmer. The API for SAPPHIRE is very simple @rtdkes much less time to get a new

module written and inserted into the program's Ipipe

130

CHAPTER 7. CoNCLUSION AND DiscussioN oF FUTURE WORK

7.1 Contributions

We have provided contributions in multithreadedtwafe development, theoretical

scheduling work, and healthcare:

SAPPHIRE, including a semi-automated program caogon method and
multiprocessing framework to enable implicit pragramultithreading with little
effort, allowing simplified exploitation of paralleesources to be used

A novel static task-scheduling framework for streprograms on a heterogeneous
multiprocessor system. Stream-EFT and K-HIT, togetprovide a novel static
stream task scheduling algorithm yielding proveabhd simulated near optimal

results (for our set of assumptions).

EM-Capture — We developed novel algorithms andmoti@ation for automated real-
time endoscopic procedure detection. Our applinatioes not require any human
intervention, making it easy to use in a real hiad@etting. It has already been used
to capture over 71,000 endoscopy procedures. EMu@a@long with SAPPHIRE
enables deeper quality analysis programs such asAbmated-RT to directly

impact the quality of healthcare during importamdical procedures.

7.2 Limitationsand Future Work

SAPPHIRE is designed with extensions and expansionind, so while the design

itself is sound, the implementation always has rdomexpansion through built-in libraries

and support for additional platforms. Future walas follows:

We plan to continue using SAPPHIRE with our caséyprograms to examine what

additional features may be desireable by real egjdin developers.

To support devices other than Windows PC's, suchLiasx-based servers or
handheld devices, the platform-specific code woulded to have alternate
implementations.

131

Future work could augment the SAPPHIRE work loopstgport Stream-EFT

through user-mode scheduling.

Stream-EFT can provide optimal scheduling reswltotir set of assumptions (which
may sometimes hold true in practice). But, thessumptions could limit the
application of Stream-EFT for other situations.Ufatwork could investigate how to

relax some of these constraints.

We currently expect that computation cost exceedseunication cost (which is true
for our case studies); but, this might not be fareother classes of programs. Future
work could investigate how to apply Stream-EFT/@ lbound programs.

We can potentially expand the accuracy and effentgs of Stream-EFT by adding
stochastic scheduling, which more accurately modetd life applications with

variable task execution times each iteration (apospd to using static times).
Furthurmore, context-based stochastic schedulimgchwutilizes statistical contexts
based on correlations between tasks' executionstirmeuld provide even more

accuracy for estimating the execution time of pralgrams.

We can investigate integrating SAPPHIRE with ottemhnologies, such as service
oriented computing and cloud computing. This wauolblve tighter integration with
the tcp.dll module, which currently requires explispecification of computer IP
addresses and data types, with manually writteriigraration files for each system
involved. This should be more automated so thatddaeeloper has less work. The
middleware could provide more efficient load balagcand scheduling than that

decided manually by a user.

We would also like to address security and privaspects. For example, if the
middleware provides access to sensitive patientnmétion, we might wish to restrict
access of that data to specific trusted modulaberahan allow any third party

module to access the data.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

132

REFERENCES

S. Stanek et al. Automatic Real-Time Detection afi&scopic Procedures Using

Temporal Features. Computer Methods and Progral®medicine, May 2011.

S. Stanek et al. SAPPHIRE Middleware and Softwaegdlbpment Kit for Medical
Video Analysis. Computer-Based Medical Systemse RO11.

N. Srinivasan et al. A Novel System Able to ProviRReal-Time Feedback During
Colonoscopy. Abstract. Digestive Disease Week 28ap, Diego, CA, May 2012.

Mark D. Pesce, Programming Microsoft DirectShow fDigital Video and

Television, Microsoft Press, 2003.

D. Thomas, P. Moorby. The Verilog Hardware DesariptLanguage (5th Edition),
Springer, 2002. ISBN 978-0387849300.

Mark Zwolinksi. Digital System Design with VHDL (&nEdition), Prentice Hall,
2004. ISBN 978-0130399854

G. Kiczales et al. Aspect-Oriented Prorgramming.OEXP '97. Lecture Notes in
Computer Science, pp. 220-242.

R. Filman et al. Aspect-Oriented Software DevelopineAddison-Wesley
Professional, 2004. ISBN 0321219767.

M. Snir et al. MPIl: The Complete Reference. MIT $3reCambridge, MA, USA,
1995. ISBN 0262691841.

W. Gropp et al. A high-performance, portable impéenation of the MPI message
passing interface standard. Parallel Computing,uvea 22, Issue 6, Elsevier,
September 1996, pp. 789-828.

NVIDIA, CUDA Zone - The resource for CUDA developer

http://www.nvidia.com/object/cuda_home.html

133

[12] D. Timothy, R. Hartley, U. Catalyurek, A. Ruiz, lgual, R. Mayo, and M. Ujaldon,
Biomedical image analysis on a cooperative cluefeGPUs and multicores, Int'l

Conf. on Supercomputing, 2008, pp. 15-25.

[13] R. Strzodka, and C. Garbe, Real-Time Motion Esiiomatand Visualization on
Graphics Cards, Conference on Visualization '0042p@p. 545-552.

[14] J.-P. Farrugia, P. Horain, E. Guehenneux, and ¥s#d, GG-PUCV: A Framework
for Image Processing Acceleration with GraphicscBssors, IEEE ICME, Toronto,
Ontario, CA, 2006, pp. 585-588.

[15] J. Fung, and S. Mann, OpenVidia: Parallel GPU Cdmpuision, 2005.

[16] S. Hong and H. Kim. An Analytical Model for a GPUdhitecture with Memory-
level and Thread-level Parallelism Awareness. IG®App. 152-163, Austin, Texas,
USA, June 2009.

[17] Thies, W., Karczmarek, M., and Amarasinghe, S.@®22 Streamlt: A Language for
Streaming Applications. IfProceedings of the 11th international Conference on
Compiler Constructior{April 08 - 12, 2002). R. N. Horspool, Ed. Lectuxetes In
Computer Science, vol. 2304. Springer-Verlag, Landd9-196.

[18] Khronos Group, OpenCL, http://www.khronos.org/ogénc

[19] J. Stone et al. OpenCL: A Parallel Programming &iesh for Heterogeneous
Computing Systems. Comput Sci Eng. May 2010; 1863y2.

[20] L. Chen, O. Villa, S. Krishnamoorthy, G. Gao, Dynarhoad Balancing on Single-
and Multi-GPU Systems, IPDPS, April 2010.

[21] P. Dutot, T. N'Takpe, F. Suter. Scheduling Parallelsk Graphs on (Almost)
Homogeneous Multicluster Platforms. IEEE Transation Parallel and Distributed
Systems. 20(7), 940-952, July 20009.

[22] M. R. Garey and D. S. Johnson, Computes and latrdity: A guide to the Theory
of NP-Completeness.: W. H. Freeman and Company9.197

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

134

Andrew S. Tanenbaum. Modern Operating Systems Efition). Prentice Hall,
2007. ISBN 978-0136006633.

Nadathur Rajagopalan Satish. Compile Time Task BRedource Allocation of
Concurrent Applications to Multiprocessor Systerbliversity of California at
Berkeley, Technical Report No. UCB/EECS-2009-19. 2@09.

T. N'Takpe, F. Suter. Critical Path and Area Bassheduling of Parallel Task
Graphs on Heterogeneous Platforms. In Proc. ofl 18onf. on Parallel and
Distributed Systems (ICPADS’06), 2006.

H. Kasahara and S. Narita. Practical MultiprocesSoheduling Algorithms for
Efficient Parallel Processing. IEEE TransactionsCamputers, C-33(11), Nov. 1984.

Y. K. Kwok and I. Ahmed. Static Scheduling Algomtls for Allocating Directed
Task Graphs to Multiprocessors. ACM Computing Syya4d.(4):406-471, 1999.

Task Allocation and Scheduling of Concurrent Apgfions to Multiprocessor
Systems. PhD. Thesis, University of California, igdey, Nov. 2007.

G. C. Sih and E. A. Lee. A Compile-Time Schedulkheuristic for Interconnection-
Constrained Heterogeneous Processor AchitectuBdsE ITrans. On Parallel and
Distributed System. 4(2):175-187, 1993.

Jie Li, Hisao Kameda. Load Balancing Problems fowltMlass Jobs in
Distributed/Parallel Computer Systems. IEEE Tras.Computers, 47(3):322-332,
March 1998.

S. Baskiyar, C. Dickinson. Scheduling Directed Asly Task Graphs on a Bounded
Set of Heterogeneous Processors Using Task Duplicatiournal of Parallel
Distributed Computing, 2005, pp. 911-921.

T. Adam, K. Chandy, J. Dickson. A Comparison oftL&chedules for Parallel
Processing Systems. Communications of the ACM, 2)7§85-690, 1974.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

135

Tao Yang, A. Gerasoulis. DSC: Scheduling Paraledké on an Unbounded Number
of Processors. IEEE Transactions on Parallel asttibuted Systems. 5(9):951-967,
1994.

E. Hou, N. Ansari, Hong Ren. A Genetic Algorithnr fdultiprocessor Scheduling.
IEEE Transactions on Parallel and Distributed Systeb(2):113-120, 1994.

