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ABSTRACT 

Proteins are the principal catalytic agents, structural elements, signal transmitters, 

transporters, and molecular machines in cells.  Experimental determination of protein 

function is expensive in time and resources compared to computational methods. Hence, 

assigning proteins function, predicting protein binding patterns, and understanding 

protein regulation are important problems in functional genomics and key challenges in 

bioinformatics.  This dissertation comprises of three studies.  In the first two papers, we 

apply machine-learning methods to (1) identify misannotated sequences and (2) predict 

the binding patterns of proteins.  The third paper is (3) a genome-wide analysis of G4-

quadruplex sequences in the maize genome.  The first two papers are based on two-stage 

classification methods.  The first stage uses machine-learning approaches that combine 

composition-based and sequence-based features.  We use either a decision trees 

(HDTree) or support vector machines (SVM) as second-stage classifiers and show that 

classification performance reaches or outperforms more computationally expensive 

approaches. For study (1) our method identified potential misannotated sequences within 

a well-characterized set of proteins in a popular bioinformatics database.  We identified 

misannotated proteins and show the proteins have contradicting AmiGO and UniProt 

annotations.  For study (2), we developed a three-phase approach: Phase I classifies 

whether a protein binds with another protein. Phase II determines whether a protein-

binding protein is a hub. Phase III classifies hub proteins based on the number of binding 

sites and the number of concurrent binding partners.  For study (3), we carried out a 

computational genome-wide screen to identify non-telomeric G4-quadruplex (G4Q) 
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elements in maize to explore their potential role in gene regulation for flowering plants.  

Analysis of G4Q-containing genes uncovered a striking tendency for their enrichment in 

genes of networks and pathways associated with electron transport, sugar degradation, 

and hypoxia responsiveness.  The maize G4Q elements may play a previously 

unrecognized role in coordinating global regulation of gene expression in response to 

hypoxia to control carbohydrate metabolism for anaerobic metabolism.  We 

demonstrated that our three studies have the ability to predict and provide new insights 

in classifying misannotated proteins, understanding protein binding patterns, and 

indentifying a potentially new model for gene regulation. 
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CHAPTER I 

GENERAL INTRODUCTION 

High throughput genome sequencing projects are producing larger and larger 

amounts of raw sequence data.  The need to identify, label, and classify these sequences’ 

biological functions and roles in a fast and efficient way has emerged, with increasing 

emphasis on the creation of high-quality, accurate functional predictions. Proteins are the 

principal catalytic agents, structural elements, signal transmitters, transporters, and 

molecular machines in cells. For this dissertation, three ways are explored to understand 

the function of proteins.  First, by examining further the central dogma of biology, the 

relationship between sequence, structure, and function is considered.  Second, our evolving 

understanding of a proteins' interaction partners is shown to help with functional 

annotation of proteins [1].  Protein-protein interactions are, therefore, critical to elucidating 

the role played by individual proteins in important biological pathways.  Third, the 

transcription and translational control of genes that encode proteins can define whether and 

how proteins are expressed.   Chromosomes carry genetic information and numerous 

DNA-sequence elements regulate the expression of that information through control of 

chromatin structure and transcription.  An example of one of these elements is the G4-

quadruplex, a non-B-form DNA secondary structure (DNA conformations other than the 

canonical right-handed double helical structure) that has received recent attention for its 

role in gene regulation.   

Experimental determination of protein function, interaction relationships, and 

regulation lags significantly behind the rate of growth of sequence databases. This situation 

is likely to continue for the foreseeable future.  Hence, assigning proteins a biological 
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knowledge label in the absence of functional information, i.e., from sequence alone, alone 

remains one of the most challenging problems in functional genomics [1]. It is also 

desirable to make this process quick, accurate, versatile, and updateable.  For this reason, 

much work on producing such algorithms has been attempted.  This dissertation takes a 

computational approach to addressing three bioinformatics problems: (1) identifying 

proteins that are likely to be functionally misannotated proteins; (2) labeling binding 

patterns of hub proteins; and (3) exploring the roles of G4-quadruplexes in regulating gene 

expression. 

 
Data Mining Approaches for Discovery of Protein Sequence-Structure-Function 

Relationships 
 

Recent advances in both the fields of machine-learning [2] and data mining [3] 

offer a promising approach to data-driven discovery of complex relationships from large 

data sets in general, and discovery of macro-molecular sequence, structure, evolution, 

expression, interaction, and function in particular [4, 5]. To summarize, the data mining 

approach uses a representative training dataset that encodes information about proteins 

with known functions to build a classifier for assigning proteins to one of the functional 

families represented in the training set. The resulting classifier can be used to assign novel 

protein sequences to one of the protein families represented in the training set after it has 

been evaluated using an independent test set. Several recent studies have explored data 

mining approaches for the automated construction of classifiers for assigning proteins to 

functional families.  We describe recent work, the results, and the methods used for 

prediction (See Tables 1 - 4). Here we focus on machine-learning algorithms that are often 

used and have shown success in bioinformatics.  These algorithms include the following: 
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Decision trees [6], Naïve Bayes, Markov models, and Support vector machines (SVM) [7]. 

These methods are described in greater details in the methods sections in each chapter. 

 
Overview of Prediction of Misannotated Proteins 

 
As more genomic sequences become available, methods for functional annotation 

of genes become increasingly important. Because experimental determination of protein 

structure and function is expensive and time-consuming, there is an increasing reliance on 

automated approaches for assignment of functional categories (e.g., Gene Ontology (GO) 

[8-10]) to protein sequences. An advantage of such automated methods is that they can be 

used to annotate hundreds to thousands of proteins in a matter of minutes, which makes 

their use especially attractive in large-scale genome-wide annotation efforts.  

Most automated approaches to protein function annotation rely on transfer of 

annotations from previously annotated proteins, based on sequence similarity. Such 

annotations are susceptible to several sources of error, including errors in the original 

annotations from which new annotations are inferred, errors in the algorithms, bugs in the 

programs or scripts used to process the data, clerical errors on the part of human curators, 

etc. The effect of such errors can be magnified because they can propagate from one set of 

annotated sequences to another through widespread use of automated techniques for 

genome-wide functional annotation of proteins. Once introduced, such errors can go 

undetected. Because of the increasing reliance of biologists on reliable annotations for 

formulation of hypotheses, design of experiments, and interpretation of results, incorrect 

annotations can lead to wasted effort and erroneous conclusions. Computational 

approaches to checking automatically inferred annotations against independent sources of 

evidence and detecting potential annotation errors offer a potential solution to this problem 
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[11-21]. See Table 5 for details about these methods.  Currently, there are few high-

throughput methods that exist or that have been widely applied to this problem.  This is 

partly due to the possibility that the same pitfalls for annotating sequences may exist for 

checking annotations.  Hence, there is a large and growing need for methods to predict 

misannotations and methods for dealing with these misannotations. 

 
Overview of Protein-Protein Interaction Networks and the Relationship of Binding 

Patterns in Hub Proteins 
 

Protein-protein interaction networks are usually represented as graphs with nodes 

corresponding to the proteins and edges denoting pairwise interactions.  This is a simplistic 

representation that is not rich enough to encode types of interactions including  interactions 

that involve more than two proteins.  A single target protein can interact with a large 

number of partners: sometimes the interactions are mutually exclusive because of 

competition for the interaction sites on the target protein,  other times  interactions may be 

simultaneously possible, and even mutually cooperative [22, 23].  Distinguishing between 

these types of interactions is essential for uncovering the physical basis of interactions of a 

protein with other proteins, engineering the protein surfaces to manipulate synthetic 

pathways, or for designing drugs that bind specific targets [24-26].  Of particular interest 

are hub proteins, proteins that interact with a large number of other proteins in an 

interaction network.  Hub proteins have been reported to play essential roles in cellular 

control and tend to be highly conserved across species [27].  Mutations in hub proteins can 

potentially disrupt interactions with its many interaction partners, which can turn out to be 

lethal [28-30].  Hence, it is especially important to understand the physical and structural 

basis of interactions of hub proteins with their partners.  Hub proteins can be distinguished 
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based on structural and kinetics properties.   Based on structural information, Kim et al. 

[31] defined two types of hub protein structures:  singlish interface hubs (SIH) and 

multiple-interface hubs (MIH).  SIH interacts with multiple partners at one or two binding 

sites and MIH interacts with multiple interaction partners through more than two binding 

sites.  Recent studies [30-39] have explored the roles of SIH and MIH in protein-protein 

interactions and hence protein function.  Hub proteins can also be classified based on the 

kinetic mode of interaction.  Han et al. [40] described a classification model based on a 

bimodal distribution of co-expression of hub proteins with their interaction partners.  Date 

hubs tend to display expression levels that have low correlation with those of their 

interaction partners (and tend to bind different partners at different time points or 

locations).  Conversely, party hubs tend to exhibit expression levels that have high degree 

of correlation with those of their interaction partners (and tend to interact simultaneously 

with the partners).   The analysis of party and date hubs provides additional insights into 

the structure of the underlying proteome and interactome.   

 Experimental characterization of hub proteins in terms of their structural and 

kinetic characteristics requires knowledge of the structures of complexes formed by such 

proteins in interaction with their binding partners [41, 42].  Because of the prohibitive cost 

and effort needed to determine the structures of complexes formed by hub proteins with 

their binding partners and the interfaces that mediate such interactions, there is an urgent 

need for reliable methods that predict the structural and kinetic characteristics of hubs from 

sequence information alone.  In particular, there is a growing interest in purely sequence-

based computational methods for discriminating between simultaneously possible versus 
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mutually exclusive interactions [36, 40, 43, 44] and predicting the number of binding sites 

available on the surface of a protein.    

