
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2013

Testing database applications using coverage
analysis and mutation analysis
Tanmoy Sarkar
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Sarkar, Tanmoy, "Testing database applications using coverage analysis and mutation analysis" (2013). Graduate Theses and
Dissertations. 13308.
https://lib.dr.iastate.edu/etd/13308

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F13308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/13308?utm_source=lib.dr.iastate.edu%2Fetd%2F13308&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Testing database applications using coverage analysis and mutation analysis

by

Tanmoy Sarkar

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:

Samik Basu, Co-major Professor

Johnny S. Wong, Co-major Professor

Arka P. Ghosh

Shashi K. Gadia

Wensheng Zhang

Iowa State University

Ames, Iowa

2013

Copyright c© Tanmoy Sarkar, 2013. All rights reserved.

ii

DEDICATION

I would like to dedicate this thesis to my parents Tapas Sarkar, Sikha Sarkar and my

girlfriend Beas Roy, who were always there to support me to move forward. I would also like

to thank my friends and family in USA and in India for their loving guidance and all sorts of

assistance during the writing of this work.

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

ACKNOWLEDGEMENTS . viii

ABSTRACT . ix

CHAPTER 1. SOFTWARE TESTING FOR DATABASE APPLICATIONS 1

1.1 Background . 1

1.2 Driving Problem . 6

1.3 Our Solution . 7

1.4 Overall Contributions . 9

1.5 Organization . 10

CHAPTER 2. RELATED WORK . 11

2.1 Automated Test Case Generation . 12

2.2 Mutation Testing . 15

2.3 Database Application Testing . 17

CHAPTER 3. ConSMutate: SQL MUTANTS FOR GUIDING CONCOLIC

TESTING OF DATABASE APPLICATIONS 19

3.1 Introduction . 19

3.1.1 Driving Problem . 19

3.1.2 Motivating Example . 19

3.1.3 Problem Statement . 21

3.1.4 Individual Contributions . 21

iv

3.2 ConSMutate Test Case Generator for DB-Applications 21

3.2.1 Generation of Test Cases and Associated Path Constraints Using Appli-

cation Branch Analyzer . 22

3.2.2 Deployment of Mutation Analyzer . 23

3.2.3 Deployment of Constraint Solver: Finding Satisfiable Assignment for θ . 27

3.2.4 Correctness Criteria of ConSMutate . 28

3.3 Experimental Results . 30

3.3.1 Evaluation Criteria . 30

3.3.2 Evaluation Test-Bed . 31

3.3.3 Summary of Evaluation . 31

3.3.4 Execution Time Overhead . 35

CHAPTER 4. SynConSMutate: CONCOLIC TESTING OF DATABASE

APPLICATIONS VIA SYNTHETIC DATA GUIDED BY SQL MUTANTS 36

4.1 Introduction . 36

4.1.1 Driving Problem . 36

4.1.2 Motivating Example . 36

4.1.3 Problem Statement . 38

4.1.4 Individual Contributions . 38

4.2 Approach Overview . 39

4.2.1 Discussion: Dealing with Nested Queries 47

4.3 Experimental Results . 48

4.3.1 Evaluation Criteria . 48

4.3.2 Evaluation Test-Bed . 49

4.3.3 Summary of Evaluation . 49

CHAPTER 5. CONCOLIC TESTING OF DATABASE APPLICATIONS

WHILE GENERATING MINIMAL SET OF SYNTHETIC DATA 53

5.1 Introduction . 53

5.1.1 Driving Problem . 53

v

5.1.2 Motivating Example . 53

5.1.3 Problem Statement . 56

5.1.4 Individual Contributions . 56

5.2 Approach . 57

5.2.1 Approach Overview . 58

5.3 Future Work . 71

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 73

6.1 Summary . 73

6.2 Uniqueness . 74

6.3 Discussion . 74

6.4 Future Directions . 76

BIBLIOGRAPHY . 80

vi

LIST OF TABLES

Table 1.1 Mutation Operation Example . 4

Table 3.1 Table coffees . 20

Table 3.2 Sample mutant generation rules and mutant killing-constraints 24

Table 3.3 Mutants and results for test case (11, 1) 28

Table 3.4 Method names and corresponding Program Identifiers 30

Table 4.1 coffees Table schema definition . 37

Table 4.2 Updated coffees Table in the database 37

Table 4.3 coffees Table with new synthetic data 46

Table 4.4 Mutants and new Results for test case (x = 0) 47

Table 5.1 New Table coffees . 55

Table 5.2 Table distributor . 55

Table 5.3 Updated Table coffees . 62

Table 5.4 Mutants and results for test case (8) 68

Table 5.5 Final Updated Table coffees . 71

Table 5.6 Mutants and new Results for test case (x = 10) 71

vii

LIST OF FIGURES

Figure 1.1 General Control Flow for Assessing Test Input Quality using Mutation

Analysis . 5

Figure 1.2 Broader Problem Scenario in the field of Database Application Testing 7

Figure 1.3 Our Solution Approach . 7

Figure 2.1 Sample Code Fragment . 13

Figure 3.1 Framework for ConSMutate . 22

Figure 3.2 Comparison between Pex and ConSMutate in terms of quality 32

Figure 3.3 Execution time comparison between Pex and ConSMutate 34

Figure 4.1 Framework For SynConSMutate . 40

Figure 4.2 Actual code snippet of the Pseudocode from Section 4.1.2 41

Figure 4.3 Transformed code snippet produced by SynDB for the code in Figure 4.2 42

Figure 4.4 Synthesized Database State . 42

Figure 4.5 Comparison among SynDB, Emmi et. al.’s approach and SynConSMu-

tate for UnixUsage . 50

Figure 4.6 Comparison among SynDB, Emmi et. al.’s approach and SynConSMu-

tate for RiskIt . 51

Figure 5.1 New Framework for Testing Database Applications 61

Figure 6.1 Overall Impact of Our Work . 78

viii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis. First and foremost, Dr.

Samik Basu and Dr. Johnny S. Wong for their guidance, patience and support throughout this

research and the writing of this thesis. Their insights and words of encouragement have often

inspired me and renewed my hopes for completing my graduate education. I would also like

to thank my committee members for their efforts and contributions to this work: Dr. Arka

P. Ghosh, Dr. Shashi K. Gadia and Dr. Wensheng Zhang. I would additionally thank my

lab-mates Michelle Ruse, Chris Strasburg, Zachary Oster and Debasis Mandal for helping and

supporting me in all stages of my graduate career.

I want to thank all my wonderful professors Dr. Samik Basu, Dr. Hridesh Rajan, Dr.

David Fernández-Baca, Dr. Jack Lutz, Dr. Giora Slutzki, Dr. Lu Ruan, Dr. Doug Jacobson

for teaching some of the best and interesting computer science courses in the most effective

manner.

Moreover, I would like to thank all my teaching instructors, Dr. Johnny Wong, Dr. David

M. Weiss, Dr. Simanta Mitra, Dr. Shashi K. Gadia, Dr. Yan-bin Jia, Dr. Andrew S. Miner,

Dr. Steven Kautz for their wonderful support. Their advice has not only helped me to do

my job effectively but also I have learnt a lot about teaching. Because of them I enjoyed my

teaching duty all throughout my PhD. career.

Thanks to Abigail Andrews, Darlene Brace, Maria-Nera Davis, Linda Dutton, Cindy Mar-

quardt, and Laurel Tweed for always are being so helpful, approachable, and friendly. Finally,

I would like to thank my parents, my family and friends in India for their patience and support

to complete my PhD study. Special thanks to my girlfriend, Beas. She has been extremely sup-

portive during the writing of this work and has patiently helping me through the final stretch.

I am thankful to God, because of whom all things are possible.

ix

ABSTRACT

Database applications are built using two different programming language constructs: one

that controls the behavior of the application, also referred to as the host language; and the

other that allows the application to access/retrieve information from the back-end database,

also referred to as the query language. The interplay between these two languages makes testing

of database applications a challenging process. Independent approaches have been developed

to evaluate test case quality for host languages and query languages. Typically, the quality of

test cases for the host language (e.g., Java) is evaluated on the basis of the number of lines,

statements and blocks covered by the test cases. High quality test cases for host languages

can be automatically generated using recently developed concolic testing techniques, which

rely on manipulating and guiding the search of test cases based on carefully comparing the

concrete and symbolic execution of the program written in the host language. Query language

test case quality (e.g., SQL), on the other hand, is evaluated using mutation analysis, which

is considered to be a stronger criterion for assessing quality. In this case, several mutants or

variants of the original SQL query are generated and the quality is measured using a metric

called mutation score. The score indicates the percentage of mutants that can be identified in

terms of their results using the given test cases. Higher mutation score indicates higher quality

for the test cases. In this thesis we present novel testing strategy which guides concolic testing

using mutation analysis for test case (which includes both program input and synthetic data)

generation for database applications. The novelty of this work is that it ensures that the test

cases are of high quality not only in terms of coverage of code written in the host language,

but also in terms of mutant detection of the queries written in the query language.

1

CHAPTER 1. SOFTWARE TESTING FOR DATABASE

APPLICATIONS

1.1 Background

Database systems play a central role in the operations of almost every modern organization.

Commercially available database management systems (DBMSs) provide organizations with

efficient access to large amounts of data, while both protecting the integrity of the data and

relieving the user of the need to understand the low-level details of the storage and retrieval

mechanisms. To exploit this widely used technology, an organization will often purchase an

off-the-shelf DBMS, and then design database schemas and application programs to fit its

particular business needs. It is essential that these database systems function correctly and

provide acceptable performance. The correctness of database systems have been the focus

of extensive research. The correctness of business applications, though, depends as much

on the database management system implementation as it does on the business logic of the

application that queries and manipulates the database. While Database Management Systems

are usually developed by major vendors with large software quality assurance processes, and

can be assumed to operate correctly, one would like to achieve the same level of quality and

reliability to the business critical applications that use them. Given the critical role these

systems play in modern society, there is clearly a need for new approaches to assess the quality

of the database application programs.

There are many aspects of the correctness of a database system, some of them are:

• Does the application program behave as specified?

• Does the database schema correctly reflect the organization of the real world data being

modeled?

2

• Are security and privacy protected appropriately?

• Are the data in the database sufficient?

All of these aspects of database system correctness, along with various aspects of system

performance, are vitally important to the organizations that depend on the database system.

Many testing techniques have been developed to help assure that application programs meet

their specifications, but most of these have been targeted towards programs written in tradi-

tional imperative languages. New approaches, targeted specifically towards testing database

applications, are needed for several reasons. A database application program can be viewed as

an attempt to implement a function, just like programs developed using traditional paradigms.

However, consider in this way, the input and output spaces include the database states as well

as the explicit input and output parameters of the application. This has substantial impact

on the notion of what a test case is, how to generate test cases, and how to check the results

produced by running the test cases. Furthermore, database application programs are usually

written in a semi-declarative language, such as SQL, or a combination of an imperative lan-

guage (which determines the control flow of the application, we call them host language) and

a declarative language (we call them embedded language) rather than using a purely impera-

tive language. Most existing program-based software testing techniques are designed explicitly

for imperative languages, and therefore are not directly applicable to the database application

programs.

The usual technique of quality assurance is testing: run the program on many test inputs

and check if the results conform to the program specifications (or pass programmer written

assertions). The success of testing highly depends on the quality of the test inputs. A high

quality test suite (that exercises most behaviors of the application under test) may be generated

manually, by considering the specifications as well as the implementation, and directing test

cases to exercise different program behaviors. Unfortunately, for many applications, manual

and directed test generation is prohibitively expensive, and manual tests must be augmented

with automatically generated tests. Automatic test generation has received a lot of research

attention, and there are several algorithms and implementations that generate test suites. For

3

example, white-box testing methods such as symbolic execution may be used to generate good

quality test inputs. However, such test input generation techniques run into certain problems

when dealing with database-driven programs. First, the test input generation algorithm has to

treat the database as an external environment. This is because the behavior of the program

depends not just on the inputs provided to the current run, but also on the set of records

stored in the database. Therefore, if the test inputs do not provide suitable values for both

the program inputs and the database state, the amount of test coverage obtained may be low.

Second, database applications are multi-lingual: usually, an imperative program implements

the application logic, and declarative SQL queries are used for retrieving data from database.

Therefore, the test input generation algorithm must faithfully model the semantics of both

languages and analyze the mixed code under that model to generate tests inputs. Such an

analysis must cross the boundaries between the application and the database.

Mutation Testing (or Mutation Analysis) is a fault-based testing technique which [1] has

been proven to be effective for assessing the quality of the generated test inputs. The history

of Mutation Analysis can be traced back to 1971 in a student paper by Lipton [2]. The birth

of the field can also be identified in papers published in the late 1970s by DeMillo et al. [3]

and Hamlet [4]. In mutation testing, the original program is modified slightly based on typical

programming errors. The modified version is referred to as the mutant. Mutation Analysis

provides a criterion called the mutation score. The mutation score can be used to measure the

effectiveness of a test set in terms of its ability to detect faults. The general principle underlying

Mutation Analysis work is that the faults used by Mutation Analysis represent the mistakes

that programmers often make. By carefully choosing the location and type of mutant, we can

also simulate any test adequacy criteria. Such faults are deliberately seeded into the original

program by simple syntactic changes to create a set of faulty programs called mutants, each

containing a different syntactic change. To assess the quality of a given test set, these mutants

are executed against the input test set. If the result of running a mutant is different from the

result of running the original program for any test cases in the input test set, the seeded fault

denoted by the mutant is detected. The outcome of the mutation testing process is measured

using mutation score, which indicates the quality of the input test set. The mutation score is

4

Table 1.1 Mutation Operation Example

Actual Program p Mutant p′

... ...

if(a==1 && b==1) if(a==1 ‖‖ b==1)

return 1; return 1;

... ...

the ratio of the number of detected faults over the total number of the seeded faults.

In mutation analysis, from a program p, a set of faulty programs p′, called mutants, is

generated by a few single syntactic changes to the original program p. As an illustration,

Table 1.1 shows the mutant p′, generated by changing the and operator of the original program

p, into the or operator, thereby producing the mutant p′. A transformation rule that generates

a mutant from the original program is known as mutant operators. Table 1.1 contains only one

mutant operator example; there are many others [3, 4, 1].

The traditional process of Mutation Analysis is to assess the quality of the test cases for a

given program p, illustrated in Figure 1.1.

For a given program p, several mutants i.e. p′s are created depending on predefined rules.

In the next step, a test set T is supplied to the system. The program p and each mutant i.e.

all p′s are executed against T . If the result of running p′ is different from the result of running

p for any test case in T , then the mutant p′ is said to be killed ; otherwise, it is said to be alive.

After all test cases have been executed, there may still be a few surviving mutants. Then the

metric mutation score is calculated. It is the percentage of number of mutants killed divided by

total number non-equivalent mutants (mutants which are both syntactically and semantically

different). If the mutation score value is above than predefined threshold (which may be

100%) then we can say the test case is good enough identifying programming faults. If not,

surviving mutants can further be analyzed to improve the test set T . However, there are some

mutants that can never be killed because they always produce the same output as the original

program. These mutants are called Equivalent Mutants. They are syntactically different but

semantically equivalent to the original program. Automatically detecting all equivalent mutants

5

Figure 1.1 General Control Flow for Assessing Test Input Quality using Mutation Analysis

is impossible [5] because program equivalence is undecidable.

Mutation Analysis can be used for testing software at the unit level, the integration level,

and the specification level. It has been applied to many programming languages as a white box

unit test technique, for example, Fortran programs, C# code, SQL code, AspectJ programs [6,

7, 8]. Mutation Testing has also been used for integration testing [9, 10, 11]. Besides using

Mutation Testing at the software implementation level, it has also been applied at the design

level to test the specifications or models of a program.

In database applications, mutation testing has been applied to SQL code to detect faults.

The first attempt to design mutation operators for SQL was done by Chan et al. [12] in 2005.

They proposed seven SQL mutation operators based on the enhanced entity-relationship model.

Tuya et al. [8] proposed another set of mutant operators for SQL query statements. This set

of mutation operators is organized into four categories: mutation of SQL clauses, mutation

of operators in conditions and expressions, mutation handling NULL values, and mutation of

identifiers. They also have developed a tool named SQLMutation [13] that implements this set

6

of SQL mutation operators and have shown an empirical evaluation concerning results using

SQLMutation [13]. A development of this work targeting Java database applications can be

found in [14]. [15] has also proposed a set of mutation operators to handle the full set of SQL

statements from connection to manipulation of the database. This paper introduced nine

mutation operators and implemented them in an SQL mutation tool called MUSIC.

1.2 Driving Problem

With advances in the Internet technology and ubiquity of the web, applications relying on

data/information processing and retrieval from database form the majority of the applications

being developed and used in the software industry. Therefore, it is important that such applica-

tions are tested adequately before being deployed. There are two main approaches to generate

test cases for database applications:(a) generating database states from scratch [16, 17, 18] and

(b) using existing database states [19]. These approaches try to achieve a common goal, high

branch coverage. Test cases achieving high block or branch coverage certainly increases the

confidence on the quality of the application under test; however, coverage cannot be argued as

a sole criterion for effective testing. Mutation testing [1] has been proven effective for assessing

the quality of the generated test inputs.

Typically, test case generation for database applications include both program inputs and

synthetic data (if required) generation to ensure a high degree of (code, block or branch)

coverage. Mutation testing is performed separately for analyzing quality of the generated test

cases in terms of identifying SQL related faults. If the mutation score of the generated test

cases is low, new test cases are generated and mutation analysis is performed again. This results

in unnecessary delay and overhead in identifying the high quality test cases, where quality is

attributed to both coverage and mutation scores.

Figure 1.2 demonstrates the broader problem scenario in the field of database application

testing. In one hand researchers have developed automated test data generation techniques

for database application programs which generate test cases automatically for the application.

