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ABSTRACT

Colorectal cancer is the second leading cause of cancer-related deaths, claiming close to 50,000
lives annually in the United States alone. Colonoscopy is an important screening tool that has
contributed to a significant decline in colorectal cancer-related deaths. During colonoscopy, a tiny
video camera at the tip of the endoscope generates a video signal of the internal mucosa of the human
colon. The video data is displayed on a monitor for real-time diagnosis by the endoscopist. Despite
the success of colonoscopy in lowering cancer-related deaths, a significant miss rate for detection of
both large polyps and cancers is estimated around 4-12%. As a result, in recent years, many
computer-aided object detection techniques have been developed with the ultimate goal to assist the
endoscopist in lowering the polyp miss rate. Automatic object detection in recorded video data during
colonoscopy is challenging due to the noisy nature of endoscopic images caused by camera motion,
strong light reflections, the wide angle lens that cannot be automatically focused, and the location and
appearance variations of objects within the colon. The unique characteristics of colonoscopy video
require new image/video analysis techniques.

The dissertation presents our investigation on edge cross-section profile (ECSP), a local
appearance model, for colonoscopic object detection. We propose several methods to derive new
features on ECSP from its surrounding region pixels, its first-order derivative profile, and its
second-order derivative profile. These ECSP features describe discriminative patterns for different
types of objects in colonoscopy. The new algorithms and software using the ECSP features can
effectively detect three representative types of objects and extract their corresponding semantic unit in
terms of both accuracy and analysis time.

The main contributions of dissertation are summarized as follows. The dissertation presents 1) a
new ECSP calculation method and feature-based ECSP method that extracts features on ECSP for
object detection, 2) edgeless ECSP method that calculates ECSP without using edges, 3) part-based
multi-derivative ECSP algorithm that segments ECSP, “lts drder and its ¥ - order derivative

functions into parts and models each part using the method that is suitable to that part, 4) ECSP based
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algorithms for detecting three representative types of colonoscopic objects including appendiceal
orifices, endoscopes during retroflexion operations, and polyps and extracting videos or segmented
shots containing these objects as semantic units, and 5) a software package that implements these
techniques and provides meaningful visual feedback of the detected results to the endoscopist. Ideally,
we would like the software to provide feedback to the endoscopist before the next video frame
becomes available and to process video data at the rate in which the data are captured (typically at
about 30 frames per second (fps)). This real-time requirement is difficult to achieve using today’'s
affordable off-the-shelf workstations. We aim for achieving near real-time performance where the
analysis and feedback complete at the rate of at least 1 fps.

The dissertation has the following broad impacts. Firstly, the performance study shows that our
proposed ECSP based techniques are promising both in terms of the detection rate and execution time
for detecting the appearance of the three aforementioned types of objects in colonoscopy video. Our
ECSP based techniques can be extended to both detect other types of colonoscopic objects such as
diverticula, lumen and vessel, and analyze other endoscopy procedures, such as laparoscopy, upper
gastrointestinal endoscopy, wireless capsule endoscopy and EGD. Secondly, to our best knowledge,
our polyp detection system is the only computer-aided system that can warn the endoscopist the
appearance of polyps in near real time. Our retroflexion detection system is also the first
computer-aided system that can detect retroflexion in near real-time. Retroflexion is a maneuver used
by the endoscopist to inspect the colon area that is hard to reach. The use of our system in future
clinical trials may contribute to the decline in the polyp miss rate during live colonoscopy. Our system
may be used as a training platform for novice endoscopists. Lastly, the automatic documentation of
detected semantic units of colonoscopic objects can be helpful to discover unknown patterns of

colorectal cancers or new diseases and used as educational resources for endoscopic research.



CHAPTER 1 INTRODUCTION

This chapter introduces the background on colonoscopy, addresses the motivation of our research

and summarizes the contribution of this dissertation.

1.1 Background on Colonoscopy

The colon is a hollow, muscular tube ab®&0 centimeters long. It consists of six parts: cecum

with appendix, ascending colon, transverse colon, descending colon, sigmoid and rectum. See Figure
1.1. Colonoscopy is currently the preferred screening modality for prevention of colorectal cancer [1]
[2]. A colonoscopic procedure consists of two phases: insertion phase and withdrawal phase. During
the insertion phase, the endoscopist gradually inserts a flexible endoscope into the most proximal part
of the colon (signified by the appearance of the appendiceal orifice or the terminal ileum). During the
withdrawal phase, the endoscopist then gradually withdraws the scope while performing careful
examination of the colon mucosa based on images generated from the tiny wide-angle lens camera at
the tip of the scope. The video data is displayed on a monitor for real-time diagnosis by the
endoscopist. Careful examination of colon, biopsy and therapeutic operations such as polyp removal

are typically performed during the withdrawal phase [3].
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Figure 1.1.The segments of the human colon. The picture is originally from [4].



The entire colonoscopy procedure typically lasts betv2€etw40 minutes. We call the recorded
video data during colonoscopy tleelonoscopy video. The appearance of the appendiceal orifice
(appendix in Figure 1.1) during colonoscopy indicates a complete traversal of the colon, which is an
important quality indicator of the colon examination. A colonic polyp is a growth of tissue that
develops in the inner lining of the colon or the rectum. Polyps are the most common seen
abnormalities. Most colorectal cancers develop from adenomatous polyps [1]. Early detection and
removal of adenomatous polyps are the main goals during colonoscopy. Colonoscopy is complex to
master. The colon structure for each patient varies. Some colons have many more turns than others,
depending on age, gender, etc. Polyps may be missed because the patient may not clean the colon
well before the exam, preventing the endoscopist from traversing the entire colon or seeing the colon
mucosa clearly. The endoscopist may miss inspection on one side of a colon wall or some sections of
the colon or behind some colon folds in which an adenomatous polyp is located. The endoscopist may
not recognize a polyp, or may forget to remove the polyp that has been recognized, or may not
remove all parts of the polyp.

A significant miss rate for detection of both large polyps and cancers was reported [2] [5] [6].
The average miss rate is estimated-a2% but as high a80% (4/5) was reported in one study in
2007 [7]. A large Canadian study reported that colonoscopy offered virtually no protection against
right sided colon cancer and only68-70%protection against left sided colon cancer [8]. The miss
rate varies among endoscopists and it may be related to the experience of the endoscopist and the
location of the lesion in the colon as suggested by the Canadian study. Recent reports in [9] [10]
indicate the identity of the endoscopist performing the procedure as the dominant indicator of the

protective effect of colonoscopy.

1.2 Motivation
Toward reducing the polyp miss rate, many computer-aided techniques were proposed for
objectively measuring the quality of the colon examination during colonoscopy. These techniques

focus on detection of the appearance of polyps [11], measurement of the time taken to examine the



colon mucosa while the endoscope was withdrawn [12] [13], and detection of the appearance of
instruments used for tissue-sampling and therapeutic operations [3], just to name a few. Automatic
detection of polyps and some other types of objects is desirable for objective quality documentation
and computer-assisted colonoscopy to achieve an optimal quality inspection. In 2006, a set of
guidelines for a good quality colonoscopy procedure was recommended [2]. An endoscopist should
spend a minimum o6 minutes during the withdrawal phase, reach the cecum at98#sof the
colonoscopy procedures performed by the endoscopist, and detect polyps in 25% of his/her male
patients andl5% of his/her female patients. An operation suggested as an essential part of the
examination of the colon to improve polyp yields is reRdiroflexion [14] [15] — an endoscope
maneuver where the tip of a flexible endoscope is deflected more9thdegrees from the axial
direction of the shaft of the endoscope. This results in visualization of intestinal mucosa along the
shaft of the endoscope. There are many techniques proposed for detecting polyp appearance in
colonoscopic images. However, existing polyp detection techniques either take a long§ tove (
seconds) to analyze an image or detect too many false alarm regions (at least 1 false region per image)
[16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31]. None of the existing
automatic polyp detection techniques is suitable for practical use. The only existing technique for
detection of an image showing an appendiceal orifice is quite slow (aboututes to analyze one

image) [32]. There are no other computer-aided techniques for detecting retroflexion operations so far.
Given a large number of colonoscopy procedures performed annuallylébwaitlion procedures in

the United States) [33], an effective system for automatic detection of these objects in terms of high
detection rates and fast analysis time is highly desirable to assist the endoscopist during the procedure
to avoid missing polyps.

Similar to the existing computer-aided techniques, we face many challenging issues for
effectively detecting the appearance of these objects in colonoscopy video. These challenges are the
noisy nature of endoscopic images caused by camera motion, strong light reflection, the wide angle
lens that cannot automatically be focused, the location and appearance variations of objects within the

colon, and that the analysis is too slow to output analysis results of the current frame before the next



video frame is seen by the endoscopist (i.e., the analysis time is morg3tmaifliseconds foi30
frames per second video capturing rate). We aim to develop new image/video analysis techniques to
solve these challenging issues.

In this dissertation, we aim to detect three types of representative objects: appendiceal orifice,
endoscope, and polyp. We investigate a local appearance medigd eross-section profile (ECSP)
as a core model in our detection techniques. Edge cross-section profile and its first-order derivative
(called gradient profile) are well known local appearance models for object detection (e.g., human
face detection) [34] [35] [36] and tracking [37] in both medical imaging and non-medical fields. The
ECSP models the local appearance of pixel values along the directions perpendicular to edge pixels.
Figure 1.2 (a-b) shows an example of marked edge cross-section (white color bar) and an associated
region of interest (ROI) on a polyp in colonoscopy. Figure 1.2 (c) shows the corresponding ECSP.
Due to the polyp protrusion, the intensity values on ECSP of polyps increase abruptly near the edge
(around pixel positions 40-60 in the Pixel#-axis in Figure 1.2 (c)) and increase at a much slower pace
afterward. This is also true for sessile polyps with very little protrusion. However, most non-polyp
objects do not have this pattern. Besides polyps, other commonly seen types of objects in colonoscopy
also show discriminative patterns of ECSP and its derivative profiles. We will demonstrate these

patterns in Chapter 3.
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Figure 1.2: An example edge cross-section and its profile function of a polyp edge. (a) An edge
cross-section of an edge pixel on a polyp marked as a white bar. (b) The corresponding region of
interest extracted from (a). (c) ECSP obtained from (b). The intensity values are rescaled from [0,255]
to [0,1].



In summary, our motivations to investigate ECSP for detecting these colonoscopic objects are as
follows. 1) Model robustnessAs a local appearance model, ECSP and its derivative profiles are
robust to variations in object appearances, such as variations caused by the rotation and translation of
the capturing camera. Pattern discrimination: ECSP, its't order and its™ — order derivative
functions show different patterns for different objects in images captured from colonoscopy videos.
The modeling of these patterns on ECSP functions can potentially be used to detect colonoscopic
objects. 3)Analysis time Comparing with other features such as region texture and color, extraction
of edge-based features involved fewer pixels in the calculation. Therefore, it has potential to achieve a

fast analysis time, such as real-time detection during live colonoscopy.

1.3 Contributions of Dissertation

Previous work using ECSP or its gradient profile for object detection/tracking either model the
distribution of the value of each point on a profile by multivariate functions [34] [35] [36] [37], or fit
the profile shape to pre-defined functions [38] [39] [40] [41]. This dissertation proposes the first
feature-based ECSP techniques including three different approaches to extract features for detection
of the three aforementioned object types. In the first approach, we present our ECSP calculation
method which is invariant to object scale in image and extract ECSP features from key positions on
ECSP and its gradient profile. In the second approach, we develop an edgeless ECSP that calculates
ECSP and obtains features on ECSP without using edge detectors. In the third approach, we segment
ECSP, its gradient profile and it&"2 order derivative profile into non-overlapping parts. We model
and extract features from each segmented part using the method which is suitable for that part.

Based on our proposed feature-based ECSP approaches, we developed several algorithms for
detecting three representative types of objects in colonoscopic images including an anatomical
landmark — appendiceal orifice, an out-of-patient object used in a retroflexion operation — endoscope,
and an abnormality — polyp. Furthermore, we developed algorithms for extracting the semantic units

of these types of objects including appendix video — the video with sufficient inspection time (at least



3 seconds) on appendiceal orifice, retroflexion video — the video containing at least one frame
showing retroflexion operation, polyp sub-shot — a group of consecutive in focus frames showing
polyps, and polyp shot — a sequence of consecutive nearby detected polyp sub-shots including the
non-polyp images between each two sub-shots.

We developed a software package for evaluating these techniques in a clinical trial. Our
proposed appendix image and video detection algorithms can effectively detect appearance of
appendiceal orifice in image and appendix video tested3oandoscopy procedures. The average
sensitivity and specificity for the detection of appendiceal orifice images with the often seen crescent
appendiceal orifice shape aB6.86% and 90.47% respectively. The average accuracy for the
detection of appendix videos 81.30% The average analysis time for detecting the quality
visualization of appendiceal orifice in a colonoscopic procedureé3&amsinutes and7 seconds. The
detection time is fast enough to confirm the orifice visualization quality to the patient before he/she
leaves the endoscopic screening facility.

Our retroflexion detection algorithm tested %0 colonoscopy videos gavel@0% specificity,
100.0%precision, and’8.0%accuracy running on the |a45 seconds of each video, and&a7%
specificity, 91.7% precision, and2.0%accuracy running on the entire withdrawal phasesach
video for detecting retroflexion video®ur retroflexion detection technique is the first technique that
can detect the appearance of retroflexion. The average execution time of our MATLAB analysis code
is 0.46 seconds per image on a modern PC (e.g., Intel Duo Core processors). The system can run in
near real-time to assist the endoscopist during live colonoscopy using the frame 2dps.oDur
retroflexion detection system is promising for clinical practice in terms of both of the detection rate
and analysis time.

We implemented our polyp image detection and shot extraction algorithms using C/C++ and
Open Source Computer Vision Library. Our polyp detection system can correctlySie#@e(42 of
43) of polyp shots in near real time under the frame analysis rdi@ fpfs tested 083 randomly

selected video files captured from two endoscopy brands — FUJINON and OLYMPUS during routine



screening colonoscopy. The average number of false shots per vR&a end the average duration
of each of these false shots is less th&seconds. Our system can run in near real-time to assist the
endoscopist by providing visual feedback of a detected polyp as a warning signal on monitor during
routine screening colonoscopy. To our best knowledge, our system is the first system that can detect
polyp image and polyp shot in near real-time running on a modern PC. Our polyp detection and shot
extraction system is promising for clinical use in terms of both of the detection rate and analysis time.
Incorporating our retroflexion detection and polyp detection system into clinical practice for
routine screening colonoscopy has potential to reduce the polyp miss rate. The system can be used
during training of new endoscopists. The future use of our appendix detection system for
documenting the quality of colonoscopy may also contribute to the decline in the polyp miss rate. The
automatic documentations of detected semantic units of these three colonoscopic object types can be
helpful to discover unknown patterns of colorectal cancers or new diseases and used as educational
resources for endoscopic research. In future work, our ECSP based techniques can be extended to
both detect other types of colonoscopic objects such as diverticula, lumen and vessel, and analyze
other endoscopy procedures, such as laparoscopy, upper gastrointestinal endoscopy, wireless capsule

endoscopy and EGD.

1.4 Content Guide

The remainder of this dissertation contains the following content.

Chapter 2 introduces the current state-of-the-art of relevant work on object detection, shot
segmentation and ECSP.

Chapter 3 presents the formulation and our calculation method of multi-derivative ECSP.

Chapter 4 proposes ECSP feature extraction method, and ECSP features for detecting images

showing appearance of appendiceal orifice and appendix videos.



Chapter 5 introduces our edgeless ECSP method that extracts ECSP features without extracting
edges. We combine features obtained from edgeless ECSP, region shape and location for retroflexion

detection.

Chapter 6 presents a part-based ECSP by segmenting ECSP functions into non-overlapping parts.
We investigate features on parts for polyp detection. We present a near real-time detection system for
warning endoscopists of polyp appearance in live colonoscopy for clinical use.

Finally, we conclude our work and present the future work of ECSP and the improvement for

detecting the three representative object types in Chapter 7.



CHAPTER 2 RELATED WORK

In this chapter, we briefly summarize the current state-of-the-art research for detection of the
three aforementioned types of objects in colonoscopy, shot segmentation, and the related work on

edge cross-section profile for object detection.

2.1 Object Detection in Colonoscopy

Object detection and recognition are common research topics in computer vision and pattern
recognition areas. Low-level features (e.g., pixels color, region texture, and geometric shape
information) or automatically detected salient features together with machine learning methods have
been widely used for object detection [42] [43] [44] [45] [46] [47] [48]. Detection of objects in
medical images such as polyps, blood and ulcers has been investigated in [16] [17] [19] [22] [30] [49]
[50]. In this section, we briefly review the current state-of-the-art research on detection of the three

representative types of colonoscopic objects — appendix, retroflexion and polyp.

211  Appendix Detection

Appendix image detection problem was previously introduced and addressed inrhaz2].
technique uses Random Hough Transform (RHT) to fit the appendiceal orifice shape to an ideal
ellipse shape and extracts features based on the Sh@apdaechnique was the only technique that
addresses the appendiceal orifice detection probl€he technique works as follows. First, a
qualified curvilinear structure and the skeleton of the structure are identified. Ideal ellipses are
estimated from the skeletons using RHT. Only qualified ellipses are kept for feature extraction. The
important features include 1) ratio of edge pixels that are part of qualified curvilinear structures to the
total number of edge pixels in the image; 2) sum of fractions of areas in the image that are part of the
detected ellipses; and 3) sum of fractions of edge pixels in the image that are on the boundaries of the

detected ellipses. A classifier was used to determine whether the image is an appendiceal orifice



10

image. The detection performance evaluated on six videos was good for the appendiceal orifice with
multiple curvilinear structures. However, the recognition time for this technique is long (about 5
minutes per image using MATLAB on an Intel Xeon 1.86 GHz processor), making it difficult to
improve for real-time quality control in the future. The long recognition time is due to a large number
of iterations of RHT to get good ellipse approximation. Thus far, there is no technique proposed for

detecting the appendix video (video showing at least 3 seconds of appendiceal orifice).

212 Retroflexion Detection

To our best knowledge, there is no existing literature on detection of the endoscope appearance in
colonoscopic images. The closest work is the detection of biopsy forceps and diathermy snare [3].
The algorithm segments an image into non-overlapping regions. The light reflected connected pixels
which have a linear curvature in the segmented regions are used to estimate the insertion direction of
the instrument. The instrument regions along the pre-defined insertion direction were detected by
matching with pre-defined shape templates after region filtering and merging. The instrument shots in
a video were identified by a shot detection step. The major drawback is the execution time of the
algorithm since it relies on an image segmentation method called JSEG [51] and a hierarchy
clustering for insertion direction estimation. In our experiments, processing @0#dy-480
resolution image took2 seconds tested on the same machine described in Chapi¢rede
instruments are rigid objects with bright blue or red color. The technique in [3] relies on the linearity
of the bright regions and predefined region templates to detect these instruments. However, different
from instruments, the endoscope does not have a rigid body. We cannot simply match the shape of the
endoscope to a predefined template or use color information alone to detect the endoscope since it is

similar to the lumen seen from a distance.

21.3  Polyp Detection

Existing computer-aided polyp detection techniques can be grouped into four categories based on

acquisition modality: 1) CT images from 3D computed tomography [7] [52] [53], 2) images from
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wireless capsule endoscopes [54], 3) colonoscopic images from optical colonoscopy using standard
endoscopes [11], and 4) colonoscopic images using magnifying endoscopes or Narrow-Band Imaging
(NBI) [55] [56]. We focus on the detection of polyp appearance in colonoscopic images from optical
colonoscopy using standard endoscopes in routine day-to-day practice. Pit patterns [56] of polyps are
not necessarily seen using these scopes.

Recent techniques for polyp detection in colonoscopic images from optical colonoscopy employ
machine learning classifiers on one of the following major feature categories: 1) geometric shape of
edges [16], 2) region color [22], 3) region texture [30], and 4) the combinations of color, texture and
edges, such as the combination of region color and geometric shape of edges [19] or the combination
of region color and Local Binary Pattern (LBP) texture [17] [50]. Most of polyp detection techniques
using the features in the aforementioned four categories are summarized in [11]. We summarize these

techniques in Table 2.1, which is an extended version from Table 1 in [11].
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Table 2.1: Overview of Polyp Detection Techniques
(This table is an extended version from Table 1 in [11])

Datasets
Feature - . . .
Authors Year Method cl Classifier | (#images, image Literature
ass
resolution)
Krishnan . (2 normal and 4
1998 Curvature analysis Shape - _ [18]
et al. abnormal images, -
Karkanis et Co-occurrence matrix, (8 images,
2001 Texture NN . [26]
al. Wavelet transform 512 x 512 pixels)
Wang etal.| 2001 Local Binary Patterm Texture NN (3 images, - [21]
Magoulas _
tal 2001 | Co-occurrence matriy  Textufre NN - [28]
etal.
Area, color and shape Shape,
Kang etal.| 2003 - - [20]
of segments color
Karkanis et 2003 Color Wavelet Texture| LDA, (1,380 images, [22]
al. Covariance , color SVM 1000 x 1000 pixels
Texture spectrum
. _ Texture (12 normal and 54
Tjoaetal. | 2003 histogram, color SVM , [25]
_ , color abnormal images, -
histogram
Magoulas )
¢ al 2004 | Co-occurrence matriy  Textufre NN - [27][29]
etal.
Wavelet coefficients, (12 normal and 46
. . Texture .
Li et al. 2005 | histogram of CIE-Lab | SVM abnormal images, [24]
, color .
color space 256 x 256 pixels)
Watershed region
Dhandra et o Shape, (50 normal and 50
2006 | segmentation in HIS - , [19]
al. color abnormal images, -
color plane
Local Binary Pattern |  Texture
Wavelet Energy Texture
Opponent Color — | Texture
Local Binary Pattern | , color
lakovidis Texture (15,000 images,
2006 | Color Wavelet Ener SVM _ 17
et al. v 9y , color 320 x 240 pixels) (17l
Wavelet Correlation | Texture
Signatures , color
Color Wavelet Texture
Covariance , color

NN = Neural Network, SVM = Support Vector Machine, LDA = Linear Discriminant Analysis
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Table 2.1: Overview of Polyp Detection Techniques (Continued)
(This table is an extended version from Table 1 in [11])

Datasets
Feature - . . .
Authors Year Method cl Classifier | (#images, image Literature
ass
resolution)
Curve direction, (815 polyp frames
Hwang et curvature, Watershed| Shape, and 7,806 normal
2007 _ : - [16]
al. region segmentation,| color f-rames,
RGB pixel color 390 x 370 pixels)
Alexandre . (35 images,
2007 RGB pixel color Color SVM . [23]
et al. 514 x 469 pixels)
. (37 training and 37
Cheng et Co-occurrence matrix, Texture L
2008 SVM testing images, [30]
al. color texture , color )
378 x 254 pixels)
Co-occurrence matrix|  Texture
Ameling et Local Binary Pattern |  Texture (1,736 images,
2009 SVM _ [31]
al. Opponent Color — | Texture 1920 x 1080 pixels
Local Binary Pattern | , color

NN = Neural Network, SVM = Support Vector Machine, LDA = Linear Discriminant Analysis

Geometric shape: In [18], the edge curvature is calculated as the feature of the geometric shape
of an edge. The algorithm is designed to select the edges with “S” like shape. The edge with “S” like
shape generally has a large change of curvature values along the tracked edge pixels. However, this
algorithm can only be applied to detect polyps connected with lumen fold with “S” like shape. Many
polyps do not have this particular type of shape. The algorithm was only evaluated by Zesting
normal and 4 abnormal images.

Geometric shape and color: In [19], watershed segmentation algorithm is applied to segment an
input image in HIS color space. A regional maxima morphological operation is applied to select
regions. The recent technique in [16] extracts features of the geometric shape of edges rely on shape
approximation of polyp edges to the ideal shape template. The technique is consisted of two major
steps — candidate edge calculation and template matching. For candidate edge calculation, a gradient

image is calculated by selected the maximum gradient value among three RGB color channels for
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each image pixel. A marker-controlled watershed segmentation algorithm is used to segment the
gradient image. A regional maxima morphological operation is applied to select the initial seeds as
markers for watershed segmentation. That is, the pixels which have large local intensity values are
used as initial seeds. The segmented region boundaries are considered as candidate polyp edges. In
template matching, ellipse and parabola are considered as template shape models. The polyp edges are
determined based on coefficients of template models that fit the edges using the least squares fitting
method. The technique misses polyps that do not approximate well with the ideal shape template [16].
Furthermore, only partial edges of a polyp may be detected and may be insufficient to approximate
the ideal shape template. Both techniques run slowly. The time-consuming watershed segmentation
and morphological operations make it difficult to improve to achieve the real-time performance. In
[20], a simple method is presented to pre-process an image by detecting Canny edges, dilating them
into regions, and thresholding the regions based on the region size, color and shape to identify polyp
regions. Although the paper claims that the technique does real-time detection, the algorithm can only
processl image per second [20]. In addition, the technique in [20] is very roughly described without
sufficient details and without any performance evaluation to support their claim. Therefore, the
technique and results are not convincing. The technique is also questioned in [11].

Region color: In [23], an image is divided into non-overlapping blocks. The pixel color in RGB
color plane and the coordinates of each pixel is concatenated into a high-dimensional feature vector
per block. As a result, there are td#@D0 features obtained for each blocld8fx 40 pixels, and this
involves the calculation for the featuresl@? blocks on each image with the resolutiobb4 x 469
pixels. The calculation time of this method is expensive, although the analysis time is not clearly
reported in the paper. Finally, SVM is used to classify block into polyp block and non-polyp block.
The paper clarifies that they do not provide the criteria to consider an image as a polyp image. The
evaluation of features is only based on classifying blocks using 2-fold cross validation on 35 images.