Our current understanding of protein-protein interaction networks is quite limited 

for a variety of reasons including the high rate of false positives (predicted interactions 

between proteins) associated with high throughput experiments, the low coverage of 

solved co-crystal structures in the Protein Data Bank (PDB), and the difficulty of obtaining 

reliable negative evidence that a protein does not interact with one or more other proteins.  

Hence, there is a growing interest in computational tools that provide useful insights into 

various structural aspects of protein interactions from protein sequence alone.  Table 6 - 8 

shows recent work on SIH/MIH, date/party hubs, and distinguishing hub proteins from 

non-hub proteins [45-47].   

 
Genome-Wide Analysis of G4-Quaduplex Motifs 

The G4Qs and the ability to form them are hallmarks of most eukaryotic telomere 

repeat sequences, but they also occur at sites throughout the chromosome, where their role 

in gene regulation has received major attention in the last decade [48-50].  These non-

telomeric G4Qs have been characterized in E coli, human, yeast, and other eukaryotes (See 

Table 8) [51-57].  These G4Q elements likely function as reversible structural motifs that 

have evolved a variety of functions.  In particular, recognition of their role in cell cycle 

control and cancer-associated genes and pathways has fueled a rapid and recent expansion 

of research on G4Qs and is reflected in the numerous reviews in the last few years on their 

occurrence and functions (See Table 9) [58-64].  Significant discoveries of G4Q elements 

have come from bioinformatics analyses and data mining of whole genomes (See Table 

10) [65-71].  G4Q motifs are demonstrated to occur frequently in the human genome [54, 



7 

70, 71], appearing in more than 40% of human gene promoters [72].  Together with their 

occurrence in human, mouse, and rat promoters [73] led to the hypothesis of a specific and 

conserved role for G4Qs in transcriptional regulation.  A well characterized example is the 

c-MYC proto-oncogene, in which a G4Q motif within the promoter was shown to affect 

transcription in vitro [74] and was proposed to function as a molecular switch.  Notably 

absent from these analyses are representatives of plant kingdom, despite the role of plant 

genetics in basic discoveries of nucleic acid functions, such as telomere functions, basic 

mechanisms of crossover and inheritance, and the discovery of transposable elements.  To 

date, G4Q investigations in plants have been limited to one genome-wide analysis of 

Arabidopsis with a brief comparison to other plant species (see Table 11) [75, 76].  

Though this study gave a broad overview of the frequency of G4Qs in some plants species, 

the role of G4Qs in plants remains unknown.  Although plants do not succumb to cancer, 

they do share much of the genome maintenance and basic eukaryotic biology with species 

from other kingdoms.   We propose that maize (Zea mays ssp. mays) would be a good 

model organism to explore the roles of G4Qs in plants, because maize is a well-described 

plant model species for genetics and, more recently, genomics research [77]. 

 
A Survey of Current Methods 

 
In our literature review section we show previous work that relates to the three 

individual studies (Chapter 2, 3, and 4).  Most of the literature fits the following criteria:  a 

recent study showing new or state-of-the-art results, a classic study that was either the first 

of its kind or the original source of a result, a review paper that summarizes a field of 

study, or a representative paper that provides a good or representative example of similar 

papers in that field.  The literature review is broken up in the following sections:  
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1. Predicting functionally misannotated proteins 

  A.  Approaches for functional annotation of proteins   

i. Similarity-based of sequence (Table 1) 

ii. Sequence motif-based (Table 2) 

iii. Composition and reduced alphabet  (Table 3) 

iv. Protein interaction networks, protein structure, 

literature and text mining, gene expression, or the 

integration of other relevant data  (Table 4) 

  B.  Misannotation of proteins (Table 5) 

2. Labelling binding patterns of hub proteins 

  A. Hubs and non-hubs in PPI networks (Table 6) 

  B. Structural and kinetic annotation of protein hubs (Table 7) 

3. Exploring the roles of G4-quadruplexes in the maize genome 

  A.  G4-quadruplex: Genome-wide surveys (Table 8)  

  B.  G4-quadruplex: Review papers (Table 9) 

  C.  G4-quadruplex: Bioinformatics (Table 10) 

  D.  G4-quadruplex: Plants (Table 11) 

The literature review for each subject is organized into tables.  Computational 

papers have four columns: the authors and year(s), a description of the paper, a summary 

of the results, and the method or type of method used.   Review papers or biology-centered 

papers have three columns: the authors and year(s), a description of the approach and 

results, and keywords that best summarized key elements in the paper.   

  



9 

Table 1: Similarity based approaches functional annotation of proteins. 
Author Year Description Results Methods 
Lopez and 
Pazos 
2013 [78, 79] 

Developed a method for 
predicting function to 
individual domains based on 
position specific scoring 
matrices (PSSM) build on 
sequences assigned to gene 
ontology terms.  In addition this 
method predicts structural folds 
and identifies individual 
residues that may play 
functionally important  roles.    

On a set of 1017 protein chains, they 
presented ROC curves showing their 
method outperformed a PSI-BLAST 
based method.   They also developed 
COPRED, a web-server that predicts 
function, functional sites, and folds at 
the domain level.    

PSSM 
Gene Ontology 
Domain 

Sleator et al. 
2010 [80] 
 

Reviewed various recent studies 
in protein function prediction 
from sequence.  

This is a review paper so no results 
were reported, but they did address 
the strength and weaknesses of each 
approach, and what challenges remain 
in this area.  

Automated 
Function 
Prediction 
Review 

Xiong et al. 
2011 [81] 

Developed a multiple step 
method to assign function to 
sequence.  The first step is to 
identify motifs from aligned 
sequences.  The second step is 
to score the motifs based on the 
frequency and quality of the 
motifs.  The final step is using 
the scored motifs as inputs to a 
random forest and SVM 
classifiers.    

They tested their method with 
nucleosome occupancy and protein 
solubility datasets.  They reported 
AUC values of 0.80 and 0.63 
respectively for each dataset.  

SVM 
Random Forest 

Meng et al. 
2009 [82] 
 

Approach combined similarity-
based with literature-based 
annotation for assigning GO 
labels to protein sequences.  For 
the similarity-based annotation 
they used reciprocal best hits 
between rice and multiple other 
species.  They validated the 
results literature with reviewed 
data, domains, or wet-lab data.    
 

Using their sequence-based approach 
they functional annotated 6,286 
proteins (including 2,870 hypothetical 
proteins).   The literature-based 
approach annotated 2,810 proteins 
(1,673 received new GO terms).  
Overall 7,412 proteins were 
annotated.   

Reciprocal 
BLAST 
Literature-
mining 

Finn et al.  
2006 [83, 84] 
Sonnhammer 
et al.  
1997 [85] 
 

Developed PFam (Protein 
Family) database.  Each protein 
database is represented by a 
hidden Markov model (HMM) 
based on the sequence 
alignment of the proteins in that 
family.  

PFam is a widely used both in 
classifying proteins as well as a 
location to find well-characterized 
protein domain families.  Their 
HMMR method to construct PFam 
families is also widely used.  

PFam 
HMM 

Vinayagam et 
al. 
2006 [86] 

Developed GOPET a Gene 
Ontology term Prediction and 
Evaluation Tool that uses an 
SVM based on a sequence 
kernel.  

This web service gives experimental 
researchers as well as the 
bioinformatics community a valuable 
sequence annotation device. 
Additionally, GOPET also provides 
less significant annotation data which 
may serve as an extended discovery 
platform for the user. 

SVM 
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- Table 1 continued - 
 

Jones et al. 
2005 
[87] 

Developed a simple method 
that given an unannotated 
sequence they use BLAST, to 
find similar sequences that have 
already been assigned GO 
terms by curators.  They make 
their predictions based on the 
best five matching sequences 

The precision and recall of estimates 
increases rapidly as the amount of 
distance permitted between a 
predicted term and a correct term 
assignment increases.  

BLAST 

Lanckriet et 
al. 
2004 [88] 

Used a SVM to predict 
ribosomal and membrane 
proteins. As a kernel to the 
SVM they used a wide variety 
of genome-wide measurements 
including BLAST, PFam 
HMM, protein interaction, gene 
expression, multiple sequence 
alignment, hydropathy profile, 
and random numbers. 

Their combined method for using 
multiple sources of genome-wide 
information performed better than 
using any individual method alone.  
On the ribosomal proteins their 
method was able to predict with very 
high ROC scores (>.999) The 
membrane proteins predictions had a 
.922 ROC score.  Showing this is a 
very effective method.    

SVM, HMM, 
BLAST 
 

Murvai et al. 
2001 [89] 

Developed an artificial neural 
network (ANN) to recognize 
domains in protein sequences.  
A query sequence is first 
compared to a database using 
BLAST, the output is encoded 
an input to the artificial neural 
network. 

On a wide variety of domain data and 
functional data they were able to get 
correlation coefficients ranging from 
.85 to .98.   

ANN, 
BLAST 

Altschul et al. 
1990,1997 
[90, 91] 
 
 

Developed BLAST (Basic 
Local Alignment and Search 
Tool), a homology based search 
tool to that finds local regions 
of similarity.   