G. Sih, E. Lee. A Compile Time Scheduling Heurisfior Interconnection
Constrained Heterogeneous Processor ArchitectiE€E Transactions on Parallel
and Distributed Systems. 4(2):175-187, 1993.

H. Oh, S. Ha. A Static Scheduling Heuristic for étegeneous Processors. Lecture
Notes in Computer Science, Euro-Par 1996, vol. 1pp4573-577.

H. Topcuoglu, S. Hariri, M. Wu. Task Scheduling aighms for Heterogeneous
Processors. Heterogeneous Computing Workshop, p§93-14.

Y. Kwok, I. Ahmad. FASTEST: A Practical Low-Compigx Algorithm for
Compile-Time Assignment of Parallel Programs to tyubcessors. IEEE
Transactions on Parallel and Distributed Systed&)i147-159, 1999.

A. Radulescu, A. van Gemund. Low-Cost Task Schaduilh Distributed-Memory
Machines. IEEE Transactions on Parallel and Disteétd Systems. 13(6):648-658,
2002.

A. Radulescu, A. van Gemund. Fast and Effectiv&k Baheduling in Heterogeneous
Systems. IEEE Transactions on Parallel and DigedbuSystems. Heterogeneous
Computing Workshop, 2000, pp. 229-238.

H. Topcuoglu, S. Hariri, M. Wu. Performance-Effgetiand Low-Complexity Task
Scheduling for Heterogeneous Computing Parallel Bredributed Systems. IEEE
Transactions on Parallel and Distributed Systerd&3)1260-274, 2002.

C. Hanen, A. Munier. A Study of the Cyclic SchedgliProblem on Parallel
Processors, Discrete Applied Mathematics, Volumedd$stes 2-3, 24 February 1995,
pp. 167-192.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

136

Mark E. Russinovich, David A. Solomon. Microsoft Mdbws Internals. Microsoft
Press, 2005.

American Cancer Society. Colorectal Cancer Fact&igures. American Cancer
Society, 2011.

D. K. Rex, J. L. Petrini, T. H. Baron, A. Chak,Cdohen, S. E. Deal, B. Hoffman, B.
C. Jacobson, K. Mergener, B. Pertersen, M. A. $S&idiO. Faigel, and I. M. Pike.
Quiality indicators for colonoscopy. GastrointestiBadoscopy, vol. 63, pp. S16-S26,
2006.

S. Vijan, J. Inadomi, R. A. Hayward, T. P. HofemdaA. M. Fendrick. Projections of
demand and capacity for colonoscopy related tceasing rates of colorectal cancer
screening in the United States. Aliment Pharmad@rTvol. 20, pp. 507-515, 2004.

Pabby, R. E. Schoen, J.L. Weissfeld, et al. Analgdicolorectal cancer occurrence
during surveillance colonoscopy in the dietary PolyPrevention Trial.
Gastrointestinal Endoscopy 2005;61(3):385-91.

L. J. Hixson, M. B. Fennerty, R. E. Sampliner, Dc®&e, H. Garewal. Prospective
study of the frequency and size distribution ofypsimissed by colonoscopy. Journal
of the National Cancer Institute 1990;82(22):17@9-7

D. K. Rex, C. S. Cutler, G. T. Lemmel, et al. Caleoopic miss rates of adenomas
determined by back-to-back colonoscopies. Gasteoelotgy 1997;112(1):24-8.

D. Simmons, G. Harewood, T. Baron, P. Bret, K. Wdnagenders, B. Ott. Impact of
Endoscopist Withdrawal Speed On Polyp Yield: Imggiicns for Optimal
Colonoscopy Withdrawal Time. Gastrointestinal Erdy, Volume 63, Issue 5,
Pages AB81-ABS81.

R. L. Barclay, J. J. Vicari, A. S. Doughty, J. Fohdnson, R. L. Greenlaw.
Colonoscopic withdrawal times and adenoma detectidaring screening
colonoscopy. New England Journal of Medicine 20856(34):2533-41.

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

137

C. Petersohn. Logical unit and scene detectiormnaparative survey. (T. Gevers, R.
C. Jain, and S. Santini, Editors), Multimedia Caomntéccess: Algorithms and
Systems II, Vol. 6820.

M. Coimbra, P. Campos, and J. P. S. Cunha, Topbgrag@gmentation and transit
times estimation for endoscopic capsule exams,rot.Pof IEEE Int'l Conf. on

Acoustics, Speech, and Signal Processing, Vabpll, 1164-7 (Toulouse, France).

M. Mackiewicz, J. Berens, M. Fisher, Wireless Capdtndoscopy Colour video
segmentation. IEEE Transactions on Medical Imag27g(12):1769-1781 (2008).

J. Lee, J. Oh, S. K. Shah, X. Yuan, and S. J. Té&ugomatic classification of
digestive organs in wireless capsule endoscopyosid@ Proc. of ACM Symposium

on Applied Computing (Seoul, Korea, 2007).

Karargyris and N. Bourbakis, "A video-frame basedistration using segmentation
and graph connectivity for Wireless Capsule EndpgcoLife Science Systems and
Applications Workshop, 2009. LISSA 2009. IEEE/Nph.74-79 (April 2009).

L. Alexandre, N.N. Nobre, and J. C. Casteleiro.adCa@nd Position versus Texture
Features for Endoscopic Polyp Detection, Proc. mdfl IConf. on BioMedical
Engineering and Informatics, Vol. 1, pp. 38 — 4ar(&, China, May 2008).

D. C. Cheng, W. C. Ting, Y. F. Chen, Q. Pu, andYXJiang. Colorectal Polyps
Detection Using Texture Features and Support Vadachine, Proc. of Int'l Conf.
on Advances in Mass Data Analysis of Images andndsg in Medicine,

Biotechnology, Chemistry and Food Industry, pp.7@22008).

D. K. lakovidis, D. E. Maroulis, and S. A. Karkanidn Intelligent System for
Automatic Detection of Gastrointestinal Adenoma%/ideo Endoscopy, Computers
in Biology and Medicine, Article in Press (Elsevigeience, 2006).

S. Hwang, J. Oh, W. Tavanapong, J. Wong, and EleG5roen, Polyp Detection in
Colonoscopy Video Using Elliptical Shape FeaturéEE Int'l Conf. on Image
Processing, pp. 465-468 (San Antonio, TX, USA 2007)

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

138

S. Gross, M. Kennel, T. Stehle, J. Wulff, J. Tishtré, C. Trautwein, and T. Aach,
Polyp Segmentation in NBI Colonoscopy (Bildveratbeg fur die Medizin 2009
Springer Link, pp. 252-256.
http://www.springerlink.com/content/m7418r5356t13845

T. Stehle, R. Auer, S. Gross, A. Behrens, J. Wulfl,Aach, R. Winograd, C.
Trautwein, and J. Tischendorf, Classification ofl@@oPolyps in Endoscopy Using
Vascularization Features, Proc. of SPIE Medicalgmg, Vol. 7260 (Orlando, USA,
Feb 7-12, 2009).

J. Oh, S. Hwang, Y. Cao, W. Tavanapong, J. Wond,RanC. de Groen. Measuring
Objective Quality of Colonoscopy, IEEE Transactiams Biomedical Engineering;
56(9):2190 — 2196 (Sept. 2009).

Y. Wang, W. Tavanapong, J. Wong, J. Oh, and P.eGsiben, Detection of Quality
Visualization of Appendiceal Orifices using Localdde Cross-Section Profile
Features and Near Pause Detection, IEEE TransactiorBiomedial Engineering;
57(3): 689-695 (2010).

D. Hong, W. Tavanapong, J. Wong, J. Oh, and P.eG@ben, 3D Reconstruction of
Colon Segments from Colonoscopy Images, Proc. dEEIEInt'l Conf. on

Bioinformatics and Bioengineering, pp. 53-60, (TanyJune 2009).

K. Deguchi, Shape Reconstruction from Endoscopegéndy its Shadings.
IEEE/SICE/RSJ Int'l Conf. on Multisensor Fusion ahdegration for Intelligent
Systems, Vol. 8. pp. 321-328 (1996).

D. Koppel, C. Chen, Y. Wang, H. Lee, J. Gu, A. Bair, and R. Wolters, Toward
Automated Model Building from Video in Computer-Agted Diagnoses in
Colonoscopy, In Proc. of SPIE Medical Imaging Coafee (San Diego, CA, USA,
65091L, 2007).

Kaufman and J. Wang, 3D Surface Reconstruction friandoscopic Videos,
Mathematics and Visualization, Springer Berlin Ha#ibrg, pp. 61-74 (2007).

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

139

G. Bradski and A. Kaebler, Learning OpenCV, CompWision with the OpenCV
Library (O’Reilly Media, Inc. 2008).

Jochen Kalmbach. Why GetThreadTimes is wrong.
http://blog.kalmbachnet.de/?postid=28

N. R. Satish, K. Ravindran, and K. Keutzer. Schiedulfask Dependence Graphs
with Variable Task Execution Times onto Heterogerselultiprocessors. In Proc. of
Int'l Conf. on Embedded Software, Atlanta, Geor@i&A. pp. 149-158, 2008.