Region texture: Local Binary Pattern (LBP) is a popular texture feature for polyp detection [17]

Ith

[31]. An LBP pattern of a pixel is represented by a binary sequence of lerijtle|™ position in the

binary sequence is assigne@ i the pixel value is smaller than the value of'ftseighboring pixel,
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or assigned & otherwise. An LBP pattern is mapped to a unique LBP value. A histogram of LBP
values is used as an LBP feature of an image. Another region texture feature used in [17] is Wavelet
Energy. Wavelet Energy feature encodes the content of the input image in variable width spatial
frequency bands [17]. Given a grayscale image, after convoluting it with low pass and high pass
filters, its wavelet textures are represented by sub-sampled images at different scales. These
multi-scale images include both low-resolution and detail images. The Wavelet Energy feature is the
sum squares of allavelet coefficients that are obtained from each of these multi-scale images.

Region texture and color: An Opponent Color-LBP (OCLBP) feature [17] [31] is a
concatenation of three intra-channel LBP histograms and six inter-channel LBP histograms. Each of
the three intra-channel LBP histograr@sWhere the channétl, 2, and3) is obtained from pixels in
each of the RGB color channels, respectively. The six inter-channel LBP histo@a®s C;-Cs,

C-Cy, G-C3, Ci-Cy, and G-C,) are obtained from every combination of two different color channels.
For example, the LBP pattern 6f-C, is obtained from comparing the pixel value in the red color
channel C;) with values of its neighboring pixels in the green color chan@g). (Another
combination of region texture and color feature is Color Wavelet Energy. Color Wavelet Energy
feature is calculated by summing the squares ofvailelet coefficients obtained from all color
channels of thesmulti-scale image§l7]. Wavelet Correlation Signatures is an extend feature based
on the Color Wavelet Energy by taking account into the correlations of wavelet coefficients between
color channels [17]. Comparing to Color Wavelet Energy feature, Wavelet Correlation Signatures add
the correlations ofvavelet coefficients obtained frointer-channels @;-C,, C;-C;, C-C;, C,-Cs,

Cs-C,, and G-C,) as additional features. Another two texture features encoding spatial dependence of
pixel color information are co-occurrence matrix [26] [27] [28] [29], and its combination with
Wavelet Transform named Color Wavelet Covariance [22]. Co-occurrence matrix encodes the spatial
dependence of pixel values by estimating the second-order joint conditional probability density
functionf (i, J, d, a) The function f (i, j, d, a)s calculated by counting all pairs of pixeélandj at
distanced at a given directiom. The angular displacemeats usually in the range of the valuds {

74, nl2, 344}. Color Wavelet Covariance features are covariance estimation of different color
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channels overall four statistical features including angular second motion, correlation, inverse
difference motion and entropy [22]. These statistical features are derived from co-occurrence matrices.
Another set of combination of texture and color features are coefficients of Wavelet Transform and
histogram bin values in CIE-Lab color space [24]. However, the paper [24] focuses on the
investigation of a good classifier - ensemble SVM for feature classification on non-overlapping
blocks in image instead of the investigation of the goodness of features. In [25], an alternative
representation of the combined features was presented by histogram bins. The combined features are
the bins values of texture spectrum histogram and color histogram. In [30], color features are derived
from co-occurrence matrix as a feature vector. The extraction of color texture features todk3about
seconds per image at the resolutior8Be8 x 254 pixels on a PC with a 1.83GHz Intel Centrino Duo
CPU and 2GB RAM. The technique was evaluate8btraining images and 37 testing images.

In 2006, most features from the categories of region color, region texture and the combination of
region texture and color were compared in [17], including LBP, OCLBP, Wavelet Energy, Color
Wavelet Energy, Wavelet Correlation Signatures and Color Wavelet Covariance features. Among
above compared features, OCLBP offered the best performance [17]. The testl¥e00@3mages
with the resolution of 320 x 240 pixels.

In 2009, co-occurrence matrix, LBP and OCLBP were compared in [31]. Among above
compared features, OCLBP also offered the best performance presented in [31]. The testsed has
images with the resolution of 1920 x 1Q8Rels obtained from a high definition capturing device.

As also indicated in [11], most newer techniques (except technique [16]) developed since the
comparison made in [17] and [31] were either evaluated on a data set that was too small (less than 100
combined normal and abnormal images) to clearly demonstrate the effectiveness of these techniques,
or took a long time to analyze an image. Figure 2.1 summarizes existing work related to automatic

detection of the three representative types of objects.
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Figure 2.1: Summary of the related work of automatic detection of the three representative object
types

2.2 Shot Segmentation

A shot consists of sequential frames with similar visual properties. Shot segmentation cuts a long
video file into smaller shots. The criterion for grouping frames into a shot is typically based on
low-level image features (e.g. color or intensity histograms, changes in edges) and temporal
information [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69].

Shot segmentation techniques have been proposed for uncompressed video and compressed
MPEG video [62]. The majority of shot segmentation algorithms are designed to process
uncompressed videos as low level features such as pixels in decoded frames contain more content
information. Shot segmentation on compressed MPEG video reduces computation time since video
decoding is not performed. We focus on processing uncompressed video extracted from compressed
MPEG video in our research.

The key to segment an uncompressed video into shots is to find either cuts [62] or gradual

transitions [62] of shots in the video. Shot segmentation algorithms in uncompressed video can be
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categorized into three major categories: 1) thresholding-based algorithms, 2) clustering-based
algorithms and 3) model-based algorithms.

For thresholding-based algorithms, a similarity score is calculated between two consecutive
frames to measure the similarity of the frames. A frame is detected as a cut if the similarity score
between this frame and its previous frame is lower than a pre-defined threshold. The similarity score
is generally obtained from low-level image features such as pixel intensity values, average intensity
values of block-based regions, and color histogram. Pixel comparison methods compute the
difference of intensity value of each pixel between two images [63]. The average difference of
intensity values over all pixels is calculated as a similarity score. A cut is detected if the similarity
score is larger than a threshold. Many alternative approaches can be used to compute the similarity
score. A popular approach sets a scord b the intensity difference for a corresponding pixel
between two frames is large than a pre-defined threshold,ootiterwise. The average score of all
pixels is used as the similarity score. Pixel comparison methods can be extended to process a color
image by computing the similarity score of pixels in each color channel separately. These algorithms
are the simplest to obtain the similarity between frames. However, they are usually sensitive to
camera motion and light condition. For example, a small translation of camera or a small change in
illumination could affect the vast majority of pixels. Therefore, a single threshold is not robust to
determine a shot cut. Block-based comparison methods [64] [65] divide an image into overlapping or
non-overlapping blocks and calculate similarity scores among corresponding blocks. The average
score of these similarity scores of corresponding blocks between two images is used to determine a
shot cut. Comparing to the pixel comparison, the block-based comparison considers the global content
between images and it is more robust to the small camera or object motion. However, the block-based
comparison methods are sensitivity to large motion of camera or objects. Histogram comparison
computes the distribution of intensity values represented by histogram bins. The differences of
histogram bin values between two frames are used as a similarity score. The global histogram

comparison computes the intensity value distribution of the entire image, while the local histogram
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comparison computes the intensity value distribution in a local region such as a block. Histogram
comparison is less sensitive to motion of camera or objects.

Clustering-based algorithms [66] use unsupervised learning algorithms to cluster frames into
shots. Many features such as intensity or color histogram can be used together with unsupervised
learning models such as K-means to cluster frame similarities. Clustering-based algorithms overcome
shortcoming of thresholding-based algorithms which are sensitive to the types of videos. For example,
the thresholds for different types of videos are different. However, they do not perform well for
detecting gradual transitions [62].

Model-based algorithms either define or train underlying mathematical and statistical models for
classifying consecutive video frames into shot frames and non-shot frames. Some example models are
a mathematical model in [67], the model of probabilistic distribution of pixel intensity values in [68],
and the hidden Markov model for modeling states of frames in shots [69]. Thresholds are not required
in the model-based algorithms. However, these models need to be pre-trained and many shots may not
have an obvious pattern to obtain a good model for some types of videos.

Shot segmentation techniques for colonoscopic video were presented in [70] and [4]. In [70], a
colonoscopic video is segmented into shots using the global histogram comparison in the
threshold-based approach. The technique in [4] extracts shots containing the appearance of instrument
in colonoscopic operation — operation shot. The paper proposed an algorithm to detect images
showing appearance of instrument as instrument image and count the detected instrument images in a
time window. If a time window contains any detected instrument image, the window is considered as
a window with instrument pattern. A sequence consisted of such consecutive windows with
instrument pattern longer than 4 seconds are extracted as operation shots.

Traditional shot detection techniques are not suitable for colonoscopy video because of the
following reasons. 1) Color information is not as useful since colonoscopic images have limited color
ranges of mostly red; with stool, the red color is mixed with green or yellow. 2) There is no
significant movement of a specific object of interest in the image, but small movement of the camera

can cause rotation, translation, and scaling of the whole image. 3) Strong light reflection, low
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illumination and blurriness cause significant changes in low-level features, which makes it difficult to
group them into one shot. Some robust shot segmentation methods that account for monotone image
pixel color property and the effect of camera motion such as strong light reflection and partially

blurred images are desirable for segmenting colonoscopy video.

2.3 Edge Cross-Section Profile

In non-medical fields, edge cross-section profile (ECSP) and its first-order derivative (called
gradient profile) are well known local appearance models for object detection (e.g., human face
detection) [34] [35] [36] and tracking [37].

In the medical imaging field, ECSP is used for blood vessel extraction in retinal images [38] [39]
[40], and skin cancer detection [41]. Note that the ECSP profile calculation of the existing work was
not explicitly mentioned in the reference and may be slightly different from our ECSP calculation.
Furthermore, none of the calculated ECSP in the existing work is invariant to the object scales in
image and no investigations of“2— order derivative ECSP function and region of interest
surrounding the edge were presented.

We group existing object detection techniques using ECSP into the following two categories.

(1) Modeling ECSP with multivariate distributions [34] [35] [36]: Each point on an ECSP is

treated as a random variable. The mean and variance-covariance matrices of all random variables

are calculated and potential correlations among these variables are exploited. Active Shape

Model (ASM) [34] [35] models the gradient profile of ECSP using one of generative

probabilistic frameworks — multivariate Gaussian distribution. However, this framework is

unreliable when some points have multi-modal distributions. To address this ksseans
clustering is used to preprocess the gradient profiles during training and a separate model is
obtained for each cluster [36]. These underlying multivariate probability models are not robust to
large variations in sizes of edges and corresponding ECSP.

(2) Modeling ECSP with pre-defined functions [38] [39] [40] [41]: Multi-scale convolution
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functions or regression functions are used as shape models. In [38], multi-scale 2D Gaussian-like

matched filters are used as convolution functions for extracting blood vessels in retinal images.

In [39] [40], a regression function defined as a linear combination of several inverse Gaussian

functions is used. To handle different scales, optimal model parameters are obtained by

minimizing non-linear fitting errors. However, ECSP shapes of colonoscopic objects do not
strictly follow the shapes of pre-defined functions. Modeling the entire shape of an ECSP is not
sufficient to capture the local properties of the object.

In this dissertation, we present our own ECSP calculation method that is invariant to the object
scales in image and propose three new approaches using our proposed multi-derivative ECSP for
colonoscopic object detection. In the first approach, we extract features at key positions from ECSP
and its first-order derivative profile for appendiceal orifice detection. In the second approach, we
propose an edgeless ECSP technique that obtains ECSP and its features without detecting edges. The
edgeless ECSP is useful for detecting objects without clear edges due to the noisy nature of
colonoscopic images such as image blur or low illumination. In the third approach, we propose a
part-based ECSP method by segmenting ECSP'itsckder and its"® — order derivative profiles
into non-overlapping parts. The segmentation of ECSP gives flexibility for modeling each part or
extracting features for a part using a suitable method for that part. Based on our experiments on real
colonoscopy data sets, our ECSP features are robust to camera motion and the location and

appearance variations of objects.
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CHAPTER 3 EDGE CROSS-SECTION PROFILE

This chapter introduces our algorithm for calculating ECSP of an edge pixel, ECSP of an edge,
the multi-derivative ECSP functions, and its corresponding region of interest (ROI). We first present
the descriptor ECSP and its ROI. We then present a profile extractor for the calculation method of

ECSP and its ROI.

3.1 Profile Descriptor

ECSP function for an edge pixel: Let I(u;) be the intensity value of an edge pixgl for
i €1,..,M, whereM is the total number of pixels on this edge. The vedfodenotes the pixel at
the coordinate(x;,y;) on a 2D image. We define a unit vectgr as anedge tangenpassingu,
and a unit vecton, as aredge normaperpendicular tov, pointing to the concave side of the edge.

See Figure 3.1. The ECSP function for the edge pixel is defined as

fi) =1@+r-mre|-Lirez (3.1)

wherer is the pixel distance (called radius) in an integer&dtom the edge pixet; along its edge
normal ;. The maximum value af is inversely proportional to the edge curvatureand scaled by
a positive constand. This maximum radius value depends on edge curvature. Therefore, object
scales are reflected by radiuen ECSP functions. That is a large radius reflects a large size object
relative to the image size and a small radius reflects a small size object relative to the image size.
ECSP region of interest (ROI): Let a row vectorﬁ represent all points on functiofa(r)
starting fromr = —A/k tor = A/k. We define a matrix
fi

ROI = ...
fu
Figure 3.1 (b) shows the plot of the intensity values in m&@t obtained from the corresponding

edge in Figure 3.1 (a). The matrix R@I divided into two equal size sub-matrices: the left-half
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sub-matrix ROI,ne, and the right-half sub-matriROI,oncave- ROI-onvex CONSiSts of pixels taken
from the outer side of the edge/contour &I,y CONSists of pixels taken from the inner side

of the edge. We call the matrix R&8 the region of interest of ECSP.

—_—

//____

ROI

convex RO lconcave

(a) (b)
Figure 3.1: ECSP extraction of an edge in (a) to the corresponding ROI in (b). The wgctor
indicates the position of an edge pixel with its tangent vezfoand normal vectomn,. The edge has
its surrounding region of interest labeledRB|oncavedNd ROLonvex With the dashed lines indicating
the edge pixels as region boundaries.

ECSP function for an entire edge: We define the ECSRinction for an entire edgeas

Fi(r) = median(fi(r), ..., fu(r)),r € [—%,%] ,7 €EZ. (3.2)

A median value for the sanrevalues on these functions is selected because of its robustness to
speckle and specular noises caused by light reflection.

Multi-derivative ECSP functions: The multi-derivative ECSP functions are represented as a set
of functions {F (1), VF (r), V2F(r), ...}, where each eleme*F(r) is thek™-order derivative of the
functionF(r). As the calculation of derivative function amplifies noise, the maximum order of
derivativeK needs to be empirically found in the training data. We sKldxztsed on the criteria that
the patterns caused by noises and real object are discriminative on the derivative functions. To resist
the noise, a functiofls smoothed using the moving average smoothing method [71] before the

calculation of its derivative.
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3.2 Profile Extractor

The key to extract ECSP is to obtain the edge nommaior edge pixelu, and the edge
curvaturec . We calculate edge normal and edge curvature as follows.

Calculation of edge normal n,: To calculaten, , we first obtain the edge tangent vecigrby

fitting all m; edge pixels inside a square winddy centered af; using the least squares linear

regression model. We normalize as ¥, = (x; — mean(x;,, ;, ))/std(x;,, i, ) wheremeanand
L L

stdrepresent the mean and the standard deviation of x-coordinates of all pixels (denoted

D;, respectively. This normalization is important to correctly calculgteas it improves the
numerical properties for the linear regression model [71] [72]. Ugjngs the predictor, and the

correspondingy; as the response in the regression model, we obtaif\disgtee coefficiens;. The

Bi 1 ]T

n, = R(a) - v, , wherethe rotation matrixR uses the rotation angle of either-m/2 or m/2

edge tangent can be derived &as= [

. We finally obtain edge normal using

depending on which angle results in the calculaiggointing to the concave side of the edge. We
will discuss our method to determinate the concave side of an edge in a later paragraph. The outlier
norm vectors are detected and replaced by the median value of the norm vectors in a square window
Ai. A norm vector is declared as an outlier if the angle difference between the norm vector and the
median value is larger than a threshdlddsegee The value ofT hldyeqee depends on the size Af. A
larger A requires a larger value @hldeqee After this step, we obtain refined norm vectors of edge
pixels pointing toward the concave side of the edge. Figure 3.2 shows some results of calculated edge
normal for some types of objects.

Calculation of edge curvature k: To calculate the curvature of an entire edge, we compute
the median value of local curvatures forMlledge pixels, written ag = median{x;}}!. Each local
pixel curvature is represented lay = 6;/m;, where the angl®; is the maximum angle among
every pair of edge normal vectdnsthe window D;.

We use the following method to determinate the concave side and convex side of an edge. We

compute the minimum bounding rectangle that encloses the edge and find two rRegiensand
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Reonvex, SEParated by the edge as follows. We use region growing taking the center of the minimum
bounding rectangle as the seed point to group pixels starting from the seed point. The resulting region
is calledR.oncave The rest of the pixels in the minimum bounding rectangle that do not belong to
Reoncave@re assigned tB.onvex AS a result, for most edgdR,oncaveiS the region at the concave side of

the edge and RexiS the region at the convex side of the edge.

Figure 3.2: Top row: Original image; Bottom row: Image labeled with calculated edge normals (blue
arrows). (a) Appendiceal orifice image; (b) Diverticulum image; (c) Colon lumen image with the
lumen appearing as the dark region in the middle of the image; (d) Colon lumen image with the lumen
appearing as the non-dark region in the middle of the image and darkest region at right side, and with
nested multiple folds; (e) Flat polyp image

We plot multi-derivative ECSP functions of some commonly seen objects in Figure 3.3 including
the three representative objects. The profiles of different objects show different patterns. For different
objects whose ECSP functions appear similar, their function values are generally in different ranges

(e.g., Figure 3.3 (d) and (e)).
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Figure 3.3Multi-derivative ECSP of different types of colonoscopic objects. First row: Original gray
scale image marked with a white bar representing the edge cross-section of an edge pixel; Second row:
the corresponding intensity edge cross-section profile; Third row: the gradient profile; Fourth row: the
second-order derivative edge profile. (a) Polyp image; (b) Appendiceal orifice image; (¢) Lumen
image with the lumen in the middle of the image and with multiple nested folds; (d) Colon fold; (e)
Endoscope seen during retroflexion
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CHAPTER 4 DETECTION OF APPENDIX IMAGE AND VIDEO

This chapter introduces our algorithms for detecting the quality visualization of appendiceal
orifice including 1) the image showing the clearly seen appendiceal orifice and 2) the video showing

at least three seconds of the appendiceal orifice inspection based on ECSP features.

4.1 Introduction

In 2006, a set of guidelines for a good quality colonoscopy was recommended [2]. This includes
visualization of the appendieal orifice, which is one indicator that the cecum of the colon is reached
during the procedure. The rationale for this recommendation is based on the fact that a substantial
fraction of neoplasms are found in the proximal colon. Therefore, the appearance of the appendiceal
orifice during colonoscopy indicates a complete traversal of the colon, which is an important quality

indicator of the colon examination.

Figure 4.1: Variation in appendiceal orifice appearance; the appendiceal orifice is shown inside a
rectangle: (a-f) a single crescent/circle slit seen at varying distance, (g-i) appendiceal orifice with
multiple curvilinear structures with a sharp turn

The detection of the appearance of appendiceal orifice in image is very challenging for many

reasons. The appendiceal orifice is often seencassaent slibecause the appendix is folded around
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the cecum of the colon and is not maximally insufflated [73]. The shape of the appendiceal orifice
may vary due to colon contractile activity or air insufflation during endoscopy. Furthermore, the
appendiceal orifice can be seen at different locations, scales, view angles, and illumination. Figure 4.1
shows some examples illustrating these challenges. In addition, the orifice may be deformed or
partially seen in an image or occluded; the appendiceal orifice may be partially or completely
removed during appendectomy with little or no scar remaining; stool may occlude the appendiceal
orifice; strong light reflected spots may cover parts of the orifice. Lastly, different types of endoscope
brands have different image color and light source settings, creating image color and illumination
variations.

In this chapter, we focus on identifying high quality visualization of the usual appearance of the
appendiceal orifice in a clean normal colon (without appendectomy and without stools covering the
orifice). A high quality video file test bed was created that contained for every colonoscopy &t least
seconds of clear appendiceal orifice images and the location of the orifice was if possible the focus of
the visualization (i.e., close to the center of the image). During the 3 second inspection of the
appendiceal orifice, the endoscopist may not necessarily pause (stop moving the camera). Small
camera movements, partial strong light reflection, poor illumination, and blur can occur in a few
frames. To measure the quality of the visualization of the appendiceal orifice, we dedipgeadix
video as a video that shows at léaseconds of appendiceal orifice images. If a colonoscopy video is
determined to be an appendix video, this colonoscopy is considered of high quality in terms of
visualization of the appendiceal orifice. Videos of procedures with low quality inspection should be
reviewed by other endoscopists for quality control.

We present a hierarchical detection approach that determines whether a video is an appendix
video. The approach consists of two-level analysis: image level and video level. At the image level,
we propose an ECSP feature basmgbendiceal orifice image detectiaigorithm to detect
appendiceal orifice images showing the commonly seen crescent slit of the appendiceal orifice. The
crux of the algorithm is new local features that represent geometric shape, illumination difference and

intensity changes of pixels along the norm direction (cross-section) of an edge. At the video level, we
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propose an appendiceal orifice shot detection algorithm that first detects near pause video segments of
appendiceal orifice inspection of at ledsteconds. If a sufficient number of images of such segments

are found, the video is considered an appendix video. The hierarchical detection analysis at the image
level and the video level together addresses the following challenges: 1) large scale and rotation
variance due to different view angles and camera distances from the appendiceal orifice; 2) moderate

illumination variance and strong light reflection; and 3) moderate amount of weak edges.

4.2 Edge Profile Based Appendiceal Orifice lmage Detection

This section introduces our ECSP feature based algorithm for appendix image detection.
Thresholds and parameter values used in our algorithms were obtained from experiments with our
training data described in Section 4.4. We specify these values in the algorithm description and

provide a summary of these values in Table 4.1.

421 I mage Preprocessing
This step is to identify qualified edges in an image used as ECSP edges. We first extract edges by

applyingCannyedge detector (with a low threshold of 0.05, a high threshold of 0.1, and a standard
deviation of 3) to the grayscale image converted from the input color image. Next, we apply a dilation
operation twice on the edge image using a square shape structuring element (with a 5 pixel radius) to
link broken edges (edge with edge pixels at a small distance from each other). Then, we extract the
edge skeleton using the skeleton algorithm [74] and remove small branches on these edges using a
spur operation with pruning [74]. Next, we discard the following noisy edges.
1) Edges with the number of edge pixels outside a pre-defined Eaoigeetween 100 and 500
pixels since these edges are either too short or too long for a typical appendiceal orifice edge
for the image resolution used in our experiments.
2) Approximated linear edges (determined based on least squares linear fitting errors according
to parameters in Table 4.1 no. 3) and edges @ithvature out of the range of commonly
seen appendiceal orifice edges (between 1/20 and 1/320Cdrkature of a given edge is
computed as the median of curvature of all pixels on this edg&VUst a window of size
10x10 pixels centered at pixiebf the edge. The curvature of the pikés computed as the

ratio of D; to the length of the edge segmeniWih whereD; is the absolute difference of the
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tangent angles of the two endpoint pixels of the edge segment. The tangent angle of a pixel is
the slope of the line fitting the edge segment in a window centered at that pixel.
Approximated linear edges are usually those of colon folds, instruments, etc.

3) Edges caused by strong light reflection. A light-reflected pixel is normally very bright
compared to the brightness of the entire image and has less pure color compared to
non-light-reflected pixels. Figure 4.2 shows an example of the result of our light reflection
detection algorithm that works as follows.

Step 1: We build a saturation distribution of bright pixels (i.e., all pixels in the image
with value (V) in HSV color space larger than a brightness threshold (V>0.4) and with
saturation (S) larger than a saturation threshold (S>0.2)) using a Gaussian kernel
function with the mean and the variance set to the mean and the variance of saturation of
these pixels.

Step 2: A pixel is considered a light reflected pixel if the following three conditions are
satisfied: 1) The value (V) is larger than a brightness threshold (V>0.4), 2) the saturation
(S) is smaller than the mean saturation obtained in Step 1, and 3) the probability of the
saturation of this pixel on the saturation distribution modeled in Step 1 is smaller than a
saturation thresholdsR0.6).

Figure 4.2 Results of light reflection detection. Top row: original images; Bottom row:
detected light-reflected regions shown in white

4) Edges that do not fit well on ideal ellipses using least squares ellipse fitting. For each edge, we
perform least squares ellipse fitting and a dilation operation on the detected ideal ellipse using
a circle structuring element with a 3 pixel radius. The dilation is to account for some nearby
edge pixels that do not lie perfectly on the ideal ellipseNUe¢ the total number of pixels on
the edge. We definE.i,s{N) asthe percentage of edge pixels not covered by the dilated ideal
ellipse. Wereject edges in whicRejips{N)>0.2 for N<50,  FRyipsdN)>0.4 for 50<N<100, and
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FeiipsdN)>0.7 for N>100. The criteria is derived from our finding that\Nagicreases, the value

of Faips{N) Of vessel edges increases much faster than that of appendiceal orifice edges.
Figure 4.3 (a) shows a plot Bf;i,s{N) based on our training data set. Therefore, this method

can discard most vessel edges and noise edges with connected branches or strange shapes (e.g.

snake-like shapes or shapes with sharp corners).