BLAST is the most widely use 
bioinformatics tool.  BLAST is used 
for many tasks including inferring 
protein function based on BLAST 
hits. 

BLAST 
 

Gribskov et 
al.  
1987 [92] 

Developed a profile analysis 
method to detecting 
relationships between distantly 
related proteins by using 
position-specific scoring tables.  

This has become a common technique 
in building relationships among 
aligned sequences.   

Position-
specific scoring 
matrix 
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Table 2: Motif based approaches for functional annotation of proteins. 
Author Year Description Results Methods 
Saidi et al. 
2010 [93] 

Tested a wide variety of 
machine-learning algorithms 
based on the following features:  
motifs, n-grams, amino acid 
composition, and functional 
domains. 

They reported accuracies on 5 protein 
datasets.   Their best results reached 
87.7% by using a fusion network of 
all their methods combined.   

Decision trees 
SVM 
Naive Bayes 
ANN 

Sarc et al. 
2010 [94] 

Created a method (GOPred) 
that combines the results from 
BLAST nearest neighbors, 
subsequence profile maps, and 
peptide statistics (from 
PEPSTATS-SVM) with several 
different voting schemes to 
predict GO functional 
annotations. 

For a given protein, GOPred provides 
predicted GO terms along with 
probability scores for each method.  It 
also shows a weighted mean score. 

BLAST 
Profile maps 
SVM 
 

Pagni et al. 
2007, 2004 
[95, 96] 

Developed a web-server 
(MyHits) to functionally 
annotate proteins based on 
domains and motifs.   

Their site offer a variety of tools 
including PSI-BLAST, ClustalW, T-
Coffee, Jalview; a set of sequences; a 
set of motifs; and a set of matches 
between the sequences and motifs.   

PSI-BLAST 
Pfsearch 

Kunik et al. 
2005 [97] 

Reviewed current motifs along 
with a new unsupervised 
method (MEX) for finding 
motifs in sequences.  They 
combined the motif information 
with a SVM to produce a 
functional classifier.    

The classification results from MEX 
performed better than SVMProt and a 
SVM using the Smith-Waterman 
distance matrix.    

Motif finding 
SVM 

Wang et al.  
2003, 2002 
[98, 99] 

Developed a decision tree 
approached based on the 
presence or absence of 
PROSITE motifs. 

Their method outperformed a query 
based approached based on individual 
PROSITE motifs on a set of peptidase 
proteins. 

Decision Tree 
PROSITE 

Benhur and 
Brutlag  
2003 [100] 
Huang et al, 
2001 [101] 

Developed e-motif and e-
matrix, methods for detecting 
remote homology that is based 
on the presence of discrete 
sequence motifs. The motif 
content of a pair of sequences is 
used to define a similarity that 
is used as a kernel for a Support 
Vector Machine (SVM) 
classifier. 

They tested the methods on two 
remote homology detection tasks: 
prediction of a previously unseen 
SCOP family and prediction of an 
enzyme class given other enzymes 
that have a similar function on other 
substrates. They find their methods 
perform significantly better than other 
sequence homology based tools. 

SVM 

Attwood et al. 
2000 [102] 

Developed the PRINTS 
database, a collection of protein 
family fingerprints base on 
sequence alignment. 

The group of PRINTS motifs together 
is diagnostically more potent than 
single motifs by virtue of the 
biological context afforded by 
matching motif neighbors. 

PRINTS 

Mulder et al. 
2005, 2003, 
2002 [103-
105] 

Developed InterPro, a new 
integrated documentation 
resource for protein families, 
domains and functional sites, 
combining the information of 
the PROSITE, PRINTS, PFam 
and ProDom database projects. 

They have merged and gathered 
locally the annotations from PRINTS, 
PROSITE and PFam. 

PRINTS 
PROSITE 
PFam  
InterPro 
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- Table 2 continued - 
 

Henikoff et 
al. 
1999 [106] 

Developed the Blocks 
Database, which contains 
ungapped multiple alignments 
for families documented in 
PROSITE.  Blocks can be 
searched to classify new 
sequences. 

Blocks is a commonly used database 
to search for protein function. 

Blocks 

Falquet et al. 
2002  [107] 
 Bairoch and 
Bucher 
1994 [108] 
Hofmann et 
al. 
1999 [109] 

Developed the PROSITE 
database.  PROSITE is a 
compilation of sites and 
patterns found in protein 
sequences; it can be used as a 
method of determining the 
function of uncharacterized 
proteins translated from 
genomic or cDNA sequences. 

PROSITE is a common site to locate 
possible protein motifs that can be 
used to determine a proteins possible 
function. 

PROSITE 

 
Table 3: Composition, pseudo-composition, and reduced alphabet approaches for 
functional annotation of proteins. 
Author Year Description Results Methods 
Feng et al. 
2013 [110] 
 

Developed a method and web 
server, iHSP-PseRAAAC, to 
predict heat shock protein 
families.  The method used a 
SVM trained and tested on the 
composition of reduced 
alphabet representations of 
proteins.   

They were able to correctly classify 
six types of heat shock proteins at a 
rate of 87%.  This was done on a 
dataset with less than 40 % sequence 
identity. 

SVM 
Composition 
Reduced 
alphabets 

Huang et al. 
2013, 2013 
[111, 112] 

Used a radial basis function 
neural networks trained on 
pseudo amino acid composition 
and PSSM representations of 
proteins to predict subcellular 
localization and membrane 
proteins.   

They presented classification 
performance and computation time on 
six localization datasets and a 
membrane protein dataset with 
various flavors of their method. 

SVM 
PSSM 
Pseudo 
composition 
 

Hoze et al. 
2013 [113] 
 

Developed a SVM approach 
based on the amino acid 
composition representation of 
proteins to classify peptide 
cleavage prediction.   

This method was able to predict 
peptide cleavage with the following 
top scoring performance measures:  
accuracy (0.75), sensitivity (0.81), 
and specificity (0.99).    

SVM 
Composition 

Chou et al. 
2012, 
2010,2010, 
2010,2010, 
2009,2007, 
2007 
[114-123] 

Developed a series of 
algorithms including: mPLoc 
series and iLoc series.  They 
used different algorithms such 
as fuzzy k-NN and SVM based 
on a series of features.  These 
features include pseudo-amino 
acid composition, quasi-
sequence-order effect, 
physicochemical composition, 
and other distance functions 
based on protein interactions. 

Their methods were able to improve 
the performance of classification or 
offer unique insightful information on 
a variety of datasets. 

Fuzzy k-
Nearest 
Neighbor  
SVM 
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- Table 3 continued - 
 
Huang et al. 
2007 [124] 

Developed ProLoc, an 
evolutionary support vector 
machine (ESVM) based 
classifier with automatic 
selection from a large set of 
physicochemical composition 
(PCC) features to design an 
accurate system for predicting 
protein subnuclear localization. 

ProLoc utilizing the selected 33 and 
28 physicochemical composition 
features has accuracies of 56.37% for 
SNL6 and 72.82% for SNL9, which 
are better than previous methods. 

SVM 

Han et al.  
2006 [125] 

Developed a system for 
predicting disordered regions in 
proteins based on decision trees 
and reduced amino acid 
composition. Concise rules 
based on biochemical properties 
of amino acid side chains are 
generated for prediction. 

In cross-validation tests, with four 
groups of reduced amino acid 
composition, this system can achieve 
a recall of 80% at a 13% false positive 
rate for predicting disordered regions, 
and the overall accuracy can reach 
83.4%. This prediction accuracy is 
comparable to most, and better than 
some, existing predictors.  
Advantages of this approach are high 
prediction accuracy for long 
disordered regions and efficiency for 
large-scale sequence analysis 

Decision Trees 
 
Reduced 
Alphabets 

Guo and Lin. 
2006 [126, 
127] 
 

Developed TSSub for 
predicting localization in 
eukaryotic proteins. This 
system extracts features from 
both profiles and amino acid 
sequences. Different features 
are extracted from profiles by 
multiple probabilistic neural 
network (PNN) classifiers (the 
amino acid composition from 
whole profiles and N-terminus 
of profiles and the dipeptide 
composition) Also, a SVM 
classifier is added to implement 
the residue-couple feature 
extracted from amino acid 
sequences. 

The overall accuracies of TSSub 
reach 93.0 and 77.4% on the 
Reinhardt and Hubbard's eukaryotic 
protein dataset and Huang and Li's 
eukaryotic protein dataset, 
respectively. 

SVM 
Eukaryotes 
Composition  

Huttenhower 
et al.  
2006 [128, 
129] 

Developed Bayesian networks 
to predict functional 
relationships between proteins 
under a variety of conditions.  
This study considers the effect 
of network structure and 
compares expert estimated 
conditional probabilities with 
those learned using a generative 
method and a discriminative 
method. 

They find that it is critical to consider 
variation across biological functions; 
even when global performance is 
strong, some categories are 
consistently predicted well, and others 
are difficult to analyze. All learned 
models outperform the equivalent 
expert estimated models, although 
this effect diminishes as the amount 
of available data decreases. 

Expectation 
Maximization 
Extended 
Logistic 
Regression 
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- Table 3 continued - 

 
Bhasin et al.  
2005, 2004 
[130-134] 
 
 

Developed (ESLpred and 
PSLpred) hybrid methods using 
information that is based on 
amino acid composition, 
properties of amino acids, 
dipeptide composition, and PSI-
BLAST results.   Also, 
produced a method to predict 
nuclear receptors. 