Olivier Beaumont, Arnaud Legrand, Loris Marchal, eévRobert. Assessing the
impact and limits of steady-state scheduling fokeditask and data parallelism on
heterogeneous platforms. INRIA 5198, 2004.

Kasahara Lab., Waseda University. (2011, Septe@®erStandard Task Graph Set.
http://www.kasahara.elec.waseda.ac.jp/schedulefihttal

S. Stanek, A Soft-Real Time System for Automati@i@ee of Colonoscopy Video,
MS Thesis, Department of Computer Science, lowte3daiversity, 2007.

S. Stanek, W. Tavanapong, J. Wong, J. Oh, and PGagn, Automatic Real-Time
Capture and Segmentation of Endoscopy Video, It.RyfbSPIE Medical Imaging,
San Jose, CA, USA, February 2008, pp. 69190X-69180X

M. Sonka, V. Hlavac, and R. Boyle, Image Processinglysis and Machine Vision,
2nd ed, (Thomson Learning, 1999).

140

APPENDIX A. SAPPHIRE API

The EndoMetric core API provides a set of functitimst modules can call to interact with
the middleware. An emCallbacks* object is passedindu module initialization to
emmRegister containing the function pointers torthédleware. This is usually stored as an
object named 'emc’, such that modules can intevébt the middleware by calling emc-
>functionname(). More important functions are deéxad in detail, while other functions are
discussed only briefly.

A.1 High-level macros

These functions are implemented as short macresrplify common sequences of events,
such as creating a packet. They are defined outsidiéie 'emc’ object and should not
prefaced with the 'emc’ object (i.e., uses functaome() rather than emc->functionname()).
Some macros will assume a naming convention destisimilar to the naming convention
described in the emcGetMeta macro section.

defaultRegister ()

Should be the first statement inside the emmRegistection. This sets up important
variables like 'emc' and registers module versidormation. In the future, if the registration
process changes, this macro may be changed sortlyad recompile of the module code is
necessary, rather than a change in the moduleitsmiie

defaultDIIMain ()

Contains a default function body for DIIMain, whichcalled by the operating system upon
loading a DLL. This sets up some important varialidich may be necessary for interacting
with the operating system.

ModuleParameters (char* version, char* description, int internal)

Should be declared somewhere in the module, pldfesd the top of the implementation,
after including common.h, but before emmRegistedesined. This declares the module
version information and a description.

Parameters:

version — a string containing the module version (e.g., "1.0.0")

description — a string containing a description of the module (€gmputes average mean-
red value")

internal — a flag denoting whether the module should be hidden anpegroogether as a
core component (most modules will use 0)

Example:

ModuleParameters ("1.0.0", "End of insertion detection”, 0);

141

emcPrepar ePacket (packet, meta, metatype, METATYPE, inherit)

Used to create a new packet and setup the metattatzture and all associated packet
variables. Specifically, it will create and assigm emPacket* pointer (packet), create and
assign a metadata pointer (meta) based on a definecture (metatype) and string type
(METATYPE). The packet and meta variables mustaalyebe defined. This macro can be
used to setup most types of packets, but shoulterased to setup packets that contain extra
data attachments like video (using the ->data pojirdr otherwise special packets that are
not typically used.

Parameters:
packet — the variable declared as an emPacket* that will reiteveewly created packet
meta — the variable declared as a meta_X structure (whereaXed bn the data type)
metatype — the name of the meta_X structure (e.g., meta_video)
METATYPE - the string name of the data type (e.g., "VIDEQ")
inherit — a source packet used to inherit key fields in the pabkét, such as the timestamp

Example:

emPacket* eoi;
meta_eoi* metaeoi;

emcPreparePacket(eoi, metaeoi, meta_eoi, "EOI", pktin);

emcGetM eta (name, metatype, mux)

Used to pull the first timestamp's emPacket* andamé* pointers out of a mux (if
available). The results are stored into variables\ed according to convention, where the
emPacket* variable is named 'name' and the metaaKable is declared as a meta_name*
structure named 'metaname’. The metatype is timng $yppe of the data packet.

Parameters:

name — the base name of the type that is declared as edwh prcket variable, metadata
structure name, and metadata variable name
metatype — the string name of the data type (e.g., "VIDEQO")

mux — the mux to retrieve the packet from

Example:

emPacket* video;
meta_video* metavideo;

emcGetMeta(video, "VIDEQ", locals->mux); // video and metavideo now filled

142

emcStartClock () / emcStopClock ()

Manually starts and stops the high-precision autechperformance gathering system for the
current compute thread. Usually not necessary €sthese clocks are started and stopped
automatically), unless an artificial wait is perfoed that the middleware does not normally
look for. For example, waiting on a mutex does p@tform any useful computation, but it
does utilize computing resources while waiting. f@e other hand, waiting on some other
events might not utilize any computing resourcepetding on the function used. The usage
of these functions is at the discretion of the evwibf the module. In general, it is
recommended to call emcStopClockf)mediately beforealling a wait function and call
emcStartClock()Jmmediately afteto start the clock back up.

Example:

emcStopClock();
WaitForMultipleObjects(noOfThreads, handles, TRUE, INFINITE);
emcStartClock();

A.2 CoreAPI functions

This section describes the core API of the middlewBunctions are grouped by type. These
functions are accessible by calling member funstiohthe 'emc' object, which is an internal

object setup in defaultRegister(). These functiwiisnot be accessible until the ‘emc' object

has been properly setup. Unlike the macros, thasetibns are called by prefacing with the

‘emc’ object (e.g., emc->emcAddInput(...)). Neaillyfunctions require the first parameter of

'module’ to be specified, which is simply the medyassed in through emmRegister,

emmData, etc.

A.2.1 Registration

Module registration typically consists of configuyi data inputs and outputs. User
configuration information is passed to the modutesnRegister function so that the module
can properly indicate which inputs and outputssitilling to accept or generate. Single
inputs are added with emcAddinput(), while outpate added with emcAddOutput().
Complex inputs consisting of multiple input datpdgg can be grouped together into a single
logical input by using a mux (multiplexer). Thisgher level construct helps by providing
simple synchronization functions to make workinghwinultiple data types easier. Data
types are first added to a mux with emcAddMux(d #men the mux is registered by calling
emcAddInputMux().

Because synchronization is not guaranteed with tigtes added with emcAddinput(),

emcAddInputMux() is preferable in almost all cadégen if using just a single input data
type, the mux framework will work just as efficign{negligible overhead). The advantages
of using a mux instead of the low-level emcAddIrfputven for just a single packet type, is

143

that the middleware provides higher level functitmet are useful for packet handling, and it
is much easier to add additional inputs with syonimation later, rather than changing a
significant amount of code to handle the change.

int encAddlnput (emModule* module, char* type, int* meta, int metalen)

Simple inputs are added with this function. Theetyyd the data input is specified by the
string 'type'. Before using this function, pleasensider the note above about how
emcAddInputMux() is almost always preferred ovas tunction. The 'meta’ and ‘'metalen’
parameters optionally assign a metadata filterh itput; however, this functionality is

currently not very useful, so it is only partiailgplemented into the framework. Generally, a
default value of 0 should be specified for 'metal anetalen’'.

Parameters:

type — the string name of the data type (e.g., "VIDEO")
meta (optional) — pointer to a metadata filter structure if desired
metalen (optional) — length of metadata structure

Example:
emc->emcAddInput(module, "VIDEO", 0, 0); // request VIDEO data type

int encAddOutput (emModule* module, char* type, int* meta, int metalen, int
maxchainlen)

Simple outputs are added with this function. Theetgf the data to be output is specified by
the string 'type'. There is no 'mux’ version assed with outputs since synchronization for
muxes are handled by the middleware and by thet iymctions. Metadata filters can be
specified, although this is a rarely used feat&wepport for this feature may not be fully
implemented; a default value of 0 is usually spedifThe maximum packet chain length for
a particular output type can be overridden with ‘tnexchainlen' parameter. This is the
number of packets of a particular output type thatsystem will buffer before considering
that buffer full, and begin blocking requested amspuntil free space is available. For large
packets such as video, this value is usually sieelctio minimize the maximum memory
usage. For small packets, this parameter can ydomlignored. The default of 3000 packets
is used if O is specified.

Parameters:

type — the string name of the data type (e.g., "MEANR")

meta (optional) — pointer to a metadata filter structure if desired
metalen (optional) — length of metadata structure

maxchainlen (optional) — maximum packet chain length

144

Example:

emc->emcAddOutput(module, "MEANR", 0, 0, 0); // MEANR data type will be
output

int encAddMux (emM odule* module, emMux* mux, char* type, int* meta, int
metalen, int optional, int delay)

Adds a specified data type into an existing muxe Mux is currently created by the module
programmer (e.g., mux = calloc(...)) rather tharth®ymiddleware, although this may change
in a future version. The data types are not agtuagistered by adding them to the mux
alone; this must be followed up by registering tmeix with the middleware with
emcAddInputMux(). The 'optional’ flag specifies wher an input is optional or not. If false
(zero), the data type must exist in order for thexrto be satisfied. If true (non-zero), the
mux can be satisfied regardless of the existentleeo$pecified data type. If 'optional’ is true
and the data type is registered as an output isytsiEem, mux synchronization will correctly
wait for this data type (i.e., the data type's texise itself is optional, rather than a packet of
that existing data type being available).