Appendix
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Figure 4.3: Plot of edge features of selected representative images (137 appendiceal orifice
edges, 1634 lumen edges, 424 vessel edges, 122 polyp edges) from 7 training colonoscopy
videos. Left: Plot of the mean and varianceé=gf,s{N) (ellipse fitting errors) and edge size (in
pixels) N for vessel and appendiceal orifice edges; more errors are observed for vessel edges
compared to appendiceal orifice edges. Right: Histogram of the strength of intensity drop feature
obtained from the intensity edge cross-section profile.

422 Key Point Based Features on Edge Profile
We extract the features on the key positions of ECSP for classification as follows.

1) Intensity of a concave region and intensity difference between concave and convex regions:
With the slit appearance of appendiceal orifice edges, we observe an intensity difference
between the two sides of the slit. Furthermore, the concave side of an appendiceal orifice
edge is typically brighter than that of lumen and diverticula, but less bright than that of
polyps and instruments. We calculate the average intensity difference between the two
regions as Al = I.gncave — lconvex Where I.on.ex iS the average intensity value
0N ROI.pnyex, and I oncave IS the average intensity value on RQJ.qve. respectively. For
appendiceal orifice edged/ is often close to zero. For some other kinds of edges, for

example, for edges of diverticulum and lumei, is typically negative since they are
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typically further away from the camera. For edges of polydsyalue is often high positive.

This is because the polyp surface tends to reflect more light.

Strength of intensity drop before crossing the edge and strength of intensity return after
crossing the edgéA plot of the intensity cross-section profile of an appendiceal orifice edge
shows a very interesting pattern, different from most other edges in most cases. The intensity
values decrease from the convex side of the slit to the lowest value at the middle position of
the cross section and then increase to a similar level after that. Figure 4.4 (c) shows this
pattern of a sudden drop by and then a sudden increase By The pixel positions to
measuré; andh, should be the pixels at which the intensity change is very small just before
and after the drop. These positions correspond to the positions when the first-order derivative
of the intensity function is within a thresholgsd,qer (0.003 which is very close to zero. See
Figure 4.4 (c) and (d). For different kinds of edges, the values of these features are different.
From our investigation, we found appendiceal orifice edges usually have a large drop
intensity valueh,, while for other kinds of edges the distributionshoére different. See a
distribution plot of this feature in Figure 4.3 (b). We found that for a diverticulum edge, the
return intensity after the drop is usually noticeably lower than the intensity prior to the drop.
Hence, the value of this feature is lower than that of the appendiceal orifice edge. For many
colon folds near the colon lumen, the intensitier the drop does not rise back up. Polyp
edges are usually brighter at the concave side. Hence, the return intensity surpasses the
intensity level before the drop. We use a feature of normalized return-intensitki.fétje

h,) to measure the strength of the intensity return after the drop.
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Figure 4.4 Cross-section profile of an edge of appendiceal orifice: (a) Appendiceal orifice
edge with norm vectors extracted; (b) grayscale image of ROI around the edge (r=55) in
image (a); (c) Plot of the intensity values of the intensity cross-section profile computed on
image (b); (d) Plot of the first-order derivative values of the intensity cross-section profile in

(©)

Edge sharpness before and after crossing the edgdefiiee edge sharpness (how quick the
intensity drops and returns) at the two sides of the edge, we first calculate the first-order
derivative of the intensity cross-section profile. hgibe the absolute difference between the
minimum first-order derivative value and the first-order derivative value measured at the
zero-crossing position whetg is measuredyis the first maximum value on the first-order
derivative curve after the middle position of the cross-section profile. See Figure 4.4 (d). We
use the valuel; andh,to measure the edge sharpness before and after the intensity drop and
the ratiohs/(hs+ h3) to measure the similarity of sharpness between the two sides of an edge.
Figure 4.4 (a-d) illustrate these features for different types of edges. For appendiceal orifice
edges, the sharpness between two edge sides are similar because the return speed of the
intensity after crossing the edge is quite similar to the speed of the intensity drop. From our
observation, the appendiceal orifice edges usually have a larger value of sharpness before

crossing the edgd) than other kinds of edges.
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4) Number of edge intersections along the norm directdfe measuraéN.oss.section@S the
number of local minimum pixels on the first-order derivative of its intensity cross-section
profile in the range = A/Curvature(A=1.0 in this case) (Figure 4.4 (a)) whé&arvatureis
the median curvature of all pixels on this edge. For each intensity cross-section profile, we
want to count the number of edges nearby as a feature. Thekgfoset tal, the maximum
value within its valid range0(5~1.0) for the calculation 0flsssection If there are several
local minimum pixels which are close to each other (within a short disthi&&ection0f 20
pixels) without zero-crossing pixels among them, these local minimum pixels are counted as
one edge intersection. For a single crescent slit of the appendiceal orifice, this feature has the
value of one. The value of this feature is greater than one for edges of nested colon folds
around the colon lumen. See Figure 3.3 (c).

5) Edge Cross Section Widtfthe width of the edgeW;ross-seciiop IS the number of pixels
between positions whetg andh, are measured (Figure 3.3 (b)). Empirically, we found that

most of vessel edges have a smaller width than that of appendiceal orifice edges.

423  Appendiceal Orifice/Non-appendiceal Orifice | mage Classification

We utilize the domain knowledge that the appendiceal orifice appears near the end of the
insertion and only iwall images---images without distant lumen. Images with the distant lumen in
the field of view are callellimen imagesWe use our lumen/wall image classification method [13] to
label clear images as either lumen images or wall images. Then, we detect the frame indicating the
end of insertion using our previous method based on camera motion [12]. Finally, we only consider
images around the detected end of insertion frame. In our study, it is sufficient to analyze one frame
per second instead of analyzing the frames at the full video frame rate. We perform appendiceal
orifice image detection only on the frames within a selected r&@dga..(4 minutes before and 8
minutes after the end of insertion frame) since appendiceal orifice images should appear around the
end of insertion. The value &Olin.giS conservative based on the error rate of the method for the

detection of the end of insertion frame. The selected range is to accommodate some inaccuracy of the
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end of insertion detection and the time for appendiceal orifice inspection. The inspection of
appendiceal orifice is generally performed right after the end of the insertion time.

We use a two-layer hierarchical classification based on our extracted features as follows. In the
first layer, we reject likely non-appendiceal orifice edges using a set of rules obtained from the J48
decision tree classifier of Weka [75]. This classifier is a variant of the well-known C4.5 decision tree
algorithm [76]. The feature vector Be={h1, h/(hi+ hy), AI, I.oncave, Nar Ne/(Nat Ny), Neross-section.
Varcuvawrg, Where all features except the last one are discussed prevMarslyiawre IS the variance
of curvatures of all the pixels on the edge. The feattiesy/(hi+ hy), I.oncave, Ns/(hat hy), play an
important role in separating most of non-appendiceal orifice edges from appendiceal orifice edges
with a very small mis-classification error for appendiceal orifice edges. We use a logic mRle set
{hi< 0.0557, I pncave<0.4333, h/(hi+ hy)> 0.6248, h/(hs+ h,)> 0.769} obtained as follows to
identify non-appendiceal orifice edges and discard them.

To derive the above logic rule set, we experimented with several individual classifiers provided
in Weka [75] including Naive Bayes, Decision Tree J48, Support Vector Machines (SVM) with
various parameters, and a supervised linear regression classifier using Radial Basis Function (RBF) as
the model function. Among these classifiers, we chose the decision tree classifier because it gave the
best performance in specificity and a reasonable performance in sensitivity 1@sfolyl cross
validation on the training data set. However, we found that a better sensitivity is obtained if the rules
related to features with low information gain in the decision tree classifier are removed. We used this
method to obtain the aforementioned logic rule RefThis is because the low-information gain
features have a significant overlap in Gaussian-like distributions of the feature values. For such
features, the decision tree classifier does not perform well. A classifier that utilizes probability of
multivariable Gaussian distributions such as a Gaussian RBF is better.

Therefore, in the second layer, we extract three features from each remainingrgdgeth.,

Weross-section Neross-sectiofi- W€ compute a weighted Gaussian based RBF as

(xi_lii)z},

P =Z?=1Wi * exp {_ Zaiz
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where w; is a pre-determined weight of featirey; and g; are the mean and standard deviation of
featurei obtained from trainingy; is the value of featurefor the edge being considered ant the

number of features. In our experiments, equal weights are assigned to the three features. The
remaining edge that has the valuePdarger than a threshok},4 (0.3) is detected as an appendiceal
orifice edge. If an image has at least one detected appendiceal orifice edge, it is declared as an

appendiceal orifice image.

4.3 Appendix Video Detection

Recall that an appendix video is defined as a colonoscopy video that shows at least 3 seconds of
appendiceal orifice images. During this period, the endoscopist may not necessarily pause, but moves
the camera around the orifice or closer or farther. Strong light reflection and partially blurred images
can occur as a result. We propose an appendiceal orifice shot detection algorithm that detects near
pause video segments of the appendiceal orifice visualization. Our near pause detection is based on
similarity of global intensity histograms of sequential images, but allows for some dissimilarity to
handle the aforementioned issues. The near pause detection helps to recall appendiceal orifice images
with weak edges, poor illumination as well as reduce false positives caused by the edge-profile based

appendiceal orifice image detection.

43.1 Near Pause Detection

Our near pause detection algorithm consists of three steps as follows.

Step 1. We divide each frame intm non-overlapping blocks of sizB; (15x15 pixels).
Letdist,(i,j) denote the Euclidean distance between intensity histograms of loloetveen any
two framesi andj. Given a thresholdy,a similarity score for block between the two frames is

defined as follows.

LN 1; lf dlStk(l,]) < Tblk
Se(i,)) = {0, otherwise
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n
SGD) = ) seli))
k=1
The value fofTy,depends omB; and is determined based on experiments with the training data. The
similarity scoreS(i,j) between framesandj is the number of similar blocks between the two frames.

Given a threshold, we define a frame similarity function between any two framesdj as

follows.

Lif S()) < Trrm
0, otherwise

ﬂm@ﬂ={

We will discuss how to choose an appropriate valudfgrshortly after relevant concepts related
to this threshold are presented.

Figure 4.5 shows a graph that depicts frame similarity between frames in a video. Nodes represent
frames and an edge between any two nodeslj denotes frame similarity between framesndj.
Their similarity is strong (strong edge) wh&im(i, j)is one and it is weak (weak edge) wH&m(i,j)
is zero. A weak similarity may be caused by light reflection, large camera movements, presence of

instruments, etc.

Step 3

Figure 4.5: Example results of near pause detection for 16 sequential frames: Each node represents
one frame; solid lines between each pair represent strong similarity between the frames and dot lines
represent weak similarity between the frames.

Step 2: D allow few frames to be very different from neighboring frames (e.g., frames with
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strong light reflection, low illumination, and blurriness) during a near pause, we refine weak edges as
strong edges according to 2.1 and 2.2. Let frabeethe frame under consideration.

2.1:1f Sim(i-1, i)is 0, butSim(i-1, i+1)is 1 (i.e., frame is different from its previous frame, but

the two nearest neighbors of framare strongly similar), we assign 1 $m(i-1, i)and Sim(i,

i+1). That is, we include frameinto the same group as framesandi+1 even framd is not so

similar. We repeat this process until no further refinement can be made. For instance, in Step 2 of

Figure 4.5, edges between nodes representing frames 3 and 4 and framesadeardirted as

strong edges (solid lines). Similarly, edges between nodes representing frames 11 and 12 and

frames 12 and 13 are refined as strong edges.

2.2:If Sim(i-1, i) Sim(i, i+1) andSim(i-1, i+1)are all zeros (i.e., all three consecutive frames are

not similar, we check the values®im(i-2, i-1)and Sim(i+1, i+2) If both of them are 1, assign 1

to Sim(i-1, i)andSim(i-2, i)if S(i-1, i) >= S(i, i+1). Otherwisewe assign 1 t&im(i, i+1) and

Sim(i, i+2). In other words, we assign framéo the group to which it is most similar. In Step 2

of Figure 4.5, the edge between nodes of frames 13 and 14 is refined as a strong edge since frame

14 is more similar to frame 13 than frame 15 does.

Step 3:We group sequential frames with strong edges into a near pause group. For instance, in
Step 3 of Figure 4.5, frames 1 to 5, frames 11 to 14, and frames 15 to 16 each belong to a near pause
group. We group sequential frames in between two near pause groups into a motion group. Frames 6

to 10 in Figure 4.5 are considered in the same motion group.

432 Refinement of Appendiceal Orifice | mage Detection Results

We utilize the domain knowledge that the appendiceal orifice appears only in wall images and
the results of the aforementioned appendiceal orifice image detection and near-pause detection. We
determine for each image whether it is a wall image or a lumen image using our view mode detection
technique [13], whether it is an appendiceal orifice image or non-appendiceal orifice image using the
appendiceal orifice image detection technique, and whether it belongs to a near pause or a motion

group. Lumen images are more sensitive to camera movement due to the large variance in pixel
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intensity distribution. Hence, they likely belong to motion groups. Wall images are more likely in near
pause groups. The value of the aforementiofgdfor near pause detection was chosen based on
experiments with the training data to minimize the number of frames in a near pause group of wall
images (where the appendiceal orifice appearance is more likely) from being divided incorrectly into
subgroups.

Regardless of the group type, if the percentage of lumen images in the group is larger than
Thld umen(50%), all images in the group are marked as non-appendiceal orifice images. This is done to
eliminate errors since the appendiceal orifice appears only in wall images. If the percentage of
detected appendiceal orifice images in a near pause group is larg@httan(66%), we consider
all wall images in the group as appendiceal orifice images. This helps to recall true appendiceal
orifice images that were not detected by the appendiceal orifice image detection. We discuss how to

select the values of Thigh and Thig,menin Section 4.4.

433 Video Classification

This step determines whether the video is an appendix video. Even if the appendiceal orifice
image detection technique has a 90% specificity, the results will include many false positives
(non-appendiceal orifice images detected as appendiceal orifice images) since there are many more
non-appendiceal orifice images than appendiceal orifice images in a colonoscopy video. This
prevented us from using the number of detected appendiceal images as marker that determines
whether a video is an appendix video. We solve this problem by significantly increasing the
specificity and performing appendiceal orifice image detection in a narrower image range around the
end of insertion phase. We empirically determined a range between 2 minutes before and 6 minutes
after the end of insertion frame determined by our analysis meBEOti4t) [12]. We label all
images in near-pause groups as non-appendiceal orifice images if the group duration is less than 2
seconds. A 2 second duration is used here (instead of 3 seconds) since we want to be conservative and
allow detection of acceptable quality of appendiceal orifice visualization. We also label all images in

motion groups as non-appendiceal orifice images. If the number of detected appendiceal orifice
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images is larger than a thresh#ld7 images chosen based on the training data), we determine that
the video is an appendix video. Otherwise, the video is considered a non-appendix video. We discuss
how to select the value of il more detail in Section 4.4.

Out of the many parameters listed in Table 4.1, only 9 of these parameters are more sensitive
than the others. Five of them as indicated in the table depend on the input image size; they are to be
reconfigured for adult or pediatric scopes where there is a significant difference in image sizes.
Normalization of values based on the input image size will be investigated as future work. The logic
rule set R, Thidmen Thld,ai, and Kcan be obtained via training as discussed in Sections 4.2 and 4.4.

We show the flow chart of our appendix video detection algorithm in Figure 4.6 and the pseudo

code of the algorithm in Figure 4.7.

Appendix
ECSP Feature : Appendix image
extractionon & image
key positions detection Non-appendix
image

Pause shot
Near pause Logical

Appendix/

detection rules non-a.ppendix
Motion shot video

Wall image
Wall/Lumen
classification
Lumen image

Figure 4.6The flow chart of the appendix video detectabgorithm
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Algorithm: Appendix Video Detection

/I Functionality: Classify a video as an appendix or a non-appendix video

/Il Input:

1 video: Input video

1l EOl,iqes End of insertion frame number

1 FrameRateFrame rate of the input video

1 Thld.umes Threshold of the percentage of lumen images in a shot for detecting a motion
I shot

1 Thldwar: Threshold of the percentage of detected appendix images in a pause shot for

1 refining all images in the shot as appendix images

I K: Minimum number of detected appendix images for indicating the video as an appendix
1 video or a non-appendix video

I/l Output: Trueif the input video is detected as an appendix video

I False otherwise

ISAPPENDIXVIDEO (Video, EQJige0 , FrameRate, Thlgmen Thldya, K)

1. /I Process frames 2 minutes before and 6 minutes after the end of insertion frame
2:  startFrame.id < EQ}l4eo— 180*FrameRate

3: endFrame.id <« EQkeo+ 360*FrameRate

4:  videoClip «—CREATEVIDEOCLIP( startFrame, endFrame

5: /I Near pause detection for motion/pause shot segmentation

6: // shot[]: Array of structures storing all shot informationvideoClip

7: /I nShot: Number of shots in videoClip

8:  shot[], nShot— PAUSEDETECTION(videoClip)

9: /I Call lumen/wall classification algorithm in [13] to classify frames as lumen/wall frames
10: // frameType: Array storing the type of images as either lumen or wall images

11: frameType— LUMENWALL CLASSIFICATION(videoClip)

12: // Check the logical rule to classify images into appendix/non-appendix images
13: // videoClip.clearFrame[]: Array containing all information of clear frames

14: /I fld: Frame ID in videoClip.clearFrame([]

15: fld«0

16: whilelsExisT(videoClip.clearFrame[], flgl do

17: / sld: shot ID in the arraghot

18: sld —GETSHOTINFORMATION(videoClip.clearFramel[], fID, shot])

19: /I All frames in a motion shot or a short duration shot are non-appendix images
20: if shot[sld ].Type == MOTION or shot[sld].Duration < 2 seconds then

21: fld « fld+1

22: continue

23: end if
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Algorithm: Appendix Video Detection (continued)

24:.
25:
26:
27:
28:
29:
30:

31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41.
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:

//Count the frame percentage of clear lumen images in the shot
lumenPct— LUMENPERCENTAGE (shot[sld], frameType][fld)
/INon-appendix image if the lumen percentage in a pause-sHdtl ymen
if lumenPct> Thld ymenthen
fld « fld+1
continue
end if
/I Classify an images into an appendix or a non-appendix image
/l videoClip.clearFrame[fld]. Type: an appendix or a non-appendix type
videoClip.clearFrame[fld]. Type
«— APPENDIXIMAGEDETECTION(videoClip.clearFrame(], fld
fld « fld+1
end while
/I Refine detected appendix images in the pause shot
for sld <« Oto nShot
if shot[sld].Type == PAUSE then
/I Count the percentage of detected appendix images in the pause shot
appendixPc— APEENDIXPERCENTAGE$hot[], sid)
if appendixPct > Thig, then
/I Set all images in the shot as appendix images
SETALLASAPPENDIX(videoClip, shot[], sldl
end if
end if
end for
/I Count total number of detected appendix images in the video clip
if COUNTAPPENDIXIMAGES(videoClip > K then
return true
end if
return false

Figure 4.7: Pseudo code of the appendix video algorithm
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Table 4.1: Parameters and Values for Appendix Image Detection

No. Parameter Name Valid Parameter Value/Range
Canny edge detector Low threshold of 0.05; high threshold of 0.1; sigma of 3
Edge size range* The number of edge pixels of valid candidate edges is between 100 and 500
pixels.
3 Linear edges* The edge with the least squares fitting €@gpixels along either the
vertical or horizontal image direction is determined as a linear edge.
4 Curvature Curvature range of candidate appendiceal orifice edges is between 1/320
and 1/20.
5 W, 10x10 pixels; the range from 10x10 to 25x25 pixels is the best to model the
tangent vector direction
6 Light-reflected pixels | V>0.4andS>0.2 P=0.6 for modeling and using the saturation distribution
7 Feiipsd N)* Reject edges WitRejipsdN)>0.2 for N<50, Fyjjips{N)>0.4 for 50 < N<100,
andFgyipsdN)>0.7 for N>100
M; 5x5 pixels
Thldgegree 15 degrees; the value ®hldsgecdepends oM and 15 degrees are
sufficient for the window size of 5x5 pixels
10 |4 0.5~1.0 are shown to perform the best
11 | dfirstorder 0.001
12 | deross-section 20 pixels
13 | EOlinage 4 minutes before and 8 minutes after the end of insertion frame; this number
is conservative based on the error rate of the method for the detection of the
end of insertion frame
14 | Logic rule seR R = {h;< 0.0557, I oncave <0.4333, h2/(h1+ h2)> 0.6248, h3/(h3+ h4)>
0.769}extracted from the decision tree classifier
15 | Py 0.3
16 | B 15x15 pixels
17 | Tok 70 (depending oB;)
18 | Tin* 700 blocks
19 | Thld.umen 50%
20 | Thldyay 66%
21 EOligeo 2 minutes before and 6 minutes after the end of insertion frame
22 [ K 7 images

All parameters in this table were obtained based on experiments with the training data set. They were then used

for running the experiments on the testing data set.

* Parameters sensitive to an input image size
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4.4 Experimental Results

We implemented all image analysis code in MATLAB. The data sets used in this study are from a
test bed generated using FUJINON endoscopes during routine screening colonoscopy. Table 4.2
shows our training data set for obtaining various parameters for image level analysis. This data set
consists of manually selected clear images filoappendix videos. To obtain parameter values for
video level analysis, we used a different training set that consists of all clear images dthar
appendix videos an® non-appendix videos. Our testing data set consist®3ofideo files of
colonoscopy and flexible sigmoidoscopy. The training data sets and testing data set do not overlap.
We first extracted 1 frame per second from the videos from the two data sets and saved them in JPEG
format with a resolution o720x480 pixels and 24 bit color. We discarded blurry (out-of-focus)
images from these videos using the blurry frame detection method in [70]. Both training and testing
images cover image types often seen in colonoscopy video including images showing appendiceal
orifice, lumen, wall, polyps, vessels and instruments. Strong light reflection and weak edges appear in
these image sets. The 23 test videos were divided into 3 categories. Category 1 includes 10 videos that
show single crescent or circle slit appendiceal orifice shapes which are often seen. We focus on
detecting good visualization of these appendiceal orifice shapes. Category 2 includes 5 videos that
show multiple connected crescent shapes or single unclear/out-of-bound appendiceal orifice shapes
which are sometimes seen. Category 3 has 8 non-appendix videos including 6 colonoscopy videos and
2 flexible sigmoidoscopy videos. The correctness of the classification of the ground truth was verified
by the domain expert. The experiments were run on an Intel Xeon 1.86 GHz PC with 4GB of RAM
and Windows 2003 Server as the operating system. The average running time per image was 8.7
seconds (6.4 seconds for image pre-processing and feature extraction and 2.3 seconds for
classification and near pause detection). Only clear images within 2 minutes before and 6 minutes
after the detected end of insertion frame were analyzed and the analysis rate of 1 frame per second
was sufficient. Therefore, the average total running time for detecting the quality visualization of
appendiceal orifice in a colonoscopic procedure was 38 minutes and 17 seconds. The detection time is

fast enough to confirm the orifice visualization quality to the patient before he/she leaves the
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endoscopic screening facility. Manual review for quality control is subjective, tedious, and
time-consuming since it requires the reviewer to first locate the appendiceal orifice images using
fast-forward/reverse playback and to carefully look at these frames to determine whether the orifice

inspection is of good quality.

Table 4.2: Training Data for Image Level Selected From 7 Videos for Appendix Detection

Appendix Lumen Polyp Vessel Instrument
Number of images 121 292 221 71 71
Number of edges 137 1634 122 424 98

To choose good parameter valuesTbidy,, Thidmen and Kused in video level analysis, we
first studied the effectiveness of different combinations of value$hdti{y, Thid yme). As not all
possible combinations of Thigh and Thld,menin the range [0.0, 1.0] can be selected, we decided on 7
representative values {0, 1/4, 1/3, 1/2, 2/3, 3/4, 1} for each of the thresholds. As a result, there are a
total of 49 possible combinations. Recall that our training data set has two classes of videos: 5
appendix videos and 5 non-appendix videos. Let the number of detected appendiceal orifice images in
an appendix video be#APX, the number of detected appendiceal orifice images in a non-appendix
video j be #APXN, and the number of real appendiceal orifice images in an appendix iviseo

#APXR. The following two steps are used to select the best combination.

Step 1) Select candidate combinationsTdfi@dy., Thld umey) With large

Dist __ Min{#APX;}-Max{#APXN;}
between ™ win(4APX;}+Max{#APXN}

wherei, j are from 1 tdM (the maximum number of videos used for training in each dihssb
in our study). This is to find the threshold values that result in a large difference between the
numbers of detected appendix images between the two classes.

Step 2) Select the combination with the largest value of
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M
1~ #APXR;

M L #APX,
i=1

Recall,itnin =

among candidate pairs oFl{ldys, Thld ymey) Obtained from Step 1 for the appendix video class.

The higher thdRecall,inin, the more true positives are detected. The combination of (2/3, 1/2) for

(Thldya, Thldmey was selected and the threshdfd was calculated as (Min{#ARK +

Max{#APXN;})/2 using the selected combination, which result#6.5. We used Kf 7 for

testing.