Using the hybrid method they were 
able to predict the localization of 
eukaryotic proteins better then by 
each method individually.   They 
reported accuracies ranging from 68.2 
to 95.3%.   

SVM 
 

Sarda et al. 
2005 [135] 

Developed pSLIP which uses 
SVMs in conjunction with 
multiple physicochemical 
properties of amino acids to 
predict protein subcellular 
localization in eukaryotes 
across six different locations.  
Unlike other algorithms, 
contextual information is 
preserved by dividing the 
protein sequences into clusters. 

The algorithm was applied to the 
dataset provided by Park and 
Kanehisa and it obtained prediction 
accuracies for the different classes 
ranging from 87.7-97.0% with an 
overall accuracy of 93.1% 

SVM 
Clustering 

Yang and 
Chou 
 2004 [136] 

Developed a bio-support vector 
machine that replaces the kernel 
function of a SVM with a 
similarity matrix for amino 
acids.     

They used their method to predict 
HIV protease cleavage sites.  Their 
method had a mean accuracy of 92%.  
Their method had a large advantage in 
reducing the model complexity and 
enhancing the model robustness.   

SVM 

Hua et al.  
2001[137] 

Developed a Support Vector 
Machine algorithm to predict 
the subcellular localization of 
proteins based on their amino 
acid composition.  

The total prediction accuracies reach 
91.4% for prokaryotic organisms 
(DS8) and 79.4% for eukaryotic 
organisms (DS7).  This method had 
better results versus other methods 
using amino acid composition for 
prediction. 

SVM 

Reinhardt 
and Hubbard  
1998 [138] 
 

Trained neural networks to 
predict the subcellular location 
of proteins in prokaryotic or 
eukaryotic cells from their 
amino acid composition.  Their 
dataset is one of the standards 
for testing subcellular 
localization methods. 

For three possible subcellular 
locations in prokaryotic organisms 
this method had a prediction accuracy 
of 81%. For eukaryotic proteins an 
overall prediction accuracy of 
66%was achieved for four 
localization sites. 

ANN 
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Table 4: Protein interaction networks, protein structure, literature and text mining, 
gene expression, or the integration of other relevant data approaches for functional 
annotation of proteins. 
Author Year Description Results Methods 
Hoehndorf et al. 
2013 [139] 

Described a method to 
assign functional annotation 
using phenotype information 
and GO annotations.  They 
applied the approach to 
yeast, worm, zebrafish, 
fruitfly, and mouse.   

They presented ROC curves with AUC 
values to show that predicting genetic 
and protein interactions improve if you 
also use gene function data.  They 
were also able to classify a large 
number of novel genes in the datasets.   

GO 
Phenotypes 
Genetic 
interactions 
PPI 

Cozzetto et al. 
2013 [140] 

Developed a classifier that 
functional annotates (GO 
terms) proteins using many 
different types of data.  The 
data include:  sequence, 
gene expression, PPI, 
UniProt annotations.  They 
also develop a new scoring 
metric to measure functional 
annotation. 

They tested the method using 595 
proteins from the 2011 Automated 
Function Prediction meeting and 
showed they were able to get recall 
values about 0.5 on molecular function 
annotations and 0.3 on biological 
process annotations.    

GO 
PPI 
UniProt 
Gene 
expression 
 

Sasidharen et al. 
2012 [141] 

Developed a software 
package, GFam, that does 
functional annotations of 
gene/protein families.  This 
approach combine sequence 
and domain data.   

Compared to data in InterProt for 
Arabidopsis, GFam increased 
sequence coverage by 7.2% and 
residue coverage by 14.6%.   

Domain 
Greedy 
method 
InterProt 

Wilikins et al. 
2012 [142] 

Reviewed pattern-based 
methods for functionally 
annotating proteins.   

The types of patterns this paper 
reviews include: sequence-based, 
structure-based, phylogenomic, and 
synthesis through evolution. A 
evolutionary patterns and functional 
redesign case study is also performed.   

Pattern-based 

Frech et al. 
2010 [143] 

Developed a method to 
classify gene families across 
genomes by using existing 
curated gene families of 
reference species to classify 
genes of related genomes.   

They tested their method on C. elegans 
and four related Caenorhabditis 
species.  They compared their results 
with other curated data on 
chemosensory genes and found good 
agreement.     

C. elegans 
Gene Families 

Pandey et al. 
2009 [144] 

Developed a method to 
improve functional 
classification by including 
interrelationships between 
functional classes .  They 
used a k-nearest neighbor 
approach using a measure 
that evaluates semantic 
similarity betweens nodes in 
an ontology. 

They tested their method on several 
datasets to functional classify GO 
Biological process labels.  They results 
show their method was able to produce 
more accurate predictions.  They also 
were able to uncover previously 
unknown and novel annotations. 

GO 
k-Nearest 
Neighbor 
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- Table 4 continued - 
 
Malmstrom et 
al. 
2007 [145] 

Yeast proteins were parsed 
into 14,934 domains, and 
proteins with low sequence 
similarity to proteins of 
known structure were folded 
using the Rosetta de novo 
structure prediction method.  
This structural data was 
integrated with process, 
component, and function 
annotations from the 
Saccharomyces Genome 
Database to assign yeast 
protein domains to SCOP 
super-families using a 
simple Bayesian approach 

They predicted the structure of 3,338 
putative domains and assigned SCOP 
super-family annotations to 581 of 
them. They assigned structural 
annotations to 7,094 predicted 
domains based on fold recognition and 
homology modeling methods. 

Structural 
information 

Schuemie et al. 
2007 [146] 

Developed a method based 
on a combination of cross-
species sequence homology 
searches and the 
corresponding literature.  
This approach facilitated the 
direct association between 
sequence data and 
information from biological 
texts describing function. 

Clustering of the DEAD-box protein 
family of RNA helicases confirmed 
that the proteins shared similar 
morphology although functional 
subfamilies were accurately identified 
by this approach. They were able to 
predict novel nuclear proteins. 

Homology 
search 
Clustering 

Zhu et al. 
2007 [147] 

Used a previously published 
method GESTs to use 
information based on gene 
expression similarity, 
taxonomy similarity of the 
functional classes, and 
protein-protein interaction 
network data to predict 
functional classes in the 
Gene Ontology. 

Based on the yeast protein-protein 
interaction data from MIPS and a 
dataset of gene expression profiles, 
they show that this method is powerful 
for predicting protein function to very 
specific terms.  

PPI networks 

Hayete et al. 
2005 [148] 

Developed GoTree, a 
method that uses GO 
domains and textual 
information based on similar 
proteins to predict a proteins 
GO label. 

This method is more sensitive when 
compared to the InterPro2GO 
performance and suffers only some 
precision decrease. In comparison to 
the InterPro2GO this method 
improved the sensitivity by 22%, 27% 
and 50% for Molecular Function, 
Biological Process and Cellular GO 
terms respectively. 

Decision Tree 
Text mining 
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- Table 4 continued - 
 

Martin et al. 
2004 [149] 

Developed GOtcha, a 
method for predicting gene 
product function by 
annotation with GO terms. 
GOtcha uses associations 
with term-specific 
probability (P-score) 
measures of confidence. 
Term-specific probabilities 
are a novel feature that 
allows for the identification 
of conflicts or uncertainty in 
annotation. 

GOtcha provided 60% better recovery 
of annotation terms and 20% higher 
selectivity than annotation with 
TOPBLAST. 

Decision Tree 
expectation 
maximization 
 

Lanckriet et al. 
2004 [88] 

Used a SVM to predict 
ribosomal and membrane 
proteins. As a kernel to the 
SVM they used a wide 
variety of genome-wide 
measurements including 
BLAST, PFam HMM, 
protein interaction, gene 
expression, multiple 
sequence alignment, 
hydropathy profile, and 
random numbers. 

Their combined method for using 
multiple sources of genome-wide 
information performed better than 
using any individual method alone.  
On the ribosomal proteins their 
method was able to predict with very 
high ROC scores (>.999) The 
membrane proteins predictions had a 
.922 ROC score.  Showing this is a 
very effective method.    

SVM, HMM, 
BLAST 
 

Jensen et al. 
2003 [150] 

Developed a neural network 
approach to predict human 
protein function according 
to Gene Ontology labels.   

On a dataset of 11 different GO labels, 
their method was able to produce 
sensitivities of at least 50% with false 
positive rates of below 10% on all data 
and on the best categorizes 70% 
sensitivity with 5% false positive rates.   

Neural 
networks 

Deng et al. 
2003 [151] 

Developed an integrated 
probabilistic model to 
protein physical interactions, 
genetic interactions, highly 
correlated gene expressions, 
protein complexes, and 
domain structures to predict 
protein function.  This 
model is an extension of 
Markovian random fields.  

On a database based on MIPS protein 
function classification they were able 
to combine their methods and get a 
sensitivity and selectivity tradeoff of 
about 76% apiece.   This method 
works well for predicting multiple 
functions for a single protein. 

Markov 
random fields 
(MRF) 

Claros and 
Vincens 
1996 [152] 
 

Developed a method using 
discriminant analysis using 
47 parameters from a set of 
mitochondrial proteins 
found in SwissProt. A 
computational method that 
facilitates the analysis and 
objective prediction of 
mitochondrially imported 
proteins has been developed. 

