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ABSTRACT 

Colorectal cancer is the second leading cause of cancer-related deaths, claiming close to 50,000 

lives annually in the United States alone. Colonoscopy is an important screening tool that has 

contributed to a significant decline in colorectal cancer-related deaths. During colonoscopy, a tiny 

video camera at the tip of the endoscope generates a video signal of the internal mucosa of the human 

colon. The video data is displayed on a monitor for real-time diagnosis by the endoscopist. Despite 

the success of colonoscopy in lowering cancer-related deaths, a significant miss rate for detection of 

both large polyps and cancers is estimated around 4-12%. As a result, in recent years, many 

computer-aided object detection techniques have been developed with the ultimate goal to assist the 

endoscopist in lowering the polyp miss rate. Automatic object detection in recorded video data during 

colonoscopy is challenging due to the noisy nature of endoscopic images caused by camera motion, 

strong light reflections, the wide angle lens that cannot be automatically focused, and the location and 

appearance variations of objects within the colon. The unique characteristics of colonoscopy video 

require new image/video analysis techniques.  

The dissertation presents our investigation on edge cross-section profile (ECSP), a local 

appearance model, for colonoscopic object detection. We propose several methods to derive new 

features on ECSP from its surrounding region pixels, its first-order derivative profile, and its 

second-order derivative profile. These ECSP features describe discriminative patterns for different 

types of objects in colonoscopy. The new algorithms and software using the ECSP features can 

effectively detect three representative types of objects and extract their corresponding semantic unit in 

terms of both accuracy and analysis time. 

The main contributions of dissertation are summarized as follows. The dissertation presents 1) a 

new ECSP calculation method and feature-based ECSP method that extracts features on ECSP for 

object detection, 2) edgeless ECSP method that calculates ECSP without using edges, 3) part-based 

multi-derivative ECSP algorithm that segments ECSP, its 1st - order and its 2nd - order derivative 

functions into parts and models each part using the method that is suitable to that part, 4) ECSP based 
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algorithms for detecting three representative types of colonoscopic objects including appendiceal 

orifices, endoscopes during retroflexion operations, and polyps and extracting videos or segmented 

shots containing these objects as semantic units, and 5) a software package that implements these 

techniques and provides meaningful visual feedback of the detected results to the endoscopist. Ideally, 

we would like the software to provide feedback to the endoscopist before the next video frame 

becomes available and to process video data at the rate in which the data are captured (typically at 

about 30 frames per second (fps)). This real-time requirement is difficult to achieve using today’s 

affordable off-the-shelf workstations. We aim for achieving near real-time performance where the 

analysis and feedback complete at the rate of at least 1 fps. 

The dissertation has the following broad impacts. Firstly, the performance study shows that our 

proposed ECSP based techniques are promising both in terms of the detection rate and execution time 

for detecting the appearance of the three aforementioned types of objects in colonoscopy video. Our 

ECSP based techniques can be extended to both detect other types of colonoscopic objects such as 

diverticula, lumen and vessel, and analyze other endoscopy procedures, such as laparoscopy, upper 

gastrointestinal endoscopy, wireless capsule endoscopy and EGD. Secondly, to our best knowledge, 

our polyp detection system is the only computer-aided system that can warn the endoscopist the 

appearance of polyps in near real time. Our retroflexion detection system is also the first 

computer-aided system that can detect retroflexion in near real-time. Retroflexion is a maneuver used 

by the endoscopist to inspect the colon area that is hard to reach. The use of our system in future 

clinical trials may contribute to the decline in the polyp miss rate during live colonoscopy. Our system 

may be used as a training platform for novice endoscopists. Lastly, the automatic documentation of 

detected semantic units of colonoscopic objects can be helpful to discover unknown patterns of 

colorectal cancers or new diseases and used as educational resources for endoscopic research.
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CHAPTER 1 INTRODUCTION 

This chapter introduces the background on colonoscopy, addresses the motivation of our research 

and summarizes the contribution of this dissertation. 

 

1.1 Background on Colonoscopy 

   The colon is a hollow, muscular tube about 150 centimeters long. It consists of six parts: cecum 

with appendix, ascending colon, transverse colon, descending colon, sigmoid and rectum. See Figure 

1.1. Colonoscopy is currently the preferred screening modality for prevention of colorectal cancer [1] 

[2]. A colonoscopic procedure consists of two phases: insertion phase and withdrawal phase. During 

the insertion phase, the endoscopist gradually inserts a flexible endoscope into the most proximal part 

of the colon (signified by the appearance of the appendiceal orifice or the terminal ileum). During the 

withdrawal phase, the endoscopist then gradually withdraws the scope while performing careful 

examination of the colon mucosa based on images generated from the tiny wide-angle lens camera at 

the tip of the scope. The video data is displayed on a monitor for real-time diagnosis by the 

endoscopist. Careful examination of colon, biopsy and therapeutic operations such as polyp removal 

are typically performed during the withdrawal phase [3].  

 
Figure 1.1: The segments of the human colon. The picture is originally from [4]. 
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The entire colonoscopy procedure typically lasts between 20 to 40 minutes. We call the recorded 

video data during colonoscopy the colonoscopy video. The appearance of the appendiceal orifice 

(appendix in Figure 1.1) during colonoscopy indicates a complete traversal of the colon, which is an 

important quality indicator of the colon examination. A colonic polyp is a growth of tissue that 

develops in the inner lining of the colon or the rectum. Polyps are the most common seen 

abnormalities. Most colorectal cancers develop from adenomatous polyps [1]. Early detection and 

removal of adenomatous polyps are the main goals during colonoscopy. Colonoscopy is complex to 

master. The colon structure for each patient varies. Some colons have many more turns than others, 

depending on age, gender, etc. Polyps may be missed because the patient may not clean the colon 

well before the exam, preventing the endoscopist from traversing the entire colon or seeing the colon 

mucosa clearly. The endoscopist may miss inspection on one side of a colon wall or some sections of 

the colon or behind some colon folds in which an adenomatous polyp is located. The endoscopist may 

not recognize a polyp, or may forget to remove the polyp that has been recognized, or may not 

remove all parts of the polyp.  

A significant miss rate for detection of both large polyps and cancers was reported [2] [5] [6]. 

The average miss rate is estimated at 4-12%, but as high as 80% (4/5) was reported in one study in 

2007 [7]. A large Canadian study reported that colonoscopy offered virtually no protection against 

right sided colon cancer and only a 60-70% protection against left sided colon cancer [8]. The miss 

rate varies among endoscopists and it may be related to the experience of the endoscopist and the 

location of the lesion in the colon as suggested by the Canadian study. Recent reports in [9] [10] 

indicate the identity of the endoscopist performing the procedure as the dominant indicator of the 

protective effect of colonoscopy. 

 

1.2 Motivation 

Toward reducing the polyp miss rate, many computer-aided techniques were proposed for 

objectively measuring the quality of the colon examination during colonoscopy. These techniques 

focus on detection of the appearance of polyps [11], measurement of the time taken to examine the 
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colon mucosa while the endoscope was withdrawn [12] [13], and detection of the appearance of 

instruments used for tissue-sampling and therapeutic operations [3], just to name a few. Automatic 

detection of polyps and some other types of objects is desirable for objective quality documentation 

and computer-assisted colonoscopy to achieve an optimal quality inspection. In 2006, a set of 

guidelines for a good quality colonoscopy procedure was recommended [2]. An endoscopist should 

spend a minimum of 6 minutes during the withdrawal phase, reach the cecum at least 95% of the 

colonoscopy procedures performed by the endoscopist, and detect polyps in 25% of his/her male 

patients and 15% of his/her female patients. An operation suggested as an essential part of the 

examination of the colon to improve polyp yields is rectal Retroflexion [14] [15] – an endoscope 

maneuver where the tip of a flexible endoscope is deflected more than 90 degrees from the axial 

direction of the shaft of the endoscope. This results in visualization of intestinal mucosa along the 

shaft of the endoscope. There are many techniques proposed for detecting polyp appearance in 

colonoscopic images. However, existing polyp detection techniques either take a long time (3 to 4 

seconds) to analyze an image or detect too many false alarm regions (at least 1 false region per image) 

[16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31]. None of the existing 

automatic polyp detection techniques is suitable for practical use. The only existing technique for 

detection of an image showing an appendiceal orifice is quite slow (about 5 minutes to analyze one 

image) [32]. There are no other computer-aided techniques for detecting retroflexion operations so far. 

Given a large number of colonoscopy procedures performed annually (over 14 million procedures in 

the United States) [33], an effective system for automatic detection of these objects in terms of high 

detection rates and fast analysis time is highly desirable to assist the endoscopist during the procedure 

to avoid missing polyps.  

Similar to the existing computer-aided techniques, we face many challenging issues for 

effectively detecting the appearance of these objects in colonoscopy video. These challenges are the 

noisy nature of endoscopic images caused by camera motion, strong light reflection, the wide angle 

lens that cannot automatically be focused, the location and appearance variations of objects within the 

colon, and that the analysis is too slow to output analysis results of the current frame before the next 
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video frame is seen by the endoscopist (i.e., the analysis time is more than 33 milliseconds for 30 

frames per second video capturing rate). We aim to develop new image/video analysis techniques to 

solve these challenging issues. 

In this dissertation, we aim to detect three types of representative objects: appendiceal orifice, 

endoscope, and polyp. We investigate a local appearance model – edge cross-section profile (ECSP) 

as a core model in our detection techniques. Edge cross-section profile and its first-order derivative 

(called gradient profile) are well known local appearance models for object detection (e.g., human 

face detection) [34] [35] [36] and tracking [37] in both medical imaging and non-medical fields. The 

ECSP models the local appearance of pixel values along the directions perpendicular to edge pixels. 

Figure 1.2 (a-b) shows an example of marked edge cross-section (white color bar) and an associated 

region of interest (ROI) on a polyp in colonoscopy. Figure 1.2 (c) shows the corresponding ECSP. 

Due to the polyp protrusion, the intensity values on ECSP of polyps increase abruptly near the edge 

(around pixel positions 40-60 in the Pixel#-axis in Figure 1.2 (c)) and increase at a much slower pace 

afterward. This is also true for sessile polyps with very little protrusion. However, most non-polyp 

objects do not have this pattern. Besides polyps, other commonly seen types of objects in colonoscopy 

also show discriminative patterns of ECSP and its derivative profiles. We will demonstrate these 

patterns in Chapter 3.   

 

Figure 1.2: An example edge cross-section and its profile function of a polyp edge. (a) An edge 

cross-section of an edge pixel on a polyp marked as a white bar. (b) The corresponding region of 

interest extracted from (a). (c) ECSP obtained from (b). The intensity values are rescaled from [0,255] 

to [0,1]. 
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In summary, our motivations to investigate ECSP for detecting these colonoscopic objects are as 

follows. 1) Model robustness: As a local appearance model, ECSP and its derivative profiles are 

robust to variations in object appearances, such as variations caused by the rotation and translation of 

the capturing camera. 2) Pattern discrimination: ECSP, its 1st – order and its 2nd – order derivative 

functions show different patterns for different objects in images captured from colonoscopy videos. 

The modeling of these patterns on ECSP functions can potentially be used to detect colonoscopic 

objects. 3) Analysis time: Comparing with other features such as region texture and color, extraction 

of edge-based features involved fewer pixels in the calculation. Therefore, it has potential to achieve a 

fast analysis time, such as real-time detection during live colonoscopy. 

 

1.3 Contributions of Dissertation 

Previous work using ECSP or its gradient profile for object detection/tracking either model the 

distribution of the value of each point on a profile by multivariate functions [34] [35] [36] [37], or fit 

the profile shape to pre-defined functions [38] [39] [40] [41]. This dissertation proposes the first 

feature-based ECSP techniques including three different approaches to extract features for detection 

of the three aforementioned object types. In the first approach, we present our ECSP calculation 

method which is invariant to object scale in image and extract ECSP features from key positions on 

ECSP and its gradient profile. In the second approach, we develop an edgeless ECSP that calculates 

ECSP and obtains features on ECSP without using edge detectors. In the third approach, we segment 

ECSP, its gradient profile and its 2nd – order derivative profile into non-overlapping parts. We model 

and extract features from each segmented part using the method which is suitable for that part.  

Based on our proposed feature-based ECSP approaches, we developed several algorithms for 

detecting three representative types of objects in colonoscopic images including an anatomical 

landmark – appendiceal orifice, an out-of-patient object used in a retroflexion operation – endoscope, 

and an abnormality – polyp. Furthermore, we developed algorithms for extracting the semantic units 

of these types of objects including appendix video – the video with sufficient inspection time (at least 
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3 seconds) on appendiceal orifice, retroflexion video – the video containing at least one frame 

showing retroflexion operation, polyp sub-shot – a group of consecutive in focus frames showing 

polyps, and polyp shot – a sequence of consecutive nearby detected polyp sub-shots including the 

non-polyp images between each two sub-shots. 

We developed a software package for evaluating these techniques in a clinical trial. Our 

proposed appendix image and video detection algorithms can effectively detect appearance of 

appendiceal orifice in image and appendix video tested on 23 endoscopy procedures. The average 

sensitivity and specificity for the detection of appendiceal orifice images with the often seen crescent 

appendiceal orifice shape are 96.86% and 90.47%, respectively. The average accuracy for the 

detection of appendix videos is 91.30%. The average analysis time for detecting the quality 

visualization of appendiceal orifice in a colonoscopic procedure was 38 minutes and 17 seconds. The 

detection time is fast enough to confirm the orifice visualization quality to the patient before he/she 

leaves the endoscopic screening facility. 

Our retroflexion detection algorithm tested on 50 colonoscopy videos gave a 100% specificity, 

100.0% precision, and 78.0% accuracy running on the last 45 seconds of each video, and a 72.7% 

specificity, 91.7% precision, and 82.0% accuracy running on the entire withdrawal phases of each 

video for detecting retroflexion videos. Our retroflexion detection technique is the first technique that 

can detect the appearance of retroflexion. The average execution time of our MATLAB analysis code 

is 0.46 seconds per image on a modern PC (e.g., Intel Duo Core processors). The system can run in 

near real-time to assist the endoscopist during live colonoscopy using the frame rate of 2 fps. Our 

retroflexion detection system is promising for clinical practice in terms of both of the detection rate 

and analysis time. 

We implemented our polyp image detection and shot extraction algorithms using C/C++ and 

Open Source Computer Vision Library. Our polyp detection system can correctly detect 97.7% (42 of 

43) of polyp shots in near real time under the frame analysis rate of 10 fps tested on 53 randomly 

selected video files captured from two endoscopy brands – FUJINON and OLYMPUS during routine 
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screening colonoscopy. The average number of false shots per video is 36.2 and the average duration 

of each of these false shots is less than 1.5 seconds. Our system can run in near real-time to assist the 

endoscopist by providing visual feedback of a detected polyp as a warning signal on monitor during 

routine screening colonoscopy. To our best knowledge, our system is the first system that can detect 

polyp image and polyp shot in near real-time running on a modern PC. Our polyp detection and shot 

extraction system is promising for clinical use in terms of both of the detection rate and analysis time.  

Incorporating our retroflexion detection and polyp detection system into clinical practice for 

routine screening colonoscopy has potential to reduce the polyp miss rate. The system can be used 

during training of new endoscopists. The future use of our appendix detection system for 

documenting the quality of colonoscopy may also contribute to the decline in the polyp miss rate. The 

automatic documentations of detected semantic units of these three colonoscopic object types can be 

helpful to discover unknown patterns of colorectal cancers or new diseases and used as educational 

resources for endoscopic research. In future work, our ECSP based techniques can be extended to 

both detect other types of colonoscopic objects such as diverticula, lumen and vessel, and analyze 

other endoscopy procedures, such as laparoscopy, upper gastrointestinal endoscopy, wireless capsule 

endoscopy and EGD.  

 

1.4 Content Guide 

The remainder of this dissertation contains the following content.  

Chapter 2 introduces the current state-of-the-art of relevant work on object detection, shot 

segmentation and ECSP.  

Chapter 3 presents the formulation and our calculation method of multi-derivative ECSP.  

Chapter 4 proposes ECSP feature extraction method, and ECSP features for detecting images 

showing appearance of appendiceal orifice and appendix videos.  
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Chapter 5 introduces our edgeless ECSP method that extracts ECSP features without extracting 

edges. We combine features obtained from edgeless ECSP, region shape and location for retroflexion 

detection.  

Chapter 6 presents a part-based ECSP by segmenting ECSP functions into non-overlapping parts. 

We investigate features on parts for polyp detection. We present a near real-time detection system for 

warning endoscopists of polyp appearance in live colonoscopy for clinical use.  

Finally, we conclude our work and present the future work of ECSP and the improvement for 

detecting the three representative object types in Chapter 7.
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CHAPTER 2 RELATED WORK 

In this chapter, we briefly summarize the current state-of-the-art research for detection of the 

three aforementioned types of objects in colonoscopy, shot segmentation, and the related work on 

edge cross-section profile for object detection.  

 

2.1 Object Detection in Colonoscopy 

Object detection and recognition are common research topics in computer vision and pattern 

recognition areas. Low-level features (e.g., pixels color, region texture, and geometric shape 

information) or automatically detected salient features together with machine learning methods have 

been widely used for object detection [42] [43] [44] [45] [46] [47] [48]. Detection of objects in 

medical images such as polyps, blood and ulcers has been investigated in [16] [17] [19] [22] [30] [49] 

[50]. In this section, we briefly review the current state-of-the-art research on detection of the three 

representative types of colonoscopic objects – appendix, retroflexion and polyp.  

 

2.1.1 Appendix Detection 

Appendix image detection problem was previously introduced and addressed in [32]. The 

technique uses Random Hough Transform (RHT) to fit the appendiceal orifice shape to an ideal 

ellipse shape and extracts features based on the shape. This technique was the only technique that 

addresses the appendiceal orifice detection problem. The technique works as follows. First, a 

qualified curvilinear structure and the skeleton of the structure are identified. Ideal ellipses are 

estimated from the skeletons using RHT. Only qualified ellipses are kept for feature extraction. The 

important features include 1) ratio of edge pixels that are part of qualified curvilinear structures to the 

total number of edge pixels in the image; 2) sum of fractions of areas in the image that are part of the 

detected ellipses; and 3) sum of fractions of edge pixels in the image that are on the boundaries of the 

detected ellipses. A classifier was used to determine whether the image is an appendiceal orifice 



10 

 

 

 

image. The detection performance evaluated on six videos was good for the appendiceal orifice with 

multiple curvilinear structures. However, the recognition time for this technique is long (about 5 

minutes per image using MATLAB on an Intel Xeon 1.86 GHz processor), making it difficult to 

improve for real-time quality control in the future. The long recognition time is due to a large number 

of iterations of RHT to get good ellipse approximation. Thus far, there is no technique proposed for 

detecting the appendix video (video showing at least 3 seconds of appendiceal orifice). 

 

2.1.2 Retroflexion Detection 

To our best knowledge, there is no existing literature on detection of the endoscope appearance in 

colonoscopic images. The closest work is the detection of biopsy forceps and diathermy snare [3]. 

The algorithm segments an image into non-overlapping regions. The light reflected connected pixels 

which have a linear curvature in the segmented regions are used to estimate the insertion direction of 

the instrument. The instrument regions along the pre-defined insertion direction were detected by 

matching with pre-defined shape templates after region filtering and merging. The instrument shots in 

a video were identified by a shot detection step. The major drawback is the execution time of the 

algorithm since it relies on an image segmentation method called JSEG [51] and a hierarchy 

clustering for insertion direction estimation. In our experiments, processing of a 720-by-480 

resolution image took 22 seconds tested on the same machine described in Chapter 5. These 

instruments are rigid objects with bright blue or red color. The technique in [3] relies on the linearity 

of the bright regions and predefined region templates to detect these instruments. However, different 

from instruments, the endoscope does not have a rigid body. We cannot simply match the shape of the 

endoscope to a predefined template or use color information alone to detect the endoscope since it is 

similar to the lumen seen from a distance.  

 

2.1.3 Polyp Detection 

Existing computer-aided polyp detection techniques can be grouped into four categories based on 

acquisition modality: 1) CT images from 3D computed tomography [7] [52] [53], 2) images from 
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wireless capsule endoscopes [54], 3) colonoscopic images from optical colonoscopy using standard 

endoscopes [11], and 4) colonoscopic images using magnifying endoscopes or Narrow-Band Imaging 

(NBI) [55] [56]. We focus on the detection of polyp appearance in colonoscopic images from optical 

colonoscopy using standard endoscopes in routine day-to-day practice. Pit patterns [56] of polyps are 

not necessarily seen using these scopes.  

Recent techniques for polyp detection in colonoscopic images from optical colonoscopy employ 

machine learning classifiers on one of the following major feature categories: 1) geometric shape of 

edges [16], 2) region color [22], 3) region texture [30], and 4) the combinations of color, texture and 

edges, such as the combination of region color and geometric shape of edges [19] or the combination 

of region color and Local Binary Pattern (LBP) texture [17] [50]. Most of polyp detection techniques 

using the features in the aforementioned four categories are summarized in [11]. We summarize these 

techniques in Table 2.1, which is an extended version from Table 1 in [11]. 
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Table 2.1: Overview of Polyp Detection Techniques 

 (This table is an extended version from Table 1 in [11]) 

Authors Year Method  
Feature 

Class 
Classifier 

Datasets 

(#images, image 

resolution) 

Literature 

Krishnan 

et al. 
1998 Curvature analysis Shape - 

(2 normal and 4 

abnormal images, -) 
[18] 

Karkanis et 

al. 
2001 

Co-occurrence matrix,  

Wavelet transform 
Texture NN 

(8 images, 

512 x 512 pixels) 
[26] 

Wang et al. 2001 Local Binary Pattern Texture NN (3 images, -) [21] 

Magoulas 

et al. 
2001 Co-occurrence matrix Texture NN - [28] 

Kang et al. 2003 
Area, color and shape 

of segments 

Shape, 

color 
- - [20] 

Karkanis et 

al. 
2003 

Color Wavelet 

Covariance 

Texture

, color 

LDA, 

SVM 

(1,380 images, 

1000 x 1000 pixels) 
[22] 

Tjoa et al. 2003 

Texture spectrum 

histogram, color 

histogram 

Texture

, color 
SVM 

(12 normal and 54 

abnormal images, -) 
[25] 

Magoulas 

et al. 
2004 Co-occurrence matrix Texture NN - [27] [29] 

Li et al. 2005 

Wavelet coefficients, 

histogram of CIE-Lab 

color space 

Texture

, color 
SVM 

(12 normal and 46 

abnormal images,  

256 x 256 pixels) 

[24] 

Dhandra et 

al. 
2006 

Watershed region 

segmentation in HIS 

color plane 

Shape, 

color 
- 

(50 normal and 50 

abnormal images, -) 
[19] 

Iakovidis 

et al. 
2006 

Local Binary Pattern Texture 

SVM 
(15,000 images,  

320 x 240 pixels) 
[17] 

Wavelet Energy Texture 

Opponent Color – 

Local Binary Pattern 

Texture

, color 

Color Wavelet Energy 
Texture

, color 

Wavelet Correlation 

Signatures 

Texture

, color 

Color Wavelet 

Covariance 

Texture

, color 

NN = Neural Network, SVM = Support Vector Machine, LDA = Linear Discriminant Analysis 
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Table 2.1: Overview of Polyp Detection Techniques (Continued) 

 (This table is an extended version from Table 1 in [11]) 

Authors Year Method  
Feature 

Class 
Classifier 

Datasets 

(#images, image 

resolution) 

Literature 

Hwang et 

al. 
2007 

Curve direction, 

curvature, Watershed 

region segmentation, 

RGB pixel color 

Shape, 

color 
- 

(815 polyp frames 

and 7,806 normal 

f-rames,  

390 x 370 pixels) 

[16] 

Alexandre 

et al. 
2007 RGB pixel color Color SVM 

(35 images,  

514 x 469 pixels) 
[23] 

Cheng et 

al. 
2008 

Co-occurrence matrix, 

color texture 

Texture

, color 
SVM 

(37 training and 37 

testing images,  

378 x 254 pixels) 

[30] 

Ameling et 

al. 
2009 

Co-occurrence matrix Texture 

SVM 
(1,736 images, 

1920 x 1080 pixels) 
[31] 

Local Binary Pattern Texture 

Opponent Color – 

Local Binary Pattern 

Texture

, color 

NN = Neural Network, SVM = Support Vector Machine, LDA = Linear Discriminant Analysis 

 

Geometric shape: In [18], the edge curvature is calculated as the feature of the geometric shape 

of an edge. The algorithm is designed to select the edges with “S” like shape. The edge with “S” like 

shape generally has a large change of curvature values along the tracked edge pixels. However, this 

algorithm can only be applied to detect polyps connected with lumen fold with “S” like shape. Many 

polyps do not have this particular type of shape. The algorithm was only evaluated by testing 2 

normal and 4 abnormal images.  

Geometric shape and color: In [19], watershed segmentation algorithm is applied to segment an 

input image in HIS color space. A regional maxima morphological operation is applied to select 

regions. The recent technique in [16] extracts features of the geometric shape of edges rely on shape 

approximation of polyp edges to the ideal shape template. The technique is consisted of two major 

steps – candidate edge calculation and template matching. For candidate edge calculation, a gradient 

image is calculated by selected the maximum gradient value among three RGB color channels for 
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each image pixel. A marker-controlled watershed segmentation algorithm is used to segment the 

gradient image. A regional maxima morphological operation is applied to select the initial seeds as 

markers for watershed segmentation. That is, the pixels which have large local intensity values are 

used as initial seeds. The segmented region boundaries are considered as candidate polyp edges. In 

template matching, ellipse and parabola are considered as template shape models. The polyp edges are 

determined based on coefficients of template models that fit the edges using the least squares fitting 

method. The technique misses polyps that do not approximate well with the ideal shape template [16]. 

Furthermore, only partial edges of a polyp may be detected and may be insufficient to approximate 

the ideal shape template. Both techniques run slowly. The time-consuming watershed segmentation 

and morphological operations make it difficult to improve to achieve the real-time performance. In 

[20], a simple method is presented to pre-process an image by detecting Canny edges, dilating them 

into regions, and thresholding the regions based on the region size, color and shape to identify polyp 

regions. Although the paper claims that the technique does real-time detection, the algorithm can only 

process 1 image per second [20]. In addition, the technique in [20] is very roughly described without 

sufficient details and without any performance evaluation to support their claim. Therefore, the 

technique and results are not convincing. The technique is also questioned in [11]. 

Region color: In [23], an image is divided into non-overlapping blocks. The pixel color in RGB 

color plane and the coordinates of each pixel is concatenated into a high-dimensional feature vector 

per block. As a result, there are total 8000 features obtained for each block of 40 x 40 pixels, and this 

involves the calculation for the features of 132 blocks on each image with the resolution of 514 x 469 

pixels. The calculation time of this method is expensive, although the analysis time is not clearly 

reported in the paper. Finally, SVM is used to classify block into polyp block and non-polyp block. 

The paper clarifies that they do not provide the criteria to consider an image as a polyp image. The 

evaluation of features is only based on classifying blocks using 2-fold cross validation on 35 images. 