After all parameter values were determined using the training data sets, we ran our code on the
testing set using the obtained parameter values. In the image level classification, we measured
performance using sensitivity (recall) and specificity as the percentage of correctly detected
appendiceal orifice and non-appendiceal orifice images of ground truth images. In the video level, we
use accuracy which is the percentage of videos that are correctly classified. Based on the experiment
results of the image level classification, we have the average performance on the 23 test videos as
shown in Tables 4.3, Table 4.4 and Table 4.5. For Category 1, the average sensitivity and specificity
are 91.82% and 91.02% without near pause detection. With near pause detection, the average
sensitivity increases noticeably to 96.86% and the average specificity slightly decreases to 90.04%.
For Category 2, the average sensitivity and specificity are 48.01% and 93.17% without near pause
detection, and are 50.93% and 93.96% with near pause detection. The reason for low sensitivity for
Category 2 is that some appendiceal orifice images are not detected because the orifice is 1) near the
image boundary or 2) in an area with weak illumination or covered by water or 3) distorted such that
it no longer has a nice crescent like shape. The distortion is caused by air suction, resulting in multiple
connected curvilinear structures with a sharp corner as a connection point of these shapes. Such
multiple connected orifice shapes are rejected by ellipse fitting in the pre-processing step unless the
sharp corner was not detected or the orifice edges are broken apart in the edge extraction step. The
misses in the first two cases are not crucial in practice because optimal inspection of the appendiceal
orifice should have adequate illumination with the clear seen orifice in the center of the image. For

Category 3 (non-appendix videos only), near pause detection improves the average specificity from
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89.33% to 90.93%.

At the video level, recall that the goal of the video level is to increase specificity while
maintaining a reasonable sensitivity to determine whether the video is an appendix video. Near pause
detection significantly increases the average specificity to 97.68% for Category 1, 98.91% for
Category 2, and 98.30% for Category 3 (results not shown in any tables). We label the video as an
appendix video if we find at leaktimages K=7) detected as appendiceal orifice images. Otherwise,
the video is labeled as a non-appendix video. The algorithm correctly classifies 91.30% (21/23) of the
videos including around 93% (14/15) of appendix videos and around 87.5% (7/8) of non-appendix
videos. For the 2 mis-classified videos, one video is in Categofid2q ID 15 in Table 4.4) and the
other video is in Category J/ideo ID 18 in Table 4.5), but there is no misclassified video in

Category 1. See Table 4.6.
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Table 4.3: Performance of Image Level Classification Results on Appendix Videos (Category 1)

Before Near Pause Detection After Near Pause Detection
. Appendiceal ) ) . .
Video Orif Confusion Matrices| Performance | Confusion Matrices| Performance
rifice
ID # Detected | Sen. | Spe. # Detected | Sen. | Spe.
Shape
RL | AP NP % % RL | AP NP % %
Single AP 18 1 AP 18 1
1 . 94.74| 86.43 94.74| 88.39
crescent slit| NP 76 484 NP 65 495
Single AP 7 1 AP 8 0
2 . 87.50| 88.88 100 | 88.75
crescent slit| NP 90 719 NP 91 718
Single AP 3 0 AP 3 0
3 . 100 | 90.65 100 | 93.53
crescent slit| NP 39 378 NP 27 390
Single AP | 48 1 AP | 48 1
4 ) 97.96| 90.06 97.96| 90.21
crescent slit| NP 67 607 NP 66 608
Single AP | 12 1 AP | 12 1
5 ) 92.31| 87.66 92.31| 89.37
crescent slit| NP | 108 767 NP 93 782
) AP 12 3 AP 15 0
6 Circle 80.00| 85.04 100 | 89.23
NP 82 466 NP 59 489
Single AP 17 1 AP 16 2
7 . 94.44| 95.18 88.89 | 96.07
crescent slit| NP 60 1186 NP 49 1197
Single AP 34 4 AP 36 2
8 . 89.47| 92.88 94.74 | 94.63
crescent slit| NP 77 1004 NP 58 1023
Single AP 9 2 AP 11 0
9 . 81.82| 82.59 100 | 85.44
crescent slit| NP 98 465 NP 82 481
Single AP | 15 0 AP | 15 0
10 ) 100 | 88.62 100 | 89.05
crescent slit| NP 80 623 NP 77 626
Cat. 1 Average 91.82| 91.02 96.86 | 90.47

Cat. - Category; Sen. - Sensitivity; Spe. - Specificity; RL - Real Number of Images; AP - Appendiceal
Orifice Image; NP - Non-Appendiceal Orifice Image
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Table 4.4: Performance of Image Level Classification Results on Appendix Videos (Category 2)

Before Near Pause Detection After Near Pause Detection
Al diceal Confusion Confusion
Video ppendicea . Performance ) Performance
D Orifice Matrices Matrices
Shape # Detected| Sen. | Spe. # Detected | Sen. | Spe.
RL | AP | NP % % RL AP NP % %
Multiple AP | 20 22 AP 22 20
11 curvilinear 47.62 | 91.93 52.38| 92.26
NP | 74| 843 NP 71 846
structures
Multiple AP | 12 6 AP 13 5
12 curvilinear 66.67 | 94.84 72.22| 95.51
NP | 54 | 993 NP 47 1000
structures
Single AP | 13 9 AP 14 8
crescent slit
13 B 59.09 | 90.33 63.64| 90.82
orifice NP | 59| 551 NP 56 554
out-of-bound
Single AP | 12 6 AP 12 6
crescent slit
14 ) 66.67 | 91.40 66.67 | 93.35
but with NP | 66 | 701 NP 51 716
water spots
Single AP 0 9 AP 0 9
crescent slit
15 0.00 | 97.37 0.00 | 97.85
but poor NP | 22| 814 NP 18 818
illumination
Cat. 2 Average 48.01| 93.17 50.98 | 93.96

Cat. - Category; Sen. - Sensitivity; Spe. - Specificity; RL - Real Number of Images; AP - Appendiceal
Orifice Image; NP - Non-Appendiceal Orifice Image
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Table 4.5: Performance of Image Level Classification Results on Non-appendix Videos

(Category 3)
q Before Near Pause Detectio] After Near Pause Detection
Video
D Video Type RL | # Detected | Spe. RL # Detected | Spe.

NP | AP NP % NP | AP NP %

Colonoscopy video
16 ) . 1248 | 37 | 1211 97.04 1248 383 1215 97.36
without appendix

Colonoscopy video
17 i ) 223 23 200 | 89.69 223 22 201 90.13
without appendix

Colonoscopy video
18 i ) 213 42 171 80.24 213 31 182 85.45
without appendix

Colonoscopy video |
19 i . 335 32 303 | 90.44 335 A 306 91.34
without appendix

Colonoscopy video
20 i ) 313 34 279 89.14 313 32 281 89.78
without appendix

Flexible
21 . . , 425 29 396 | 93.14 425 22 408 94.82
sigmoidoscopy video
Flexible
22 124 21 103 | 83.04 124 15 109 87.90

sigmoidoscopy video

Colonoscopy video | I
23 i ) 612 60 5521 90.20 612 5 55%  90.69
without appendix

Cat. 3 Average 89.13 90.93

Cat. - Category; Sen. - Sensitivity; Spe. - Specificity; RL - Real Number of Images; AP -
Appendiceal Orifice Image; NP - Non-Appendiceal Orifice Image
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Table 4.6: Performance of Appendix Video Classification Results

Video . » Correctly
D Appendiceal Orifice Shape Detected Type Detected
1 Single crescent Appendix Video Yes
2 Single crescent Appendix Video Yes
3 Single crescent Appendix Video Yes
4 Single crescent Appendix Video Yes
5 Single crescent Appendix Video Yes
6 Circle Appendix Video Yes
7 Single crescent Appendix Video Yes
8 Single crescent Appendix Video Yes
9 Single crescent Appendix Video Yes
10 Single crescent Appendix Video Yes
11 Multiple curvilinear structures Appendix Video Yes
12 Multiple curvilinear structures Appendix Video Yes
13 Single crescent but orifice out-of-boun Appendix Video Yes
14 Single crescent but with water spots Appendix Video Yes
15 Single crescent but poor illumination Non-Appendix Video No

Video o Correctly
D Non-Appendix Video Type Detected Type Detected
16 Colonoscopy video without appendix Non-Appendix Videg Yes
17 Colonoscopy video without appendix Non-Appendix Videg Yes
18 Colonoscopy video without appendix Appendix Video No
19 Colonoscopy video without appendix Non-Appendix Videg Yes
20 Colonoscopy video without appendix Non-Appendix Videg Yes
21 Flexible sigmoidoscopy video Non-Appendix Video Yes
22 Flexible sigmoidoscopy video Non-Appendix Video Yes
23 Colonoscopy video without appendix Non-Appendix Videg Yes
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4.5 Chapter Summary

This chapter introduces two algorithms for detecting the image showing the clearly seen
appendiceal orifice and the video showing at least three seconds of the appendiceal orifice inspection
based on ECSP features. The proposed appendix video detection algorithm first uses new local
features derived from ECSP and it$ 4 order derivative profile to detect the appearance of the
appendiceal orifice and then uses near pause detection to recall miss detected appendiceal orifice
images with weak edges and reject some false classifications. The experimental results show a
reasonable performance at both image level and video level. Our proposed approach is able to handle
object rotation, translation and scaling in image, and noisy images with strong light reflection.

The future work includes reducing the analysis time of the appendiceal orifice image detection
by converting the analysis code from MATLAB to C/C++ and further optimizing through

multi-threading and Graphical Processing Units (GPU) for parallel execution.
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CHAPTER 5 RETROFLEXION IMAGE AND VIDEO DETECTION

This chapter introduces two algorithms for detecting the appearance of an endoscope during a
retroflexion operation in colonoscopy videos. The first algorithm detects the region of the endoscope
using region location and shape based (RSL) features. The second algorithm uses an edgeless ECSP

features extraction method that extracts ECSP features without using edges.

5.1 Introduction

Retroflexion is an endoscope maneuver where the tip of a flexible endoscope equipped with a
wide angle lenses is deflected more tl@hdegrees from the axial direction of the shaft of the
endoscope. This results in visualization of intestinal mucosa along the shaft of the endoscope (Figure
5.1 (a)). Recall that the colon consists of six parts: cecum with appendix, ascending colon, transverse
colon, descending colon, sigmoid and rectum. When retroflexion is performed in the rectum,
physicians can inspect the peri-anal mucosa. Studies reported that retroflexion improved the yield of
polyps [14] [15]. Rectal retroflexion was also suggested as an essential part of the colonoscopy
examination of the large bowel [14]. In a small pilot study rectal retroflexion rates were studied and
found to be low (data not shown). Even after reminders that retroflexion should be performed low
retroflexion rates were still detected. We envision that if the absence of retroflexion in either right colon
or rectum can be shown to the endoscopist during the procedure - given near real-time detection - it
should improve quality and the chances for polyp or tumor detection. In this chapter, we propose a
novel algorithm able to detect the operation of retroflexion effectivelyear real-time(at leastl
frame per second) on a modern PC. For clinical use, if retroflexion is not detected by our system
during colonoscopy, the system could alert the endoscopist before the end of the procedure. Instead of
using our proposed automatic detection of retroflexion, the endoscopist can push a button when
performing retroflexion. However, this adds to the work of the endoscopist and is subject to human

error.
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(a) Endoscope seen during (b) Polyp removal (c) Biopsy using for ceps
retroflexion usingasnare

Figure 5.1: Examples of instruments used during colonoscopy

Colonoscopy allows careful colon examination and operations like polyp removal and
retroflexion are typically performed during the withdrawal phase of the procedure. Rectal retroflexion
is usually short (around-3 seconds) compared to the entire withdrawal phase (at@eashutes
duration recommended [1]). Because examination of the rectum is close to the end of the
colonoscopic procedure, rectal retroflexion generally starts within the last minute of a procedure.
During retroflexion, the endoscope is typically seen as shown in Figure 5.1 (a). The endoscope is
generally black. It has a longitudinal shape like other instruments used for colonoscopy such as snares
and biopsy forceps (Figure 5.1 (b-c)). We call a regi®mlifection connected pixel component)
showing an endoscope in an imageredroflexion region, an image showing an endoscope a
retroflexion imageand a video showing retroflexion imagesradroflexion video. Otherwise, the
region is called amon-retroflexion region, the image is called@n-retroflexion imageand the video
is called a non-retroflexion video

Challenges of retroflexion detection: The challenges of the retroflexion detection problem
include the following aspects. Firstly, retroflexion typically occurs in a very short duration. Therefore,
a very high specificity of retroflexion image detection is required to identify that whether there exists
a retroflexion operation or not during the withdrawal phase. Secondly, the appearance of the
endoscope has large variation. During retroflexion, the endoscope may be bent (Figure 5.2 (a)),
appear in gray color (Figure 5.2 (b)) or blurry due to rotation of the scope, or partially occluded
(Figure 5.2 (c)). The scope may appear in a small portion of the screen (Figure 5.2 (d-e)) blending

with the black background at the edge of its field of view. Hence, methods based on template
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matching [3] may not able to model the shape of an endoscope in image and it is time consuming to
obtain an endoscope region using existing image segmentation algorithms. Lastly, the most difficult
challenge causing false alarms is that the endoscope color and illumination resemble those of the dark,
distant lumen (Figure 5.2 (f-h)) that appears frequently. Hence, using color features alone is not

sufficient.

4
e . o —— @ . .
- S

_i' e '_ b At 4
(b) Gray color scope (c)Partly occluded scope (d) Small scope

(e) Low illuminated scope (f) Dark lumen (g) Dark lumen (h) Dark lumen

Figure 5.2: Examples of retroflexion images and dark lumen images. Retroflexion regions are marked
in green rectangles.

5.2 Image Preprocessing

We obtain the candidate retroflexion regions in the images by applying the following two steps.
The threshold and parameter values mentioned in this section were obtained from our experiments
described in Section 5.5.

Step 1:Candidate retroflexion region extraction: We simply threshold pixels values to keep as

many real retroflexion regions as possible by experimenting with the training data. We extract

pixels that satisfy Red €hldg (100) and Hue >Thldy (0.1), where Red is the value of the red
channel in RGB color space and Hue is the hue value in HSV color space. A binary isiage
obtained by assigning 1 to the extracted pixels, and O to the other pixels. We connect isolated
pixels in | by applying a dilation operation [74] with a structuring element of a circle shape with

a radius of 1 (5 pixels). Finally, we obtain each 8-neighbor connected pixel component as a

candidate retroflexion region.
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Original Image Binary region Dilated region Original Image Binary region Dilated region

N N

N & ) )

(a) Black scope (c) Dark lumen noise

E0a o O N

(b) Black scope (d) Weak light noise

Figure 5.3: Dark regions of black scopes (a-b) and some noises (c-d): the binary regions in the
last column are after the dilation using the structuring element with a circle shape ofzadius r

Step 2:Region filtering: 1). We first discard small candidate regions having less Thdd,;,.

(3000 pixels. 2). Based on our observation, the darkness of most black scopes is due to their

inherent color of the material while the darkness of some noisy images is caused by insufficient

light. This results in an interesting pattern in that the retroflexion regions usually look more

“bushy” (i.e., the pixels are already more strongly connected) than the regions caused by

insufficient light. See Figure 5.3. We discard some noisy regions using a dilation operation with a

large structuring element of a circle shape with a radiug(@brpixels). Specifically, we discard

a region R ifNg/Ng, < Thldpjjate; Where Ng and Ny, are the number of pixels in the region

before and after the dilation, respectively. We Beldp;je 10 0.6.

The images with at least one remaining region after the region filtering step are used for the
feature extraction. Based on our experiments (described in Section 5.5), after the image preprocessing
step, aboul0% of the images showing false alarms &88&6 of the images showing true retroflexion
remain. Next, we further reduce the number of false alarm images using classification of our region

features.

5.3 Region and L ocation Features

In this section, we describe our feature extraction for RSL features for each remaining candidate

region using the following steps.
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For each candidate retroflexioagionR, we obtain its sub-regio®, using the downsampling
method by the sampling factor &f (5 pixels), i.e., selecting one pixel out of evdrypixels.
Downsampling is used to achieve a fast calculation of Principle Component Analysis (PCA) on the
coordinates of the pixels iR as follows.

Let the vectori; = [x;,y;]7 be coordinates of pixeélon the 2D imagd (#;). Define a 2D data

matrix X = [u, ...,aNRS], where Ng_ is the number of pixels iks. The covariance matrix of is

given by X = (X — E(X))(X — E(X))", whereE(X) is the expectation vector of the matkixLet the
eigenvalues of 2 be |1;(2)] and|A,(2)|, where [1,(2)] >|A,(2)|, and their corresponding
eigenvectors bee; (2) and e, (2), respectively. The eigenvectey (2), corresponding to the largest
absolute eigenvalu¢l, (2)|, represents the direction along which the variance of variabl¥sisn
maximum. SinceX' is a2-by-2 symmetric matrix, calculation of the corresponding eigenvalues and
eigenvectors is simple and fast without the time-consuming Singular Value Decomposition method.
We skip processing a region whadsds singular. However, this is a very rear case in our problem.
For example, the shape of an endoscope region generally cannot be a perfect circle or a line with the
width of one pixel.

Calculation of two end positions: We project all data points in the regidy onto thee; (2)
axis and obtain;@nd p as the two end points of the endoscope portion seen in the field of view (FoV)
of the endoscope. These two end points have the largest Euclidean distance from each other among

the projected points. See Figure 5.4 and 5.5.
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1, KA

V¥ ®)

@

(C) (d) Ptail

Figure 5.4: (a-c) possible insertion directions during retroflexion: Each rounded rectangle represents
Ainside: the top red circle on an arrow (vector) represepts; (d) diagram showing some region
features

Figure 5.5: Left: Downsampled candidate region shown in green. Right: Eigenvectors and
eigenvalues of the downsampled region on the left; the two end points and the eeaterarked as
red points.

Estimation of the insertion direction: Let A;,54. be the area in the FoV of the endoscope. Let
Ayuesige D€ the area whose pixels do not belongiig,;4. such as the black area outside the FoV of
the endoscope. We can determine the black area by analyzing several frames in the beginning of the
procedure. We shrinld;siqe by dilating 4,,:siqe USING a structuring element of a circle shape with
a radius of g (45 pixels).

The region direction (insertion direction) of an endoscope is representeglypray — a 2D
vector pointing frompyeqq t0 prqi- From the domain knowledge, the endoscope is always inserted
from A,ytsiaetO Ainsidze, @and generally inserted from the top of the image to the image bottom.

Therefore, we matchp.qq and py; to the end pointgp; and p, subject to the following



59

conditions.

1) If both end points belong t&;,sige OF Aoutsider 1€t PreaaPray POINt from the top to the
bottom as shown in Figure 5.4 (b-c).

2) If one of the end points belongs 1q,siqeWhereas the other one belongsAg,tsige, €t
DheadPrau POINt from A, sidetO Ainsige @S Shown in Figure 5.4 (a).

RSL descriptor: Given a candidate region, we extract the following properties as RSL features:

1) Center location of the region: = [x,, y.]”

2) Tail positionp.qi; = [xe, v )"

3) Head position:peqa = [xn, yn]"

4) Approximated half lengthj1, (2)]

5) Approximated half width:|4,(2)|

6) Ratio of width to length:A,(2)|/|1,(2)|

7) Insertion direction: the anglebetween g2) and the x-axis whergis in the range of(J-360)

degrees.

Figure 5.4 (d) shows some corresponding RSL features.

5.4 Edgeless Edge Cross-Section Profile

In Chapter 3, we proposed a method to calculate edge cross-section profile (ECSP). The
technique extracted features along edge cross-section directions. We obtain candidate edges using the
Canny edge detection algorithm and their edge cross-section directions (edge normal directions). We
call the ECSP feature extraction algorithm that relies on edge detectedgisbased ECSP. In
Chapter 4, we extracted features on ECSP functions for the detection of images showing appendiceal
orifice in colonoscopy. Our previous edge-based ECSP for appendix image and video detection has
the following limitations.1). Some endoscope edges were not extracted due to the image blur or
complex motion such as the fast rotation of endoscope during retrofl@i@ur edge-based ECSP

calculation method requires the curve like shape of an edge. However, some edges of endoscopes



60

obtained from edge detection algorithms were broken apart into small segments in our experiment.
Many broken endoscope edge segments had a close to linear shape. Another solution is to extract
endoscope contours using an image segmentation algorithm. See Figure 5.6 (a). However, processing
a 720-by-480 resolution image using an image segmentation algorithm — like JSEG generally takes
around 22 seconds per image on the same machine. In this section, we first briefly review the
edge-based ECSP for object detection. Next, we propose an edgeless ECSP feature extraction

algorithm to overcome these limitations.

54.1 Brief Review of Edge-Based ECSP

Let {I(#;)}!, be a set of intensity values of the edge pixglwhereM is the total number of
pixels on this edge. The vecta; denotes the pixel at the coordindte, y;) on a 2D image. A unit
vector 71; is an edge normal passing pointing to theconcave sidef the edge. See Figure 5.6 (c).
The ECSP functiorf;(r) for the edge pixeli; is defined in Equation 3.1. The ECSP functiB(r)
for the entire edge is defined in Equation 3.2.
We extract ECSP features based on edge positiof @) and zero-crossing value positions on
VF(r) as described in Chapter 4. Some example features include edge strength before crossing the
edge k,), edge strength after crossing the edgg,(edge sharpness before crossing the ebige (
edge sharpness after crossing the edge (See Figure 5.6 (d-e) for the labeling of these features.

More features and their detailed explanations can be found in Chapter 4.
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Figure 5.6: Edge-based ECSP calculation and feature extraction. (a) A retroflexion image with edge
contours obtained using an image segmentation algorithm — JSEG; (b) Edge normal vectors (showing
in blue arrows) of endoscope edge pixels; (c) The demonstration of edge-based ECSP calculation; (d)
The corresponding gradient profile Btr); (e) The ECSP functioR(r); (f) The region of interest

pixels along edge normal directions.

54.2 Edgeless ECSP
In this section, we propose an algorithm to extract ECSP features without using an edge detection

algorithm —edgeless ECSP. Our algorithm overcomes the aforementioned limitations and the
calculation speed is fast (within half a second to process an image using MATLAB). The algorithm
has the following four steps: 1) edge normal estimation, 2) ECSP calculation, 3) key positions

selection and 4) Feature extraction.
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Figure 5.7: Edge normal directions labeled by blue arrows

Edge normal estimation: Without the detection of edge positions, the edge normal directions of
endoscope edges are unknown. However, as an endoscope has a longitudinal shape, the edge normal
directions of the edge pixels along the endoscope are approximately perpendicular to its insertion
direction. We approximate its edge normal directions by a single direction — the eigeeygdtor
corresponding to the second largest eigenvalidd./See Figure 5.7.

ECSP calculation: Let {I(#,)}!1, be a set of intensity values of pixels along the eigenvector
e;(2), starting from the region centeaad ending at position b, whevkis the total number of pixels

from b toc. We limit theb position alonge; (£) by defining the Euclidian distance betwdeandc
as |b_c'| = B|1,(Z)], wherep is a constant angl € [0,1]. We setf = 0.5 to exclude the pixels

close top:,; since they are typically affected by the colon mucosa. As a result, the shape of the
endoscope close tp;.,q IS NO longer approximately linear. The eigenvalae(X)| is used because
it is proportional to the length of the endoscope. To fasten the calculation, we use dggsetby
downsampling{#;}., with the sampling factor of G (pixels), wherem = M/Q.

Let the intensity value along the edge normal direction be the function of the pixel distance from
i;. We define the two corresponding ECSP functigif{r) and f;"(r) along edge normal
directions of the two sides af; as

fir@) =1@; +r-1),7 € [0,§]2:(D)]] (6.1)

and

fi @) =10 —r-71),7 € [0,§1(D], (6.2)
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wherer = 0 starts from the pixeti; which is the pixel among the downsampled pixels betwéen
and c in Figure 5.7 (b). The maximum value ofis proportional to the approximated width of
endoscop€1,(2)] and scaled by a positive constgntTherefore, endoscope scales are reflected
by r. To increase the chance that ECSPs pass real edge positions, we seledtéd based on
experimental results. We do not use the ECSP if it extends intdthe;. area; for example, we
do not usef;"(r) functions in Figure 5.8 (b) anfi*(+) functions in Figure 5.8 (c). Figure 5.9
shows an example of a functigiit (r). The two functionsf;*(r) and f;"(r) generally appear

similar for the samey; if both f;*(r) and f;"(r) are used, e.g. Figure 5.8 ().

P

P
3

-

(a) (b) (c) (d)
Figure 5.8: Grayscale images of endoscopes during retroflexion. (a-b) and non-retroflexion images
(c-d). The estimated insertion directions are labeled as red color bafy.(The calculated ECSPs
along edge normal directions are labeled as white color bars. In (b) and (c), only ECSPs that do not go
beyond A4;,5i4e are labeled.

Key positions selection: We select some key positions to calculate ECSP features including a)
the edge position orf;(r) and the corresponding position on its derivative funciigi(r), b) the
closest zero-crossing positions away from the edge positioVif@n) and c) their corresponding
positions onf;(r). We calculate these key positions using the following steps. First, we smooth
f¥(r) using a moving average filter (with the window size5opixels) and obtain its derivative
function Vf;*(r). Next, we determine B position as the position with the maximum value on
Vf*(r) for eachu;. See Figure 5.9. We consider the correspondifigposition onf;*(r) as the
edge position. Last, we seartf;" (r) alongr from the two sides of;* until we find the two
closest zero-crossing positions froRf. Therefore, we obtained totalfy key positions ory;* (r)

and Vf;*(r): a) P as the edge position ofi" (r) and its corresponding position & (r), b)
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the two zero-crossing positions &ff;*(r) and c) their two corresponding positions Ah(r). We

use the same steps to select the 6 key positions ¢n) and Vf;” (r).