These techniques guarantee to achieve high structural coverage of the given program but may

suffer from low quality in terms of identifying SQL faults that might present in the embedded

7

Figure 1.2 Broader Problem Scenario in the field of Database Application Testing

Figure 1.3 Our Solution Approach

query. On the other hand researchers have developed SQL Mutation Analysis to assess quality

of the test inputs for isolated SQL queries. These techniques surely identifies test cases with

high mutation score for individual SQL queries, but they might not guarantee to achieve high

structural coverage for the host language (imperative language) in which the embedded queries

are used.

1.3 Our Solution

Figure 1.3 demonstrates our overall solution to address the broader problem scenario as

shown in Figure 1.2. We combine coverage analysis and SQL mutation analyis to generate test

8

cases which include both program inputs and synthetic data for database applications. The

generated test cases will guarantee two things,

• High structural coverage, and

• High mutation score.

In this work, we propose and develop a constraint-based test case generation technique for

database applications achieving both high structural coverage and high mutation score. The

approach works as follows. First our technique tries to cover possible branches of the given

program. If not, then synthetic data will be created to improve coverage. After covering a new

branch of a program, for every newly generated test case, we measure the mutation score of

the test case. If the mutation score of the test case is below the pre-specified threshold, our

technique analyzes the path constraints (necessary for coverage) and mutant-killing constraints

(necessary for high mutation score), and uses a constraint solver to automatically identify a

new test case whose quality is likely to be high. If no new test case can improve the mutation

score with respect to the present database state (including the generated synthetic data), a new

constraint will be generated to update database state (i.e. identify new synthetic data). If the

constraint is solvable by the solver, new synthetic data will be created for the database. With

respect to the new database state (which includes newly generated data), previously generated

test case can achieve high quality in terms identifying SQL faults. Finally, the whole process

is iterated to generate new test cases that explore new execution paths of the program. This

iteration continues until all possible branches are covered.

Apart from improving test input quality, we also address an important common challenge in

the field of database application testing. Most of the existing test strategies do not consider the

relationship between the application program and the current database state while generating

program inputs for the application. This leads to unnecessary database state generation for

improving test input quality. We leverage our basic solution and propose a new approach

for generating test cases for database applications. The novelty of the new technique is it

maximizes the usage of current database state to identify program inputs achieving both high

coverage and high mutation score. This will eliminate the overhead of generating unnecessary

9

synthetic data at each iteration. Therefore only minimal set of synthetic data will be generated

to help test cases achieve high quality both in terms of structural coverage and SQL mutation

score.

1.4 Overall Contributions

The contributions of our work are summarized as follows:

1. To the best of our knowledge, this is the first approach that combines coverage analysis

and mutation analysis in automatic test case generation for database applications which

involve two different languages: host language and embedded query language.

2. The impact of our proposed technique is that it reduces the overhead of high quality test

case generation by avoiding test cases with low coverage and low mutation scores.

3. Synthetic data generation strategy in database application testing not only helps improve

coverage but also mutation score.

4. We propose a new approach to avoid unnecessary generation of synthetic data and maxi-

mizes the usage of current database state during test case generation. Thus only minimal

set of data will be generated.

5. We evaluate the practical feasibility and effectiveness of our proposed framework by ap-

plying it on two real database applications. We compare our method against other ex-

isting tools like Pex [20], a white-box testing tool for .NET from Microsoft Research,

SynDB [17], an automated test case generation approach for database applications de-

veloped on top of Dynamic Symbolic Execution technique, Tool developed by Emmi et

al. [16], an automated test case generation approach for database application developed

on top of Concolic Execution technique, and show that applications. We compare our

method against other existing tools like Pex [20], a white-box testing tool for .NET from

Microsoft Research, SynDB [17], an automated test case generation approach for database

applications developed on top of Dynamic Symbolic Execution technique, Tool developed

by Emmi et al. [16], an automated test case ganeration approach for database application

10

devloped on top of Concolic Execution technique, and show that our method generates

test cases with higher code coverage and higher mutation score compared to the ones

generated by aforementioned existing approaches.

1.5 Organization

The rest of the thesis is organized as follows. Chapter 2 discusses about several aspects of

Software Testing followed by existing works done in the field of Automated Test Case Genera-

tion, Mutation Testing and Testing Database Applications which are related to this work. In

chapter 3, we discuss about our novel framework which combines coverage analysis and mu-

tation analysis to generate high quality test cases. We also demonstrate the validation of our

approach by providing experimental results. In chapter 4 we leverage our work from chapter 3

and propose a technique to generate test cases even when associated database state insufficient

or absent. This approach also generates database states (we call them synthetic data), if re-

quired, so that generated test cases can achieve high quality with respect to the generated data.

We also provide experimental results in this chapter to validate our approach. In chapter 5, we

have proposed a new helper method which will leverage our overall testing strategy to reuse the

current database state to the fullest. This approach will help our overall technique to reduce

the overhead of generating unnecessary synthetic data while generating high quality test cases

both in terms of coverage and mutation score. Chapter 6 summarizes our work proposed in

chapters 3, 4 and 5. We conclude the chapter by demonstrating the overall unique impact of

this work in the field of Software Testing and propose a brief picture of extending our current

work to solve other problem scenario in the field of software testing.

11

CHAPTER 2. RELATED WORK

Substantial research in systematic design and development practices increasingly improves

in building reliable software; errors are still present in the software. The aim of software testing

is to expose/identify such bugs/errors by executing the software on a set of test cases. In the

basic form, a test case will consist of program inputs and corresponding expected outputs. After

the software has successfully passed the testing phase, we have a greater degree of confidence

in the software (in terms of reliability). Typically Software Testing is labor intensive, therefore

also expensive. Research has shown that testing can account for 50% of the total cost of

software development [21]. Therefore a need for automated testing strategies caught attention

of the researchers. Tools which can automate one or several aspects of testing can hugely help in

reducing the overall cost of testing. There are different aspects/directions of testing techniques,

but broadly categorized into two categories, functional testing and structural testing. Functional

testing is mainly used to verify the functionality of the program, implementation of the program

is not important in this case. Therefore it involves comparing multiple input output conditions.

On the other hand, structural testing is concerned with testing the implementation of the

program. The primary focus of our work is structural testing. Before we move into more

details, we will discuss some key aspects of structural testing.

Test requirements:

As a first step, specific program identities need to be found in terms of which the test

requirements of a given program can be identified. So, when the program is executed on a

test case, program execution can be analyzed to determine the set of test requirements that

are exercised by the test case. Some example test requirements are: program paths, program

statements etc.

Test Coverage Criteria:

12

In order to determine the completeness of the testing process, a term called test coverage

criteria is defined. A test coverage criterion specifies a minimal set of test requirements that

must be achieved by the test cases on which the program is executed during the testing process.

Minimal set of test requirements depends on the criterion. It is also helpful to guide the testing

process. At any point during testing, a typical goal is to run the program on test cases that

cover the test requirements that yet to be covered by any of test cases that have already been

executed.

Testing Strategy:

Typically, first unit testing is employed to test all the modules in the program individually

and then integration testing is performed to test the interfaces among the modules. Different

ways are used to organize integration testing process. Initially the program is fully tested.

During maintenance stages, regression testing technique is employed. This technique monitors

only the test requirements that are impacted by the program changes. Finally the generation

of test cases based on the test requirements can be done manually or automatically. Concolic

Testing Strategy, Dynamic Symbolic Execution technique are some of the popular automated

test case generation techniques.

Structural Testing strategy can be categorized into three main parts: control flow based testing,

data flow based testing and mutation testing. In control flow based testing, test coverage is

criteria is measured in terms of nodes, edges, paths in the program control flow graph. In Data

flow based testing: test coverage is measured in terms of definition-use associations present in

the program. In Mutation testing, numbers of variants are created from the original program

using some predefined rules. The variants are called mutants. The goal of mutation testing is

to identify test cases that distinguish original program from its mutants. In our work, we will

mainly discuss about control flow based testing and mutation testing.

2.1 Automated Test Case Generation

Automating test case generation is an active area of research. In the last several years, over

a dozen of techniques have been proposed that automatically increase test coverage or generate

13

test inputs. Among them, random generation of test cases (concrete values) have been proven

to be the simplest and very effective [22, 23, 24, 25]. It could actually be used to generate

input values for any type of program since, ultimately, a data type such as integer, string, or

heap is just a stream of bits. Thus, for a function taking a string as an argument, we can just

randomly generate a bit stream and let it represent the string. On the contrary, random testing

mostly does not perform well in terms of coverage. Since it merely relies on probability, it has

quite low chances to identify semantically small faults [23], and thus accomplish high coverage.

A semantically small fault is such a fault that is only revealed by a small percentage of the

program input. Consider the code in Figure 2.1,

void test1(int i, int j){

if(i == j)

Method1();

else

Method2();

}

Figure 2.1 Sample Code Fragment

The probability of reaching Method1() statement is 1/n, where n is the maximum integer

value, since in order to execute the statement, i and j must be equal. This tells us the fact that

generating even more complex structures than simple integer equalities will give even worse

probability.

The goal-oriented approach is much stronger than random generation, provides a guidance

towards a certain set of paths. Instead of letting the generator generate input that traverses

from the entry to the exit of a program, it generates input that traverses a given path. Because

of this, it is sufficient to find input for any path. This in turn reduces the risk of encountering

relatively infeasible paths and provides a way to direct the search for input values as well. Two

methods using this technique have been found: the chaining approach and assertion-oriented

approach. The latter is an interesting extension of the chaining approach. They have all been

implemented in the TESTGEN system [26, 27].

14

Path-oriented generation is strongest among the three approaches. It does not provide the

generator with a possibility of selecting among a set of paths, but just one specific. In this

way it is the same as a goal-oriented test data generation, except for the use of specific paths.

Successively this leads to a better prediction of coverage. On the contrary, sometimes it is

harder to find test data. Substantial amount of research works have been done in all these

areas. We are specifically interested in path-oriented test data generation. Rest of this section

talks about related works in path-oriented test data generation.

An important technique to mention is bounded-exhaustive concrete execution [28, 29] that

tries all values from user-provided domains to cover the paths of the program. Even though

these tools can achieve high code coverage, but they require the user to carefully choose the

values in the domains to ensure high coverage. Microsoft Research has also developed a white

box testing tool named Pex [20] based on Dynamic Symbolic Execution technique, performs

path-bounded model-checking of .NET programs. Pex search strategies try to find individual

execution paths in a sequence which depends on chosen heuristics; the strategies are complete

and will eventually exercise all execution paths. This is important in an environment such

as .NET where the program can load new code dynamically, and not all branches and asser-

tions are known ahead of time. The core of Dynamic Symbolic Execution strategy is same as

Concolic Execution, but Pex has its added advantages. Pex is language independent, and it

can symbolically reason about pointer arithmetic as well as constraints from object oriented

programs. Pex search strategies aim at achieving high coverage fast without much user anno-

tations. Other notable tools are Randoop [30] and Agitar [31]. Randoop generates new test

cases by composing previously found test case fragments, supplying random input data. Agitar

generates test cases for Java by analyzing the source code, using information about program

invariants.

Another popular technique is symbolic Execution. It uses variety of approaches like abstrac-

tion based model checking [32], explicit state model checking [33], symbolic sequence explo-

ration [34], and static analysis [35]. Essentially, all these techniques either try to detect po-

tential bugs or test inputs. They inherit the incompleteness from their underlying reasoning

engines like theorem provers and constraint solvers. For example, tools using precise symbolic

15

execution [33, 34] cannot analyze any code with non-linear arithmetic or array indexing with

non-constant expressions. Typically in these tools, symbolic execution proceeds separately

from the concrete execution. Techniques like CUTE [36], DART [37] combines concrete and

symbolic execution. Even though the core techniques are same, some improvements are seen

in CUTE. As an example, DART tests each function in isolation and without preconditions,

whereas CUTE targets related functions with preconditions such as data structure implemen-

tations. DART handles constraints only on integer types and cannot handle programs with

pointers and data structures, whereas CUTE handles such scenarios.

2.2 Mutation Testing

Since Mutation Testing was proposed in the 1970s, it has been applied to test both program

source code (Program Mutation) [38] and program specification (Specification Mutation) [39].

Program Mutation belongs to the category of white-box-based testing, in which faults are

seeded into source code, while Specification Mutation belongs to blackbox-based testing, where

faults are seeded into program specifications, but in which the source code may be unavailable

during testing. There has been more work on Program Mutation than Specification Mutation.

Notably more than 50% of the work has been applied to Java [40, 41], Fortran [6, 42] and

C [43, 44]. Fortran features highly because a lot of the earlier work on Mutation Testing was

carried out on Fortran programs.

Program based mutation testing consists of generating a large number of alternative pro-

grams called mutants, each one having a simple fault that consists of a single syntactic change

in the original program. Mutants are created by transforming the source code using a set of

defined rules (mutation operators) that are developed to induce simple syntax changes based on

errors that programmers typically make. Each mutant is executed with the test data and when

it produces an incorrect output (the output is different to that of the original program), the

mutant is said to be killed. A test case is said to be effective if it kills some mutants that have

not yet been killed by any of the previously executed test cases. Some mutants always produce

the same output as the original program, so no test case can kill them. These mutants are said

to be equivalent mutants. After executing a test set over a number of mutants, the mutation

16

score is defined as the percentage of dead mutants divided by the number of non-equivalent

mutants. A study has shown mutation testing to be superior to common code coverage in

evaluating effectiveness of test inputs [19].

Program Mutation has been applied to both the unit level [45] and the integration level [10]

of testing. For unit-level Program Mutation, mutants are generated to represent the faults that

programmers might have made within a software unit, while for the integration-level Program

Mutation, mutants are designed to represent the integration faults caused by the connection

or interaction between software units. Applying Program Mutation at the integration level is

also known as Interface Mutation, which was first introduced by Delamaro et al. [10]. Interface

Mutation has been applied to C programs by [11, 10] and also to CORBA programs by [46, 47].

Empirical evaluations of Interface Mutation can be found in [48, 49]

Mutation testing has been further extend to programming languages like C# [7, 50], SQL [8,

51, 14, 13, 15]. The primary goal of developing SQL mutation operators is to measure the

quality of the generated test inputs and generate quality test inputs for isolated SQL queries.

But in database application, SQL query is embedded as a string inside the host language.

Therefore measuring the quality of test inputs and generating high quality test inputs for

database application involves including mutation analysis of embedded SQL queries, which has

not been done before. Our work in this thesis combines the mutation analysis technique as

a quality measurement guidance criterion for automated test generation technique. Therefore

newly generated test inputs will achieve both high coverage and high SQL mutation score.

Although Mutation Testing was originally proposed as a white box testing technique at the

implementation level, it has also been applied at the software design level. Mutation Testing at

design level is often referred to as Specification Mutation which was first introduced by Gopal

and Budd [39] In Specification Mutation, faults are typically seeded into a state machine or

logic expressions to generate specification mutants. A specification mutant is said to be killed

if its output condition is falsified. Specification Mutation can be used to find faults related to

missing functions in the implementation or specification misinterpretation.

17

2.3 Database Application Testing

Database application programs play a central role in operation of almost every modern

organization. Recently, database application testing [52, 18, 53, 16] has attracted much atten-

tion of researchers. All these approaches try to achieve a common goal, high branch coverage.

Therefore automatic generation of test inputs has been regarded as the main issue in database

application testing. Along with high branch coverage, assessing the goodness of test data has

not been considered as a criterion while generating test inputs. Mutation testing has been

proven to be a powerful method in this regard. For database application, SQL mutation opera-

tors have been developed [8, 13] and then coverage criteria of isolated SQL statements [51] have

been defined separately. Our work [54] combines the coverage criteria and mutation analysis in

such a way that test cases with high coverage and high mutation score are generated automati-

cally. The primary challenge addressed in our work is the consideration of database applications

where the coverage criteria depends on the application language while the mutation score relies

only on the embedded query language.

Test input generation for database applications primarily depends on the current database

state. Before generating test inputs for database application, testers need to generate sufficient

number of entries for the tables present in the database. Therefore, generating test database

in an optimized/sufficient manner for a given application is a challenging problem which has

concentrated some research efforts [55, 56]. A tool [57] has been defined for data generation

incorporating Alloy specifications both for the schema and the query. Each table is modeled

as a separate n-arity relation over the attribute domains and the query is specified as a set of

constraints that models the condition in the WHERE clause. However, this approach cannot

handle tables with a larger number of attributes due to the arity of the table relations.[58]

propose a technique named reverse query processing for generating test databases that takes

the query and the desired output as input and generates a database instance (using a model

checker) that could produce that output for the query. This approach supports one SQL query

and therefore generates one test database for each query. A further extension to this work [58]

supports a set of queries and allows to specify to the user the output constraints in the form

18

of SQL queries. However, the creation of these constraints could be difficult if the source

specification is not complete. There are other works which use general purpose constraint

solvers to populate the test database [59, 16, 60]. As in preceding works, the coverage criterion

for generating the test database is not specifically tailored for SQL queries but rather for

predicates or user constraints and therefore, the generated test database does not provide

enough confidence to exercise the target query and also the corresponding database application

from a testing point of view.

In recent works [55, 52], researchers use coverage criteria in conjunction with database con-

straints to populate databases with test data. But the main disadvantage of these approaches

is considering isolated SQL statements. Therefore, while executing the actual query or it’s

mutants from a particular database application, the test database might not find any result.

In this thesis, we leverage our basic approach [54] and develop a new approach [61] which

automatically generates test cases and synthetic data if required. The generated data, in our

approach, will help to improve both structural coverage and mutation score of the generated

test cases.

As an extension of our work we exploit the existing database state and generate test cases

covering maximum number of branches. This technique is also accompanied by our mutation

analysis so that only high quality test inputs are generated. By using this approach we are

able to bypass unnecessary mock data generation and reduce overhead. If only our approach

cannot find any test case using existing database entries to cover a particular branch of a given

program, our framework will guide the tester to generate mock dataset which will help to

generate test data covering the uncovered branch. The mock dataset will be selected in such a

way that the test data can also achieve high mutation score along with high branch coverage.