Based on amino acid sequence alone, 
75-97% of the mitochondrial proteins 
studied have been predicted to be 
imported into mitochondria. The 
existence of mitochondrial-targeting 
sequences is predicted in 76-94% of 
the analyzed mitochondrial precursor 
proteins. 

PCA 
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Table 5: Computational methods for prediction of misannotated proteins 
Author Year Description Results 
Bell et al. 
2012 [153] 
 

Performed a case study using the 
UniProtKB database to define a measure 
for the quality of large-scale annotation. 

Power-law distributions were applied to the 
UniProtKB database to create a quality metric 
for functional annotation.  They showed that 
the quality of the database has matured over 
time and that manual annotations were 
superior to automated annotations. 

Faria et al. 
2012 [14] 
 

Presented a new method for literature-
based  GO term annotation by combining 
a literature-based approach with 
computational predictions from SGD. 

On a subset of proteins from SGD, the 
proposed method was able to update 24% of 
the unknown proteins with a GO annotation.   

Skunca et al. 
2012 [154] 

Introduced a method that evaluates 
electronic GO annotations by comparing 
successive releases of the UniProt Gene 
Ontology Annotation database. 

They analyzed over 190,000 gene products 
and showed a lot of figures and graphs 
displaying the quality of the annotations.  
They found that the accuracy of electronic 
annotations is very comparable to expert-
curated annotations. 

Costanzo  
et al. 
2011 [12] 
 

Analyzed the GO annotations of UniProt 
proteins and discuss the quality of the 
annotations.  They also developed an 
algorithm to learn relationships between 
GO terms. 

The show that 64% of the UniPotKB proteins 
are misannotated.   Their algorithm predicted 
501relationships (with 94% precision) 
between molecular function terms.  

Park et al. 
2011, 2005 [18, 
19] 

Developed GOChase, a set of web-based 
utilities to detect and correct the errors in 
GO-based annotations. 

They determine an error-conscious system for 
GO can help GO-based high-level analysis 
tools that use GO annotations. Functionalities 
like showing the evolution history and 
redirecting to the correct target term may 
benefit current GO browsers 

Klimke et al. 
2011 [16] 
  
 

Discusses the current state and major 
issues of  automated annotation of 
sequences.    

The present the need for standards and 
guidelines for submission, retrieval, exchange, 
and analysis of data.  They provide examples 
and advantages of using such standards. 

Poptsova et al. 
2010 [20] 
 

Reviewed misannotations in public 
databases and possible reasons they 
occur. They explored both errors in gene 
calling and errors in functional 
annotation. 

They found errors can occur at multiple stages 
of annotation.  Errors also were more likely in 
earlier annotated genomes and that second 
generation tools had less misannotations.   

Schnoes et al. 
2009 [155] 
 

Reported the misannotation rates for 
function in UniProtKB/Swiss-Prot, 
GenBank NR, UniProtKB/TrEMBL, and 
KEGG for 37 enzyme families.   

For the four databases, levels of 
misannotations ranged from 0 - 63%, they 
also showed the levels of misannotation has 
been increasing from 1993 to 2005. 

Jones et al. 
2007 [156] 

Present a new method based on maximal 
precision for estimating the error rate in 
the GO database.   

They estimated the error rate to be between 
28% - 30%.  Annotations with the evidence 
code ISS (Inferred by Sequence Similarity) 
has estimated error rates at 49%, non-ISS 
annotations has error rates at 13% - 18%.   

Gilks et al.  
2005 [21] 

Explore the possibility of chains of 
misannotation occurring in public 
databases. They developed a dynamical 
probabilistic model for these 
misannotation chains. 

By exploring the consequences of the model 
for annotation quality they conclude that it is 
evident that this iterative approach leads to a 
systematic deterioration of database quality. 
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- Table 5 continued - 
 
Green et al. 
2005 [15] 

Report on a new type of systematic 
annotation error in genome and pathway 
databases that results from the 
misinterpretation of partial Enzyme 
Commission (EC) numbers. 

They observe this type of error in multiple 
databases, including KEGG, VIMSS and 
IMG, all of which assign genes to KEGG 
pathways. The Escherichia coli subset of the 
KEGG database exhibits this error for 6.8% of 
its gene-reaction assignments. 

Dolan et al. 
2005 [13] 

Developed a methodology for assessing 
the consistency of GO annotations 
provided by different annotation groups. 
The method is completely general and 
can be applied to compare any two sets 
of GO annotations. 

They present the results obtained by 
comparing GO annotations for mouse and 
human gene sets. 

Naumoff et al. 
2004 [17] 

Developed a method to bridge gaps 
between genes that have been annotated 
and ones that have been experimentally 
studied but are not correlated with 
sequence data in current databases. When 
possible they collect a body of facts 
about experimental data, homology, 
unnoticed sequence data, and accurate 
information about gene context. 

They show that a set of closely related 
sequences which have been annotated as 
ornithine carbamoyltransferases are actually 
putrescine carbamoyltransferases. 
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Table 6: Hubs and non-hubs in PPI networks. 
Author Year Description Keywords 
Song et al. 
2013 [157] 

Focused on the relationship between the number of 
interactions a protein has and its functional importance in a 
cellular network.   The types of interactions are also 
explored and how they relate to protein essentiality.   

Cellular networks 
Protein essentiality  
BioGRID 
GO 
Yeast 

Banky et al. 
2013 [158] 

Developed a PageRank method for protein networks that 
combines information about connected nodes along with a 
nodes degree.  This method identifies important nodes 
regardless if the node is a hub or not.  This method was 
applied to s protein metabolic network.     

PageRank 
Hub / non-Hubs 
Metabolic networks 

Latha et al.  
2011 [47] 

Used 20 sequence-based features as input to a Bayesian 
model to predict hubs and hub behavior.  These features 
include physiochemical, thermodynamic and 
conformational properties of amino acid residues.  They 
were able to predict proteins from E. coli and human with 
accuracies ranging from 87.8 to 99.5%   

Bayesian 
Human  
E. coli 

Choura et al. 
2011 [159] 

Used a comparative modeling and docking-based methods 
to predict protein-protein complexes of hubs.  They use the 
human NR-RTK network.  Their results show that some 
interactions are mutually exclusive while others can occur 
at the same time.  

Docking 
PPI 
Comparative Models 
Human 

Zhang et al. 
2010  [160] 

Developed a method, CoEWC, to discovery new essential 
proteins.  This method is based on properties of PPI 
networks and co-expression of interacting networks.  This 
method outperform other classical measures when 
evaluated on the Yeast PPI network. 

Essential proteins 
PPI 
Co-expression 
Yeast 

Cho et al. 
2010 [161] 

Developed a method to provide hierarchical ordering of 
proteins based on a interactome network.  This method 
also identifies hubs and provides a confidence score.  They 
tested this method on the Yeast protein interactome 
network. 

Hierarchical ordering 
Hub prediction 
Yeast 

Patil et al. 
2010 [39] 

Reviewed features and properties that have been shown to 
be particular to hub proteins.  These include:  binding 
ability, disorder, surface charge, domain distribution, and 
functional domains.   

Hub properties 
Disorder 

Hsing et al. 
2009, 2008 [45, 162] 

Presented two studies in identifying hub-proteins.  The 
first is based on GO annotations and interaction data.  
They used data from yeast, E. coli, fly, and human.  The 
second method uses over 1300 protein features based on 
QSAR parameters, sequence features, interaction data, and 
functional annotations.  They applied boosting trees to 
these features for the above mentioned species. 

Boosting trees 
Hub prediction 
GO 
Yeast 
Human 
Fly 
E. coli 

Manna et al. 
2009 [163] 

Discussed the properties of hub and non-hubs in protein 
interaction networks.  They focused on the evolutionary 
rate between complex-forming and non-complex forming 
hubs and the structural disorder of hubs.      

Human 
Disorder 
Evolutionary rate 

Higurashi et al. 
2008 [164] 

Developed a method to identify hub proteins and further 
classifies the hubs based on the types of interactions 
(transient vs. permanent).  This method is based on 
statistical analysis of PDB data.   They also looked at 
properties of the different types of hubs including:  
disorder regions, structural flexibility, charge, and polarity. 

Hub prediction 
PPI 
Transient interactions 
disorder 
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- Table 6 continued - 
 
Lin et al. 
2008 [165] 

Developed a web-based method, Hubba, to identify and 
scores hub proteins.  This method is based on using graph 
theory (Maximum Neighborhood Component (MNC and 
Density of MNC) on PPI data.    

Hub prediction 
Graph theory 
PPI 

 
 
Table 7: Structural and kinetic annotation of protein hubs. 
Author Year Description Keywords 
Chang et al. 
2013 [166] 
 

Explored two yeast interactive datasets to find behavior 
of date and party hub proteins.  Properties that they 
analyzes include:  expression patterns, topological 
roles, and functional classifications.  

Yeast 
Date / Party hubs 
PPI 

Goel et al. 
2012, 2011 [167, 
168] 

Two papers.  The first is a review of the roles and 
properties of Date hubs and analyses the interactions in 
the Yeast cell cycle.  They classify Date proteins into 
two categories: dynamic hubs with static partners and 
static hubs with dynamic partners.  The second paper 
presents a four-dimensional protein interaction network 
viewer and analyzes singlish date hub interactions in 
yeast. 