0 50 100 150

r

Figure 5.9: An exampl&fF (r) function and the selecteB; position. The maximum value is

$lA2(B)I.

Feature extraction: Based on the selected key positions () and Vf;*(r), we apply the

algorithm in Chapter 4 to calculate ECSP features for eacfhese features include

1)
2)
3)
4)
5)
6)

Edge strength before crossing the ed@I’eiX

Edge strength after crossing the edg?i][

Edge strength ratio after and before crossing the ddde¢ (h" + hi™))
Edge sharpness before crossing the eb[;jé)(

Edge sharpness after crossing the eﬂ;’jé)(

Edge sharpness ratio after and before crossing the B{o&k:" + h}")).

These ECSP features follow the same meaning of correspohdinky,, h,/(h, + h,), h;, h, and

hs/(h; + hy) in Chapter 4. See Figure 5.6 (e-f). We use the median feature valuengbia#ls as

the corresponding feature for that edge. For exanigles median{hf’i ™ . Similarly, we obtain

the same features froffi” (r) and Vf;"(r).

Finally, we obtain two feature vectors frofif (r), f;~(r), Vf;*(r) and Vf;"(r) presented by

and

VECSP®) = (nf, hi, by /(hi + k), hE, ki, hE /(R + hD))
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VECSPD) = (h1,hy, hy /(AT + h3), h3, hy, ks /(h3 + hD)).

Figure 5.10 shows the flow chart of our near real-time retroflexion image/video detection system
using an ensemble classifier.

Extracta _ Extract region

candidate i shape and location
region ' (RSL) features

Retroflexion
Ensemble image with an
classifier endos.COpe
region
Estimate edge
normal
directions:
along e,

Extract ECSP
features of each
region

Edgeless
@ ECSP
Estimate
approximated Extract ECSP

" Median

edge position: vy features of each
maximum value on edge pixel
gradient profile

Figure 5.10: Flow chart of the near real-time retroflexion image/video detection system

We describe the pseudo code of our retroflexion region detection algorithm in Figure 5.11 and
our retroflexion image/video detection algorithm in Figure 5.12. We consider a video as a retroflexion

video if we detect at least one retroflexion image in the video.
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Algorithm: Detection of A Retroflexion Region

/I Functionality: Identify whether a region is a retroflexion region or a non-retroflexion region
/I Input:

1l region: 2D coordinate values of pixels in a region

1l L: Down sampling rate of pixel coordinates in a region

/I Output: Trudf a retroflexion region is detected

1l False otherwise

ISRETROFLEXIONREGION (region, L)

1: region.downSampledPixels «OWNSAMPLING(region,L)

2. regionX < COVARIANCE(region.downSampledPixgls

3:  // Get region shape and location featusggonV (®SL) by Principle Component Analysis

4:  regionyV®SL — PRINCIPLECOMPONENTANALYSIS(region)

5: // Estimate the direction of the eigenvectgr of all pixels as the edge normal direction

6: region.normak— regiony ’sL) e,

7. Il Extract pixel values along the edge normal direction and its reverse direction as ECSPs
8:  /IM: Number of pixels along the principle axis of PCA used for edgeless ECSP calculation
9: /I The edgeless ECSP functions of a region are calculated based on Equations 6.1 and 6.2
10: {fi MY, {fiF M, — ECSPKTRACTION(region)

11: // Calculate the *1— order derivative functions

120 {Vf (M}l < GRADIENT({f;” ("}ii;)

131 (V£ (M3l < GRADIENT({f;" ("3}iL,

14: /I Estimate the global maximum location @i~ (r) and Vf;*(r) as the edge positions

150 {P7YL, < MAX ({(Vfi7 (M}Ly)

16: (P31, «— MAX ({(Vfi* (M},

17: // Calculate edgeless ECSP featuresotr), f*(r), Vfi (r) and Vf;*(r)

18: {hi"(r), by (1), by (1), by (MM, «  ECSPEATURES({f; (), V£ (), P }iL,

19: (' (r), " (1), k3" (1), Ry (MYL, «  ECSPEATURES({f* (), V£ (r), P}IL,

20: // Calculate edgeless ECSP features as the median feature values obtained from all pixels
21: regiony (E¢sP?)  MEDIAN({R; (), hy (), by (), Ay ()3,

22: regiony (B¢sP™)  MEDIAN({R} (), B3 (), R (), R I,

23: /l classify a region as a retroflexion or a non-retroflexion region using a ensemble classifier
24: if CLASSIFICATION(regiony (®S1) == true then

25: if CLASSIFICATION (regionV (E¢sP)) == true

26: or CLASSIFICATION (regiony (¢sP™)) == true then

27: return true

28: end if

29: end if

30: return false

Figure 5.11: Pseudo code of the retroflexion region detection algorithm
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Algorithm: Detection of A Retroflexion Video

/I Functionality: Classify a video as a retroflexion or a non-retroflexion video

Il Input:

1 videa Input video

1l EOl,iqes End of insertion frame number

I Thids: Threshold of red color in the RGB color plane to select candidate region pixels
1 Thld,: Threshold of hue color in the HSV color plane to select candidate region pixels
1 Thidbiaee: Threshold of the ratio of region sizes before and after the dilation

/! Thidsi,e Minimum number of pixels in the region

1 r,: Circle radius of the structuring element of the dilation operation used in the

I candidate region extraction step

I ro: Circle radius of the structuring element of the dilation operation used in the region
1 filtering step

I L: Downsampling rate of a region

// Output: Trudf the input video is detected as a retroflexion video

I False otherwise

ISRETROFLEXIONVIDEO (Video, EOQ}igeo, Thick, Thidy, Thldhijae , Thlsize 1, 12, L)

1 /I Analysis images after the end of insertion frame

2. fld— EOLkigeo

3. // endOfProcedureFramédhe last frame of the procedure

4: while(fld < endOfProcedureFram)edo

7 /I Preprocess an image

8 /I allRegion[]: Array storing the information of detected regionsideo.clearFrame

9: /I nRegion: Number of regions Wiideo.clearFrame][]

10: allRegion[], nRegion

11: «— IMAGEPREPROCESSING video.clearFrame[fld], Thid, Thld,, Thldhiae , Thldsize

12: 1)

13: /I ldentify each region in an image as a retroflexion region or a non-retroflexion region
14: for rID « 0 tonRegion do

15: /l Detect videas a retroflexion video if we detected at least one retroflexion region
16: //'in the video

17: if ISRETROFLEXIONREGION(allRegion[rID], L) ==truethen

18: return true

19: end if

20: end for

21: fld «fld+1

22: end while

23: return false

Figure 5.12: Pseudo code of the retroflexion video detection algorithm
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5.5 Experimental Setup and Results
We implemented our algorithm in MATLAB. We built classifiers using MATLAB statistical

toolbox. We performed a number of experiments on an Intel Xeon 3.86 GHz PC with 4GB of RAM

and Windows 2003 Server.

551 Experimental Data
We randomly selected5 colonoscopy videos from a test bed generated using OLYMPUS

endoscopes during routine screening colonoscopy. This set indddesroflexion videos andl
non-retroflexion videos. We extract@@0-by-480 resolution JPEG images under the frame rdte of

fps (frame per second) in the withdrawal phase of each video. The beginning frame of the withdrawal
phase was calculated using our algorithm in [77]. We then ran our blurry frame removal algorithm [70]
to remove out-of-focus images. The rest of the images were used in our experiments. Our domain
expert marked the ground truth of the retroflexion images and non-retroflexion images.

We split 75 videos inta25 training videos an&0 testing videos as described in Table 5.1. We
included all11l non-retroflexion videos in our test set. 1) Training seing all images from the entire
withdrawal phase, we obtained a small portion of retroflexion regions compared to non-retroflexion
regions. We calculated the average ratio of the number of samples between two classes in the training
data. We obtained the ratio value1ad3. The classification on this imbalanced data set is a typical
challenging problem in machine learning research [78]. As a result, we did not successfully train our
classifiers using the images from the entire withdrawal phase. Based on the domain knowledge, in the
vast majority of colonoscopies, the rectum is inspected during the last minute @b Eestonds).

Some exceptions happen when other operations (e.g., biopsies) are performed after retroflexion in the
rectum. For these cases, retroflexion occurs during thd{asninutes in the video. We trained our
classifiers using images obtained during the 4&sseconds of the rectum inspecti@hTesting set:

We used all images in the withdrawal phase as testing 3)aRarameter value setting$ve set all
parameter values (Table 5.2) based on experiments on the training data. The performance is not

sensitive to a small variation of these parameter values.
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Table 5.1: Description of Images Used in Our Experiment for Retroflexion Detection

Training Set Testing Set
Total RT Videos RT Videos NRT Videos
# videos 25 (last 45 seconds 39 11
Total RT NRT RT NRT NRT
# images 129 877 306 18835 3788

RT- Retroflexion, NRT - Non-retroflexion, # - the number of images or videos

Table 5.2: Parameters and Values Used for Retroflexion Detection

Parameter| Thigd Thidy Thld*s,e Thldpjate r r rs B Q &
3000 5 15 45

Value 100 0.1 . 0.6 . . . 0.5 5 15
pixels pixels pixels pixels

* Parameters sensitive to an input image size

55.2 Experiments on Region Classification

We selected our features using a forward feature selection method [80]. We start with selecting
an initial feature by testing each individual featurev,, ..., v from all G features and outputting
the feature vectorv{) which gives the best performance. We selected the next feature by
concatenating; with each of the remainin@-1 features to be new feature vectors and outputting the
feature vectory, v) which performs the best among these new feature vectors. We repeated the above
step to add a new feature at each step and stopped until the next best concatenated feature vector
negatively contributes to the performance. We started with evalugiiSL features antil ECSP
features and selecteld RSL features anfl ECSP features as presented in this chapter. Based on
extracted features, the retroflexion/non-retroflexion image classification problem is cast into the
problem of training and testing these features to classify whether the regions are retroflexion or
non-retroflexion regions. We evaluated with different features and classifiers for

retroflexion/non-retroflexion region classification, including 1) RSL features, 2) ECSP features and 3)
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the concatenated RSL and ECSP features.
RSL features: The simplest way using RSL features is training and testing them with a machine

learning classifier on the feature vectf?SL) represented by

(2
VD) = (e, e, Xe, Yoo Yo s (D1, Mo (D) 2SS, 0).

However, we found that splitting an image into non-overlapping areas, and training multiple
classifiers, one for each area resulted in a better performance than training a single classifier.
Therefore, we split an image intboverlapping areas (Arda Areal,..., AreaN-1) whereN = 13in

our case (Figure 5.13 (a)linsiqe denotes the Are®. The areasl to 12 are numbered in a
counter-clock-wise manner after splittin,,.;siqe Py the angle, which results #16 angle for each

area. We chose the value Nfbased on our observation of the possible general scope insertion

directions from the training videos.

ee
DT B4R\ <V

(a)
Image Areas
Area 0 Areal | Area 11 Area 12
Classifier Classifier | ... Classifier Classifier
C(0) c(1) C(11) C(12)
(b)

Figure 5.13: (a) Pre-defined areas 16RSL™) features classification; (b) The design of region
classifiers using one classifier per area:IfSL"™) is simply denoted a&(n).
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We consider that a region belongs to the aréfats pyeqq is insiden. Let VERSLT™) represent

the feature vector of the region belonging to the axeshere

(RSL) _ ( [A2(2)]
v (i xe, Yo e yes 5, s [ D 122D 255 0),

and iddenotes the aretD where p,q; belongs to. We train one classifi&(V ®SL™)y using
V®SLTD) of retroflexion and non-retroflexion regions which belong to that arieatime training data.
To test a feature vector of a region, we first determine itsraseal cIassiny(RSL(nt)) of this region
using the cIassifietC(V(RSL("t))). Figure 5.13 (b) illustrates our design for the classification on
V®RSLT) features.

ECSP features. Not every retroflexion region has bothE¢SP™) and v ECSP™) as we do not
use the one of;*(r) or f(r) that goes beyond,,4.. We consider a region as a retroflexion
region if eitherVESP™) or y(ECSPO) s classified as a retroflexion region. We simply use a
notation VECSP) o represent eithev ECSP™) o Y (ECSPT) | Since ECSP features are not related to

the insertion direction, we do not split an image into non-overlapping areas for training and testing
Vv (ECSP).

Concatenated RSL and ECSP features: We concatenated E¢SP) and V(L) as a single
feature vector ((ECSP) + Y (BSL)Y | a region has botty ECSP™) and v ECSP™) e concatenated
each of them with the saméRSL), As a result, we have at most two concatenated feature vectors
(VECSP) 4 y(RSL)Y per region, one is fron EESP™) and the other is front ESSP™). We consider
a region as a retroflexion region if at least one feature vel¢tbfS¢) + VV(RSL)) from that region is
classified as a retroflexion region. Similarly, we concatenstéd™") and v (ECSP)gs (v ECSP) 4
V®SLT)) i the same way.

We investigated the effectiveness of the classification of retroflexion /non-retroflexion regions
using Support Vector Machine (SVM) with linear kernel, SVM with Radial Basis Function kernel,
J48 Decision Tree, and Generalized Linear Model with Poisson, Normal, and Binomial distributions
on feature vectord/ RSL)| yRSLTD) |y (ECSP) - (y (ECSP) 4 y(RSL)Y angl (1 (ECSP) 4 y(RSLTD)y The

performance metrics were calculated usifgfold cross-validation on the training set. The parameter
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values of each type of classifiers were optimized to achieve the best performance. Table 5.3 showed
the performance usirg=13 number of classifiers with eac{y ®SL") trained onV ®SL"™) | and

the performance single classifigf(V (D) trained on V®&SL | The results indicated that

C RSL™)y outperformed C(¥*SD). For the same type of features, different classifiers produce

similar performance. Among the compared classifiers, Decision Tree on classli*fﬁﬁﬁnt))

showed the bedt-measurd14] score— the harmonic mean of precision and recall. Table 5.4 shows

the performance evaluated onESP) | the concatenated featurg® ECSP) 4 y(®RSL™D)y ang

(V(ECSP) 4 y(RSL)Y Table 5.4 and 5.3 indicate that either using concatenated features or splitting an
image into non-overlapping areas can improve specificity for most types of classifiers. Therefore, in
the following experiment on image/video classification, we Ug&L") instead of ®SL). Note
that we cannot directly compare results in Table 5.3 and Table 5.4. This is because we had more than
one ECSP feature vector for a single retroflexion region in the experiments for Table 5.4 whereas the
experiments for Table 5.3 did not. We also do not reporFtheeasurescore for Table 5.4 for the
same reason.

Finally, we chose Decision Tree as the classifier because it gave 1) tikerbeasurescore on
RSL features and 2) the high specificity for most of classifiers on both RSL and ECSP features.

Similar performance may be achieved using other types of classifiers.
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Table 5.3: Evaluation of RSL Features Using Different Types of Classifiers

Classifier GLM + Binomial GLM + Poisson
Performance Metrics Sen.% Spe.% F-M Sen.% Spe.% F-M
RSt 60.2 87.5 0.491 46.6 92.0 0.464
Feature
\RSLOD) 73.1 88.7 0.585 64.1 94.0 0.626
Classifier GLM +Normal SVM-+Linear
Performance Metrics Sen.% Spe.% F-M Sen.% Spe.% F-M
VRSY 45.6 90.2 0.430 52.1 90.2 0.476
Feature -
\RSLOD) 77.9 91.0 0.652 77.4 92.1 0.670
Classifier SVM + RBF Decision Tree
Performance Metrics Sen.% Spe.% F-M Sen.% Spe.% F-M
VRSY 70.0 94.0 0.664 67.8 88.0 0.544
Feature
\RSLOD) 74.5 92.1 0.653 72.7 93.6 0.672

Sen. - Sensitivity, Spe. - Specificity, F-M: F-Measure score, GLM - Generalized linear model,
Binomial - Binomial distribution, Poisson - Poisson distribution, Normal - Normal distribution,
SVM - Support vector machine, Linear - Linear kernel, RBF - Radial Basis Function Kernel

Table 5.4: Evaluation of ECSP Features and the Concatenated Features of RSL and ECSP Using

Different Types of Classifiers

Classifier GLM + Binomial GLM + Poisson GLM +Normal
Performance Metrics Sen.% Spe.% Sen.% Spe.% Sen.% Spe.%
VECSP) 75.3 73.7 70.8 75.3 74.1 77.3
Feature \(ECSPTRSD 74.7 81.4 73.0 82.8 81.0 75.9
\AECSPRSL(M) 70.6 88.3 68.3 91.7 78.8 84.2
Classifier SVM+Linear SVM + RBF Decision Tree
Performance Metrics Sen.% Spe.% Sen.% Spe.% Sen.% Spe.%
\AECSP) 84.6 64.7 83.5 70.8 42.5 84.8
Feature \/(ECSP*RSD 83.4 72.0 76.4 86.2 61.8 88.3
\AECSPHRSL(Y) 74.4 89.8 72.9 91.7 66.1 92.1

Sen. - Sensitivity, Spe. - Specificity, GLM - Generalized linear model, Binomial - Binomial
distribution, Poisson - Poisson distribution, Normal - Normal distribution, SVM - Support vector
machine, Linear - Linear kernel, RBF - Radial Basis Function Kernel
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5,5.3  Experimentson Image/Video Classification

We consider an image as a retroflexion image if it has at least one detected retroflexion region.
We consider a video as a retroflexion video if we detect at least one retroflexion image in the video.
We evaluated the performance for detecting retroflexion videag the lasé45 secondsb) the last?
minutes andc) the entire withdrawal phase of each video. We conducted the first two tests because
retroflexion occurs during the last minute (or ldStseconds) for the vast majority of colonoscopies,
or within the last2 minutes for the exceptional cases when other operations like biopsies were
performed as aforementioned. Compared with [6], our improved algorithm makes it possible to detect
retroflexion in other parts of the colon during the withdrawal phase and to alert the endoscopist before
the end of the procedure. In our data sets, the entire withdrawal phase contains ori&eragges
per video. That means, our algorithm needs to achieve a high specificity for retroflexion video
detection in the withdrawal phase. In the following paragraphs, we discuss the results of some main
steps of our algorithm and features.

Candidate region extraction: Thresholding onRed andHue values performed well for
extracting candidate retroflexion regions. We only missed the gray color scope regions with very
strong illumination. The region filtering step usifi@ld,;,. and Thldp;,:.€ffectively rejected most
noise regions. This step was robust to image blur.

Insertion direction calculation: Our calculation of the insertion direction is robust for most
retroflexion images (Figure 5.14). It performs incorrectly when the scope is far from the camera and
appears very small, in which the scope no longer has a longitudinal shape. Figure 5.15 shows the
histograms of the estimated insertion direction aAghethe training data. This angle appears as the
first criterion (the root nodes) of the Decision Trees for Area 2 and Area 5.

To evaluate effectiveness of our features on classifying retroflexion/non-retroflexion images and
videos, we setup the following tests using different classifiers and features. Table 5.5 shows the
performance on 50 test videos.

1) C(v RSy

2) C(V(ECSP))
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3) C(V(RSL(nt)) + V(ECSP)Y and
4) a simple ensemble classifi@(VRSL™?)y + c(VECSP)) which classifies a region as a

retroflexion region if bothc(V (RSL"?)) and ¢(V ECSP) classify that region as a retroflexion region.

Table 5.5: Performance of Retroflexion Image/Video Detection

Image Detection ) .
N Video Detection Performance
Test Classifiers and Performance

Range Features #
Sen% Spe.% Sen% Spe.% Pre.% ACC.%FL

C(RSL™) 58.0% 98.1%| 84.6% 81.8% 94.3% 84.0% 0.48

45 C(ECSP) 42.3% 98.5%| 76.9% 81.8% 93.8% 78.0% 0.40
sec. C(RSLM™+ECSP) 440% 99.19% 82.1% 90.9% 97.0% 84.0% 0.22
C(RSL™)+C(ECSP)  36.8% 99.7% 71.8% 100.0% 100.0% 78.0% 0.10
C(RSL™) 61.8% 98.3%| 89.7% 63.6% 89.7% 84.0% 1.38

~ C(ECSP) 445% 98.8%| 84.6% 455% 84.6% 76.0% 1.06
2 min. C(RSL™+ECSP) 472% 99.3%4 87.2% 83.7% 91.9% 84.0% 0.64
C(RSL™)+C(ECSP)  39.0% 99.8% 79.5% 90.9% 96.9% 82.0% 0.18
C(RSL™) 65.4% 98.4%| 94.9% 18.2% 80.4% 78.0% 6.92
C(ECSP) 48.1% 98.5%| 89.7%  9.1%  97.1% 72.0% 6.08
wre C(RSL™+ECSP) 49.6% 98.9% 92.3% 18.2% 80.0% 76.0% 4.50

C(RSL™)+C(ECSP)  41.7% 99.8% 84.6% 72.7% 91.7% 82.0% 1.06

#FL — The average number of false alarm images per video (on average of 459 images per video); Sen.
— Sensitivity, Spe. — Specificity, Pre. — Precision, Acc. — Accuracy; 45 sec. — test the last 45 seconds; 2
min. — test the last 2 minutes; WTP — test the withdrawal phase.
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Figure 5.14: Retroflexion images and corresponding downsampled regions in the next row; the white
arrows show the directions of eigenvectoifand g(X).

Area 2

Figure 5.15: The histograms representing the distributions of the fé@adfiretroflexion regions and
non-retroflexion regions; each triangle shows the count of instances in the trainind ajataw:

Area 2; Bottom row: Area 5;Left column: retroflexion regions; Right column: non-retroflexion
regions.
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Retroflexion/non-retroflexion image classification: We classified an image as a retroflexion
image if it had at least one detected retroflexion region. Otherwise, we classified it as a
non-retroflexion image. The ECSP resulted in higher specificities but lower sensitivities than RSL.
The concatenated ECSP and RSL features offered a trade off performance comparing with the
performance of single classifiers using ECSP or RSL features alone. The sets of retroflexion images
detected using a single classifier on ECSP features alone and on RSL features alone were significantly
overlapping. However, most of false alarm images detected using ECSP features were stool or dye
images, whereas most of false alarm images detected using RSL features were dark lumen images.
This is because most of stool and dyes do not have good edges, while the shapes or/and locations of
most of dark lumen regions are different from these of endoscope regions. As a result, the ensemble
classifier using both classifiers significantly reduced the number of false alarm images with a slightly
lower sensitivity than a single classifier on ECSP features alone. The ensemble classifier achieved the
highest specificities compared with other single classifiers. In conclusion, the false alarm images were
due to 1) dark lumen images and 2) images with stool or dyes. The miss rate of retroflexion images
was not correlated to the duration of the operation. For example, most retroflexion images extracted
from short retroflexion operations were correctly detected. The significant factor determining the miss
rate is the quality of a retroflexion image. Our ensemble classifier failed to detect low quality
retroflexion images. The endoscopes in these low quality retroflexion images 1) are covered by water,
2) or are with low illumination, 3) or appear in a too small area without a longitudinal shape.

Retroflexion video detection: The ensemble classifier can effectively detect retroflexion videos.

For the test on the lagb seconds of each video, the specificity of the image classification increased
to 99.7% (0.1 false alarm images pet5-second video). As a result, we obtairiD% (11/11)
specificity, 100.0% (39/39precision and8.0% (39/50nccuracy on the retroflexion video detection.
For the test on the lag& minutes of each video, the specificity of the image classification also
increased t®9.7%(0.18 false alarm images p&-minutevideo). As a result, we obtainé.9%
(10/11) specificity, 96.9% (31/32)precision and2.0% (41/50)accuracy on the retroflexion video

detection. For the test on the withdrawal phases, the specificity of the image classification increased
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to 99.8%(1.06 false alarm images on the withdrawal phase per video). As a result, we obtained 72.7%
(8/11) specificity, 91.7% (33/36)precision and82.0% (41/50)accuracy on the retroflexion video
detection. Therefore, compared with the other single classifiers, the ensemble classifier significantly
improved the specificity froml8.2% to 72.7% on the retroflexion video detection, and slightly
improved the precision and accuracy. Figure 5.16 shows the distributions in terms of number of false
alarm images per video. We can observe that for the tests on th&-ketond an&-minutevideos,

the vast majority number of videos had no false alarm images. For the test on the withdrawal phases,
the ensemble classifier significantly reduced the number of false alarm images per \ideolto

false alarm images for the majority number of videos.

Analysis Time: The average execution time of our cod®.46 secondger image. The main
time cost is the dilation operations in the image preprocessing part. The calculation of PCA and RSL
feature extraction only cos®0 millisecondsper image. The downsampling of pixels significantly
reduced the calculation time for the PCA. The calculation of edgeless ECSP and its feature extraction
under the prior knowledge of the endoscope insertion direction only2Zstilisecondsper image.

The downsampling of pixels reduced about half of the calculation time for the edgeless ECSP feature
extraction.