In some circumstances, a feedback loop for datalmagesired. Because it is impossible to
receive output data for a particular timestamp framother module that does not yet have
that timestamp's input data (a circular dependercédglay can be specified to allow the mux
to receive a previous timestamp's data packet.'ddlay’ parameter is, optionally, a positive
number specifying such a delay. The default of €&c#j@s that no such delay exists for that
particular data type.

Note that the first 'delay’ number of packets f@atisfied mux for this data type will consist
of a null packet. For 'optional' inputs, the samdrue (a null packet being returned upon
requesting a particular data type). Module progransnshould take care to check optional
and delay type packets to make sure they are nibibefore using them.

Parameters:

mux — an existing mux to add this input data type to

type — the string name of the data type (e.g., "VIDEO")

meta (optional) — pointer to a metadata filter structure if desired

metalen (optional) — length of metadata structure

optional (optional) — true/false flag to specify whether the data typetisnal
delay (optional) — specify an amount of delay (in time quantums) for thisygeta

Example:

emMux* mux; // note: declared inside a structure named 'locals'

emc->emcAddMux(module, locals->mux, "VIDEQ", 0, 0, 0, 0);

145

int emcAddlnputM ux (emModule* module, emM ux* mux)

Adds this mux as an input for the module. This fiorctakes all the inputs previously added
to the mux with emcAddMux() and then actually addsh of them to the module itself. No
more inputs should be added to the mux after tmstfon is called.

Parameters:

mux — an existing mux with input data types to register with the module

Example:

emc->emcAddInputMux(module, locals->mux); // register this mux with the
module

Rarely used registration functions

The following functions are not normally used. Thedule version registration functions are
already called by defaultRegister(), and thus, thegd not be called manually. However,
they are provided below for reference. The emc&#Bilter is not called by any macros,
but it is also not normally used — it is mainly dde set filter points on data types, similar to
hooking functions or aspect-oriented bindings.

int encSetPacketFilter (emModule* module, char* type, int* meta, int metalen,
unsigned int priority)
Assigns a filter to a particular data type usirgpacific priority.

Parameters:

type — the string name of the data type (e.g., "MEANR")
meta (optional) — pointer to a metadata filter structure if desired
metalen (optional) — length of metadata structure

priority — the priority of the packet filter (higher indieatan earlier location in the filter
chain)

Example:

emc->emcAddInput(module, "VIDEO", ...);
emc->emcAddOutput(module, "VIDEQO", ...);
emc->emcSetPacketFilter(module, "VIDEO", 0, 0, 1000);

146

int encRegister ModuleVersion (emModule* module, char* versionstring, int
buildnumber, char* builddate)

Registers the module version information. Usuallyst function is called through
defaultRegister() rather than directly.

Parameters:

versionstring — the version string of the SDK
buildnumber — the SDK build number this module was built with
builddate — the date and timestamp of the module compile

Example:

emc->emcRegisterModuleVersion(module, EM_VERSION, EM_BUILDVER, _ DATE__ ##
"UH#H_TIME_);

int encRegister ModuleVersion2 (emModule* module, char* versionstring, char*
description, int internal)

Alternative method to registering module versiocimimation.

Parameters:

verionstring — the version string of the module
description — a textual description of the module's function
internal — f lag to indicate whether or not this module is a built-in module

Example:

emc->emcRegisterModuleVersion2(module, EM_MODULEVERSION,
EM_MODULEDESCRIPTION, EM_MODULEINTERNAL);

int emcSetDataTypeOffset (emModule* module, char* type, char* varname, int offset,
char* vartype, int varsize, int numvar)

Registers a metadata structure variable with adhestring name so that other modules and
programmers can access structure members by namentaine instead of by binary
compilation with the structure format (the headér for the structure). Although binary
compilation with the structure format yields fastede, referencing by variable name may
be more friendly in some circumstances (e.g., digpy packet variable values in hud.dll by
specifying the variable names in the configuratib® rather than having to specify their
byte offsets). The code to register a full struetean be automatically generated by the
gendataoffset.exe program included as a tool wghSDK.

147

Parameters:
type — the string name of the data type (e.g., "VIDEQO")
varname — a string of the C type of the structure variable (e.g., "int")
offset — the byte offset of the structure variable (e.g., 4)
vartype — a string representing the type of the variable (e.g.géirije
varsize — the size in bytes of the variable type (e.g., 4)
numvar — for an array, the number elements in the array

Example:
emc->emcSetDataTypeOffset(module, "VIDEO", "height",

sizeof(int), sizeof(int)/sizeof(int));

typeinfo* (*emcGetDataTypeOffset) (emModule* module, char* type, char* varname)

Retrieves the type info for a type and structuneatde name set by emcSetDataTypeOffset.
Note that this is not actually a registration fumet but rather, this is the counterpart to
emcSetDataTypeOffset function used in registrationvill not be valid until all modules
have registered and emmStart has been called.

Parameters:

type — the string name of the data type to retrieve information about Y@REO")

varname — the string name of the structure variable toevetrinformation about (e.g.
"height")

Example:
ti = emc->emcGetDataTypeOffset(module, "VIDEQ", "height");

A.2.2 Packets

Packet functions are typically used to create, fypdind release data in the system. They are
the primary method of achieving communication betmveodules.

emPacket* emcNewPacket (emModule* module, int metalen, int datalen)

Creates a new packet, to be filled with data bypgtegrammer. This packet must be pushed
to the system or it will become a memory leak.

148

Parameters:

metalen — the size of the data required by the metadata struchet->
datalen — the size of the data required by the attached data strudatee -

Example:

pkt = emc->emcNewPacket(module, sizeof(meta_raw_video), width * height * 4);

emc->emcPushPacket(module, pkt);

int emcPushPacket (emM odule* module, emPacket* pkt)

Pushes the packet of data to the middleware. &ldi$i must be finished before this function
is called. Memory that was allocated inside thiskeh may become invalid immediately

after pushing (as it could become used and freeklg), so modules should ensure that any
data that should persist after calling emcPushRastkeuld be copied somewhere else or
allocated outside of normal packet deallocatiowflo

Parameters:
pkt — an allocated, preformatted, filled out packet structure to be pustiedrtiddleware

Example:

pkt = emc->emcNewPacket(module, sizeof(meta_meanr), 0);

emc->emcPushPacket(module, pkt);

int encM uxPacket (emModule* module, emM ux* mux, emPacket* pkt, int num)

Adds a packet of data to a mux. If the mux is Satis(has at leashum of each packet
available), then this function returnem Otherwise, it returns 0.

Parameters:

mux — the mux structure to insert the packet into

pkt — the packet passed in through emmData

num — the requested number of packets that must be inserted imwxhacross all data
types

Example:

/I this will just exit an emmData function immediately
/I if the mux is not satisfied

149

if(lemc->emcMuxPacket(module, mux, pkt, 1)) return O;

int encReleaseM uxPackets (emM odule* module, emM ux* mux, int num)

Releasesium packets of each data type listed in the mux. Téimsoves the packets both
from the mux and releases them from the module.

Parameters:

mux — the mux structure to release packets from
num — the number of packets of each type to release from the module

Example:

if(lemc->emcMuxPacket(module, mux, pkt, 1)) return O;
... process data ...
emc->emcReleaseMuxPackets(module, mux, 1);

emPacket* emcFindPacket (emM odule* module, emMux* mux, char* type)

Retrieves a packet of a specific type from the nilumo packet of that type is available, this
function returns 0.

Parameters:

mux — the input mux to retrieve a packet from
type — the string name of the data type (e.g., "MEANR")

Example:

if(lemc->emcMuxPacket(module, mux, pkt, 1)) return O;
meanr = emc->emcFindPacket(module, mux, "MEANR");

int encPushDummyPacket (emModule* module, char* type, __ int64 timestamp, int

final)

Pushes a dummy packet of a specific type, synchednwith a specific timestamp and final
flag. The timestamp and final flag are usually pdss through some parent packet. This
function manages the full creation and pushing ofpacket, so no other calls to
emcNewPacket or emcPushPacket are needed for tiaylpacket.

Parameters:

150

type — the string name of the data type (e.g., "MEANR")
timestamp — the timestamp to use to push a dummy packet
final — a flag denoting whether or not this will be the final packethigrdata stream

Example:

if(skipframe) {

emc->emcPushDummyPacket(module, "MEANR", pktin->timestamp, pktin->final);
}else {

pkt = emc->emcNewPacket(...);

emc->emcPushPacket(...);

}

int encReleasePackets (emModule* module, int j, int r)

Releases packets of internal packet index fyaed number of packets This is less used
due to the flexibility of the mux functionality arttie fact that returning a positive number
from emmData automatically generates a call toftmstion.

Parameters:

] —module's internal packet type index of which to release a packet
r — number of packets to release

Example:

emc->emcReleasePackets(module, j, r);

int encAddReleaseCallback (emM odule* module, emPacket* pkt, int
(*callback)(emPacket* pkt))

Adds a callback function to be called upon jusbipto a packet's actual deallocation. This
allows a programmer to attach dynamic memory ah@robbjects to a packet and allows
those objects to be properly freed. The freeinghef packet data itself is handled by the
middleware; the module creating a packet need neet the packet, only extra pointer data
attached to it that the middleware would not uni@ders how to deallocate itself.