19

CHAPTER 3. ConSMutate: SQL MUTANTS FOR GUIDING

CONCOLIC TESTING OF DATABASE APPLICATIONS

3.1 Introduction

3.1.1 Driving Problem

With advances in the Internet technology and ubiquity of the Web, applications relying

on data/information processing and retrieval from database form the majority of the appli-

cations being developed and used in the Software industry. Therefore, it is important that

such applications are tested adequately before being deployed. A typical database application

consists of two different programming language constructs: the control flow of the application

depends on procedural languages, host language (e.g., Java); while the interaction between the

application and the backend database depends on specialized query languages (e.q., SQL) that

are constructed and embedded inside the host language. Automatically generating test cases

along with assessing their quality, therefore, pose an interesting and important challenge for

such applications.

3.1.2 Motivating Example

Consider the pseudo code in the above procedure chooseCoffee. It represents a typical

database application; it takes as two input parameters x and y, creating different query string

depending on the valuation of the parameters which guides the control path in the application.

Assume that one of the database tables coffees contains three entries as shown in Table 3.1.

Pex generates three test cases, e.g., (0, 0), (11, 0) and (11, 2), taking into consideration the

branch conditions in the application program. The first and the second values in the tuple

represent the valuations of x and of y respectively. These test cases cover all branches present

20

1: procedure chooseCoffee(x, y)

2: String q = “ ”;

3: if x>10 then

4: y++;

5: if y≤ 2 then

6: q = “SELECT cof name FROM coffees WHERE price =” + y + “;”;

7: else

8: q = “SELECT cof name FROM coffees WHERE price ≤” + y + “;”;

9: end if

10: end if

11: if q != “ ” then

12: executeQuery(q);

13: end if

14: return;

15: end procedure

Algorithm 1 Sample Pseudo code for Database Application

Table 3.1 Table coffees

cof name sup id price

Colombian 101 1

French Roast 49 2

Espresso 150 10

in the program. However, as the database is not taken into consideration for the test case

generation, the test cases are unlikely to kill all mutants corresponding to the query being

executed. For instance, the test case (11, 0) results in the execution of the query generated at

Line 6.

The executed query

SELECT cof name FROM coffees WHERE price = 1

generates the result Colombian using the coffees table. A mutant of this query

SELECT cof name FROM coffees WHERE price ≤ 1

is generated by slightly modifying the “WHERE” condition in the query (mimicking typical

programming errors). The result of the mutant is also Colombian. That is, if the programmer

21

makes the error of using the equal-to-operator in the “WHERE” condition instead of the

intended less-than-equal-to operator, then that error will go un-noticed if test case (11, 0) is

used. Note that there exists a test case (11, 1) which can distinguish both the mutants from

the original query without compromising branch coverage. We will show in section 3.2 that our

framework successfully identifies such test cases automatically.

3.1.3 Problem Statement

How to automatically generate test cases for database applications such that: test cases

not only ensure high coverage of the control flow described in host language, but also allow for

adequate testing of the embedded queries by attaining high mutation scores where mutants are

generated from embedded queries?

3.1.4 Individual Contributions

The contributions of our work described in this chapter are summarized as follows:

1. To the best of our knowledge, this is the first approach that combines coverage analysis

and mutation analysis in automatic test case generation for database applications which

involve two different language interaction.

2. The impact of our proposed framework is that it reduces the overhead of high quality

test case generation by avoiding test cases with low coverage and low mutation scores.

3. We evaluate the practical feasibility and effectiveness of our proposed framework by ap-

plying it on two real database applications. We compare our method against Pex [20],

a white-box testing tool for .NET from Microsoft Research, and show that our method

generates test cases with higher code coverage and higher mutation score compared to

the ones generated by Pex.

3.2 ConSMutate Test Case Generator for DB-Applications

Figure 3.1 presents the overall architecture of our framework named ConSMutate. It has two

main modules, Application Branch Analyzer and Mutation Analyzer. The Application Branch

22

Figure 3.1 Framework for ConSMutate

Analyzer takes the program under test and the sample database as inputs, and generates test

cases and the corresponding path constraints. It uses Pex [20], a dynamic symbolic execution

engine (other engines like concolic testing tools [36] can also be used), to generate test cases

by carefully comparing the concrete and symbolic execution of the program. After exploring

each path, the Mutation Analyzer module performs mutation quality analysis using mutation

score. If the mutation score is low, Mutation Analyzer generates a new test case for the same

path whose quality is likely to be high. The steps followed in our framework for generating test

cases are presented in the following subsections.

3.2.1 Generation of Test Cases and Associated Path Constraints Using Applica-

tion Branch Analyzer

In the first step, the framework uses the Application Branch Analyzer module to generate

a test case value v and the associated path constraints. It results in a specific execution path

constraint (say, PC) of the application, which in turn results in a database query execution

(if the path includes some query). The executed query is referred to as the concrete query qc

and the same without the concrete values (with the symbolic state of the input variable) is

referred to as the symbolic query qs. The path constraints refer to the conditions which must

be satisfied for exploring the execution path in the application.

Going back to the example in Section 3.1.2, Application Branch Analyzer (Pex in our case)

23

generates a test case v = (11, 0), i.e., x = 11 and y = 0. This results in an execution path

with path constraints PC = (x > 10) ∧ (y + 1 ≤ 2). It also results in a symbolic query and a

corresponding concrete query:

Symbolic qs: SELECT cof name FROM coffees WHERE price = ys.

Concrete qc: SELECT cof name FROM coffees WHERE price = 1.

where ys is related to program input y as ys = y + 1 at line 6 (see the example program in

Section 3.1.2).

3.2.2 Deployment of Mutation Analyzer

After exploring a path of the program under test, ConSMutate forwards PC, qc, qs and v

to Mutation Analyzer to evaluate the quality of the generated test case in terms of mutation

score.

3.2.2.1 Generation of Mutant Queries

In Mutation Analyzer, the obtained concrete query qc is mutated to generate several mutants

qm(s). The mutations are done using pre-specified mutation functions in the Mutant Generation

module.

It is generally agreed upon that a large set of mutation operators may generate too many

mutants which, in turn, exhaust time or space resources without offering substantial benefits.

Offutt et al. [62] proposed a subset of mutation operators which are approximately as effective as

all 22 mutation operators of Mothra, a mutation testing tool [38]. They are referred as sufficient

set of mutation operators. In our context, we are specifically focused on SQL mutants. We

have identified five mutation operators by comparing SQL mutation operators developed in [8]

with the sufficient set of mutation operators mentioned in [62]. We refer to these six rules as

the sufficient set of SQL mutation operators, sufficient to identify logical errors present in the

WHERE and HAVING clauses.

ConSMutate uses these mutation operators in generating mutants. It should be noted

here that new mutation operators can be considered and incorporated in mutation generation

24

Table 3.2 Sample mutant generation rules and mutant killing-constraints

Mutation Rule Original Mutant Mutant Killing-constraint

Relational Operator Replacement C1 α C2 C1 β C2 ((C1 α C2) ∧ ¬(C1 β C2))

(ROR),α, β ∈ ROR and α 6= β ‖
(¬(C1 α C2) ∧ (C1 β C2)))

Logical Operator Replacement C1 α C2 C1 β C2 (C1 α C2) 6= (C1 β C2)

(LOR),α, β ∈ LOR and α 6= β

Arithmetic Operator Replacement C1 α C2 C1 β C2 (C1 α C2) 6= (C1 β C2)

(AOR),α, β ∈ AOR and α 6= β

Unary Operator Insertion C1 u(C1) C1 6= u(C1)

(UOR), ∀u ∈ UOI

Absolute Value Insertion C1 u(C1) C1 6= u(C1)

(ABS), ∀u ∈ ABS

module in ConSMutate as and when needed. Table 3.2 (first three columns) presents those

mutation generation rules. Going back to the example in section 3.1.2 one of the mutants of

the symbolic qs is

qm: SELECT cof name FROM coffees WHERE price ≤ ys.

In the above transformation, α is “=” (equality relational operator) and β is “≤” (less-than-

equal-to relational operator) as per the rule in the first row, second and third columns of

Table 3.2.

3.2.2.2 Identification of Live Mutants

Using the test case under consideration, the live mutants are identified. Live mutants are

the ones whose results do not differ from that of the concrete query in the context of the given

database table. The above mutant qm is live under the test case v = (11, 0) as it results in a

concrete query

SELECT cof name FROM coffees WHERE price ≤ 1.

Recall that ys = y + 1 and y = 0 for the test case (11, 0) when the query is constructed in

Line 6 (see program in Section 3.1.2). The above query and the concrete query qc produce the

25

same result for the given database table (Table 3.1). Therefore, qm is live under the test case

(11, 0).

3.2.2.3 Generation of Mutant Killing Constraints

A new set of constraints θ is generated in Mutant Killing Constraint Generation module in

two steps:

1. Generation of constraint from queries,

• the symbolic query qs and its concrete version qc,

• the live mutants (qm’s) computed in the previous step,

• the concrete and symbolic state of the program inputs which is affected by the test

cases.

2. Incorporation of path constraints (PC) to ensure the same path is explored and therefore

the same set of queries are executed.

Generation of Constraint from Queries. We proceed by capturing the concrete and

symbolic queries executed in the path explored by the given test case. This is done using

Pex API methods PexSymbolicValue.ToString(..) and GetRelevantInputNames(..). We

decompose concrete and symbolic query using a simplified SQL parser and get their WHERE

conditions, which we assume to be in conjunctive normal form.

Identification of Query Conditions. We then identify the conditions that resulted in a mutant

query and their relationship with the test inputs (or program inputs). We refer to the conditions

obtained from the original query as the original query-condition and, likewise, the conditions

obtained from the mutant query as the mutant query-condition.

For the concrete versions of the original and the mutant query-condition, we identify the

satisfiable valuations of the database attribute. For instance, in our running example, the

original query-condition is price = 1 and the mutant query-condition is price ≤ 1. We query

the database to find one valuation of price which satisfies these conditions. Note that the same

valuation of price will satisfy both the conditions as we are considering the live mutants. In

26

our running example, the original query-condition and the mutant query-condition are satisfied

when the value of price is set to 1 (see Table 3.1).

Using the above and the symbolic versions of the original and the mutant query-conditions,

we identify the relationship between the valuations of database attributes and the test inputs.

For instance, in our running example, the original symbolic query-condition is price = ys and

the mutant symbolic query-condition is price ≤ ys. We also know that ys is set to y + 1 (y is

one of the test inputs) and price is set to 1. Therefore, the relationship between the valuations

of the database attribute price and the test input y is 1 = y+ 1 in the original query-condition

and 1 ≤ y + 1 in the mutant query-condition. We will use these relationships/conditions for

generating the mutant killing constraint; we refer to them as the original input-condition and

the mutant-input condition.

Identification of Mutation Points. The original and the mutant input-conditions are compared

to identify the mutation point (the point at which the original input-condition and the mutant

input-condition differ). Depending on the mutation point, a corresponding mutant killing

constraint rule is triggered.

For complex conditions, ConSMutate uses a binary search algorithm to identify the muta-

tion point. As an example, the original condition (C1 ≤ C2) ∧ (C3 ≤ C4) can have a mutant

(C1=C2) ∧ (C3 ≤ C4). ConSMutate first looks at the outmost level and finds that the logical

operators remain the same for both of these expressions. It recursively looks at the left and

right sub-conditions of these expressions and identifies the mutation point. In this case the

mutation point is at left-hand side i.e., (C1 ≤ C2) and (C1=C2).

Identifyication of Mutant Killing Constraints for Conditions: Finally, for the original input-

condition and its mutant, a mutant killing constraint is generated following the rules in Table 3.2

(4th column). Satisfaction of the mutant killing constraint results in an assignment to the test

inputs which satisfies (resp. does not satisfy) the original input-condition and does not satisfy

(resp. satisfies) the mutant input-condition. For instance, for our running example, the mutant

killing constraint is [(1 = y + 1) ∧ (1 6≤ y + 1)] ∨ [(1 6= y + 1) ∧ (1 ≤ y + 1)] (using ROR rule

from Table 3.2).

27

Incorporation of Path Constraints. We extract path constraints (PC) from Pex and

conjunct them with the mutant killing constraint generated above to construct θ. This is

necessary to ensure that any satisfiable assignment of test inputs results in exploration of the

same execution path. In our running example, the path constraint is (x > 10) ∧ (y + 1 ≤ 2).

The conjunction result will be θ as shown below.

θ : (x > 10) ∧ (y + 1 ≤ 2) ∧

[((1 = y + 1) ∧ (1 6≤ y + 1)) ∨ ((1 6= y + 1) ∧ (1 ≤ y + 1))]

3.2.3 Deployment of Constraint Solver: Finding Satisfiable Assignment for θ

The constraint θ is checked for satisfiability to generate a new test case. We use the SMT

solver named Yices1 for this purpose. Other high performance constraint solvers like Z32 can

be used in the constraint solver module (Figure 3.1). If θ is satisfied, then certain valuations of

the inputs to the application are identified, which is the new test case v′. This new test case v′

is guaranteed to explore the same execution path as explored due to test case v. Furthermore,

some mutants that were left “live” by v are likely to be “killed” by v′. Therefore, it is necessary

to check whether v′ indeed kills the live mutants; if not, SMT solver is used again to generate

a new satisfiable assignment for θ (including the negation of the previously generated value),

which results in a new test case v′′. This iteration is terminated after certain pre-specified times

(e.g., 10) or after all live mutants are killed (whichever happens earlier). It should be noted

that if the live mutant is equivalent to the original query in the context of the database table,

then no new test case can differentiate between the mutant and the original query. Therefore,

we use a pre-specified limit to the number of iterations after which we terminate the process.

Going back to our running example, when the SMT solver generates a satisfiable assignment

x = 11, y = 1 for the mutant killing constraint θ (see above), the new test case v′ = (11, 1)

successfully kills the live mutant qm by distinguishing its result from the original query result,

as shown in Table 3.3.

The above steps (starting from Section 3.2.1) are iterated to generate new test cases that

1http://yices.csl.sri.com/
2http://research.microsoft.com/en-us/um/redmond/projects/z3/

28

Table 3.3 Mutants and results for test case (11, 1)

Query Concrete Query Result

qc SELECT cof name FROM coffees WHERE price = 2 French Roast

qm SELECT cof name FROM coffees WHERE price ≤ 2 Colombian,

French Roast

explore different execution paths of the program. This iteration continues until all possible

branches are covered following the method used by Pex.

3.2.4 Correctness Criteria of ConSMutate

For any path explored by a test case t0 with path constraint PC, if the symbolic query

executed along the path is qs and if the live mutant is qm, the set of satisfiable assignments for

the mutant killing constraint θ as obtained by ConSMutate is a superset of the test cases that

can kill the mutant.

Proof. A test case can be viewed as a mapping of variables (inputs to programs) to values.

We will denote this mapping as t : [x̄ 7→ v̄], where t is a test case, x̄ is an ordered set of

inputs/variables and v̄ is an ordered set of valuations3.

We prove the above theorem by contradiction. We assume that there exists a test case t

that can kill the mutant qm; however it is not a satisfiable assignment for θ, denoted by t 6|= θ.

As the test case t can kill the mutant qm, it must satisfy the path constraint PC, which

is necessary to explore the path where the original query qs is generated and executed. Recall

that θ contains a conjunct PC. Therefore, t 6|= θ1, where θ = PC ∧ θ1.

Next, let us consider the construction of θ1. WLOG, consider that there is one mutation

point in the WHERE clause of qs and qm. Let the WHERE clause be dbvar R x, where dbvar is

a database variable, R is a relational operator and x is an input to the program (x can be

a program variable dependent indirectly on the program input). Let the mutant qm has the

WHERE clause transformed by altering R to R′. The original test case t0 results in the valuation

3When the ordered set contains one variable, we denote test case t as t : [x 7→ v]

29

of x for which the WHERE clauses of qs and qm, i.e., dbvar R x and dbvar R′ x, produces the

same set of results.

Therefore, θ1 = θ11 ∨ θ12, where

θ11 = (v0 R x) ∧ ¬(v0 R′ x)

θ12 = ¬(v0 R x) ∧ (v0 R′ x)

and t0 : [x 7→ v0].

As per our assumption, t 6|= θ1, i.e., t 6|= θ11 and t 6|= θ12. In other words, for t : [x 7→ v],

both

(v0 R v) ∧ ¬(v0 R′v)

¬(v0 R v) ∧ (v0 R′v)
(3.1)

evaluate to false.

Case-Based Argument: Consider that R is the equality relation =. Let the mutation rule

result inR′ equal to 6= relation. It is immediate that at least one of the formulas in Equation 3.1

must be satisfiable (specifically the second formula must be satisfiable when R is = relation).

Therefore, our assumption that t is not a satisfiable assignment of θ is contradicted.

Next consider that the mutation rule resulted in R′ to be ≤ relation. Note that dbvar = v0

and dbvar ≤ v0 in the WHERE clause of the original and the mutant queries, respectively, produced

equivalent/ indistinguishable results for the test case t0; on the other hand, dbvar = v and

dbvar ≤ v in the WHERE clause of the original and the mutant queries, respectively, produced

non-equivalent/indistinguishable results for the test case t. As v 6= v0 (in which case the test

cases will become identical), there are two possibilities: v < v0 and v0 < v.

If v < v0, then the WHERE clause conditions dbvar ≤ v would have produced results equivalent

to the ones produced by dbvar = v. This is because dbvar ≤ v0 and dbvar = v0 produce

equivalent results. However, as t can kill the mutant, the results produced by the valuation

v for the original and the mutant clauses must be different. Therefore, v < v0 does not hold.

Proceeding further, v0 < v implies that the second formula in Equation 3.1 is satisfied, which

leads to contradiction of our assumption that t does not satisfy θ.

Similar contradictions can be achieved, and the theorem statement can be proved for other

operations.

30

3.3 Experimental Results

3.3.1 Evaluation Criteria

ConSMutate can utilize any DSE-based test generation tools (e.g., Pex [20] in .NET applica-

tions) to generate high quality test cases for database applications, where quality is attributed

to both coverage criteria and mutation score. We evaluate the benefits of our approach from

the following two perspectives:

1. What is the percentage increase in code coverage by the test cases generated by Pex

compared to the test cases generated by ConSMutate in testing database applications?

