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ABSTRACT 

Ubiquitous computing becomes a more fascinating research area since it may offer us an 

unobtrusive way to help users in their environments that integrate surrounding objects and 

activities. To date, there have been numerous studies focusing on how user’s activity can be 

identified and predicted, without considering motivation driving an action. However, 

understanding the underlying motivation is a key to activity analysis. On the other hand, user’s 

desires often generate motivations to engage activities in order to fulfill such desires. Thus, we 

must study user’s desires in order to provide proper services to make the life of users more 

comfortable.  

In this study, we present how to design and implement a computational model for inference 

of user’s desire. First, we devised a hierarchical desire inference process based on the Bayesian 

Belief Networks (BBNs), that considers the affective states, behavior contexts and environmental 

contexts of a user at given points in time to infer the user's desire. The inferred desire of the 

highest probability from the BBNs is then used in the subsequent decision making.  

Second, we extended a probabilistic framework based on the Dynamic Bayesian Belief 

Networks (DBBNs) which model the observation sequences and information theory. A generic 

hierarchical probabilistic framework for desire inference is introduced to model the context 

information and the visual sensory observations. Also, this framework dynamically evolves to 

account for temporal change in context information along with the change in user’s desire. 

Third, we described what possible factors are relevant to determine user’s desire. To 

achieve this, a full-scale experiment has been conducted. Raw data from sensors were interpreted 

as context information. We observed the user’s activities and get user’s emotions as a part of 

input parameters. Throughout the experiment, a complete analysis was conducted whereas 30 
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factors were considered and most relevant factors were selectively chosen using correlation 

coefficient and delta value.  Our results show that 11 factors (3 emotions, 7 behaviors and 1 

location factor) are relevant to inferring user’s desire. 

Finally, we have established an evaluation environment within the Smart Home Lab to 

validate our approach. In order to train and verify the desire inference model, multiple stimuli are 

provided to induce user’s desires and pilot data are collected during the experiments. For 

evaluation, we used the recall and precision methodology, which are basic measures. As a result, 

average precision was calculated to be 85% for human desire inference and 81% for Think-

Aloud. 
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CHAPTER 1. INTRODUCTION 

The emergence of mobile and pervasive computing has fundamentally changed the 

interaction patterns between human users and computer systems. This trend places increased 

demands on the systems capabilities to satisfy each individual user. With untethered access 

anytime and anywhere, users expect computing systems to be smarter and more personalized, 

giving the requirement that the systems must behave adaptively. Based on contexts, systems 

anticipate ever-changing needs of users [1]. For instance, a computer system based smart home 

should gradually increase the frequency and level of detail of key reminders provided as the 

resident grows older and experiences degradation of memory functions. 

To date, studies on human-computer interaction (HCI) have been mostly focusing on 

investigating user modeling and intelligent assistance system to understand, explain, and augment 

user actions [8, 9, 10]. Many existing context-aware applications such as user modeling, that 

traditionally focused on what is generally condensed “rational aspects of user behavior”, are to 

design and implement autonomous agent to assist and make users feel more comfortable in their 

daily work and life. Such a model typically fails to adapt to user’s basic affective states [2, 3, 18, 

19, 20]. Alternatively, intelligent assistance systems provide the user with timely and appropriate 

assistance that captures interprets and responds to the internal states of the human user.  Although 

intelligent assistance systems can be systematically planned to overcome uncertain and single 

sensory observation and user’s changing mental states for the assistance, they do not go deeper to 

explore human desire that is actually essential to understanding human mental states [5, 30, 31]. 

However, human desire has long been identified as a philosophical problem, not a main 

subject in the HCI field in the past decades, even though it represents the motivational aspects of 

human behaviors [4, 42]. Desire (i.e., a sense of longing for something or someone) becomes 
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stronger as the thought continues and eventually leads to objective actions to achieve some sort of 

goal.   

The more the system knows what the user’s desire is exactly, the more the human being can 

achieve an ultimate goal that they want. It is essential to improving the accuracy for providing 

appropriate system services to the user. Moreover, affective states should be included as one of 

important factors for inferring desire because an incorrect desire can be inferred without 

consideration of affective states [5, 42]. 

For example, assume that students are taking a lecture in a classroom. One student raises a 

hand in the classroom and the action can be interpreted in terms of the desire for “questions”, 

“answers”, “other purposes (e.g., ask to go restroom)”, and so on. Student’s desire would be 

individually different even if the student’s behaviors are identical. There are examples including 

same activities and different desires. If the student raises a hand with happiness (satisfaction), her 

behavior can be interpreted as “understanding” or “knowing an answer to teacher’s question”. 

Thus, the desire of the student is to “answer the teacher’s question.”  On the other hand, if she 

raises a hand with sadness (dissatisfaction), her behavior can be explained as “misunderstanding 

the lecture”, and her desire can be interpreted as “asking a question about the lectures”.  

The main purpose of this study is to infer human desire by detecting internal mental states 

and what users desire and how to fulfill it. A probabilistic model based on the Bayesian Belief 

Networks (BBNs) is employed to formalize the inference process. First, a hierarchically 

organized probabilistic model for the desire inference is introduced to use the context 

information such as behaviors, environments, and affective states with the visual sensory 

observations. Second, we precisely define the belief-perceived situation as B(m, a, e), and 

present how to use belief-perceived situations to infer user’s desire. Emotions play a key role in 
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human creativity [5, 30] and intelligence, as well as in human logical thinking and decision-

making. In addition, emotions are used interchangeably with affection in some literature [57, 58, 

59]. The proposed model includes seven affective states (i.e., happy, surprised, angry, disgust, 

fear, sad and neutral) based on the OCC (Ortony, Clore, & Collins) model [5].  Third, we extend 

a probabilistic framework based on the Dynamic Bayesian Belief Networks (DBBNs) that model 

the observation sequences (time series) assisted by information theory. A generic hierarchical 

probabilistic framework for desire inference is introduced to model the context information and 

the visual sensory observations. Also, this framework dynamically evolves to account for 

temporal changes in context information along with the change in user’s desire.  

Fourth, we conduct a pilot study to collect dataset for desire inference, to establish the 

correlation between factors and desire, and to identify the relevant factors for desire inference. 

Finally, we evaluated the desire inference computational framework using recall and precision 

methodology. They are basic measures used in evaluation. Thus, we have established an 

evaluation environment within the Smart Home Lab (SHL) to validate our approach. During the 

pilot study, data are collected to train and verify the desire inference model. Average precision 

was 81% for human desire inference. 

The remainder of this dissertation is organized as follows: Chapter 2 briefly reviews related 

works. Chapter 3 describes the desire inference process that explains our strategy to exploit 

contexts variables from observations, and presents how desire can be inferred via the desire 

inference model. Chapter 4 depicts our extended computational framework by applying it into 

DBBNs. Chapter 5 presents our pilot study to identify and clarify relevant factors. Chapter 6 

states data analysis using correlation. Chapter 7 shows the results of evaluation on the desire 

inference model. Finally, Chapter 8 concludes this dissertation including future works. 
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CHAPTER 2. RELATED WORKS 

2.1 Defining Situation 

Situ [6] presents a situation-theoretic approach to human-intention-driven service evolution 

in context-aware environments. In that paper, authors define situation that is rich in semantics and 

useful for modeling and reasoning human intentions. Accordingly, intentions are defined based on 

the observation of situations.  

Situation at a time t, Situation (t), is a triple {d, A, E}t, in which d is the predicted user’s 

desire, A is a set of actions for achieving d, and E is a set of context values with respect to a subset 

of the context variables at time t.  

 

 

Figure 1. Situ: Framework for service definition and packaging with runtime software 

evolution. 

 

By detecting the desire of individual as well as capturing the corresponding context values 

through observations, such a computational framework allows researchers to model and infer 
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human intentions. An inference process based on Hidden Markov Model (HMM), as a suitable 

mathematical model to address the runtime prediction issue, makes instant definition of 

individualized services possible. Thus, situations perceived by a human depend on the human’s 

internal mental state and the actions performed can be regarded as an external reflection. 

Also, as situations [7] are semantic abstractions from low-level contextual cues, human 

knowledge and interpretation of the world must be integrated into a model of situation 

representation. This can either be done during a specification process, i.e., a human defines the 

situations and their relationships based on his knowledge, or situations are recognized and learned 

automatically, i.e., sensor perceptions are aggregated and associated to a human-defined situation 

label using machine learning techniques. 

The latter relates to the domain of human activity recognition. Most approaches in this area 

focus on the classification of basic human activities or scenarios, without considering a richer 

contextual description. 