Region texture: Local Binary Pattern (LBP) is a popular texture feature for polyp detection [17] 

[31]. An LBP pattern of a pixel is represented by a binary sequence of length L. The l th position in the 

binary sequence is assigned a 0 if the pixel value is smaller than the value of its l th neighboring pixel, 
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or assigned a 1 otherwise. An LBP pattern is mapped to a unique LBP value. A histogram of LBP 

values is used as an LBP feature of an image. Another region texture feature used in [17] is Wavelet 

Energy. Wavelet Energy feature encodes the content of the input image in variable width spatial 

frequency bands [17]. Given a grayscale image, after convoluting it with low pass and high pass 

filters, its wavelet textures are represented by sub-sampled images at different scales. These 

multi-scale images include both low-resolution and detail images. The Wavelet Energy feature is the 

sum squares of all wavelet coefficients that are obtained from each of these multi-scale images.  

Region texture and color: An Opponent Color-LBP (OCLBP) feature [17] [31] is a 

concatenation of three intra-channel LBP histograms and six inter-channel LBP histograms. Each of 

the three intra-channel LBP histograms (Ci where the channel i=1, 2, and 3) is obtained from pixels in 

each of the RGB color channels, respectively. The six inter-channel LBP histograms (C1-C2, C1-C3, 

C2-C1, C2-C3, C3-C1, and C3-C2) are obtained from every combination of two different color channels. 

For example, the LBP pattern of C1-C2 is obtained from comparing the pixel value in the red color 

channel (C1) with values of its neighboring pixels in the green color channel (C2). Another 

combination of region texture and color feature is Color Wavelet Energy. Color Wavelet Energy 

feature is calculated by summing the squares of all wavelet coefficients obtained from all color 

channels of these multi-scale images [17]. Wavelet Correlation Signatures is an extend feature based 

on the Color Wavelet Energy by taking account into the correlations of wavelet coefficients between 

color channels [17]. Comparing to Color Wavelet Energy feature, Wavelet Correlation Signatures add 

the correlations of wavelet coefficients obtained from inter-channels (C1-C2, C1-C3, C2-C1, C2-C3, 

C3-C1, and C3-C2) as additional features. Another two texture features encoding spatial dependence of 

pixel color information are co-occurrence matrix [26] [27] [28] [29], and its combination with 

Wavelet Transform named Color Wavelet Covariance [22]. Co-occurrence matrix encodes the spatial 

dependence of pixel values by estimating the second-order joint conditional probability density 

function f (i, j, d, a). The function f (i, j, d, a) is calculated by counting all pairs of pixels i and j at 

distance d at a given direction a. The angular displacement a is usually in the range of the values {0, 

π/4, π/2, 3π/4}. Color Wavelet Covariance features are covariance estimation of different color 
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channels overall four statistical features including angular second motion, correlation, inverse 

difference motion and entropy [22]. These statistical features are derived from co-occurrence matrices. 

Another set of combination of texture and color features are coefficients of Wavelet Transform and 

histogram bin values in CIE-Lab color space [24]. However, the paper [24] focuses on the 

investigation of a good classifier - ensemble SVM for feature classification on non-overlapping 

blocks in image instead of the investigation of the goodness of features. In [25], an alternative 

representation of the combined features was presented by histogram bins. The combined features are 

the bins values of texture spectrum histogram and color histogram. In [30], color features are derived 

from co-occurrence matrix as a feature vector. The extraction of color texture features took about 13 

seconds per image at the resolution of 378 x 254 pixels on a PC with a 1.83GHz Intel Centrino Duo 

CPU and 2GB RAM. The technique was evaluated on 37 training images and 37 testing images. 

In 2006, most features from the categories of region color, region texture and the combination of 

region texture and color were compared in [17], including LBP, OCLBP, Wavelet Energy, Color 

Wavelet Energy, Wavelet Correlation Signatures and Color Wavelet Covariance features. Among 

above compared features, OCLBP offered the best performance [17]. The test set has 15,000 images 

with the resolution of 320 x 240 pixels. 

In 2009, co-occurrence matrix, LBP and OCLBP were compared in [31]. Among above 

compared features, OCLBP also offered the best performance presented in [31]. The test set has 1,736 

images with the resolution of 1920 x 1080 pixels obtained from a high definition capturing device. 

As also indicated in [11], most newer techniques (except technique [16]) developed since the 

comparison made in [17] and [31] were either evaluated on a data set that was too small (less than 100 

combined normal and abnormal images) to clearly demonstrate the effectiveness of these techniques, 

or took a long time to analyze an image. Figure 2.1 summarizes existing work related to automatic 

detection of the three representative types of objects. 
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Figure 2.1: Summary of the related work of automatic detection of the three representative object 

types 

 

2.2 Shot Segmentation 

A shot consists of sequential frames with similar visual properties. Shot segmentation cuts a long 

video file into smaller shots. The criterion for grouping frames into a shot is typically based on 

low-level image features (e.g. color or intensity histograms, changes in edges) and temporal 

information [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69].  

Shot segmentation techniques have been proposed for uncompressed video and compressed 

MPEG video [62]. The majority of shot segmentation algorithms are designed to process 

uncompressed videos as low level features such as pixels in decoded frames contain more content 

information. Shot segmentation on compressed MPEG video reduces computation time since video 

decoding is not performed. We focus on processing uncompressed video extracted from compressed 

MPEG video in our research.  

The key to segment an uncompressed video into shots is to find either cuts [62] or gradual 

transitions [62] of shots in the video. Shot segmentation algorithms in uncompressed video can be 

Object Type Image Detection

Video 

classification/Shot

extraction

Appendix
[Cao 06]

5 min per image
None

Retroflexion None None

Polyp

15 papers (1998 - 2009)

Features: Color, texture, shape, combination

Drawbacks:

� Slow analysis time (≥ 3 s. per image)

� Many false alarms (≥1 false region per image)

� Small evaluation data set (< 100  images)

Opponent color LBP (OCLBP) offers the best 

performance [Iakovidis 2006, Ameling 2009]

[Hwang 07]

Accuracy 77.8%, 

slow 
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categorized into three major categories: 1) thresholding-based algorithms, 2) clustering-based 

algorithms and 3) model-based algorithms. 

For thresholding-based algorithms, a similarity score is calculated between two consecutive 

frames to measure the similarity of the frames. A frame is detected as a cut if the similarity score 

between this frame and its previous frame is lower than a pre-defined threshold. The similarity score 

is generally obtained from low-level image features such as pixel intensity values, average intensity 

values of block-based regions, and color histogram. Pixel comparison methods compute the 

difference of intensity value of each pixel between two images [63]. The average difference of 

intensity values over all pixels is calculated as a similarity score. A cut is detected if the similarity 

score is larger than a threshold. Many alternative approaches can be used to compute the similarity 

score. A popular approach sets a score to 1 if the intensity difference for a corresponding pixel 

between two frames is large than a pre-defined threshold, or to 0 otherwise. The average score of all 

pixels is used as the similarity score. Pixel comparison methods can be extended to process a color 

image by computing the similarity score of pixels in each color channel separately. These algorithms 

are the simplest to obtain the similarity between frames. However, they are usually sensitive to 

camera motion and light condition. For example, a small translation of camera or a small change in 

illumination could affect the vast majority of pixels. Therefore, a single threshold is not robust to 

determine a shot cut. Block-based comparison methods [64] [65] divide an image into overlapping or 

non-overlapping blocks and calculate similarity scores among corresponding blocks. The average 

score of these similarity scores of corresponding blocks between two images is used to determine a 

shot cut. Comparing to the pixel comparison, the block-based comparison considers the global content 

between images and it is more robust to the small camera or object motion. However, the block-based 

comparison methods are sensitivity to large motion of camera or objects. Histogram comparison 

computes the distribution of intensity values represented by histogram bins. The differences of 

histogram bin values between two frames are used as a similarity score. The global histogram 

comparison computes the intensity value distribution of the entire image, while the local histogram 
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comparison computes the intensity value distribution in a local region such as a block. Histogram 

comparison is less sensitive to motion of camera or objects.  

Clustering-based algorithms [66] use unsupervised learning algorithms to cluster frames into 

shots. Many features such as intensity or color histogram can be used together with unsupervised 

learning models such as K-means to cluster frame similarities. Clustering-based algorithms overcome 

shortcoming of thresholding-based algorithms which are sensitive to the types of videos. For example, 

the thresholds for different types of videos are different. However, they do not perform well for 

detecting gradual transitions [62]. 

Model-based algorithms either define or train underlying mathematical and statistical models for 

classifying consecutive video frames into shot frames and non-shot frames. Some example models are 

a mathematical model in [67], the model of probabilistic distribution of pixel intensity values in [68], 

and the hidden Markov model for modeling states of frames in shots [69]. Thresholds are not required 

in the model-based algorithms. However, these models need to be pre-trained and many shots may not 

have an obvious pattern to obtain a good model for some types of videos. 

Shot segmentation techniques for colonoscopic video were presented in [70] and [4]. In [70], a 

colonoscopic video is segmented into shots using the global histogram comparison in the 

threshold-based approach. The technique in [4] extracts shots containing the appearance of instrument 

in colonoscopic operation – operation shot. The paper proposed an algorithm to detect images 

showing appearance of instrument as instrument image and count the detected instrument images in a 

time window. If a time window contains any detected instrument image, the window is considered as 

a window with instrument pattern. A sequence consisted of such consecutive windows with 

instrument pattern longer than 4 seconds are extracted as operation shots.  

Traditional shot detection techniques are not suitable for colonoscopy video because of the 

following reasons. 1) Color information is not as useful since colonoscopic images have limited color 

ranges of mostly red; with stool, the red color is mixed with green or yellow. 2) There is no 

significant movement of a specific object of interest in the image, but small movement of the camera 

can cause rotation, translation, and scaling of the whole image. 3) Strong light reflection, low 
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illumination and blurriness cause significant changes in low-level features, which makes it difficult to 

group them into one shot. Some robust shot segmentation methods that account for monotone image 

pixel color property and the effect of camera motion such as strong light reflection and partially 

blurred images are desirable for segmenting colonoscopy video. 

 

2.3 Edge Cross-Section Profile 

In non-medical fields, edge cross-section profile (ECSP) and its first-order derivative (called 

gradient profile) are well known local appearance models for object detection (e.g., human face 

detection) [34] [35] [36] and tracking [37]. 

In the medical imaging field, ECSP is used for blood vessel extraction in retinal images [38] [39] 

[40], and skin cancer detection [41]. Note that the ECSP profile calculation of the existing work was 

not explicitly mentioned in the reference and may be slightly different from our ECSP calculation. 

Furthermore, none of the calculated ECSP in the existing work is invariant to the object scales in 

image and no investigations of 2nd – order derivative ECSP function and region of interest 

surrounding the edge were presented. 

We group existing object detection techniques using ECSP into the following two categories.  

(1) Modeling ECSP with multivariate distributions [34] [35] [36]: Each point on an ECSP is 

treated as a random variable. The mean and variance-covariance matrices of all random variables 

are calculated and potential correlations among these variables are exploited. Active Shape 

Model (ASM) [34] [35] models the gradient profile of ECSP using one of generative 

probabilistic frameworks – multivariate Gaussian distribution. However, this framework is 

unreliable when some points have multi-modal distributions. To address this issue, k-means 

clustering is used to preprocess the gradient profiles during training and a separate model is 

obtained for each cluster [36]. These underlying multivariate probability models are not robust to 

large variations in sizes of edges and corresponding ECSP. 

(2) Modeling ECSP with pre-defined functions [38] [39] [40] [41]: Multi-scale convolution 
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functions or regression functions are used as shape models. In [38], multi-scale 2D Gaussian-like 

matched filters are used as convolution functions for extracting blood vessels in retinal images. 

In [39] [40], a regression function defined as a linear combination of several inverse Gaussian 

functions is used. To handle different scales, optimal model parameters are obtained by 

minimizing non-linear fitting errors. However, ECSP shapes of colonoscopic objects do not 

strictly follow the shapes of pre-defined functions. Modeling the entire shape of an ECSP is not 

sufficient to capture the local properties of the object.  

In this dissertation, we present our own ECSP calculation method that is invariant to the object 

scales in image and propose three new approaches using our proposed multi-derivative ECSP for 

colonoscopic object detection. In the first approach, we extract features at key positions from ECSP 

and its first-order derivative profile for appendiceal orifice detection. In the second approach, we 

propose an edgeless ECSP technique that obtains ECSP and its features without detecting edges. The 

edgeless ECSP is useful for detecting objects without clear edges due to the noisy nature of 

colonoscopic images such as image blur or low illumination. In the third approach, we propose a 

part-based ECSP method by segmenting ECSP, its 1st – order and its 2nd – order derivative profiles 

into non-overlapping parts. The segmentation of ECSP gives flexibility for modeling each part or 

extracting features for a part using a suitable method for that part. Based on our experiments on real 

colonoscopy data sets, our ECSP features are robust to camera motion and the location and 

appearance variations of objects. 
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CHAPTER 3 EDGE CROSS-SECTION PROFILE 

This chapter introduces our algorithm for calculating ECSP of an edge pixel, ECSP of an edge, 

the multi-derivative ECSP functions, and its corresponding region of interest (ROI). We first present 

the descriptor ECSP and its ROI. We then present a profile extractor for the calculation method of 

ECSP and its ROI. 

 

3.1 Profile Descriptor 

ECSP function for an edge pixel: Let I(������� be the intensity value of an edge pixel ������ for 

5 6 1, … , 9, where M is the total number of pixels on this edge. The vector ������ denotes the pixel at 

the coordinate �:�, ;�� on a 2D image. We define a unit vector ������ as an edge tangent passing ������ 
and a unit vector ������ as an edge normal perpendicular to ������ pointing to the concave side of the edge. 

See Figure 3.1. The ECSP function for the edge pixel ������  is defined as  

 

      ����� < "������� = � · �������, � 6 ?@ AB , ABC , � 6 D,           (3.1) 

 

wherer is the pixel distance (called radius) in an integer set D from the edge pixel ������ along its edge 

normal ������. The maximum value of r is inversely proportional to the edge curvature E and scaled by 

a positive constant �. This maximum radius r value depends on edge curvature. Therefore, object 

scales are reflected by radius r on ECSP functions. That is a large radius reflects a large size object 

relative to the image size and a small radius reflects a small size object relative to the image size.  

ECSP region of interest (ROI): Let a row vector ����� represent all points on function ����� 

starting from � < @�/E to � < �/E. We define a matrix 

 !" < G �H����…�I�����J. 
Figure 3.1 (b) shows the plot of the intensity values in matrix ROI obtained from the corresponding 

edge in Figure 3.1 (a). The matrix ROI is divided into two equal size sub-matrices: the left-half 
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sub-matrix  !"#$	&�K and the right-half sub-matrix  !"#$	#%&�.  !"#$	&�K consists of pixels taken 

from the outer side of the edge/contour and  !"#$	#%&� consists of pixels taken from the inner side 

of the edge. We call the matrix ROI as the region of interest of ECSP.  
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          (a)         (b) 

Figure 3.1: ECSP extraction of an edge in (a) to the corresponding ROI in (b). The vector LM����� 
indicates the position of an edge pixel with its tangent vector NM���� and normal vector OM�����. The edge has 

its surrounding region of interest labeled as ROIconcave and ROIconvex with the dashed lines indicating 

the edge pixels as region boundaries. 
 

ECSP function for an entire edge: We define the ECSP function for an entire edge j as 

 

           
-P��� < QRS51�T�H���, … , �I���U, � 6 ?@ AB , ABC , � 6 D.    

      
(3.2) 

 

A median value for the same r values on these functions is selected because of its robustness to 

speckle and specular noises caused by light reflection.  

Multi-derivative ECSP functions: The multi-derivative ECSP functions are represented as a set 

of functions W-���, 
-���, X�-���, … Y, where each element XZ-��� is the kth-order derivative of the 

function )(rF . As the calculation of derivative function amplifies noise, the maximum order of 

derivative K needs to be empirically found in the training data. We select K based on the criteria that 

the patterns caused by noises and real object are discriminative on the derivative functions. To resist 

the noise, a function is smoothed using the moving average smoothing method [71] before the 

calculation of its derivative. 



24 

 

 

 

3.2 Profile Extractor 

The key to extract ECSP is to obtain the edge normal ������ for edge pixel ������ and the edge 

curvatureκ . We calculate edge normal and edge curvature as follows. 

Calculation of edge normal OM�����: To calculate ������ , we first obtain the edge tangent vector ������ by 

fitting all Q� edge pixels inside a square window [� centered at ������ using the least squares linear 

regression model. We normalize :� as :�\ < �:� @ QR1��:�+,…�]^ ��/_`S�:�+,…�]^ � where mean and 

std represent the mean and the standard deviation of x-coordinates of all pixels (denoted as:�+,…�]^) in 

[� , respectively. This normalization is important to correctly calculate ������  as it improves the 

numerical properties for the linear regression model [71] [72]. Using :�\  as the predictor, and the 

corresponding ;� as the response in the regression model, we obtain its 1st degree coefficient a�. The 

edge tangent can be derived as ������ < b c^
dH�c4̂ , H

dH�c4̂ef . We finally obtain edge normal using 

������ <  �g� · ������ , where

 

the rotation matrix R uses the rotation angle α of either – i/2 or i/2 

depending on which angle results in the calculated ������ pointing to the concave side of the edge. We 

will discuss our method to determinate the concave side of an edge in a later paragraph. The outlier 

norm vectors are detected and replaced by the median value of the norm vectors in a square window 

Ai. A norm vector is declared as an outlier if the angle difference between the norm vector and the 

median value is larger than a threshold Thlddegree. The value of Thlddegree depends on the size of Ai. A 

larger Ai requires a larger value of Thlddegree. After this step, we obtain refined norm vectors of edge 

pixels pointing toward the concave side of the edge. Figure 3.2 shows some results of calculated edge 

normal for some types of objects.  

Calculation of edge curvature k: To calculate the curvature E of an entire edge, we compute 

the median value of local curvatures for all M edge pixels, written as E < QRS51�WE�YHI. Each local 

pixel curvature is represented by E� < l�/Q�, where the angle l� is the maximum angle among 

every pair of edge normal vectors
 
in the window [�.  

We use the following method to determinate the concave side and convex side of an edge. We 

compute the minimum bounding rectangle that encloses the edge and find two regions, Rconcave and 
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Rconvex, separated by the edge as follows. We use region growing taking the center of the minimum 

bounding rectangle as the seed point to group pixels starting from the seed point. The resulting region 

is called Rconcave. The rest of the pixels in the minimum bounding rectangle that do not belong to 

Rconcave are assigned to Rconvex. As a result, for most edges, Rconcave is the region at the concave side of 

the edge and Rconvex is the region at the convex side of the edge.  

 

 
(a)              (b)               (c)              (d)              (e) 

 

Figure 3.2: Top row: Original image; Bottom row: Image labeled with calculated edge normals (blue 

arrows). (a) Appendiceal orifice image; (b) Diverticulum image; (c) Colon lumen image with the 

lumen appearing as the dark region in the middle of the image; (d) Colon lumen image with the lumen 

appearing as the non-dark region in the middle of the image and darkest region at right side, and with 

nested multiple folds; (e) Flat polyp image 

 

 

We plot multi-derivative ECSP functions of some commonly seen objects in Figure 3.3 including 

the three representative objects. The profiles of different objects show different patterns. For different 

objects whose ECSP functions appear similar, their function values are generally in different ranges 

(e.g., Figure 3.3 (d) and (e)). 
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Figure 3.3: Multi-derivative ECSP of different types of colonoscopic objects. First row: Original gray 

scale image marked with a white bar representing the edge cross-section of an edge pixel; Second row: 

the corresponding intensity edge cross-section profile; Third row: the gradient profile; Fourth row: the 

second-order derivative edge profile. (a) Polyp image; (b) Appendiceal orifice image; (c) Lumen 

image with the lumen in the middle of the image and with multiple nested folds; (d) Colon fold; (e) 

Endoscope seen during retroflexion  
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CHAPTER 4 DETECTION OF APPENDIX IMAGE AND VIDEO 

This chapter introduces our algorithms for detecting the quality visualization of appendiceal 

orifice including 1) the image showing the clearly seen appendiceal orifice and 2) the video showing 

at least three seconds of the appendiceal orifice inspection based on ECSP features. 

 

4.1 Introduction 

In 2006, a set of guidelines for a good quality colonoscopy was recommended [2]. This includes 

visualization of the appendieal orifice, which is one indicator that the cecum of the colon is reached 

during the procedure. The rationale for this recommendation is based on the fact that a substantial 

fraction of neoplasms are found in the proximal colon. Therefore, the appearance of the appendiceal 

orifice during colonoscopy indicates a complete traversal of the colon, which is an important quality 

indicator of the colon examination.  

 

 

Figure 4.1: Variation in appendiceal orifice appearance; the appendiceal orifice is shown inside a 

rectangle: (a-f) a single crescent/circle slit seen at varying distance, (g-i) appendiceal orifice with 

multiple curvilinear structures with a sharp turn 

 

The detection of the appearance of appendiceal orifice in image is very challenging for many 

reasons. The appendiceal orifice is often seen as a crescent slit because the appendix is folded around 
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the cecum of the colon and is not maximally insufflated [73]. The shape of the appendiceal orifice 

may vary due to colon contractile activity or air insufflation during endoscopy. Furthermore, the 

appendiceal orifice can be seen at different locations, scales, view angles, and illumination. Figure 4.1 

shows some examples illustrating these challenges. In addition, the orifice may be deformed or 

partially seen in an image or occluded; the appendiceal orifice may be partially or completely 

removed during appendectomy with little or no scar remaining; stool may occlude the appendiceal 

orifice; strong light reflected spots may cover parts of the orifice. Lastly, different types of endoscope 

brands have different image color and light source settings, creating image color and illumination 

variations.  

In this chapter, we focus on identifying high quality visualization of the usual appearance of the 

appendiceal orifice in a clean normal colon (without appendectomy and without stools covering the 

orifice). A high quality video file test bed was created that contained for every colonoscopy at least 3 

seconds of clear appendiceal orifice images and the location of the orifice was if possible the focus of 

the visualization (i.e., close to the center of the image). During the 3 second inspection of the 

appendiceal orifice, the endoscopist may not necessarily pause (stop moving the camera). Small 

camera movements, partial strong light reflection, poor illumination, and blur can occur in a few 

frames. To measure the quality of the visualization of the appendiceal orifice, we define an appendix 

video as a video that shows at least 3 seconds of appendiceal orifice images. If a colonoscopy video is 

determined to be an appendix video, this colonoscopy is considered of high quality in terms of 

visualization of the appendiceal orifice. Videos of procedures with low quality inspection should be 

reviewed by other endoscopists for quality control. 

We present a hierarchical detection approach that determines whether a video is an appendix 

video. The approach consists of two-level analysis: image level and video level. At the image level, 

we propose an ECSP feature based appendiceal orifice image detection algorithm to detect 

appendiceal orifice images showing the commonly seen crescent slit of the appendiceal orifice. The 

crux of the algorithm is new local features that represent geometric shape, illumination difference and 

intensity changes of pixels along the norm direction (cross-section) of an edge. At the video level, we 
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propose an appendiceal orifice shot detection algorithm that first detects near pause video segments of 

appendiceal orifice inspection of at least 3 seconds. If a sufficient number of images of such segments 

are found, the video is considered an appendix video. The hierarchical detection analysis at the image 

level and the video level together addresses the following challenges: 1) large scale and rotation 

variance due to different view angles and camera distances from the appendiceal orifice; 2) moderate 

illumination variance and strong light reflection; and 3) moderate amount of weak edges.  

 

4.2 Edge Profile Based Appendiceal Orifice Image Detection 

This section introduces our ECSP feature based algorithm for appendix image detection. 

Thresholds and parameter values used in our algorithms were obtained from experiments with our 

training data described in Section 4.4. We specify these values in the algorithm description and 

provide a summary of these values in Table 4.1. 

 

4.2.1 Image Preprocessing 

This step is to identify qualified edges in an image used as ECSP edges. We first extract edges by 

applying Canny edge detector (with a low threshold of 0.05, a high threshold of 0.1, and a standard 

deviation of 3) to the grayscale image converted from the input color image. Next, we apply a dilation 

operation twice on the edge image using a square shape structuring element (with a 5 pixel radius) to 

link broken edges (edge with edge pixels at a small distance from each other). Then, we extract the 

edge skeleton using the skeleton algorithm [74] and remove small branches on these edges using a 

spur operation with pruning [74]. Next, we discard the following noisy edges. 

1) Edges with the number of edge pixels outside a pre-defined range E of between 100 and 500 

pixels since these edges are either too short or too long for a typical appendiceal orifice edge 

for the image resolution used in our experiments. 

2) Approximated linear edges (determined based on least squares linear fitting errors according 

to parameters in Table 4.1 no. 3) and edges with Curvature out of the range of commonly 

seen appendiceal orifice edges (between 1/20 and 1/320). The Curvature of a given edge is 

computed as the median of curvature of all pixels on this edge. Let Wi be a window of size 

10x10 pixels centered at pixel i of the edge. The curvature of the pixel i is computed as the 

ratio of Di to the length of the edge segment in Wi, where Di is the absolute difference of the 
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tangent angles of the two endpoint pixels of the edge segment. The tangent angle of a pixel is 

the slope of the line fitting the edge segment in a window centered at that pixel. 

Approximated linear edges are usually those of colon folds, instruments, etc.  

3) Edges caused by strong light reflection. A light-reflected pixel is normally very bright 

compared to the brightness of the entire image and has less pure color compared to 

non-light-reflected pixels. Figure 4.2 shows an example of the result of our light reflection 

detection algorithm that works as follows.  

Step 1: We build a saturation distribution of bright pixels (i.e., all pixels in the image 

with value (V) in HSV color space larger than a brightness threshold (V>0.4) and with 

saturation (S) larger than a saturation threshold (S>0.2)) using a Gaussian kernel 

function with the mean and the variance set to the mean and the variance of saturation of 

these pixels.  

Step 2: A pixel is considered a light reflected pixel if the following three conditions are 

satisfied: 1) The value (V) is larger than a brightness threshold (V>0.4), 2) the saturation 

(S) is smaller than the mean saturation obtained in Step 1, and 3) the probability of the 

saturation of this pixel on the saturation distribution modeled in Step 1 is smaller than a 

saturation threshold Ps (0.6).  

 

 
Figure 4.2: Results of light reflection detection. Top row: original images; Bottom row: 

detected light-reflected regions shown in white 
 

4) Edges that do not fit well on ideal ellipses using least squares ellipse fitting. For each edge, we 

perform least squares ellipse fitting and a dilation operation on the detected ideal ellipse using 

a circle structuring element with a 3 pixel radius. The dilation is to account for some nearby 

edge pixels that do not lie perfectly on the ideal ellipse. Let N be the total number of pixels on 

the edge. We define Fellipse(N) as the percentage of edge pixels not covered by the dilated ideal 

ellipse. We reject edges in which Fellipse(N)>0.2 for N≤50,  Fellipse(N)>0.4 for 50≤N<100, and 
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Fellipse(N)>0.7 for N≥100. The criteria is derived from our finding that as N increases, the value 

of Fellipse(N) of vessel edges increases much faster than that of appendiceal orifice edges. 

Figure 4.3 (a) shows a plot of Fellipse(N) based on our training data set. Therefore, this method 

can discard most vessel edges and noise edges with connected branches or strange shapes (e.g. 

snake-like shapes or shapes with sharp corners). 