2. What is the percentage increase in mutation score of test cases generated by Pex compared

to the ones generated by ConSMutate in testing database applications?

We first run Pex to generate test cases (different valuations for program inputs) for methods

with embedded SQL queries in two open source database applications. We record the mutation

score and code coverage percentage achieved by Pex. Next we apply ConSMutate to generate

test cases for the same methods and record the corresponding mutation score and code coverage

statistics. The experiments are conducted on a PC with a 2GHz Intel Pentium CPU and 2GB

memory running the Windows XP operating system.

Table 3.4 Method names and corresponding Program Identifiers

UnixUsage RiskIt
Program Identifier(s) Method(s) Program Identifier(s) Method(s)
1 courseIdExists 10 getOneZipcode
2 courseNameExists 11 filterMaritalStatus
3 getCourseIDByName 12 filterZipcode
4 getCourseNameByID 13 getValues
5 isDepartmentIdValid
6 isRaceIdValid
7 getDeptInfo
8 deptIDExists

31

3.3.2 Evaluation Test-Bed

Our empirical evaluations are performed on two open source database applications. They

are UnixUsage4 and RiskIt5. UnixUsage is a database application where queries are written

against the database to display information about how users (students), who are registered

in different courses, interact with the Unix systems using different commands. The database

contains 8 tables, 31 attributes, and over a quarter million records. RiskIt is an insurance quote

application which makes estimates based on users’ personal information, such as zipcode. It has

a database containing 13 tables, 57 attributes and over 1.2 million records6. Both applications

are written in Java with backend Derby. To test them in the Pex environment, we convert the

Java source code into C# code using a tool called Java2CSharpTranslator7. Since Derby is a

database management system for Java and does not adequately support C#, we retrieve all the

database records and populate them into Microsoft Access 2010. We also manually translate

those original database drivers and connection settings into C# code.

Table 3.4 presents the methods in each of the test applications. The program identifiers

1–8 and 10–13 will be used to present our results in the rest of the sections.

3.3.3 Summary of Evaluation

Figure 3.2 shows the results of our evaluation. The graph compares the performances of Pex

and ConSMutate in terms of achieving quality. The x-coordinates in the graph represent the

Program Identifiers for different methods for Unix-Usage and RiskIt as mentioned in Table 3.4.

The y-axis represents the Quality(%) in terms of Block Coverage and Mutation Score achieved

by Pex and ConSMutate for various program identifiers.

3.3.3.1 Evaluation Criterion 1: Coverage Benefit.

Figure 3.2 (points shown in square) demonstrates the block coverage achieved by Pex and

ConSMutate for both of the applications. Although Pex has achieved good block coverage as

4http://sourceforge.net/projects/se549unixusage
5https://riskitinsurance.svn.sourceforge.net
6http://webpages.uncc.edu/ kpan/coverageCriteria.html
7http://sourceforge.net/projects/j2cstranslator/

32

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

0

5 0

1 0 0

Qu
alit

y (
%)

 P r o g r a m I d e n t i f i e r

 B l o c k C o v e r a g e (C o n S M u t a t e)
 B l o c k C o v e r a g e (P e x)
 M u t a t i o n S c o r e (C o n S M u t a t e)
 M u t a t i o n S c o r e (P e x)

U n i x U s a g e R i s k I t

Figure 3.2 Comparison between Pex and ConSMutate in terms of quality

33

expected, ConSMutate has successfully achieved more than 10% improvement in coverage in

case of various methods (program identifiers in figure 3.2). The reason for this is that Pex

cannot generate sufficient program inputs to achieve higher code coverage, especially when

program inputs are directly or indirectly involved in embedded SQL statements. ConSMutate

does not suffer from this drawback, as it considers database states and the results of generated

queries and their execution results.

3.3.3.2 Evaluation Criterion 2: Mutation Score Benefit.

Figure 3.2 (points shown in triangle) also demonstrates the mutation score achieved by

Pex and ConSMutate for the test applications. The mutation score of test cases generated

by ConSMutate is always higher than the mutation score of test cases generated by Pex. The

increase in mutation score ranges from around 10% to 50%. We can see less increase in mutation

score for methods like getCourseNameByID, getDeptInfo in Unix-Usage (program identifiers 4

and 7 in figure 3.2). Manual inspection reveals the fact that the improvement in mutation score

is less for methods where the number of generated mutants are fewer than other methods.

The mutation scores achieved by ConSMutate are sometimes less than 100%, because the

test cases generated by ConSMutate are likely to kill mutants and therefore may not be always

successful. Figure 3.2 presents the mutation score achieved by ConSMutate by just performing

constraint solving once (see Section 3.2.2). If the mutant is not killed by the test case obtained

after one iteration of constraint solving, additional iterations of constraint solving can be done.

In our evaluation we do not eliminate equivalent mutants. We calculated mutation score as

the number of mutants killed divided by total number of generated mutants. Note that there

are a number of equivalent mutants for most of the cases and if we exclude these equivalent

mutants, ConSMutate could achieve even higher mutant-killing ratios. Manual inspections show

that the mutation scores achieved by ConSMutate are less than 100% because of the existence

of equivalent mutants and because the database tables provided are not always sufficient to kill

all the mutants.

34

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 30

1 0

2 0

3 0

Ex
ec

uti
on

 Ti
me

 (s
ec

on
ds

)

P r o g r a m I d e n t i f i e r

 E x e c u t i o n T i m e (C o n s m u t a t e , U n i x U s a g e)
 E x e c u t i o n T i m e (P e x , U n i x U s a g e)
 E x e c u t i o n T i m e (C o n s m u t a t e , R i s k I t)
 E x e c u t i o n T i m e (P e x , R i s k I t)

Figure 3.3 Execution time comparison between Pex and ConSMutate

35

3.3.4 Execution Time Overhead

As ConSMutate involves the database and utilizes a constraint solver for generating high

quality test cases, there is obviously a penalty in terms of execution time. In this section, we

show that the execution time overhead is not prohibitively large and therefore ConSMutate

can be used effectively for test case generation for practical applications.

Figure 3.3 compares the execution times of Pex and ConSMutate. The x-coordinates in

the graph represent the different Program Identifiers for Unix-Usage and RiskIt as mentioned

in Table 3.4. The y-axis represents time. For UnixUsage, the execution time of ConSMutate

is approximately 1.3 times that of Pex. The increase in time is due to multiple mutant query

execution and subsequent comparison of the large result sets returned by them from the back-

end database (more than 0.25 million records for UnixUsage). Multiple mutant executions are

required in our framework in order to identify live mutants.

In the case of RiskIt, the increase in database size is five-times more than Unix-Usage. As

a result, the total execution time increases by five times (maximum for the method identified

by program 13). Optimizing multiple query execution is an open research problem and several

research works in this area [63, 64] propose effective techniques which can reduce the total

execution time by a considerable amount. Incorporating such techniques in our framework is

not in the scope of our current objective but can be done easily to further improve the execution

time.

Our evaluation results demonstrate the fact that ConSMutate successfully generates test

cases for database application (where associated database state is given) which achieve high

code coverage and mutation score as compared to the test cases generated by standard DSE

engine.

36

CHAPTER 4. SynConSMutate: CONCOLIC TESTING OF DATABASE

APPLICATIONS VIA SYNTHETIC DATA GUIDED BY SQL MUTANTS

4.1 Introduction

4.1.1 Driving Problem

Database applications are built using two different programming language constructs: one

that controls the behavior of the application (host language); and the other that allows the

application to access/retrieve information from the backend database (query language). In such

applications, several branches are dependent on the query result; therefore current database

state is an important factor to achieve high quality both in terms of coverage and mutation

score in such applications. Existing works like [16, 17, 18] propose techniques to generate test

cases and synthetic data to improve branch coverage but the generated test cases may suffer

from low mutation score with respect to the same data. Auto generation of test cases and

corresponding synthetic data to improve both coverage and quality; therefore, pose another

important and interesting challenge.

4.1.2 Motivating Example

We present here a simple database application to illustrate the problem scenario. Consider

the pseudo-code named CalculateTotalCost (shown in algorithm 2), which represents a

typical database application. It takes available packets in stock as input (parameter x) and

calculates total cost for coffees which has number of packets equal to x. The program creates

a query string depending on the valuation of the parameter x, which also guides the control

path in the program. Assume that the database table coffees contains no entry and its schema

37

1: procedure CalculateTotalCost(x)

2: String q = “ ”;

3: if x==0 then

4: x++;

5: end if

6: q = “SELECT * FROM coffees WHERE packets =” + x + “;”;

7: result=executeQuery(q);

8: while (result.next()) do

9: totalCost = calculateCost(result.getInt(price), result.getInt(packets));

10: end while

11: return;

12: end procedure

Algorithm 2 Sample Pseudo code for Database Application

is shown in Table 4.1. To satisfy the branch condition at line 3 (x == 0), test case (x = 0) is

generated by concolic execution module of [16, 17].

Table 4.1 coffees Table schema definition

Column Data Type Constraint

cof id Int Primary Key

cof name String

price Int > 0

packets Int ≥ 0

The concrete query executed at line 6 will be,

Q: SELECT * FROM coffees WHERE packets = 1.

Table 4.2 Updated coffees Table in the database

cof id cof name price packets

1 abc 1 1

Since the query will return an empty result and the program control cannot satisfy the true

condition at line 8. To overcome such scenario, new synthetic data is created for the coffees

table by [16, 17]. The synthetic data in Table 4.2 is created by solving the condition extracted

38

from the query (packets = 1) in conjunction with coffees table schema constraint. This new

entry improves the coverage (by satisfying the condition at line 8) of the generated test case

(x = 0). Even though this new database state improves the structural coverage, it does not

guarantee killing all the mutants corresponding to the executed query. For instance, for (x = 0)

the query Q generates the tuple (〈1, abc, 1, 1〉) using the updated coffees table as shown in

Table 4.2. A mutant of this query is,

SELECT * FROM coffees WHERE packets ≤ 1.

This is generated by slightly modifying the WHERE condition in the query (mimicking

typical programming error). The result of the mutant is also (〈1, abc, 1, 1〉). That is, if the

programmer makes a typical error of using ≤ in the WHERE condition instead of the intended

= (or vice versa), then that error will go un-noticed for test case (x = 0) with respect to the

updated coffees Table 4.2. We will show that our framework successfully identifies new

synthetic data which will help test cases to identify such errors.

4.1.3 Problem Statement

How to automatically generate test cases and corresponding synthetic data for database

applications where current database state is insufficient or absent? The test cases will not

only ensure high coverage of the control flow described in host language, but will also allow for

adequate testing of the embedded queries by attaining high mutation scores with respect to the

generated data.

4.1.4 Individual Contributions

The contributions of our work described in this chapter are summarized as follows:

• We leverage our previous framework CoSMutate to develop an automatic test case genera-

tion approach that combines coverage analysis and mutation analysis for testing database

applications even when associated physical database entries are absent (or insufficient).

• Our ew framework generates high quality test cases both in terms of structural coverage

and mutation score.

39

• The framework also generates synthetic data to help improve the quality of the generated

test cases.

• We demonstrate an empirical evaluation to show the effectiveness of our approach.

4.2 Approach Overview

Figure 4.1 shows the salient features of our framework, SynConSMutate. It has two main

parts, Application Branch Analyzer and Mutation Analyzer. Application Branch Analyzer

takes the program under test and the sample database (can be empty) as inputs, and generates

test cases and synthetic data (if required) to satisfy any branch condition. It uses SynDB [17],

built on top of DSE engine Pex [20], to generate test cases and synthetic data. After exploring

each path by Application Branch Analyzer, the Mutation Analyzer performs quality analysis

using mutation analysis. If the mutation score is low, the mutation analyzer generates a new

test case (and corresponding synthetic data if required to satisfy branch condition) for the same

path, whose quality is likely to be high. For the given (or newly generated) database state,

if no new test case for the same path can improve the quality, then the mutation analyzer

generates new synthetic data to help achieve the test case high quality. The steps followed in

our framework are as follows:

Step 1: Generate Test Case and Associated Path Constraints using Application

Branch Analyzer. In the first step, the framework uses the Application Branch Analyzer

module to generate a test case value v, synthetic data if required and the associated execution

path, called path constraint (PC). It may result a query execution (if the path includes some

query). The executed query is referred to as the concrete query qc and the query without the

concrete values is referred to as the symbolic query qs.

For the example in Section 4.1.2, in Step 1, Application Branch Analyzer generates a test

case v = (x = 0) and synthetic data shown in Table 4.2. This results in an execution path with

path constraint PC = (x == 0) ∧ (result.next() = true). It also results in a symbolic query

and corresponding concrete query:

qs:SELECT * FROM coffees WHERE packets = xs,

40

Figure 4.1 Framework For SynConSMutate

qc:SELECT * FROM coffees WHERE packets = 1.

xs is the symbolic state of the program input x, which is x + 1 in this case, at line 4 (see

program 2).

Application Branch Analyzer is loosely coupled with SynDB [17] which essentially depends

on DSE engine Pex for exploring all possible branches of a given program. As an enhancement

to DSE, SynDB tries to cover branches which depend on query result. To do that, SynDB treats

symbolically both the embedded query and the associated database state by constructing syn-

thesized database interactions. The original code under test is first transformed (instrumented)

into another form that the synthesized database interactions can operate on. In order to force

Pex to actively track the associated database state in a symbolic way, the concrete database

state is converted into synthesized object, added it as an input to the program under test,

and then passed it among synthesized database interactions. This results in integration of

query constraints as normal constraints in the program code. Also database state is checked

by incorporating database schema constraints into normal program code. Then, based on the

instrumented code, SynDB guides Pex’s exploration through the operations on the symbolic

41

public int calculatetotalCost(int x)

{

string query = " "‘;

int totalCost = -1;

SqlConnection sc = new SqlConnection();

sc.ConnectionString = "..";

sc.Open();

if(x == 0)

{

x++;

}

query = "SELECT * FROM coffees WHERE packets =" + x;

SqlCommand cmd = new SqlCommand(query, sc);

SqlDataReader results = cmd.ExecuteReader();

while(results.Read())

{

totalCost = calculateCost(result.getInt(3), result.getInt(4));

}

return totalCost

}

Figure 4.2 Actual code snippet of the Pseudocode from Section 4.1.2

database state to collect constraints for both program inputs and the associate database state.

Then after applying Pex’s constraint solver on the collected constraints, SynDB produces both

program inputs and synthetic data to satisfy branch conditions which depend on query result.

For example, the pseudocode shown in Algorithm 2 can be written in actual C# code

as shown in Figure 4.2. SynDB transforms the example code in Figure 4.2 into another form

shown in Figure 4.3. In the instrumented code, SynDB adds a new input dbstate to the program

with a synthesized data type DatabaseState. The type DatabaseState represents a synthesized

database state whose structure is consistent with the original database schema. The schema

as shown in Table 4.1 is represented as synthesized database state in Figure 4.4.

The program input dbState is then passed through synthesized database interactions. Syn-

SqlConnection,SynSqlCommand, SynSqlDataReader are modified database interaction meth-

ods developed to mimic the actual C# database interations SqlConnection,SqlCommand, Sql-

42

public int calculatetotalCost(int x, DatabaseState dbState)

{

string query = " ";

int totalCost = -1;

SynSqlConnection sc = new SynSqlConnection(dbState);

sc.ConnectionString = "..";

sc.Open();

if(x == 0)

{

x++;

}

query = "SELECT * FROM coffees WHERE packets =" + x;

SynSqlCommand} cmd = new SynSqlCommand(query, sc);

SynSqlDataReader results = cmd.ExecuteReader();

while(results.Read())

{

totalCost = calculateCost(result.getInt(3), result.getInt(4));

}

return totalCost

}

Figure 4.3 Transformed code snippet produced by SynDB for the code in Figure 4.2

public class coffeesTable{

public class coffees {//define attributes;}

public List<coffees> coffeeRecords;

public void checkConstraints(){

/*check constraints for each attributes */;

}

}

public class DatabaseState {

public coffeesTable coffee = new coffeesTable();

public void checkCOnstraints(){

/* check constraints for each table*/;

}

}

Figure 4.4 Synthesized Database State

43

DataReader. Meanwhile, at the beginning of the synthesized database connections, the frame-

work ensures that the associated database state is valid by calling a method predened in dbState

to check the database schema constraints for each table.

To synthesize database operations for the synthesized database interactions, it incorporates

the query constraints as program-execution constraints in normal program code. To do so,

within the synthesized method ExecuteReader, SynDB parses the symbolic query and transform

the constraints from conditions in the WHERE clause into normal program code (if satisfied

then leads to exploration of new branch conditions). The query result is then assigned to

the variable results with the synthesized type SynSqlDataReader. The query result eventually

becomes an output of the operation on the symbolic database state. Then SynDB uses Pex for

path exploration which eventually generates synthetic data if required.

Step 2: Execute Mutation Analyzer. After exploring a path of the program under test,

SynConSMutate forwards PC, qc, qs and v to the Mutation Analyzer to evaluate the quality

of the generated test case in terms of mutation score.

Step 2.1: Generate Mutant Queries. In Mutation Analyzer, the obtained qc in Step 1 is

mutated to generate several mutants in the Mutant Generation module. We have identified five

rules which we call the sufficient set of SQL mutation generation rules from [8, 62] to identify

logical errors present in the WHERE and HAVING clauses. Table 3.2 illustrates some of the

rules. For instance, one of the mutants of the above query qs is,

qm: SELECT * FROM coffees WHERE packets ≤ xs.

Step 2.2: Identify Live Mutants. Using the test case under consideration, the live mutants

are identified. Live mutants are those whose results do not differ from those of the concrete

query in the context of the given database table.

The above mutant qm is live under the test case v = (x = 0) as qc and qm produces the

same result for the database table (see Table 4.2).

Step 2.3: Generate Mutant Killing Contraints. A new set of constraints, θ is generated

in Mutant Killing Constraint Generation module from

44

• the symbolic query qs and its concrete version qc,

• the live mutants (qm’s) from step 2.2,

• the path constraint of the execution (PC).