 

 

Figure 2. Overview of the different layers of semantic context interpretation and abstraction 
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2.2 Activity Recognition 

In human activity recognition, much early work has been done in computer vision. They 

leverage on video camera, and explore various spatial-temporal analyses to recognize people’s 

action from video sequences [8, 9, 10, 31, 41]. Recently, researchers are interested in recognizing 

activities base on sensor readings.  For learning and recognizing human (inter)actions and 

behavior models from sensor data, many approaches have been proposed in recent years, with 

particular attention to applications in video surveillance, workplace tools, and group 

entertainment. Some projects focus on supplying appropriate system services to the users, while 

others focus on the correct classification of activities. Most of previous work in these activity 

recognition techniques is based on video, audio, or multimodal information using statistical 

models for learning and recognition. Recognition models are typically probabilistic based, and 

they can be categorized into static and temporal classification schemes. Typical static classifiers 

include naïve Bayes, decision tree, and k-nearest neighbor (k-NN). In temporal classification, 

state-space models are typically used to enable the inference of hidden states (i.e., activity labels) 

given the observations using Hidden Markov Model (HMM), Dynamic Bayesian Networks 

(DBNs) and Conditional Random Field (CRF) [9, 10]. The variants of CRF have been used to 

model complex activities of a single user. Most of the reported work has been concerned with the 

recognition of the activities of individuals who have been identified a priori.  

 

2.3 Affective Computing 

Currently, many researchers in the field of HCI are interested in user’s emotional aspects 

because such affective states operate as indications of the user’s internal mental state, desire and 

intention. The research on emotions in computer science is termed “Affective Computing”, 
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which is defined as “computing that relates to, arise from or deliberately influences emotions” 

[11, 13, 14, 42, 45].  

Traditionally, this approach is divided into two major branches according to research 

interest. The first branch is the study of mechanisms to recognize human emotions or to express 

emotions by the machine used in the human-computer interaction system. The machine should 

interpret the emotional state of humans and adapt its behavior to them, giving an appropriate 

response for those emotions. Detecting emotional information begins with passive sensors which 

directly capture data from the user’s physical state or behavior without interpreting the input. 

Most relevant works for emotion recognition have been focused on the low-level mapping 

between sensory data and underlying emotions. Recognizing emotional information requires the 

extraction of meaningful patterns from the gathered data. This is done by parsing the data 

through various processes such as facial recognition, gesture analysis and speech recognition.  

The second branch is the investigation on the simulation of emotion or emotion synthesis 

with machines in order to discover more human emotions and to construct more realistic robots. 

As such, affective states including sadness, happiness, fear, anger, surprise and so on can be 

simulated. Especially, for emotion synthesis, there is the OCC (Ortony, Clore, & Collins) 

computational model that has 22 emotions categorized by valenced reaction to situations 

constructed either as being goal relevant events, as acts of an accountable agent, or as attractive 

or unattractive objects [5]. 

Also, human beings have abundant emotions, such as happiness, sadness, guilty, pride, 

shame, anxiety, fear, anger and so on. Affective state estimation uses pattern recognition, 

information retrieval methodology and EEG with brainwave [12] from the view of computational 

theory. For these methodologies, HMMs [13], Bayesian Networks (BNs), Fuzzy rules [14], and 
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Bayesian learning [15] are often employed. Most of these research efforts focus on the low level 

mapping between sensory data and underlying emotions. There are two main categories for these 

methodologies. First of all, researchers use sensory measures as predictors and apply 

classification algorithm without the prior and context knowledge about these variables and the 

target affective states. In building pattern models and committing classification tasks, such 

algorithms lack the ability to handle uncertainty, complexity, and ambiguity found with data. 

Second, researchers use the prior knowledge and expertise in graphical networks pertaining to 

using BNs and HMM models. They maintain the balance between global and local 

representations, and the built-in causal and uncertainty representation structure provides 

powerful capabilities in handling complex situations in practical systems. 

Assessments of the user’s affective state in terms of valence and arousal used Bayesian 

Networks (BNs) [16]. The facial and speech information of the user are considered as observable 

data. The temporal emotion-state structures are captured by a Dynamic Decision Network (DDN) 

model for a simple emotional state assessment task [17]. Also, a Dynamic Decision Network 

(DDN) model is applied to assess students’ emotion in educational games [17]. The emotion 

states are modeled as consequence of how the current action and help fit with the student’s goals 

and preferences. Somebody expressions are also used as evidences. 

 

2.4 User Modeling 

In traditional human factors and ergonomics research, the human operator is “fixed” once 

the initial configuration of the machine is done. Oftentimes there is only consideration for the 

goodness of “average” operators. However, human subjects may frequently enter abnormal or 

negative states, being inattentive, fatigued, or nervous.  
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On the other hand, a user model is the core component of an intelligent assistance system 

that captures, interprets and reacts to the goal, intention, need, and other internal states of the 

human user. As in the vision-augmented driving assistance systems [18], the traditional “external” 

assistance system is based on the assumption of normal operators, fully capable of fulfilling tasks. 

Such an assistance system aims to modify working conditions or raise alarms based solely on 

context awareness, e.g. detection of obstacles or departure from the lane center. The assistance is 

passive and very limited. To provide appropriate assistance we need pay more attention to 

human situations because it is in these states where the human user’s operating performance 

deteriorates sharply; such operations tend to cause accidents, and thus the assistance is needed 

the most. 

We require an underlying user model that fulfills critical tasks through the exchange of 

knowledge with decision and actuating components and under the requirement of high fidelity [1, 

14, 19, 20]. A variety of user modeling tools have been developed, falling into two major 

categories: cognitive modeling from psychological and cognitive sciences, and 

statistical/probabilistic modeling based on various mathematical representations, such as rule-

based systems, regression model, neural networks and BNs [21, 22]. Furthermore, user modeling 

has traditionally focused on what is generally considered “rational” aspects of user behavior, 

typically the user’s knowledge and belief state. While useful, models focusing squarely on these 

aspects of user state often miss critical components of user mental state and behavior, in 

particular, the affective states. Generally speaking, “extra-rational” factors in human cognition 

and decision making, affective states, negative or positive, have been shown to strongly 

influence both reasoning and communication [23]. 
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2.5 User-Need Inference and Assistance 

       Intelligent assistance systems need the ability to adaptively accommodate the user’s specific 

need. In the READY system[24], the authors use Dynamic Bayesian Networks (DBNs) in a 

dialog system to adjust the policy in providing instructions, based on the recognized time 

pressure and cognitive load of the user from observations including filled pauses, disfluencies 

and errors. Adaptation is realized by a rule base that maps detected situations into actions. No 

active information collection is considered. 

Extensive research applying Bayesian Networks (BNs) results in the creating intelligent 

software assistants. Among them, the Lumiere project in Microsoft Research is intended to help 

computer users with interactive interfaces [25]. By taking into account the user’s background, 

actions and queries, DBN models are used to infer a user’s goals and needs. Based on the utility 

theory of influence diagrams, the automated assistant provides customized help. This research 

addresses the issues in automatic assistance such as the timing and optimization of assistance. 

However, it does not focus on providing active information fusion that dynamically selects 

information channels. 
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CHAPTER 3. GENERAL DESIRE INFERENCE MODEL  

3.1 System Overview 

  The goal of desire inference model is to accurately infer user’s desire with context 

information. Human’s emotion (i.e., a type of mental states) often leads to the motivational 

aspects of human behaviors. Thus, the desire inference model includes both user’s behaviors and 

emotions, and depends on how to extract useful features from raw data. Figure 3 shows a 

schematic overview of the proposed desire inference system. The activity recognizer and 

emotion recognizer are practically applied to classify user’s behaviors and emotions that a user 

tends to take based on the information collected from various multi-modal sensors, software, 

camcorders, and other objects suitably deployed in the Smart Home environments. Once sensor 

data is preprocessed, features can be successively extracted.  

 

 

                   Figure 3. System Overview 
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The desire inference model perceives a user’s interactions including the detailed 

information of different contexts (emotions, behaviors, and environment contexts), and then the 

most appropriate desire is subject to be inferred. All possible desires are defined as a desire state 

space.  The system can deliver the service based on user’s desire, and the users will provide the 

system with suitable feedbacks. In turn, the system, after analyzing the feedbacks, is highly 

expected to be updated with the new results. In the following section, we describe the details of 

each component. 

  

3.2 A Description of Elements for Desire Inference Model 

In this section, the overall elements of the desire inference process including environmental, 

behavioral and emotional contexts are described. Previously, we have defined situation in terms 

of behavioral and environmental contexts [6].  However, in order to reduce ambiguity in desire 

inference one may include the mental states M as one of the inputs together with both the actions 

A and the environmental contexts E. The perceived situation, or the sets M, A, E in which M is a 

set of the user’s affective states, A is a set of the user’s actions to achieve a goal, and E is a set of 

context values with respect to a subset of the context variables, is derived from raw sensor data 

first, and is then predicted by BBNs assuming that the human beliefs are known in advance. 