Parameters:

pkt — the packet to attach a custom packet destructor callbaclofutati
callback — the callback function to call

151

Example:

int freeColonCenter(emPacket* pkt) { delete pkt->cc; }

spiralpkt = emc->emcNewPacket(...);

spiralpkt->cc = new ColonCenter();
emc->emcAddReleaseCallback(module, spiralpkt, freeColonCenter);
emc->emcPushPacket(module, spiralpkt);

int emclnheritPacket (emPacket* packet, emPacket* inherit)

Inherits several fields from a parent padkéterit, such as the timestamp and final flag, and
copies them tpacket

Parameters:

packet — destination packet to copy values to
inherit — source packet to inherit values from

Example:

pktout = emc->emcNewPacket(...);

emc->emclnheritPacket(pktout, pktin);
... fill pktout ...

emc->emcPushPacket(module, pktout);

emPacket* emcCopyPacket (emM odule* module, emPacket* pkt)
Performs a deep copy of a packet and returns g co

Parameters:
pkt — packet to copy

Example:

newpkt = emc->emcCopyPacket(module, pktin);

emPacket* emcCopyPacketShallow (emM odule* module, emPacket* pkt)

Performs a shallow copy of a packet and returnsctpy (data pointers will point to the
parent packet).

152

Parameters:
pkt — packet to copy

Example:

newpkt = emc->emcCopyPacketShallow(module, pktin);

int emcDataTypeExists (emModule* module, char* type)

Returns whether or not a data type exists in thexadvsystem. This will not be valid until
after all modules have registered (i.e., this fiomcicannot be called during emmRegister,
and should not be called until emmStart or later).

Parameters:
type — the string name of the data type (e.g., "MEANR")

Example:

if(emc->emcDataTypeExists(module, "INSIDE")) {
... modify module behavior due to existence of "INSIDE" data ...

}

A.2.3 Control

int emcSetFinished (emModule* module, int status)

Sets a module to a finished state. The middlewatensatically determines when a module
has entered a finished state based on the compleftiprocessing of all incoming packets as
well as the finished states of all modules produydimose packets. This function is only
necessary for source type modules (e.g., mpegrediiéor which the middleware has no

implicit way to determine the completion of the mba

Parameters:

status — whether this module is finished (nonzero) or not (zero)

Example:

if(done) emc->emcSetFinished(module, 1);

153

A.2.4 Performance

double emcGetPushTime (emModule* module, __ int64 pushtime)

Returns the number of seconds since SAPPHIRE diacresponding to an arbitrary

reference clock, of a value specified pyshtime This is usually a packet's ->pushtime
member variable.

Parameters:

pushtime — number of clock cycles elapsed since SAPPHIRE started

Example:

packettime = emc->emcGetPushTime(module, pktin->pushtime);
printf("time since last packet = %.3f ms\n",

(packettime — lastpackettime)*1000.0);
lastpackettime = packettime;

int encAddThread (emM odule* module, HANDLE hthread, int threadid)

Manually adds a thread to belongrtmdule New threads are almost always automatically
detected and manual addition through this fundsamot needed.

Parameters:

hthread — Windows handle to the created thread
threadid — Windows globally unique thread id of the created thread

Example:

HANDLE hthread = CreateThread(..., &threadid);
emc->emcAddThread(module, hthread, threadid);

int emcPerfStartClock (emM odule* module, char* filename, int line)
The explicit function that the emcStartClock macadis.

Parameters:

filename — file name this functionis in (e.g., __ FILE_)
line — line this function is being called from (e.g., _ LINE_)

154

Example:
emc->emcPerfStopClock(module, _ FILE__, LINE_);
WaitForSingleObiject(...);
emc->emcPerfStartClock(module, __ FILE__, LINE_);

int emcPerfStopClock (emModule* module, char* filename, int line)
The explicit function that the emcStopClock macatisc

Parameters:

filename — file name this functionis in (e.g., __ FILE_)
line — line this function is being called from (e.g., _ LINE_)

Example:
emc->emcPerfStopClock(module, _ FILE__, LINE_);
WaitForSingleObject(...);
emc->emcPerfStartClock(module, _ FILE__, LINE_);

A.2.5 Miscellaneous

int encGetM odulel nfo (int index, emM odule* resultmodule)

Gets the module info for a module specifiedibgex and returns the module into a user-
provided emModule structure. Hesultmoduleis not specified, this function returns the
number of modules in the system. This functionaswvalid until all modules have registered
(i.e., it cannot be used until emmStart is calldddst information about a module can be
retrieved through this function, however state-gpemformation that may quickly expire
(such as pointers to a module's next incoming gagkenot retrieved.

Parameters:

index — module number to retrieve info about
resultmodule — destination pointer to an emModule structure to esicdormation

Example:

n = emc->emcGetModulelnfo(0, 0);
for(i=0;i<n;i++) {
emc->emcGetModulelnfo(i, &m);

printf("module %2d : %s %s.%d\n", i,m.dllname, m.versionstring,
m.buildnumber);

155

int encGetTypeNum (char* typestr)
Returns the internal type index for a specifiethgtformatted data type.

Parameters:
typestr — the string name of the data type (e.g., "MEANR")

Example:
typeindex = emc->emcGetTypeNum("MEANR");

char* emcGetTypeName (int typenum)
Returns the string-formatted data type name favangtype index.

Parameters:
type — the string name of the data type (e.g., "MEANR")

Example:

/I note: this code returns "MEANR" back, but it becomes a
/l pointer to the middleware's internal string of "MEANR"
printf("%s", emc->emcGetTypeName(emc->emcGetTypeNum("MEANR"));

void emcDumpPacketChain ()
Prints out the full linked lists of packets curignh the system.

Example:

if(inconsistency_found) emc->emcDumpPacketChain();

156

APPENDIX B. MODULESAND FUNCTIONALITY

M odulesincluded with SAPPHIRE

M odule name

Task performed by the module

mpegreader.dl|

Read MPEG-2 video files

mpegwriter.dll and mpegwriter2.dl|

Write MPEG-2 gulfiles

videocapture.dl|

Obtain video signal from a videiring card

Display videos, feedback, and process some uséokeg

hud.dll .

input

Combine multiple VIDEO data types and output alsing
videomixer.dll VIDEO data type that can be used by modules thac

VIDEO data type (e.g., hud.dll or mpegwriter.dll)

screencapture.dll

Capture video from the computer desktop or spetifie
window and output it as a VIDEO stream

log.dll

Synchronized logging support with typical loggireyéls and
options built-in

emlive.dll

Export VIDEO data to external programs in real-time
through a system shared memory region

imagemask.dll

Derive image mask from a VIDEO stream and outpuga
video stream of the image mask

autoresize.dll

Automatically crop/resize a VIDE®@esim

grayscale.dll

Generate a grayscale video stream from an inpuEdD
stream

tep.dll

Allow SAPPHIRE to communicate data over networlogsi
TCP, enabling cluster and grid computing.

Third-party modules

M odule name

Task performed by the module

blurry.dll Detect informative frames and computkted metrics
egd.dil Detect whether the video is colonoscopy (defaultygper
' endoscopy
rts.dll Detect stool pixels and calculate stochtedl metrics
rteoi.dll Detect end-of-insertion frame in real-im
. Accept user-specified end of insertion frame nunwer
rteoi_user.dll

keyboard input

spiralCounting.dll

Compute spiral related metrics

ecspEdgeTracking.dll,
DetectionECSP_module.dll

Detect potential polyp edges and provide feedback

QCMetricRT.dll

Generate a CSV file with quality measurements &mhe
video analyzed

inside.dll, meanr.dll, meannormr.dll,
histdiff.dll, meanr_dv80.dll,
color_energy.dll,
meannormr_risefall.dll,brightness.dll

Detect the start and end frame of an endoscopiepoe

eoi_eop_gt.dll

Read end-of-insertion and end-of-procedure franmebmrs
from a CSV file

usbname.dll

Read an encrypted endoscopist’s namedrthumb drive.