             
(a)                                  (b) 

Figure 4.3: Plot of edge features of selected representative images (137 appendiceal orifice 

edges, 1634 lumen edges, 424 vessel edges, 122 polyp edges) from 7 training colonoscopy 

videos. Left: Plot of the mean and variance of Fellipse(N) (ellipse fitting errors) and edge size (in 

pixels) N for vessel and appendiceal orifice edges; more errors are observed for vessel edges 

compared to appendiceal orifice edges. Right: Histogram of the strength of intensity drop feature 

obtained from the intensity edge cross-section profile. 
 

 

4.2.2 Key Point Based Features on Edge Profile 
We extract the features on the key positions of ECSP for classification as follows. 

1) Intensity of a concave region and intensity difference between concave and convex regions: 

With the slit appearance of appendiceal orifice edges, we observe an intensity difference 

between the two sides of the slit. Furthermore, the concave side of an appendiceal orifice 

edge is typically brighter than that of lumen and diverticula, but less bright than that of 

polyps and instruments. We calculate the average intensity difference between the two 

regions as ∆" n < " n#$	#%&� @ "n#$	&�K  where  " n#$	&�K is the average intensity value 

on  !"#$	&�K, and " n#$	#%&� is the average intensity value on  !"#$	#%&�, respectively. For 

appendiceal orifice edges, ∆" n is often close to zero. For some other kinds of edges, for 

example, for edges of diverticulum and lumen, ∆" n is typically negative since they are 
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typically further away from the camera. For edges of polyps, ∆" n value is often high positive. 

This is because the polyp surface tends to reflect more light. 

2) Strength of intensity drop before crossing the edge and strength of intensity return after 

crossing the edge: A plot of the intensity cross-section profile of an appendiceal orifice edge 

shows a very interesting pattern, different from most other edges in most cases. The intensity 

values decrease from the convex side of the slit to the lowest value at the middle position of 

the cross section and then increase to a similar level after that. Figure 4.4 (c) shows this 

pattern of a sudden drop by h1 and then a sudden increase by h2. The pixel positions to 

measure h1 and h2 should be the pixels at which the intensity change is very small just before 

and after the drop. These positions correspond to the positions when the first-order derivative 

of the intensity function is within a threshold dfirst-order (0.001) which is very close to zero. See 

Figure 4.4 (c) and (d). For different kinds of edges, the values of these features are different. 

From our investigation, we found appendiceal orifice edges usually have a large drop 

intensity value h1, while for other kinds of edges the distributions of h1 are different. See a 

distribution plot of this feature in Figure 4.3 (b). We found that for a diverticulum edge, the 

return intensity after the drop is usually noticeably lower than the intensity prior to the drop. 

Hence, the value of this feature is lower than that of the appendiceal orifice edge. For many 

colon folds near the colon lumen, the intensity after the drop does not rise back up. Polyp 

edges are usually brighter at the concave side. Hence, the return intensity surpasses the 

intensity level before the drop. We use a feature of normalized return-intensity-ratio h2/(h1+ 

h2) to measure the strength of the intensity return after the drop. 
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Figure 4.4:  Cross-section profile of an edge of appendiceal orifice: (a) Appendiceal orifice 

edge with norm vectors extracted; (b) grayscale image of ROI around the edge (r=55) in 

image (a); (c) Plot of the intensity values of the intensity cross-section profile computed on 

image (b); (d) Plot of the first-order derivative values of the intensity cross-section profile in 

(c)  
 

3) Edge sharpness before and after crossing the edge: To derive edge sharpness (how quick the 

intensity drops and returns) at the two sides of the edge, we first calculate the first-order 

derivative of the intensity cross-section profile. Let h4 be the absolute difference between the 

minimum first-order derivative value and the first-order derivative value measured at the 

zero-crossing position where h1 is measured; h3 is the first maximum value on the first-order 

derivative curve after the middle position of the cross-section profile. See Figure 4.4 (d). We 

use the values h3 and h4 to measure the edge sharpness before and after the intensity drop and 

the ratio h3/(h4+ h3) to measure the similarity of sharpness between the two sides of an edge. 

Figure 4.4 (a-d) illustrate these features for different types of edges. For appendiceal orifice 

edges, the sharpness between two edge sides are similar because the return speed of the 

intensity after crossing the edge is quite similar to the speed of the intensity drop. From our 

observation, the appendiceal orifice edges usually have a larger value of sharpness before 

crossing the edge (h4) than other kinds of edges.  
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4) Number of edge intersections along the norm direction: We measure Ncross-section as the 

number of local minimum pixels on the first-order derivative of its intensity cross-section 

profile in the range r = λ/Curvature (λ=1.0 in this case) (Figure 4.4 (a)) where Curvature is 

the median curvature of all pixels on this edge. For each intensity cross-section profile, we 

want to count the number of edges nearby as a feature. Therefore, λ is set to 1, the maximum 

value within its valid range (0.5~1.0) for the calculation of Ncross-section. If there are several 

local minimum pixels which are close to each other (within a short distance dcross-section of 20 

pixels) without zero-crossing pixels among them, these local minimum pixels are counted as 

one edge intersection. For a single crescent slit of the appendiceal orifice, this feature has the 

value of one. The value of this feature is greater than one for edges of nested colon folds 

around the colon lumen. See Figure 3.3 (c). 

5) Edge Cross Section Width: The width of the edge (Wcross-section) is the number of pixels 

between positions where h1 and h2 are measured (Figure 3.3 (b)). Empirically, we found that 

most of vessel edges have a smaller width than that of appendiceal orifice edges. 

 

4.2.3 Appendiceal Orifice/Non-appendiceal Orifice Image Classification 

We utilize the domain knowledge that the appendiceal orifice appears near the end of the 

insertion and only in wall images---images without distant lumen. Images with the distant lumen in 

the field of view are called lumen images. We use our lumen/wall image classification method [13] to 

label clear images as either lumen images or wall images. Then, we detect the frame indicating the 

end of insertion using our previous method based on camera motion [12]. Finally, we only consider 

images around the detected end of insertion frame. In our study, it is sufficient to analyze one frame 

per second instead of analyzing the frames at the full video frame rate. We perform appendiceal 

orifice image detection only on the frames within a selected range EOIimage (4 minutes before and 8 

minutes after the end of insertion frame) since appendiceal orifice images should appear around the 

end of insertion. The value of EOIimage is conservative based on the error rate of the method for the 

detection of the end of insertion frame. The selected range is to accommodate some inaccuracy of the 
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end of insertion detection and the time for appendiceal orifice inspection. The inspection of 

appendiceal orifice is generally performed right after the end of the insertion time. 

We use a two-layer hierarchical classification based on our extracted features as follows. In the 

first layer, we reject likely non-appendiceal orifice edges using a set of rules obtained from the J48 

decision tree classifier of Weka [75]. This classifier is a variant of the well-known C4.5 decision tree 

algorithm [76]. The feature vector is Ftree={h1, h2/(h1+ h2), ∆" n, " n#$	#%&�, h4, h3/(h3+ h4), Ncross-section,, 

VarCurvature}, where all features except the last one are discussed previously. VarCurvature is the variance 

of curvatures of all the pixels on the edge. The features, h1, h2/(h1+ h2), " n#$	#%&�, h3/(h3+ h4), play an 

important role in separating most of non-appendiceal orifice edges from appendiceal orifice edges 

with a very small mis-classification error for appendiceal orifice edges. We use a logic rule set R = 

{h1< 0.0557, " n#$	#%&�<0.4333, h2/(h1+ h2)> 0.6248, h3/(h3+ h4)> 0.769} obtained as follows to 

identify non-appendiceal orifice edges and discard them. 

To derive the above logic rule set, we experimented with several individual classifiers provided 

in Weka [75] including Naïve Bayes, Decision Tree J48, Support Vector Machines (SVM) with 

various parameters, and a supervised linear regression classifier using Radial Basis Function (RBF) as 

the model function. Among these classifiers, we chose the decision tree classifier because it gave the 

best performance in specificity and a reasonable performance in sensitivity using 10-fold cross 

validation on the training data set. However, we found that a better sensitivity is obtained if the rules 

related to features with low information gain in the decision tree classifier are removed. We used this 

method to obtain the aforementioned logic rule set R. This is because the low-information gain 

features have a significant overlap in Gaussian-like distributions of the feature values. For such 

features, the decision tree classifier does not perform well. A classifier that utilizes probability of 

multivariable Gaussian distributions such as a Gaussian RBF is better. 

Therefore, in the second layer, we extract three features from each remaining edge: FRBF = {h4, 

Wcross-section, Ncross-section}. We compute a weighted Gaussian based RBF as 

� < ∑ p� · R:q W@ �K^rs^�4
�t4̂ Y	�uH , 
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where p� is a pre-determined weight of feature i; v� and w� are the mean and standard deviation of 

feature i obtained from training; :� is the value of feature i for the edge being considered and n is the 

number of features. In our experiments, equal weights are assigned to the three features. The 

remaining edge that has the value of P larger than a threshold Pthld (0.3) is detected as an appendiceal 

orifice edge. If an image has at least one detected appendiceal orifice edge, it is declared as an 

appendiceal orifice image. 

 

4.3 Appendix Video Detection 

Recall that an appendix video is defined as a colonoscopy video that shows at least 3 seconds of 

appendiceal orifice images. During this period, the endoscopist may not necessarily pause, but moves 

the camera around the orifice or closer or farther. Strong light reflection and partially blurred images 

can occur as a result. We propose an appendiceal orifice shot detection algorithm that detects near 

pause video segments of the appendiceal orifice visualization. Our near pause detection is based on 

similarity of global intensity histograms of sequential images, but allows for some dissimilarity to 

handle the aforementioned issues. The near pause detection helps to recall appendiceal orifice images 

with weak edges, poor illumination as well as reduce false positives caused by the edge-profile based 

appendiceal orifice image detection. 

 

4.3.1 Near Pause Detection 

Our near pause detection algorithm consists of three steps as follows. 

Step 1: We divide each frame into n non-overlapping blocks of size Bi (15x15 pixels). 

Let S5_`Z�5, x� denote the Euclidean distance between intensity histograms of block k between any 

two frames i and j. Given a threshold Tblk , a similarity score for block k between the two frames is 

defined as follows. 

_Z�i, j� < {1, 5� S5_`Z�5, x� | }~�Z0,                 �`�R�p5_R � 
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(�5, x� < � _Z�5, x�	
ZuH  

The value for Tblk depends on Bi and is determined based on experiments with the training data. The 

similarity score S(i,j) between frames i and j is the number of similar blocks between the two frames. 

Given a threshold Tfrm, we define a frame similarity function between any two frames i and j as 

follows. 

(5Q�i, j� < {1, 5� (�5, x� | }���0,           �`�R�p5_R � 
 

We will discuss how to choose an appropriate value for Tfrm shortly after relevant concepts related 

to this threshold are presented. 

Figure 4.5 shows a graph that depicts frame similarity between frames in a video. Nodes represent 

frames and an edge between any two nodes i and j denotes frame similarity between frames i and j. 

Their similarity is strong (strong edge) when Sim(i, j) is one and it is weak (weak edge) when Sim(i,j) 

is zero. A weak similarity may be caused by light reflection, large camera movements, presence of 

instruments, etc. 

 

 

Figure 4.5: Example results of near pause detection for 16 sequential frames: Each node represents 

one frame; solid lines between each pair represent strong similarity between the frames and dot lines 

represent weak similarity between the frames.  

 

Step 2: To allow few frames to be very different from neighboring frames (e.g., frames with 
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strong light reflection, low illumination, and blurriness) during a near pause, we refine weak edges as 

strong edges according to 2.1 and 2.2. Let frame i be the frame under consideration. 

2.1: If Sim(i-1, i) is 0, but Sim(i-1, i+1) is 1 (i.e., frame i is different from its previous frame, but 

the two nearest neighbors of frame i are strongly similar), we assign 1 to Sim(i-1, i) and Sim(i, 

i+1). That is, we include frame i into the same group as frames i-1 and i+1 even frame i is not so 

similar. We repeat this process until no further refinement can be made. For instance, in Step 2 of 

Figure 4.5, edges between nodes representing frames 3 and 4 and frames 4 and 5 are refined as 

strong edges (solid lines). Similarly, edges between nodes representing frames 11 and 12 and 

frames 12 and 13 are refined as strong edges.  

2.2: If Sim(i-1, i), Sim(i, i+1) and Sim(i-1, i+1) are all zeros (i.e., all three consecutive frames are 

not similar, we check the values of Sim(i-2, i-1) and Sim(i+1, i+2). If both of them are 1, assign 1 

to Sim(i-1, i) and Sim(i-2, i) if S(i-1, i) >= S(i, i+1). Otherwise, we assign 1 to Sim(i, i+1) and 

Sim(i, i+2). In other words, we assign frame i to the group to which it is most similar. In Step 2 

of Figure 4.5, the edge between nodes of frames 13 and 14 is refined as a strong edge since frame 

14 is more similar to frame 13 than frame 15 does. 

Step 3: We group sequential frames with strong edges into a near pause group. For instance, in 

Step 3 of Figure 4.5, frames 1 to 5, frames 11 to 14, and frames 15 to 16 each belong to a near pause 

group. We group sequential frames in between two near pause groups into a motion group. Frames 6 

to 10 in Figure 4.5 are considered in the same motion group. 

 

4.3.2 Refinement of Appendiceal Orifice Image Detection Results 

We utilize the domain knowledge that the appendiceal orifice appears only in wall images and 

the results of the aforementioned appendiceal orifice image detection and near-pause detection. We 

determine for each image whether it is a wall image or a lumen image using our view mode detection 

technique [13], whether it is an appendiceal orifice image or non-appendiceal orifice image using the 

appendiceal orifice image detection technique, and whether it belongs to a near pause or a motion 

group. Lumen images are more sensitive to camera movement due to the large variance in pixel 
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intensity distribution. Hence, they likely belong to motion groups. Wall images are more likely in near 

pause groups. The value of the aforementioned Tfrm for near pause detection was chosen based on 

experiments with the training data to minimize the number of frames in a near pause group of wall 

images (where the appendiceal orifice appearance is more likely) from being divided incorrectly into 

subgroups. 

Regardless of the group type, if the percentage of lumen images in the group is larger than 

ThldLumen (50%), all images in the group are marked as non-appendiceal orifice images. This is done to 

eliminate errors since the appendiceal orifice appears only in wall images. If the percentage of 

detected appendiceal orifice images in a near pause group is larger than ThldWall (66%), we consider 

all wall images in the group as appendiceal orifice images. This helps to recall true appendiceal 

orifice images that were not detected by the appendiceal orifice image detection. We discuss how to 

select the values of ThldWall and ThldLumen in Section 4.4. 

 

4.3.3 Video Classification 

This step determines whether the video is an appendix video. Even if the appendiceal orifice 

image detection technique has a 90% specificity, the results will include many false positives 

(non-appendiceal orifice images detected as appendiceal orifice images) since there are many more 

non-appendiceal orifice images than appendiceal orifice images in a colonoscopy video. This 

prevented us from using the number of detected appendiceal images as marker that determines 

whether a video is an appendix video. We solve this problem by significantly increasing the 

specificity and performing appendiceal orifice image detection in a narrower image range around the 

end of insertion phase. We empirically determined a range between 2 minutes before and 6 minutes 

after the end of insertion frame determined by our analysis method (EOIvideo) [12]. We label all 

images in near-pause groups as non-appendiceal orifice images if the group duration is less than 2 

seconds. A 2 second duration is used here (instead of 3 seconds) since we want to be conservative and 

allow detection of acceptable quality of appendiceal orifice visualization. We also label all images in 

motion groups as non-appendiceal orifice images. If the number of detected appendiceal orifice 
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images is larger than a threshold K (7 images chosen based on the training data), we determine that 

the video is an appendix video. Otherwise, the video is considered a non-appendix video. We discuss 

how to select the value of K in more detail in Section 4.4.  

Out of the many parameters listed in Table 4.1, only 9 of these parameters are more sensitive 

than the others. Five of them as indicated in the table depend on the input image size; they are to be 

reconfigured for adult or pediatric scopes where there is a significant difference in image sizes. 

Normalization of values based on the input image size will be investigated as future work. The logic 

rule set R, ThldLumen, Thldwall, and K can be obtained via training as discussed in Sections 4.2 and 4.4. 

We show the flow chart of our appendix video detection algorithm in Figure 4.6 and the pseudo 

code of the algorithm in Figure 4.7. 

 

 
 

Figure 4.6: The flow chart of the appendix video detection algorithm  
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Algorithm: Appendix Video Detection 
// Functionality: Classify a video as an appendix or a non-appendix video  

// Input: 

//    video: Input video  

//    EOIvideo: End of insertion frame number 

//    FrameRate: Frame rate of the input video 

//    ThldLumen: Threshold of the percentage of lumen images in a shot for detecting a motion  

//             shot 

//    ThldWall: Threshold of the percentage of detected appendix images in a pause shot for  

//            refining all images in the shot as appendix images 

//    K: Minimum number of detected appendix images for indicating the video as an appendix  

//      video or a non-appendix video 

// Output: True if the input video is detected as an appendix video 

//       False, otherwise 

ISAPPENDIXVIDEO (video, EOIvideo , FrameRate, ThldLumen, ThldWall, K)  

1:    // Process frames 2 minutes before and 6 minutes after the end of insertion frame 

2:    startFrame.id ← EOIvideo – 180*FrameRate 

3:    endFrame.id ← EOIvideo + 360*FrameRate 

4:   videoClip ← CREATEVIDEOCLIP( startFrame, endFrame)   

5:   // Near pause detection for motion/pause shot segmentation 

6:   // shot[]: Array of structures storing all shot information of videoClip 

7:   // nShot: Number of shots in videoClip 

8:   shot[], nShot ← PAUSEDETECTION(videoClip) 

9:   // Call lumen/wall classification algorithm in [13] to classify frames as lumen/wall frames 

10:  // frameType: Array storing the type of images as either lumen or wall images 

11:  frameType ← LUMENWALLCLASSIFICATION(videoClip) 

12:  // Check the logical rule to classify images into appendix/non-appendix images 

13:  // videoClip.clearFrame[]: Array containing all information of clear frames 

14:  // fId: Frame ID in videoClip.clearFrame[] 

15:  fId ← 0 

16:  while ISEXIST(videoClip.clearFrame[], fId) do 

17:      // sId: shot ID in the array shot  

18:      sId ← GETSHOTINFORMATION(videoClip.clearFrame[], fID, shot[]) 

19:      // All frames in a motion shot or a short duration shot are non-appendix images 

20:      if shot[sId ].Type == MOTION or shot[sId].Duration < 2 seconds then  

21:          fId ← fId+1 

22:          continue 

23:      end if 
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Algorithm: Appendix Video Detection (continued) 
24:      //Count the frame percentage of clear lumen images in the shot 

25:      lumenPct ← LUMENPERCENTAGE (shot[sId], frameType[fId])  

26:      //Non-appendix image if the lumen percentage in a pause shot > ThldLumen  

27:      if lumenPct > ThldLumen then 
28:          fId ← fId+1 

29:          continue 

30:      end if 

31:      // Classify an images into an appendix or a non-appendix image 

32:      // videoClip.clearFrame[fId].Type: an appendix or a non-appendix type  

33:       videoClip.clearFrame[fId].Type 

34:      ← APPENDIXIMAGEDETECTION(videoClip.clearFrame[], fId) 

35:      fId ← fId+1 

36:    end while 
37:   // Refine detected appendix images in the pause shot  

38:    for sId ← 0 to nShot 

39:      if shot[sId].Type == PAUSE then 
40:        // Count the percentage of detected appendix images in the pause shot  

41:          appendixPct ← APEENDIXPERCENTAGE(shot[], sId) 

42:          if appendixPct > ThldWall then  

43:             // Set all images in the shot as appendix images  

44:           SETALLASAPPENDIX(videoClip, shot[], sId)  
45:          end if 
46:       end if 
47:   end for 

48:   // Count total number of detected appendix images in the video clip 

49:   if COUNTAPPENDIXIMAGES(videoClip) > K then 

50:     return true 

51:   end if 
52:   return false 

 

 
Figure 4.7: Pseudo code of the appendix video algorithm 
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Table 4.1: Parameters and Values for Appendix Image Detection 

 

No. Parameter Name Valid Parameter Value/Range 

1 Canny edge detector Low threshold of 0.05; high threshold of 0.1; sigma of 3 

2 Edge size range E* The number of edge pixels of valid candidate edges is between 100 and 500 

pixels. 

3 Linear edges* The edge with the least squares fitting error < 8 pixels along either the 

vertical or horizontal image direction is determined as a linear edge. 

4 Curvature Curvature range of candidate appendiceal orifice edges is between 1/320 

and 1/20. 

5 Wi 10x10 pixels; the range from 10x10 to 25x25 pixels is the best to model the 

tangent vector direction 

6 Light-reflected pixels V>0.4 and S>0.2; Ps=0.6 for modeling and using the saturation distribution 

7 Fellipse(N)*  Reject edges with Fellipse(N)>0.2 for N<50, Fellipse(N)>0.4 for 50 ≤ N<100, 

and Fellipse(N)>0.7 for N≥100 

8 Mi 5x5 pixels 

9 Thlddegree 15 degrees; the value of Thlddegree depends on Mi and 15 degrees are 

sufficient for the window size of 5x5 pixels 

10 λ 0.5~1.0 are shown to perform the best  

11 dfirst-order  0.001 

12 dcross-section* 20 pixels 

13 EOIimage 4 minutes before and 8 minutes after the end of insertion frame; this number 

is conservative based on the error rate of the method for the detection of the 

end of insertion frame 

14 Logic rule set R R = {h1< 0.0557, " n#$	#%&� <0.4333, h2/(h1+ h2)> 0.6248, h3/(h3+ h4)> 

0.769} extracted from the decision tree classifier 

15 Pthld 0.3 

16 Bi 15x15 pixels 

17 Tblk 70 (depending on Bi) 

18 Tfrm* 700 blocks  

19 ThldLumen 50% 

20 ThldWall 66% 

21 EOIvideo 2 minutes before and 6 minutes after the end of insertion frame 

22 K 7 images 

All parameters in this table were obtained based on experiments with the training data set. They were then used 

for running the experiments on the testing data set.  

* Parameters sensitive to an input image size 
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4.4 Experimental Results 

We implemented all image analysis code in MATLAB. The data sets used in this study are from a 

test bed generated using FUJINON endoscopes during routine screening colonoscopy. Table 4.2 

shows our training data set for obtaining various parameters for image level analysis. This data set 

consists of manually selected clear images from 7 appendix videos. To obtain parameter values for 

video level analysis, we used a different training set that consists of all clear images from 5 other 

appendix videos and 5 non-appendix videos. Our testing data set consists of 23 video files of 

colonoscopy and flexible sigmoidoscopy. The training data sets and testing data set do not overlap. 

We first extracted 1 frame per second from the videos from the two data sets and saved them in JPEG 

format with a resolution of 720×480 pixels and 24 bit color. We discarded blurry (out-of-focus) 

images from these videos using the blurry frame detection method in [70]. Both training and testing 

images cover image types often seen in colonoscopy video including images showing appendiceal 

orifice, lumen, wall, polyps, vessels and instruments. Strong light reflection and weak edges appear in 

these image sets. The 23 test videos were divided into 3 categories. Category 1 includes 10 videos that 

show single crescent or circle slit appendiceal orifice shapes which are often seen. We focus on 

detecting good visualization of these appendiceal orifice shapes. Category 2 includes 5 videos that 

show multiple connected crescent shapes or single unclear/out-of-bound appendiceal orifice shapes 

which are sometimes seen. Category 3 has 8 non-appendix videos including 6 colonoscopy videos and 

2 flexible sigmoidoscopy videos. The correctness of the classification of the ground truth was verified 

by the domain expert. The experiments were run on an Intel Xeon 1.86 GHz PC with 4GB of RAM 

and Windows 2003 Server as the operating system. The average running time per image was 8.7 

seconds (6.4 seconds for image pre-processing and feature extraction and 2.3 seconds for 

classification and near pause detection). Only clear images within 2 minutes before and 6 minutes 

after the detected end of insertion frame were analyzed and the analysis rate of 1 frame per second 

was sufficient. Therefore, the average total running time for detecting the quality visualization of 

appendiceal orifice in a colonoscopic procedure was 38 minutes and 17 seconds. The detection time is 

fast enough to confirm the orifice visualization quality to the patient before he/she leaves the 
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endoscopic screening facility. Manual review for quality control is subjective, tedious, and 

time-consuming since it requires the reviewer to first locate the appendiceal orifice images using 

fast-forward/reverse playback and to carefully look at these frames to determine whether the orifice 

inspection is of good quality. 

 

Table 4.2: Training Data for Image Level Selected From 7 Videos for Appendix Detection 

 

  Appendix Lumen Polyp Vessel Instrument 

Number of images 121 292 221 71 71 

Number of edges 137 1634 122 424 98 

 

 

To choose good parameter values for ThldWall, ThldLumen, and K used in video level analysis, we 

first studied the effectiveness of different combinations of values of (ThldWall, ThldLumen). As not all 

possible combinations of ThldWall and ThldLumen in the range [0.0, 1.0] can be selected, we decided on 7 

representative values {0, 1/4, 1/3, 1/2, 2/3, 3/4, 1} for each of the thresholds. As a result, there are a 

total of 49 possible combinations. Recall that our training data set has two classes of videos: 5 

appendix videos and 5 non-appendix videos. Let the number of detected appendiceal orifice images in 

an appendix video i be #APXi, the number of detected appendiceal orifice images in a non-appendix 

video j be #APXNj, and the number of real appendiceal orifice images in an appendix video i be 

#APXRi. The following two steps are used to select the best combination. 

Step 1) Select candidate combinations of (ThldWall,  ThldLumen) with large   

[5_`~�����	 < I�	W#���^YrI%KW#����^YI�	W#���^Y�I%KW#����^Y , 

where i, j are from 1 to M (the maximum number of videos used for training in each class; M = 5 

in our study). This is to find the threshold values that result in a large difference between the 

numbers of detected appendix images between the two classes.  

Step 2) Select the combination with the largest value of 
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among candidate pairs of (ThldWall, ThldLumen) obtained from Step 1 for the appendix video class. 

The higher the Recallwithin, the more true positives are detected. The combination of (2/3, 1/2) for 

(ThldWall, ThldLumen) was selected and the threshold K was calculated as (Min{#APXi} + 

Max{#APXNj})/2 using the selected combination, which results in K=6.5. We used K of 7 for 

testing. 

After all parameter values were determined using the training data sets, we ran our code on the 

testing set using the obtained parameter values. In the image level classification, we measured 

performance using sensitivity (recall) and specificity as the percentage of correctly detected 

appendiceal orifice and non-appendiceal orifice images of ground truth images. In the video level, we 

use accuracy which is the percentage of videos that are correctly classified. Based on the experiment 

results of the image level classification, we have the average performance on the 23 test videos as 

shown in Tables 4.3, Table 4.4 and Table 4.5. For Category 1, the average sensitivity and specificity 

are 91.82% and 91.02% without near pause detection. With near pause detection, the average 

sensitivity increases noticeably to 96.86% and the average specificity slightly decreases to 90.04%. 