Figure 4 schematically shows the overall desire inference process. 

 



13 

 

 

Figure 4. The Overall Desire Inference Process 

 

 

A. Affective States 

Human emotions provide emotional contexts (affective states), which result from sensory 

observations. The novelty of our approach is to apply affective states in distinct comparison with 

the previous studies. Affective states simply depict the results obtained through categorized types 

of emotion. An OCC model that specifies 22 types of emotion sorted by valenced reactions to 

situations is a well-recognized (or widely-used) computational model for emotion synthesis. 

Based on OCC model, the 7 basic emotions including happy, surprised, angry, disgust, fear, sad 

and neutral are selectively applied. Paul Ekman also  determined that these basic emotions felt by 

all humans and the most basic emotions are universally recognized [45].  

 

B. Behavioral Contexts 

Behavior Contexts are empirically demonstrated as human actions. These context variables 

are derived from raw sensor data using different modalities including video recording, 

observation, and note taking. 
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C. Environmental Contexts 

Environmental contexts categorized as lower level contexts are originated from sensing the 

entire environment surrounding a user being observed in a system. This type of contexts 

composed of time, location, and status of objects can be used to give rise to the corresponding 

actions. Especially, a set of environmental contexts are key factors to detect human emotions and 

actions, and other environmental contexts are related to  the results created via interaction with 

emotions and actions. 

 

3.3 Inference Model for Computational Desire 

To answer the question what it is for an agent to have a reason to act, desire and belief are 

often considered as two major factors that stimulate us to act. Combining desire and belief 

efficiently provides a reasonable condition to some objective action. 

In general, human desire is regarded as an inevitably motivating state due to its relation with 

internal motivation and is firmly determined by belief [36]. Even if we have a desire for 

something, and a belief that a certain action will bring up that thing, we may not get any 

explanation about the corresponding action unless we consider the belief and desire that caused 

that action.  

In our study, the desire D is to be predicted by a decision making model, so called “BBNs,” 

that deals with uncertainty, complexity, and probabilistic reasoning. On the basis of BBNs, we 

expect to put a specific design into a statistical inference process by considering the probabilities 

of events that can be observed, some evidences and her belief in the likelihood of other events. 
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A. Belief-Perceived Situation 

In our work, we decompose contexts into emotional, behavior and environmental contexts 

applying to human belief in order to find the human desire. Based on this perspective, the 

perceived situation consists of human affective states, the actions that can be regarded as an 

external reflection and environmental contexts. Moreover, it is termed belief-perceived situation. 

Belief, one component of the Belief-Desire-Intention (BDI) model [52] encompassing belief, 

desire, and intention, is a function to express “internal core state” which can assume the causal-

explanatory role. Belief defines the informational level to simultaneously deal with unchanged or 

very slowly changed information due to time interval necessary for modification of beliefs. 

In this section, we formally define Belief-Perceived situation as follows. 

Definition.  A Belief-Perceived situation is B(m, a, e) for m∈M, a∈ A, e∈ E, where B 

is a Belief function, and the triple <M, A, E> in which M is a set of the user’s affective states, A 

is a set of the user’s actions and E is a set of context values with respect to a subset of the context 

variables. 

Hypothesis.  Desire can be derived from belief-perceived situations.  

 

Belief-perceived situations are the formula representing key elements for desire inference, 

i.e. B referring to BBNs, M referring to affective states, A referring to behavior contexts and E 

referring to environmental contexts. 

 

B. Desire Inference Model 

BBNs are a decision-support framework for fixing the problems involving uncertainty, 

complexity, and probabilistic reasoning. BBNs are mainly used for situations that require 
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statistical inference – in addition to statements about the probabilities (i.e., likelihood) of events, 

the user knows some evidence (i.e., some events that have actually been observed) and 

furthermore wishes to update her belief in the likelihood of other events, which have not as yet 

been observed. 

We introduce a conceptual Desire-Inference-Model which is the BBN model as 

schematically illustrated in Figure 5. This model is used for inferring the user’s desires from 

observations with different modalities. In this proposal, we suggest three modalities including 

facial and speech recognition, and gesture analysis to obtain affective states. As illustrated in 

Figure 5, such model captures desires, the user’s actions, affective states, and environmental 

context information. 

 Desire. This component represents the user’s desire. It constitutes the hypothesis we want 

to infer.  

 Actions. This component represents the user’s behaviors. 

 Affective States. This component represents the user’s emotional states including happy, 

surprised, angry, disgust, fear, sad and neutral. 

 Environmental Contexts. This component represents information about the specific 

environmental factors that can influence the user’s actions and affective states as well as desire. 

 Observations. This component consists of sensory observations in different modalities 

characterizing individual user behavior and emotion. 
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Figure 5. Conceptual Desire Inference Model 

 

Belief, one of several factors for desire inference, is not included in this figure. In BBN, 

beliefs reflect a probability that a variable will be in a certain state based on the addition of 

evidence in a current situation. A-priori-beliefs are a special case of beliefs largely based on prior 

information. A-priori-beliefs are determined only by the information stored in the belief 

network’s CPTs (Conditional Probability Tables). Moreover, evidence is information about a 

current situation. BBNs support vague, contradictory, and incomplete evidence by allowing one 

to enter a probability for the evidence of a variable being in each state. This model highlights the 

causal relationship between actions, affective states, environmental contexts and observation 

variables as represented by arrows. The environmental contexts variables influence the user’s 

action and affective states as well as desire. 
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3.4 Computation of Desire by Static BBNs 

The desire inference is to estimate user desire from the evidence of context variables 

collected by observations using a statistical inference technique. In this section, we introduce the 

notation for the inference process using the quantitative model, namely the CPTs. 

 

A. Conditional Probability Tables (CPTs) 

Once the topology of our desire inference model is specified, the next step is to compute the 

relationship between connected nodes, done by specifying a conditional probability distribution 

for each node. All nodes have CPTs. Conditional probabilities represent likelihoods based on 

priori information or past experience. For example, for the node “Desire”, P(Desire) denotes the 

priori distribution of the variable “Desire”. 

In general, CPTs are obtained by statistically analyzing a huge amount of training data. For 

this research, the initial values of the CPTs for observations result from a following source. We 

refer to several large-scale subjective surveys to obtain initial CPTs [27]. Then, the overall initial 

data can be taken according to the Bayes inference rule. Table 1 shows one part of a hypothetical 

CPTs to illustrate our model. Then the existing learning algorithms can be used for training a 

model using the training data [28]. Furthermore, the initial CPTs are automatically refined to 

match each individual subject.  
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Table 1. One Part of CPTs in the Classroom Example  

M 

Facial Recognition 

Eyebrows Up Eyebrows Down 

Neutral 

/Lip Down /Lip Up (Smile) 

Happy 0.1 0.72 0.18 

Surprised 0.48 0.35 0.17 

Angry 0.5 0.32 0.18 

Disgust 0.4 0.47 0.13 

Fear 0.45 0.25 0.3 

Sad 0.8 0.1 0.1 

Neutral 0.03 0.15 0.82 

 

 

Table 2 shows CPTs using our real data which is collected from pilot study in chapter 5. 

They shows the results between emotion and brainwave at a single time instance. Using CPTs, 

we can calculate conditional probability of a single time. Thus, we need to consider time series to 

infer human desire because user’s desire is changing time by time.    
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Table 2. Results of CPTs between Emotion and Brainwave in Static Desire Inference Model  

M 

Brainwave 

Theta Alpha Beta Gamma 

Happy 0.82 0.13 0.03 0.01 

Surprised 0.13 0.08 0.68 0.11 

Angry 0.18 0.21 0.58 0.12 

Disgust 0.06 0.16 0.07 0.71 

Fear 0.01 0.33 0.11 0.54 

Sad 0.10 0.09 0.66 0.15 

Neutral 0.43 0.48 0.06 0.03 

 

B. Derivation of a Desire 

BBNs-based human desire inference aims to estimate human desire from evidences, or 

context variables, collected by observations such as facial and speech recognition, and gesture 

analysis using a certain inference technique. We first introduce the notations. Under these 

notations, the desire inference model specifies two probabilistic relationships: the desire 

inference transition model P(D | M, A, E) and the evidence generation model P(M, A, E | D). An 

inferred desire through the highest conditional probability of P(D) computed from BBNs is 

shown on CPTs. Thus, the desire inference is derived from Bayes’ rule as follows [29]; 

 



21 

 

 ( |     )  
 (     | ) ( )

 (     )
 

  
 (     | ) ( )

∑ (     |  ) (  ) 
 

 

When applied, the probabilities of the Bayes’ rule are directly used as a part of particular 

statistical inference results at a single time instant. With the Bayesian interpretation of 

probability, the Bayes’ rule represents how a subjective degree of belief should rationally change 

to account for evidence: this is Bayesian Inference, which is fundamental to static Bayesian 

Networks. 
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CHAPTER 4.  DYNAMIC DESIRE INFERENCE PROCESS  

4.1 Extended to Dynamic Desire Inference Model 

The BBNs is a probabilistic graphical model (i.e., a type of statistical model) that represents 

a set of random variables and their conditional dependencies via a directed acyclic graph (DAG). 