Date hubs 
Yeast 
 

Keskin et al. 
2012, 2012, 2010, 
2010, 2009, 2008, 
2008, 2008 
[27, 34, 169-174] 

Presented a series of papers on predicting protein 
interfaces, hot spots, and hot regions.  Hot regions are 
interacting residues that contribute more to binding free 
energy.  Hot regions are clusters of hot spots.  The hot 
spot predictor, HotPoint, is based on solvent 
accessibility and energy contribution rules.   This 
method reaches 70% accuracy.  The hot region 
prediction method, HotSpot, is based on HotPoint.    

Protein interface 
prediction 
Hot spot 
Hot regions 
 

Wang et al. 
2012 [175] 
 

Explored the properties of date and party hubs using 
three-dimensional structures, genomic essentiality, 
gene coexpression, and functional semantic similarity.  
They also concluded singlish proteins are most date 
hubs, but multi-interface are just as likely to be date or 
party hubs.   

Date hubs 
Party hubs 
Singlish 
Multi-interface 

Zhao et al. 
2012 [176] 
 

Developed a method to find associations between 
interfaces and function based on graph theory of 
multiple interface domains.  They found that 40% of 
proteins have a multi-interface domain.     

Multi-interface domains 

Bhardwaj et al. 
2011 [177] 
 

Mapped three dimensional structure data onto PPI 
networks to classify singlish and multi-interface hubs.  
They also determine if individual  interactions are 
permanent or transient.  This work uses protein 
structures from PDB.   

Singlish hubs 
Multi-interface hubs 
Permanent interactions  
Transient interactions 

Dasgupta et al. 
2011 [178] 
 

Explored the structures of 16 date hub proteins to better 
understand how date hub proteins can bind different 
partners at overlapping interfaces.  They looked at 
several properties of proteins including:  surface area, 
compositions of amino acid residues and secondary 
structures, and side-chain orientations.  
 

Date hub 
Overlapping interfaces  
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- Table 7 continued - 
 
Mirzarezaee et al. 
2010 [179] 
 

Developed a few machine-learning algorithms (k-
nearest neighbor and Bayes Classifier) to predict date 
and party hubs using feature reduction on a large set of 
sequenced-based features.  These features include: 
 amino acid sequences, domain contents, repeated 
domains, functional categories, biological processes, 
cellular compartments, disordered regions, and position 
specific scoring matrices.  They tested their method on 
a set of Yeast proteins.     

Date hubs 
Party hubs 
K-nearest neighbor  
Feature reduction 
 

Agarwal et al. 
2010 [180] 
 

Critically analyzed the distinctions of hub proteins 
belonging to two classes (Date and Party).  They show 
evidence that some of the original co-expression 
distinctions may be credited to a small subsets of the 
classes.  They conclude the classifying proteins as 
date/party is not meaningful. 

Date hubs 
Party hubs 

Kahali et al. 
2009 [36] 
 

Described the evolutionary rate differences between 
date and party hubs in the Yeast PPI network.   They 
conclude that party hubs have lower evolutionary rates 
and that it can be contributed to the order regions of 
those proteins.   

Date hubs 
Party hubs 
Order/disorder 

Batada et al. 
2007, 2006 [181, 
182] 
 

Critically analyzed the conclusion that hubs can be 
classified as date and party.  They concluded that the 
original datasets were too small and through 
appropriate statistical analysis that they could not 
support the date/party distinctions.   

Date hubs 
Party hubs 
 

Kim et al. 
2006 [31] 

Science paper. Combined structural modeling with 
network analysis on the yeast PPI network to define 
two types of hub proteins.  Singlish hubs have mutually 
exclusive interactions where multi-interface hubs can 
interact with multiple partners at the same time.  They 
also describe several properties that can be determined 
based on these two classes.  The properties include: GO 
enrichment, co-expression, essentiality, evolutionary 
rate, and paralog percentage.       

Singlish hubs 
Date hubs 
PPI 
Yeast 

Ekman et al. 
2006 [183] 
 

Originally definined and described the different 
properties of date and party hubs.  Demonstrated that 
Party hubs were less likely to have long disordered 
regions, more likely to interact with each other, and are 
more evolutionary conserved as compared to Date 
hubs.   

Date hubs 
Party hubs 
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Table 8: G4-quadruplex: review papers. 
Author Year Description Keywords 
Maizels  
2013, 2008, 2006 
[48, 184, 185] 

Provided an overview of G4 DNA and their potential to 
form in the genome. Discusses the potential role that 
G4-quadruplexes could have in the regulation of gene 
expression and how the structural mechanism could 
work (including G-Loops).     

Gene regulation 
Gene expression 
G-loops 

Chen and Yang  
2012 [186] 

Looked into the relationship between the sequence, 
structure, and stability of G4-quadruplexes.   Gives 
examples of different types of structures that a G4-
quadruplex can fold into (including parallel and 
antiparallel) and how it relates to the DNA sequence.  
Compares telomeric and promoter G-quadruplexes.   
Discusses how G4-quadruplexes interact with small 
molecules.         

G4 structure 
Promoters 

Bochman et al.   
2012 [50] 

Reviewed the characteristics of G4-quadruplexs 
structures, and their roles in genomic stability and 
cellular processes.  Shows examples of several non-B-
form DNA secondary structures.  Looks at the role of 
G4-quadruplexes in telomeres, replication, 
transcription,  and recombination.          

non-B-form DNA  
Telomeres 
 

Yang and Okamoto 
2010 [58] 

Discussed the recent advances in G4-quadruplex 
research in telomeres and the promoter regions of 
human oncogenes.  The paper shows several example 
of oncogenes with G4-quadruplex structures including 
c-MYC, BCL-2, c-KIT, VEGF, and HIF1.  Concludes 
with G4-quadruplexes as having potential for 
anticancer drug targets.  

Human 
Promoters 
Oncogenes 
Drug targets 

Brooks and Hurley  
2010, 2009 [59, 187] 

Reviewed the gene MYC, how it is overexpressed  in 
various cancers, and models how non-duplex structures 
(including G4-quadruplexes) controls transcription.  
Discuses G4-quadruplexes in other oncogenes.         

G4 structure 
Oncogenes 
i-motif 
MYC 

Qin and Hurley  
2008 [60] 

Focused on G4-quadruplexes in the promoter regions 
of eukaryotes.  Compares and give examples of two-
tetrad, three-tetrad, and four-tetrad G4-quadruplexes.  
Discusses the role of quadruplexes in the promoters of 
c-MYC, VEGF, HIF-1, RET, KRAS, c-KIT,  Bcl-2, 
PDGF-A, and c-Myb. 

Promoters 
Two-tetrad 
Three-tetrad 
Four-tetrad 
HIF-1 

Burge et al.   
2006 [49] 

Gave details on the sequence, structure, and topology 
of G4-quadruplexes.   Provides examples of different 
telomere repeat sequences for different species.  
Proposes different topologies that a G4-quaruplex can 
form.  Also, shows a multiple crystal structures formed 
by telomeric sequences and compares them to non-
telomeric quadruplexes.           

G4 structure 
Telomeric structure 

Simonsson   
2001 [188] 

Gave in depth review of the structures of the G4-
quadruplexes.  Shows the G4-quadruplex motif and the 
role and structure of individual base pairs.            

G4 motif 
G4 structure 
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Table 9: G4-quadruplex: genome-wide surveys. 
Author Year Description Keywords 
Eddy et al. 
2011 [56] 

Explored the relationship of RNA Pol II transcription 
complex pausing and G4Q motifs genome-wide in 
human.  This paper compares genome-wide analysis of 
the pausing of the Pol II transcription complex 
downstream of the transcriptional start site, GC-
richness, and the position of potential G4Qs.  The study 
finds promoters of paused genes are enriched with 
G4Q.     

Human 
Transcription pausing 
GC-richness 
 

Todd et al. 
2011 [54] 

Examined the sequence similarity among G4Q across 
the human genome.  This paper clusters and 
categorizes G4Q in the human genome based on 
sequence similarity.  Explored individual clusters that 
are associated to particular functions including zinc 
fingers, leucocyte immunoglobulin-like receptor genes, 
and immunoglobulin genes. 

Human 
Clustering 
Sequence similarity 
Zinc fingers 
Immunoglobulin 

Capra et al. 
2010 [57] 

Demonstrated that G4Q are conserved and linked to 
genomic features in Saccharomyces cerevisiae.  This 
paper found that G4Q were associated with promoter 
regions, rDNA, mitotic and meiotic break sites.  G4Qs 
were also 10-fold more likely to be in the 
mitochondrial DNA than nuclear DNA.   

Saccharomyces cerevisiae 
Promoter 
rDNA 
Double-strand break 
points 

Halder et al. 
2009, 2008 [52, 73] 

Predicted G4-quadruplex motifs as nucleosome 
occupancy signals in Saccharomyces cerevisiae and 
human.  Determined that G4Qs exclude nuclesomes in 
promoters and modulate transcription efficiency of 
promoters.  
 

Saccharomyces cerevisiae 
Human 
Nucleosome occupancy 
Promoters 

Du et al. 
2009, 2008 [53, 189] 

Investigated the regulatory role of G4Q in gene 
transcription in human.  This paper looked at the 
potential of G4Q forming in the putative transcriptional 
regulatory regions in human genes.  They found that 
G4Q found downstream of the transcriptional start site 
were associated with gene expression.  A model is 
proposed on how G4Q leaves the DNA in an open state 
allowing for continued transcription and increased gene 
expression. 