There is no existing technique with which we can compare our method. We experimented with
texture features — Local Binary Pattern (LBP) and Opponent Color-LBP (OC-LBP) in [17]. LBP and
OC-LBP features do not discriminate well between dark lumen and black scope regions. Most of dark
lumen regions are detected as false regions. Therefore, these techniques did not give any comparable
performance to that of our proposed technique. Our method is very promising for a near real-time
retroflexion detection. An example of a clinical use case is as follows. A warning marker continually
appears at the corner outside the endoscope FoV when retroflexion has not been detected in the
withdrawal phase. If a retroflexion image is detected, the system should consecutively detect several
retroflexion images during a period (e.g.seconds) before it disables the warning marker. This is to

recognize that good quality retroflexion is performed during the procedure.
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Figure 5.16: The distributions in terms of the number of false alarm images per video detéfled on
test videos for different tests a) Test on the last 2 minutes, b) Test on the last 45 seconds, ¢) Test on

the withdrawal phase.
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5.6 Chapter Summary

In this chapter, we proposed a near real-time algorithm that can effectively detect a retroflexion
operation during colonoscopy. This algorithm can be used as a new indicator of quality of
colonoscopy. We investigated two types of features to detect appearance of endoscopes in
colonoscopic images during retroflexion operations. These features are region shape and location
(RSL) features that describe the location and shape of an endoscope region in an image based on
Principle Component Analysis. We proposed an algorithm — edgeless edge cross-section profile
(ECSP) calculation method to obtained features along the estimated endoscope edge normal
directions without edge detection since edges of endoscope regions are not clear due to motion blur.
We investigated different combination of classifiers, RSL features and edgeless ECSP features to
classify retroflexion/non-retroflexion images and videos. Among these combination methods, the
ensemble classifier using both ECSP and RSL features shows the best performance. Our near
real-time system is promising for clinical use in terms of both the analysis time and detection rate. As
future work, we will further optimize the analysis time by improving the computational complexity in
the image processing step, and converting the analysis code from MATLAB to C/C++. We will also
investigate whether the proposed RSL and ECSP features can be used to detect other instruments (e.g.,

cables) used for biopsies and therapeutic operations.
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CHAPTER 6 POLYPIMAGE DETECTIONAND SHOT EXTRACTION

This chapter introduces a new feature-based ECSP technique that segments multi-derivative
ECSP functions into parts callgdrt-based multi-derivative ECSP and obtains features on parts for
polyp detection in colonoscopic video. We present two phases of our techniques as follows.

Phase 1. We introduce a part-based multi-derivative ECSP to detect the image with the
appearance of polyppelyp image. We perform a study of the new features obtained from segmented
parts for polyp image detection. We show the effectiveness of our technique by comparing it with the
current state-of-the-art polyp detection techniques.

Phase 2: We further reduce the analysis time by simplifying features obtained from parts for
polyp image detection. By combing the polyp image detection results with an existing edge tracking
method, we further reduce the number of false positive edges at the image level and improve the
overall detection rate. As a result, our system can correctly @t&@bpolyps in near real-time and
does not generate false detected images fo®%h&sduration in an entire colonoscopy procedure.

The average number of false sub-shots per videg6i8 and the average duration of each false
sub-shot is less thah5 seconds. To our best knowledge, our polyp detection technique is the first
technique that can effectively detect polyp image and extract polyp shot in near real-time (real-time
under the frame rate of 10 fps) running on a modern PC. Our system is very promising for clinical use
to assist the endoscopist by providing visual feedback of potential polyps during routine screening

colonoscopy.

6.1 Introduction

Automated polyp detection in colonoscopy is challenging. 1) Endoscopic images can be blurry
due to motion of the capturing camera or water injection, maybe under or over illuminated, or contain
strong light reflection spots. 2) Polyps vary in their appearance, shape, size, amount of protrusion, and
location in the colon. The same polyp may appear very differently in different images due to amount

of colon insufflation, degree of colon muscular contraction, viewing angle, and distance from the
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capturing camera. For instance, a close inspection of a polyp results in a large polyp region whereas a
distant inspection of the same polyp results in a small polyp region. Furthermore, polyps may be
occluded by stools or therapeutic instruments. Existing computer-aided techniques utilize features
such as texture, pixel color, geometric shape of edges, or combinations of these features together with
machine learning classifiers for polyp detection. These techniques were summarized in Section 2.1.3.

We previously introduced the feature-based ECSP method for appendiceal orifice image
detection in Chapter 4. We extracted features at some key positions (e.g. zero-crossing positions) of
ECSP and its gradient profile of candidate edges. However, these features do not capture any global
information of ECSP. Therefore, they are insufficient to represent complex characteristics of a
protruding polyp such as the local shape of its ECSP, the protrusion, the texture or the smoothness of
its region.

In this chapter, we propose two phases of methods for polyp detection. In the first phase, we
introduce a new approach using ECSP and perform a study of new features for polyp image detection.
Compared with the ECSP based method for appendiceal orifice image detection discussed in Chapter
4, we utilize the @ — order derivative of the multi-derivative ECSP and segment each of these
profiles into parts. We model or extract features from different parts separately using methods suitable
for individual parts. As a result, besides the local features obtained from key positions on ECSP
(discussed in Chapter 4), we introduce features on parts which effectively describe some complex
properties of polyp ECSP including the shape of the profile parts, texture of the polyp region,
estimated polyp protrusion and the smoothness of a polyp surface. Finally, we combine the scores
from modeling and feature scores as feature vectors for classification. Segmenting ECSP into parts
gives flexibility to model or extract features from each part using the method component which is
suitable for that part. Our technique is robust to some challenging issues of polyp detection and
outperforms existing leading methods. The experimental results show that this method outperforms
the current state-of-the-art techniques for polyp detection in terms of performance of free-response
receiver operating characteristic curves and processing time on a test data set of over a thousand

images (non-polyp and polyp images of 42 different polyps).
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Our ultimate goal is to develop new technology that assists the endoscopist by providing visual
feedback of a potential polyp during routine screening colonoscopy using a standard endoscope
commonly used in practice. The endoscopist may use the feedback to improve the polyp detection
rate during the procedure. Our second phase further improve the analysis time for polyp image
detection by simplifying features obtained from part-based multi-derivative ECSP to the easily
computation ones. We track polyp edges obtained from detected polyp image from Phase 1 using an
existing edge tracking method. The combination of polyp edge detection and edge tracking reduce the
number of false positive edges at the image level and improve the overall detection rate. Our system
tested orb3 videos shows its promising for clinical use to assist the endoscopist by providing visual

feedback of a potential polyp during routine screening colonoscopy imezdime.

6.2 Part-based Multi-derivative Edge Profile Segmentation

We segment ECSP, its first-order profile, and its second-order profile into a total of 10
non-overlapping parts. Because the detected edge point r = 0 may not be the local minimum intensity
point on F(r) due to the image smoothing, we search for the local minimum intensity point in a small
1-dimensional window centered at r = 0. We denote this local minimum intensity paipt ke

segmentation algorithm consists of two steps. See Figure 6.1 for an example and notations.

Backward segmentation from zero-crossing poitist pointsr =r® andr = rfrl) be two

zero-crossing value points closestrte= r, on VF(r). Let pointsr = r® andr = rfrz) be two

zero-crossing value points closest te=r, on V2F(r). These points must satisfy both

conditions below.
1) M <ry < rfl) andr® < ry < rfz)
2) VFrD) = vFr™) = v2F @) = v2F ) = 0

We segmentF(r) at positionsc; and c, which correspond to the points at™ and rfrl) on

VE(r). Similarly, we segmenVF(r) at positionsc; and c, which correspond to the points at



84

r® and rfrz) on V2F(r). As a result,F(r) and VF(r) are each divided into three parts in this

step. Because the segmentation points F¢r) and VF(r) are referred back from their

corresponding derivative function, we call this backward segmentation. We do not segment the

profile if its corresponding zero-crossing positions do not exist. Figure 6.1 (a-c) demonstrates the

backward segmentation step.

Segmentation at key pointé/e further segment the parts obtained from the previous step. First,

we segmentF(r) and VF(r) at r =1, as the illustrated pointss; and cs in Figure 6.1

(d-e). Next, we segmerit?F(r) at r = r® as shown at point, in Figure 6.1 (f).

After the above steps, multi-derivative ECSP functions of an edge are segmentdd into
non-overlapping parts4 parts fromF(r), denoted as{StVO}‘t*:l, 4 parts fromVF(r), denoted as

{SY"}4_,, and 2 parts froi2F (r), denoted a{SY"}2, .
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Backward segmentation Segmentation at key
;%\ 0.65  from zero-crossing points ~——— points

E‘
\4
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®

Figure 6.1: Example of application of segmentation steps to polyp ECSP functions. (a)-(c):
Application of the backward segmentation step. Red rhombuses show the points between segmented
parts. Dash-dotted lines link the red rhombuses on ECSP functions and their corresponding
segmentation points at zero-crossing value positions on their derivative functions. (d)-(f): The
segmentation at key points. Green rhombuses show the segmentation points in this step. Dash-dotted
lines link the green rhombuses on ECSP functions and their corresponding segmentation points. The
labelsh;, h,, hs and h, correspond to the amount of intensity drop before crossing the edge, the
amount of intensity return after crossing the edge, edge sharpness before crossing the edge and edge
sharpness after crossing the edge. These features were introduced in Chapter 4.
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6.3 Region of Interest Segmentation

Besides segmenting an edge, we also segiR@itin order to extract texture features. We
segment &0l corresponding to the edg&o 4 non-overlapping sub-matrices, each corresponding to
each segmented part &6f(r) ({Stvo}‘t*:l). See Figure 6.1 (d). We represent the segmedR@id by
{ROIypvex, ROIZ e ROIZ 0 caves RO 1 cave - We extract our texture features from some of these

segmented ROIs

6.4 Feature Extraction from Parts

Using part-based multi-derivative ECSP aR®I, we have flexibility to model or calculate
features from a segmented part using the method which is suitable for that part. In this section, we
introduce some features on parts which effectively describe some complex properties of polyp ECSP
including texture of the region, shape of the parts, estimated polyp protrusion, the smoothness of a
polyp surface, and intensity values on key positions on parts. We developed these features based on
observations of characteristics of protruding polyps in colonoscopy and consultation with the domain

experts.

6.4.1 Texture Features

Texture Features on ROI3,, 4ve and ROI%,, ..... The protrusion of protruding polyps
causes the intensity values B(r) to abruptly increase from, (the edge pixel position) to the right
most point onS3‘7° and then gradually increase afterward Sfﬁ) as shown in Figure 6.1 (d). We
estimate the protrusion of polyps by capturing this tendency of intensity increase using texture
features onROI3,, e and ROIZ,, ... (Figure 6.2 (a-b)). First, we reduce the effect of small
impulsive and speckle noises by smoothing the intensity values on each row and then on each column
of ROI3,,cave@nd ROI%,, ..ve Using Locally Weighted Scatterplot Smoothing (LOWESS) with a
tri-cube weight function [71]. LOWESS filter resists outliers by replacing them by linearly fitted
points in a window. It is more suitable for preserving the tendency of intensity increase in the window

caused by the polyp protrusion than most other filters. We also empirically found that LOWESS
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performs best among several smoothing methods such as average, median and moving average filters.

Figure 6.2 (c) shows an example BOI12,, .., before and after the LOWESS smoothing.

rRoOI2

(b) (d)

Figure 6.2: (a) 3D plot of intensity values of an image with a polyp (red color area). (b) 3D plot of
intensity values foROI obtained from the polyp region in (a). The intensity values increase on the
polyp in the direction labeled by arrows in (a) and (b). ROIZ,,cave i (b) before LOWESS
smoothing. (d)ROI%,,.4ve Of (C) after LOWESS smoothing.

Next, we slide dx2 pixel window overR0OI3,,,.qpe and ROI%,. ... Separately one pixel at a
time to obtain texture features. We assign a binary scatemthat pixel if the pixel intensity value
in the right window is greater than that in the left window, or a binary sco@eotiierwise. We
experimented with different window sizes and choskex pixel window due to its simplicity and
effectiveness. Next, we obtain two binary matrices: oneRi®F3,,,..,. and the other foROIZ,, . 4ve-
Finally, we comput&/iexure1as the average of the binary values of the binary matriR@E,,cqve-
Similarly, we comput®/;e,e2from the binary matrix ofR0I2,, ... As a result, we have two texture

features, each in the domain of [0, 1].

6.4.2  ShapeModding
The global shapes of polyp ECSP functions do not match existing functions studied in [38] [39]

[40] (e.g., a linear combination of several inversed Gaussian functions). However, the shape of the
part S3‘710n VF(r) after profile segmentation skews the left and looks similar to the shape of a

Gamma probability distribution function (PDF). Figure 6.3 shows the shaﬁélof two example

polyps. The segmentation of multi-derivative ECSP allows us to model each part separately without
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affecting the others. We model the shape of Géﬁas follows.

X0.1

R
N

o s
l, \oo

o

VF S(r)and VFS (r;a,b)

B
/O

VF S (r)and VF>(r;a,b)

wv
2
[l

S
w1

ES

w

N
N

4

=

J %~
~

I i,

L L L L 1 0 i i i i i i i i L n

0 5 10 15 20 25 30 35 0O 5 10 15 20 25 30 35 40 45 50

(a) r (b) r

o

Figure 6.3: (a) and (b) show the pasgl of two example polyps. Dots are points on

functionVFs3(r) of %', the dashed lines are fitted Gamma PDF functf&s (r; a, b).

Let a functionVF*:(r) denote the parsgvlon VFE(r). We define a Gamma PDF

0s . _ .a-1 ra—1e—£
VFES3(r;a,b) =7 aa D’ (a>1,b>0) (6.1)

as the estimation of 3 (r). The shape of the functioiF*:(r) mainly depends on some particular
points on the function. These points are 1) close to the function peak, or 2) with large function value
differences from their neighbor points. See Figure 6.3. Therefore, we applyVeighted
Levenberg-Marquardalgorithm [79] to optimize the goodness of model fitting by setting higher

weights for important pixels. The diagonal eleméfitin a diagonal weight matri¥V presents the

weight of pixel rdefined as
Wy = |VF53(r + 1) + VES3(r)| - [VFS3(r + 1) — VF%3(r))]. (6.2)

The first term ofW, gives a large value for the pixelsand r+1 that are close to the function peak
position. The second term measures the difference of function values between theupikis right
neighborr+1. We compute a similarity score

N
Venape = 1/(1 + =21 (6.3)

Comm



89

between the underlying modeFs: (r) and its estimatedFS:(r; a, b) as the shape feature on part

S3Vl, whereDiff is the difference between the areas under the curve of the two functioGsrans

the amount of the overlapping area between them.

6.4.3 Surface Smoothness Feature

Due to polyp protrusion, the intensity values on ECSP of polyps increase abruptly near their edge
pixel positions. This property results in large amplitude values near the approximate edge pixel
position r = r, on the derivative functions of the polyp ECSP (Figure 6.1 (b-c)). The surface of most
polyps, in particular polyps less thar2 cm, is smooth. As a result, when comparing with the large
amplitude values near = 1, for polyp edges, only very small oscillating amplitude values appear
on non-edge positions &12F(r) whenr > r,. However, if the surface of an object is noisy, as the
calculation of a function’s derivative amplifies the noise, the amplified noises are getting obvious on
the profile functions when the order of the derivative is sufficiently large (e.g., "therder
derivative). Therefore, some protruding non-polyp objects like stool show large amplitude values near
both edge pixel position and non-edge pixel position§x (r). ng is the part which reflects the
information of both edge pixel position and non-edge pixel positiong%#t(r) at the concave side

of a polyp. We design a feature to capture the differences of amplitude valﬂézs as follows.
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Figure 6.4: Six labele®NP patterns on an exampﬁsg2 used for calculating surface smoothness

feature
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We define consecutive pixels af AP pattern on52‘72 if they contain3 zero-crossing pixels in
order: oneP-pixel, one N-pixel, and anotherP-pixel. Specifically, P-pixels a pixel atr whose
function value satisfie§¥?F(r) < 0 and V2F(r + 1) > 0. In other words, P-pixel is a zero crossing
pixel from negative to positivé\-pixelis a pixel ar whose function value satisfieg’F(r) > 0 and
V2F(r + 1) < 0. In other words, N-pixel is a zero crossing pixel from positive to negative. First, we
segmentSZV2 into non-overlappind®NP patterns at alP-pixel positions. Figure 6.4 shows six such

PNP patterns on92‘72, labeled froml to 6. Next, we calculate the maximum and minimum function

values of &>NP pattern as its amplitude, represented by a pair-value (e.g., function valiesaat

ry labeled in Figure 6.4). Finally, we apgtymeansclustering algorithm [75] on all pair-values of

amplitude using Euclidean distance among the pair-values to cluster thegpat®MPRs into 2 groups:
g, and g, where gis the group with the number of patterns less than or equal to thgse in g

If an object has smooth surface, then there is only one large amplitude pair-value near edge pixel
position on 52‘72. That is the groug; should contain only oneNP pattern — the pattern that is closest
to r = ry. Otherwiseg; should contain othd?NP patterns caused by noise. We use a binary score to
represent a smoothness feature denot&,@smness VWe assigrl to Vsmeotnest?Vhen the surface of the
corresponding object is considered smooth. That is, if 1PN pattern closest to = r, belongs
to g;, and 2)g; contains at mogy pair-values of amplitude. Otherwise, we asgi® Vsmoothness YWE

set g as 2 to allow the maximum of 1 noisy Pbitern in g

6.44  Key Points Based Features

We extractedd features on key positions a®dof them fy, hs, andh,;) were introduced in
Chapter 4. These features include the strength and the sharpness of edge. Table 6.1 shows the

description of these features.
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Table 6.1: Features on Key Positions of Parts Used For Polyp Detection

Type Notation Part(s) Feature description

he - by oo gr0 Difference of the amount of intensity drop and increase before
! B25} and after crossing the edge

Edge

strength h, (s} Amount of intensity return after crossing the edge
hy/hy {SZVO 53‘70} Ratio of the amour.1t of irlltensity drop before. crossing the edge
’ and the amount of intensity return after crossing the edge
Edge hs {52‘71} Sharpness of edge before crossing the edge
sharpness h, (7 Sharpness of edge after crossing the edge
hy/hs {sY',s7"} Ratio of edge sharpness before and after crossing the edge

Note: Notations of these features are indicated in Figure 6.1 (a-b).

6.4.5 Feature Vector

Our final feature vecto¥ has ten feature$/gywres Viexturea Vshape Vsmoothness M = Mo, Nz, g, hy,
h./h;, hy/hs). While additional features may be useful for detecting protruding polyps, we focus on
these ten features in this study. These features are selected using a forward feature selection method
[80]. To select features from candidate features, we evaluate the performance of features based on
10-fold cross validation on training data. We start with selecting an initial feature by testing each
individual featurev;, v, Va... Vi, from all m features and outputting the feature vectgrwhich gives
the best performance. We select next feature by concatematiity each of the rest ah-1 features
to be new feature vectors and outputting the feature vegtor)(which performs the best among
these new feature vectors. We repeat the above step to add a new feature at each step and stop until
the next best concatenated feature vector negatively contributes to the performance. Our selected
features using this method show effectiveness for polyp detection based on our experiments

(discussed in Section 6.5).
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6.5 Experimentson Polyp Image Detection

We implemented the analysis softwareMATLAB . We ran all experiments on an Intel Xeon

3.80 GHz CPU, 4 GB RAM workstation running Microsoft Windows Server 2003 operating system.

6.5.1 Experimental Setup

Data Set: We randomly selected6 de-identified video files captured during routine screening
colonoscopy at the image resolution 4#0x480pixels at29.97 frames per second (fps). Each file
contains only one colonoscopy procedure in its entirety. Twenty-efghese videos were captured
using FUJINON endoscopes, and the remaining eighteen video files were captured using OLYMPUS
endoscopes. The colons seen in these videos had little stool inside them. We extracted from these
video files 69 smaller clips50 clips with polyps and9 clips without any polyps. Thg0 clips
represent0 different polyps (one polyp per clip). Each polyp clip has consecutive frames showing
the same polyp appearing at variaiswing angles, light conditionand scalesPit patterns [56] of
these polyps are not clearly seen since magnifying endoscopes were not used.

Our non-polyp clips contain images with most types of objects often seen in colonscopy,
including blood vessels, colon wall, colon folds, stool, retroflexion, appendiceal orioels
diverticula [1]. For each clip, we extracted the images in JPEG format with a resolui@nxaf80
pixels at the frame rate &ffps. We removed blurry images using blurry frame removal software [70],
leaving the remaining clear (in-focus) images for the experiments. The blurry frame removal
algorithm in [70] considers a frame as blurry if it does not have sufficient number of connected edge
pixels detected using Canny edge detector. Totally, we obtabslimages each with a polyp in it
and488 images without any polyps on them. Two domain experts marked and agreed on the ground

truth of all polyp regions in the images. Fig. 10 shows example ground truth polyp regions.
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Table 6.2: Description of Data Sets Used for Polyp Image Detection

# Polyp clips # Non-polyp clips
Category ] ) Total
(# images, # edges) (# images, # edges)
Training 8 (160, 844) 6 (87, 1305) 14 (247, 2149)
Testing 42 (865, 4983) 13(401, 1813) 55 (1266, 6796)
Total 50 (1025, 5827) 19 (488, 3118) 69 (1513, 8945)

Table 6.3: Number of Polyp Images of Each Video Clip in the Training Set

Video clips captured using FUFJINON endoscope

Clip ID 1 2 3
# Polyp images 19 10 36
Video clips captured using OLYMPUS endoscope
Clip ID 4 5 6 7 8
# Polyp images 20 43 8 18 6

Table 6.4: Number of Polyp Images of Each Video Clip in the Testing Set

Video clips captured using FUFJINON endoscope

Clip ID 1 2 3 4 5 6 7 8 9 10
# Polyp images 9 21 4 17 8 17 7 26 11 8
Clip ID 11 12 13 14 15 16 17 18 19 20
# Polyp images 18 13 43 58 21 2 19 16 6 8
Video clips captured using OLYMPUS endoscope
Clip ID 21 22 23 24 25 26 27 28 29 30
# Polyp images 19 23 30 45 8 7 53 17 8 10
Clip ID 31 32 33 34 35 36 37 38 39 40
# Polyp images 37 20 37 11 50 41 11 26 28 11
Clip ID 41 42

# Polyp images 12 30

Table 6.5: Polyp Categories in the Testing Set

On colon On colon i
Category Near flat With stool All
wall folds
# Images 437 428 130 196 865

# Clips 20 22 6 8 42
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We split the polyp clips into non-overlapping training and testing sets. Table 6.2 describes the
data sets including the number of clips, images and extracted edges after the image preprocessing step
in each category. Table 6.3 and Table 6.4 describe the numbers of polyp images in each video clip in
the training data and the testing data, respectively. We included eight polyp clips in the training set,
which covered all categories of polyp appearance in Table 6.5 (discussed in more details in a later
paragraph).

Parameter value settings: All parameter values were determined based on experiments with the
training set. The parameter values may vary for different image resolutions in other data sets.

Image pre-processing and ECSP calculation: We extracted edges using Canny edge detector
with the low threshold, high threshold, and standard deviation of Gaussian filk@®500.1, and3.0,
respectively. Next, we removed small branches on these edges. We discarded an edge if 1) it had less
than 20 edge pixels (smaller than the number of pixels in the winflwor 2) it was an
approximately linear edge. An edge is considered linear if the least squares fitting error of its pixel
locations fitted to a linear line is less tha(e = 8 pixels in our case) using a linear regression as in
Chapter 4. We cut an S-like shape edge that typically occurred when a polyp was connected with a
colon fold into several C-like shape edges by tracking edge pixels and examining the change of the
edge tangent directions. Because our data set has clear images obtained based on the quality of their
Canny edges, we successfully extracted real polyp edges for the vast majority of polyp ibages (
of 1025 with these parameters. For ECSP calculation, the sliding windiowf sizes between 10x10
and25x25 pixels gave good performance. The valid rangé wfas from0.5 t01.0. In subsequent
experiments, we set the size Bf to 15x15 pixelsand A t0 0.5, and limit A/k to a maximum value
of 80 pixels. The one-dimensional window size centering=@tfor finding the minimum intensity
pointrg in the window wadx21.

Feature normalization: The values of most of our featur&syres Viexwrea Vshape Vsmoothness o,
hs, hyare in the range of [0, 1]. The featdre- h, is in the range of [-1, 1]. As the values of features
h,/h; and h/h; are in large scale rangese transformed the data of these two featwsiag log

functions log l,/h;) and log fu/hs). We then normalized each individual feathgeh,, log (h./h;) and
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log (hs/hs) by dividing it by its corresponding®, whereC? is the absolute difference of maximum
and minimum values for the feature d in the training data.

Performance metrics: We consider the minimum bounding rectangle of each edge obtained
from Canny edge detector as one region. RET RLPLP_IMG, RLPLP_IMG, FL_REGIOMnd
IMG be the number of correctly detected polyp images, the number of real polyp images, the number
of falsely detected regions (regions not overlapping with any real polyps), and the number of tested
images, respectively. A polyp image is considered correctly detected if it has at least one correctly
detected polyp region. A detected region is counted as a true positive if it overlaps with a ground truth
polyp region. The number of wrongly detected polyp regions was counted as falsely detected regions
(FLR). Regions that are falsely detected in true polyp images are also counted in FLR. We used the

following performance metrics that were also used in [30].

DET_RLPLP_IMG

True position rate (TPR) = L PLP IMG

Number of false regions per image (FLR) = %

To provide visual feedback of a detected polyp region, a high TPR is desirable. On the other hand, a
low FLR is desirable since many false positives can distract the endoscopist. We used these metrics in
the free-response receiver operating characteristic curves (FROC). Our TPR is not based on regions
since our focus is not on detecting an accurate polyp contour.