Formally, Bayesian networks are acyclic graphs whose nodes represent random variables 

including observable quantities, unknown parameters or hypotheses. Efficient algorithms are 

employed for performing inference and learning in Bayesian networks. Static BBNs can be work 

with evidences and beliefs at a single time instant. Thus, static BBNs are not enough in modeling 

systems that evolve over time [42, 43]. Bayesian networks that model sequences of variables are 

generally called Dynamic Bayesian Belief Networks (DBBNs). Generalizations of Bayesian 

networks that can represent and solve decision problems under uncertainty are called influence 

diagrams [33, 39]. The dynamic inference process based on DBBNs is being considered to allow 

the system to accommodate emerging new desires and adjust user’s change in inclination 

towards certain desires over a period of time. DBBNs formalism is based on the Bayesian 

networks with extensions to represent discrete sequential systems.  

Our central hypothesis is that DBBNs serve as an effective computational model for 

inferring user’s desires when provided with real-time observations and finite historical data of 

the user’s affective states, environmental contexts, and behavioural contexts as inputs. Based on 

our preliminary results, the problem of ambiguous human desire inference has been identified 

when human affective states are not considered. The feasibility of using DBBNs to model human 

desires has been established.   

Thus, Dynamic Bayesian Belief Networks (DBBNs) have been developed to overcome the 

limitation which does not evolve over time. As a result, our study has extended the 
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computational model from BBNs to DBBNs. In general, a DBBN is made up of interconnected 

time slices of static BBNs, and the relationships between two neighbouring time slices are 

modelled by Hidden Markov Model (HMM), i.e., random variables at time t are affected by the 

observable variables at time t, as well as by the corresponding random variables at time t-1.  

 

 

Figure 6. DBBNs consisting of three time slices, where O represents a collection of 

hypothesis nodes. H is a collection of hidden nodes, O is a collection of observation nodes, D 

and t indicate desires and  time, respectively. 

 

Figure 6 illustrates DBBNs. DBBNs represent a generalization of conventional systems for 

modeling dynamic events, such as Kalman filtering and HMMs. DBBNs provide a very powerful 

tool by providing a coherent and unified hierarchical probabilistic framework for sensory 

information representation, integration, and inference over time. Furthermore, DBBNs provide 

us with the ability to predict the influence of possible future desire through its temporal causality.  

Our generic framework to apply BBNs to user modeling is the Desire Inference Model. It is 

used to infer user’s desire from observations. The desire of user and the hidden nodes  in current 
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time slice are influenced by the corresponding variables in the most recent time slice. The hidden 

nodes are not  observed at all, but are expected to interact with observed nodes. Each node has a 

probablity distribution over the possible output variables and then resulted in a sequence of 

output parameters. The resulting sequence ouput is subject to be calculated by an DBBNs [39]. 

 

4.2 Feature Selection 

It is of great importance to collect and integrate information needed to infer human’s desire 

in a timely manner. We collected the observations from informative sensors and observing 

software in order to infer human’s desire efficiently and timely. For selecting more effective 

observations from a large set of observations obtained from deployed sensors so as to enable our 

learnt model to be more discriminative among various desires, information gain is calculated for 

each pair of desire and observation. The possible desires are formulated as                

and mutual information (or information gain) [32] can be calculated. Important measure of 

information is entropy, which is usually expressed by the average number of bits needed to store 

or communicate one symbol in a message. Entropy quantifies the uncertainty involved in 

predicting the value of random variable [56].  

Thus, mathematically, the user’s desire inference problem may be viewed as mutual 

information, with the entropy, H, of a discrete random variable D that is a measure of the amount 

of uncertainty associated with the value of D. It is zero when D is unambiguous, i.e., when one 

state has a probability of 1. A discrete random variable D,               , represents the set 

of possible desires. The sensory observation O is achieved form m diverse sensors and observing 

software, i.e.,               . Each set of O includes sets of M, A, E. The goal is to 
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estimate the posterior probability that      is true given O, i.e.,  (    | ). According to the 

information theory, the  entropy H over the hypothesis variable D is calculated as follows: 

  

 ( )   ∑ (  )     (  )

 

 

 

Mutual information measures the amount of information that can be obtained about one 

random variable by observing another. Given the beliefs in hypothesis for the last time slice 

    , the mutual information of a sensory observation    to current hypothesis    can be 

denoted as  (      ).  
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The above equation is fundamental for dynamically computing the uncertainty reducing 

potential for D due to O. We could extend it to consider the case that multiple sensors,   

              , are instantiated simultaneously 
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In the above equation, the probabilities are readily available from the forward and backward 

inference propagation based on hypothesis beliefs for last time slice.  (  
 |            ) is the 

posterior probability of hypothesis state for current time slice given a configuration on sensor 

state and the beliefs in hypothesis in the last time slice.  (  
 |    ) is the posterior probability of 

hypothesis state without acquiring new sensory observation.  

After estimating the information gain of each pair of desires and sensory observation, the 

sensory observation selection chooses those sensory observations with higher mutual information. 

These selected observations are more highly associated to their corresponding desires. In sensor 

selection,  (  ) has the same value for all sensors and need not be calculated. 
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4.3 Learning 

A. Different levels of creating DBNs 

Creating DBNs from data can be characterized as a very complex problem. There are four 

cases to describe these problems, as shown it Table 3 [33].  Full observability (complete data) 

means that the values of all variables are known. Partial observability means that we do not 

know the values of some variable. Such case exists because in some situations variables cannot 

be measured, and then they are called hidden variables. It is possible that they can be measured 

in training data, but they are not, and then they are termed as missing variables. Unknown 

structure means that we are not in position to know the whole topology of the network. 

 

Table 3.  Methods for creating DBNs structure and determining their parameters [33, 34] 

Structure/Observability Method 

Known/Full (Complete data) Simple statistics 

Known/Partial (Incomplete data) 

Expectation Maximization (EM) algorithm 

or Gradient Ascent algorithm  

Unknown/Full Search through model space 

Unknown/Partial 

Structural Expectation Maximization (SEM) 

algorithm 

 

In our computational model, we have a number and type of nodes  in the network, but we do 

not have the knowledge of their relation and mutual independence. Thus, we should be interested 

in finding the way to learn the structure of DBN from observable data and expert knowledge 

about the domain.  
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Algorithms that deal with such problems can be grouped into two categories [34]. One 

category of algorithms uses heuristic searching methods to construct a model and then evaluates 

it using a scoring method. The other category of algorithms constructs Bayesian networks by 

analyzing dependency relationships among nodes. The dependency relationships are measured 

using one kind of several Conditional Independence (CI) test types. 

 

B. Learning (Training) 

To take into account temporal information and relationship between an desire and its 

corresponding sensory observation, we used Dynamic Bayesian Belief Networks (DBBNs), 

which models time information and predicts probability of an activity. Figure 6 shows the 

graphical structure of our proposed human desire inference model.   

For each time slice t, the possible desire is defined as       
    

      
   and the sensory 

observation extracted at time t is denoted as       
    

      
  . Hence, the problem to predict 

the desire given the previous desire estimates and the observation at t can be expressed as 

 (  |       ).  The parameters of an desire model are trained with Expectation Maximization 

(EM) algorithm [35]. The EM algorithm is used to find the  maximum likelihood estimate (MLE) 

of the marginal likelihood by iteratively applying the two steps such as Expectation step (E Step) 

and Maximization step (M step). E step is to calcuate the expected value of the log likeli hood 

function, and M step is to find the parameter that maximizes this quantity. In desire inference 

model, we represented P(  | )  as E step and             P(  | ) as M step.  

The desire inference model estimates parameters by evaluating            P(  | ) 

where   is the set of parameters of the desire inference model and    is the set of the sensory 
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observation. After training the desire inference model, posterior probability can be represented as 

 (  |  ) based on a Bayes Filter.  

 

4.4  Relationship between Contexts and Desire 

The desire inference model is constructed with the information of contexts. With the 

different level of the expression power of the context, we can regard the current contexts, which 

are recognized by M, A, E as high level context data and utilize them as the input of a desire 

inference model.  

As for construction of a desire inference model, the underlying sensory data will be 

interpreted as lower level contexts via context interpreters in the Context Extraction unit based 

on domain knowledge. Among them, we selected highly correlated sensory contexts (observation) 

and theses contexts are formulated as a context vector               . The meaning of a 

context refers to some information related to an object of interest and its status. 