157

APPENDIX C. MODULESAND THEIR PACKET TYPES

M odulesincluded with SAPPHIRE

M odule name

Input packet types

Output packet types

mpegreader.dll

RAW_VIDEO, LOG

mpegwriter.dll

VIDEO, INSIDE

FEEDBACK_VIDEO_FILE_INF
O, MOTION_VECTORS

mpegwriter2.dll

VIDEO_MIXER, INSIDE

videocapture.dll

RAW_VIDEO, LOG

VIDEO, STOOL, BLURRY,
QCMETRIC_USER,

USER_INPUT,

hud.dll INSIDE_NO_DELAY, INSIDE,
VIDEO_MIXER_OVERLAY, HUD_WINDOW_OUTPUT
RAW_VIDEO, EOI, EOl_USER
videomixer.dll SPIRAL OVERLAY, ECSP_OVERLAY| VIDEO MIXER OVERLAY
screencapture.dll VIDEO
log.dll LOG NULL
emlive.dll VIDEO
imagemask.dll VIDEO, INSIDE IMAGEMASK
autoresize.dll RAW_VIDEO, INSIDE_NODELAY VIDEO
grayscale.dll VIDEO GRAYSCALE_VIDEO
tep.dll (configurable; data to send over network (configurable; data to receive froy

3

network)

158

Third-party modules

M odule name

Input packet types

Output packet types

meanr.dll RAW_VIDEO MEANR
histdiff.dll RAW_VIDEO HISTDIFF
meanr_dv80.dll MEANR MEANR_DV80

color_energy.dll

MEANR, MEANNORMR

MEAN_ENERGY,
MEANNORM_ENERGY,
COLOR_ENERGY,
MEAN_HIST CONT_AREA

meannormr_risefall.dll

MEANR, MEANNORMR,
MEANR_DV80, INSIDE_NODELAY

MEANNORMR_RISEFALL

brightness.dll

RAW_VIDEO

BRIGHTNESS

MEANR, MEANNORMR, HISTDIFF,
MEANR_DV80,
MEANNORMR_RISEFALL,
MEAN_ENERGY,

inside.dIl MEANNORM. ENERGY. INSIDE, INSIDE_NODELAY
COLOR_ENERGY,
MEAN_HIST CONT_AREA,
BRIGHTNESS,STOOL, RETRO

. VIDEO, INSIDE,

rteol.dll FEEDBACK_VIDEO_FILE_INFO LOG, CDCM, EOI
VIDEO, INSIDE,

EGD.dll FEEDBACK_VIDEO_FILE_INFO EGD
VIDEO, INSIDE,

RTS.dll FEEDBACK_VIDEO_FILE INFO STOOL, LOG
VIDEO, INSIDE,

blurry.dll FEEDBACK_VIDEO_FILE_INFO BLURRY, LOG
VIDEO, INSIDE, L0G. SPIRAL

spiralcounting.dll

FEEDBACK_VIDEO_FILE_INFO,
BLURRY, EOI_USER EOI

SPIRAL_OVERLAY

gcmetricrt.dll

BLURRY, STOOL, INSIDE,
FEEDBACK_VIDEO_FILE_INFO,
VIDEO, SPIRAL, EGD,EOI_USER
EOI

QCMETRICRT_USER, LOG

VIDEO,

rteoi_user.dll FEEDBACK_VIDEO_FILE_INFO, EOI_USER, LOG
INSIDE
. EOI_USER, VIDEO, INSIDE, INSIDE_NODELAY, INSIDE,
eoi_eop_gt.dll -~ oy

RAW_VIDEO, INSIDE_NODELAY

EOI_USER, LOG

ecspEdgeTracking.dll

VIDEO, SPIRAL, IMAGEMASK,
FEEDBACK_VIDEO FILE_INFO

LOG, EDGE,
EDGE_OVERLAY, ECSPEDGE

DetectionECSP_Module.d

VIDEO, INSIDE, BLURRY, SPIRAL,
IMAGEMASK,
FEEDBACK_VIDEO_FILE_INFO,
ECSPEDGE

LOG, DETECTION_ECSP,
ECSP_OVERLAY

00O~NO UL WNPE

159

APPENDIX D. SAMPLE ENDOCAPTURE.INI

D.1 Endoscopic procedur e detection and capturing (EM-Capture)

[videocapture.dll]
video.device=
video.device.width=720
video.device.height=480
video.mux=Composite
video.width=720
video.height=480
video.bpp=32
video.fps=29.97
video.bufferlen=30
video.tvformat=1 # 1=NTSC_M, 16=PAL B

[autoresize.dll]
[meanr.dll]
[meannormr.dll]

[histdiff.dll]

[meanr_dv80.dll]
windowsize = 240

[meannormr_dv80.dll]
windowsize = 240

[color_energy.dll]

windowsize = 479
windowsize_big = 1800
[meannormr_risefall.dll]
windowsize = 240
[inside.dIl]

quiet=1

#recordall = 1

#blackframes = 60

vis=0

threshold.meanR = 8
threshold.meannormR = 33
threshold.meannormR_runningtotal = 2400
threshold.maxstartlength = 240
threshold.outside_duration = 9000
threshold.outside_percent = 0.90
threshold.outside_nosignal = 2700
threshold.motion = 5000
threshold.meanR_dv80 = 2

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

160

threshold.meanR_dv80_end = 0.05
threshold.meannormR_dv80 = 0.2
threshold.meanR_dv80 2 =0.2
threshold.meannormR_dv80_ 2 = 0.05
threshold.greenarea = 4000
threshold.greenarea_low = 100
threshold.redarea = 3000
threshold.meanR_energy = 64
threshold.meannormR_energy = 16
threshold.count_energy = 32
threshold.count_energy end = 3.2
threshold.count_area = 15000

[mpegwriter.dll]
quality = 31
realtime =0
bitrate = 8000000

file = oUN%YYYY%%MM%%DD%_%hh%%mm%%ss%_%ip% _P%rih.mpg

outside = 120
minlength = 600

[emlive.dll]
[log.dll]

logfile = out/log.txt
level =9

[brightness.dll]
[grayscale.dll]

© 00N UL WNPE

161

D.2 Real-timefeedback (EM-Automated-RT)

[videocapture.dll]

video.device.width=720

video.device.height=480

video.mux=Composite

video.width=720

video.height=480

video.bpp=32

video.fps=29.97

video.bufferlen=90

video.tvformat=1 # 1=NTSC_M, 16=PAL_B

[autoresize.dll]

[meanr.dll]
[meannormr.dll]
[histdiff.dll]

[meanr_dv80.dll]
windowsize = 240

[meannormr_dv80.dll]
windowsize = 240

[color_energy.dll]
windowsize = 479
windowsize_big = 1800

[meannormr_risefall.dll]
windowsize = 240

[inside.dIl]

quiet=1

recordall =0

#blackframes = 20

vis=0

threshold.meanR = 8
threshold.meannormR = 33
threshold.meannormR_runningtotal = 2400
threshold.maxstartlength = 240
threshold.outside_duration = 9000
threshold.outside_percent = 0.90
threshold.outside_nosignal = 2700
threshold.motion = 5000
threshold.meanR_dv80 = 2
threshold.meanR_dv80_end = 0.05
threshold.meannormR_dv80 = 0.2
threshold.meanR_dv80 2 =0.2
threshold.meannormR_dv80_2 = 0.05

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

162

threshold.greenarea = 4000
threshold.greenarea_low = 100
threshold.redarea = 3000
threshold.meanR_energy = 64
threshold.meannormR_energy = 16
threshold.count_energy = 32
threshold.count_energy end = 3.2
threshold.count_area = 15000

[mpegwriter.dll]

quality = 31

realtime =0

bitrate = 8000000

#file = out\%YYYY%%MM%%DD%_ %hh%%mm%%ss%_%ip%_PSamPbs.mpg
file=null

#outside = 120

#minlength = 600

outside =0

minlength = 600

[mpegwriter2.dll]

#comment out for recording without feedback
quality = 31

realtime =0

bitrate = 8000000

file = out\%YYYY%%MM%%DD%_%hh%%mm%%ss%_%ip%_FB6ARUmM%.mpg
#file = out\test.mpg

#outside = 120

#minlength = 600

outside =0

minlength = 600

single=1

input=VIDEO_MIXER

[hud.dII]

hideuntileoi=1

#synchronized displayed frames and processsgtse
sync =1

statistics=0

input=VIDEO

#input=SPIRAL_OVERLAY

font=Times New Roman:14

color=ffffffff # green ffOOffO0
top-left

#blank line
##text=QCMETRICRT:168.int/Comp

#spiral using computed EOI
##text=QCMETRICRT:172.int/S (W):%d
##text=QCMETRICRT:168.int/S (1):%d
#computed EOI
##text=QCMETRICRT:180.int/EOI:%d

163

100 #withdrawal time based on computed EOI

101 ##text=QCMETRICRT:O0.string/IT:%9s

102 ##text=QCMETRICRT:10.string/WT:%9s

103 #clear withdrawal time based on computed EOI

104 ##text=QCMETRICRT:20.string/CWT:%9s

105 ##text=QCMETRICRT:60.float/Unclean (%%F) :%.2f
106 = ##text=SPIRAL:12.int/spiral:%d

107

108 top-right

109 | #text=QCMETRICRT_USER:168.int/User

110 #spiral count using user specified EOI

111 | text=QCMETRICRT_USER:172.int/

112 | text=QCMETRICRT_USER:172.int/S (W):%d

113 | #text=QCMETRICRT_USER:168.int/S (1):%d

114 #user specified EOI

115 | text=QCMETRICRT_USER:180.int/%d

116 | # EOI removed number shown: text=QCMETRICRT:t806d
117 | #text=QCMETRICRT_USER:188.int/isEGD:%d

118 #withddrawal time based on user specified eoi

119 | #text=QCMETRICRT_USER:0.string/IT:%9s

120 | #text=QCMETRICRT_USER:10.string/WT :%9s

121 #clear withddrawal time based on user specéda@d

122 #text=QCMETRICRT_USER:20.string/CWT :%9s

123

124 | #text=QCMETRICRT_USER:60.float/Dirty (%%F):%.2f
125 | #text=QCMETRICRT_USER:68.float/Dirty (%%CF):%.2
126