Classifier selection: We investigated the performance of several classifiers: two-class Support
Vector Machine (SVM) with radial basis function (RBF) kernel using Torch SVM library [81] and
Generalized Linear Models (GLM) [82] with Binomial, Gaussian and Poisson distributions as kernels.
We used feature vectors obtained from all images in the training and testing set®fimldacross
validation to obtain performance of these classifiers. We varied the standard deviation of Gaussian
kernel for the SVM classifier, and the threshold values of probability for GLM classifiers to obtain
FROCs. There are two more parameters for the SVM classifier [82], but they had little effect on
FROCs. These different classifiers showed similar FROCs (plots omitted). SVM with RBF kernel and

GLM with Gaussian kernel showed the best performance with the largest area under the FROC.
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We used a two-class SVM classifier with RBF kernel as the classifier for our technique for the
rest of the experiments. The two classes were polyp images and non-polyp images. In these
experiments, we varied the standard deviation of the Gaussian kernel for the SVM classifier to train
the classifier using all images in the training set and applied the trained classifier on the entire testing

set to get TPR and FLR for each point on FROC.

6.5.2 Experimentswith Different Features

Figure 6.5 shows FROC of individual features and the combination of all the features. Individual
shape features, texture features3 &ey features used in Chapter 4 showed similar performance. That
is about2/3 TPR comparing with the performance using all proposed feature$ Kée features
presented in Table 6.1 or combination of smoothness, shape and texture features imprové¥about
TPR on average. The combination of all featufigsféatures per edge) further improved alidi%o

TPR on average and showed the best performance.
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6.5.3  Experimentswith Different Types of Polyps

Table 6.5 shows polyp types based on their appearance: polyps on colon wall, polyps on colon
folds, polyps with stool, and near flat polyps (polyps with little protrusion). A polyp image can belong
to more than one category. For example, a near flat polyp image may also have stool.

Training and testing procedures were the same as in the previous experiment to evaluate
effectiveness of different features. However, the TPR and FLR for each polyp category was calculated
using detection results on polyp images in that category only. These polyp images have other edges
besides polyp edges. Results of non-polyp images were excluded from Figure 6.6 since we already
see the performance of our technigue on the entire test set in Figure 6.5. Figure 6.6 shows the FROC
of these types of polyps. The number of false regions per image is highest for the polyps on colon
folds because some protruding colon folds look very similar to real protruding polyps. We obtained
the highest TPR 076% for detecting near flat polyps. We found that these near flat polyps show
similar patterns on parts as protruding polyps. Most stool was correctly rejected. Some polyps contain
reflected smooth stool (e.g., water injected via the instrument) as falsely detected regions. Other false
regions are caused by noises like light reflected spots and water. Our technique is robust to different
viewing angles and polyp region sizes. Figure 6.8 shows some detection results under the TPR of
86.3% Detected edges are labeled by the minimum bounded rectangles of the edges. The examples
show the complexities of the polyps in our data set. Under the TR¥8.8% most mis-detected

polyps are poorly illuminated or far away from the camera.

6.54  Performance Comparison with Existing Techniques

We compared our technique with two existing leading techniques using LBP and OCLBP
features in [17] [50]. We chose these two techniques for comparison since OCLBP was shown to
perform best in previous studies [17] [31]. Other newer techniques were only evaluated on small data
sets and their performance was questioned in [11]. It is difficult to compare across different
techniques using the same performance metrics. The LBP and OCLBP uses region texture in a sliding

window while our technique uses features from edges. For comparison, in our technique, we consider
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the minimum bounding rectangle of a detected edge as a detected region representing that edge. The
LBP and OCLBP algorithms slide a square window over an entire image. At each sliding step, the
square region covered by the window is classified as a polyp candidate region or a non-polyp
candidate region by a SVM classifier using the features obtained from that square region. Detected
polyp candidate regions are sometimes connectd8l directions. The union of these connected
regions is considered as a single detected polyp region if it consists off ltdgfo,, number of
connected candidate polyp regions. Besides the parameters of SVM, we alsd hiakiggl from 1

to 7 for LBP and OCLBP. Since our technique does not use sliding winddwagion Was not
relevant. We used RBF kernel for SVM ald histogram bins for both LBP and intra- and
inter-channel OCLBP patterns as in [17] [50]. The size of sliding window influences the performance
of LBP and OCLBP features. Setting a window size too large will include many non-polyp pixels,
resulting in ineffective classification. We investigated performance under three window32izé?:

48x48, and 64x64 pixels. The sliding window step was set to half the window size.

Figure 6.7 shows the comparison of these techniques. OCLBP outperforms LBP with the same
window size. OCLBP witd8x48 pixels window size (denoted as OCLE#x48) shows the best
performance comparing with LBP and OCLBP using the other window sizes for this data set. Our
proposed technique outperforms these two methods in the following aspects. 1) Under the same true
positive rate TPR), the average number of false regions per im&f&R) of our technique is under
0.5 (Figure 6.5 and Figure 6.7), which is significantly lower than those of LBP and OCLBP.
Furthermore, false regions generated by our technique are not equally distributed within non-polyp
images. Most of false regions occur within images a)thtrong light reflected spots) smooth stool,
c¢) water, ord) protruding colon folds. For example, for 8h.4% TPR our technique ha8.32 FLR.

These false regions occur within or#9.5%of non-polyp images. As a resui9.5% of non-polyp
images do not have any false region unde8lhi%TPR However, OCLBP8x48 generates around
1.8 FLR under the sam81.4% TPR These false regions are close to equally distributed on different
types of non-polyp images. As a result, nearly every non-polyp in®8g8% has at least one false

region. 2) We observed that detected regions using OCLBP and LBP generally contained a large area
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of non-polyp pixels surrounding real polyp pixels: falsely detected regions were connected with real
polyp regions and counted as a single correctly detected region. Compared with these sliding-window
based methods, our method detects polyp edges, which reflects more accurate locations of the polyps.
Thus, our results should be more meaningful in clinical pracicéAnalysis time: Table 6.6 shows

that the average time for our technique to analyze an imagé seconds. The bottlenecks are ECSP
andROlI extraction. For LBP and OCLPB, the analysis time decreases as the window size increases.
In contrast, our technique took aroudd3 of the time taken by the best performance using
OCLBP-48x48 and a few seconds less than that of the best performance using LBP.

Additional polyp detection algorithms [11] [30] were proposed after [17]. However, these recent
techniques except our technigue [16] were evaluated on data sets that were too small to convincingly
validate the techniques. For instance, the algorithm in [30] provid&6.280 TPR andl.26 FLR
tested on onh87 images and took aboli8 seconds on a similar workstation to process one image
with around1/4 size of our image size. The number of distinct polyps studied was not given. We did
not directly compare with this technique as it used sliding-window based texture features which have
similar drawbacks as using LBP and OCLBP. Our previous algorithm in [16] runs significantly slower
than our proposed method and can miss a polyp whose entire shape does not fit an ellipse shape

template well. Therefore, we did not compare with it.



101

Table 6.6 Average Analysis Time in Seconds per Image

Module and its analysis time Total time
Method -
Module Time
Image preprocessing 1.8
ECSP ECSP, ROI extraction 4.0 7.1
Feature extraction, classification 1.3
Method Sliding window size Total time
32x32 21.3
LBP 48x48 9.7
64x64 6.4
32x32 63.0
OCLBP 48x48 27.9
64x64 19.6

LBP32x32 |
: LBP 48x48 |
| LBP 64x64

-1 | —¥—OCLBP 3232
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Figure 6.7: FROC curves of features obtained from part-based multi-derivative ECSP, LBP and
OCLBP with different sizes of sliding windows; features were tested on a SVM classifier with RBF
kernel.
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(k) o (m) (n)

Figure 6.8 Examples of detected polyp<" and 3 rows: ground truth is the area of the union o
marked ellipses;" and 4 rows: detected results marked with the minimum bounded rectangle
detected edges. (a) Polyp on colon wall. (b) Polyp on side of colon fold, with blood. (c) Sma
on colon wall, near flat, facing the camera. (d) Polyp on colon fold, with stool, facing the cam
Polyp on colon wall, facing the camera. (f) Polyp on colon fold. (g) Polyp on colon fold, with
(h) Small polyp on colon wall, near flat, with ol, facing camera. (i) Polyp on colon wall. (j) Srr
polyp on side of colon fold. (k) Polyp on colon fold, with stool. (I) Polyp on colon wall. (m) Pol
colon fold, with water and stool. (n) Polyp on side of colon’
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6.5.5 Discussion

Segmenting ECSP into parts gives flexibility to model or extract features from each part using
the method component which is suitable for that part. Experimental results show that the proposed
technique is robust to some challenging issues of polyp detection and outperforms existing leading
methods. Our technique can effectively detect different types of protruding polyp appearance
including polyps with little protrusion. It can mark detected polyp edges as visual feedback which is
more precise and less intrusive than marking a large region as in a sliding-window based method.
Furthermore, the false positives generated by our technique only appear in a small percentage of the
number of images analyzed. We can further reduce the number of false positive edges to avoid
overwhelming the endoscopist with unnecessary warnings by reducing the detection rate at the image
level and using temporal information from consecutive frames (e.g., tracking of detected edges across
frames) to improve the overall detection rate. Toward providing real-time feedback during live
colonoscopy, we can already reduce the analysis time by code conversion to C/C++ and optimization

on ECSP and feature extraction for the analysis rate of at least 1 frame per second.

6.6 Near Real-time Polyp Warning and Polyp Shot Detection

In this section, we further improve the analysis time for polyp image detection by simplifying
features obtained from part-based multi-derivative ECSP. We combine polyp edge detection results
with an edge tracking algorithm to reduce the number of false positive edges at the image level and
improve the overall detection rate. Finally, we extract consecutive images showing appearance of
detected polyp as semantic units in the video.

We call a sequence of consecutive images where each non-blurry image is a polyp image as a
polyp sub-shotand a single polyp sub-shot or a sequence of consecutive neEdypysub-shots
including the non-polyp images between each two sub-shots togethgrobg ashot We consider
that two consecutive polyp sub-shots are nearby if the duration between the ending frame of a

sub-shot and the starting frame of the other sub-shot is smaller than a predefined thfgghald (
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single polyp sub-shot is considered as a polyp shot if it does not have any nearby sub-shot. Our
software developed using C/C++ and Open Source Computer Vision (OpenCV) library can provide

warning feedback on detected polyp sub-shots and extract polyp shots for endoscopists in near
real-time under the frame rate of 10 fps. Figure 6.9 shows the flow chart components of our near

real-time warning and polyp shot extraction system.
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Figure 6.9: The flow chart of components of the near real-time polyp warning and polyp shot
extraction system.

6.6.1  Simplified Featuresfor Near Real-time Polyp Detection

Our features for polyp detection are mainly obtained from Part-based Multi-derivative ECSP. To
speed up the computation time, especially the bottlenecks of the feature extraction part, we modified
our feature extraction method as follows.

Texture feature on ROl oncave: We experimentally found that the filtering step using
LOWESS filter dramatically slowed down the computation speed. Therefore, we removed the
LOWESS filter. Instead, we compute the following texture feature without using any smoothing filter
in our near real-time version. We compute one binary matrix for 8dp, .., as detailed below.

The width and height of the binary matrix are the same as those BOIS, qqve- Finally, we
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compute the texture featuMe... as the average of the binary values of the binary matrix of
ROl oncave in the domain of [0, 1].
1) If the width of ROI, ;. cqve 1S larger tharl7, we slide dx17 pixel window overROI o, cave
one pixel at a time. We assign a binary scoré @ir the corresponding pixel in the binary
matrix if the pixel intensity value iROI,,,qqve IN the right most position of the window is
greater than that in the left most position of the window, or a binary scOretbérwise. We
experimented with different window sizes and finally chose a 1x17 pixel window since it can
better resist noise.
2) If the width of ROI . ncave IS Smaller thanl7, we slide alx2 pixel window over
ROl . ncave ONE pixel at a time. We assign a binary scoré fair the corresponding pixel in
the binary matrix if the pixel intensity value in the right side of the window is greater than
that in the left side of the window, or a binary scor® atherwise. ALx2 pixel window is
chosen due to the computation simplicity.
In most case, the tendency of intensity increase along the protruding direction of polyps on
ROI oncave 1S NOt Obvious within a small size window without any smoothing due to the noise.
Therefore, we need a sufficiently large window to compute the tendency of intensity increase.
However, if ROl ,,.qve has a small width, it is most likely that the size of its corresponding edge is
small (i.e., short edge). For a short polyp edge, it is most likely that its correspd@ipg,.qve IS
not very noisy. A short non-polyp edge is most likely caused by light reflection, which generally has a
smooth surface omROI.yncqve- Therefore, alx2 pixel window is sufficient for the computation
without smoothing. Note that we calculate the texture feature on the &6tifg, .,y iNStead of
calculating separate features ®®13,,.,,. and ROI%,, ... This is because we use a larger
window for the texture feature calculation in the near real-time version.
Shape of edge: We added one shape feature to remove edges that do not fit well with an ideal
ellipse using the least squares ellipse fitting method [82]. We perform least squares ellipse fitting on
all extracted edges in the binary edge image and dilate the fitted ideal ellipse for each edge using a

circle structuring element with a radius 4fpixels. The dilation is to account for some nearby edge
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pixels that do not lie perfectly on the ideal ellipse. Mdte the total number of pixels on the edge. Let
Eeiipse D€ the percentage of edge pixels not covered by the dilated ideal ellipsejateedges in
which Eipse IS large than a threshold (Table 6.7).

We selected all useful features using the forward feature selection method [80] based on the
training data. We set our parameter values based on leave-one-out-cross-validation in the training data.
That is, forN polyp clips in the training set, we set parameter values based on trisidinmplyp
video clips and validate the performance on the remaining one polyp video clip. We repeated this step
to select one polyp video clip from training set and record the performance at each validation step. We
used the parameter values that gave the maximum average performance. To save the computation
time, we no longer use some useful features presented in Section &/4JikendVsmoeothnessINStead,
we replace them with some features calculated using the appendiceal orifice detection algorithm
(Chapter 4). We summarized all used features and their value ranges for edges qualified as polyp
edges in Table 6.7. The notations and descriptions of these features can be found in Section 6.4 and

Chapter 4.
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Table 6.7: Features, Their Order of Computation and Value Ranges for Near Real-Time Polyp
Detection

Computation . Value
Feature Name Feature Description
Order Range

. , MSE (mean squared error) of the edge fitted using least |
1 EdgeLinearity* . . > 2 pixels
squares linear fitting

Percentage of edge pixels not covered by the fitted
2 E*ellipse . . . [0, 08]
dilated ideal ellipse

[1/400,
3 Curvature* Curvature range of the edge
1/20]
4 h, Amount of intensity return after crossing the edge >0.02
Ratio of amount of intensity return after crossing the
5 hy / by edge to the amount of intensity drop before crossing >0.5
the edge
hs Sharpness of edge before crossing the edge <1.67
hy Sharpness of edge after crossing the edge >0.652

8 he— s Difference between the sharpness of edge after >0
N crossing the edge and before crossing the edge B

Ratio of edge sharpness after crossing the edge to the
edge sharpness before crossing the edge
10 Viexture Texture feature omRO!,ypcqve (0.7, 1]
All parameters in this table were obtained based on experiments with the training data set. They were then
used for running the experiments on the testing data set.

9 hy/ hg

* Parameters sensitive to an input image size

6.6.2 A Coarseto-Fine Near Real-Time Polyp I mage Detection System

An edge is detected as a polyp edge if all features in Table 6.7 are within their value ranges.
Otherwise, the edge is detected as a non-polyp edge. If any edge is detected as a polyp edge in an
image, we consider that image as a polyp image.

Because the extraction of features is the most time consuming part in the system, to save the
computation time, we design our polyp edge detection system as a coarse-to-fine detection system.
That is, the system calculates one feature after another, starting from the calculation of the feature

with the fastest computation time. We list the order of computations of these features in Table 6.7. If
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the value of any feature is not in its value range as specified in Table 6.7, the edge is detected as a
non-polyp edge without the calculation of subsequent features. Comparing with the methods using

machine learning models like SVM presented in Section 6.5, a coarse-to-fine detection system saves
the overall computation time and benefits the analysis time of frames with many detected edges. We
consider that a polyp image is correctly detected if the system detects at least one polyp edge in

ground truth of that image.

6.6.3  Edge Tracking

Toward reducing the number of falsely detected edges and improving the overall detection rate
using temporal information, we apply Lucas-Kanade tracking [83] method to track detected polyp
edges across multiple frames. The intuition is that if a detected edge is indeed a real polyp edge, there
is a high probability that the edge will be detected as a polyp edge in subsequent frames in a small
time window. Otherwise, the edge is considered as a falsely detected edge.

There are many kinds of local features that can be used for tracking. Most popular trackable local
features are the pixels with large derivative values in two orthogonal directions in the image [84].
These pixels are considered as interest points, suchrasrs[85]. Generally, we do not consider
pixels on edges to be good for tracking. This is because many edges of objects have a local linear
shape. The pixels on edges with local linear shape have only large derivative values in one direction,
but small derivative values in another orthogonal direction. However, if pixels on edges have large
derivative values in both of the two orthogonal directions, these edge pixels can be considered as
good points to track, such as pixels on curve edges. Polyp edges are curve edges in most cases. We
consider a subset of pixels on polyp edges as good feature points to track.

We use a popular tracking method — Lucas-Kanade (LK) to track edges. LK trackisgaissa
optical flow tracking method which has a reliable performance on tracking when given points with
good features to track [84] [86], such as corners as discussed earlier. LK tracking is fast. In the
following paragraphs, we give a brief review of the LK tracking technique and discuss how it is used

for tracking polyp edges.
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Brief review of LK tracking: Let I(x,y,t) be the intensity value of a pixel at the coordinate
u = (x,y) at framet. Assume that the intensity value of pixe&loes not change from frarhéo t+1.
We have
I(x+uy+vt+1)=I(xy,t), (6.4)
where, ¢ = (u, v) is the displacement of the pixel between framamsdt+1. Based on Taylor series
expansion, for a small displacemeit, v), the following equation is satisfied:

Lu+ILv+1 =0, (6.5)
where I,, and I,, are the partial derivatives of intensity values alongtaerdy directions, andl, is
the partial derivative of the intensity value along the temporal domamsolve for the displacement
vector (u,v), we fit a small 2 dimensional windoW; centered ati = (x,y). Let us defineu; as
the pixel in windowW,; fori=1, ..., N Equation (6.5) for alN pixels (i.e., 1, ...uy) in the window
W, can be expressed in a matrix form as

[Ix(ﬁﬂ Iy(ﬁﬂ] u [lt(al)]

Le(iy) (i) I (i)

. (6.6)

L@)  1,(dp) Ie(y)

L(iy)  I(in) I (iiy)

system is casted into solving the problem of minimizing the MSE error of least-squares fitting in the

Let the matrix A =

] and the matrixB = [ ] The solution of this linear

window. That is
] = @ara)-1as. (6.7)
It is obvious that a corner feature like pixel generally has two large eigenvectafsipbecause it
has large derivative values in two orthogonal directions. Therefdig, is generally invertible for
edge pixels on curve edges. To solve the problem of a large displacement of(ugejothat cannot
fit in a small window, we use the Pyramid Lucas-Kanade [84]. The Pyramid LK calculates the tracked

feature points from the top layer of the first Gaussian Pyramid. The calculated feature points are used

at the next Gaussian Pyramid layer for motion estimation. Generally, Pyramid LK with a larger
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Gaussian PyramidPL has a better tracking accuracy but a higher computational time. A larger
Gaussian PyramidPL is better for tracking an edge with a large motion because it searches the
corresponding tracked point in a finer Pyramid image. We experimentally seletteds for polyp

edge tracking.

Tracking edge pixels using Pyramid LK: We track pixels on edges between two consecutive
frames as follows. First, we downsample the pixels on an edge using the sampling fdgtail 4f
pixels), i.e., selecting one pixel out of evety pixels on that edge. We consider the downsampled
edge pixels as feature points for Pyramid LK tracking. Next, we use the OpenCV function
cvCalcOpticalFlowPyrLK [84] to track the selected feature points. The cvCalcOpticalFlowPyrLK
function calculates the errar, for each feature point as the difference of appearance between the
feature point and its tracked point. The tracked point is searched within a small witidow
surrounding the feature point. We consider that an edge pixel is correctly tracked if both of the
following conditions are satisfied: 1) the tracking erer< Thld,,; 2) the distancedist; <
Thldgs:,, Where dist, is the Euclidean distance between the feature point in frame its tracked
point in frame t+1.

Tracking/M atching edges between two frames: Given two consecutive frameésandt+1. We
consider the edgein framet+1 matches the edgen the previous frameit there is at least one pixel
on edgg falls inside the 2D window of siz&, centered at any tracked feature point on eddfe
there is more than one such edge in previous ftamwe match edggto the edge which has the

largest number of matched feature points.

6.6.4  Near Real-time Polyp Warning Feedback

We track each edge obtained from Canny edge detector. We start marking the tracked edge on
screen as visual feedback to warn the endoscopist if that edge is detected as polyp edge for at least
N, consecutive times (i.e., iV, consecutive clear frames). A warned polyp edge is marked until the
tracking of that edge is lost. We consider a sequence of consecutively detected non-blurry frames as a

detected polyp sub-shot if it contains the same tracked polyp edges in each frame. The start and end
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frames with consecutive tracked polyp edges are the start and end frames of a detected polyp
sub-shot.

Unexpected loss of tracking: In an ideal case, the loss of a tracked edge is expected if that edge
no long appears in subsequent frames in the rest of the video. However, the loss of a tracked edge
may also happen if 1) the edge is not detected in consecutive images due to the noisy nature of
colonoscopic images such as image blur, or 2) the edge disappears out of the FoV of the endoscope
and then reappears in the FoV after a short time. To handle the unexpected loss of tracking, we set the
value of N, to either one of the constant valuEsld,, or Thld,, where Thld,, > Thld,; as
follows.

1) If a tracked polyp edge is lost at framet, we setN, to Thld,,. During the nextT,,

seconds from framg if an edge is detected as a polyp edge for at [¥gstonsecutive

times on different frames, that edge is considered as a warned polyp edge and the visual
feedback on that edge is shown. The reason to use the lower of the two threshold values is to
allow for a faster response time of the feedback on a polyp that reappears after it is briefly
out of the FoV of the camera.

2) If a tracked polyp edgeis lost at frame, and there exists any other edge which is still
tracked at frame, we also setV,, to Thld,, for all subsequent frames until all tracked
edges from frame are lost or an edge is detected as a polyp edddpfopnsecutive times
on different frames. That is, we use the presence of the common colon wall (sharing some
common edges) to avoid ending the polyp sub-shot too early because the polyp is not too far
to reappear in the FoV of the camera.

3) Otherwise, we seN,, to Thld,,.

We describe the major functions in our algorithms in Figure 6.10 and 6.11 using pseudo code.
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Algorithm: Polyp Edge Detection

/I Functionality: Identify an edge as a polyp edge if all of its feature scores are within their value

1 ranges

/Il Input:

1 edge[]: Array with each element storing the information of an edge
I id: Edge ID

I/l Output: True if the edge corresponding to edge id is a detected polyp edge
IsPoLYPEDGE (edge][], id)

© oo RODNR

NRNNONNRNNMNNNNNRERERRRERERERERR R

/I MSE: Linear line fitting representing the edge linearity
MSE«— MSEOFEDGELINEARITY (edge]id])
if MSE< 2 pixelsthen
return false
end if
/I fitEllipse: Ellipse fitting score
fitEllipse « ELLIPSEFITTING SCORH edgel[id])
if fitEllipse>0.8 then
return false
end if
/I Curvature Curvature of an edge
Curvature— EDGECURVATURE(edge[id])
if Curvature< 1/4000r Curvature > 1/2@hen
return false
end if
/I Calculate ECSP profiles and features for these profiles
edgelid].profiles— ECSPROFILESedge[id])
edgelid].h,, edgelid}h,, edge[id}hs;, edge[id}h, — KEYPOINTFEATURES edge[id])
if edge[id].h, / edge[id]h; < 0.02
or edgelidl.h;> 1.67
or edgelid]l.h, < 0.652
or edge[id].h, - edge[idjhs < 0
or edgelidl.hy/edge[id].h; edge <lthen
return false
end if
if TEXTUREFEATURE(edgelid].profiles id) <0.7then
return false
end if
return true

Figure 6.10: Pseudo code of the polyp edge detection algorithm
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Algorithm: Near Real-Time Polyp Sub-shot Warning

/I Functionality: Start to warn the endoscopist the detected polyp edge if we detect the edge as a

1 polyp edge inN,, clear images.