After extracting sensory observation from diverse sensory data and software, we selected 

contexts to represent inputs of desire inference model by calculating information gain for each 

desire and contexts information. Let the desire that the user wants to do be formulated as 

              . Considering the temporal information and the desire our system may infer, 

a desire at time t is represented as       
    

      
 }. Given the current selected contexts 

      
    

      
   and the state of the previous desire, the desire at time t can be inferred 

from  (  |       )  The desire inference model also models the structure among desire and 

context information by usin DBBNs, and its parameters of desire inference model are trained 

with EM algorithm [35]. The inference of the desire inferred at time t can also be ahcieved by 

applying Bayes Filter. 
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To model the relation of each desire-contexts information, the mutual information-like 

weight function is calculated, and the equation is formulated as below: 

 

 (     )  ∑ (  

 

   )(   
 (     )

 (  ) (  )
) 

  

To model the relation of between desire and contexts information, there is a rank table 

constructed for each desire inference model which contains the information of weight 

function of contexts information. The weight vector of desire    can be denoted as    

   
    

      
   where   

 
  (     ). The contexts information whose weight function value 

is higher is more related to this desire.  
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CHAPTER 5. A PILOT STUDY ON DESIRE INFERENCE 

5.1 Objective of the Pilot Study 

Generating large datasets is a core research priority within Human Computer Interaction 

(HCI) research domain.  To date, several open source datasets have been produced and shared 

with the research community; however, challenge still remains in providing sufficiently differing 

datasets with a completely accurate gold standard.  

The objectives of the pilot study are 1) to collect quantitative data and context information 

suitable for inducing-desire, 2) to establish the correlation between environmental contexts, 

observed user behaviors, identified user emotions and the changing desire of the participants 

based on the data, 3) to identify the relevant factors for desire inference and 4) to train and 

validate the initial computational model using the data. 

We consider the observable factors, or dynamic factors (not static factors). To identify and 

verify key observable factors for effective and accurate user desire inference, we develop and 

evaluate a computational model. It infers users’ desires using observable data, both within the 

system as well as from the surrounding environments such as smart home environments. We 

establish the correlation between the potential key factors and human desire. For these objectives, 

we conduct the experimentation in controlled environments in our Smart Home Lab (SHL). In the 

experimentation, we controlled introduction and removal of stimulus to induce participant’s desire. 

Desires are not forced but induced. Controlled and limited availability of stimulus allows us to 

create a dynamic Bayesian model. 

In this pilot study, we assume several hypotheses. By proving hypotheses, we can reach a 

valid conclusion (i.e., desire inference) through identifying relationships among three parameters 
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(i.e., M, A, E) and sub-parameters. It refers to the conceptual framework within which the 

experiment is conducted. Hypotheses are as follows: 

1) Desire inference can be derived from three types of parameters (based on BBNs and 

DBBNs). 

2) Three types of parameters have sub parameters. 

3) Affective states can be derived from three types of recognition parameters (Facial, 

Speech & Gesture Analysis). 

4) Affective states can help derive desire. 

5) Behavior can be affected to infer the desire. 

6) Some factors in the environmental contexts can be affected to infer the desire. 

 

5.2 Setup of Experimentation 

It is difficult to collect sensor data for users in a real home and it is a timing-consuming task. 

Aiming for a realistic data collection, we conduct a study in SHL among 24 university students. 

The SHL has been configured, for the pilot study, to resemble a studio apartment, which 

provides isolation from outside distractions. The entire study is conducted in SHL which is a 

sensor-rich environment and is also observed by all participants in a controlled environment. 

Within SHL, there are multiple computers with various sensors and appliances. The coordinator 

of the study monitors digital recordings of sessions from the SHL control room using multiple 

camcorders and microphones, while observing and annotating the participant’s actions, gestures, 

and speech patterns.  

Figure 7 is the overview of our sensor-rich environment in the Smart Home Lab at Iowa 

State University.   
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Figure 7. Overview of the experiment environment in Smart Home Lab 

 at Iowa State University 

 

In the SHL, several sensors were deployed on different objects, and the location of each 

object is illustrated in Figures 7 and 8. During each session, about 1 hour of sensory data were 

recorded to validate our approach. The dataset was collected through 3 weeks by 24 volunteers. 

The recruitment criteria considered only adult participants, 18 years or older, who are physically 

& cognitively capable of performing some activities such as operating computers.  Since the 

study involved watching videos, playing games, listening to music and seeing photos/comics, 

severely vision-impaired participants are not suitable for this study. 
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Figure 8.  Setup of Experimentation in SHL. Turning on the lamp was used to synchronize the 

starting point when the study was started. 

 

In Figure 9, we list all activities with their configurable activities states which are designed 

into our experimental environment. A set of annotation terms can be defined in a configuration to 

indicate the possible states. For example, a movie could be in either turning on, watching, change, 

pause, or turning off state.  

 

 



35 

 

 

Figure 9. Configurable Activities States 

 

A. Experimentation Procedures 

During each session, the participants are told that they are free to do whatever they choose do 

within the SHL. However, they should explicitly identify the activity “they would like to do now”. 

Throughout the course of the study, additional stimuli typical to student’s life in their own dorm 

room, such as movies, comic books and novels, video game consoles, food and drink, were 

introduced and removed every 5 minutes to induce changes in participant’s desires and behaviors. 

At the end, each participant was asked to fill out a questionnaire, and go over the audio and video 

recording to provide additional comments and insights into their thought process and mental 

status. The information was annotated to the recordings, and any discrepancy will be identified 

and rectified. The environmental contexts were recorded via the existing SHL software. User’s 

behaviors were recognized both by behavioral recognition software as well as by human 

inspection. 
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The above study proceeded according to the procedures described as follows: 

1.  We scheduled a one-hour session with each participant. Each participant was required to 

come ten minutes before for orientation. 

2. Once the participant arrived at the Smart Home Lab in Atanasoff Hall, we gave a brief 

introduction about the study to the participant. The participants took the direction and instruction 

on the procedure of the study as described here, as well as their rights including voluntary 

participation, no-fault policy for termination of participation in the study, and the effort to 

preserve the participant’s privacy. Also, we surveyed allergy to ingredient of cookies (snacks), 

one of the stimuli applied in our study, because we wanted to protect participants first. If some 

participants had trouble and allergy, we would change the cookies (snacks) to suitable substitutes.   

3. The participants were asked to name whatever they are looking at, doing or feeling as they 

go about their activities. This THINK-ALOUD method enables the researchers to see first-hand 

the process of activity completion. The researchers were asked to objectively take notes of 

everything that the participants say without attempting to interpret their actions and words. 

4. Once the participant indicated that he/she is ready to proceed, the experiment was started 

by watching a movie. Also, this was recorded using web camera or camcorder and the participant 

was using the Bluetooth microphone.  The participant’s action was monitored and the researcher 

made a note at specific points such as action changes and emotion changes during the study.   

5. Every 5 minutes, the participant was exposed to a different stimulus. Together with 

movies, 6 additional stimuli (game console, photo/pictures, cookies, audio system, comics, and 

computer) were aroused in sight.  

During the experiments, we used smart appliances, sensors and observing software such as 

video camera, temperature sensor, mouse clicker and emotion recognition software in the SHL for 
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capturing the activities that the participants perform.  Two video cameras were set up in the SHL.  

A temperature sensor was also attached to the mouse. The mouse clicker and emotion recognition 

software were installed into the computer. When participants clicked the mouse button and used 

the computer, their mouse clicking activities were monitored and captured into the computer and 

video camera.  

6. At first, the participant can start watching a movie. If they like to watch a movie, they 

could keep watching a movie. Otherwise, they could change to a different movie. After 5 minutes, 

when a new stimulus was provided, participants would do an activity using this stimulus if they 

want to use it. Otherwise, they will remain with the same activity like watching a movie. After 

using 7 stimuli, the participants could complete all activities by simply acting what they want to 

do with the stimuli.  

For example, if they started watching a funny movie and they did not like it, they could change 

to different style. After 5 minutes, if we provided cookies as a new stimulus, they could change it 

again. If they did not like to eat cookies, they could ignore this stimulus and keep watching the 

movie. Every 5 minutes, when we provided a new stimulus, the participants could change their 

activities or they can keep doing a previous action. The staff would make a note when the activity 

of the participant changes in accordance to the defined activities or some unexpected changes. 

7. The experiments were timed for 35 minutes. Descriptions on how various instruments 

were used for the study, and how we incorporated privacy protection mechanisms for their use, 

are described below. 

Once data collection was completed, the participants were asked to fill out a questionnaire. We 

asked them to provide information regarding the activities they did, such as their desire when they 

changed from one activity to the other activity. The researcher requested the reason why they 
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changed the activity and the emotion when their activities were changed. Following the 

questionnaire, our researcher interviewed and then reviewed taped video in order to discuss some 

specific points logged by the researcher during the experiment.   