For Category 2, the average sensitivity and specificity are 48.01% and 93.17% without near pause 

detection, and are 50.93% and 93.96% with near pause detection. The reason for low sensitivity for 

Category 2 is that some appendiceal orifice images are not detected because the orifice is 1) near the 

image boundary or 2) in an area with weak illumination or covered by water or 3) distorted such that 

it no longer has a nice crescent like shape. The distortion is caused by air suction, resulting in multiple 

connected curvilinear structures with a sharp corner as a connection point of these shapes. Such 

multiple connected orifice shapes are rejected by ellipse fitting in the pre-processing step unless the 

sharp corner was not detected or the orifice edges are broken apart in the edge extraction step. The 

misses in the first two cases are not crucial in practice because optimal inspection of the appendiceal 

orifice should have adequate illumination with the clear seen orifice in the center of the image. For 

Category 3 (non-appendix videos only), near pause detection improves the average specificity from 
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89.33% to 90.93%.  

At the video level, recall that the goal of the video level is to increase specificity while 

maintaining a reasonable sensitivity to determine whether the video is an appendix video. Near pause 

detection significantly increases the average specificity to 97.68% for Category 1, 98.91% for 

Category 2, and 98.30% for Category 3 (results not shown in any tables). We label the video as an 

appendix video if we find at least K images (K=7) detected as appendiceal orifice images. Otherwise, 

the video is labeled as a non-appendix video. The algorithm correctly classifies 91.30% (21/23) of the 

videos including around 93% (14/15) of appendix videos and around 87.5% (7/8) of non-appendix 

videos. For the 2 mis-classified videos, one video is in Category 2 (Video ID 15 in Table 4.4) and the 

other video is in Category 3 (Video ID 18 in Table 4.5), but there is no misclassified video in 

Category 1. See Table 4.6. 
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Table 4.3: Performance of Image Level Classification Results on Appendix Videos (Category 1) 

  

Video 

ID 

Appendiceal 

Orifice 

Shape   

Before Near Pause Detection After Near Pause Detection 

Confusion Matrices Performance Confusion Matrices Performance 

  # Detected Sen. Spe.   # Detected Sen. Spe. 

RL AP NP % % RL AP NP % % 

1 
Single 

crescent slit 

AP 18 1 
94.74 86.43 

AP 18 1 
94.74 88.39 

NP 76 484 NP 65 495 

2 
Single 

crescent slit 

AP 7 1 
87.50 88.88 

AP 8 0 
100 88.75 

NP 90 719 NP 91 718 

3 
Single 

crescent slit 

AP 3 0 
100 90.65 

AP 3 0 
100 93.53 

NP 39 378 NP 27 390 

4 
Single 

crescent slit 

AP 48 1 
97.96 90.06 

AP 48 1 
97.96 90.21 

NP 67 607 NP 66 608 

5 
Single 

crescent slit 

AP 12 1 
92.31 87.66 

AP 12 1 
92.31 89.37 

NP 108 767 NP 93 782 

6 Circle 
AP 12 3 

80.00 85.04 
AP 15 0 

100 89.23 
NP 82 466 NP 59 489 

7 
Single 

crescent slit 

AP 17 1 
94.44 95.18 

AP 16 2 
88.89 96.07 

NP 60 1186 NP 49 1197 

8 
Single 

crescent slit 

AP 34 4 
89.47 92.88 

AP 36 2 
94.74 94.63 

NP 77 1004 NP 58 1023 

9 
Single 

crescent slit 

AP 9 2 
81.82 82.59 

AP 11 0 
100 85.44 

NP 98 465 NP 82 481 

10 
Single 

crescent slit 

AP 15 0 
100 88.62 

AP 15 0 
100 89.05 

NP 80 623 NP 77 626 

Cat. 1 Average       91.82 91.02       96.86 90.47 

Cat. - Category; Sen. - Sensitivity; Spe. - Specificity; RL - Real Number of Images; AP - Appendiceal 

Orifice Image; NP - Non-Appendiceal Orifice Image  
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Table 4.4: Performance of Image Level Classification Results on Appendix Videos (Category 2)  

 

  

Video 

ID 

Appendiceal 

Orifice 

Shape   

Before Near Pause Detection After Near Pause Detection 

Confusion 

Matrices 
Performance 

Confusion  

Matrices 
Performance 

  # Detected Sen. Spe.   # Detected Sen. Spe. 

RL AP NP % % RL AP NP % % 

11 

Multiple 

curvilinear 

structures 

AP 20 22 

47.62 91.93 

AP 22 20 

52.38 92.26 
NP 74 843 NP 71 846 

12 

Multiple 

curvilinear 

structures 

AP 12 6 

66.67 94.84 

AP 13 5 

72.22 95.51 
NP 54 993 NP 47 1000 

13 

Single 

crescent slit  

orifice 

out-of-bound 

AP 13 9 

59.09 90.33 

AP 14 8 

63.64 90.82 
NP 59 551 NP 56 554 

14 

Single 

crescent slit 

but with 

water spots 

AP 12 6 

66.67 91.40 

AP 12 6 

66.67 93.35 
NP 66 701 NP 51 716 

15 

Single 

crescent slit 

but poor 

illumination 

AP 0 9 

0.00 97.37 

AP 0 9 

0.00 97.85 
NP 22 814 NP 18 818 

Cat. 2 Average 
 

48.01 93.17   50.98 93.96 

Cat. - Category; Sen. - Sensitivity; Spe. - Specificity; RL - Real Number of Images; AP - Appendiceal 

Orifice Image; NP - Non-Appendiceal Orifice Image  
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Table 4.5: Performance of Image Level Classification Results on Non-appendix Videos 

(Category 3) 

 

  

Video 

ID 
Video Type   

Before Near Pause Detection After Near Pause Detection 

  RL # Detected Spe.  RL # Detected Spe. 

NP AP NP % NP AP NP % 

16 
Colonoscopy video 

without appendix 
1248 37 1211 97.04 1248 33 1215 97.36 

17 
Colonoscopy video 

without appendix 
223 23 200 89.69 223 22 201 90.13 

18 
Colonoscopy video 

without appendix 
213 42 171 80.28 213 31 182 85.45 

19 
Colonoscopy video 

without appendix 
335 32 303 90.45 335 29 306 91.34 

20 
Colonoscopy video 

without appendix 
313 34 279 89.14 313 32 281 89.78 

21 
Flexible 

sigmoidoscopy video 
425 29 396 93.18 425 22 403 94.82 

22 
Flexible 

sigmoidoscopy video 
124 21 103 83.06 124 15 109 87.90 

23 
Colonoscopy video 

without appendix 
612 60 552 90.20 612 57 555 90.69 

Cat. 3 Average   89.13 
 

90.93 

Cat. - Category; Sen. - Sensitivity; Spe. - Specificity; RL - Real Number of Images; AP - 

Appendiceal Orifice Image; NP - Non-Appendiceal Orifice Image  
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Table 4.6: Performance of Appendix Video Classification Results 

 

 

  

Video 

ID 
Appendiceal Orifice Shape Detected Type 

Correctly 

Detected 

1 Single crescent  Appendix Video Yes 

2 Single crescent  Appendix Video Yes 

3 Single crescent  Appendix Video Yes 

4 Single crescent  Appendix Video Yes 

5 Single crescent  Appendix Video Yes 

6 Circle Appendix Video Yes 

7 Single crescent  Appendix Video Yes 

8 Single crescent  Appendix Video Yes 

9 Single crescent  Appendix Video Yes 

10 Single crescent  Appendix Video Yes 

11 Multiple curvilinear structures Appendix Video Yes 

12 Multiple curvilinear structures Appendix Video Yes 

13 Single crescent but orifice out-of-bound Appendix Video Yes 

14 Single crescent but with water spots Appendix Video Yes 

15 Single crescent but poor illumination Non-Appendix Video No 

Video 

ID 
Non-Appendix Video Type Detected Type 

Correctly 

Detected 

16 Colonoscopy video without appendix Non-Appendix Video Yes 

17 Colonoscopy video without appendix Non-Appendix Video Yes 

18 Colonoscopy video without appendix Appendix Video No 

19 Colonoscopy video without appendix Non-Appendix Video Yes 

20 Colonoscopy video without appendix Non-Appendix Video Yes 

21 Flexible sigmoidoscopy video Non-Appendix Video Yes 

22 Flexible sigmoidoscopy video Non-Appendix Video Yes 

23 Colonoscopy video without appendix Non-Appendix Video Yes 
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4.5 Chapter Summary 

This chapter introduces two algorithms for detecting the image showing the clearly seen 

appendiceal orifice and the video showing at least three seconds of the appendiceal orifice inspection 

based on ECSP features. The proposed appendix video detection algorithm first uses new local 

features derived from ECSP and its 1st – order derivative profile to detect the appearance of the 

appendiceal orifice and then uses near pause detection to recall miss detected appendiceal orifice 

images with weak edges and reject some false classifications. The experimental results show a 

reasonable performance at both image level and video level. Our proposed approach is able to handle 

object rotation, translation and scaling in image, and noisy images with strong light reflection.  

The future work includes reducing the analysis time of the appendiceal orifice image detection 

by converting the analysis code from MATLAB to C/C++ and further optimizing through 

multi-threading and Graphical Processing Units (GPU) for parallel execution. 
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CHAPTER 5 RETROFLEXION IMAGE AND VIDEO DETECTION 

This chapter introduces two algorithms for detecting the appearance of an endoscope during a 

retroflexion operation in colonoscopy videos. The first algorithm detects the region of the endoscope 

using region location and shape based (RSL) features. The second algorithm uses an edgeless ECSP 

features extraction method that extracts ECSP features without using edges. 

 

5.1 Introduction 

Retroflexion is an endoscope maneuver where the tip of a flexible endoscope equipped with a 

wide angle lenses is deflected more than 90 degrees from the axial direction of the shaft of the 

endoscope. This results in visualization of intestinal mucosa along the shaft of the endoscope (Figure 

5.1 (a)). Recall that the colon consists of six parts: cecum with appendix, ascending colon, transverse 

colon, descending colon, sigmoid and rectum. When retroflexion is performed in the rectum, 

physicians can inspect the peri-anal mucosa. Studies reported that retroflexion improved the yield of 

polyps [14] [15]. Rectal retroflexion was also suggested as an essential part of the colonoscopy 

examination of the large bowel [14]. In a small pilot study rectal retroflexion rates were studied and 

found to be low (data not shown). Even after reminders that retroflexion should be performed low 

retroflexion rates were still detected. We envision that if the absence of retroflexion in either right colon 

or rectum can be shown to the endoscopist during the procedure - given near real-time detection - it 

should improve quality and the chances for polyp or tumor detection. In this chapter, we propose a 

novel algorithm able to detect the operation of retroflexion effectively in near real-time (at least 1 

frame per second) on a modern PC. For clinical use, if retroflexion is not detected by our system 

during colonoscopy, the system could alert the endoscopist before the end of the procedure. Instead of 

using our proposed automatic detection of retroflexion, the endoscopist can push a button when 

performing retroflexion. However, this adds to the work of the endoscopist and is subject to human 

error. 
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Figure 5.1: Examples of instruments used during colonoscopy 
 

Colonoscopy allows careful colon examination and operations like polyp removal and 

retroflexion are typically performed during the withdrawal phase of the procedure. Rectal retroflexion 

is usually short (around 1-3 seconds) compared to the entire withdrawal phase (at least 6 minutes 

duration recommended [1]). Because examination of the rectum is close to the end of the 

colonoscopic procedure, rectal retroflexion generally starts within the last minute of a procedure. 

During retroflexion, the endoscope is typically seen as shown in Figure 5.1 (a). The endoscope is 

generally black. It has a longitudinal shape like other instruments used for colonoscopy such as snares 

and biopsy forceps (Figure 5.1 (b-c)). We call a region (8-direction connected pixel component) 

showing an endoscope in an image a retroflexion region, an image showing an endoscope a 

retroflexion image and a video showing retroflexion images a retroflexion video. Otherwise, the 

region is called a non-retroflexion region, the image is called a non-retroflexion image, and the video 

is called a non-retroflexion video.  

Challenges of retroflexion detection: The challenges of the retroflexion detection problem 

include the following aspects. Firstly, retroflexion typically occurs in a very short duration. Therefore, 

a very high specificity of retroflexion image detection is required to identify that whether there exists 

a retroflexion operation or not during the withdrawal phase. Secondly, the appearance of the 

endoscope has large variation. During retroflexion, the endoscope may be bent (Figure 5.2 (a)), 

appear in gray color (Figure 5.2 (b)) or blurry due to rotation of the scope, or partially occluded 

(Figure 5.2 (c)). The scope may appear in a small portion of the screen (Figure 5.2 (d-e)) blending 

with the black background at the edge of its field of view. Hence, methods based on template 

(b) Polyp removal 
using a snare

(c) Biopsy using forceps(a) Endoscope seen during 
retroflexion
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matching [3] may not able to model the shape of an endoscope in image and it is time consuming to 

obtain an endoscope region using existing image segmentation algorithms. Lastly, the most difficult 

challenge causing false alarms is that the endoscope color and illumination resemble those of the dark, 

distant lumen (Figure 5.2 (f-h)) that appears frequently. Hence, using color features alone is not 

sufficient. 

 

Figure 5.2: Examples of retroflexion images and dark lumen images. Retroflexion regions are marked 

in green rectangles. 

 

5.2 Image Preprocessing 

   We obtain the candidate retroflexion regions in the images by applying the following two steps. 

The threshold and parameter values mentioned in this section were obtained from our experiments 

described in Section 5.5. 

Step 1: Candidate retroflexion region extraction: We simply threshold pixels values to keep as 

many real retroflexion regions as possible by experimenting with the training data. We extract 

pixels that satisfy Red < Thld� (100) and Hue > Thld� (0.1), where Red is the value of the red 

channel in RGB color space and Hue is the hue value in HSV color space. A binary image I is 

obtained by assigning 1 to the extracted pixels, and 0 to the other pixels. We connect isolated 

pixels in I by applying a dilation operation [74] with a structuring element of a circle shape with 

a radius of r1 (5 pixels). Finally, we obtain each 8-neighbor connected pixel component as a 

candidate retroflexion region.  



56 

 

 

 

 
Figure 5.3: Dark regions of black scopes (a-b) and some noises (c-d): the binary regions in the 

last column are after the dilation using the structuring element with a circle shape of radius r2. 

 

Step 2: Region filtering: 1). We first discard small candidate regions having less than Thld���� 

(3000) pixels. 2). Based on our observation, the darkness of most black scopes is due to their 

inherent color of the material while the darkness of some noisy images is caused by insufficient 

light. This results in an interesting pattern in that the retroflexion regions usually look more 

“bushy” (i.e., the pixels are already more strongly connected) than the regions caused by 

insufficient light. See Figure 5.3. We discard some noisy regions using a dilation operation with a 

large structuring element of a circle shape with a radius of r2 (15 pixels). Specifically, we discard 

a region R if N�/N�� � }��S�� ¡¢�, where N� and N�� are the number of pixels in the region 

before and after the dilation, respectively. We set Thld�� ¡¢� to 0.6.  

The images with at least one remaining region after the region filtering step are used for the 

feature extraction. Based on our experiments (described in Section 5.5), after the image preprocessing 

step, about 10% of the images showing false alarms and 88% of the images showing true retroflexion 

remain. Next, we further reduce the number of false alarm images using classification of our region 

features.   

 

5.3 Region and Location Features 

In this section, we describe our feature extraction for RSL features for each remaining candidate 

region using the following steps.  
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For each candidate retroflexion region R, we obtain its sub-region  
 using the downsampling 

method by the sampling factor of L (5 pixels), i.e., selecting one pixel out of every L pixels. 

Downsampling is used to achieve a fast calculation of Principle Component Analysis (PCA) on the 

coordinates of the pixels in  
 as follows. 

Let the vector ���� < b:� , ;�ef be coordinates of pixel i on the 2D image "������. Define a 2D data 

matrix � < b���H, … , ����£¤ e, where ¥�¤ is the number of pixels in  
. The covariance matrix of X is 

given by ¦ < T� @ §���U�� @ §����f, where E(X) is the expectation vector of the matrix X. Let the 

eigenvalues of  ¦  be |�H�¦�| and |���¦�|, where |�H�¦�| > |���¦�|, and their corresponding 

eigenvectors be RH�¦� and R��¦�, respectively. The eigenvector RH�¦�, corresponding to the largest 

absolute eigenvalue |�H�¦�|, represents the direction along which the variance of variables in X is 

maximum. Since ¦ is a 2-by-2 symmetric matrix, calculation of the corresponding eigenvalues and 

eigenvectors is simple and fast without the time-consuming Singular Value Decomposition method. 

We skip processing a region whose ¦ is singular. However, this is a very rear case in our problem. 

For example, the shape of an endoscope region generally cannot be a perfect circle or a line with the 

width of one pixel.   

Calculation of two end positions: We project all data points in the region  
 onto the RH�¦� 

axis and obtain pj and pk as the two end points of the endoscope portion seen in the field of view (FoV) 

of the endoscope. These two end points have the largest Euclidean distance from each other among 

the projected points. See Figure 5.4 and 5.5. 
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Figure 5.4: (a-c) possible insertion directions during retroflexion: Each rounded rectangle represents ¨©Oª©«¬; the top red circle on an arrow (vector) represents phead; (d) diagram showing some region 

features 
 

 

Figure 5.5: Left: Downsampled candidate region shown in green. Right: Eigenvectors and 

eigenvalues of the downsampled region on the left; the two end points and the center c are marked as 

red points.  

 

Estimation of the insertion direction: Let ��	
��� be the area in the FoV of the endoscope. Let 

�$­�
��� be the area whose pixels do not belong to ��	
��� such as the black area outside the FoV of 

the endoscope. We can determine the black area by analyzing several frames in the beginning of the 

procedure. We shrink A�¯��°� by dilating �$­�
��� using a structuring element of a circle shape with 

a radius of r3 (45 pixels). 

The region direction (insertion direction) of an endoscope is represented by q±�%�q�%����������������������� – a 2D 

vector pointing from q±�%� to q�%��. From the domain knowledge, the endoscope is always inserted 

from �$­�
���to ��	
���, and generally inserted from the top of the image to the image bottom. 

Therefore, we match q±�%�  and q�%��  to the end points qP  and qZ  subject to the following 

λ
1

λ 2
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conditions. 

1) If both end points belong to A�¯��°� or A²³¢��°�, let q±�%�q�%����������������������� point from the top to the 

bottom as shown in Figure 5.4 (b-c). 

2) If one of the end points belongs to A�¯��°�whereas the other one belongs to A²³¢��°�, let  

q±�%�q�%����������������������� point from A²³¢��°�to A�¯��°� as shown in Figure 5.4 (a). 

RSL descriptor: Given a candidate region, we extract the following properties as RSL features:  

1) Center location of the region: � < b:# , ;#ef  

2) Tail position: q�%�� < b:� , ;�ef 

3) Head position: q±�%� < b:± , ;±ef  

4) Approximated half length: |�H�¦�| 
5) Approximated half width: |���¦�| 
6) Ratio of width to length: |���¦�|/|�H�¦�|  

7) Insertion direction: the angle θ between e1(¦) and the x-axis where θ is in the range of [0-360) 

degrees.  

Figure 5.4 (d) shows some corresponding RSL features.  

 

 

5.4 Edgeless Edge Cross-Section Profile 

In Chapter 3, we proposed a method to calculate edge cross-section profile (ECSP). The 

technique extracted features along edge cross-section directions. We obtain candidate edges using the 

Canny edge detection algorithm and their edge cross-section directions (edge normal directions). We 

call the ECSP feature extraction algorithm that relies on edge detector the edge-based ECSP. In 

Chapter 4, we extracted features on ECSP functions for the detection of images showing appendiceal 

orifice in colonoscopy. Our previous edge-based ECSP for appendix image and video detection has 

the following limitations. 1). Some endoscope edges were not extracted due to the image blur or 

complex motion such as the fast rotation of endoscope during retroflexion. 2) Our edge-based ECSP 

calculation method requires the curve like shape of an edge. However, some edges of endoscopes 
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obtained from edge detection algorithms were broken apart into small segments in our experiment. 

Many broken endoscope edge segments had a close to linear shape. Another solution is to extract 

endoscope contours using an image segmentation algorithm. See Figure 5.6 (a). However, processing 

a 720-by-480 resolution image using an image segmentation algorithm – like JSEG generally takes 

around 22 seconds per image on the same machine. In this section, we first briefly review the 

edge-based ECSP for object detection. Next, we propose an edgeless ECSP feature extraction 

algorithm to overcome these limitations.  

 
5.4.1 Brief Review of Edge-Based ECSP 

Let W"������Y�uHI  be a set of intensity values of the edge pixel ����, where M is the total number of 

pixels on this edge. The vector ���� denotes the pixel at the coordinate �:�, ;�� on a 2D image. A unit 

vector ���� is an edge normal passing ���� pointing to the concave side of the edge. See Figure 5.6 (c). 

The ECSP function ����� for the edge pixel ���� is defined in Equation 3.1. The ECSP function -��� 

for the entire edge is defined in Equation 3.2. 

We extract ECSP features based on edge position on  -��� and zero-crossing value positions on 

X-��� as described in Chapter 4. Some example features include edge strength before crossing the 

edge (�H), edge strength after crossing the edge (��), edge sharpness before crossing the edge (�)), 

edge sharpness after crossing the edge (�').  See Figure 5.6 (d-e) for the labeling of these features. 

More features and their detailed explanations can be found in Chapter 4. 
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Figure 5.6: Edge-based ECSP calculation and feature extraction. (a) A retroflexion image with edge 

contours obtained using an image segmentation algorithm – JSEG; (b) Edge normal vectors (showing 

in blue arrows) of endoscope edge pixels; (c) The demonstration of edge-based ECSP calculation; (d) 

The corresponding gradient profile of F(r); (e) The ECSP function F(r); (f) The region of interest 

pixels along edge normal directions. 

 

 

5.4.2 Edgeless ECSP 

In this section, we propose an algorithm to extract ECSP features without using an edge detection 

algorithm – edgeless ECSP. Our algorithm overcomes the aforementioned limitations and the 

calculation speed is fast (within half a second to process an image using MATLAB). The algorithm 

has the following four steps: 1) edge normal estimation, 2) ECSP calculation, 3) key positions 

selection and 4) Feature extraction. 
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Figure 5.7: Edge normal directions labeled by blue arrows 

 

Edge normal estimation: Without the detection of edge positions, the edge normal directions of 

endoscope edges are unknown. However, as an endoscope has a longitudinal shape, the edge normal 

directions of the edge pixels along the endoscope are approximately perpendicular to its insertion 

direction. We approximate its edge normal directions by a single direction – the eigenvector e2(Σ), 

corresponding to the second largest eigenvalue λ2(Σ). See Figure 5.7.  

ECSP calculation: Let W"������Y�uHI  be a set of intensity values of pixels along the eigenvector 

RH�Σ�, starting from the region center c and ending at position b, where M is the total number of pixels 

from b to c. We limit the b position along RH�Σ� by defining the Euclidian distance between b and c 

as ´3������´ < a|�H�Σ�|, where a is a constant and a 6 b0,1e. We set a < 0.5 to exclude the pixels 

close to q�%�� since they are typically affected by the colon mucosa. As a result, the shape of the 

endoscope close to q±�%� is no longer approximately linear. The eigenvalue |�H�Σ�| is used because 

it is proportional to the length of the endoscope. To fasten the calculation, we use a subset W����Y�uH�  by 

downsampling W����Y�uHI  with the sampling factor of Q (5 pixels), where Q < 9/¶.  

Let the intensity value along the edge normal direction be the function of the pixel distance from 

���� . We define the two corresponding ECSP functions ������  and ��r���  along edge normal 

directions of the two sides of ���� as 

          ������ < "����� = � · �����, � 6 b0, �|���Σ�|e         (6.1) 

and    

       ��r��� < "����� @ � · �����, � 6 b0, �|���Σ�|e,         (6.2) 
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where r = 0 starts from the pixel ���� which is the pixel i among the downsampled pixels between b 

and c in Figure 5.7 (b). The maximum value of r is proportional to the approximated width of 

endoscope |���Σ�|  and scaled by a positive constant �. Therefore, endoscope scales are reflected 

by r. To increase the chance that ECSPs pass real edge positions, we selected � < 1.5 based on 

experimental results. We do not use the ECSP if it extends into the �$­�
��� area; for example, we 

do not use ��r��� functions in Figure 5.8 (b) and ������ functions in Figure 5.8 (c). Figure 5.9 

shows an example of a function ������. The two functions ������ and  ��r��� generally appear 

similar for the same ���� if both ������ and  ��r��� are used, e.g. Figure 5.8 (a). 

 

 
Figure 5.8: Grayscale images of endoscopes during retroflexion. (a-b) and non-retroflexion images 

(c-d). The estimated insertion directions are labeled as red color bars (r = 0). The calculated ECSPs 

along edge normal directions are labeled as white color bars. In (b) and (c), only ECSPs that do not go 

beyond ̈ ©Oª©«¬ are labeled.  

 

Key positions selection: We select some key positions to calculate ECSP features including a) 

the edge position on ����� and the corresponding position on its derivative function X�����, b) the 

closest zero-crossing positions away from the edge position on X����� and c) their corresponding 

positions on �����. We calculate these key positions using the following steps. First, we smooth 

������ using a moving average filter (with the window size of 5 pixels) and obtain its derivative 

function X������. Next, we determine a ��� position as the position with the maximum value on 

X������ for each ����. See Figure 5.9. We consider the corresponding ��� position on ������ as the 

edge position. Last, we search X������ along r from the two sides of ��� until we find the two 

closest zero-crossing positions from ���. Therefore, we obtained totally 6 key positions on ������ 
and X������: a) ��� as the edge position on ������ and its corresponding position on X������, b) 
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the two zero-crossing positions on X������ and c) their two corresponding positions on ������. We 

use the same steps to select the 6 key positions on ��r��� and X��r���. 

 

 
Figure 5.9: An example ·¸©��¹� function and the selected º©� position. The maximum r value is »|¼½�¾�|.   

 

Feature extraction: Based on the selected key positions on ������ and X������, we apply the 

algorithm in Chapter 4 to calculate ECSP features for each ����. These features include  

1) Edge strength before crossing the edge (�H�,�) 
2) Edge strength after crossing the edge (���,�) 
3) Edge strength ratio after and before crossing the edge (���,�/��H�,� = ���,��) 
4) Edge sharpness before crossing the edge (�)�,�)  

5) Edge sharpness after crossing the edge (�'�,�) 
6) Edge sharpness ratio after and before crossing the edge (�'�,�/��)�,� = �'�,��).  

These ECSP features follow the same meaning of corresponding �H, ��, ��/��H = ���, �), �' and 

�'/��) = �'� in Chapter 4. See Figure 5.6 (e-f). We use the median feature value of all m pixels as 

the corresponding feature for that edge. For example, �H� < QRS51�W�H�,�Y�uH� . Similarly, we obtain 

the same features from ��r��� and X��r���. 
Finally, we obtain two feature vectors from ������, ��r���, X������ and X��r��� presented by  

��¿À���Á�� < ��H�, ���, ���/��H� = ����, �)�, �'�, �'�/��)� = �'��� 
and 
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�T¿À���Â�U < ��Hr, ��r, ��r/��Hr = ��r�, �)r, �'r, �'r/��)r = �'r��. 
Figure 5.10 shows the flow chart of our near real-time retroflexion image/video detection system 

using an ensemble classifier. 