θ includes conditions on the inputs to the application. Due to the high cost of mutation

analysis, we adopt the concept of weak mutation analysis [65]. Therefore, the test cases (if

generated) do not guarantee killing the live mutants, but improve the probability of killing

them.

θ is generated as follows. The mutant qm is live because the WHERE clauses packets = xs

and packets ≤ xs do not generate two different result-sets. We also know that xs is set

to x + 1 (x is the test input) and packets is set to 1. Therefore, the relationship between

the valuations of the database attribute packets and the test input x is 1 = x + 1 in the

original query-condition and 1 ≤ x + 1 in the mutant query-condition. We will use these

relationships/conditions to generate the mutant killing constraint. In order to generate a

different value of x to likely kill the mutant qm, we need to choose a value for x such that

[(1 = x+1)∧(1 6≤ x+1)]∨[(1 6= x+1)∧(1 ≤ x+1)]. The last column of Table 3.2 demonstrates

the general rules for generating these mutant killing constraints. Then we extract sub-path

constraint pcpi, which depends on program input (x in this case) from PC. The mutant killing

constraint in conjunction with pcpi (since the new test case should satisfy the executed path

constraint) results in θ, the constraint which when satisfied is likely to generate a test case that

can kill the mutant qm.

θ : (x = 0) ∧ [(1 = x+ 1 ∧ 1 6≤ x+ 1)

∨(1 6= x+ 1 ∧ 1 ≤ x+ 1)]

Step 2.4: Find Satisfiable Assignment for θ and Corresponding Synthetic Data.

The constraint θ is checked for satisfiability to generate a new test case in the Constraint

Solver module (Z31 is used). If θ is satisfied then a new test case v′ is identified by the

framework.

1http://research.microsoft.com/en-us/um/redmond/projects/z3/

45

In order to guarantee that v′ explores the same execution path as was explored by v (see

Step 1), new synthetic data may need to be generated to satisfy the branch condition which

depends on query result (e.g., (result.next()=true) in PC in Step 1). To do that, Coverage

Checker module first compares the executed path covered by v′ with corresponding expected

path (whichh is v in this case) and then generates the constraint expression (if required) by

combining the WHERE clause condition of the query executed by v′ (i.e. concrete version

of qs with respect to the new test case v′) in conjunction with the table (database) schema

constraint (see Table 4.1). Constraint Solver module is again invoked to solve the generated

expression. After updating the database state (if required) with the newly generated data, v′

guarantees same structural coverage of the application as was achieved by v.

Furthermore, some mutants that were left “live” by v are now likely to be “killed” by v′.

Therefore, it is necessary to check whether v′ indeed kills the live mutants; if not, constraint

solver is used again to solve θ for a program input (v′′) and generate corresponding synthetic

data (if required for coverage criterion). This iteration is terminated after pre-specified times

(e.g., 10) or after all mutants are killed (whichever happens earlier). If the live mutants are

killed, the control goes to Step 3. But there are situations where (a) θ becomes unsatisfiable

or (b) the new test case valuations cannot kill the live mutants. This implies that for the given

path PC and the given (or generated) database state there does not exist any new test case

which can have higher mutation score than previous one. In order to improve mutation score,

the control goes to Step 2.5.

In our example, θ becomes unsatisfiable, thus qm is still alive. This means no new test case

can be generated for the same path which can kill qm with respect to the current database

state (Table 4.2). Thus control goes to Step 2.5.

Step 2.5: Produce Synthetic Data Generation Constraint to Improve Mutation

Score. To improve the mutation score of the generated test case, the Synthetic Data Gener-

ation Constraint module is triggered and a new set of constraints ψ is generated from

• the concrete query qc from step 1,

• the sample database state from step 1,

46

• the live mutants (qm’s) from step 2.2.

ψ includes the database schema as a constraint expression. Otherwise, the generated synthetic

data may become invalid with respect to the given database state, causing low quality test case

generation for the database application.

In our example, ψ is generated as follows. The mutant qm is live because there are not

enough entries in the coffees table to generate different entries for WHERE clauses, packets =

1 (from qC) and packets ≤ 1 (from the concrete version of qm). In order to improve the mutation

score of the generated test case x = 0, we need to have an entry in the coffees table which

satisfies [(packets = 1) ∧ (packets 6≤ 1)] ∨ [(packets 6= 1) ∧ (packets ≤ 1)] (again using mutant

killing constraint rules (this case ROR) from Table 3.2). Thus, the constraint expression ψ will

look like,

ψ : < ∧ [(packets = 1 ∧ packets 6≤ 1)

∨(packets 6= 1 ∧ packets ≤ 1)].

Here, < denotes the database schema constraint expression of coffees table obtained from

Table 4.1.

Step 2.6: Find Satisfiable Assignment for ψ. The constraint ψ is checked for satisfiability

to generate a new synthetic data. If ψ is satisfied, then the database state will be updated

using the newly generated data. The updated database state will guarantee the previously

generated test case to achieve high mutation score by killing the live mutants.

For instance, after solving ψ, the updated coffees table with newly generated synthetic

data (second row) is shown in Table 4.3. With this new entry, the previously generated test

case x = 0 now kills the live mutant qm as shown in Table 4.4.

Table 4.3 coffees Table with new synthetic data

cof id cof name price packets

1 abc 1 1

2 def 1 0

47

Table 4.4 Mutants and new Results for test case (x = 0)

Query Concrete Query Result

Actual qc SELECT * FROM coffees 〈1, abc, 1, 1〉
WHERE packets = 1

Mutant qm SELECT * FROM coffees 〈1, abc, 1, 1〉,
WHERE packets ≤ 1 〈2, def, 1, 0〉

Step 3: Explore a New Execution Path. Finally, the whole process is iterated starting

from Step 1 to generate new test cases and new data (if required) that explore new execution

paths of the program. This iteration continues until all possible branches are covered.

4.2.1 Discussion: Dealing with Nested Queries

SQL queries embedded in the program code could be very complex. One example is the

involvement of nested sub-queries. The syntax of SQL queries is dened in the ISO standard-

ization2. The basic structure of a SQL query consists of SELECT, FROM, WHERE, GROUP

BY, and HAVING clauses. In case of nested query the predicate in WHERE or HAVING clause

will look like (CiopQ) where Q is an another query block. A large number of works [66, 67] on

query transformation in databases have been explored to unnest complex queries into equiv-

alent single level canonical queries. Researchers showed that almost all types of sub-queries

can be unnested except those that are correlated to non-parents, whose correlations appear

in disjunction, or some ALL sub-queries with multi-item connecting condition containing null-

valued columns. In our work scope, we handle canonical queries in DPNF or CPNF form while

generating test cases.

Generally, canonical queries can be categorized into two types, DPNF with the WHERE clause

consisting of a disjunction of conjunctions like ((A11 AND ... AND A1n) OR .. OR (Am1

AND ... AND Amn)), and CPNF with the WHERE clause consisting of a conjunction of dis-

junctions such as ((A11 OR... OR A1n) AND ... AND (Am1 OR... OR Amn)). DPNF and

CPNF can be transformed mutually using DeMorgans rules3.

2American National Standard Database Language SQL. ISO/IEC 9075:2008
3http://en.wikipedia.org/wiki/DeMorgan’slaws

48

4.3 Experimental Results

4.3.1 Evaluation Criteria

We evaluate the benefits of our approach from the following two perspectives:

1. What is the percentage increase in code coverage by the test cases generated by existing

approaches like SynDB [17] and Emmi et al. [16] compared to the ones generated by

SynConSMutate in testing database applications?

2. What is the percentage increase in mutation score of test cases generated by existing

approaches like SynDB [17] and Emmi et al. [16] compared to the ones generated by

SynConSMutate in testing database applications?

To set up the evaluation, we choose methods (denoted as program identifiers) from two

database applications that have parameterized embedded SQL queries and program inputs are

directly or indirectly used in those queries. First, we run SynDB [17] to generate test cases

and synthetic data for those program identifiers. SynDB does not directly populate the real

database schema, therefore in order to measure code coverage and mutation score of the original

program, we separately populate the real empty database with those synthetic data and apply

our previous framework ConSMutate to measure the code coverage and mutation score for the

generated test cases. Second, we make use of SynDB to simulate Emmi et al.’s approach [16].

In this case, SynDB only generates synthetic data based on query conditions only, no database

schema constraints were involved during data generation. Next we insert those entries to the

real empty database and use ConSMutate to measure the same metrics as in first. Third, we

apply SynConSMutate and record the code coverage and mutation score statistics for the same

program identifiers. The experiments are conducted on a PC with 2GHz Intel Pentium CPU

and 2GB memory running the Windows XP operating system.

49

4.3.2 Evaluation Test-Bed

Our empirical evaluations are performed on two open source database applications. They

are UnixUsage4 and RiskIt5. UnixUsage is an application which interacts with a database and

the queries are written against the database to display information about how users (students)

who are registered in different courses, interact with the Unix systems using different com-

mands. The UnixUsage database contains 8 tables, 31 attributes, and over a quarter million

records. RiskIt is an insurance quote application which makes estimates based on users’ per-

sonal information, such as zipcode. The RiskIt database contains 13 tables, 57 attributes, and

over 1.2 million records. In our evaluation, we assume an empty database at the beginning of

each test case generation and we allow all the techniques to generate synthetic data to cover

the branch conditions and to improve mutation score. Both applications were written in Java

with backend Derby. To test them in our environment, we convert the Java source code into

C# code using Java2CSharpTranslator6 and the backend database into Microsoft Access 2010.

4.3.3 Summary of Evaluation

Figure 4.5 and 4.6 show the results of our evaluation. The graphs compare the performances

of SynDB, Emmi et al.’s approach and SynConSMutate in terms of achieving quality. The

x-coordinates in the graph represent different Program Identifiers (methods) for Unix-Usage

and RiskIt. The y-axis represents the Quality(%) in terms of Block Coverage and Mutation

Score achieved by SynDB, Emmi et al. and SynConSMutate for various program identifiers.

Evaluation Criteria 1: Coverage Benefit. The left hand sides of Figure 4.5 and 4.6

demonstrate the block coverage achieved by SynDB, Emmi et al.’s approach and SynConSMu-

tate for both of the applications. The improvement in block coverage that SynConSMutate

and SynDB achieve as compared to Emmi et al.’s approach ranges from almost ten to seventy

percent. Close observation reveals the fact that Emmi et al.’s approach generates synthetic

data without considering the database schema constraints. Therefore all the generated records

cannot be inserted to the actual database, which leads to low block coverage. There is no

4http://sourceforge.net/projects/se549unixusage
5https://riskitinsurance.svn.sourceforge.net
6http://sourceforge.net/projects/j2cstranslator/

50

1 2 3 4 5 6
0

2 0

4 0

6 0

8 0

1 0 0

Qu
alit

y (
%)

P r o g r a m I d e n t i f i e r

 B l o c k C o v e r a g e (S y n D B)
 B l o c k C o v e r a g e (E m m i e t a l .)
 B l o c k C o v e r a g e (S y n C o n S M u t a t e)

U n i x U s a g e

1 2 3 4 5 6
P r o g r a m I d e n t i f i e r

 M u t a t i o n S c o r e (S y n D B)
 M u t a t i o n S c o r e (E m m i e t a l .)
 M u t a t i o n S c o r e (S y n C o n S M u t a t e)

Figure 4.5 Comparison among SynDB, Emmi et. al.’s approach and SynConSMutate for

UnixUsage

51

7 8 9 1 0 1 1 1 2
0

2 0

4 0

6 0

8 0

1 0 0

 R i s k I t

P r o g r a m I d e n t i f i e r

Qu
alit

y (
%)

P r o g r a m I d e n t i f i e r

 B l o c k C o v e r a g e (S y n D B)
 B l o c k C o v e r a g e (E m m i e t a l .)
 B l o c k C o v e r a g e (S y n C o n S M u t a t e)

7 8 9 1 0 1 1 1 2

 M u t a t i o n S c o r e (S y n D B)
 M u t a t i o n S c o r e (E m m i e t a l .)
 M u t a t i o n S c o r e (S y n C o n S M u t a t e)

Figure 4.6 Comparison among SynDB, Emmi et. al.’s approach and SynConSMutate for

RiskIt

52

significant improvement in block coverage in SynConSMutate compared to SynDB, as our Ap-

plication Branch Analyzer is loosely coupled with SynDB to explore different branches of a

given program.

Evaluation Criteria 2: Mutation Score Benefit. The right hand sides of Figure 4.5

and 4.6 demonstrate the mutation score achieved by SynDB, Emmi et al.’s approach and

SynConSMutate for the test applications. The mutation score of the test cases generated by

SynConSMutate is always higher than the mutation score of the test cases generated by SynDB

and Emmi et al.’s approach. The increase in mutation score ranges from around ten to eighty

percent. We can see less increase in mutation score in some cases (e.g., program identifiers 2, 4).

Further inspection reveals that the improvement in mutation score is less for methods where

the numbers of generated mutants are fewer than other methods. Our evaluation demonstrates

the fact that our framework SynConSMutate generates test cases which include both program

inputs and synthetic data while achieving both high code coverage and high mutation score as

compared to the ones generated by existing approaches [17, 16].

In our evaluation we do not eliminate equivalent mutants (semantically same as actual

programs). We calculated the mutation score as the number of mutants killed divided by

the total number of generated mutants. Manual analysis reveals that there are a number of

equivalent mutants for most of the cases under our evaluation; if we exclude these equivalent

mutants, SynConSMutate could achieve even higher mutant-killing ratios.

53

CHAPTER 5. CONCOLIC TESTING OF DATABASE APPLICATIONS

WHILE GENERATING MINIMAL SET OF SYNTHETIC DATA

5.1 Introduction

5.1.1 Driving Problem

Typically, automated testing for database applications includes both generation of test

cases and database states (synthetic data), if required. In reality, current database state may

have data entries which can be used for testing. Using such entries in test case generation

is more desirable as those entries represent real constraints that the application might face

during execution. Moreover, using existing database state in generating high quality test cases

bypasses the delay and overhead of identifying unnecessary synthetic data.

5.1.2 Motivating Example

We present here a simple database application to illustrate the problem scenario. Consider the

pseudo-code named calculateDiscount (shown in Algorithm 3). It takes available packets in

stock as input (parameter x), finds current discount rate for individual distributors to determine

whether the distributor is eligible for more discount or not, and then calculates discount in price

for coffees which has number of packets equal to x. Assume that the tables coffees and

distributor have entries as shown in Table 5.1 and 5.2.

In database applications both program inputs (x in this case) and current database states

are crucial in testing. In this example, we see that (1) the program input determines the result

of the embedded SQL statement at line2, which in turn determines the condition at line4 and

line10; (2) current database state not only determines the conditions at line4 and line10, but

also determines whether true branch at line12 can be covered or not. Existing techniques

54

1: procedure calculateDiscount(x)

2: String q1 = “SELECT * FROM coffees c WHERE c.packets =” + x + “;”;

3: result1 = executeQuery(q1);

4: while (result1.next()) do

5: int i = result1.getInt(“price”);

6: int k = result1.getInt(“id”);

7: int pack = result1.getInt(“packets”);

8: String q2 = “SELECT * FROM distributor d WHERE d.cid =” + k + “;”;

9: String result2 = executeQuery(q2);

10: while (result2.next()) do

11: int j = result2.getInt(“discRate”);

12: if (i - j ≥ 5) then

13: AddMorediscount(i, pack);

14: else

15: AddNodiscount(i, pack);

16: end if

17: end while

18: end while

19: end procedure

Algorithm 3 Sample Pseudo code for Database Application

generate synthetic data (if required) along with test cases [16, 17] to improve branch coverage.

Our work in chapters 3 and 4 have demonstrated that, the test cases which only satisfy high

branch coverage may not be good in terms of identifying SQL related faults. We combine

coverage analysis and mutation analysis to generate test cases and synthetic data (if required)

so that the generated test cases not only satisfy high branch coverage but also high mutation

score.

However, it often happens that a given database state with existing records returns no

records (or records that do not satisfy subsequent branch conditions) when the database exe-

cutes a query with arbitrarily chosen program input value. For example, consider the program

in algorithm 3, since x is an integer and it’s domain is large, existing approaches like [16, 17]

which are based on concolic execution (or DSE) can choose any concrete value for x. Therefore

it is very likely that the query at line2 will return no records with respect to the Table 5.1.

Therefore, existing techniques [16, 17] generate synthetic data for Table 5.1 so that condi-

tions at line4 gets satisfied with respect to the chosen value for x. In subsequent iterations,

55

Table 5.1 New Table coffees

id name price packets

1 French 5 5

2 Colombian 5 9

3 English 8 8

4 Espresso 5 10

Table 5.2 Table distributor

cid did name discRate indvPack
1 1 Rob 0 5
2 2 Bob 0 9
4 3 Ron 1 10
3 4 John 3 8

existing approaches generate more synthetic data for Table 5.1 and 5.2 to cover subsequent

branch conditions at line10 and line12. Our work [61] focuses on generating synthetic data

not only to improve structural coverage but also the mutation score, therefore generated test

cases in our approach achieve high quality both in terms of coverage and mutation score. But

none of these approaches (including ours) consider existing database states and the relationship

among database variables, program inputs and branch conditions to generate test cases for the

program.

Our approach in this chapter generates test cases for database applications by maximiz-

ing the usage of the existing database state. The generated test cases not only achieve high

branch coverage but also ensure high mutation score. For example, by looking into the existing

database state as shown in Table 5.1, we can say that the test case x = 5 satisfies branch

condition at line4 without generating a new synthetic data. It results in the execution of the

query at line2,

SELECT * FROM coffees WHERE packets = 5.

The query generates the tuple (〈1, F rench, 5, 5〉) using the coffees Table 5.1. Even though

the test case x = 5 improves branch coverage without generating any new synthetic data, it

56

may fail to identify possible fault that might be present in the query at line2. As an example

a mutant of the abovementioned query is,

SELECT * FROM coffees WHERE packets ≤ 5.