 

B. Methodology for Experimentation 

In our study, the activities that the participant completed were designed to measure the 

metrics below. We used the following methodology to collect data. 

1. Facial Recognition – We recorded facial movement as the one of the factors to get their 

emotion. 

2. Speech Recognition – We recorded the voice of the participants as one of the factors to get 

their emotion. 

3. Gesture Analysis – We recorded the gesture of the participants as the one of the 

parameters to get their behavior. 

4. Environments Contexts – We considered the environment change as the one of the 

parameters.  

 

Particularly, we used the following methodology to collect the data: 

1. Video Taping - Emotion is one important factor to understand desire. So the video 

camcorder and web camera were used for recording during the study. The video files were 

annotated with the participant ID for protecting personal privacy.  

2. Observation - One of our research personnel was on site during the study and serve as 

facilitator and observer. This person wrote down some activities of interest and annotates 

additional information that might be useful such as the change of activities. 
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3. Think-aloud - A method used to gather data in usability testing in product design and 

development. Think-aloud protocols were introduced to involve participants to both think 

and announce aloud as they were performing a set of specified tasks. Users were asked to 

say whatever they were looking at, thinking, doing, and feeling, as they went about their 

task. This enabled observers to see first-hand the process of task completion (rather than 

only its final product). Observers participating in such a test were asked to objectively take 

notes of everything that users announced, without attempting to interpret their actions and 

words. Test sessions were often audio and video taped so that developers could go back 

and refer to what participants did, and how they reacted. The purpose of this method was 

to make explicit what was implicitly present in the subjects who were able to perform a 

specific task. 

4. Questionnaire - An ID was assigned to each participant at the time when they filled out the 

questionnaire.  

5. Post-experiment Interview and review of taped videos - After finishing experimentation, 

we interviewed the participants. We wanted to make sure that their desire changes and our 

understanding of them was accurate. (We got the agreement of this process.)  

6. Emotion Analysis Software - To understand emotion, we used the emotion analysis 

software such as that for facial emotion recognition and speech recognition. 

7. Keyboard/Mouse Activities Logger - We used the logger software installed in the 

computer to track the details of the participants’ actions during the study. Logger helped 

capture the activities of the keyboard and mouse performed on the computer screen by a 

user and stored them in a log file to be processed later. 
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CHAPTER 6. DATA ANALYSIS FOR RELEVANT FACTORS 

We collected the data using the seven instruments: videotaping, observation, think-aloud, 

questionnaire, post-experiment Interview and review of taped videos, emotion analysis software 

and keyboard/mouse activities logger.  Thus we have a dataset generated for each participant 

during her study session. 

The actions of participants were monitored. The researcher made a note about specific 

points during the study. The researcher analyzed these specific points in post-experiment 

interview and review of taped videos. We have planned to do a correlation analysis also between 

different factors and desires. We create a correlation matrix between each factor and desire, and 

analyze the impact of that factor on desire; we do so for all other factors. If the factors and desire 

are almost highly correlated (positive/negative), it will help us to reduce the number of factors. 

This allows us to consider different models without favoring any particular formulation. Also we 

can determine the most effective model. 

 

6.1 Data Coding 

For analysis, data needs to be coded to an analytical process in which data, in both 

quantitative form (such as questionnaires results) and qualitative (such as interview transcripts), 

are categorized to facilitate analysis [37]. Data coding means the transformation of data into a 

form understandable by computer software. The classification of information is an important step 

in preparation of data for computer processing with statistical software. One code should apply 

to only one category and categories should be comprehensive. There should be clear guidelines 

for coders (individuals who do the coding) so that code is consistent. Some studies will employ 
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multiple coders working independently on the same date. This minimizes the chance of errors 

from coding and increases the reliability of data. 

 

 

Figure 10. Process of Data Coding 

 

In our study, we processed data coding scheme from raw data to CSV data format for 

statistical tool R [50]. As a result, we create 30 input formats which include 3 kinds of emotions 

(facial recognition, speech and brainwave), 24 configurable activities and 3 environmental 

contexts (location, temperature and light). Figure 10 shows the process of data coding and Figure 

11 is an example of data coding. 
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Figure 11.     (a) Raw Data                   (b) Log file                               (C) CSV file  

 

6.2 Statistical Analysis 

In the experimentation, 24 volunteers participated in a one-hour session including pre and 

post session. During the study, real-time emotion software was used to collect emotion data. 

Through the camera, the emotion data was captured in real-time. After reviewing some of the 

data collected, it was discovered that the parameters we were trying to measure could not be 

ascertained from some participants due to them wearing hats or lowering their heads. Their faces 

were out of range of the camera, and emotion capture failed. Finally, among them, we used data 

of only 21 participants.  

Normally, most existing studies done by other researchers used data during several days. 

Most of time, only one or two participants are involved in their study. Oftentimes no more than 

ten people participated in their pilot study. Nonetheless they still generated large data sets. In our 

case, 21 participants also provided very large data sets as the result of data collection with larger 

diversity of participants. 

Each experimentation was executed in 35 minutes. When the moving picture is displayed, 

each frame is flashed on a screen for a short time (nowadays, usually 1/24, 1/25 or 1/30 of a 
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second) and then immediately replaced by the next one. In North America and Japan, 30 frames 

per second (fps) is the broadcast standard, with 24 frames per second (24 frames/s) now common 

in production for high-definition video. In much of the rest of the world, 25 frames per second 

are standard. Thus, we used 24 frames per second and 1 person has 50,400 frames for each 

session. For preparation of data, totally, we consider 1,058,400 frames for behavior, 838,923 

frames for emotions and 1,058,400 frames for environments. 

 

A. Correlation 

For effective and accurate user desire inference, it is important to identify and verify key 

observable factors. In this thesis, we established the correlation between the potential key factors 

and human desire. Correlation is any of a broad class of statistical relationships involving 

dependence which is any statistical relationship between two random variables or two sets of 

data [38].  

Normally, there are 3 different kinds of correlation analysis that are Pearson, Spearman and 

Kendall. Pearson is the most familiar measure of dependence between two quantities. By 

dividing the covariance of the two variables, it is obtained by the product of their standard 

deviations. Thus, we adopted Pearson method, using the cor. test function in R. 

Results of Correlation are between -1 and 1. If a result is -1 or 1, there is a perfect negative 

or positive correlation between the two values at all. On the other hand, if a result is 0, there is no 

linear relationship between two variables. It will be very rarely to get a correlation of 0, -1 or 1 

[38, 44]. 
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 High correlation : 0.5 to 1.0 or -0.5 to -1.0 

 Medium correlation :  0.3 to 0.5 or -0.3 to -0.5 

 Low correlation :  0.1 to 0.3 or -0.1 to -0.3 

 

In Table 4, each desire is numbered. 

 

Table 4. Defining Desire 

 
Desire 

10 Want to watch a movie 

20 Want to play a game 

30 Want to eat cookies 

40 Want to use a computer 

50 Want to watch photos 

60 Want to read comics 

70 Want to listen music 

80 Wild Cards 
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Figure 12. Each Desire-Emotion Correlation 
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Figure 12  Continued 
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Table 5. Each Desire-Emotion Correlation 

       Desire 

Emotion 

Watch 

Movie 

Eat the 

Cookie 

Play the 

Game 

Use 

Computer 

See the 

Photo 

Listen to 

the Music 

Read 

Comics 

Wild 

Card 

Neutral 0.269 0.004 0.420 0.655 0.273 0.870 0.939 0.825 

Happy 0.567 0.530 0.535 0.001 0.004 0.002 0.004 0.002 

Surprised 0.115 0.40 0.024 0.287 0.618 0.062 0.042 0.134 

Angry 0.012 0.028 0.001 0.001 0.002 0.004 0 0 

Disgust 0.001 0 0 0.012 0.015 0.017 0.003 0.009 

Fear 0.034 0 0.008 0.002 0.022 0.001 0.009 0.002 

Sad 0.004 0.002 0.005 0.032 0.043 0.037 0 0.022 

 

Figure 12 and Table 5 are shown the correlation between each desire and emotion.  

 

 

Figure 13. Correlation Result between Desire and Brainwave 
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Figure 14. Correlation between Desire and Behavior 

 

 

 

Figure 15. Correlation between Desire and Environmental Context 
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Based on our experimentation, we obtained several results as follows: 

1. Desire inference can be derived from three types of parameters: Emotions, 

Behaviors, and Environments Contexts.  

2. Affective States can be derived from two types of recognition schemes: Facial 

recognition and Brainwave. 

3. Three basic emotions (Neutral, Happy, and Surprised) in the OCC model can be 

indicative to desire inference. It means that clear emotions can help to derive desire. 

 

In the pilot study, we allowed exception of light and temperature sensors for the 

environment.  Sometimes, these environmental contexts are very important factors depending on 

design. 