Human 
Transcription 
Gene Expression 

Hupert et al. 
2010, 2008, 2008, 
2008, 2007, 2007, 
2005 [71, 190-195] 

Several papers that discussed the locations and 
potential roles that G4Q may play in the human 
genome.  They show the distribution and enrichment of 
G4Q around the human TSS and UTRs.   

Human 
TSS 
 

Rawal et al. 
2006 [51] 

Described G4Q as a regulatory motif in Escherichia 
coli.   A genome-wide analysis on over 61,000 open 
reading frames from 18 prokaryotes species and found 
that G4Q were found in promoter regions of genes 
associated with transcription, secondary metabolite 
biosynthesis, and signal transduction.   The paper 
focused on mapping G4Q motifs to the regulatory 
network of E.coli.      

Escherichia coli 
Cross-species 
Bacterial genomes 
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Table 10: G4-quadruplex: bioinformatics. 
Author Year Description Keywords 
Menendez et al. 
2012 [65] 
Kikin et al. 
2006 [69] 

Developed a web-based server, QGRS-H Predictor, for 
finding and analyzing G4Qs in nucleotide sequences.  
The server also assigns a score to each G4Q based on 
the likelihood to form a stable G4-quadruplex.  Other 
features include a homology score, homology map, and 
sequence viewer.      
 

QGRS-H Predictor 
G-score 

Wong et al. 
2010 [66] 

Created a database, QuadDB, of predicted G4Q in ten 
genomes (including  human, but no plants).   They also 
provide a G4Q prediction server called QuadPredict, 
which predicts G4Q along with thermal stability.  They 
also allow users to download the pre-compiled version 
of quadparser.   

QuadDB 
quadparser 
Thermal stability 

Stegle et al. 
2009 [67] 

From sequence information alone,  created a Bayesian 
prediction method for predicting the stability of G4Q.  
They also present a genome-wide analysis of the 
human genome using their tool. 

Bayesian 
Human 
Stability 
 

Mani et al. 
2009 [68] 

Combined a genome-wide G4Q analysis of the human 
genome with HapMap single nucleotide polymorphism 
(SNP) data to study the G4Q density in SNP hotspots.   
They presented evidence and a model how G4Q could 
be involved as determinants of recombination.        

HapMap 
Human 
Hotspots 
Recombination 
 

Yadav et al. 
2008 [70] 

Created a two-part database of G4Q motifs, QuadBase.  
The first part is EuQuad which is based on information 
of G4Q in the 10kb regions upstream of the 
transcriptional start site of human, chimp, rat, and 
mouse genes.  The second part is ProQuad which has 
G4Q data for 146 prokaryotes.  This online database 
also has the Pattern Search and Pattern Finder tools for 
discovering and searching for G4Q motifs.   

QuadBase 
Promoter 
Human 
Prokaryotes 

Huppert et al. 
2005 [71] 

Developed an algorithm to identify G4Q in DNA 
sequence and implemented a software tool called 
quadparser.  They systematically studied loop lengths 
of potential G4Qs.  They presented evidence that G4Q 
patterns were less likely to form in RNA forming 
sequences.    

quadparser 
Loop lengths 
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Table 11: G4-quadruplex: Plants 
Author Year Description Keywords 
Takahashi et al. 
2012 [75]  
 

Characterized eight species’ genomic G4Q 
representation (including 4 plant species: Arabidopsis, 
grape, rice, and poplar). They found increased presence 
of G4Q on the template strands near the TSS of genes 
and did GO enrichment on those genes.   
 

Arabidopsis 
Grape 
Rice 
Poplar 
GO enrichment 

Mullen et al. 
2010 [76] 
 

Reported the prevalence and significance of G4Q in the 
Arabidopsis genome.  They compared these results 
with analysis of potential G4Q in 11 other species 
including human, maize, and rice.   They show that 
three-tetrad G4Q motif are less prevalent in 
Arabidopsis as compared to other species and is 
actually less likely to appear in genic regions as 
compared to genic regions which is the opposite 
observation as compared to most other genome-wide 
studies on other species.  They found that two-tetrad 
G4Q are more abundant and are more likely found in 
genes and in promoter regions.  
 

Arabidopsis 
Maize 
Human 
Rice 
Comparative study 
Three-tetrad 
Two-tetrad 

 

Summary 
 

There have been many recent advances in using machine-learning techniques to 

predict sequence-function-structure relationships of proteins.  Given the success or failures, 

advantages or disadvantages, and breakthroughs or pitfalls of these recent advances, we 

want to be able to improve the performance of these algorithms.  We focus on improving 

the following performance criteria:  classification performance, computational time, 

updateability, and flexibility.  We approach these problems by building unique data 

representations, new or modified machine-learning algorithms, new knowledge 

representations, and/or new methods to interrupt the results from these algorithms.  With 

these new methods and different representations of proteins, we offer an alternative, and 

sometime complementary, insight to the sequence-function-structure relationship of 

proteins.  

Additionally, research on non-Watson-Crick base-pairing structures have received 

growing attention.   Specifically, the four-stranded DNA structure G4-quadruplex is an 
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attractive target of research, especially its role in the promoters of oncogenes. Though this 

research field is relatively new and largely unexplored, progress already has been made in 

G4Q structures and their role in gene regulation [51, 56], gene expression [196], DNA-

damage repair [197], transcriptional pausing [198], alternative polyadenylation, and 

mRNA shortening [199] .  A G4Q sequence motif has been identified and has been used in 

several genome-wide studies.  An area of research that has yet to be fully explored is the 

roles of G4Qs in plant species. We perform a genome-wide analysis of G4Qs in the model 

organism Zea mays, maize, and present potentially new forms of gene regulation in several 

metabolic pathways.   

 
Dissertation Organization 

In this dissertation, I aim to develop machine-learning methods for identification of 

biological labels for proteins and to use bioinformatics approaches to explore the role of 

G4-quaduplexes in gene regulation. We focus on machine-learning methods using 

sequence information alone. We developed a method to detect possible misannotations 

found in the Gene Ontology Database and a three-phase approach to identify binding 

patterns in hub proteins based on the yeast protein-protein interaction network.  The final 

work analyzes the maize genome for the G4Q structural motif and explores the role of the 

G4Q in several metabolic pathways.  This dissertation uses an alternative approach: 

chapters 2-4 are papers that have been published or are submitted to a journal for peer 

review.   

Chapter 1: This chapter introduces the problems we studied, the relevant 

background material for this problem, a survey of current studies, and the outline of the 

dissertation. 
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Chapter 2: We report the development of a two-stage method, HDTree, consisting 

of a decision tree classifier based on combining the outputs of several composition-based 

and sequence homology based methods.  We applied the HDTree to the problem of 

identifying potential misannotated proteins in the AmiGO database.  We were able to 

locate hundreds of protein sequences that were potentially misannotated.   The results have 

been published in the journal BMC-Bioinformatics. Carson Andorf contributed to 

experimental design, carried out computational experiments, and drafted the manuscript; 

Drena Dobbs and Vasant Honavar contributed to experimental design, discussions, and 

manuscript preparation. 

Chapter 3: We report a three-phase approach for predicting the binding patterns of 

hub proteins.  Phase I classifies a protein by whether or not it is likely to bind with another 

protein.  Phase II determines if a protein-binding protein is a hub.  Phase III predicts 

whether a protein-binding proteins as singlish-interface versus multiple-interface hubs and 

date versus party hubs. At each stage, we use sequence-based predictors trained using 

several standard machine-learning techniques. The results have been published in the 

journal PLOS ONE. Carson Andorf contributed to experimental design, carried out  

computational experiments and drafted the manuscript; Vasant Honavar and Taner Sen 

contributed to experimental design, discussions, and manuscript preparation. 

Chapter 4:  We report a bioinformatics approach to predict G4-quadruplexes in the 

maize genome and present evidence that maize G4Q elements may play a previously 

unrecognized role in coordinating global genomic responses to hypoxia and related energy 

crisis states.  The results have been submitted to the journal G3:Genes|Genomes|Genetics. 

Carson Andorf contributed to experimental design, carried out the computational 
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experiments, and co-drafted the manuscript; Mykhailo Nibiletsky and Elizabeth Stroupe 

carried out the wet-lab experiments and reviewed the manuscript; Drena Dobbs, Karen 

Koch and Carolyn Lawrence contributed to experimental design, discussions, and 

manuscript review; Hank Bass led the design of computational and wet-lab experiments 

and co-drafted the manuscript. 

Chapter 5:  This chapter summarizes the reported work, describes individual 

contributions, and lays out potential future work. 
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Abstract  
 
Background 

Incorrectly annotated sequence data are becoming more commonplace as databases 

increasingly rely on automated techniques for annotation. Hence, there is an urgent need 

for computational methods for checking consistency of such annotations against 

independent sources of evidence and detecting potential annotation errors. We show how a 

machine learning approach designed to automatically predict a protein's Gene Ontology 

(GO) functional class can be employed to identify potential gene annotation errors.   

Results 

In a set of 211 previously annotated mouse protein kinases, we found that 201 of 

the GO annotations returned by AmiGO appear to be inconsistent with the UniProt 

functions assigned to their human counterparts. In contrast, 97% of the predicted 

annotations generated using a machine learning approach were consistent with the UniProt 

annotations of the human counterparts, as well as with available annotations for these 

mouse protein kinases in the Mouse Kinome database. 