127 | overlay=SPIRAL_OVERLAY

128 #overlaycolor=Tfffffff

129 #overlaykey=ffff0000

130

131 useblackvideo=1

132 #used to show only feedback without video digna

133

134 ' record=2

135 #record=0 for recording without feedback

136 #record=2 for recording video without the Wingonindow frame
137 #records video and feedback

138

139 | [log.dll]

140 logfile = out/log.txt
141 | level=1

142

143 ' [brightness.dll]

144 [grayscale.dll]

145

146 | [RTS.dI]

147 | #frames/second

148 frameAnalysisRate=1
149

150 | [blurry.dll]

151
152
153
154
155
156
157
158

159

160

161

162

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

164

frames/second
frameAnalysisRate=1

[spiralCounting.dll]

#number of frames to skip

frameAnalysisRate = 1 # default 3.0 framesspeond for old version9
threshold.laterality = 0.4 # default 0.6

threshold.outBound = 0.95 # default 0.9

show.lumen=0 # show the detected lumen (do NOT show by defasdt);it 1 to show;
set it 0 not to show

show.circles=0 # show both circles (show by default); set it 1stow; set it O not to

show

show.corners=1 # show a green triangle at the corner when thadmuer has been

inspected (show by default); set it 1 to show;its@tnot to show
show.inspecting=0 # mark currently inspecting mucosa area (show dgul®; set it 1 to
show; set it 0 not to show
show.corners.size=4 #1 for smallest; 10 for biggest (default 5)
#input.eoi=1 #0 for system eoi; 1 for user irgai
input.eoi=1

[QCMetricRT.dlI]
outputfile=out/metric.csv
eoi=0

eoiuser=1

[EGD.dI
frameAnalysisRate=3

[rteoi_user.dll]

#[rteoi.dll]

macroblocksize=16 # Size of a macro block (used in the searchingrélgn)
searchareasize=8 # Size of the search area (used in the searchjagitim)
frameAnalysisRate=3 # Number of frames(pairst@ssed per second

blockSkip=1 # Number of blocks skipped (1 =skip, 2 = 1 skip and so on)

[videomixer.dll]

input=VIDEO
input=HUD_WINDOW_OUTPUT
output=VIDEO_MIXER

165

APPENDIX E. MEMORY LEAK DETECTION USAGE INFORMATION

E.1 Instructions

(0) (Optional) Compile your module in debug mode if yish to trace back potential
leaks to your code. This is much easier to do rwam in the previous version.

(1) Run: cap -memleak

(2) Wait about 60 seconds for various module initidimas to take place, so that these
initializations that never get freed are not seemamory leaks.

(3) Press and hold Ctrl+Shift+Alt+F to open the perfante window. This will do the
first time initialization of the memory state oktprogram.

(4) (Optional) Repeat the key combination Ctrl+Shiftt#d to close the performance
window.

(5) Wait several minutes (or longer). You should chaggar console window to be
larger so that you can properly see all of the nrgrtemks without them scrolling off.
Go to the console window properties (in Windowsot ynay need to left click the
top-left icon of the window title bar). Go to theayout tab. Change the screen buffer
size and window size. It is recommended for att|&a® for both widths and 9999 for
the screen buffer size height. This will allow youscroll back much farther than the
default.

(6) Close the performance window if it isn't alreadyseld.

(7) Press and hold Ctrl+Shift+Alt+M (M for memory) fabout 2-3 seconds. This will
reset the "previously displayed leaks" list andseaall the previously displayed
possible leaks to be reused (if they are still cated) when you reopen the
performance window.

(8) Press and hold Ctrl+Shift+Alt+F to open the perfante window. This will cause all
the memory leak candidates from first initializatito be displayed.

E.2 Interpreting the output

Because this implementation is a very strange waletect memory leaks (without requiring
a recompile or special binaries), there is somenahdor misdetection. Age and repetition
are important factors. There is a 20 second mininage to print a memory leak canditate.
The older it is, the more likely that some piecelafa was completely forgotten about. If an
address is only seen once over a 20 minute gatheenod, it may be a fluke. But, if an

address is seen 30 times per second for severatasinthere would be a strong possibility
that there is a memory leak every frame.

166

E.3 Example output and debugging

| spiralCounting.dll+00004ea0 = 06674ea0] allocated 131064 bytes ~438792 ms ago
| spiralCounting.dll+00004e3f = 06674e3f] allocated 16376 bytes ~247781 ms ago
| spiralCounting.dll+00004ea0 = 06674ea0] allocated 131064 bytes ~335586 ms ago
| spiralCounting.dll+00004ea0 = 06674ea0] allocated 131064 bytes ~335582 ms ago
| ???+00000000 = 00000000] allocated 2040 bytes ~158942 ms ago

| spiralCounting.dll+00004ea0 = 06674ea0] allocated 65528 bytes ~253896 ms ago
| spiralCounting.dll+00004ea0 = 06674ea0] allocated 65528 bytes ~167536 ms ago
| spiralCounting.dll+00004ea0 = 06674ea0] allocated 32760 bytes ~39402 ms ago

| [spiralCounting.dll+00004ea0 = 06674ea0] allocated 65528 bytes ~39396 ms ago

| [spiralCounting.dll+00004ea0 = 06674ea0] allocated 65528 bytes ~22290 ms ago

| [spiralCounting.dll+00004ea0 = 06674ea0] allocated 65528 bytes ~22656 ms ago

| [spiralCounting.dll+00004ea0 = 06674ea0] allocated 65528 bytes ~22289 ms ago
+-----> [spiralCounting.dll / threadid = 15e0] to tal memory = 37 allocations / 1220768 bytes

Each DLL has each potential leaked allocation dist®llowed by an overall summary,
indicating total # of leaked allocations and bytesked. The threadid here is now displayed
in hex (to be matched more easily with the debugderaddition, the leak address for
individual allocations is displayed in both relaiaddresses and absolute addresses.

To easily backtrack these leaked allocations tolittee of code that allocated them, do the
following:

(0) Open the debugger (e.g. Visual Studio).

(1) Tools -> Attach to Process... (Ctrl+Alt+P).

(2) Find cap.exe and attach to it.

(3) Pause the running program by clicking the paustbut

(4) Show disassembly if necessary. If the debuggerrdogisow this by default, you can
open it in Debug -> Windows -> Disassembly.

(5) Copy the address from the leaked allocation indoAtdress: bar. You might need to
prefix the hexadecimal address with 0Ox (e.g. Oxd@aD).

(6) If you compiled your module in debug mode, you stiaiow see your C/C++ source
code in line with the machine code. If you don& 8se numbers, you can right click
on the text and select "Show Line Numbers".

(7) You can then go to this line in your source cot ffhe precise line of allocation is
usually the one immediately preceeding where gtorthat address took you.

a AW N P

167

APPENDIX F. INTERNAL VARIABLESAND ARRAYS/LISTS

int maxstalltime = 10000;
int stallrecovertime = 5000;

int nosleep = 0;
int worksleep = 1;

int useperf = 0;

int enablememleak = 0;
int usesched = 0;

int debugmode = 0;

int consistencycheck = 0;
int detailedstartup = 0;

int PCRsize = 0;
HANDLE PCRmutex = 0;

/I max time (in mgfdre a full buffer reports a stall
/I max time (in mgfdre a report can be repeated for the same
data time

/I 1 = always spin and nexglicitly give up timeslices
/I 0 = give up timeslibat will use 100% cpu; 1 = minimal
sleep time for not pure spinning
/I 0 = do not use performanaae) 1 = use fast performance
mode, 2 = use full performance mode
/I 1 = enable memork tegtection
/I 1 = use user-mode schedul
/I 1 = display extremelybese state/debug information
/I 1 = perform stamsistency checks after each operation
/I 1 = display detdiktartup information

/l number of data types aulyen the system
/l thread safety mutexasvarious operations

HANDLE PCRfinishedmutex = 0; // mutex for natétion system

HANDLE ctmutex = O;
HANDLE heapallocmutex = 0;
HANDLE* coremutex = 0;

int PCRtype[];
int PCRpriority[];

char* typenames];
int PCRcount][];

emPacket* PCRhead[];
emPacket* PCRtail[];
int PCRIlen[];

__int64 PCRidused][];
int PCRfinished][];

int* PCRnotify[];
int PCRnotifycount(];
int PCRrefcount(];

int PCRoutcount([];
int PCRoutfinished[];

PCRwheretype* PCRwhere[];
typeinfo* typeinfos]];

int numtypeinfos];
char* typenames][];

/I mutex for createthrdambks
/I mutex for heapalhooks
/I mutex for individuaiodule notifications

/I type of this datdhis is paired with priority
/I priority (subtypedf this meta
/I type of this datarierfdly, static string form
/l number of outputs for tlsiame type of data (aspect/priority
override)

// global head packdegt packets)
/I global tail packeewest packets)
I/ length of chairr this type

/I unique id for eachkeaavithin a type of data
/I has this data tyalhits final packet pushed

/I each metadata type points d@olist of module indexes i
(allmodulesi]) for quick routing/notification
Il # of modules for edeéRnotify

/I how many modules will udgstinput (seed for reference
count)

/l how many modules williterthis output

/ how many modules wilite this output that have finished

// ordering data $ypg priority for packet filter routing
/I friendly name bindiador user defined metadata fields

// number of friendly narbimdings within each meta type
/ real type name (e.gDEO)

44
45
46
47
48
49
50

int numtypes = 0;

meminfo allallocs[];
int nalloc = 0;

MODULEENTRY32 ModuleList[];
int nmodlist = 0;

168

/l number of non-priorityestide types

/l memory leak allocatimformation gathering
/l number of allocations

I/ list of Windowspecific module information
/l number of entries

169

APPENDIX G: EXAMPLE MODULE SKELETON FOR OUTPUTTING DATA TYPE

"MYOUTPUTTYPE"

This module skeleton can be used as a base for oibdules. To use it, a search and replace
is done for 'myoutputtype’ and replaced with thesirdel output type. By convention,
lowercase and uppercase should be maintainedagpdars in the skeleton. A include file
should also be made, containing the data formal tlaen shared with other developers that
will read the specified data format. Commented pottions may be uncommented
depending on exact features desired.