This is generated by slightly modifying the WHERE condition in the query (mimicking

typical programming error). The result of the mutant is also (〈1, F rench, 5, 5〉). That is, if

the programmer makes a typical error of using = in the WHERE condition instead of the

intended ≤, then that error will go un-noticed for test case (x = 5) with respect to the coffees

Table 5.1. This shows the fact that test case x = 5 can improve the structural coverage without

generating new synthetic data but fails to identify common programming error that may present

in the embedded SQL statement. We will show that our framework successfully identifies new

test case which will identify such errors. If no new test case can improve the quality (both in

terms of coverage and mutation score), our approach generates synthetic data that will help

the generated test cases to improve the quality. Thus only minimal set of synthetic data will

be generated.

5.1.3 Problem Statement

How to automatically generate test cases for database applications by maximizing the usage

of the existing database state? Test cases generated by the new strategy will reduce the redun-

dant generation of synthetic data by maximizing the usage of current database state. Thus

only minimal set of synthetic data will be generated to achieve high quality, both in terms of

coverage and mutation score.

5.1.4 Individual Contributions

The contributions of this portion of our work are summarized as follows:

• We propose a new test case generation technique to reuse the current database state.

• Our new strategy reduces the overhead of unnecessary synthetic data generation while

generating high quality test cases and only generates minimal set of synthetic data to

improve such quality metrics.

57

5.2 Approach

Testing database applications has two important challenges:

• Generate test cases to validate correctness or find bugs by improving structural coverage

(statement, block or branch coverage) of the program, and

• Identify minimal set of synthetic data which help test cases to improve coverage metrics.

We propose and develop a framework which comprehensively addresses these challenges by

incorporating mutation analysis in coverage-based automatic test case generation. We show

that the test cases generated in our framework are superior both in terms of coverage and in

terms of mutation score.

Solution Overview. We present an approach that is capable of automatically generating high

quality test cases for database applications by maximizing the usage of the existing database

state. It relies on Concrete and Symbolic execution of the application program written in host

language (language in which the database application is coded) and uses mutation analysis of

database-queries written in embedded language to guide the generation of high quality test

cases.

Our approach addresses an important challenge in the problem context: since concolic exe-

cution (or similar technique like Dynamic Symbolic Execution(DSE)) cannot solve constraints

(branch conditions) derived from the existing database state, current approaches [16, 17] gener-

ate new synthetic data so that the generated test case can satisfy the particular constraint. Our

approach combines the relationship among program inputs, database variables and constraints

generated by them and formulate a new intermediate query to identify a new test case. For

each new test case generated for each path, we measure the mutation score of the test case.

If the mutation score of the test case is below the pre-specified threshold, our framework ana-

lyzes the path constraints (necessary for coverage) and mutation-killing constraints (necessary

for high mutation score) in conjunction with the current database state using the intermediate

query formulation technique (necessary for identifying range of acceptable test case values) and

uses a constraint solver to automatically identify a new test case for the same path with high

58

quality. If, no new test case can improve the branch coverage or mutation score, new synthetic

data will be generated. With respect to the updated database state (including newly generated

data), the generated test case will guarantee achieving high quality in terms of coverage and

mutation score.

5.2.1 Approach Overview

Figure 5.1 shows our framework which has two main parts, Application Branch Analyzer and

Mutation Analyzer. Application Branch Analyzer takes the program under test and the sample

database (can be empty) as inputs, and generates test cases to satisfy a branch condition.

It uses Pex [20], a dynamic symbolic execution engine (other engines like concolic testing

tool [36] can also be used), to generate test cases by carefully comparing the concrete and

symbolic execution of the program. Since Pex cannot solve branch conditions derived from

existing database state, a new module called Intermediate Query Construction is introduced.

This module considers the current database state and exploits the relationship among program

input, database variables and the branch condition to identify a new test case. If the current

database is insufficient or empty to generate such new test case, our framework uses module

from SynDB [17] (built on top of DSE Engine Pex) to generate synthetic data so that the

previously generated test case can satisfy the current branch condition. After exploring each

path by Application Branch Analyzer, the Mutation Analyzer performs quality analysis using

mutation analysis. If the mutation score is low, the mutation analyzer generates a new test

case (by considering the current database state) for the same path, whose quality is likely to

be high. For the current database state, if no new test case for the same path can improve the

quality, then the mutation analyzer generates new synthetic data to help achieve the test case

high quality. The steps followed in our framework are as follows:

Step 1: Generation of Test Cases and Associated Path Constraints Using Appli-

cation Branch Analyzer. In the first step, the framework uses the Application Branch

Analyzer module to generate a test case value v and the associated path constraints. It results

in a specific execution path constraint (say, PC) of the application, which in turn results in a

database query execution (if the path includes some query). The executed query is referred to

59

1: procedure ConstructQuery(Qc, Qs, PI, PC)

2: Initialization for intermediate query construction

Set containing SELECT clause attributes S,

Set containig FROM clause attributes F ,

Set containing WHERE clause attributes W ,

A hashset to store the relationship between program input and database variable

3: Find variables Vdb ={vdb1, vdb2,..} dependent on database variables and

the corresponding relationship set with database variables Rdb = {rdb1, rdb2, ..}
4: Extract each concrete query qc and coresponding symbolic one qs from Qc and Qs

5: for Each pair of qc and qs do

6: Call QuerySetCreation1(qc, qs, S, F , W)

7: end for

8: Initialize PC ′, a new set to store branch condition predicates

9: Call QuerySetCreation2(PC ′, PC, Vdb, Rdb)

10: Call CreateQuery(PC ′, S, F , W)

11: end procedure

Algorithm 4 Intermediate Query Construction

1: procedure QuerySetCreation1(qc, qs, S, F , W)

2: Copy FROM clause from qs to F

3: for each condition Ci in WHERE clause from qs do

4: if Ci contains program input pii ∈ PI then

5: Copy the associated database variable to S and store 〈pii, Ci〉 in Ri

6: else

7: if Ci contains database variables then

8: By comparing corresponding vdbi and rdbi, replace corresponding variable with

database variable in Ci and copy to W

9: else

10: Copy concrete valuation of Ci from qc to W

11: end if

12: end if

13: end for

14: end procedure

Algorithm 5 Part 1: Intermediate Query’s SELECT, FROM, WHERE clause cre-

ation

60

1: procedure QuerySetCreation2(PC ′, PC, Vdb, Rdb)

2: for each pci ∈ PC after the query execution do

3: if pci contains any variables(vdbi) from Vdb then

4: Find corrsponding relationship expression rdbi from Rdb

5: Replace variables in pci with corresponding database variables

by comparing vdbi and rdbi
6: Copy it to PC ′

7: end if

8: end for

9: end procedure

Algorithm 6 Part 2: Intermediate Query’s WHERE clause creation

1: procedure CreateQuery(PC ′, S, F , W)

2: if ConStructQuery procedure executes to traverse a new branch condition then

3: Flip last branch condition in PC ′

4: else if ConStructQuery procedure executes to improve the mutation score then

5: Keep as it is

6: end if

7: Copy PC ′ to W

8: Append all si ∈ S to intermediate query’s SELECT clause

9: Append all fi ∈ F to intermediate query’s FROM clause

10: Append all wi ∈W to intermediate query’s WHERE clause

as conjunctive normal form

11: end procedure

Algorithm 7 Creation of the Intermediate Query

61

Figure 5.1 New Framework for Testing Database Applications

as the concrete query qc and the same without the concrete values (with the symbolic state of

the input variable) is referred to as the symbolic query qs. The path constraints refer to the

conditions which must be satisfied for exploring the execution path in the application.

Going back to the example in Section 5.1.2, Application Branch Analyzer (Pex in our case)

generates a test case randomly, say v = (1), i.e., x = 1 . This results in an execution path

with path constraints PC = (result1.next() 6= true). It also results in a symbolic query and a

corresponding concrete query:

Symbolic qs: SELECT * FROM coffees WHERE packets = xs,

Concrete qc: SELECT * FROM coffees WHERE packets = 1.

where xs is related to program input x as xs = x in this case (see the example program in

Section 5.1.2).

Step 1.1: Intermediate Query construction to improve branch coverage. DSE [20]

or concolic testing [36] techniques can not solve branch conditions which depend on executed

query result. Recent other techniques like [17, 16, 61] analyze previously executed path and

generate synthetic data(s) to the existing database which can satisfy such branch conditions

and improve the branch coverage.

62

Table 5.3 Updated Table coffees

id name price packets

1 French 5 5

2 Colombian 5 9

3 English 8 8

4 Espresso 5 10

5 abc 1 1

Going back to the example, existing techniques insert a new record to the coffees table

as shown in Table 5.3. This new entry will help test case x = 1 to satisfy branch condition

(result1.next() = true) (as the query at line 2 does not return empty result, see program 3),

thus branch coverage is improved.

Our current approach differs from the existing techniques as we leverage concolic execution

technique as a supporting technique and generate test cases by executing newly constructed

intermediate queries against the current database state. This results in high code coverage with-

out generating unnecessary synthetic data. Our approach can assist any recent techniques to

determine test cases such that the executed query results return records and branch conditions

which depend on those results can be covered.

If we look at program in Algorithm 3, we see that the concrete valuation of x is assigned

directly to the database variable packets in the query at line 2. Now if we look at Table 5.1,

we can see records with concrete packets values. If we choose any of those valuation of packets

(〈5, 8, 9, 10〉) as a test case valuation of x, branch condition at line 4 will be satisfied (as the

query at line 2 will return non-empty result).

Algorithm. Intermediate query construction technique combines the relationship among pro-

gram inputs, database variables and constraints generated by them and formulate the query

to identify a new test case which will help improve the quality. Algorithm 4 illustrates how

to construct an intermediate query. The algorithm accepts the set of queries (Qc) executed

during previous execution and their corresponding symbolic ones (Qs), set of program input

values (PI) and the captured branch conditions (PC).It creates the auxiliary query and also

63

stores the relationship between program inputs and database variables to choose the concrete

value for the test case (x in this case).

ConstructQuery calls QuerySetCreation1 (see Algorithm 5) which illustrates how to

construct the SELECT, FROM,WHERE clauses of the intermediate query from the queries

executed in the previous path. All the tables that are present in the FROM clause of the

executed queries are copied to the set F (set which holds all FROM clauses of the intermediate

query). Next we decompose concrete and symbolic queries using a simplified SQL parser and

get their WHERE conditions (Cis), which we assume to be in conjunctive normal form. For

each Ci, we check whether Ci contains program input from PI. If yes, we copy the associated

database variable to S (set which holds intermediate query’s SELECT clause) and also store

the program input and the corresponding database relationship into the hash set Ri. If not, we

insert proper clause to W to identify WHERE clause conditions for the intermediate query.

In our running example, the executed query at line 2 (see Program 3) has only one FROM

clause. Therefore F will contain only one value, coffees. Also, the executed query has only one

WHERE clause in this case. The clause has x which is a program input. So, the corresponding

database variable packets will go into the S clause and the program input x and its relationship

with database variable packets = x will be stored as 〈key, value〉 pair in Ri. The WHERE

clause set W is empty in this case. So, the intermediate query will look like,

SELECT packets FROM coffees.

After executing this query against the current database table (see Table 5.1), we will get a

range of values 〈5, 8, 9, 10〉. Now we can choose any of these values as a new test case which

will satisfy the condition result1.next() = true, thus improving the branch coverage without

generating a new synthetic data. Let us assume that the framework arbitrarily chooses new

value x = 5. This clearly improves branch coverage, but does not guarantee that the test case

is of high quality in terms of both branch coverage and mutation score (see Section 5.1.2 for

the example problem scenario).

Step 2: Deployment of Mutation Analyzer. After exploring a path of the program under

test, our framework forwards PC, qc, qs and v to Mutation Analyzer to evaluate the quality of

64

the generated test case in terms of mutation score.

Step 2.1: Generation of Mutant Queries. In Mutation Analyzer, the obtained concrete

query qc is mutated to generate several mutants qm(s). The mutations are done using pre-

specified mutation functions in the Mutant Generation module.

It is generally agreed upon that a large set of mutation operators may generate too many

mutants which, in turn, exhaust time or space resources without offering substantial benefits.

Offutt et al. [62] proposed a subset of mutation operators which are approximately as effective

as all 22 mutation operators of Mothra, a mutation testing tool [38]. They are referred to as

sufficient mutation operators. In our context, we are specifically focused on SQL mutants. We

have identified six mutation operators by comparing SQL mutation operators developed in [8]

with the sufficient set of mutation operators mentioned in [62]. We refer to these five rules as

the sufficient set of SQL mutation operators, sufficient to identify logical errors present in the

WHERE and HAVING clauses.

Our approach uses these mutation operators in generating mutants. It should be noted

here that new mutation operators can be considered and incorporated in mutation generation

module in our framework as and when needed. Table 3.2 (first three columns) presents such

mutation generation rules.

Going back to the example in section 5.1.2, after executing the program with test case x = 5

we have new concrete query qc,

SELECT * FROM coffees WHERE packets = 5

and its corresponding symbolic version qs is,

SELECT * FROM coffees WHERE packets = xs.

Now, one of the mutants of the symbolic qs is

qm: SELECT * FROM coffees WHERE packets ≤ xs.

In the above transformation, α is “=” (equality relational operator) and β is “≤” (less-

than-equal-to relational operator) as per the rule in the first row, second and third columns

65

of Table 3.2. Point to be noted here is that we only consider query at line 2 in our mutation

analysis as it is the only query which includes program input as input parameter, thus valuation

of the program input (x in this case) determines the query result. Therefore, in our example

program, query at line 8 will not be considered for mutation analysis.

Step 2.2: Identification of Live Mutants. Using the test case under consideration, the live

mutants are identified. Live mutants are the ones whose results do not differ from that of the

concrete query in the context of the given database table. The above mutant qm is live under

the test case v = (x = 5) as it results in a concrete query

SELECT * FROM coffees WHERE packets ≤ 5

The above query and the concrete query qc produce the same result for the given database

table (Table 5.1). Therefore, qm is live under the test case (x = 5).

Step 2.3: Generation of Mutant Killing Constraints. A new set of constraints, θ is

generated in Mutant Killing Constraint Generation module from

• the symbolic query qs and its concrete version qc,

• the live mutants (qm’s),

• the path constraint of the execution, and

• the range of acceptable values of the program input(s) with respect to the current database

state.

θ includes conditions on the inputs to the application. Due to the high cost of mutation

analysis, we adopt the concept of weak mutation analysis [65]. Therefore, the test cases (if

generated) do not guarantee to kill the live mutants, but improve the probability of killing

them.

θ is generated as follows. The mutant qm is live because the WHERE clauses packets = xs

and packets ≤ xs do not generate two different result-sets. We also know that xs is set to x (x

is the test input) and packets is set to 5. Therefore, the relationship between the valuations of

the database attribute packets and the test input x is 5 = x in the original query-condition and

66

5 ≤ x in the mutant query-condition. We will use these relationships/conditions to generate

the mutant killing constraint. In order to generate a different value of x to likely kill the mutant

qm, we need to choose a value for x such that [(5 = x) ∧ (5 6≤ x)] ∨ [(5 6= x) ∧ (5 ≤ x)]. The

last column of Table 3.2 demonstrates the general rules for generating these mutant killing

constraints.

Now, if the above expression is satisfiable, the constraint solver may produce any arbitrary

value for x. Since the concrete value of x is assigned to database variable packets, any arbitrary

value of x might not satisfy the path constraint as well as might not kill the mutant. As an

example, the above expression is satisfiable for x = 6. Constraint solver clearly gives us a new

solution for x, but x = 6 will make the query at line2 (see program 3) return empty result,

thus not satisfying the desired branch condition.

In order to avoid this scenario, mutation analyzer triggers Intermediate Query Construction

to get a range/set of acceptable values for program input x. Since x has a relationship with

the database variable packets, we exploit such relationship, get range/set of values for packets

using intermediate query and then derive the acceptable range/set of values for the program

input x.

As an example, test case x = 5 executes both the queries at line2 and line8 while satisfying

true conditions at line4, line10, line12. Algorithm (see 4) which calls Algorithm 5, constructs

the sets S, F,W as follows. S will only have 〈packets〉 as the WHERE clause packets = x

(at line 2) has program input x which is assigning value to database variable packets. F will

have 〈coffees, distributor〉 as there are two table names in the two FROM clauses (see

the queries at line2 and line8 in program 3). W will have 〈cid = id〉 after replacing variable k

with its corresponding database variable id as the variable k in the WHERE clause at line 8

is dependent on database variable id (see line 6 in program 3).

In database applications there may exist branch conditions which are data dependent on

returned query results. In our example condition at line12, i.e. branch condition i − j ≥

5, correspond to the values of attributes price and discRate of returned records by query

at line2 and query at line8 respectively. QuerySetCreation2, as shown in Algorithm 6,

demonstrates how to incorporate such branch conditions in intermediate query’s W clause.

67

Otherwise, the intermediate query will also return concrete values (of packets) which are not

related to the current path. For each variable vdbi ∈ Vdb, we store the corresponding relationship

with database variable in the set Rdb. For each branch condition pci ∈ PC, we check whether

any variable is data-dependent on any Vdb. If yes, by comparing vdbi with corresponding rdbi we

replace the variable with corresponding database variable. The new expression of pci is stored

into PC ′. All branch conditions in PC ′ are appended to the W set. In our example, PC ′ will

only contain (price− discRate ≥ 5) from (i− ≥ 5). Therefore the new intermediate query will

be,

SELECT packets FROM coffees, distributor

WHERE cid = id AND (price - discRate) ≥ 5.

This query will be executed against the current database state (see Table 5.1 and 5.2). The

result set will be 〈5, 8, 9〉. The set Ri holds the relationship between program input (x in this

case) and database variable (packets in this case), which is packets = x. By obtaining such

relationship from Ri, we can create the acceptable set of values for program input x. The

expression will be,

(x = 5) ∨ (x = 8) ∨ (x = 9).