 

B. Relationship between Emotion and Brainwave 

The electroencephalograph (EEG) measures brainwave of different frequencies within 

the brain. Normally, there are five brainwave types including Delta (0-3Hz), Theta (4-7Hz), 

Alpha (8-12Hz), Beta (12-30Hz) and Gamma (30-50 Hz). Each brainwave type provides an 

emotional state and the corresponding conditions [12, 46, 47]. Table 6 shows the relationship 

between Emotion and Brainwave. 
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Table 6. Relationship between Emotion and Brainwave [12, 46] 

Brainwave type Frequency range Mental states and conditions 

Delta 0-3Hz 

Deep, Dreamless sleep, non-REM sleep, 

Unconscious 

Theta 4-7Hz 

Joy (Happy), Fantasy, Creative, Intuitive, Normal 

(Neutral) 

Alpha 8-12Hz 

Normal (Neutral), Calm (tranquil), Relaxed but not 

drowsy 

Beta 12-30Hz 

Sadness, Anger, Disgust, Alertness, Agitation, 

Surprised, Thinking, Aware of self & surroundings 

Gamma 30-50Hz Fear, Disgust 

 

 

Thus, an emotion recognition method using EEG signals is used [12]. EEG signals are 

measured and analyzed using power-spectrum analysis method based on the Fast Fourier 

Transform (FFT). Each EEG signal was decomposed into five brainwave types (EEG sub-bands) 

as mentioned before. It is straightforward to identify the different power rates at each frequency 

band as emotion. Such this discrepancy was investigated by analyzing human brainwaves. 

Correspondingly, each EEG signal is calculated by a relation power value equation that selects 

the EEG sub-band over the total EEG band: 
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Then, the calculated EEG signals were in direct comparison with the EEG database. EEG 

signals were analyzed by Bayesian Networks (BNs). For Bayesian Network structure, we used 

Netica software [51].  

 

Table 7 shows example Bayesian network structures. In comparing the results, many 

emotions showed different probability values, but “Anger” and “Sadness” show similar 

probability values.  
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 Table 7. Relationship between Emotion and Brainwave [12]  

– Results of calculation using Bayesian Network Structure for Emotion Recognition 

Brainwave 

Type 

Emotions 

Brainwave 

Type 

Emotions 

Brainwave  

Type 

Emotions 

Low Theta 10% Joy 

10% Fear 

10% Anger 

10% Disgust 

60% Sadness 

Low Theta 50% Fear 

50% Disgust 

High Theta 40% Normal 

40% Sadness 

4% Joy, Fear 

Anger, 

Disgust 

Surprised, 

Low Gamma 

High 

Gamma 

Low Gamma 

Low Beta Low Beta High Beta 

Low Alpha Low Alpha Low Alpha 

Brainwave 

Type 

Emotions 

Brainwave 

Type 

Emotions 

Brainwave 

Type 

Emotions 

Low Theta 50% Anger 

50% Disgust 

Low Theta 50% Anger 

50% 

Surprised 

High Theta 70% Disgust 

10% Fear 

10% Anger 

10% 

Surprised 

Low Gamma Low Gamma 

High 

Gamma 

High Beta High Beta High Beta 

Low Alpha Low Alpha High Alpha 

 

Normally, Delta waves are easily collected from the brainwave in close association with 

the deepest stages of sleep, i.e., slow-wave sleep. We can also obtain Delta wave from 

unconsciousness and noise like pulse, neck movement and eye blinking. In reference [12], 

they explained, "We removed the delta band to eliminate EEG artifact (noise) such as pulses, 

neck movement, and eye blinking”. Along this line, Wakako Nakamura proposed the 
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application of independent component analysis (ICA) together with the post processing of 

high-pass filtering to remove ballistocardiogram artifacts [47].  

Thus, we also need to remove Delta from the results to get emotions because Delta type 

comes from unconsciousness. Also, the study of brainwave and certain belief showed a 

relationship as follows: "The REM-dream state is a neurologically and physiologically active 

state. When a person is in deep sleep there is no dreaming and the waves (called delta waves) 

come at high amplitude about 3 per second. Dreams can be indirectly regarded as our 

unconscious feelings or/and desires very similarly with sleeping. We may have anxieties or 

desires that only our dreams can reveal. Most of us would have little difficulty in finding 

examples of "anxiety dreams" or "wish-fulfillment dreams" from our own experience. We may 

not have been aware of our desires or fears until we are awakened by the dream [48, 49]." 

Even though the delta band was removed, we wanted to show the whole results. From the 

high correlation results (Theta, Low Gamma, and High Gamma), we can infer Happy, Neutral, 

Fear and Disgust. Also, in our results, high beta and low beta (Surprised, Sadness, and Anger) 

have medium correlation.  

Then, we calculated the average correlation between facial emotion and brainwave. As 

described in Table 5, we got results (Neutral, Happy and Surprised) of high correlation between 

desire and emotion factors. Brainwave is very different depending on individual conditions. We 

may need to have different groups to get more accurate results in the future. 
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CHAPTER 7.  EVALUATION 

In this chapter, we present the evaluation results on our approach. To validate our desire 

inference computational model, we have established an evaluation environment within the Smart 

Home Laboratory. During the experiments, multiple stimuli were introduced over time to induce 

changes in user’s desires so that pilot data could be collected to train and verify the desire 

inference model.  

Figure 7 in Chapter 5 schematically describes an overview of the sensor-rich and controlled 

environments in SHL at Iowa State University. In the experimentation room, multiple diverse 

sensors, software, and appliances as well as webcam/camcorder were deployed on difference 

objects. The dataset was collected for 3 weeks by 24 participants. Provisioning of stimuli was 

done without artificial control or causing intrusiveness that may influence the participant's 

activities during the experimentation. The desire state space (i.e., definition of desire) include 

desire for watching TV, playing a game, eating cookies, using a computer, seeing photos, 

reading comics, listening to music, and wild cards.  The uses of wild cards help capture obscure 

or ambiguous desires. 

 

7.1 Implementation 

The computational model was implemented by MATLAB with Bayes Net Toolbox (BNT) 

introduced by Kevin Murphy [40].  BNT supports many types of conditional probability 

distribution, decision and utility nodes, static and dynamic BNs, and many different inference 

algorithms such as junction tree and frontier algorithm. For the inference algorithm, we used the 

junction tree engine. We first took the learning (training) data from 11 participants for 
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constructing a desire inference model, and then selected the inference data from remaining 10 

participants.  

For the learning parameters, we used Expectation-Maximization (EM) algorithm as we 

mentioned in Chapter 4 [35]. EM algorithm is an iterative method to search maximum likelihood 

or maximum a posteriori (MAP) estimates of parameters in statistical models. This model 

depends on unobserved latent variables. The EM iteration consists of performing an expectation 

(E) step, which creates a function for calculating the expectation of the log-likelihood, evaluated 

using the current estimate for the parameters, and maximization (M) step, which computes 

parameters maximizing the expected log-likelihood found on the E step. Theses parameter-

estimates are used to determine the distribution of the latent variables in the next E step [35].  

Figure 16 shows E step, which uses an inference algorithm to compute the expected sufficient 

statistics, and M step in MATLAB. 

 

 

Figure 16. EM algorithm 

 

 

 E-Step 

M-Step 
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EM algorithm can display the results after iterations of EM. Figure 17 shows the results 

after iterations of EM. Normally, complexity of EM algorithm depends on number of iterations 

and time to compute E and M steps.  

 

Figure 17. EM algorithm iteration results 

 

To evaluate our framework, there are several possible evaluation methodologies. First, we 

can have a simulation system in order to assure the correctness and effectiveness of the proposed 

model using the SHL facilities; thereby the feasibility of our framework and the effectiveness 

using synthetic and subjective data can be evaluated. Second, we can use a cross-validation route 

to the generalization of our training and test datasets. This technique can be beneficial for 

assessing how the results of a statistical analysis generalize an independent set of collected data. 

It is mainly used in settings where the goal is prediction, and one wants to estimate 

how accurately a predictive model performs in practice [41]. We can evaluate the performance 

The results after 2 Iterations of EM  
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using the time-slice accuracy regarded as a typical technique in time-series analysis. It is 

noteworthy that the time-slice accuracy represents the percentage of correctly labelling time 

slices. Third, we can evaluate and compare the accuracies of different probabilistic models such 

as Hidden Markov Model (HMM) and Conditional Random Field (CRF). HMMs are generative 

models, not directly designed to maximize the performance of sequence labelling, thereby 

leading to modelling of the joint distribution with given observation. In contrast, CRFs based on 

a discriminative method are undirected graphical models, which are specially designed and 

trained to maximize performance of sequence labelling, thus resulting in modelling of the 

conditional distribution. Generally, discriminative methods are recognized to be more accurate 

since they are trained for a specific performance task. The principal difference of this approach 

with respect to the HMM is that it maximizes a conditional probability of labels given an 

observation sequence [31]. Fourth, we can use precision and recall measurements. In this 

dissertation, we selected this methodology for evaluation. 