© ONOOOTAWNPE

36

#include "common.h"

#include "meta/video.h"
#include "meta/inside.h"
#include "meta/log.h"

#include "meta/myoutputtype.h”

[/l version 1.0.0, replace the description witlir module's description
ModuleParameters ("1.0.0", "Example module dpson", 0);

typedef struct mylocals_ {// structure for dhteal to this module

emMux* mux; // by avoiding globals, we candaseparate
char* inputtype; /l instances of a modulesgiéd be
char* outputtype;

} mylocals;

emmkFunction emmRegister (emModule* module, configRanfiguration, emCallbacks*
callbacks) {
int i
mylocals* locals;

defaultRegister();

if('module->locals) {
/l create a new 'locals' for thread localegie (specific to this instance of this module)
module->locals = (mylocals*)calloc(1, sizeoj{otals));

}

locals = (mylocals*)module->locals;

/ initialize module local variables with defes
locals->inputtype = "VIDEO"; Il default inptype
locals->outputtype = "MYDATATYPE"; /I defaubtutput type

locals->mux = (emMux*)calloc(1, sizeof(emMux)); // allocate mux for this module

for(i=0;configuration[i].param;i++) {
if(!strcmp(configuration[i].param, "input")dtals->inputtype =

170

strdup(configuration[i].value);
if(!strcmp(configuration[i].param, "output")) lats->outputtype =

37 , I)
strdup(configuration[i].value);
38 1 if(!strcmp(configuration[i].param, "wait")) saaf(configuration]i].value, "%f", &locals-
>wait); /I float type
39 1 if(!strcmp(configuration[i].param, "len")) lots&x>len = atoi(configuration[i].value);
I/l int type
40 }
41 /[add input type to mux (default was "VIDEQ")
42 emc->emcAddMux(module, locals->mux, locals-xittppe, 0, 0, 0, 0);
43 emc->emcAddMux(module, locals->mux, "INSIDE;' 0 0, 0); // add INSIDE type to mux
44 /I register/add the mux to actual module'siiap
45 emc->emcAddInputMux(module, locals->mux);
46
47 emc->emcAddOutput(module, "LOG", 0, 0, 0); refjister/add output type
48 /I emc->emcAddOutput(module, locals->outputtyipe), 0); /I register/add output type
49
50 return 1;
51 |}
52
53 | emmFunction emmStart (emModule* module) {
54 return O;
55 |}
56

57 | emmFunction emmData (emModule* module, emPaqhlktih, void* perf) {
58 meta_video* metavideo;

59 meta_inside* metainside;
60 emPacket* video;

61 emPacket* inside;

62 mylocals* locals;

63

64 /I meta_myoutputtype* metamyoutputtype;
65 /I emPacket* myoutputtype;

66

67 locals = (mylocals*)module->locals;

68

69 /I wait for 1 packet of each data type; elem't continue
70 if(lemc->emcMuxPacket(module, locals->mux, pkii)) return O;
71

72

73 emcGetMeta(video, "VIDEQ", locals->mux);

74 emcGetMeta(inside, "INSIDE", locals->mux);

75

76 /[process data...

77

78 /I if(metainside->inside & 1) { // if frame igside frame...

79 | [/l packet structure, meta structure, meta siradype, "OUTPUTTYPE", packet to inherit from

80 | /I

81 1 emcPreparePacket(myoutputtype, metamyoutputtyieéa_myoutputtype, locals-
>outputtype, video);

82 | /I process the input data somehow, maybe inatutiee packet pointer or just specific fields...

83
84
85
86
87
88
89
90
91

92

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

Il
Il
Il
Il
Il
Il

I
I
1

I

}

171

processdata(metavideo->data, metavideo-kawrdetavideo->height, metavideo->stride);
metamyoutputtype->valuel = resultl;
metamyoutputtype->value2 = result2; /Ithese from somewhere, or...
metamyoutputtype->value3 = result3; /I pePacket* to a processdata function
emc->emcPushPacket(module, myoutputtypéjinally, push the packet to the system

} else {

emc->emcPushDummyPacket(module, locals->outpettvideo->timestamp, video-
>final); [/l push dummy packet

/I done with this set of packets for thisrhdstamp
emc->emcReleaseMuxPackets(module, locals->fjux,

return O;

emmFunction emmStop (emModule* module) {

}

return O;

emmFunction emmShutdown (emModule* module) {

}

return O;

emmFunction DIIMain (HINSTANCE hinstDLL, DWORIfdwReason, LPVOID IpvReserved) {

defaultDIIMain();
return 1;

172

APPENDIX H: EM-CAPTURE THRESHOLDS

The thresholds used by various EM-Capture videdyaisamodules for inside/outside
classification are provided in the following table.

Threshold Value | Explanation
Remove dark or black pixels that are not part efrttucosa
mucosa 10
area
. At least 1/8 of the image must contain valid noaehl
minimum area 1/8 .
pixels
mean-red 8 Minimum mean-red value for an insideghtient frame
. Minimum mean-normalized-red value for an inside-the
mean-normalized-red 33 .
patient frame
. . . L Maximum use of temporal information within memory
variable-sized video analysis window 8sec,. .
limits of FIFO buffer
. Minimum value of mean-normalized-red of 10 sustdine
accumulated mean-normalized-red 2440
over 8 seconds
- At least some minimum level of motion to indicate a
histdiff 5000 .
procedure is in progress
frame classification window for 5 min Domain knowledge that the time between procedwres i
procedure exit least five minutes
outside-the-patient frame threshold fo 90% Allow a 10% buffer for misclassification of insideitside
. 0 .
procedure exit images
. Allow for a faster procedure exit transition to acevhen
duration of black frames for fast . .
. 90 sec | the scope is unplugged, in case another procedcutieco
procedure exit .
same patient soon follows
variance of mean-red differences 2 Mean-red shitwétuate during a procedure
variance of mean-red differences (for 0.05 A very strict lower bound indicates a confidentqedure
exact exit) ' exit
variance of mean-normalized-red . .
. 0.2 Mean-normalized-red should fluctuate during@cpdure
differences
variance of mean-red differences (low 02 A lower, more lenient threshold for when other teas
threshold) ' values are much higher
variance of mean-normalized-red 0.05 A lower, more lenient threshold for when other feas
differences (low threshold) ' values are much higher
mean-normalized-red rise area (low 100 A lower, more lenient threshold for when other teas
threshold) values are much higher
mean-normalized-red rise area (high .
(hig 4000 | A stricter threshold for when other featunesrauch lower
threshold)
. Procedure exit mean-normalized-red usually hagw ve
mean-normalized-red fall area 3000 steep fall y 7

173

Threshold

Value

Explanation

mean-red energy histogram area

64

Mean-red shiudihéte constantly and evenly

mean-normalized-red energy histogram

area

Mean-normalized-red should fluctuate constantly and
evenly

mean-red / mean-normalized-red hyb
energy histogram

A reasonable number of bins should contain a vefws
least 5% of the highest valued bin

mean-red / mean-normalized-red hybri
energy histogram (for exact exit)

A very strict lower bound indicates a confidentqedure
exit

double-normalized mean-red histogral
area

Mo.2289

At least somewhere between 20% and 25% of theyl.0 b
1.0 histogram area should be covered

analysis window for variance of feature Short-term analysis window to aid in making degisio
) 8 sec
differences before frames leave the FIFO buffer
. L A slightly larger window size than other featurgsriore
histogram energy analysis windows 16 sec

effective at combining temporal information

double-normalized mean-red histogral
window

m 60 sec

A very large window size yields more temporal imh@ation
in one feature for being extremely confident inedéihg a
sudden-start

mean-normalized-red difference
between frames for rise/fall

Allow for a small amount of noise so that a smadidl fall
does not end a global rise and vice-versa

	2012
	Semi-automated parallel programming in heterogeneous intelligent reconfigurable environments (SAPPHIRE)
	Sean Stanek
	Recommended Citation

	Microsoft Word - $ASQ165497_supp_C0EB18F6-D1DA-11E1-ACD7-8F7CEF8616FA.doc