Then we extract sub-path constraint pcpi, which depends on program input (x in this

case) from PC. The mutant killing constraint in conjunction with the range expression and

pcpi (since the new test case should satisfy the executed path constraint, though no branch

condition depends on x in this case, makes pcpi empty) results in θ, the constraint which when

satisfied is likely to generate a test case that can kill the mutant qm.

θ : ((x = 5) ∨ (x = 8) ∨ (x = 9)) ∧ [(5 = x ∧ 5 6≤ x)

∨(5 6= x ∧ 5 ≤ x)].

Step 2.4: Find Satisfiable Assignment for θ. The constraint θ is checked for satisfiability

to generate a new test case in the Constraint Solver module (Z31 is used). If θ is satisfied then

a new test case v′ is identified by the framework. The mutants that were left “live” by v are

1http://research.microsoft.com/en-us/um/redmond/projects/z3/

68

Table 5.4 Mutants and results for test case (8)

Query Concrete Query Result

qc SELECT * FROM coffees

WHERE packets = 8

〈3, English, 8, 8〉

qm SELECT * FROM coffees

WHERE packets ≤ 8

〈1, F rench, 5, 5〉,
〈3, English, 8, 8〉

now likely to be “killed” by v′. Therefore, it is necessary to check whether v′ indeed kills the live

mutants; if not, constraint solver is used again to solve θ and generate corresponding synthetic

data (if required for coverage criterion). This iteration is terminated after pre-specified times

(e.g., 10) or after all mutants are killed (whichever happens earlier). If the live mutants are

killed, the control goes to Step 3. But there are situations where (a) θ becomes unsatisfiable

or (b) the new test case valuations cannot kill the live mutants. This implies that for the given

path PC and the given (or generated) database state, there does not exist any new test case

which can have higher mutation score than previous one. In order to improve mutation score,

the control goes to Step 2.5.

Going back to our running example, when the SMT solver generates a satisfiable assignment

x = 8 for the mutant killing constraint θ (see above), the new test case v′ = (8) successfully

kills the live mutant qm by distinguishing its result from the original query result, as shown in

Table 5.4.

Step 2.5: Produce Synthetic Data Generation Constraint to Improve Mutation

Score. To improve the mutation score of the generated test case, the Synthetic Data Generation

Constraint module is triggered and a new set of constraints ψ is generated from

• the concrete query qc,

• the sample database state,

• the live mutants (qm’s), and

• the path constraint of the execution.

69

ψ includes the database schema as a constraint expression. Otherwise, the generated synthetic

data may become invalid with respect to the given database state, causing low quality test case

generation for the database application. More detailed description of this module which has

been leveraged from our previous work can be found in [61].

Going back to our running example, after generating test case x = 8, the control goes to

step1 to generate a new test case for the uncovered branch condition, which is the else branch

condition (i− j < 5) at line14. Since the branch condition depends on the result set returned

by the queries at line2 and line8, Pex or Concolic testing techniques can not generate test cases

for such branch conditions. Recent other techniques [16, 17, 61] analyze the queries executed

in the previous execution, exploit the relationship between branch condition and query result

conditions (WHERE clauses) and generate synthetic data so that the previously generated

test case can satisfy such branch condition. Our approach, on the other hand, exploits the

relationship among program input, query conditions, and branch conditions and checks the

current database state to find any new test case which can satisfy such condition with respect

to the current database state. Our algorithm ConstructQuery (see Algorithm 4 which calls

Algorithms 5, 6, 7) constructs a new intermediate query to find concrete valuation of packets

(as packets = x, see Program 3). The intermediate query will be,

SELECT packets FROM coffees, distributor

WHERE cid = id AND (price - discRate) ≤ 5.

This will result only one value, i.e., packets = 10. As we know, packets = x, therefore

the new test case will be v = (10), x = 10. This new test case will surely cover the branch

condition at line14 without generating any new synthetic data. But it might not be able to

kill all the mutants generated by the rules as described in Table 3.2. As an example, a mutant

will be,

SELECT * FROM coffees WHERE packets ≥ 10.

This mutant will be live as the executed query at line2 and this mutant return same result

set(〈4, Espresso, 5, 10〉). Next, our mutant killing constraint generation box generates a new θ

to kill such mutant and the expression will be,

70

θ : (x = 10) ∧ [(10 = x ∧ 10 6≥ x)

∨(10 6= x ∧ 10 ≥ x)].

In this case θ becomes unsatisfiable, which means, no new test case can be generated (with

respect to the existing database state) which can kill the live mutant. Therefore new synthetic

data needs to be generated to improve the mutation score of the test case x = 10. In this case,

the synthetic data generation constraint ψ is generated as follows. The mutant is live because

there are not enough entries in the coffees table to generate different entries for WHERE

clauses packets = 10 (from the executed query) and packets ≥ 10 from the mutant). In order

to improve the mutation score of the generated test case x = 10, we need to have an entry in the

coffees table which satisfies [(packets = 10) ∧ (packets 6≥ 10)] ∨ [(packets 6= 10) ∧ (packets ≥

10)] (again using mutant killing constraint rules (this case ROR) from Table 3.2). Thus, the

constraint expression ψ will look like

ψ : < ∧ [(packets = 10 ∧ packets 6≥ 10)

∨(packets 6= 10 ∧ packets ≥ 10)] ∧ pc′′.

Here, < denotes the database schema constraint expression of coffees table. pc′′ de-

notes the sub-branch conditions (extracted from PC) which depend on table attribute values

(coffees in this case) for the current path. In our running example for the current path, we

have such branch condition as (price − discRate ≤ 5). After analyzing the current execution

path, our framework learns that the vauation of the attribute price comes from coffees table

and the valuation of discRate comes from distributor table. Since ψ will create synthetic entry

for the coffees table only, replacing the symbolic value of discRate with the current concrete

value which is discRate = 1, we get our pc′′ as (price < 6). We use this constraint expression

in ψ to generate a new synthetic data for coffees table.

Step 2.6: Find Satisfiable Assignment for ψ. The constraint ψ is checked for satisfiability

to generate a new synthetic data. If ψ is satisfied, then the database state will be updated

using the newly generated data. The updated database state will guarantee the previously

generated test case to achieve high mutation score by killing the live mutants.

71

Table 5.5 Final Updated Table coffees

id name price packets

1 French 5 5

2 Colombian 5 9

3 English 8 8

4 Espresso 5 10

5 abc 5 11

For instance, after solving ψ, the updated coffees table with newly generated synthetic

data is shown in Table 5.5. With this new entry, the previously generated test case (x = 10)

now kills the live mutant as shown in Table 5.6.

Table 5.6 Mutants and new Results for test case (x = 10)

Query Concrete Query Result

Actual qc SELECT * FROM coffees 〈4, Espresso, 5, 10〉
WHERE packets = 10

Mutant qm SELECT * FROM coffees 〈4, Espresso, 5, 10〉,
WHERE packets ≥ 10 〈5, abc, 5, 11〉

Step 3: Explore a New Execution Path. Finally, the whole process is iterated starting

from Step 1 to generate new test cases and new data (if required) that explore new execution

paths of the program. This iteration continues until all possible branches are covered.

5.3 Future Work

We will prove the correctness criterion of our approach, i.e., Generating Minimal Set of

Synthetic Data, by proving the following theorem,

Theorem. For any path explored by a test case t0 with path constraint PC, if the synthetic

data set generated for that path is D to achieve mutation score M , the size of the set D will be

minimal.

We also plan to evaluate the benefits of our approach from the following two perspectives:

72

1. What is the percentage increase in quality (where quality is attributed as both code

coverage and mutation score) by the test cases generated by existing approaches like

Pex [20] and SynDB [17] compared to the ones generated by our new approach in testing

database applications?

2. What is percentage decrease in generating database state by our new approach compared

to the ones generated by our previous work [61] while generating high quality test cases

for database applications?

73

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1 Summary

Typically, test case generation for an application relies on ensuring a high degree of (code,

block or branch) coverage. Mutation testing is performed separately to assess the quality of

those generated test cases. If the mutation score is low, new test cases are generated and muta-

tion analysis is performed again. This results in unnecessary delay and overhead in identifying

the high quality test cases, where quality is attributed to both coverage and mutation scores.

In this work, we propose and develop a test case generation technique which addresses the

above problem.

First we have proposed a framework called ConSMutate that combines coverage analysis

and mutation analysis in automatic test case generation for database applications using a

given database state. Our experiments show the effectiveness and practical applicability of the

approach. Moreover, our framework is generic, and therefore new coverage-based and mutation

generations techniques can be easily incorporated and evaluated in this framework.

Killing SQL mutants depends partially on choosing the right test cases and partially on

the current database state. Since the framework relies on identifying important control-path

constraints of the application and the constraints for killing mutants, the constraint generated

so far may result in a satisfiable assignment that will not be able to kill all the mutants

with respect to the given database state. Our framework SynConSMutate leverages our basic

work [54] as discussed in Chapter 3 and generates test cases which include both program

inputs and synthetic data for database applications where the database entries are absent (or

insufficient).

Synthetic data sometimes cannot capture all the scenarios that might be present in the

74

real data. Therefore, testing database application with synthetic data might overlook certain

faults/scenarios that might occur while running the application using real-life data. So, there is

a need of identifying test cases while reusing the real database state to the fullest has come into

the picture. We propose an algorithm in chapter 5 which address this problem scenario. Our

approach generates program inputs with high quality both in terms of coverage and mutation

score while maximizing the usage of current database state. This will eliminate the synthetic

data generation for program inputs to improve quality. Thus only minimal set of synthetic

data will be generated. The approach is generic enough; therefore it can be used as a helper

technique with any automated testing strategy to maximize the database state usage.

6.2 Uniqueness

Several features of this comprehensive testing strategy sets apart our approach and at-

tributes to its uniqueness in solving a very important problem of testing database applications.

Quality. Our approach combines coverage constraints and mutation analysis to automatically

generate high quality test cases for database applications.

Applicability. Being based on constraint-satisfaction, our approach does not rely on the

usage of any specific application language or query language. In other words, it is applicable

to any database applications.

Extensibility. Our approach is implemented in a highly modular fashion which makes it pos-

sible to include different (and newly developed) techniques in plug-and-play basis for generating

path and mutation killing constraints. This makes our approach and framework relevant and

applicable even when new languages and technologies are developed for realizing and testing

database applications.

6.3 Discussion

Concolic Testing [37, 36] which is a variant of symbolic execution, has been proven to be an

effective strategy for generating test cases automatically. The primary advantage of concolic

execution over pure symbolic execution is the presence of concrete values, which can be used

75

both to reason precisely about complex data structures as well as to simplify constraints when

they go beyond the capability of the underlying constraint solver. But in practice, it has

been seen that for concolic execution, the possible number of paths that must be considered

symbolically is so large that the methods end up exploring only small parts of the program,

and those that can be reached by short runs from the initial point, in reasonable time. Also,

maintaining and solving symbolic constraints along execution paths becomes expensive as the

length of the executions grows. That is, although wide, in that different program paths are

explored exhaustively, symbolic and concolic techniques are inadequate in exploring the deep

states reached only after long program executions. To overcome such limitation scenarios,

techniques like hybrid concolic testing [68] are proposed. Hybrid concolic testing interleaves

the application of random tests with concolic testing to achieve deep and wide exploration of

the program state space. The interleaving strategy thus uses both the capacity of random

testing to inexpensively generate deep program states through long program executions and

the capability of concolic testing to exhaustively and symbolically search for new paths with a

limited look ahead. In our work we use concolic execution (testing) as our coverage analysis

technique. But the strategy is loosely coupled in our framework, therefore to improve efficiency

in coverage analysis; we can replace concolic execution with other effective technique like hybrid

concolic execution and traverse through deep program states.

Mutation Analysis in our framework plays an important role in identifying high quality test

cases. The metric which is used to measure the quality of the generated test cases is called

mutation score. The test cases achieve better confidence in identifying maximum programming

errors as the mutation score goes higher. Our approach generates test cases and database state

so that the test suite can kill all the generated mutants. Ideally, mutation score for generated

test cases should achieve 100%. But in reality, we see test cases achieving 100% mutation

score for very few programs (typically for simple programs). In most cases, we see some of

the generated mutants cannot be killed by any of the generated test cases. This is because

these mutants are semantically same as original program. They are called equivalent mutants.

Therefore mutation score does achieve to 100% for those cases. Secondly, our framework

generates a unique expression called mutant killing constraint and solves the expression in

76

conjunction with a particular path constraint. If the expression is solvable, then the new

solution will be the new test case for a path with better confidence in killing live mutants. But

we have encountered scenarios where the conjunction of mutant killing constraint and path

constraint becomes unsatisfiable. Constraint solver then cannot come up with new test case

which has higher mutation score. Therefore, 100% mutation score cannot be achieved for those

situations.

6.4 Future Directions

In modern software industry, applications are designed in multiple tiers and in multiple

languages and are executed on multiple, architecturally different machines. An ideal example

is Web-based applications. In such applications web components are software components which

interact with each other to provide services as part of web applications. Web components are

written in different languages, including Java Servlets, Java Server Pages (JSPs), JavaScripts,

Active Server Pages (ASPs), PHP, and AJAX (Asynchronous JavaScript and XML).

There are many good reasons to develop Multilanguage systems. First, most algorithms are

easier to implement or run more efficiently when programmed in a specific language. Therefore,

a Multilanguage system is easier to program and more efficient because all its components are

programmed in the most suitable language. Second, the language that is best for quickly

developing an application might not be the most efficient. This forces developers to completely

re-implement the final version of a system in a different language. If multiple languages are

available, a selective reimplementation of only a few modules solves the efficiency problem

with less programming effort. Next, it is substantially more convenient to reuse an existing

component written in one language and integrate it with other components written in different

languages rather than to reprogram it.

There are also good reasons why concurrent systems can benefit from multiple machine ar-

chitectures. First, some architectures are optimized for efficient execution of specific languages.

Although the latest CPU architectures promise uniformly good performance across many dif-

ferent languages, it is still true that certain languages are only available or run more efficiently

on certain machines. The availability of a good implementation of a given language is more

77

often than not the reason for preferring a particular machine. Second, some architectures have

been explicitly designed for efficiently programming certain classes of problems, for example

array processors. One would like to take advantage of these architectures and embed them in

larger applications. Last but not the least, there is a fair amount of large and medium-grain

parallelism that can be exploited in Multilanguage applications, because the modules are natu-

rally decoupled and pursue independent subtasks. In some cases, a concurrent implementation

can be substantially easier to program than a sequential one because it more naturally models

the application. For instance, consider a user interface that controls and coordinates a few

independent components which, in turn, interact among themselves. Programming the control

flow of this application as a sequential program can be much harder and prone to errors than

programming it in a concurrent way.

Several efforts have been made to test individual software components in terms of structural

coverage level and fault analysis level. Even efforts have been made to perform structural

coverage analysis and fault analysis in interface/integration level. These two approaches have

their individual benefits and help testers to achieve confidence on an application based on

individual criteria. For example, structural testing gives better confidence in terms covering all

expected functional scenarios of an application whereas fault based testing allows to identify

faulty behavior, if any, present in the application.

The applicability and future extension of our work are as follows. Several individual ef-

forts have been made to develop strategies in structural testing and fault-based testing. Ini-

tially, structural testing and fault-based testing strategies were developed independently for

applications with one type of software component, later old techniques are leveraged and new

techniques are proposed for applications which have multiple software components written in

multiple languages. But none of these techniques combine coverage analysis and fault-based

analysis together while generating test cases for Multilanguage programs. Our proposed work

in this thesis combines these two testing strategies together and proposes a new strategy which

offers best from both the worlds. Our methodology will give higher confidence covering both

normal and faulty scenarios for a given application, thus generated test cases will be qualita-

tively higher compared to other existing test strategies for other multi language applications.

78

Figure 6.1 Overall Impact of Our Work

The novelties of our approach are

• it is not dependent on any particular programming language or languages, and

• the strategy works for applications which may consist of multiple software components

written in multiple languages.

With the arrival of the cloud computing era, large-scale distributed systems are increasingly

in use. These systems are built out of hundreds or thousands of commodity machines that are

not fully reliable and can exhibit frequent failures [69, 70]. Due to this reason, todays “cloud

software” (i.e., software that runs on large-scale deployments) does not assume perfect hardware

reliability. Cloud software has a great responsibility to correctly recover from diverse hardware

failures such as machine crashes, disk errors, and network failures.

Even if existing cloud software systems are built with reliability and failure tolerance as

primary goals [71], their recovery protocols are often buggy. For example, the developers of

Hadoop File System [72] have dealt with 91 recovery issues over its four years of develop-

ment [73]. There are two main reasons for this. Sometimes developers fail to anticipate the

79

kind of failures that a system can face in a real setting (e.g., only anticipate fail-stop failures like

crashes, but forget to deal with data corruption), or they incorrectly design/implement the fail-

ure recovery code. There have been many serious consequences (e.g., data loss, unavailability)

of the presence of recovery bugs in real cloud systems [73].

Our framework injects one-fault at a time while testing, therefore addresses solving single

failures during program execution. We want to extend our work for testing cloud-based appli-

cations. Cloud software systems face frequent, multiple, and diverse failures. In this regard,

we are planning to advance our approach to consider multiple failures in program execution

while testing such applications. Therefore, the applicability of this approach is huge and leads

to new research avenues involving concolic testing, model checking, and constraint solving for

generating high quality test cases.

80

BIBLIOGRAPHY

[1] A. J. Offutt, Z. Jin, and J. Pan, “The dynamic domain reduction procedure for test data

generation,” Softw., Pract. Exper., vol. 29, no. 2, pp. 167–193, 1999.

[2] M. Natu and A. S. Sethi, “Application of adaptive probing for fault diagnosis in computer

networks,” in NOMS. IEEE, 2008, pp. 1055–1060.

[3] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection: Help for

the practicing programmer,” Computer, vol. 11, no. 4, pp. 34–41, 1978.

[4] R. G. Hamlet, “Testing programs with the aid of a compiler,” IEEE Trans. Software Eng.,

vol. 3, no. 4, pp. 279–290, 1977.

[5] T. A. Budd and D. Angluin, “Two notions of correctness and their relation to testing,”

Acta Inf., vol. 18, pp. 31–45, 1982.