 

 

 
Figure 5.10: Flow chart of the near real-time retroflexion image/video detection system 

 

We describe the pseudo code of our retroflexion region detection algorithm in Figure 5.11 and 

our retroflexion image/video detection algorithm in Figure 5.12. We consider a video as a retroflexion 

video if we detect at least one retroflexion image in the video.  
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Figure 5.11: Pseudo code of the retroflexion region detection algorithm 

Algorithm: Detection of A Retroflexion Region  
// Functionality: Identify whether a region is a retroflexion region or a non-retroflexion region 

// Input:  

//    region: 2D coordinate values of pixels in a region 

//    L: Down sampling rate of pixel coordinates in a region 

// Output: True if a retroflexion region is detected 

//       False, otherwise 

ISRETROFLEXIONREGION (region, L)  

1:   region.downSampledPixels ← DOWNSAMPLING(region, L)  

2:   region.¦ ← COVARIANCE(region.downSampledPixels) 

3:   // Get region shape and location features region.������ by Principle Component Analysis 
4:   region.������ ← PRINCIPLECOMPONENTANALYSIS(region.¦) 

5:   // Estimate the direction of the eigenvector R� of all pixels as the edge normal direction 

6:   region.normal ← region.������.R� 

7:   // Extract pixel values along the edge normal direction and its reverse direction as ECSPs 

8:   // M: Number of pixels along the principle axis of PCA used for edgeless ECSP calculation 

9:   // The edgeless ECSP functions of a region are calculated based on Equations 6.1 and 6.2 

10:  W��r���Y�uHI , W������Y�uHI  ← ECSPEXTRACTION(region) 

11:  // Calculate the 1st – order derivative functions 

12:  WX��r���Y�uHI  ← GRADIENT(W��r���Y�uHI ) 

13:  WX������Y�uHI  ← GRADIENT(W������Y�uHI ) 

14:  // Estimate the global maximum location on 
��r��� and 
������ as the edge positions 

15:  W��rY�uHI  ← MAX  (WX��r���Y�uHI ) 

16:  W���Y�uHI  ← MAX  (WX������Y�uHI ) 

17:  // Calculate edgeless ECSP features on ��r���, ������, 
��r��� and 
������ 
18:  W�Hr,����, ��r,����, �)r,����, �'r,����Y�uHI  ←  ECSPFEATURES (W��r���, 
��r���, ��rY�uHI ) 

19:  W�H�,����, ���,����, �)�,����, �'�,����Y�uHI  ←  ECSPFEATURES (W������, 
������, ���Y�uHI ) 
20:  // Calculate edgeless ECSP features as the median feature values obtained from all pixels   

21:  region.�T¿À���Â�U ← MEDIAN(W�Hr,����, ��r,����, �)r,����, �'r,����Y�uHI ) 

22:  region.�T¿À���Á�U ← MEDIAN(W�H�,����, ���,����, �)�,����, �'�,����Y�uHI ) 
23:  // classify a region as a retroflexion or a non-retroflexion region using a ensemble classifier 

24:  if CLASSIFICATION(region.������) == true then 

25:     if CLASSIFICATION (region.�T¿À���Â�U) == true  
26:         or CLASSIFICATION (region.�T¿À���Á�U) == true then 
27:       return true 

28:     end if 
29:  end if 
30:  return false 



67 

 

 

 

Figure 5.12: Pseudo code of the retroflexion video detection algorithm 

Algorithm: Detection of A Retroflexion Video 
// Functionality: Classify a video as a retroflexion or a non-retroflexion video  

// Input: 

//    video: Input video  

//    EOIvideo: End of insertion frame number 

//    ThldR: Threshold of red color in the RGB color plane to select candidate region pixels 

//    ThldH: Threshold of hue color in the HSV color plane to select candidate region pixels 

//    ThldDilate: Threshold of the ratio of region sizes before and after the dilation 

//    ThldSize: Minimum number of pixels in the region 

//    r1: Circle radius of the structuring element of the dilation operation used in the  

//       candidate region extraction step 

//    r2: Circle radius of the structuring element of the dilation operation used in the region 

//       filtering step 

//    L: Downsampling rate of a region 

// Output: True if the input video is detected as a retroflexion video 

//       False, otherwise 

ISRETROFLEXIONVIDEO (video, EOIvideo , ThldR , ThldH, ThldDilate , ThldSize, r1, r2, L)  

1:    // Analysis images after the end of insertion frame 

2:   fId ←  EOIvideo 

3:  // endOfProcedureFrame: The last frame of the procedure 

4:   while (fId < endOfProcedureFrame) do      

7:     // Preprocess an image 

8:     // allRegion[]: Array storing the information of detected regions in video.clearFrame  

9:     // nRegion: Number of regions in video.clearFrame[] 

10:    allRegion[], nRegion  

11:     ← IMAGEPREPROCESSING( video.clearFrame[fId], ThldR , ThldH, ThldDilate , ThldSize,  

12:                           r1, r2)   

13:    // Identify each region in an image as a retroflexion region or a non-retroflexion region 

14:    for rID ← 0 to nRegion do  

15:       // Detect video as a retroflexion video if we detected at least one retroflexion region  

16:       // in the video 

17:        if ISRETROFLEXIONREGION(allRegion[rID], L) == true then 

18:           return true 

19:       end if 
20:    end for 
21:    fId ← fId+1 

22:  end while 

23:  return false 
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5.5 Experimental Setup and Results 

We implemented our algorithm in MATLAB. We built classifiers using MATLAB statistical 

toolbox. We performed a number of experiments on an Intel Xeon 3.86 GHz PC with 4GB of RAM 

and Windows 2003 Server. 

 

5.5.1 Experimental Data 

We randomly selected 75 colonoscopy videos from a test bed generated using OLYMPUS 

endoscopes during routine screening colonoscopy. This set includes 64 retroflexion videos and 11 

non-retroflexion videos. We extracted 720-by-480 resolution JPEG images under the frame rate of 1 

fps (frame per second) in the withdrawal phase of each video. The beginning frame of the withdrawal 

phase was calculated using our algorithm in [77]. We then ran our blurry frame removal algorithm [70] 

to remove out-of-focus images. The rest of the images were used in our experiments. Our domain 

expert marked the ground truth of the retroflexion images and non-retroflexion images. 

We split 75 videos into 25 training videos and 50 testing videos as described in Table 5.1. We 

included all 11 non-retroflexion videos in our test set. 1) Training set: using all images from the entire 

withdrawal phase, we obtained a small portion of retroflexion regions compared to non-retroflexion 

regions. We calculated the average ratio of the number of samples between two classes in the training 

data. We obtained the ratio value as 1:43. The classification on this imbalanced data set is a typical 

challenging problem in machine learning research [78]. As a result, we did not successfully train our 

classifiers using the images from the entire withdrawal phase. Based on the domain knowledge, in the 

vast majority of colonoscopies, the rectum is inspected during the last minute (or last 45 seconds). 

Some exceptions happen when other operations (e.g., biopsies) are performed after retroflexion in the 

rectum. For these cases, retroflexion occurs during the last 1-2 minutes in the video. We trained our 

classifiers using images obtained during the last 45 seconds of the rectum inspection. 2) Testing set: 

We used all images in the withdrawal phase as testing data. 3) Parameter value settings: We set all 

parameter values (Table 5.2) based on experiments on the training data. The performance is not 

sensitive to a small variation of these parameter values. 
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Table 5.1: Description of Images Used in Our Experiment for Retroflexion Detection 

 

  Training Set Testing Set 

Total 

# videos 

RT Videos RT Videos NRT Videos 

25 (last 45 seconds) 39 11 

Total  

# images 

RT  NRT  RT  NRT  NRT  

129 877 306 18835 3788 

RT- Retroflexion, NRT - Non-retroflexion, # - the number of images or videos 

 

 

Table 5.2: Parameters and Values Used for Retroflexion Detection 

 

 Parameter ThldR ThldH Thld*size ThldDilate r1 r2 r3 β Q ξ 

Value 100 0.1 
3000 

pixels 
0.6 

5  

pixels 

15 

pixels 

45  

pixels 
0.5 5 1.5 

* Parameters sensitive to an input image size    

 

 

5.5.2 Experiments on Region Classification 

We selected our features using a forward feature selection method [80]. We start with selecting 

an initial feature by testing each individual feature v1, v2, v3,…, vG from all G features and outputting 

the feature vector (vi) which gives the best performance. We selected the next feature by 

concatenating vi with each of the remaining G-1 features to be new feature vectors and outputting the 

feature vector (vi, vj) which performs the best among these new feature vectors. We repeated the above 

step to add a new feature at each step and stopped until the next best concatenated feature vector 

negatively contributes to the performance. We started with evaluating 15 RSL features and 11 ECSP 

features and selected 11 RSL features and 6 ECSP features as presented in this chapter. Based on 

extracted features, the retroflexion/non-retroflexion image classification problem is cast into the 

problem of training and testing these features to classify whether the regions are retroflexion or 

non-retroflexion regions. We evaluated with different features and classifiers for 

retroflexion/non-retroflexion region classification, including 1) RSL features, 2) ECSP features and 3) 



70 

 

 

 

the concatenated RSL and ECSP features. 

RSL features: The simplest way using RSL features is training and testing them with a machine 

learning classifier on the feature vector ������ represented by 

������ < �:# , ;# , :� , ;� , :± , ;± , |�H�Σ�|, |���Σ�|, |A4�Ã�||A+�Ã�| , l�. 

However, we found that splitting an image into non-overlapping areas, and training multiple 

classifiers, one for each area resulted in a better performance than training a single classifier. 

Therefore, we split an image into N overlapping areas (Area 0, Area 1,…, Area N-1) where N = 13 in 

our case (Figure 5.13 (a)). ��	
��� denotes the Area 0. The areas 1 to 12 are numbered in a 

counter-clock-wise manner after splitting �$­�
��� by the angle, which results in π/6 angle for each 

area. We chose the value of N based on our observation of the possible general scope insertion 

directions from the training videos.  

 

 

  (a)     

 

                                  (b) 

Figure 5.13: (a) Pre-defined areas for Ä�ÅÆÇ�OÈ�� features classification; (b) The design of region 

classifiers using one classifier per area; C( Ä�ÅÆÇ�OÈ��) is simply denoted as C(nt). 
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We consider that a region belongs to the area nt if its q±�%� is inside nt. Let ���������� represent 

the feature vector of the region belonging to the area nt, where 

���������� < É5S, :# , ;# , :� , ;� , :± , ;± , |�H�Σ�|, |���Σ�|, |A4�Ã�||A+�Ã�| , lÊ, 

and id denotes the area ID where q�%�� belongs to. We train one classifier C(����������) using 

���������� of retroflexion and non-retroflexion regions which belong to that area nt in the training data. 

To test a feature vector of a region, we first determine its area nt and classify ���������� of this region 

using the classifier C(����������). Figure 5.13 (b) illustrates our design for the classification on 

���������� features.  

ECSP features: Not every retroflexion region has both ��¿À���Á�� and ��¿À���Â�� as we do not 

use the one of ������ or  ��r��� that goes beyond ��	
���. We consider a region as a retroflexion 

region if either ��¿À���Á�� or ��¿À���Â�� is classified as a retroflexion region. We simply use a 

notation ��¿À��� to represent either ��¿À���Á�� or ��¿À���Â��. Since ECSP features are not related to 

the insertion direction, we do not split an image into non-overlapping areas for training and testing 

��¿À���. 
Concatenated RSL and ECSP features: We concatenated ��¿À��� and ������ as a single 

feature vector (��¿À��� = �������. If a region has both ��¿À���Á�� and ��¿À���Â��, we concatenated 

each of them with the same ������. As a result, we have at most two concatenated feature vectors 

(��¿À��� = ������� per region, one is from ��¿À���Á�� and the other is from ��¿À���Â��. We consider 

a region as a retroflexion region if at least one feature vector (��¿À��� = ������� from that region is 

classified as a retroflexion region. Similarly, we concatenated ���������� and ��¿À���as (��¿À��� =
����������� in the same way. 

We investigated the effectiveness of the classification of retroflexion /non-retroflexion regions 

using Support Vector Machine (SVM) with linear kernel, SVM with Radial Basis Function kernel, 

J48 Decision Tree, and Generalized Linear Model with Poisson, Normal, and Binomial distributions 

on feature vectors ������, ����������, ��¿À���, (��¿À��� = ������� and ���¿À��� = �����������. The 

performance metrics were calculated using 10-fold cross-validation on the training set. The parameter 



72 

 

 

 

values of each type of classifiers were optimized to achieve the best performance. Table 5.3 showed 

the performance using N=13 number of classifiers with each C(����������) trained on ���������� , and 

the performance single classifier ���������  trained on  ������ . The results indicated that 

C(����������) outperformed ���������. For the same type of features, different classifiers produce 

similar performance. Among the compared classifiers, Decision Tree on classifying ���������� 
showed the best F-measure [14] score– the harmonic mean of precision and recall. Table 5.4 shows 

the performance evaluated on ��¿À��� , the concatenated features ���¿À��� = �����������  and 

���¿À��� = �������. Table 5.4 and 5.3 indicate that either using concatenated features or splitting an 

image into non-overlapping areas can improve specificity for most types of classifiers. Therefore, in 

the following experiment on image/video classification, we used ���������� instead of ������. Note 

that we cannot directly compare results in Table 5.3 and Table 5.4. This is because we had more than 

one ECSP feature vector for a single retroflexion region in the experiments for Table 5.4 whereas the 

experiments for Table 5.3 did not. We also do not report the F-measure score for Table 5.4 for the 

same reason. 

Finally, we chose Decision Tree as the classifier because it gave 1) the best F-measure score on 

RSL features and 2) the high specificity for most of classifiers on both RSL and ECSP features. 

Similar performance may be achieved using other types of classifiers. 
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Table 5.3: Evaluation of RSL Features Using Different Types of Classifiers 

 

Classifier GLM + Binomial GLM + Poisson 

Performance Metrics Sen.% Spe.% F-M Sen.% Spe.% F-M 

Feature 
    V(RSL) 60.2 87.5 0.491 46.6 92.0 0.464 

    V(RSL(nt)) 73.1 88.7 0.585 64.1 94.0 0.626 

Classifier GLM +Normal SVM+Linear 

Performance Metrics Sen.% Spe.% F-M Sen.% Spe.% F-M 

Feature 
    V(RSL) 45.6 90.2 0.430 52.1 90.2 0.476 

    V(RSL(nt)) 77.9 91.0 0.652 77.4 92.1 0.670 

Classifier SVM + RBF Decision Tree 

Performance Metrics Sen.% Spe.% F-M Sen.% Spe.% F-M 

Feature 
    V(RSL) 70.0 94.0 0.664 67.8 88.0 0.544 

    V(RSL(nt)) 74.5 92.1 0.653 72.7 93.6 0.672 

Sen. - Sensitivity, Spe. - Specificity, F-M: F-Measure score, GLM - Generalized linear model, 

Binomial - Binomial distribution, Poisson - Poisson distribution, Normal - Normal distribution, 

SVM - Support vector machine, Linear - Linear kernel, RBF - Radial Basis Function Kernel 

 

 

Table 5.4: Evaluation of ECSP Features and the Concatenated Features of RSL and ECSP Using 

Different Types of Classifiers 

 

Classifier GLM + Binomial GLM + Poisson GLM +Normal 

Performance Metrics Sen.% Spe.% Sen.% Spe.% Sen.% Spe.% 

Feature 

V(ECSP) 75.3 73.7 70.8 75.3 74.1 77.3 

V(ECSP+RSL) 74.7 81.4 73.0 82.8 81.0 75.9 

V(ECSP+RSL(nt)) 70.6 88.3 68.3 91.7 78.8 84.2 

Classifier SVM+Linear SVM + RBF Decision Tree 

Performance Metrics Sen.% Spe.% Sen.% Spe.% Sen.% Spe.% 

Feature 

V(ECSP) 84.6 64.7 83.5 70.8 42.5 84.8 

V(ECSP+RSL) 83.4 72.0 76.4 86.2 61.8 88.3 

V(ECSP+RSL(nt)) 74.4 89.8 72.9 91.7 66.1 92.1 

Sen. - Sensitivity, Spe. - Specificity, GLM - Generalized linear model, Binomial - Binomial 

distribution, Poisson - Poisson distribution, Normal - Normal distribution, SVM - Support vector 

machine, Linear - Linear kernel, RBF - Radial Basis Function Kernel 
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5.5.3 Experiments on Image/Video Classification 

We consider an image as a retroflexion image if it has at least one detected retroflexion region. 

We consider a video as a retroflexion video if we detect at least one retroflexion image in the video. 

We evaluated the performance for detecting retroflexion videos on a) the last 45 seconds, b) the last 2 

minutes, and c) the entire withdrawal phase of each video. We conducted the first two tests because 

retroflexion occurs during the last minute (or last 45 seconds) for the vast majority of colonoscopies, 

or within the last 2 minutes for the exceptional cases when other operations like biopsies were 

performed as aforementioned. Compared with [6], our improved algorithm makes it possible to detect 

retroflexion in other parts of the colon during the withdrawal phase and to alert the endoscopist before 

the end of the procedure. In our data sets, the entire withdrawal phase contains on average 459 images 

per video. That means, our algorithm needs to achieve a high specificity for retroflexion video 

detection in the withdrawal phase. In the following paragraphs, we discuss the results of some main 

steps of our algorithm and features. 

Candidate region extraction: Thresholding on Red and Hue values performed well for 

extracting candidate retroflexion regions. We only missed the gray color scope regions with very 

strong illumination. The region filtering step using }��S
�Ë� and }��SÌ��%��effectively rejected most 

noise regions. This step was robust to image blur.  

Insertion direction calculation: Our calculation of the insertion direction is robust for most 

retroflexion images (Figure 5.14). It performs incorrectly when the scope is far from the camera and 

appears very small, in which the scope no longer has a longitudinal shape. Figure 5.15 shows the 

histograms of the estimated insertion direction angle θ in the training data. This angle appears as the 

first criterion (the root nodes) of the Decision Trees for Area 2 and Area 5.  

To evaluate effectiveness of our features on classifying retroflexion/non-retroflexion images and 

videos, we setup the following tests using different classifiers and features. Table 5.5 shows the 

performance on 50 test videos. 

1) ������������� 
2) ����¿À���� 
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3) ���T�������U = ��¿À���), and 

4) a simple ensemble classifier C��T�������U� = C���¿À��� ) which classifies a region as a 

retroflexion region if both C��T�������U� and C���¿À���) classify that region as a retroflexion region.  

 

Table 5.5: Performance of Retroflexion Image/Video Detection 

 

Test 

Range 

Classifiers and 

Features 

Image Detection 

Performance 
Video Detection Performance 

Sen.% Spe.% Sen.% Spe.% Pre.% Acc.% 
# 

FL 

45 

sec. 

C(RSL(nt)) 58.0% 98.1% 84.6% 81.8% 94.3% 84.0% 0.48 

C(ECSP) 42.3% 98.5% 76.9% 81.8% 93.8% 78.0% 0.40 

C(RSL(nt)+ECSP) 44.0% 99.1% 82.1% 90.9% 97.0% 84.0% 0.22 

C(RSL(nt))+C(ECSP) 36.8% 99.7% 71.8% 100.0% 100.0% 78.0% 0.10 

2 min. 

C(RSL(nt)) 61.8% 98.3% 89.7% 63.6% 89.7% 84.0% 1.38 

C(ECSP) 44.5% 98.8% 84.6% 45.5% 84.6% 76.0% 1.06 

C(RSL(nt)+ECSP) 47.2% 99.3% 87.2% 83.7% 91.9% 84.0% 0.64 

C(RSL(nt))+C(ECSP) 39.0% 99.8% 79.5% 90.9% 96.9% 82.0% 0.18 

WTP 

C(RSL(nt)) 65.4% 98.4% 94.9% 18.2% 80.4% 78.0% 6.92 

C(ECSP) 48.1% 98.5% 89.7% 9.1% 97.1% 72.0% 6.08 

C(RSL(nt)+ECSP) 49.6% 98.9% 92.3% 18.2% 80.0% 76.0% 4.50 

C(RSL(nt))+C(ECSP) 41.7% 99.8% 84.6% 72.7% 91.7% 82.0% 1.06 

#FL – The average number of false alarm images per video (on average of 459 images per video); Sen. 

– Sensitivity, Spe. – Specificity, Pre. – Precision, Acc. – Accuracy; 45 sec. – test the last 45 seconds; 2 

min. – test the last 2 minutes; WTP – test the withdrawal phase. 
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Figure 5.14: Retroflexion images and corresponding downsampled regions in the next row; the white 

arrows show the directions of eigenvectors: e1(¾) and e2(¾). 
 

 

 

Figure 5.15: The histograms representing the distributions of the feature θ of retroflexion regions and 

non-retroflexion regions; each triangle shows the count of instances in the training data. Top row: 

Area 2; Bottom row: Area 5; Left column: retroflexion regions; Right column: non-retroflexion 

regions.   
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Retroflexion/non-retroflexion image classification: We classified an image as a retroflexion 

image if it had at least one detected retroflexion region. Otherwise, we classified it as a 

non-retroflexion image. The ECSP resulted in higher specificities but lower sensitivities than RSL. 

The concatenated ECSP and RSL features offered a trade off performance comparing with the 

performance of single classifiers using ECSP or RSL features alone. The sets of retroflexion images 

detected using a single classifier on ECSP features alone and on RSL features alone were significantly 

overlapping. However, most of false alarm images detected using ECSP features were stool or dye 

images, whereas most of false alarm images detected using RSL features were dark lumen images. 

This is because most of stool and dyes do not have good edges, while the shapes or/and locations of 

most of dark lumen regions are different from these of endoscope regions. As a result, the ensemble 

classifier using both classifiers significantly reduced the number of false alarm images with a slightly 

lower sensitivity than a single classifier on ECSP features alone. The ensemble classifier achieved the 

highest specificities compared with other single classifiers. In conclusion, the false alarm images were 

due to 1) dark lumen images and 2) images with stool or dyes. The miss rate of retroflexion images 

was not correlated to the duration of the operation. For example, most retroflexion images extracted 

from short retroflexion operations were correctly detected. The significant factor determining the miss 

rate is the quality of a retroflexion image. Our ensemble classifier failed to detect low quality 

retroflexion images. The endoscopes in these low quality retroflexion images 1) are covered by water, 

2) or are with low illumination, 3) or appear in a too small area without a longitudinal shape. 

Retroflexion video detection: The ensemble classifier can effectively detect retroflexion videos. 

For the test on the last 45 seconds of each video, the specificity of the image classification increased 

to 99.7% (0.1 false alarm images per 45-second video). As a result, we obtained 100% (11/11) 

specificity, 100.0% (39/39) precision and 78.0% (39/50) accuracy on the retroflexion video detection. 

For the test on the last 2 minutes of each video, the specificity of the image classification also 

increased to 99.7% (0.18 false alarm images per 2-minute video). As a result, we obtained 90.9% 

(10/11) specificity, 96.9% (31/32) precision and 82.0% (41/50) accuracy on the retroflexion video 

detection. For the test on the withdrawal phases, the specificity of the image classification increased 
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to 99.8% (1.06 false alarm images on the withdrawal phase per video). As a result, we obtained 72.7% 

(8/11) specificity, 91.7% (33/36) precision and 82.0% (41/50) accuracy on the retroflexion video 

detection. Therefore, compared with the other single classifiers, the ensemble classifier significantly 

improved the specificity from 18.2% to 72.7% on the retroflexion video detection, and slightly 

improved the precision and accuracy. Figure 5.16 shows the distributions in terms of number of false 

alarm images per video. We can observe that for the tests on the last 45-second and 2-minute videos, 

the vast majority number of videos had no false alarm images. For the test on the withdrawal phases, 

the ensemble classifier significantly reduced the number of false alarm images per video to 0 or 1 

false alarm images for the majority number of videos. 

Analysis Time: The average execution time of our code is 0.46 seconds per image. The main 

time cost is the dilation operations in the image preprocessing part. The calculation of PCA and RSL 

feature extraction only costs 30 milliseconds per image. The downsampling of pixels significantly 

reduced the calculation time for the PCA. The calculation of edgeless ECSP and its feature extraction 

under the prior knowledge of the endoscope insertion direction only costs 26 milliseconds per image. 

The downsampling of pixels reduced about half of the calculation time for the edgeless ECSP feature 

extraction. 

There is no existing technique with which we can compare our method. We experimented with 

texture features – Local Binary Pattern (LBP) and Opponent Color-LBP (OC-LBP) in [17]. LBP and 

OC-LBP features do not discriminate well between dark lumen and black scope regions. Most of dark 

lumen regions are detected as false regions. Therefore, these techniques did not give any comparable 

performance to that of our proposed technique. Our method is very promising for a near real-time 

retroflexion detection. An example of a clinical use case is as follows. A warning marker continually 

appears at the corner outside the endoscope FoV when retroflexion has not been detected in the 

withdrawal phase. If a retroflexion image is detected, the system should consecutively detect several 

retroflexion images during a period (e.g., 3 seconds) before it disables the warning marker. This is to 

recognize that good quality retroflexion is performed during the procedure. 
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(a) 

 

 

(b) 

 

 
(c) 

 

Figure 5.16: The distributions in terms of the number of false alarm images per video detected on 50 

test videos for different tests a) Test on the last 2 minutes, b) Test on the last 45 seconds, c) Test on 

the withdrawal phase. 
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5.6 Chapter Summary 

In this chapter, we proposed a near real-time algorithm that can effectively detect a retroflexion 

operation during colonoscopy. This algorithm can be used as a new indicator of quality of 

colonoscopy. We investigated two types of features to detect appearance of endoscopes in 

colonoscopic images during retroflexion operations. These features are region shape and location 

(RSL) features that describe the location and shape of an endoscope region in an image based on 

Principle Component Analysis. We proposed an algorithm – edgeless edge cross-section profile 

(ECSP) calculation method to obtained features along the estimated endoscope edge normal 

directions without edge detection since edges of endoscope regions are not clear due to motion blur. 

We investigated different combination of classifiers, RSL features and edgeless ECSP features to 

classify retroflexion/non-retroflexion images and videos. Among these combination methods, the 

ensemble classifier using both ECSP and RSL features shows the best performance. Our near 

real-time system is promising for clinical use in terms of both the analysis time and detection rate. As 

future work, we will further optimize the analysis time by improving the computational complexity in 

the image processing step, and converting the analysis code from MATLAB to C/C++. We will also 

investigate whether the proposed RSL and ECSP features can be used to detect other instruments (e.g., 

cables) used for biopsies and therapeutic operations. 
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CHAPTER 6 POLYP IMAGE DETECTION AND SHOT EXTRACTION 

This chapter introduces a new feature-based ECSP technique that segments multi-derivative 

ECSP functions into parts called part-based multi-derivative ECSP and obtains features on parts for 

polyp detection in colonoscopic video. We present two phases of our techniques as follows.  