/I Input:

1 video: Input video

Il Thldy,,: The minimum times of detected edges to start to warn the endoscopist
1 Thld,,: Threshold for handling the loss of tracking

I T,,: Threshold for groupingwo sub-shots into one sub-shot

1 frameRate: Frame rate of the input video

/I Output: Warning edge(s) labeled on the screen
POLYPSUBSHOT (video, Thld,q, Thld,,, T, frameRatg

1. //videoClip.clearFrame: Array storing information of all clear frames

2. [/fld: Frame ID

3: fld<—0

4: [lisPolypDetected: True if we detected at least a polyp frame in this videopflatsavise
5: isPolypDetected « false

6: whilelsExisT(video.clearFrame][fld] do

7. /I Calculate canny edges of current frame CurrFrame.edge

8: CurrFrame.edge— CANNY EDGESvideo. clearFrame[fid]

9: /I'If CurrFrame s the first frame with detected edges, set CurrFraséhe initial
10: /I frame for tracking

11: if ISTHEFIRSTFRAME(video.clearFrame[fld] == truethen

12: PrevFrame— CurrFrame

13: flde— fld+1

14: continue

15: end if

16: /I trackedEdge[]:Array storing the tracked edges from previous frame the
17: I detected new edges from current frame

18: /I nTrackedEdgesNumber of combined edges

19: trackedEdge[] nTrackedEdges— TRACKEDGES(PrevFrame.edge, CurrFrame.edpe
20: I Set N, value to handle the loss of tracking

21: N, « Thldy,

22: /I LatestPolypFramelD: Frame ID of the latest detected polyp image

23: if isPolypDetected == true

24: and CurrFrame.id — LatestPolypFramelD < frameRateT®,

25: Ny« Thld,,

27: I/l Check whether there is at least one tracked edge between two frames
28: else

29: if nTrackedEdges 0

30: Ny« Thld,,
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Algorithm: Near Real-Time Polyp Sub-shot War ning (continued)

31: end if

32: end if

33: /I Warn an edge to endoscopist if it is a detected polyp eddg iclear images

34: for eld — 0 to nTrackedEdges

35: if trackedEdgel[eld].detectedPolypTimes/¥,

36: if IsPOLYPEDGE(trackedEdge[eld] == true

37: trackedEdgel[eld].detectedPolypTimes

38: < trackedEdge[eld].detectedPolypTimes +1

39: isPolypDetected true

40: end if

41: ese

42: // Display detected polyp edge(s) on a screen to warn the endoscopist

43: DisPLAYWARNINGONSCREENtrackedEdgeleld)

44: LatestPolypFramelD « CurrFrame.id

45: end if

46: end for

47: CurrFrame«< PrevFrame

48: fld « fld+1

49: end while

Figure 6.11: Pseudo code of the near real-time polyp sub-shot warning algorithm

6.6.5  Near Real-time Polyp Shot Extraction

We group two consecutive detected polyp sub-shots and all frames which do not contain any

warned polyp edge between the two detected polyp sub-shots into a single semantic unit — a detected

polyp shot if any one of the following conditions is satisfied.

1) The duration between the ending frame of a detected sub-shot and the starting frame of its
consecutively detected sub-shot are smaller thaseconds.
2) Two consecutively detected sub-shots have a commonly tracked edge.

We extract all these groups as detected polyp shots. We discard a detected polyp shot if it is

shorter thanTp seconds.
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6.7 Performance of Near Real-time Polyp Detection

We implemented all the analysis code of the near real-time polyp detection and edge tracking in
C/C++ (Win32 in Microsoft Visual Studio 2008) with Open Source Computer Vision library

(OpenCV Version 2.1).

6.7.1 Experimental Environment and Data

Data Set: We randomly selecte®1 de-identified test video files captured during routine
screening colonoscopy at the image resolutio@28x480 pixels a29.97 frames per second (fps).
Each file contains only one colonoscopy procedure in its entirety. Among thesie6Tiles, 8video
files were included in the training set, and the remai®8diles were included in the testing set.
Among the eight training videos, three of them were captured using an OLYMPUS endoscope and the
remaining five videos were captured using a FUJINON endoscope. Each of these training videos
contains at least one polyp. Next, we selected one polyp shot from each training video by manually
labeling the starting and ending frames of each shot. We will discuss the way to label a polyp shot in a
later paragraph. Finally, we obtain&polyp shots from8 different videos as our training data.
Among53 test videos, forty-one of these videos were captured using OLYMPUS endoscopes, and the
remaining twelve video files were captured using FUJINON endoscopes. Twenty two videos of these
53 test videos contain at least one polyp, and the remaining thirty one videos do not contain any polyp.
The colons seen in these videos had little stool inside them. We ran our real-time version of blurry
frame removal software [70], leaving the remaining clear (in-focus) images for polyp detection and
edge tracking. The blurry frame removal algorithm in [70] considers a frame as blurry if it does not
have sufficient number of connected edge pixels detected using Canny edge detector. The overall
system consists of three consecutive components (modules). Table 6.9 shows the functional output,
the frame analysis rate in fps of each module and the dependencies among the modules. We run these
modules in parallel using our middleware software — SAPPHIRE [87]. Although these modules have
the output dependence, the bottleneck is at the slowest module. The average analysis time is close to

the analysis time of the slowest module in an ideal case [87].
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Ground truth labding: As aforementioned, the tracking of a polyp edge may be lost due to the
noisy nature of colonoscopic images such as image blur. As a result, the consecutive frames showing
a polyp could be easily broken into many polyp sub-shots in the detected results. We manually label
the starting and ending frames of a polyp sub-shot and a polyp shot in the ground truth data by the
following ways. We consider framdsand as starting and ending frames of a polyp sub-shot
respectively if that polyp continuously appears in images from the firatoethe framej, and
disappears at the framel. In the ground truth, we consider consecutive polyp sub-shots and all
non-polyp images between each two of them together as one polyp shot if these polyp sub-shots
contain the same polyp. Therefore, a polyp shot in our ground truth can be either one sub-shot or
consist of several nearby consecutive sub-shots. In the latter case, we label the starting frame of the
first polyp sub-shot and the ending frame of the last polyp sub-shot in a polyp shot as the starting and
ending frames of that shot. In our data set, a polyp removal operation typically appears after that
polyp is found. During the removal of that polyp, snares or biopsy forceps (see Figure 5.1 (b-c) in
Chapter 5) appear together with the polyp. These instruments sometimes occlude the polyp. In
addition, after the polyp removal, only a partial polyp may remain and its shape may be changed. This
is because the polyp is too big or is in a difficult location for the endoscopist to remove the entire
polyp at once. Therefore, we do not consider images with polyps together with an instrument or
frames after a polyp removal as part of our ground truth data.

Image pre-processing: We extract edges detected by Canny edge detector. Before we apply
Canny edge detector, we smooth an image by two Gaussian filters separately with different standard
deviationsag; and g,. We apply Gaussian filters twice with different standard deviations to avoid
noisy edges caused by details in image at different scales. All Canny edges are used for polyp edge
detection and edge tracking. To speed up the analysis time, we no longer cut an S-like shape edge into
several C-like edges because Canny edges obtained using cvCanny function in OpenCV are

sometimes broken into small parts.
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Parameters: All parameter values were determined based on experiments with the training set of
8 polyp shots from the3 training videos. The parameter values may vary for different image

resolutions in other data sets. Table 6.10 lists the parameters values.

Table 6.8: Description of Videos in the Testing Set for Near Real-Time Polyp Detection

Category OLYMPUS FUJINON Total
Number of videos 41 12 53
Number of polyps 20 23 43

Average video length
00:18:05 00:28:53 00:20:21
(hh:mm:ss)
Total video length
12:11:58 05:46:41 17:58:39

(hh:mm:ss)

Table 6.9: Three Modules of Near Real-Time Polyp Detection System

) Frame Dependency Module
Module Name Functional Output .
Analysis Rate Name
Clear image detection Clear images 30 fps -
Edge tracking Tracked edges 30 fps Clear image detection
Polyp warning and shot Warned polyp sub-shots
wp g POlyP 10 fps Edge tracking

extraction and extracted polyp shots
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Table 6.10: Parameters and Values in OpenCV for the Proposed Near Real-Time Polyp Detection

No. Parameter Name Valid Parameter Value/Range

1 Gaussian filters Standard deviations of Gaussian filgrs: 9 and g, = 3

2 Canny edge detector Low threshold of 10; high threshold of 15

3 D; Sliding widow size for the calculation of edge normal: 30x30 pixels

4 A The parameter in Equations 3.1 and 3.2:0.25

5 w.* Size of the window for LK tracking: 15x15 pixels

6 Thld,,* Threshold of errore, of tracked edge pixelsThld,, = 500

- Thid g, Thre_shold of the .Euc_lidean distance between an_edge pixel in frame
and its tracked pixel in framte1: Thldg,, = 40 pixels

8 R, Size of a window centered at the tracked edge pixel: 3x3 pixels

9 e Downsampling factor of edge pixels on an edfjg:= 14
Minimum number of consecutive times on different frames an edge is

10 Thld,, detected as a polyp edge in order to consider this edge as a warned
polyp edge after losing edge trackinBhld,, = 2
Minimum number of consecutive times on different frames a tracked

11 Thld,, edge is detected as a polyp edge for this edge to be considered as a
warned polyp edgeThld,, = 3

12 T Minimum duration between two consecutive polyp sub-shBjs: 15
seconds

13 T, Minimum duration of a polyp shotl,, = 10 seconds

14 PL Gaussian Pyramid level of Pyramid LK tracking: PL =5

All parameters in this table were obtained based on experiments with the training data set. They were
then used for running the experiments on the testing data set.
* Parameters sensitive to an input image size
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Performance metrics: We mark the tracked polyp edges as visual feedback — polyp warning
feedback on screen to warn the endoscopist and extract polyp shots as defined in Section 6.6.5. We
define the following criteria as the measurement of correctness for the detection.

1) A polyp is correctly warned if the warned polyp sub-shot contains at least one image

showing that polyp.

2) A polyp is correctly detected in the polyp shot if at least one image showing that polyp is in

the detected shot.

3) A detected polyp shot is a correctly detected polyp shot if it contains at least one real polyp

image.

4) A detected polyp sub-shot is a correctly detected polyp sub-shot if it is a sub-shot in a polyp

shot in the ground truth.

We define the following performance metrics for polyp warning and polyp shot detection using

the notations in Table 6.11.

Performance metrics of polyp warning:
COR_WRN_PLP

recallwrn = UOM RLPLP

numFLWRN
NUM_VIDEO

lenFLygry

numFLWRN ==

LenFL =
aveLentLwen numFLygry

. avgLenFLygrn
ratioLenFLygry = —angenVi deo

Performance metrics of polyp shot extraction:

COR_PLP_SOT
recallsor = NGV RL PLP

numFLSOT
NUM_VIDEO

lenFLSOT

numFLSOT =

LenFLggr = —————
avglentsor numFLgqp

. avgLenFLgot
ratloLenFLSOT = avg]_‘em
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Table 6.11: Notation and Explanation of Performance Metrics for Near Real-Time Polyp Detection

No. Notation Explanation of Performance Metrics
1 NUM_RL_PLP Number of real polyps
2 COR_WRN_PLP  Number of correctly warned polyp
3 COR_PLP_SOT Number of correctly detected polyp shots
4 NUM_VIDEO Number of analyzed videos
5 numFLygy Total number of falsely warned polyp sub-shots in all tested videos
6 numFLgg Total number of falsely detected polyp shots in all tested videos
7 avgNumFLyyry Average number of falsely warned polyp sub-shots per video
8 avgNumFLgg Average number of falsely detected polyp shots per video
Total duration in seconds of all falsely warned polyp sub-shots per
9 lenFLygrN _
video
10 lenFLggr Total duration in seconds of all falsely detected polyp shots per video
11 avgLenFLyry Average duration in seconds of each falsely warned polyp sub-shot
12 avgLenFLgqr Average duration in seconds of each falsely detected polyp shot
Percentage of the number of correctly warned polyps out of the total
13 Recallyry
number of polyps
Percentage of the number of correctly detected polyps in polyp shots
14 Recallggr
out of the total number of polyps
15 ratioLenFLygrn Ratio of the average duration in seconds of each falsely warned polyp
sub-shot and the average duration in seconds of each video
Ratio of the average duration in seconds of correctly detected polyp
16 ratioLenRecallggr o ]
shots and the average duration in seconds of polyp shots per video
17 avglLenVideo Average video length in seconds
18 avgLenPolypsor ~ Average duration in seconds of polyp shots per video
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6.7.2 Performance on Near Real-time Polyp Detection

Table 6.12 shows the performance of our system for polyp warning and polyp shot extraction in
terms of detection rate. We ran the system on the testing set of 53 videos.

Polyp Warning Performance: Our system correctly warnedV.7% (42 of 43) of polyps. The
total duration of false sub-shots on averagd.8% of a video duration. That is, our system can
correctly warn97.7%polyps in near real-time and does not generate falsely detected images for the
95.7%duration in an entire colonoscopy procedure. The average number of false sub-shots per video
is 36.2 and the average duration of each false sub-shot isl@ghlseconds. The only mis-detected
polyp is due to the image blur. The clear image detection module detected all frames of this polyp as
blur (out of focus) frames. Therefore, our polyp detection module did not analyze these frames.

Polyp Shot Extraction Performance: We extracted a polyp shot afté, seconds from the
detected end frame in the last sub-shot of that polyp shot. As aforementioned, we ignore a detected
polyp shot if it is shorter thaff,, seconds. As a result, we correctly extrad8d’% (39 of 43) of
polyps. Each of these extracted polyp shots covers an aver@ge2étof polyp shot frames in the
ground truth. We extracted an averageldffalse shots per video with an average duratio@3ot
seconds. The duration of these false sho8&24%oof a video duration. We mis-detectddadditional
polyps. Two of the three mis-detected polyps have a tiny size on images and one of them does not
have enough illumination. The algorithm does not detect longerThaseconds of the appearance of
these polyps in their videos, although these polyps are correctly warned in near real-time.

The missed polyp images are of 1) a polyp that appears as a tiny region in an image and 2) a
polyp with weak illumination. Polyps from these two categories were seen at a long distance from the
capturing camera. It is hard to obtain good Canny edges from the images of these two types of polyps.
The falsely detected images are from the following categories: 1) protruding colon folds with smooth
surface, 2) protruding appendiceal orifice, 3) ileocecal valve and 4) smooth water. Most of falsely
detection images are from ileocecal valve. Some of the falsely detection images are from protruding

colon folds and appendiceal orifices. Only a few of them are from smooth water.
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Table 6.12: Performance of Near Real-Time Polyp Warning and Polyp Shot Extraction

Endoscope Polyp Warning Polyp Shot Extraction
Type Performance Metrics Value Performance Metrics Value
recallyry 95% recallgor 85%
numFLygry 32.8 numFLggp 3.7
OLYMPUS avgLenFLygrn 13s. avglLenFLgqr 23.9s.
ratioLenFLyyry 4.3% ratioLenFLgg 9.0%
ratioLenRecallggr 81.1%
recallyry 100% recallgor 100%
numFLygry 48.0 numFLgg 4.8
FUJINON avgLenFLygrn 15s. avgLenFLgqr 24.7
ratioLenFLyyry 4.4% ratioLenFLggy 7.3%
ratioLenRecallggr 73.6%
recallygry 97.7% recallggt 90.7%
numFLyry 36.2 numFLgg 4.0
Total avgLenFLygrn 14s. avglLenFLgqr 23.1s.
ratioLenFLyyry 4.3% ratioLenFLggr 8.2%
ratioLenRecallggr 78.2%

Analysistime: We ran our analysis software on an Intel (R) Xeon 2.0 GHz duo-core CPU with
6.0 GB RAM on a 64-bit machine with Windows 7 Professional operating system. Table 6.13 shows
the analysis time of our system to analyze an image for edge tracking and polyp detection modules.
We used the clock function [88] in C++/C to record the starting time and ending time of each module
running on each frame. We measured the analysis time of two modules running on 1) only clear
images, and 2) both clear and blurry images. If we run edge tracking or polyp detection module along,
each of them took an average of less tB@&ms to analyze a clear image, or an average of agfund
ms to analyze an image in an entire video. However, Table 6.13 does not truly reflect the analysis time
of our system. This is because we ran our modules in parallel using the middleware software —
SAPPHIRE [87]. We set different frame analysis rates for different modubgsfps for the clear
image detection modul&0 fps for the edge tracking module, at@ fps for the polyp detection

module. As a result, we can run the system in near real-time to analyze a colonoscopy video.
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Table 6.13: Average Analysis Time for Edge Tracking and Polyp Detection
(Milliseconds (ms) per image)

) _ Clear images All images
Functionality
mean median mean median minimum maximum
Edge tracking 27 ms 16 ms 19 ms 16 ms 0ms 203 ms
Polyp detection 28 ms 16 ms 20 ms 16 ms 0 ms$ 188 ms

6.8 Chapter Summary

In this chapter, we introduced a part-based ECSP for polyp detection. We presented an algorithm
to segment multi-derivative ECSP and ROI into non-overlapping parts. This part-based ECSP gives us
flexibility to obtain different kinds of features from different parts or pick up a particular method to
model a part that is suitable to that part. We investigated new features obtained from parts, and
compared it with two existing texture and color based state-of-the-art techniques for polyp image
detection. The simplified features obtained from part-based ECSP module further saved the
computational time. By combining the detected polyp edges from our polyp image detection method
and an existing edge tracking method, we correctly detédtetdo (42 of 43) of polyps obtained
from 53 video files that were randomly selected from routine screening colonoscopy. Our polyp
warning and shot extraction system can run in near real-time with an ave@®@ tdisely detected
polyp sub-shots per video, and the average duration of each of these false sub-shots isldss than
seconds. To our best knowledge, our system is the first technique that can effectively detect polyp
images and polyp shots in near real-time. Our system is very promising for clinical use to assist the
endoscopist by providing visual feedback of a potential polyp during routine screening colonoscopy.
The future work of this research is to further reduce the computational time by optimizing both the
algorithm and analysis code to achiev@ldps analysis rate for each module, and use our system in a

clinical trial to determine additional needs in order to deploy the system in endoscopy practice.
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CHAPTER 7 CONCLUSION AND FUTURE WORK

This dissertation describes several contributions in both ECSP based techniques and

colonoscopic object detection as follows.

1) It demonstrates a new calculation method to extract features from multi-derivative ECSP
(Chapter 3) and presents the first feature-based ECSP techniques for object detection.

2) It presents an edgeless ECSP method that calculates ECSP and obtains ECSP features
without using edge detectors (Chapter 5).

3) It presents a part-based ECSP method that allows us to model and extract features from each
segmented part using the method which is suitable for that part (Chapter 6).

4) It proposes several colonoscopic object detection algorithms including appendix image/video
detection algorithms (Chapter 4), near real-time retroflexion image/video algorithms
(Chapter 5), and near real-time polyp image detection and polyp shot extraction algorithms
(Chapter 6).

5) It demonstrates a software package for evaluating our techniques in a clinical trial. The

software is very promising for clinical use in terms of both detection rates and analysis time.

7.1 Detection of Appendix Image and Video

In Chapter 4, we introduced two algorithms for detecting the image showing the clearly seen
appendiceal orifice and the video showing at least three seconds of the appendiceal orifice inspection
based on ECSP features. The proposed appendix video detection algorithm first uses new local
features derived from ECSP and it 4 order derivative profile to detect the appearance of the
appendiceal orifice and then uses near pause detection to recall miss detected appendiceal orifice
images with weak edges and reject some false classifications.

The experimental results show that our method is able to handle object rotation, translation and
scaling in image, and noisy images with strong light refleclibie. developed system can effectively

detect appearance of appendiceal orifice in image and appendix video tesk&d emaloscopy
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procedures. The average sensitivity and specificity for the detection of appendiceal orifice images
with the often seen crescent appendiceal orifice shap86a®&% and 90.47% respectively. The
average accuracy for the detection of appendix vide®l.30% The average analysis time for
detecting the quality visualization of appendiceal orifice in a colonoscopic procedug® wasutes

and17 seconds. The detection time is fast enough to confirm the orifice visualization quality to the

patient before he/she leaves the endoscopic screening facility.

7.2 Detection of Retroflexion Image and Video

In Chapter 5,we introduced region and shape (RSL) based features, and edgeless edge
cross-section profile (edgeless ECSP) calculation method and its features for retroflexion detection.
We investigate different combination methods of these features for classification of
retroflexion/non-retroflexion images and videos. The ensemble classifier using both ECSP and RSL
features show promising performance for retroflexion detection in terms of the analysis time and
detection rate.

Our retroflexion detection algorithm tested 8® colonoscopy videos gavel@0% specificity,
100.0%precision, and’8.0%accuracy running on the |a4b seconds of each video, anda7%
specificity, 91.7%precision, and2.0%accuracy running on the entire withdrawal phasesach
video for detecting retroflexion video®ur retroflexion detection technique is the first technique that
can detect the appearance of retroflexion. The average execution time of our MATLAB analysis code
is 0.46 seconds per image on a modern PC. The system can run in near real-time to assist the
endoscopist during live colonoscopy using the frame ragefp$. Our retroflexion detection system

is promising for clinical practice in terms of both of the detection rate and analysis time.

7.3 Near Real-time Polyp Detection and Shot Extraction

In chapter 6, we introduced two phases of part-based ECSP for polyp detection. In the first phase,

we presented an algorithm to segment multi-derivative ECSP and ROI into non-overlapping parts. We
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investigated new features obtained from parts, and compared it with two existing texture and color
based state-of-the-art techniques for polyp image detection. This part-based ECSP method gives us
flexibility to model or extract features from each part using the method component which is suitable
for that part. Experimental results show that the proposed technique is robust to some challenging
issues of polyp detection and outperforms existing leading methods. Our technique can effectively
detect different types of protruding polyp appearance including polyps with little protrusion. It can
mark detected polyp edges as visual feedback which is more precise and less intrusive than marking a
large region as in a sliding-window based method. Furthermore, the false positives generated by our
technique only appear in a small percentage of the number of images analyzed.

In the second phase, we presented the simplified features obtained from part-based ECSP module
to further save the computational time. By combining the detected polyp edges from our polyp image
detection method and an existing edge tracking method, our polyp detection system can correctly
detect97.7%(42 of 43) of polyp shots in near real time under the frame analysis rafpf tested
on 53 randomly selected video files captured from two endoscopy brands — FUJINON and
OLYMPUS during routine screening colonoscopy. The average number of false shots per video is
36.2 and the average duration of each of these false shots is letbthaoonds. Our system can run
in near real-time to assist the endoscopist by providing visual feedback of a detected polyp as a
warning signal on monitor during routine screening colonoscopy. To our best knowledge, our system
is the first system that can detect polyp image and polyp shot in near real-time running on a modern
PC. Our polyp detection and shot extraction system is promising for clinical use in terms of both of

the detection rate and analysis time.

7.4 FutureWork

Although our proposed algorithms show their effectiveness for detecting these colonoscopic
objects, some challenging issues are still remaining in the future work. The main challenge issues in

terms of detection rate include 1) blurry images that easily break a shot and frequently appear in
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colonoscopic video, 2) detection of appendiceal orifices that are not clearly seen, 3) detection of
appendiceal orifices with other multi-structure shapes other than crescent shape, 4) detection of
retroflexion operation that performs very short duration, 5) detection of polyps with a tiny size in an
image or with weak illumination from the light source, 6) removal of falsely detected polyp images
including protruding colon folds with smooth surface, protruding appendiceal orifice, ileocecal valve
and smooth water.

Towards improving the analysis time in the future, our final goal in the future is to achieve a
real-time detection (less th&3 ms analysis time per image) for detecting all three types of proposed
representative colonoscopic objects. Based on the performance of near real-time polyp detection in
terms of both analysis time and detection rate, we believe that we can optimize our appendix detection
and retroflexion detection algorithms by simplifying our feature extraction steps. We briefly propose
some improvement for detecting the three types of colonoscopic objects as follows.

Appendix image/video detection: The future work of appendix detection includes reducing the
analysis time of image detection by converting the analysis code from MATLAB to C/C++ and
further optimizing through multi-threading and Graphical Processing Units (GPU) for parallel
execution. By reducing the analysis time, we may apply the similar edge tracking method presented in
Chapter 6 for tracking appendiceal orifice edges to further reduce falsely detected edges and improve
the overall detection rate. The integrated appendix detection module and polyp detection module in
our system may share the same output from edge tracking module to save the computational time.

Retroflexion image/video detection: The future work of retroflexion detection includes further
optimizing the execution time and converting the analysis code from MATLAB to C/The.
bottleneck of analysis time is the dilation operation in the image preprocessing step. The dilation
operation generates a region profile of shape and location of the endoscope in image. In the future
work, we may try to replace the dilation operation by constructing the approximated shape and
location of an endoscope. For example, we may divide an image into non-overlapping blocks and
present the shape of an endoscope using the centers of blocks which have significant overlap with

endoscope pixels. By connecting the centers of these blocks, we may construct the approximated
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shape and location of the endoscope in image and obtain RSL and ECSP features for retroflexion
detection. By reducing the analysis time, we can apply temporal information to further reduce the
number of falsely detected retroflexion images and improve the overall detection rate. As the
preprocessing step dilates each pixel independently, we may also use GPU for parallel execution of
the preprocessing step to speed up our retroflexion detection algorithm.

Polyp image detection/shot extraction: The future work of our polyp detection is to further
reduce the computational time by optimizing both the algorithm and analysis code to adfldpe a
analysis rate for each module, and use our system in clinical trial during live colonoscopy to optimize
the functionalities based on the practice from endoscopist.

The future work of ECSP based techniques is to extend them to detect other types of
colonoscopic objects such as diverticula, lumen and vessel, and analyze other endoscopy procedures,
such as laparoscopy, upper gastrointestinal endoscopy, wireless capsule endoscopy and EGD. As a
popular local appearance model, our research on ECSP based technique may bring a broad interest to
investigate them in detecting other objects in both medical and non-medical fields.

We believe that our future work to incorporate retroflexion detection and polyp detection system
into clinical practice for routine screening colonoscopy has potential to reduce the polyp miss rate and
train new endoscopists. The future use of our appendix detection system for documenting the quality
of colonoscopy may also contribute to the decline in the polyp miss rate. The automatic
documentations of detected semantic units of these three colonoscopic object types can be helpful to
discover unknown patterns of colorectal cancers or new diseases and used as educational resources

for endoscopic research.
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