[6] K. N. King and A. J. Offutt, “A fortran language system for mutation-based software

testing,” Softw., Pract. Exper., vol. 21, no. 7, pp. 685–718, 1991.

[7] A. Derezinska, “Advanced mutation operators applicable in c# programs,” in SET, ser.

IFIP, K. Sacha, Ed., vol. 227. Springer, 2006, pp. 283–288.

[8] J. Tuya, M. J. S. Cabal, and C. de la Riva, “Mutating database queries,” Information &

Software Technology, vol. 49, no. 4, pp. 398–417, 2007.

[9] M. E. Delamaro and J. C. Maldonado, “Interface mutation: Assessing testing quality at

interprocedural level,” in SCCC. IEEE Computer Society, 1999, pp. 78–86.

81

[10] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur, “Integration testing using interface

mutations,” in Proceedings of International Symposium on Software Reliability Engineering

(ISSRE 96. Society Press, 1996, pp. 112–121.

[11] ——, “Interface mutation: An approach for integration testing,” IEEE Trans. Software

Eng., vol. 27, no. 3, pp. 228–247, 2001.

[12] W. K. Chan, S. C. Cheung, and T. H. Tse, “Fault-based testing of database application

programs with conceptual data model,” in QSIC. IEEE Computer Society, 2005, pp.

187–196.

[13] J. Tuya, M. J. Surez-cabal, and C. D. L. Riva, “Sqlmutation: A tool to generate mutants

of sql database queries,” 2006.

[14] C. Zhou and P. G. Frankl, “Mutation testing for java database applications,” in ICST.

IEEE Computer Society, 2009, pp. 396–405.

[15] H. Shahriar and M. Zulkernine, “Music: Mutation-based sql injection vulnerability check-

ing,” in QSIC, H. Zhu, Ed. IEEE Computer Society, 2008, pp. 77–86.

[16] M. Emmi, R. Majumdar, and K. Sen, “Dynamic test input generation for database appli-

cations,” in ISSTA, D. S. Rosenblum and S. G. Elbaum, Eds. ACM, 2007, pp. 151–162.

[17] K. Pan, X. Wu, and T. Xie, “Guided test generation for database applications via synthe-

sized database interactions,” UNC Charlotte, Tech. Rep., 2012.

[18] K. Taneja, Y. Zhang, and T. Xie, “MODA: Automated test generation for database appli-

cations via mock objects,” in ASE, C. Pecheur, J. Andrews, and E. D. Nitto, Eds. ACM,

2010, pp. 289–292.

[19] C. Li and C. Csallner, “Dynamic symbolic database application testing,” in DBTest,

S. Babu and G. N. Paulley, Eds. ACM, 2010.

[20] N. Tillmann and J. de Halleux, “Pex: White box test generation for .net,” in TAP, ser.

Lecture Notes in Computer Science, B. Beckert and R. Hähnle, Eds., vol. 4966. Springer,

2008, pp. 134–153.

82

[21] R. D. Millo, W. McCracken, R. Martin, and J. Passafiume, “Software testing and evalua-

tion,” Benjamin/Cummins, 1987.

[22] D. L. Bird and C. U. Munoz, “Automatic generation of random self-checking test cases,”

IBM Systems Journal, vol. 22, no. 3, pp. 229–245, 1983.

[23] A. J. Offutt and J. H. Hayes, “A semantic model of program faults,” in ISSTA, 1996, pp.

195–200.

[24] C. Pacheco and M. D. Ernst, “Eclat: Automatic generation and classification of test

inputs,” in ECOOP, ser. Lecture Notes in Computer Science, A. P. Black, Ed., vol. 3586.

Springer, 2005, pp. 504–527.

[25] J. E. Forrester and B. P. Miller, “An empirical study of the robustness of windows nt

applications using random testing,” in Proceedings of the 4th USENIX Windows System

Symposium, 2000, pp. 59–68.

[26] R. Ferguson and B. Korel, “The chaining approach for software test data generation,”

ACM Trans. Softw. Eng. Methodol., vol. 5, no. 1, pp. 63–86, Jan. 1996. [Online].

Available: http://doi.acm.org/10.1145/226155.226158

[27] B. Korel and A. M. Al-Yami, “Assertion-oriented automated test data generation,” in

ICSE, H. D. Rombach, T. S. E. Maibaum, and M. V. Zelkowitz, Eds. IEEE Computer

Society, 1996, pp. 71–80.

[28] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: automated testing based on java

predicates,” in ISSTA, 2002, pp. 123–133.

[29] T. Xie, D. Marinov, and D. Notkin, “Rostra: A framework for detecting redundant object-

oriented unit tests,” in ASE. IEEE Computer Society, 2004, pp. 196–205.

[30] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random testing for java,” in

OOPSLA Companion, R. P. Gabriel, D. F. Bacon, C. V. Lopes, and G. L. S. Jr., Eds.

ACM, 2007, pp. 815–816.

http://doi.acm.org/10.1145/226155.226158

83

[31] M. Boshernitsan, R.-K. Doong, and A. Savoia, “From daikon to agitator: lessons and

challenges in building a commercial tool for developer testing,” in ISSTA, L. L. Pollock

and M. Pezzè, Eds. ACM, 2006, pp. 169–180.

[32] D. Beyer, A. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar, “Generating tests

from counterexamples,” in ICSE, A. Finkelstein, J. Estublier, and D. S. Rosenblum, Eds.

IEEE Computer Society, 2004, pp. 326–335.

[33] W. Visser, C. S. Pasareanu, and S. Khurshid, “Test input generation with java pathfinder,”

in ISSTA, G. S. Avrunin and G. Rothermel, Eds. ACM, 2004, pp. 97–107.

[34] T. Xie, D. Marinov, W. Schulte, and D. Notkin, “Symstra: A framework for generating

object-oriented unit tests using symbolic execution,” in TACAS, ser. Lecture Notes in

Computer Science, N. Halbwachs and L. D. Zuck, Eds., vol. 3440. Springer, 2005, pp.

365–381.

[35] C. Csallner and Y. Smaragdakis, “Check ’n’ crash: combining static checking and testing,”

in ICSE, G.-C. Roman, W. G. Griswold, and B. Nuseibeh, Eds. ACM, 2005, pp. 422–431.

[36] K. Sen, “Concolic testing,” in ASE, R. E. K. Stirewalt, A. Egyed, and B. Fischer, Eds.

ACM, 2007, pp. 571–572.

[37] ——, “Dart: Directed automated random testing,” in Haifa Verification Conference, ser.

Lecture Notes in Computer Science, K. S. Namjoshi, A. Zeller, and A. Ziv, Eds., vol. 6405.

Springer, 2009, p. 4.

[38] R. A. DeMillo and A. J. Offutt, “Constraint-based automatic test data generation,” IEEE

Trans. Software Eng., vol. 17, no. 9, pp. 900–910, 1991.

[39] T. A. Budd and A. S. Gopal, “Program testing by specification mutation,” Comput. Lang.,

vol. 10, no. 1, pp. 63–73, 1985.

[40] S.-W. Kim, J. A. Clark, and J. A. McDermid, “Investigating the effectiveness of object-

oriented testing strategies using the mutation method,” Softw. Test., Verif. Reliab., vol. 11,

no. 3, pp. 207–225, 2001.

84

[41] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: an automated class mutation system,”

Softw. Test., Verif. Reliab., vol. 15, no. 2, pp. 97–133, 2005.

[42] A. J. Offutt and K. N. King, “A fortran 77 interpreter for mutation analysis,” in PLDI,

R. L. Wexelblat, Ed. ACM, 1987, pp. 177–188.

[43] H. A. Richard, R. A. Demillo, B. Hathaway, W. Hsu, W. Hsu, E. W. Krauser, R. J. Martin,

A. P. Mathur, and E. H. Spafford, “Design of mutant operators for the c programming

language,” Purdue University, Tech. Rep., 1989.

[44] H. Shahriar and M. Zulkernine, “Mutation-based testing of buffer overflow vulnerabilities,”

in COMPSAC. IEEE Computer Society, 2008, pp. 979–984.

[45] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection: Help for

the practicing programmer,” Computer, vol. 11, no. 4, pp. 34–41, Apr. 1978. [Online].

Available: http://dx.doi.org/10.1109/C-M.1978.218136

[46] S. Ghosh, P. Covindarajan, and A. P. Mathur, “Tds: a tool for testing distributed

component-based applications,” in Mutation testing for the new century, W. E. Wong,

Ed. Norwell, MA, USA: Kluwer Academic Publishers, 2001, pp. 103–112. [Online].

Available: http://dl.acm.org/citation.cfm?id=571305.571328

[47] S. Ghosh and A. P. Mathur, “Interface mutation to assess the adequacy of

tests for components and systems,” in Proceedings of the Technology of Object-

Oriented Languages and Systems (TOOLS 34’00), ser. TOOLS ’00. Washington,

DC, USA: IEEE Computer Society, 2000, pp. 37–. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=832261.833250

[48] M. E. Delamaro, J. C. Maldonado, A. Pasquini, and A. P. Mathur, “Interface mutation

test adequacy criterion: An empirical evaluation,” Empirical Softw. Engg., vol. 6, no. 2,

pp. 111–142, Jun. 2001. [Online]. Available: http://dx.doi.org/10.1023/A:1011429104252

[49] A. M. R. Vincenzi, J. C. Maldonado, E. F. Barbosa, and M. E. Delamaro,

“Unit and integration testing strategies for c programs using mutation-based criteria

http://dx.doi.org/10.1109/C-M.1978.218136
http://dl.acm.org/citation.cfm?id=571305.571328
http://dl.acm.org/citation.cfm?id=832261.833250
http://dl.acm.org/citation.cfm?id=832261.833250
http://dx.doi.org/10.1023/A:1011429104252

85

(abstract only),” in Mutation testing for the new century, W. E. Wong, Ed.

Norwell, MA, USA: Kluwer Academic Publishers, 2001, pp. 45–. [Online]. Available:

http://dl.acm.org/citation.cfm?id=571305.571315

[50] A. Derezińska and A. Szustek, “Cream- a system for object-oriented mutation of c# pro-

grams,” Warsaw University of Technology, Warszawa, Poland, techreport, 2007.

[51] J. Tuya, M. J. S. Cabal, and C. de la Riva, “Full predicate coverage for testing sql database

queries,” Softw. Test., Verif. Reliab., vol. 20, no. 3, pp. 237–288, 2010.

[52] D. Chays, J. Shahid, and P. G. Frankl, “Query-based test generation for database appli-

cations,” in DBTest, L. Giakoumakis and D. Kossmann, Eds. ACM, 2008, p. 6.

[53] ——, “Query-based test generation for database applications,” in DBTest, L. Giakoumakis

and D. Kossmann, Eds. ACM, 2008, p. 6.

[54] T. Sarkar, S. Basu, and J. S. Wong, “Consmutate: Sql mutants for guiding concolic testing

of database applications,” in ICFEM, ser. Lecture Notes in Computer Science, T. Aoki

and K. Taguchi, Eds., vol. 7635. Springer, 2012, pp. 462–477.

[55] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos, and E. J. Weyuker, “An AGENDA

for testing relational database applications,” Softw. Test., Verif. Reliab., vol. 14, no. 1, pp.

17–44, 2004.

[56] K. Pan, X. Wu, and T. Xie, “Database state generation via dynamic symbolic execution

for coverage criteria,” in DBTest, G. Graefe and K. Salem, Eds. ACM, 2011, p. 4.

[57] S. A. Khalek, B. Elkarablieh, Y. O. Laleye, and S. Khurshid, “Query-aware test generation

using a relational constraint solver,” in ASE. IEEE, 2008, pp. 238–247.

[58] C. Binnig, D. Kossmann, and E. Lo, “Multi-rqp: generating test databases for the func-

tional testing of oltp applications,” in DBTest, L. Giakoumakis and D. Kossmann, Eds.

ACM, 2008, p. 5.

http://dl.acm.org/citation.cfm?id=571305.571315

86

[59] W.-T. Tsai, D. Volovik, and T. F. Keefe, “Automated test case generation for programs

specified by relational algebra queries,” IEEE Trans. Software Eng., vol. 16, no. 3, pp.

316–324, 1990.

[60] D. Willmor and S. M. Embury, “An intensional approach to the specification of test cases

for database applications,” in ICSE, L. J. Osterweil, H. D. Rombach, and M. L. Soffa,

Eds. ACM, 2006, pp. 102–111.

[61] T. Sarkar, S. Basu, and J. Wong, “Synconsmutate: Concolic testing of database appli-

cations via synthetic data guided by sql mutants,” in 10th International Conference on

Information Technology : New Generations (ITNG), “to appear”, 2013.

[62] A. J. Offutt, G. Rothermel, and C. Zapf, “An experimental evaluation of selective muta-

tion,” in ICSE, V. R. Basili, R. A. DeMillo, and T. Katayama, Eds. IEEE Computer

Society / ACM Press, 1993, pp. 100–107.

[63] H. Andrade, T. Kurc, A. Sussman, and J. Saltz, “Optimizing the execution of multiple

data analysis queries on parallel and distributed environments,” IEEE Trans. Parallel

Distrib. Syst., vol. 15, pp. 520–532, 2004.

[64] L. Weng, Ü. V. Çatalyürek, T. M. Kurç, G. Agrawal, and J. H. Saltz, “Optimizing multiple

queries on scientific datasets with partial replicas,” in GRID. IEEE, 2007, pp. 259–266.

[65] W. E. Howden, “Weak mutation testing and completeness of test sets,” IEEE Trans.

Software Eng., vol. 8, no. 4, pp. 371–379, 1982.

[66] R. Ahmed, A. W. Lee, A. Witkowski, D. Das, H. Su, M. Zäıt, and T. Cruanes, “Cost-

based query transformation in oracle,” in VLDB, U. Dayal, K.-Y. Whang, D. B. Lomet,

G. Alonso, G. M. Lohman, M. L. Kersten, S. K. Cha, and Y.-K. Kim, Eds. ACM, 2006,

pp. 1026–1036.

[67] S. Chaudhuri, “Review - of nests and trees: A unified approach to processing queries that

contain nested subqueries, aggregates, and quantifiers,” ACM SIGMOD Digital Review,

vol. 2, 2000.

87

[68] R. Majumdar and K. Sen, “Hybrid concolic testing,” in ICSE. IEEE Computer Society,

2007, pp. 416–426.

[69] E. Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure trends in a large disk drive popu-

lation,” in FAST. USENIX, 2007, pp. 17–28.

[70] B. Schroeder and G. A. Gibson, “Disk failures in the real world: What does an mttf of

1,000,000 hours mean to you?” 2007.

[71] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking

cloud serving systems with ycsb,” in SoCC, J. M. Hellerstein, S. Chaudhuri, and M. Rosen-

blum, Eds. ACM, 2010, pp. 143–154.

[72] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file system.”

[73] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein, A. C. Arpaci-Dusseau, R. H.

Arpaci-Dusseau, K. Sen, and D. Borthakur, “Fate and destini: a framework for cloud

recovery testing,” in Proceedings of the 8th USENIX conference on Networked systems

design and implementation, ser. NSDI’11. Berkeley, CA, USA: USENIX Association,

2011, pp. 18–18. [Online]. Available: http://dl.acm.org/citation.cfm?id=1972457.1972482

[74] L. Giakoumakis and D. Kossmann, Eds., Proceedings of the 1st International Workshop on

Testing Database Systems, DBTest 2008, Vancouver, BC, Canada, June 13, 2008. ACM,

2008.

http://dl.acm.org/citation.cfm?id=1972457.1972482

	2013
	Testing database applications using coverage analysis and mutation analysis
	Tanmoy Sarkar
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. SOFTWARE TESTING FOR DATABASE APPLICATIONS
	1.1 Background
	1.2 Driving Problem
	1.3 Our Solution
	1.4 Overall Contributions
	1.5 Organization

	2. RELATED WORK
	2.1 Automated Test Case Generation
	2.2 Mutation Testing
	2.3 Database Application Testing

	3. ConSMutate: SQL MUTANTS FOR GUIDING CONCOLIC TESTING OF DATABASE APPLICATIONS
	3.1 Introduction
	3.1.1 Driving Problem
	3.1.2 Motivating Example
	3.1.3 Problem Statement
	3.1.4 Individual Contributions

	3.2 ConSMutate Test Case Generator for DB-Applications
	3.2.1 Generation of Test Cases and Associated Path Constraints Using Application Branch Analyzer
	3.2.2 Deployment of Mutation Analyzer
	3.2.3 Deployment of Constraint Solver: Finding Satisfiable Assignment for
	3.2.4 Correctness Criteria of ConSMutate

	3.3 Experimental Results
	3.3.1 Evaluation Criteria
	3.3.2 Evaluation Test-Bed
	3.3.3 Summary of Evaluation
	3.3.4 Execution Time Overhead

	4. SynConSMutate: CONCOLIC TESTING OF DATABASE APPLICATIONS VIA SYNTHETIC DATA GUIDED BY SQL MUTANTS
	4.1 Introduction
	4.1.1 Driving Problem
	4.1.2 Motivating Example
	4.1.3 Problem Statement
	4.1.4 Individual Contributions

	4.2 Approach Overview
	4.2.1 Discussion: Dealing with Nested Queries

	4.3 Experimental Results
	4.3.1 Evaluation Criteria
	4.3.2 Evaluation Test-Bed
	4.3.3 Summary of Evaluation

	5. CONCOLIC TESTING OF DATABASE APPLICATIONS WHILE GENERATING MINIMAL SET OF SYNTHETIC DATA
	5.1 Introduction
	5.1.1 Driving Problem
	5.1.2 Motivating Example
	5.1.3 Problem Statement
	5.1.4 Individual Contributions

	5.2 Approach
	5.2.1 Approach Overview

	5.3 Future Work

	6. CONCLUSIONS AND FUTURE WORK
	6.1 Summary
	6.2 Uniqueness
	6.3 Discussion
	6.4 Future Directions

	BIBLIOGRAPHY