Phase 1: We introduce a part-based multi-derivative ECSP to detect the image with the 

appearance of polyp – polyp image. We perform a study of the new features obtained from segmented 

parts for polyp image detection. We show the effectiveness of our technique by comparing it with the 

current state-of-the-art polyp detection techniques.  

Phase 2: We further reduce the analysis time by simplifying features obtained from parts for 

polyp image detection. By combing the polyp image detection results with an existing edge tracking 

method, we further reduce the number of false positive edges at the image level and improve the 

overall detection rate. As a result, our system can correctly detect 97.7% polyps in near real-time and 

does not generate false detected images for the 95.7% duration in an entire colonoscopy procedure. 

The average number of false sub-shots per video is 36.2 and the average duration of each false 

sub-shot is less than 1.5 seconds. To our best knowledge, our polyp detection technique is the first 

technique that can effectively detect polyp image and extract polyp shot in near real-time (real-time 

under the frame rate of 10 fps) running on a modern PC. Our system is very promising for clinical use 

to assist the endoscopist by providing visual feedback of potential polyps during routine screening 

colonoscopy. 

 

6.1 Introduction 

Automated polyp detection in colonoscopy is challenging. 1) Endoscopic images can be blurry 

due to motion of the capturing camera or water injection, maybe under or over illuminated, or contain 

strong light reflection spots. 2) Polyps vary in their appearance, shape, size, amount of protrusion, and 

location in the colon. The same polyp may appear very differently in different images due to amount 

of colon insufflation, degree of colon muscular contraction, viewing angle, and distance from the 
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capturing camera. For instance, a close inspection of a polyp results in a large polyp region whereas a 

distant inspection of the same polyp results in a small polyp region. Furthermore, polyps may be 

occluded by stools or therapeutic instruments. Existing computer-aided techniques utilize features 

such as texture, pixel color, geometric shape of edges, or combinations of these features together with 

machine learning classifiers for polyp detection. These techniques were summarized in Section 2.1.3. 

We previously introduced the feature-based ECSP method for appendiceal orifice image 

detection in Chapter 4. We extracted features at some key positions (e.g. zero-crossing positions) of 

ECSP and its gradient profile of candidate edges. However, these features do not capture any global 

information of ECSP. Therefore, they are insufficient to represent complex characteristics of a 

protruding polyp such as the local shape of its ECSP, the protrusion, the texture or the smoothness of 

its region.  

In this chapter, we propose two phases of methods for polyp detection. In the first phase, we 

introduce a new approach using ECSP and perform a study of new features for polyp image detection. 

Compared with the ECSP based method for appendiceal orifice image detection discussed in Chapter 

4, we utilize the 2nd – order derivative of the multi-derivative ECSP and segment each of these 

profiles into parts. We model or extract features from different parts separately using methods suitable 

for individual parts. As a result, besides the local features obtained from key positions on ECSP 

(discussed in Chapter 4), we introduce features on parts which effectively describe some complex 

properties of polyp ECSP including the shape of the profile parts, texture of the polyp region, 

estimated polyp protrusion and the smoothness of a polyp surface. Finally, we combine the scores 

from modeling and feature scores as feature vectors for classification. Segmenting ECSP into parts 

gives flexibility to model or extract features from each part using the method component which is 

suitable for that part. Our technique is robust to some challenging issues of polyp detection and 

outperforms existing leading methods. The experimental results show that this method outperforms 

the current state-of-the-art techniques for polyp detection in terms of performance of free-response 

receiver operating characteristic curves and processing time on a test data set of over a thousand 

images (non-polyp and polyp images of 42 different polyps).  



83 

 

 

 

  Our ultimate goal is to develop new technology that assists the endoscopist by providing visual 

feedback of a potential polyp during routine screening colonoscopy using a standard endoscope 

commonly used in practice. The endoscopist may use the feedback to improve the polyp detection 

rate during the procedure. Our second phase further improve the analysis time for polyp image 

detection by simplifying features obtained from part-based multi-derivative ECSP to the easily 

computation ones. We track polyp edges obtained from detected polyp image from Phase 1 using an 

existing edge tracking method. The combination of polyp edge detection and edge tracking reduce the 

number of false positive edges at the image level and improve the overall detection rate. Our system 

tested on 53 videos shows its promising for clinical use to assist the endoscopist by providing visual 

feedback of a potential polyp during routine screening colonoscopy in near real-time. 

 

6.2 Part-based Multi-derivative Edge Profile Segmentation 

We segment ECSP, its first-order profile, and its second-order profile into a total of 10 

non-overlapping parts. Because the detected edge point r = 0 may not be the local minimum intensity 

point on F(r) due to the image smoothing, we search for the local minimum intensity point in a small 

1-dimensional window centered at r = 0. We denote this local minimum intensity point as rÏ. The 

segmentation algorithm consists of two steps. See Figure 6.1 for an example and notations. 

Backward segmentation from zero-crossing points: Let points r < rr�H� and r < r��H� be two 

zero-crossing value points closest to r < rÏ on XF�r�. Let points r < rr��� and r < r���� be two 

zero-crossing value points closest to r < rÏ  on X�F�r� . These points must satisfy both 

conditions below. 

1) �r�H� � �Ï � ���H�  and �r��� � �Ï � ����� 
2) 
-��r�H�� < 
-����H�� < 
�-��r���� < 
�-������� < 0 

We segment F�r� at positions cH and c� which correspond to the points at  rr�H� and r��H� on 

XF�r�. Similarly, we segment XF�r� at positions c) and c' which correspond to the points at  
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rr��� and r���� on X�F�r�. As a result, F�r� and XF�r� are each divided into three parts in this 

step. Because the segmentation points on F�r�  and XF�r�  are referred back from their 

corresponding derivative function, we call this backward segmentation. We do not segment the 

profile if its corresponding zero-crossing positions do not exist. Figure 6.1 (a-c) demonstrates the 

backward segmentation step. 

Segmentation at key points: We further segment the parts obtained from the previous step. First, 

we segment -��� and 
-��� at � < �Ï  as the illustrated points �Ò  and �Ó  in Figure 6.1 

(d-e). Next, we segment 
�-��� at � < �r��� as shown at point �Ô in Figure 6.1 (f). 

After the above steps, multi-derivative ECSP functions of an edge are segmented into 10 

non-overlapping parts: 4 parts from -���, denoted as W(�XÕY�uH' , 4 parts from X-���, denoted as 

W(�X+Y�uH' , and 2 parts from 
�-���, denoted as W(�X4Y�uH� . 
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Figure 6.1:  Example of application of segmentation steps to polyp ECSP functions. (a)-(c): 

Application of the backward segmentation step. Red rhombuses show the points between segmented 

parts. Dash-dotted lines link the red rhombuses on ECSP functions and their corresponding 

segmentation points at zero-crossing value positions on their derivative functions. (d)-(f): The 

segmentation at key points. Green rhombuses show the segmentation points in this step. Dash-dotted 

lines link the green rhombuses on ECSP functions and their corresponding segmentation points. The 

labels h1, h2, h3 and h4 correspond to the amount of intensity drop before crossing the edge, the 

amount of intensity return after crossing the edge, edge sharpness before crossing the edge and edge 

sharpness after crossing the edge. These features were introduced in Chapter 4. 
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6.3 Region of Interest Segmentation 

Besides segmenting an edge, we also segment ROI in order to extract texture features. We 

segment a ROI corresponding to the edge into 4 non-overlapping sub-matrices, each corresponding to 

each segmented part of -��� (W(�XÕY�uH' ). See Figure 6.1 (d). We represent the segmented ROIs by 

W !"#$	&�KH ,  !"#$	&�K� ,  !"#$	#%&�) ,  !"#$	#%&�' Y. We extract our texture features from some of these 

segmented ROIs. 

 

6.4 Feature Extraction from Parts 

Using part-based multi-derivative ECSP and ROI, we have flexibility to model or calculate 

features from a segmented part using the method which is suitable for that part. In this section, we 

introduce some features on parts which effectively describe some complex properties of polyp ECSP 

including texture of the region, shape of the parts, estimated polyp protrusion, the smoothness of a 

polyp surface, and intensity values on key positions on parts. We developed these features based on 

observations of characteristics of protruding polyps in colonoscopy and consultation with the domain 

experts. 

 

6.4.1 Texture Features 

Texture Features on ÅÖ×ØÙOØÚN¬Û  and ÅÖ×ØÙOØÚN¬Ü : The protrusion of protruding polyps 

causes the intensity values on F(r) to abruptly increase from �Ï (the edge pixel position) to the right 

most point on ()*Õ
 and then gradually increase afterward on ()*Õ

 as shown in Figure 6.1 (d). We 

estimate the protrusion of polyps by capturing this tendency of intensity increase using texture 

features on  !"#$	#%&�)  and  !"#$	#%&�'  (Figure 6.2 (a-b)). First, we reduce the effect of small 

impulsive and speckle noises by smoothing the intensity values on each row and then on each column 

of  !"#$	#%&�) and  !"#$	#%&�'  using Locally Weighted Scatterplot Smoothing (LOWESS) with a 

tri-cube weight function [71]. LOWESS filter resists outliers by replacing them by linearly fitted 

points in a window. It is more suitable for preserving the tendency of intensity increase in the window 

caused by the polyp protrusion than most other filters. We also empirically found that LOWESS 
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performs best among several smoothing methods such as average, median and moving average filters. 

Figure 6.2 (c) shows an example of  !"#$	#%&�'  before and after the LOWESS smoothing.  

 

 

Figure 6.2:  (a) 3D plot of intensity values of an image with a polyp (red color area). (b) 3D plot of 

intensity values for ROI obtained from the polyp region in (a). The intensity values increase on the 

polyp in the direction labeled by arrows in (a) and (b). (c) ÅÖ×ØÙOØÚN¬Ü  in (b) before LOWESS 

smoothing. (d) ÅÖ×ØÙOØÚN¬Ü  of (c) after LOWESS smoothing. 
 

Next, we slide a 1x2 pixel window over  !"#$	#%&�)  and  !"#$	#%&�'  separately one pixel at a 

time to obtain texture features. We assign a binary score of 1 to that pixel if the pixel intensity value 

in the right window is greater than that in the left window, or a binary score of 0 otherwise. We 

experimented with different window sizes and chose a 1x2 pixel window due to its simplicity and 

effectiveness. Next, we obtain two binary matrices: one for  !"#$	#%&�)  and the other for  !"#$	#%&�' . 

Finally, we compute Vtexture1 as the average of the binary values of the binary matrix of  !"#$	#%&�) . 

Similarly, we compute Vtexture2 from the binary matrix of  !"#$	#%&�' . As a result, we have two texture 

features, each in the domain of [0, 1]. 

 

6.4.2 Shape Modeling 

The global shapes of polyp ECSP functions do not match existing functions studied in [38] [39] 

[40] (e.g., a linear combination of several inversed Gaussian functions). However, the shape of the 

part S)X+
on 
-��� after profile segmentation skews to the left and looks similar to the shape of a 

Gamma probability distribution function (PDF). Figure 6.3 shows the shape of ()X+
of two example 

polyps. The segmentation of multi-derivative ECSP allows us to model each part separately without 

3
concaveROI

4
concaveROI

(a) (b)

(c)

(d)

D
ir

ec
ti

o
n

 o
f 

in
te

n
si

ty
 in

cr
ea

se

Dire
ct

io
n o

f 

in
te

nsit
y in

cr
ease



88 

 

 

 

affecting the others. We model the shape of part ()X+
as follows. 

)
,

;
(

ˆ
3

b
a

r
F

S
∇

)
(

3
r

F
S

∇

)
,

;
(

ˆ
3

b
a

r
F

S
∇

)
(

3
r

F
S

∇

 

Figure 6.3: (a) and (b) show the part ÆÛÞß
 of two example polyps. Dots are points on 

function ÞàªÛ�¹� of ÆÛÞß
, the dashed lines are fitted Gamma PDF functions ÞàáªÛ�¹; Ú, â�. 

 

Let a function 
-
.��� denote the part ()X+
on 
-���. We define a Gamma PDF 

 

     
-/
.��; 1, 3� < �%rH �ãÂ+�Âäã~ã�%rH�! , �1 æ 1, 3 æ 0�          (6.1) 

 

as the estimation of -
.���. The shape of the function 
-
.��� mainly depends on some particular 

points on the function. These points are 1) close to the function peak, or 2) with large function value 

differences from their neighbor points. See Figure 6.3. Therefore, we apply the Weighted 

Levenberg-Marquardt algorithm [79] to optimize the goodness of model fitting by setting higher 

weights for important pixels. The diagonal element Wrr in a diagonal weight matrix W presents the 

weight of pixel r defined as  

 

       ç�� < |
-
.�� = 1� = 
-
.���| · |
-
.�� = 1� @ 
-
.���|.         (6.2) 

 

The first term of Wrr gives a large value for the pixels r and r+1 that are close to the function peak 

position. The second term measures the difference of function values between the pixel r and its right 

neighbor r+1. We compute a similarity score  

 

      �
±%è� < 1/�1 = Ì���À$���                 (6.3) 
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between the underlying model 
-
.��� and its estimated 
-/
.��; 1, 3� as the shape feature on part 

()X+
, where Diff is the difference between the areas under the curve of the two functions and Comm is 

the amount of the overlapping area between them.  

 

6.4.3 Surface Smoothness Feature 

Due to polyp protrusion, the intensity values on ECSP of polyps increase abruptly near their edge 

pixel positions. This property results in large amplitude values near the approximate edge pixel 

position � < �Ï on the derivative functions of the polyp ECSP (Figure 6.1 (b-c)). The surface of most 

polyps, in particular polyps less than 1-2 cm, is smooth. As a result, when comparing with the large 

amplitude values near � < �Ï for polyp edges, only very small oscillating amplitude values appear 

on non-edge positions of X�-��� when � æ �Ï. However, if the surface of an object is noisy, as the 

calculation of a function’s derivative amplifies the noise, the amplified noises are getting obvious on 

the profile functions when the order of the derivative is sufficiently large (e.g., the 2nd-order 

derivative). Therefore, some protruding non-polyp objects like stool show large amplitude values near 

both edge pixel position and non-edge pixel positions of X�-���. S�X4
 is the part which reflects the 

information of both edge pixel position and non-edge pixel positions on X�-��� at the concave side 

of a polyp. We design a feature to capture the differences of amplitude values on S�X4
 as follows.  

 

Figure 6.4: Six labeled PNP patterns on an example é½·½
 used for calculating surface smoothness 

feature 
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We define consecutive pixels as a PNP pattern on (�*4
 if they contain 3 zero-crossing pixels in 

order: one P-pixel, one N-pixel, and another P-pixel. Specifically, P-pixel is a pixel at r whose 

function value satisfies X�-��� � 0 and X�-�� = 1� æ 0. In other words, P-pixel is a zero crossing 

pixel from negative to positive. N-pixel is a pixel at r whose function value satisfies X�-��� æ 0 and 


�-�� = 1� � 0. In other words, N-pixel is a zero crossing pixel from positive to negative. First, we 

segment (�*4
 into non-overlapping PNP patterns at all P-pixel positions. Figure 6.4 shows six such 

PNP patterns on (�*4
, labeled from 1 to 6. Next, we calculate the maximum and minimum function 

values of a PNP pattern as its amplitude, represented by a pair-value (e.g., function values at 1
Pr  and 

 labeled in Figure 6.4). Finally, we apply k-means clustering algorithm [75] on all pair-values of 

amplitude using Euclidean distance among the pair-values to cluster these PNP patterns into 2 groups: 

g1 and g2, where g1 is the group with the number of patterns less than or equal to those in g2.  

If an object has smooth surface, then there is only one large amplitude pair-value near edge pixel 

position on (�*4
. That is the group g1 should contain only one PNP pattern – the pattern that is closest 

to � < �Ï. Otherwise, g1 should contain other PNP patterns caused by noise. We use a binary score to 

represent a smoothness feature denoted as Vsmoothness. We assign 1 to Vsmoothness when the surface of the 

corresponding object is considered smooth. That is, if 1) the PNP pattern closest to � < �Ï  belongs 

to g1, and 2) g1 contains at most q pair-values of amplitude. Otherwise, we assign 0 to Vsmoothness. We 

set q as 2 to allow the maximum of 1 noisy PNP pattern in g1. 

 

6.4.4 Key Points Based Features 

We extracted 6 features on key positions and 3 of them (h2, h3, and h4) were introduced in 

Chapter 4. These features include the strength and the sharpness of edge. Table 6.1 shows the 

description of these features.  

 

 

 

1
Nr
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Table 6.1: Features on Key Positions of Parts Used For Polyp Detection 

Type Notation Part(s) Feature description 

Edge 

strength 

h1 - h2 W(�*Õ , ()*ÕY Difference of the amount of intensity drop and increase before 

and after crossing the edge 

h2 W()*ÕY Amount of intensity return after crossing the edge 

h2/h1 W(�*Õ , ()*ÕY Ratio of the amount of intensity drop before crossing the edge 

and the amount of intensity return after crossing the edge 

Edge 

sharpness 

h3 W(�*+Y Sharpness of edge before crossing the edge 

h4 W()*+Y Sharpness of edge after crossing the edge 

h4/h3 W(�*+ , ()*+Y Ratio of edge sharpness before and after crossing the edge 

Note: Notations of these features are indicated in Figure 6.1 (a-b). 

 

6.4.5 Feature Vector 

Our final feature vector V has ten features (Vtexture1, Vtexture2, Vshape, Vsmoothness, h1 - h2, h2, h3, h4, 

h2/h1, h4/h3). While additional features may be useful for detecting protruding polyps, we focus on 

these ten features in this study. These features are selected using a forward feature selection method 

[80]. To select features from m candidate features, we evaluate the performance of features based on 

10-fold cross validation on training data. We start with selecting an initial feature by testing each 

individual feature v1, v2, v3… vm from all m features and outputting the feature vector (vi) which gives 

the best performance. We select next feature by concatenating vi with each of the rest of m-1 features 

to be new feature vectors and outputting the feature vector (vi, vj) which performs the best among 

these new feature vectors. We repeat the above step to add a new feature at each step and stop until 

the next best concatenated feature vector negatively contributes to the performance. Our selected 

features using this method show effectiveness for polyp detection based on our experiments 

(discussed in Section 6.5). 
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6.5 Experiments on Polyp Image Detection 

We implemented the analysis software in MATLAB . We ran all experiments on an Intel Xeon 

3.80 GHz CPU, 4 GB RAM workstation running Microsoft Windows Server 2003 operating system. 

 

6.5.1 Experimental Setup 

Data Set: We randomly selected 46 de-identified video files captured during routine screening 

colonoscopy at the image resolution of 720x480 pixels at 29.97 frames per second (fps). Each file 

contains only one colonoscopy procedure in its entirety. Twenty-eight of these videos were captured 

using FUJINON endoscopes, and the remaining eighteen video files were captured using OLYMPUS 

endoscopes. The colons seen in these videos had little stool inside them. We extracted from these 

video files 69 smaller clips: 50 clips with polyps and 19 clips without any polyps. The 50 clips 

represent 50 different polyps (one polyp per clip). Each polyp clip has consecutive frames showing 

the same polyp appearing at various viewing angles, light conditions, and scales. Pit patterns [56] of 

these polyps are not clearly seen since magnifying endoscopes were not used.  

Our non-polyp clips contain images with most types of objects often seen in colonscopy, 

including blood vessels, colon wall, colon folds, stool, retroflexion, appendiceal orifices and 

diverticula [1]. For each clip, we extracted the images in JPEG format with a resolution of 720x480 

pixels at the frame rate of 1 fps. We removed blurry images using blurry frame removal software [70], 

leaving the remaining clear (in-focus) images for the experiments. The blurry frame removal 

algorithm in [70] considers a frame as blurry if it does not have sufficient number of connected edge 

pixels detected using Canny edge detector. Totally, we obtained 1025 images each with a polyp in it 

and 488 images without any polyps on them. Two domain experts marked and agreed on the ground 

truth of all polyp regions in the images. Fig. 10 shows example ground truth polyp regions.  
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Table 6.2: Description of Data Sets Used for Polyp Image Detection 

Category 
# Polyp clips 

(# images, # edges) 

# Non-polyp clips 

(# images, # edges) 
Total 

Training 8 (160, 844) 6 (87, 1305) 14 (247, 2149) 

Testing 42 (865, 4983) 13(401, 1813) 55 (1266, 6796) 

Total  50 (1025, 5827) 19 (488, 3118) 69 (1513, 8945) 

 

Table 6.3: Number of Polyp Images of Each Video Clip in the Training Set 

Video clips captured using FUFJINON endoscope 

Clip ID 1 2 3 
  

# Polyp images 19 10 36 
  

Video clips captured using OLYMPUS endoscope 

Clip ID 4 5 6 7 8 

# Polyp images 20 43 8 18 6 

 

 

Table 6.4: Number of Polyp Images of Each Video Clip in the Testing Set 

Video clips captured using FUFJINON endoscope 

Clip ID 1 2 3 4 5 6 7 8 9 10 

# Polyp images 9 21 4 17 8 17 7 26 11 8 

Clip ID 11 12 13 14 15 16 17 18 19 20 

# Polyp images 18 13 43 58 21 2 19 16 6 8 

Video clips captured using OLYMPUS endoscope 

Clip ID 21 22 23 24 25 26 27 28 29 30 

# Polyp images 19 23 30 45 8 7 53 17 8 10 

Clip ID 31 32 33 34 35 36 37 38 39 40 

# Polyp images 37 20 37 11 50 41 11 26 28 11 

Clip ID 41 42 
        

# Polyp images 12 30 
        

 

 

Table 6.5: Polyp Categories in the Testing Set 

Category 
On colon 

wall 

On colon 

folds 
Near flat With stool All 

# Images 437 428 130 196 865 

# Clips 20 22 6 8 42 
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We split the polyp clips into non-overlapping training and testing sets. Table 6.2 describes the 

data sets including the number of clips, images and extracted edges after the image preprocessing step 

in each category. Table 6.3 and Table 6.4 describe the numbers of polyp images in each video clip in 

the training data and the testing data, respectively. We included eight polyp clips in the training set, 

which covered all categories of polyp appearance in Table 6.5 (discussed in more details in a later 

paragraph). 

Parameter value settings: All parameter values were determined based on experiments with the 

training set. The parameter values may vary for different image resolutions in other data sets.  

Image pre-processing and ECSP calculation: We extracted edges using Canny edge detector 

with the low threshold, high threshold, and standard deviation of Gaussian filter of 0.05, 0.1, and 3.0, 

respectively. Next, we removed small branches on these edges. We discarded an edge if 1) it had less 

than 20 edge pixels (smaller than the number of pixels in the window [� ) or 2) it was an 

approximately linear edge. An edge is considered linear if the least squares fitting error of its pixel 

locations fitted to a linear line is less than ε (ε = 8 pixels in our case) using a linear regression as in 

Chapter 4. We cut an S-like shape edge that typically occurred when a polyp was connected with a 

colon fold into several C-like shape edges by tracking edge pixels and examining the change of the 

edge tangent directions. Because our data set has clear images obtained based on the quality of their 

Canny edges, we successfully extracted real polyp edges for the vast majority of polyp images (1018 

of 1025) with these parameters. For ECSP calculation, the sliding window [� of sizes between 10x10 

and 25x25 pixels gave good performance. The valid range of � was from 0.5 to 1.0. In subsequent 

experiments, we set the size of [� to 15x15 pixels and � to 0.5, and limit  �/E to a maximum value 

of 80 pixels. The one-dimensional window size centering at r=0 for finding the minimum intensity 

point r0 in the window was 1x21. 

Feature normalization: The values of most of our features, Vtexture1, Vtexture2, Vshape, Vsmoothness, h2, 

h3, h4 are in the range of [0, 1]. The feature h1 - h2 is in the range of [-1, 1]. As the values of features 

h2/h1 and h4/h3 are in large scale ranges, we transformed the data of these two features using log 

functions log (h2/h1) and log (h4/h3). We then normalized each individual feature h3, h4, log (h2/h1) and 
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log (h4/h3) by dividing it by its corresponding C(d), where C(d) is the absolute difference of maximum 

and minimum values for the feature d in the training data.  

  Performance metrics: We consider the minimum bounding rectangle of each edge obtained 

from Canny edge detector as one region. Let DET_RLPLP_IMG, RLPLP_IMG, FL_REGION, and 

IMG be the number of correctly detected polyp images, the number of real polyp images, the number 

of falsely detected regions (regions not overlapping with any real polyps), and the number of tested 

images, respectively. A polyp image is considered correctly detected if it has at least one correctly 

detected polyp region. A detected region is counted as a true positive if it overlaps with a ground truth 

polyp region. The number of wrongly detected polyp regions was counted as falsely detected regions 

(FLR). Regions that are falsely detected in true polyp images are also counted in FLR. We used the 

following performance metrics that were also used in [30]. 

  }��R q�_5`5�� �1`R �}� � < Ì¿f_�����_ëIì�����_ëIì  

 ¥�Q3R� �� �1�_R �Rí5��_ qR� 5Q1íR �-î � < ï�_�¿ìëð� ëIì  

To provide visual feedback of a detected polyp region, a high TPR is desirable. On the other hand, a 

low FLR is desirable since many false positives can distract the endoscopist. We used these metrics in 

the free-response receiver operating characteristic curves (FROC). Our TPR is not based on regions 

since our focus is not on detecting an accurate polyp contour.  

Classifier selection: We investigated the performance of several classifiers: two-class Support 

Vector Machine (SVM) with radial basis function (RBF) kernel using Torch SVM library [81] and 

Generalized Linear Models (GLM) [82] with Binomial, Gaussian and Poisson distributions as kernels. 

We used feature vectors obtained from all images in the training and testing sets for a 10-fold cross 

validation to obtain performance of these classifiers. We varied the standard deviation of Gaussian 

kernel for the SVM classifier, and the threshold values of probability for GLM classifiers to obtain 

FROCs. There are two more parameters for the SVM classifier [82], but they had little effect on 

FROCs. These different classifiers showed similar FROCs (plots omitted). SVM with RBF kernel and 

GLM with Gaussian kernel showed the best performance with the largest area under the FROC. 
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We used a two-class SVM classifier with RBF kernel as the classifier for our technique for the 

rest of the experiments. The two classes were polyp images and non-polyp images. In these 

experiments, we varied the standard deviation of the Gaussian kernel for the SVM classifier to train 

the classifier using all images in the training set and applied the trained classifier on the entire testing 

set to get TPR and FLR for each point on FROC. 

 

6.5.2 Experiments with Different Features 

Figure 6.5 shows FROC of individual features and the combination of all the features. Individual 

shape features, texture features, or 3 key features used in Chapter 4 showed similar performance. That 

is about 2/3 TPR comparing with the performance using all proposed features. The 6 key features 

presented in Table 6.1 or combination of smoothness, shape and texture features improved about 10% 

TPR on average. The combination of all features (10 features per edge) further improved about 10% 

TPR on average and showed the best performance.  
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Figure 6.5: FROC curves of different features tested on all testing data. Shape feature is Vshape; texture 

features are Vtexture1, Vtexture2; smoothness feature is Vsmoothness, 3 key points features are h2, h3, h4 used in 

Chapter 4, and 6 key points features are the features presented in Table 6.1.  