 

7.2 Precision and Recall 

Precision and recall are the basic measures used in evaluating search strategies. Precision is 

defined as the fraction of the number of relevant records retrieved to the total number of 

irrelevant and relevant records retrieved, whereas recall is the fraction of the number of relevant 

records retrieved to the total number of relevant records. Both precision and recall are therefore 

originated from an understanding and measure of relevance [54]. 

Table 8 numerically demonstrates the results of the desire inference performance containing 

two parts of cells; the first numbers indicate adaptation of ours computational desire inference 

model with testing data and the second numbers correspond to the probability of Think-Aloud. 
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Comparison of these two numerical values allowed us to calculate the accuracy of our 

computational model.  

 

Table 8. The Desire Inference Performance  

Desire Recall (%) Precision (%) 

Want to watch TV 

97 

88 

96 

98 

Want to play a game 

72 

65 

73 

95 

Want to eat cookies 

63 

72 

95 

93 

Want to use a 

computer 

81 

92 

87 

89 

Want to see photos 

76 

43 

77 

21 

Want to read comics 

81 

23 

77 

33 

Want to listen music 

84 

79 

90 

99 

Wild Cards 

71 

84 

81 

90 

Average 

78% 

73% 

85% 

81% 
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Figure 18. Recall of Desire Inference 

 

 

Figure 19. Precision of Desire Inference 

 

In Figure 18 and Figure 19, the first (blue) bar shows the results after the application of our 

desire inference model with the testing data collected during the experiments. The second (red) 

bar of each desire shows the results of Think-Aloud. 
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Table 9.  The Desire Inference Performance – Remove Emotions 

Desire Recall (%) Precision (%) 

Want to watch TV 

92 

88 

97 

98 

Want to play a game 

67 

65 

87 

95 

Want to eat cookies 

60 

72 

96 

93 

Want to use a 

computer 

78 

92 

92 

89 

Want to see photos 

74 

43 

89 

21 

Want to read comics 

78 

23 

88 

33 

Want to listen music 

81 

79 

93 

99 

Wild Cards 

72 

84 

86 

90 

Average 

75% 

71% 

91% 

84% 
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Figure 20. Examples of Desire Change Based on Emotion 
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Figure  20 continued 

 

 

Table 9 shows the desire inference performance after removing emotions. Although the 

average precision and recall of results are higher than the desire inference performance, we do 

not know about user’s satisfaction. However, based on Figure 20, when emotion is changed, we 

know that the desire is changed, too. Thus, emotion is very significant factors whether the user is 

satisfied with their desire or not.   

Desire inference results for wanting to watch comics and wanting to see photos deviated 

much from Think-Aloud results. The possible reasons for this inconsistency can be obtained 

from note-taking during the experiments as follows; 
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1) For the “wanting to watch comics” desire: When a participant wanted to watch comics 

using an iPad, it was not easy to distinguish what a participant really wanted versus 

actually announced through Think-Aloud. In other words, the participant’s original 

desire was “watching comics,” whereas the corresponding Think-Aloud answer could 

be “using an iPad.”  

2) For the “wanting to see photos” desire: Very similarly with case 1), some participants 

wanted to see photos using a computer. The participant’s original desire was “wanting to 

see photos”, whereas Think-Aloud answered “using a computer.” As aforementioned, there 

would possibly be incoherency between real desire inference data and the corresponding 

Think-Aloud data. 
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CHAPTER 8. CONCLUSION AND FUTURE WORK 

In this dissertation, we studied a desire inference process based on emotional, behavioral, 

and environmental context information. There are two major tasks as summarized below. 

First, we presented a decision framework based on BBNs for modeling human desire using 

environmental, behavioral, and emotional contexts. Our current model takes considerations of 

three most frequently used modalities, including facial recognition, and brainwave analysis. In 

particular, the presented solution has offered two novel and critical contributions: (1) We gave a 

precise definition of the belief-perceived situation as B(m, a, e), and we demonstrated how to use 

belief-perceived situations to infer user’s desire; (2) The probabilistic inference of human desire 

can be effectively carried out using a hierarchical DBBN. 

Second, as fully described in the Chapter 3, we developed a theoretical desire inference 

model based on Bayesian belief networks (BBNs), which is a probabilistic graphical model (a 

type of statistical model) that represents a set of random variables and their conditional 

dependencies via a directed acyclic graph (DAG). Formally, Bayesian networks are directed 

acyclic graphs whose nodes represent random variables. They are observable quantities, 

unknown parameters or hypotheses. Efficient algorithms are applied for 

performing inference and learning in Bayesian networks. Bayesian networks that model 

sequences of variables are called dynamic Bayesian Belief Networks (DBBNs). Generalizations 

of Bayesian networks that can represent and solve decision problems under uncertainty are 

called influence diagrams [39]. The dynamic inference process based on DBBNs is being 

considered to allow the system to accommodate emerging new desires and adjust user’s change 

in inclination towards certain desires over a period of time. DBBNs formalism is based on the 

Bayesian networks with extensions to represent discrete sequential systems.  
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Our central hypothesis is that DBBNs serve as an effective computational model for 

inferring user’s desires when provided with real-time observations and finite historical data of 

the user’s affective states, environmental contexts, and behavioural contexts as inputs. Based on 

our preliminary study, the problem of ambiguous human desire inference has been identified 

when human affective states were not considered. Therefore, the feasibility of using DBBNs to 

model human desires has been mathematically acquired. Thus, we completed an extended 

probabilistic desire inference model based on DBBNs and Shannon’s information theory [3] and 

EM algorithm [35]. This two-layer hierarchical probabilistic framework is introduced to model 

the behavioural contexts, emotions, and environmental information largely related to the user’s 

desire.  

Third, we identified and verified key observable factors for effective and accurate user 

desire inference. We speculated that essential tasks for desire inference would be: (1) conducting 

the pilot study to collect human-centered dataset, and (2) establishing the correlation between the 

potential key factors and human desire.  

It is essential to develop and evaluate a computational model capable of inferring users’ 

desires using observable data captured either by the observing software or from the surrounding 

environments, such as those encountered in smart homes.  

In addition, we established an evaluation environment within the SHL to validate our 

approach. During the experiments, multiple stimuli are disclosed over time to induce changes in 

user’s desires so that pilot data are collected to train and verify the desire inference model. 

Fourth, we presented the results of our framework using the data collected in this study. For 

the experiments with real (i.e., not simulated) data, we applied our framework to infer human 

desire. We used half of the data as our training data for constructing the computational model, 
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and the other half as our testing data. The model implementation is in MATLAB using the Bayes 

Net Toolbox (BNT) [40]. BNT supports 1) many types of conditional probability distribution, 2) 

decision and utility nodes, 3) static and dynamic BNs and 4) many different inference algorithms 

such as junction tree and frontier algorithm.  

We used the recall and precision methodology that is basic measures used in evaluation. 

Each desire has recall and precision percentage. Average precision was calculated to be 84% for 

human desire inference. Then, we showed the results the desire inference performance after 

removing emotions. The results were higher than the original desire inference performance. 

However, this comparison described that emotion is very important factor to change human’s 

desire.   The users changed their desire based on emotion’s change.  

 

In the future, we will investigate various approaches to improving the desire inference 

model. 

First of all, other models such as CRF can be applied in the desire inference process. CRFs 

are undirected graphical models which belong to the discriminative class of models. CRF is 

based on a discriminative method, and specially designed and trained to maximize performance 

of sequence labeling. CRF models the conditional distribution. Usually discriminative methods 

are more accurate since they are trained for a specific performance task. This would possibly 

endow some better discernment to more complicated interactions between users and their 

surroundings.  

Second, we can refine the experimentations. We have conducted the pilot study within the 

SHL. However, this was a first attempt. Based on the drawbacks of our pilot study, we can 

reinforce and extend the experimentation. We can consider different subjects with more varied 
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background. Currently, the pilot study was very simple because of limitation of data-logging 

methodology.  We need to come up with diverse methodologies to extend to different subjects. 

Also, we can have different setting with more sophisticated devices. Different software, sensors 

and devices can be considered. 

Third, we may need to trim outlyers from the collected data, which was not done in our 

current experimentation. It is very important to generate large datasets in the field of HCI. There 

are several open source datasets for sharing. However, it is not satisfied with the average of the 

gold standard. Thus, the various approaches of the data collections are needed to propose.  

In our pilot study, we had exception of constraints such as light and temperature sensors. 

Sometimes, they will be very significant factors to determine a result. All known constraints will 

be exploited in the future work. 
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