 

 

 

Figure 6.6: FROC curves for different types of polyps using the proposed features 
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6.5.3 Experiments with Different Types of Polyps 

Table 6.5 shows polyp types based on their appearance: polyps on colon wall, polyps on colon 

folds, polyps with stool, and near flat polyps (polyps with little protrusion). A polyp image can belong 

to more than one category. For example, a near flat polyp image may also have stool. 

Training and testing procedures were the same as in the previous experiment to evaluate 

effectiveness of different features. However, the TPR and FLR for each polyp category was calculated 

using detection results on polyp images in that category only. These polyp images have other edges 

besides polyp edges. Results of non-polyp images were excluded from Figure 6.6 since we already 

see the performance of our technique on the entire test set in Figure 6.5. Figure 6.6 shows the FROC 

of these types of polyps. The number of false regions per image is highest for the polyps on colon 

folds because some protruding colon folds look very similar to real protruding polyps. We obtained 

the highest TPR of 76% for detecting near flat polyps. We found that these near flat polyps show 

similar patterns on parts as protruding polyps. Most stool was correctly rejected. Some polyps contain 

reflected smooth stool (e.g., water injected via the instrument) as falsely detected regions. Other false 

regions are caused by noises like light reflected spots and water. Our technique is robust to different 

viewing angles and polyp region sizes. Figure 6.8 shows some detection results under the TPR of 

86.3%. Detected edges are labeled by the minimum bounded rectangles of the edges. The examples 

show the complexities of the polyps in our data set. Under the TPR of 86.3%, most mis-detected 

polyps are poorly illuminated or far away from the camera. 

 

6.5.4 Performance Comparison with Existing Techniques 

We compared our technique with two existing leading techniques using LBP and OCLBP 

features in [17] [50]. We chose these two techniques for comparison since OCLBP was shown to 

perform best in previous studies [17] [31]. Other newer techniques were only evaluated on small data 

sets and their performance was questioned in [11]. It is difficult to compare across different 

techniques using the same performance metrics. The LBP and OCLBP uses region texture in a sliding 

window while our technique uses features from edges. For comparison, in our technique, we consider 
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the minimum bounding rectangle of a detected edge as a detected region representing that edge. The 

LBP and OCLBP algorithms slide a square window over an entire image. At each sliding step, the 

square region covered by the window is classified as a polyp candidate region or a non-polyp 

candidate region by a SVM classifier using the features obtained from that square region. Detected 

polyp candidate regions are sometimes connected in 8 directions. The union of these connected 

regions is considered as a single detected polyp region if it consists of least Thldregion number of 

connected candidate polyp regions. Besides the parameters of SVM, we also varied Thldregion from 1 

to 7 for LBP and OCLBP. Since our technique does not use sliding windows, Thldregion was not 

relevant. We used RBF kernel for SVM and 64 histogram bins for both LBP and intra- and 

inter-channel OCLBP patterns as in [17] [50]. The size of sliding window influences the performance 

of LBP and OCLBP features. Setting a window size too large will include many non-polyp pixels, 

resulting in ineffective classification. We investigated performance under three window sizes: 32x32, 

48x48, and 64x64 pixels. The sliding window step was set to half the window size. 

Figure 6.7 shows the comparison of these techniques. OCLBP outperforms LBP with the same 

window size. OCLBP with 48x48 pixels window size (denoted as OCLBP-48x48) shows the best 

performance comparing with LBP and OCLBP using the other window sizes for this data set. Our 

proposed technique outperforms these two methods in the following aspects. 1) Under the same true 

positive rate (TPR), the average number of false regions per image (FLR) of our technique is under 

0.5 (Figure 6.5 and Figure 6.7), which is significantly lower than those of LBP and OCLBP. 

Furthermore, false regions generated by our technique are not equally distributed within non-polyp 

images. Most of false regions occur within images with a) strong light reflected spots, b) smooth stool, 

c) water, or d) protruding colon folds. For example, for an 81.4% TPR, our technique has 0.32 FLR. 

These false regions occur within only 20.5% of non-polyp images. As a result, 79.5% of non-polyp 

images do not have any false region under an 81.4% TPR. However, OCLBP-48x48 generates around 

1.8 FLR under the same 81.4% TPR. These false regions are close to equally distributed on different 

types of non-polyp images. As a result, nearly every non-polyp image (99.8%) has at least one false 

region. 2) We observed that detected regions using OCLBP and LBP generally contained a large area 
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of non-polyp pixels surrounding real polyp pixels: falsely detected regions were connected with real 

polyp regions and counted as a single correctly detected region. Compared with these sliding-window 

based methods, our method detects polyp edges, which reflects more accurate locations of the polyps. 

Thus, our results should be more meaningful in clinical practice. 3) Analysis time: Table 6.6 shows 

that the average time for our technique to analyze an image is 7.1 seconds. The bottlenecks are ECSP 

and ROI extraction. For LBP and OCLPB, the analysis time decreases as the window size increases. 

In contrast, our technique took around 1/3 of the time taken by the best performance using 

OCLBP-48x48 and a few seconds less than that of the best performance using LBP. 

Additional polyp detection algorithms [11] [30] were proposed after [17]. However, these recent 

techniques except our technique [16] were evaluated on data sets that were too small to convincingly 

validate the techniques. For instance, the algorithm in [30] provided an 86.2% TPR and 1.26 FLR 

tested on only 37 images and took about 13 seconds on a similar workstation to process one image 

with around 1/4 size of our image size. The number of distinct polyps studied was not given. We did 

not directly compare with this technique as it used sliding-window based texture features which have 

similar drawbacks as using LBP and OCLBP. Our previous algorithm in [16] runs significantly slower 

than our proposed method and can miss a polyp whose entire shape does not fit an ellipse shape 

template well. Therefore, we did not compare with it. 
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Table 6.6: Average Analysis Time in Seconds per Image 

Method 
Module and its analysis time Total time 

 Module  Time 

ECSP 

Image preprocessing 1.8 

7.1 ECSP, ROI extraction 4.0 

Feature extraction, classification 1.3 

Method Sliding window size Total time 

LBP 

32x32 21.3 

48x48 9.7 

64x64 6.4 

OCLBP 

32x32 63.0 

48x48 27.9 

64x64 19.6 

 

 

 

 

 

 

Figure 6.7: FROC curves of features obtained from part-based multi-derivative ECSP, LBP and 

OCLBP with different sizes of sliding windows; features were tested on a SVM classifier with RBF 

kernel. 
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LBP 32x32LBP 32x32LBP 32x32LBP 32x32
LBP 48x48LBP 48x48LBP 48x48LBP 48x48
LBP 64x64LBP 64x64LBP 64x64LBP 64x64
OCLBP 32x32OCLBP 32x32OCLBP 32x32OCLBP 32x32
OCLBP 48x48OCLBP 48x48OCLBP 48x48OCLBP 48x48
OCLBP 64x64OCLBP 64x64OCLBP 64x64OCLBP 64x64



 

 
 

(a)             (b)            (c)             (d)

(f)     (g) 

(k)     (l)

 

Figure 6.8: Examples of detected polyps: 1

marked ellipses; 2nd and 4th rows: detected results marked with the minimum bounded rectangle of the 

detected edges. (a) Polyp on colon wall. (b) Polyp on side of colon fold, with blood. (c) Small polyp 

on colon wall, near flat, facing the camera. (d) Polyp on colon fold, with stool, facing the camera. (e) 

Polyp on colon wall, facing the camera. (f) Polyp on colon fold. (g) Polyp on colon fold, with stool. 

(h) Small polyp on colon wall, near flat, with sto

polyp on side of colon fold. (k) Polyp on colon fold, with stool. (l) Polyp on colon wall. (m) Polyp on 

colon fold, with water and stool. (n) Polyp on side of colon wall.
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(b)            (c)             (d)          (e)

(g)    (h)          (i)           (j)

 

 

(l)       (m)      (n) 

: Examples of detected polyps: 1st and 3rd rows: ground truth is the area of the union of all 

rows: detected results marked with the minimum bounded rectangle of the 

detected edges. (a) Polyp on colon wall. (b) Polyp on side of colon fold, with blood. (c) Small polyp 

n colon wall, near flat, facing the camera. (d) Polyp on colon fold, with stool, facing the camera. (e) 

Polyp on colon wall, facing the camera. (f) Polyp on colon fold. (g) Polyp on colon fold, with stool. 

(h) Small polyp on colon wall, near flat, with stool, facing camera. (i) Polyp on colon wall. (j) Small 

polyp on side of colon fold. (k) Polyp on colon fold, with stool. (l) Polyp on colon wall. (m) Polyp on 

colon fold, with water and stool. (n) Polyp on side of colon wall. 

 

 

 

(e) 

 

 

(i)           (j) 

rows: ground truth is the area of the union of all 

rows: detected results marked with the minimum bounded rectangle of the 

detected edges. (a) Polyp on colon wall. (b) Polyp on side of colon fold, with blood. (c) Small polyp 

n colon wall, near flat, facing the camera. (d) Polyp on colon fold, with stool, facing the camera. (e) 

Polyp on colon wall, facing the camera. (f) Polyp on colon fold. (g) Polyp on colon fold, with stool. 

ol, facing camera. (i) Polyp on colon wall. (j) Small 

polyp on side of colon fold. (k) Polyp on colon fold, with stool. (l) Polyp on colon wall. (m) Polyp on 



103 

 

 

 

6.5.5 Discussion 

Segmenting ECSP into parts gives flexibility to model or extract features from each part using 

the method component which is suitable for that part. Experimental results show that the proposed 

technique is robust to some challenging issues of polyp detection and outperforms existing leading 

methods. Our technique can effectively detect different types of protruding polyp appearance 

including polyps with little protrusion. It can mark detected polyp edges as visual feedback which is 

more precise and less intrusive than marking a large region as in a sliding-window based method. 

Furthermore, the false positives generated by our technique only appear in a small percentage of the 

number of images analyzed. We can further reduce the number of false positive edges to avoid 

overwhelming the endoscopist with unnecessary warnings by reducing the detection rate at the image 

level and using temporal information from consecutive frames (e.g., tracking of detected edges across 

frames) to improve the overall detection rate. Toward providing real-time feedback during live 

colonoscopy, we can already reduce the analysis time by code conversion to C/C++ and optimization 

on ECSP and feature extraction for the analysis rate of at least 1 frame per second. 

 

6.6 Near Real-time Polyp Warning and Polyp Shot Detection 

In this section, we further improve the analysis time for polyp image detection by simplifying 

features obtained from part-based multi-derivative ECSP. We combine polyp edge detection results 

with an edge tracking algorithm to reduce the number of false positive edges at the image level and 

improve the overall detection rate. Finally, we extract consecutive images showing appearance of 

detected polyp as semantic units in the video.  

   We call a sequence of consecutive images where each non-blurry image is a polyp image as a 

polyp sub-shot, and a single polyp sub-shot or a sequence of consecutive nearby polyp sub-shots 

including the non-polyp images between each two sub-shots together as a polyp shot. We consider 

that two consecutive polyp sub-shots are nearby if the duration between the ending frame of a 

sub-shot and the starting frame of the other sub-shot is smaller than a predefined threshold (ñª). A 
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single polyp sub-shot is considered as a polyp shot if it does not have any nearby sub-shot. Our 

software developed using C/C++ and Open Source Computer Vision (OpenCV) library can provide 

warning feedback on detected polyp sub-shots and extract polyp shots for endoscopists in near 

real-time under the frame rate of 10 fps. Figure 6.9 shows the flow chart components of our near 

real-time warning and polyp shot extraction system.  

 

Figure 6.9: The flow chart of components of the near real-time polyp warning and polyp shot 

extraction system. 

 

6.6.1 Simplified Features for Near Real-time Polyp Detection 

   Our features for polyp detection are mainly obtained from Part-based Multi-derivative ECSP. To 

speed up the computation time, especially the bottlenecks of the feature extraction part, we modified 

our feature extraction method as follows. 

Texture feature on ÅÖ×ØÙOØÚN¬ : We experimentally found that the filtering step using 

LOWESS filter dramatically slowed down the computation speed. Therefore, we removed the 

LOWESS filter. Instead, we compute the following texture feature without using any smoothing filter 

in our near real-time version. We compute one binary matrix for each  !"#$	#%&� as detailed below. 

The width and height of the binary matrix are the same as those of its  !"#$	#%&� . Finally, we 
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compute the texture feature Vtexture as the average of the binary values of the binary matrix of 

 !"#$	#%&� in the domain of [0, 1]. 

1) If the width of  !"#$	#%&� is larger than 17, we slide a 1x17 pixel window over  !"#$	#%&� 

one pixel at a time. We assign a binary score of 1 for the corresponding pixel in the binary 

matrix if the pixel intensity value in  !"#$	#%&� in the right most position of the window is 

greater than that in the left most position of the window, or a binary score of 0 otherwise. We 

experimented with different window sizes and finally chose a 1x17 pixel window since it can 

better resist noise. 

2) If the width of  !"#$	#%&�  is smaller than 17, we slide a 1x2 pixel window over 

 !"#$	#%&� one pixel at a time. We assign a binary score of 1 for the corresponding pixel in 

the binary matrix if the pixel intensity value in the right side of the window is greater than 

that in the left side of the window, or a binary score of 0 otherwise. A 1x2 pixel window is 

chosen due to the computation simplicity.   

In most case, the tendency of intensity increase along the protruding direction of polyps on 

 !"#$	#%&� is not obvious within a small size window without any smoothing due to the noise. 

Therefore, we need a sufficiently large window to compute the tendency of intensity increase. 

However, if  !"#$	#%&� has a small width, it is most likely that the size of its corresponding edge is 

small (i.e., short edge). For a short polyp edge, it is most likely that its corresponding  !"#$	#%&� is 

not very noisy. A short non-polyp edge is most likely caused by light reflection, which generally has a 

smooth surface on  !"#$	#%&�. Therefore, a 1x2 pixel window is sufficient for the computation 

without smoothing. Note that we calculate the texture feature on the entire  !"#$	#%&� instead of 

calculating separate features on  !"#$	#%&�)  and  !"#$	#%&�' . This is because we use a larger 

window for the texture feature calculation in the near real-time version. 

Shape of edge: We added one shape feature to remove edges that do not fit well with an ideal 

ellipse using the least squares ellipse fitting method [82]. We perform least squares ellipse fitting on 

all extracted edges in the binary edge image and dilate the fitted ideal ellipse for each edge using a 

circle structuring element with a radius of 4 pixels. The dilation is to account for some nearby edge 



106 

 

 

 

pixels that do not lie perfectly on the ideal ellipse. Let N be the total number of pixels on the edge. Let 

Eellipse be the percentage of edge pixels not covered by the dilated ideal ellipse. We reject edges in 

which Eellipse is large than a threshold (Table 6.7).  

We selected all useful features using the forward feature selection method [80] based on the 

training data. We set our parameter values based on leave-one-out-cross-validation in the training data. 

That is, for N polyp clips in the training set, we set parameter values based on training N-1 polyp 

video clips and validate the performance on the remaining one polyp video clip. We repeated this step 

to select one polyp video clip from training set and record the performance at each validation step. We 

used the parameter values that gave the maximum average performance. To save the computation 

time, we no longer use some useful features presented in Section 6.4 like Vshape and Vsmoothness. Instead, 

we replace them with some features calculated using the appendiceal orifice detection algorithm 

(Chapter 4). We summarized all used features and their value ranges for edges qualified as polyp 

edges in Table 6.7. The notations and descriptions of these features can be found in Section 6.4 and 

Chapter 4.  
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Table 6.7: Features, Their Order of Computation and Value Ranges for Near Real-Time Polyp 

Detection 

Computation 

Order 
Feature Name Feature Description 

Value 

Range 

1 EdgeLinearity* 
MSE (mean squared error) of the edge fitted using least 

squares linear fitting  
≥ 2 pixels 

2 E*ellipse 
Percentage of edge pixels not covered by the fitted 

dilated ideal ellipse 
[0, 0.8] 

3 Curvature* Curvature range of the edge 
[1/400, 

1/20] 

4 h2 Amount of intensity return after crossing the edge ≥ 0.02 

5 h2 / h1 

Ratio of amount of intensity return after crossing the 

edge to the amount of intensity drop before crossing 

the edge 

≥ 0.5 

6 h3 Sharpness of edge before crossing the edge ≤ 1.67 

7 h4 Sharpness of edge after crossing the edge  ≥ 0.652 

8 h4 – h3 
Difference between the sharpness of edge after 

crossing the edge and before crossing the edge  
≥ 0 

9 h4 / h3 
Ratio of edge sharpness after crossing the edge to the 

edge sharpness before crossing the edge 
≥ 1.0 

10 Vtexture Texture feature on  !"#$	#%&� (0.7, 1] 

All parameters in this table were obtained based on experiments with the training data set. They were then 

used for running the experiments on the testing data set. 

* Parameters sensitive to an input image size 

 

 

6.6.2 A Coarse-to-Fine Near Real-Time Polyp Image Detection System 

An edge is detected as a polyp edge if all features in Table 6.7 are within their value ranges. 

Otherwise, the edge is detected as a non-polyp edge. If any edge is detected as a polyp edge in an 

image, we consider that image as a polyp image.  

Because the extraction of features is the most time consuming part in the system, to save the 

computation time, we design our polyp edge detection system as a coarse-to-fine detection system. 

That is, the system calculates one feature after another, starting from the calculation of the feature 

with the fastest computation time. We list the order of computations of these features in Table 6.7. If 
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the value of any feature is not in its value range as specified in Table 6.7, the edge is detected as a 

non-polyp edge without the calculation of subsequent features. Comparing with the methods using 

machine learning models like SVM presented in Section 6.5, a coarse-to-fine detection system saves 

the overall computation time and benefits the analysis time of frames with many detected edges. We 

consider that a polyp image is correctly detected if the system detects at least one polyp edge in 

ground truth of that image. 

 

6.6.3 Edge Tracking 

 Toward reducing the number of falsely detected edges and improving the overall detection rate 

using temporal information, we apply Lucas-Kanade tracking [83] method to track detected polyp 

edges across multiple frames. The intuition is that if a detected edge is indeed a real polyp edge, there 

is a high probability that the edge will be detected as a polyp edge in subsequent frames in a small 

time window. Otherwise, the edge is considered as a falsely detected edge. 

There are many kinds of local features that can be used for tracking. Most popular trackable local 

features are the pixels with large derivative values in two orthogonal directions in the image [84]. 

These pixels are considered as interest points, such as corners [85]. Generally, we do not consider 

pixels on edges to be good for tracking. This is because many edges of objects have a local linear 

shape. The pixels on edges with local linear shape have only large derivative values in one direction, 

but small derivative values in another orthogonal direction. However, if pixels on edges have large 

derivative values in both of the two orthogonal directions, these edge pixels can be considered as 

good points to track, such as pixels on curve edges. Polyp edges are curve edges in most cases. We 

consider a subset of pixels on polyp edges as good feature points to track.  

We use a popular tracking method – Lucas-Kanade (LK) to track edges. LK tracking is a sparse 

optical flow tracking method which has a reliable performance on tracking when given points with 

good features to track [84] [86], such as corners as discussed earlier. LK tracking is fast. In the 

following paragraphs, we give a brief review of the LK tracking technique and discuss how it is used 

for tracking polyp edges.  
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 Brief review of LK tracking: Let "�:, ;, `� be the intensity value of a pixel at the coordinate 

��� < �:, ;� at frame t. Assume that the intensity value of pixel I does not change from frame t to t+1. 

We have 

       "�: = �, ; = �, ` = 1� < "�:, ;, `�,           (6.4) 

where, ò� < ��, �� is the displacement of the pixel between frames t and t+1. Based on Taylor series 

expansion, for a small displacement ��, ��, the following equation is satisfied:  

        "K� = "ó� = "� < 0,                (6.5) 

where "K and "ó are the partial derivatives of intensity values along the x and y directions, and "� is 

the partial derivative of the intensity value along the temporal domain t. To solve for the displacement 

vector ��, ��, we fit a small 2 dimensional window ç� centered at ��� < �:, ;�. Let us define ���� as 

the pixel in window ç� for i = 1, …, N. Equation (6.5) for all N pixels (i.e., ���H … ����) in the window 

ç�  can be expressed in a matrix form as  

       ô"K����H� "ó����H�… …"K������ "K������õ ?��C < @ ô"�����H�…"�������õ.        (6.6) 

 

Let the matrix  A < ô"K����H� "ó����H�… …"K������ "K������õ and the matrix B < ô"�����H�…"�������õ.  The solution of this linear 

system is casted into solving the problem of minimizing the MSE error of least-squares fitting in the 

window. That is    

                              ?��C < ��f��rH�f÷.                (6.7) 

It is obvious that a corner feature like pixel generally has two large eigenvectors of �f�, because it 

has large derivative values in two orthogonal directions. Therefore, �f� is generally invertible for 

edge pixels on curve edges. To solve the problem of a large displacement of vector ��, �� that cannot 

fit in a small window, we use the Pyramid Lucas-Kanade [84]. The Pyramid LK calculates the tracked 

feature points from the top layer of the first Gaussian Pyramid. The calculated feature points are used 

at the next Gaussian Pyramid layer for motion estimation. Generally, Pyramid LK with a larger 



110 

 

 

 

Gaussian Pyramid PL has a better tracking accuracy but a higher computational time. A larger 

Gaussian Pyramid PL is better for tracking an edge with a large motion because it searches the 

corresponding tracked point in a finer Pyramid image. We experimentally selected �î < 5 for polyp 

edge tracking. 

Tracking edge pixels using Pyramid LK: We track pixels on edges between two consecutive 

frames as follows. First, we downsample the pixels on an edge using the sampling factor of î� (14 

pixels), i.e., selecting one pixel out of every î� pixels on that edge. We consider the downsampled 

edge pixels as feature points for Pyramid LK tracking. Next, we use the OpenCV function 

cvCalcOpticalFlowPyrLK [84] to track the selected feature points. The cvCalcOpticalFlowPyrLK 

function calculates the error ø� for each feature point as the difference of appearance between the 

feature point and its tracked point. The tracked point is searched within a small window çù� 
surrounding the feature point. We consider that an edge pixel is correctly tracked if both of the 

following conditions are satisfied: 1) the tracking error ø� � }��Sù� ; 2) the distance S5_`� �
}��S��
��, where S5_`� is the Euclidean distance between the feature point in frame t and its tracked 

point in frame t+1.  

Tracking/Matching edges between two frames: Given two consecutive frames t and t+1. We 

consider the edge j in frame t+1 matches the edge i in the previous frame t if there is at least one pixel 

on edge j falls inside the 2D window of size  � centered at any tracked feature point on edge i. If 

there is more than one such edge in previous frame t, we match edge j to the edge i which has the 

largest number of matched feature points.    

 

6.6.4 Near Real-time Polyp Warning Feedback 

 We track each edge obtained from Canny edge detector. We start marking the tracked edge on 

screen as visual feedback to warn the endoscopist if that edge is detected as polyp edge for at least 

¥è consecutive times (i.e., in ¥è consecutive clear frames). A warned polyp edge is marked until the 

tracking of that edge is lost. We consider a sequence of consecutively detected non-blurry frames as a 

detected polyp sub-shot if it contains the same tracked polyp edges in each frame. The start and end 
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frames with consecutive tracked polyp edges are the start and end frames of a detected polyp 

sub-shot. 

Unexpected loss of tracking: In an ideal case, the loss of a tracked edge is expected if that edge 

no long appears in subsequent frames in the rest of the video. However, the loss of a tracked edge 

may also happen if 1) the edge is not detected in consecutive images due to the noisy nature of 

colonoscopic images such as image blur, or 2) the edge disappears out of the FoV of the endoscope 

and then reappears in the FoV after a short time. To handle the unexpected loss of tracking, we set the 

value of Np to either one of the constant values }��SèH or }��Sè� where }��Sè� æ }��SèH as 

follows. 

1) If a tracked polyp edge i is lost at frame t, we set ¥è to }��SèH. During the next }� 

seconds from frame t, if an edge is detected as a polyp edge for at least ¥è consecutive 

times on different frames, that edge is considered as a warned polyp edge and the visual 

feedback on that edge is shown. The reason to use the lower of the two threshold values is to 

allow for a faster response time of the feedback on a polyp that reappears after it is briefly 

out of the FoV of the camera. 

2) If a tracked polyp edge i is lost at frame t, and there exists any other edge which is still 

tracked at frame t, we also set ¥è to }��SèH for all subsequent frames until all tracked 

edges from frame t are lost or an edge is detected as a polyp edge for Np consecutive times 

on different frames. That is, we use the presence of the common colon wall (sharing some 

common edges) to avoid ending the polyp sub-shot too early because the polyp is not too far 

to reappear in the FoV of the camera. 

3) Otherwise, we set ¥è to }��Sè�. 

We describe the major functions in our algorithms in Figure 6.10 and 6.11 using pseudo code. 
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Algorithm: Polyp Edge Detection 
// Functionality: Identify an edge as a polyp edge if all of its feature scores are within their value  

//             ranges 

// Input:  

//     edge[]: Array with each element storing the information of an edge  

//     id: Edge ID 

// Output: True if the edge corresponding to edge id is a detected polyp edge 

ISPOLYPEDGE (edge[], id)  

1:   // MSE: Linear line fitting representing the edge linearity  

2:   MSE ← MSEOFEDGELINEARITY(edge[id]) 

3:   if MSE < 2 pixels then 

4:      return false 

5:   end if  
6:   // fitEllipse: Ellipse fitting score 

7:   fitEllipse ← ELLIPSEFITTINGSCORE(edge[id]) 

8:   if fitEllipse>0.8 then 

9:      return false 

10:  end if 
11:  // Curvature: Curvature of an edge 

12:  Curvature ← EDGECURVATURE(edge[id]) 

13:  if Curvature < 1/400 or Curvature > 1/20 then 

14:     return false 

15:  end if     

16:  // Calculate ECSP profiles and features for these profiles 

17:  edge[id].profiles ← ECSPPROFILES(edge[id]) 

18:  edge[id].h1, edge[id].h2, edge[id].h3, edge[id].h4 ← KEYPOINTFEATURES(edge[id]) 

19:  if edge[id].h2 / edge[id].h1 < 0.02  
20:     or edge[id].h3 > 1.67  
21:     or edge[id].h4 < 0.652 

22:     or edge[id].h4 - edge[id].h3 < 0  

23:     or edge[id].h4/edge[id].h3 edge <1 then 
24:        return false 

25:   end if    

26:   if TEXTUREFEATURE(edge[id].profiles, id) ≤ 0.7 then 
27:      return false 

28:   end if     
29:   return true 

 

Figure 6.10: Pseudo code of the polyp edge detection algorithm 
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Algorithm: Near Real-Time Polyp Sub-shot Warning 
// Functionality: Start to warn the endoscopist the detected polyp edge if we detect the edge as a 
//            polyp edge in ¥è clear images.  

// Input:  

//     video: Input video 
//     }��SèH: The minimum times of detected edges to start to warn the endoscopist   

//     }��Sè�: Threshold for handling the loss of tracking 

//     }�: Threshold for grouping two sub-shots into one sub-shot 

//     frameRate: Frame rate of the input video 

// Output: Warning edge(s) labeled on the screen 
POLYPSUBSHOT (video, }��SèH, }��Sè�, }�, frameRate) 

1:   // videoClip.clearFrame: Array storing information of all clear frames 

2:   // fId: Frame ID 

3:   fId ← 0 

4:   //isPolypDetected: True if we detected at least a polyp frame in this video, false otherwise 

5:   isPolypDetected ← false 

6:   while ISEXIST(video.clearFrame[fId]) do 

7:      // Calculate canny edges of current frame CurrFrame.edge 

8:      CurrFrame.edge ← CANNYEDGES(video. clearFrame[fId]) 

9:        // If CurrFrame is the first frame with detected edges, set CurrFrame as the initial  

10:     // frame for tracking 

11:      if ISTHEFIRSTFRAME(video.clearFrame[fId]) == true then 

12:        PrevFrame ← CurrFrame 

13:        fId ← fId+1 

14:        continue 

15:     end if    

16:     // trackedEdge[]: Array storing the tracked edges from previous frame and the 

17:     //              detected new edges from current frame 

18:     // nTrackedEdges: Number of combined edges 

19:     trackedEdge[], nTrackedEdges ← TRACKEDGES (PrevFrame.edge, CurrFrame.edge ) 
20:     // Set ¥è value to handle the loss of tracking 

21:     ¥è ← }��SèH 

22:     // LatestPolypFrameID: Frame ID of the latest detected polyp image 

23:     if isPolypDetected == true 

24:         and CurrFrame.id – LatestPolypFrameID < frameRate * }�  
25:           ¥è← }��Sè� 

27:     // Check whether there is at least one tracked edge between two frames  

28:     else  
29:         if nTrackedEdges > 0 
30:           ¥è← }��Sè�  
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Figure 6.11: Pseudo code of the near real-time polyp sub-shot warning algorithm 

 

 

6.6.5 Near Real-time Polyp Shot Extraction 

We group two consecutive detected polyp sub-shots and all frames which do not contain any 

warned polyp edge between the two detected polyp sub-shots into a single semantic unit – a detected 

polyp shot if any one of the following conditions is satisfied. 

1) The duration between the ending frame of a detected sub-shot and the starting frame of its 

consecutively detected sub-shot are smaller than }
 seconds.  

2) Two consecutively detected sub-shots have a commonly tracked edge.  

We extract all these groups as detected polyp shots. We discard a detected polyp shot if it is 

shorter than }è seconds. 

Algorithm: Near Real-Time Polyp Sub-shot Warning (continued) 

31:         end if 
32:     end if  
33:     // Warn an edge to endoscopist if it is a detected polyp edge in ¥è clear images 

34:     for eId ← 0 to nTrackedEdges 
35:         if trackedEdge[eId].detectedPolypTimes < ¥è 

36:              if ISPOLYPEDGE(trackedEdge[eId]) == true 

37:                trackedEdge[eId].detectedPolypTimes 

38:                ← trackedEdge[eId].detectedPolypTimes +1 

39:                isPolypDetected ← true 

40:            end if 
41:         else 

42:            // Display detected polyp edge(s) on a screen to warn the endoscopist 

43:            DISPLAYWARNINGONSCREEN(trackedEdge[eId]) 

44:            LatestPolypFrameID ← CurrFrame.id 

45:         end if 
46:      end for   

47:      CurrFrame ← PrevFrame  

48:      fId ← fId +1 

49:  end while   
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6.7 Performance of Near Real-time Polyp Detection 

We implemented all the analysis code of the near real-time polyp detection and edge tracking in 

C/C++ (Win32 in Microsoft Visual Studio 2008) with Open Source Computer Vision library 

(OpenCV Version 2.1).  

 

6.7.1 Experimental Environment and Data 

Data Set: We randomly selected 61 de-identified test video files captured during routine 

screening colonoscopy at the image resolution of 720x480 pixels at 29.97 frames per second (fps). 

Each file contains only one colonoscopy procedure in its entirety. Among these 61 video files, 8 video 

files were included in the training set, and the remaining 53 files were included in the testing set. 

Among the eight training videos, three of them were captured using an OLYMPUS endoscope and the 

remaining five videos were captured using a FUJINON endoscope. Each of these training videos 

contains at least one polyp. Next, we selected one polyp shot from each training video by manually 

labeling the starting and ending frames of each shot. We will discuss the way to label a polyp shot in a 

later paragraph. Finally, we obtained 8 polyp shots from 8 different videos as our training data. 

Among 53 test videos, forty-one of these videos were captured using OLYMPUS endoscopes, and the 

remaining twelve video files were captured using FUJINON endoscopes. Twenty two videos of these 

53 test videos contain at least one polyp, and the remaining thirty one videos do not contain any polyp. 

The colons seen in these videos had little stool inside them. We ran our real-time version of blurry 

frame removal software [70], leaving the remaining clear (in-focus) images for polyp detection and 

edge tracking. The blurry frame removal algorithm in [70] considers a frame as blurry if it does not 

have sufficient number of connected edge pixels detected using Canny edge detector. The overall 

system consists of three consecutive components (modules). Table 6.9 shows the functional output, 

the frame analysis rate in fps of each module and the dependencies among the modules. We run these 

modules in parallel using our middleware software – SAPPHIRE [87]. Although these modules have 

the output dependence, the bottleneck is at the slowest module. The average analysis time is close to 

the analysis time of the slowest module in an ideal case [87].  
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Ground truth labeling: As aforementioned, the tracking of a polyp edge may be lost due to the 

noisy nature of colonoscopic images such as image blur. As a result, the consecutive frames showing 

a polyp could be easily broken into many polyp sub-shots in the detected results. We manually label 

the starting and ending frames of a polyp sub-shot and a polyp shot in the ground truth data by the 

following ways. We consider frames i and j as starting and ending frames of a polyp sub-shot 

respectively if that polyp continuously appears in images from the frame i to the frame j, and 

disappears at the frame j+1. In the ground truth, we consider consecutive polyp sub-shots and all 

non-polyp images between each two of them together as one polyp shot if these polyp sub-shots 

contain the same polyp. Therefore, a polyp shot in our ground truth can be either one sub-shot or 

consist of several nearby consecutive sub-shots. In the latter case, we label the starting frame of the 

first polyp sub-shot and the ending frame of the last polyp sub-shot in a polyp shot as the starting and 

ending frames of that shot. In our data set, a polyp removal operation typically appears after that 

polyp is found. During the removal of that polyp, snares or biopsy forceps (see Figure 5.1 (b-c) in 

Chapter 5) appear together with the polyp. These instruments sometimes occlude the polyp. In 

addition, after the polyp removal, only a partial polyp may remain and its shape may be changed. This 

is because the polyp is too big or is in a difficult location for the endoscopist to remove the entire 

polyp at once. Therefore, we do not consider images with polyps together with an instrument or 

frames after a polyp removal as part of our ground truth data. 

Image pre-processing: We extract edges detected by Canny edge detector. Before we apply 

Canny edge detector, we smooth an image by two Gaussian filters separately with different standard 

deviations wH and w�. We apply Gaussian filters twice with different standard deviations to avoid 

noisy edges caused by details in image at different scales. All Canny edges are used for polyp edge 

detection and edge tracking. To speed up the analysis time, we no longer cut an S-like shape edge into 

several C-like edges because Canny edges obtained using cvCanny function in OpenCV are 

sometimes broken into small parts.  
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Parameters: All parameter values were determined based on experiments with the training set of 

8 polyp shots from the 8 training videos. The parameter values may vary for different image 

resolutions in other data sets. Table 6.10 lists the parameters values.   

 

 

 

 

 

 

Table 6.8: Description of Videos in the Testing Set for Near Real-Time Polyp Detection 

Category OLYMPUS FUJINON Total 

Number of videos 41 12 53 

Number of polyps 20 23 43 

Average video length 

(hh:mm:ss) 
00:18:05 00:28:53 00:20:21 

Total video length 

(hh:mm:ss) 
12:11:58 05:46:41 17:58:39 

 

 

 

 

Table 6.9: Three Modules of Near Real-Time Polyp Detection System 

Module Name Functional Output 
Frame 

Analysis Rate 

Dependency Module 

Name 

Clear image detection Clear images 30 fps - 

Edge tracking Tracked edges 30 fps Clear image detection 

Polyp warning and shot 

extraction 

Warned polyp sub-shots  

and extracted polyp shots 
10 fps Edge tracking 
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Table 6.10: Parameters and Values in OpenCV for the Proposed Near Real-Time Polyp Detection 

No. Parameter Name Valid Parameter Value/Range 

1 Gaussian filters Standard deviations of Gaussian filters: wH < 9 and w� < 3 

2 Canny edge detector Low threshold of 10; high threshold of 15 

3 Di Sliding widow size for the calculation of edge normal: 30x30 pixels 

4 λ The parameter in Equations 3.1 and 3.2: λ = 0.25 

5 ç�*  Size of the window for LK tracking: 15x15 pixels 

6 }��Sù�* Threshold of error ø� of tracked edge pixels; }��Sù� < 500 

7 }��S��
��*  
Threshold of the Euclidean distance between an edge pixel in frame t 

and its tracked pixel in frame t+1: }��S��
�� < 40 pixels 

8  � Size of a window centered at the tracked edge pixel: 3x3 pixels 

9 î� Downsampling factor of edge pixels on an edge: î� < 14 

10 }��SèH 

Minimum number of consecutive times on different frames an edge is 

detected as a polyp edge in order to consider this edge as a warned 

polyp edge after losing edge tracking: }��SèH < 2 

11 }��Sè� 

Minimum number of consecutive times on different frames a tracked 

edge is detected as a polyp edge for this edge to be considered as a 

warned polyp edge: }��Sè� < 3 

12 }
 
Minimum duration between two consecutive polyp sub-shots: }
 < 15 

seconds 

13 }è Minimum duration of a polyp shot: }è < 10 seconds 

14 PL Gaussian Pyramid level of Pyramid LK tracking: PL = 5 

All parameters in this table were obtained based on experiments with the training data set. They were 

then used for running the experiments on the testing data set. 

* Parameters sensitive to an input image size 
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Performance metrics: We mark the tracked polyp edges as visual feedback – polyp warning 

feedback on screen to warn the endoscopist and extract polyp shots as defined in Section 6.6.5. We 

define the following criteria as the measurement of correctness for the detection. 

1) A polyp is correctly warned if the warned polyp sub-shot contains at least one image 

showing that polyp. 

2) A polyp is correctly detected in the polyp shot if at least one image showing that polyp is in 

the detected shot. 

3) A detected polyp shot is a correctly detected polyp shot if it contains at least one real polyp 

image.  

4) A detected polyp sub-shot is a correctly detected polyp sub-shot if it is a sub-shot in a polyp 

shot in the ground truth.  

We define the following performance metrics for polyp warning and polyp shot detection using 

the notations in Table 6.11. 

Performance metrics of polyp warning: 

recall��� < COR_WRN_PLPNUM_RL_PLP  

numFL��� < numFL���NUM_VIDEO 

avgLenFL��� < lenFL���
numFL��� 

ratioLenFL��� < avgLenFL���avgLenVideo  

 

Performance metrics of polyp shot extraction: 

 

recall��� < COR_PLP_SOTNUM_RL_PLP  

numFL��� < numFL���NUM_VIDEO 

avgLenFL��� < lenFL���
numFL��� 

ratioLenFL��� < avgLenFL���avgLenVideo 
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Table 6.11: Notation and Explanation of Performance Metrics for Near Real-Time Polyp Detection 

No. Notation Explanation of Performance Metrics 

1 NUM_RL_PLP Number of real polyps 

2 COR_WRN_PLP Number of correctly warned polyp 

3 COR_PLP_SOT Number of correctly detected polyp shots 

4 NUM_VIDEO Number of analyzed videos 

5 numFL��� Total number of falsely warned polyp sub-shots in all tested videos 

6 numFL��� Total number of falsely detected polyp shots in all tested videos 

7 avgNumFL��� Average number of falsely warned polyp sub-shots per video 

8 avgNumFL��� Average number of falsely detected polyp shots per video 

9 lenFL��� 
Total duration in seconds of all falsely warned polyp sub-shots per 

video 

10 lenFL��� Total duration in seconds of all falsely detected polyp shots per video 

11 avgLenFL��� Average duration in seconds of each falsely warned polyp sub-shot 

12 avgLenFL��� Average duration in seconds of each falsely detected polyp shot 

13 Recall��� 
Percentage of the number of correctly warned polyps out of the total 

number of polyps 

14 Recall��� 
Percentage of the number of correctly detected polyps in polyp shots 

out of the total number of polyps 

15 
ratioLenFL��� Ratio of the average duration in seconds of each falsely warned polyp 

sub-shot and the average duration in seconds of each video 

16 ratioLenRecall��� 
Ratio of the average duration in seconds of correctly detected polyp 

shots and the average duration in seconds of polyp shots per video 

17 avgLenVideo Average video length in seconds 

18 avgLenPolyp��� Average duration in seconds of polyp shots per video 
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6.7.2 Performance on Near Real-time Polyp Detection 

Table 6.12 shows the performance of our system for polyp warning and polyp shot extraction in 

terms of detection rate. We ran the system on the testing set of 53 videos. 

Polyp Warning Performance: Our system correctly warned 97.7% (42 of 43) of polyps. The 

total duration of false sub-shots on average is 4.3% of a video duration. That is, our system can 

correctly warn 97.7% polyps in near real-time and does not generate falsely detected images for the 

95.7% duration in an entire colonoscopy procedure. The average number of false sub-shots per video 

is 36.2 and the average duration of each false sub-shot is only 1.4 seconds. The only mis-detected 

polyp is due to the image blur. The clear image detection module detected all frames of this polyp as 

blur (out of focus) frames. Therefore, our polyp detection module did not analyze these frames. 

 Polyp Shot Extraction Performance: We extracted a polyp shot after }è seconds from the 

detected end frame in the last sub-shot of that polyp shot. As aforementioned, we ignore a detected 

polyp shot if it is shorter than }è seconds. As a result, we correctly extracted 90.7% (39 of 43) of 

polyps. Each of these extracted polyp shots covers an average of 78.2% of polyp shot frames in the 

ground truth. We extracted an average of 4.0 false shots per video with an average duration of 23.1 

seconds. The duration of these false shots is 8.2% of a video duration. We mis-detected 3 additional 

polyps. Two of the three mis-detected polyps have a tiny size on images and one of them does not 

have enough illumination. The algorithm does not detect longer than }è seconds of the appearance of 

these polyps in their videos, although these polyps are correctly warned in near real-time.  

  The missed polyp images are of 1) a polyp that appears as a tiny region in an image and 2) a 

polyp with weak illumination. Polyps from these two categories were seen at a long distance from the 

capturing camera. It is hard to obtain good Canny edges from the images of these two types of polyps. 

The falsely detected images are from the following categories: 1) protruding colon folds with smooth 

surface, 2) protruding appendiceal orifice, 3) ileocecal valve and 4) smooth water. Most of falsely 

detection images are from ileocecal valve. Some of the falsely detection images are from protruding 

colon folds and appendiceal orifices. Only a few of them are from smooth water.  
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Table 6.12: Performance of Near Real-Time Polyp Warning and Polyp Shot Extraction 

Endoscope 

Type 

Polyp Warning Polyp Shot Extraction 

Performance Metrics Value Performance Metrics Value 

OLYMPUS  

recall��� 95% recall��� 85% 

numFL��� 32.8 numFL��� 3.7 avgLenFL��� 1.3 s. avgLenFL��� 23.9 s. ratioLenFL��� 4.3% ratioLenFL��� 9.0% 

  ratioLenRecall��� 81.1% 

FUJINON  

recall��� 100% recall��� 100% 

numFL��� 48.0 numFL��� 4.8 avgLenFL��� 1.5 s. avgLenFL��� 24.7 ratioLenFL��� 4.4% ratioLenFL��� 7.3% 

  ratioLenRecall��� 73.6% 

Total 

recall��� 97.7% recall��� 90.7% 

numFL��� 36.2 numFL��� 4.0 avgLenFL��� 1.4 s. avgLenFL��� 23.1 s. ratioLenFL��� 4.3% ratioLenFL��� 8.2 % 

  ratioLenRecall��� 78.2% 

 

Analysis time: We ran our analysis software on an Intel (R) Xeon 2.0 GHz duo-core CPU with 

6.0 GB RAM on a 64-bit machine with Windows 7 Professional operating system. Table 6.13 shows 

the analysis time of our system to analyze an image for edge tracking and polyp detection modules. 

We used the clock function [88] in C++/C to record the starting time and ending time of each module 

running on each frame. We measured the analysis time of two modules running on 1) only clear 

images, and 2) both clear and blurry images. If we run edge tracking or polyp detection module along, 

each of them took an average of less than 30 ms to analyze a clear image, or an average of around 20 

ms to analyze an image in an entire video. However, Table 6.13 does not truly reflect the analysis time 

of our system. This is because we ran our modules in parallel using the middleware software – 

SAPPHIRE [87]. We set different frame analysis rates for different modules – 30 fps for the clear 

image detection module, 30 fps for the edge tracking module, and 10 fps for the polyp detection 

module. As a result, we can run the system in near real-time to analyze a colonoscopy video.  
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Table 6.13: Average Analysis Time for Edge Tracking and Polyp Detection  

(Milliseconds (ms) per image) 

Functionality 
Clear images All images  

mean median mean median minimum maximum 

Edge tracking 27 ms 16 ms 19 ms 16 ms 0 ms 203 ms 

Polyp detection 28 ms 16 ms 20 ms 16 ms 0 ms 188 ms 

 

6.8 Chapter Summary 

 In this chapter, we introduced a part-based ECSP for polyp detection. We presented an algorithm 

to segment multi-derivative ECSP and ROI into non-overlapping parts. This part-based ECSP gives us 

flexibility to obtain different kinds of features from different parts or pick up a particular method to 

model a part that is suitable to that part. We investigated new features obtained from parts, and 

compared it with two existing texture and color based state-of-the-art techniques for polyp image 

detection. The simplified features obtained from part-based ECSP module further saved the 

computational time. By combining the detected polyp edges from our polyp image detection method 

and an existing edge tracking method, we correctly detected 97.7% (42 of 43) of polyps obtained 

from 53 video files that were randomly selected from routine screening colonoscopy. Our polyp 

warning and shot extraction system can run in near real-time with an average of 36.2 falsely detected 

polyp sub-shots per video, and the average duration of each of these false sub-shots is less than 1.5 

seconds. To our best knowledge, our system is the first technique that can effectively detect polyp 

images and polyp shots in near real-time. Our system is very promising for clinical use to assist the 

endoscopist by providing visual feedback of a potential polyp during routine screening colonoscopy. 

The future work of this research is to further reduce the computational time by optimizing both the 

algorithm and analysis code to achieve a 30 fps analysis rate for each module, and use our system in a 

clinical trial to determine additional needs in order to deploy the system in endoscopy practice. 
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CHAPTER 7 CONCLUSION AND FUTURE WORK 

This dissertation describes several contributions in both ECSP based techniques and 

colonoscopic object detection as follows.  

1) It demonstrates a new calculation method to extract features from multi-derivative ECSP 

(Chapter 3) and presents the first feature-based ECSP techniques for object detection.  

2) It presents an edgeless ECSP method that calculates ECSP and obtains ECSP features 

without using edge detectors (Chapter 5). 

3) It presents a part-based ECSP method that allows us to model and extract features from each 

segmented part using the method which is suitable for that part (Chapter 6). 

4) It proposes several colonoscopic object detection algorithms including appendix image/video 

detection algorithms (Chapter 4), near real-time retroflexion image/video algorithms 

(Chapter 5), and near real-time polyp image detection and polyp shot extraction algorithms 

(Chapter 6).  

5) It demonstrates a software package for evaluating our techniques in a clinical trial. The 

software is very promising for clinical use in terms of both detection rates and analysis time.  

 

7.1 Detection of Appendix Image and Video 

In Chapter 4, we introduced two algorithms for detecting the image showing the clearly seen 

appendiceal orifice and the video showing at least three seconds of the appendiceal orifice inspection 

based on ECSP features. The proposed appendix video detection algorithm first uses new local 

features derived from ECSP and its 1st – order derivative profile to detect the appearance of the 

appendiceal orifice and then uses near pause detection to recall miss detected appendiceal orifice 

images with weak edges and reject some false classifications.  

The experimental results show that our method is able to handle object rotation, translation and 

scaling in image, and noisy images with strong light reflection. The developed system can effectively 

detect appearance of appendiceal orifice in image and appendix video tested on 23 endoscopy 
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procedures. The average sensitivity and specificity for the detection of appendiceal orifice images 

with the often seen crescent appendiceal orifice shape are 96.86% and 90.47%, respectively. The 

average accuracy for the detection of appendix videos is 91.30%. The average analysis time for 

detecting the quality visualization of appendiceal orifice in a colonoscopic procedure was 38 minutes 

and 17 seconds. The detection time is fast enough to confirm the orifice visualization quality to the 

patient before he/she leaves the endoscopic screening facility. 

 

7.2 Detection of Retroflexion Image and Video  

In Chapter 5, we introduced region and shape (RSL) based features, and edgeless edge 

cross-section profile (edgeless ECSP) calculation method and its features for retroflexion detection. 

We investigate different combination methods of these features for classification of 

retroflexion/non-retroflexion images and videos. The ensemble classifier using both ECSP and RSL 

features show promising performance for retroflexion detection in terms of the analysis time and 

detection rate.  

Our retroflexion detection algorithm tested on 50 colonoscopy videos gave a 100% specificity, 

100.0% precision, and 78.0% accuracy running on the last 45 seconds of each video, and a 72.7% 

specificity, 91.7% precision, and 82.0% accuracy running on the entire withdrawal phases of each 

video for detecting retroflexion videos. Our retroflexion detection technique is the first technique that 

can detect the appearance of retroflexion. The average execution time of our MATLAB analysis code 

is 0.46 seconds per image on a modern PC. The system can run in near real-time to assist the 

endoscopist during live colonoscopy using the frame rate of 2 fps. Our retroflexion detection system 

is promising for clinical practice in terms of both of the detection rate and analysis time. 

 

7.3 Near Real-time Polyp Detection and Shot Extraction 

In chapter 6, we introduced two phases of part-based ECSP for polyp detection. In the first phase, 

we presented an algorithm to segment multi-derivative ECSP and ROI into non-overlapping parts. We 
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investigated new features obtained from parts, and compared it with two existing texture and color 

based state-of-the-art techniques for polyp image detection. This part-based ECSP method gives us 

flexibility to model or extract features from each part using the method component which is suitable 

for that part. Experimental results show that the proposed technique is robust to some challenging 

issues of polyp detection and outperforms existing leading methods. Our technique can effectively 

detect different types of protruding polyp appearance including polyps with little protrusion. It can 

mark detected polyp edges as visual feedback which is more precise and less intrusive than marking a 

large region as in a sliding-window based method. Furthermore, the false positives generated by our 

technique only appear in a small percentage of the number of images analyzed.  

In the second phase, we presented the simplified features obtained from part-based ECSP module 

to further save the computational time. By combining the detected polyp edges from our polyp image 

detection method and an existing edge tracking method, our polyp detection system can correctly 

detect 97.7% (42 of 43) of polyp shots in near real time under the frame analysis rate of 10 fps tested 

on 53 randomly selected video files captured from two endoscopy brands – FUJINON and 

OLYMPUS during routine screening colonoscopy. The average number of false shots per video is 

36.2 and the average duration of each of these false shots is less than 1.5 seconds. Our system can run 

in near real-time to assist the endoscopist by providing visual feedback of a detected polyp as a 

warning signal on monitor during routine screening colonoscopy. To our best knowledge, our system 

is the first system that can detect polyp image and polyp shot in near real-time running on a modern 

PC. Our polyp detection and shot extraction system is promising for clinical use in terms of both of 

the detection rate and analysis time.  

 

7.4 Future Work 

Although our proposed algorithms show their effectiveness for detecting these colonoscopic 

objects, some challenging issues are still remaining in the future work. The main challenge issues in 

terms of detection rate include 1) blurry images that easily break a shot and frequently appear in 
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colonoscopic video, 2) detection of appendiceal orifices that are not clearly seen, 3) detection of 

appendiceal orifices with other multi-structure shapes other than crescent shape, 4) detection of 

retroflexion operation that performs very short duration, 5) detection of polyps with a tiny size in an 

image or with weak illumination from the light source, 6) removal of falsely detected polyp images 

including protruding colon folds with smooth surface, protruding appendiceal orifice, ileocecal valve 

and smooth water.  

Towards improving the analysis time in the future, our final goal in the future is to achieve a 

real-time detection (less than 33 ms analysis time per image) for detecting all three types of proposed 

representative colonoscopic objects. Based on the performance of near real-time polyp detection in 

terms of both analysis time and detection rate, we believe that we can optimize our appendix detection 

and retroflexion detection algorithms by simplifying our feature extraction steps. We briefly propose 

some improvement for detecting the three types of colonoscopic objects as follows.  

Appendix image/video detection: The future work of appendix detection includes reducing the 

analysis time of image detection by converting the analysis code from MATLAB to C/C++ and 

further optimizing through multi-threading and Graphical Processing Units (GPU) for parallel 

execution. By reducing the analysis time, we may apply the similar edge tracking method presented in 

Chapter 6 for tracking appendiceal orifice edges to further reduce falsely detected edges and improve 

the overall detection rate. The integrated appendix detection module and polyp detection module in 

our system may share the same output from edge tracking module to save the computational time. 

Retroflexion image/video detection: The future work of retroflexion detection includes further 

optimizing the execution time and converting the analysis code from MATLAB to C/C++. The 

bottleneck of analysis time is the dilation operation in the image preprocessing step. The dilation 

operation generates a region profile of shape and location of the endoscope in image. In the future 

work, we may try to replace the dilation operation by constructing the approximated shape and 

location of an endoscope. For example, we may divide an image into non-overlapping blocks and 

present the shape of an endoscope using the centers of blocks which have significant overlap with 

endoscope pixels. By connecting the centers of these blocks, we may construct the approximated 
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shape and location of the endoscope in image and obtain RSL and ECSP features for retroflexion 

detection. By reducing the analysis time, we can apply temporal information to further reduce the 

number of falsely detected retroflexion images and improve the overall detection rate. As the 

preprocessing step dilates each pixel independently, we may also use GPU for parallel execution of 

the preprocessing step to speed up our retroflexion detection algorithm. 

Polyp image detection/shot extraction: The future work of our polyp detection is to further 

reduce the computational time by optimizing both the algorithm and analysis code to achieve a 30 fps 

analysis rate for each module, and use our system in clinical trial during live colonoscopy to optimize 

the functionalities based on the practice from endoscopist. 

The future work of ECSP based techniques is to extend them to detect other types of 

colonoscopic objects such as diverticula, lumen and vessel, and analyze other endoscopy procedures, 

such as laparoscopy, upper gastrointestinal endoscopy, wireless capsule endoscopy and EGD. As a 

popular local appearance model, our research on ECSP based technique may bring a broad interest to 

investigate them in detecting other objects in both medical and non-medical fields. 

We believe that our future work to incorporate retroflexion detection and polyp detection system 

into clinical practice for routine screening colonoscopy has potential to reduce the polyp miss rate and 

train new endoscopists. The future use of our appendix detection system for documenting the quality 

of colonoscopy may also contribute to the decline in the polyp miss rate. The automatic 

documentations of detected semantic units of these three colonoscopic object types can be helpful to 

discover unknown patterns of colorectal cancers or new diseases and used as educational resources 

for endoscopic research. 
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