Conclusions 

We conjecture that most of our predicted annotations are, therefore, correct and 

suggest that the machine learning approach developed here could be routinely used to 
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detect potential errors in GO annotations generated by high-throughput gene annotation 

projects.   

Authors  from  the  original  publication  (Okazaki  et  al.:  Nature  2002,  420:563-

73)  have provided their response to Andorf et al, directly following the correspondence. 

 
Background 

As more genomic sequences become available, functional annotation of genes 

presents one of the most important challenges in bioinformatics. Because experimental 

determination of protein structure and function is expensive and time-consuming, there is 

an increasing reliance on automated approaches to assignment of Gene Ontology (GO) [1] 

functional categories to protein sequences. An advantage of such automated methods is 

that they can be used to annotate hundreds or thousands of proteins in a matter of minutes, 

which makes their use especially attractive - if not unavoidable - in large-scale genome-

wide annotation efforts.  

Most automated approaches to protein function annotation rely on transfer of 

annotations from previously annotated proteins, based on sequence or structural similarity. 

Such annotations are susceptible to several sources of error, including errors in the original 

annotations from which new annotations are inferred, errors in the algorithms, bugs in the 

programs or scripts used to process the data, clerical errors on the part of human curators, 

among others. The effect of such errors can be magnified because they can propagate from 

one set of annotated sequences to another through widespread use of automated techniques 

for genome-wide functional annotation of proteins [2-5]. Once introduced, such errors can 

go undetected for a long time. Because of the increasing reliance of biologists and 

computational biologists on reliable functional annotations for formulation of hypotheses, 
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design of experiments, and interpretation of results, incorrect annotations can lead to 

wasted effort and erroneous conclusions. Computational approaches to checking 

automatically inferred annotations against independent sources of evidence and detecting 

potential annotation errors offer a potential solution to this problem [6-11]. 

Previous work of several groups, including our own [12-19] has demonstrated the 

usefulness of machine learning approaches to assigning putative functions to proteins 

based on the amino acid sequence of the proteins. On the specific problem of predicting the 

catalytic activity of proteins from amino acid sequence, we showed that machine learning 

approaches outperform methods based on sequence homology [13]. This is especially true 

when sequence identity among proteins with a specified function is below 10%; the 

accuracy of predictions by our HDTree classifier was 8%-16% better than that of PSI-

BLAST [13]. The discriminatory power of machine learning approaches thus suggests they 

should be valuable for detecting potential annotation errors in functional genomics 

databases.  

Here we demonstrate that a machine learning approach, designed to predict GO 

functional classifications for proteins, can be used to identify and correct potential 

annotation errors. In this study, we focused on a small but clinically important subset of 

protein kinases, for which we "stumbled upon" potential annotation errors while evaluating 

the performance of protein function classification algorithms. We chose a set of protein 

kinases categorized under the GO class GO0004672, Protein Kinase Activity, which 

includes proteins with serine/threonine (Ser/Thr) kinase activity (GO0004674) and tyrosine 

(Tyr) kinase activity (GO0004713). Post-translational modification of proteins by 

phosphorylation plays an important regulatory role in virtually every signaling pathway in 
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eukaryotic cells, modulating key biological processes associated with development and 

diseases including cancer, diabetes, hyperlipidemia and inflammation [20,21]. It is natural 

to expect that such well studied and functionally significant families of protein kinases are 

correctly annotated by genome-wide annotation efforts.  

 
Results 

The initial aim of our experiments was to evaluate the effectiveness of machine 

learning approaches to automate sequence-based classification of protein kinases into 

subfamilies. Because both the Ser/Thr and Tyr subfamilies contain highly divergent 

members, some of which share less than 10% sequence identity with other members, they 

offer a rigorous test case for evaluating the potential general utility of this approach. 

Previously, we developed HDTree [13], a two-stage approach that combines a classifier 

based on amino acid k-gram composition of a protein sequence, with a classifier that relies 

on transfer of annotation from PSI-BLAST hits (see Methods for details). A protein kinase 

classifier was trained on a set of 330 human protein kinases from the Ser/Thr protein 

kinase (GO0004674) and Tyr protein kinase (GO0004713) functional classes based on 

direct and indirect annotations assigned by AmiGO [22], a valuable and widely used tool 

for retrieving GO functional annotations of proteins. Performance of the classifier was 

evaluated, using 10-fold cross-validation, on two datasets:  i) the dataset of 330 human 

protein kinases, and ii) a dataset of 244 mouse protein kinases drawn from the same GO 

functional classes. The initial datasets were not filtered based on evidence codes or 

sequence identity cutoffs.  

Using the AmiGO annotations as reference, the resulting HDTree classifier 

correctly distinguished between Ser/Thr kinases and Tyr kinases in the human kinase 
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dataset with an overall accuracy of 89.1% and a kappa coefficient of 0.76. In striking 

contrast, the accuracy of the classifier on the mouse kinase dataset was only 15.1%; the 

correlation between the GO functional categories predicted by the classifier and the 

AmiGO reference labels was an alarming -0.40: 72 of the 244 mouse kinases were 

classified as Ser/Thr kinases, 105 as Tyr kinases, and 67 as "dual specificity" kinases 

(belonging to both GO0004674 and GO0004713 classes) (see Table 1). 

Assuming the AmiGO annotations were correct, these results suggested that either 

this particular machine learning approach is extremely ineffective for classifying mouse 

protein labels, or that human and mouse protein kinases have so little in common that a 

classifier trained on the human proteins is doomed to fail miserably on the mouse proteins. 

In light of the demonstrated effectiveness of machine learning approaches on a broad range 

of classification tasks that arise in bioinformatics [23], and well-documented high degree 

of homology between human and mouse proteins [24], neither of these conclusions seemed 

warranted. Could this discrepancy be explained by the AmiGO annotations for mouse 

protein kinases? We proceeded to investigate this possibility. 

A comparison of the distribution of Ser/Thr, Tyr, and dual specificity kinases in 

mouse versus human (Figure 1a) reveals a striking discordance: based on AmiGO 

annotations, mouse has many more Tyr and dual specificity kinases than human and only 

40% as many Ser/Thr protein kinases. In contrast, as explained below, the fractions of 

Ser/Thr, Tyr, and dual specificity kinases based on UniProt annotations are very similar in 

mouse and human (Figure 1b).  Furthermore, the predictions of our two-stage machine 

learning algorithm are in good agreement with the UniProt annotations for both human and 

mouse protein kinases (Figures 1b and 1c). 
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Examination of the GO evidence codes for the mouse protein kinases revealed that 

211 of 244 mouse protein kinases included the evidence code “RCA,” "inferred from 

reviewed computational analysis" [see Appendix C], indicating that these annotations had 

been assigned using computational tools and   reviewed by a human curator before being 

deposited in the database used by AmiGO. Notably, 28 of 33 (85%) mouse protein kinases 

with an evidence code other than RCA (e.g., "inferred from direct assay") were assigned 

"correct" labels, relative to the AmiGO reference, by the classifier trained on the human 

protein kinase data. Each of the 211 proteins with the RCA evidence code had at least one 

annotation that could be traced to the FANTOM Consortium and RIKEN Genome 

Exploration Research Group [25], a source of protein function annotations in the Mouse 

Genome Database (MGD) [24]. To further examine each of these 211 mouse protein 

kinases, we used the gene IDs obtained from AmiGO to extract information about each 

protein from UniProt [26]. We searched the UniProt records for mention of 

"Serine/Threonine" or "Tyrosine" (or their synonyms) in fields for protein name, 

synonyms, references, similarity, keywords, or function, and created a dataset in which 

each protein kinase had one of the corresponding UniProt labels: “Ser/Thr kinase,” "Tyr 

kinase,” or "dual specificity kinase" if both keywords were found. Results of our 

comparison of UniProt labels with AmiGO annotations for each class in this dataset of 211 

mouse protein kinases are shown in Figure 2a: for 201 of the 211 cases with an RCA 

annotation code, the UniProt and AmiGO labels were inconsistent. Results of our 

comparison are shown in Table 2 [see Appendix D and E]. 

This result led us to test the ability of the HDTree classifier trained on the human 

kinase dataset to correctly predict the family classifications for proteins in the mouse 
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kinase dataset, this time using UniProt instead of AmiGO annotations as the "correct" 

reference labels. Strikingly, the classifier (trained on the human kinase dataset) achieved a 

classification accuracy of 97.2%, with a kappa coefficient of 0.93, on the mouse kinase 

dataset. As illustrated in Figure 2b, the classifier correctly classified 205 out of the 211 

mouse kinases into Ser/Thr, Tyr or dual specificity classes compared with 10 out of 211 

for AmiGO. A direct comparison of classifiers based on UniProt annotations and AmiGO 

annotations can be seen in Table 3. This performance actually exceeded that of the same 

classifier tested on the human kinase dataset, for which an overall classification accuracy 

of 89.1%, with a kappa coefficient of 0.76, was obtained [see Table 1 and see Appendix A 

The HDTree method uses a decision tree built from the output from eight 

individual classifiers. A decision tree is built by selecting, in a greedy fashion, the 

individual classifier that provides the maximum information about the class label at each 

step, [27]. By examining the decision tree, it is easy to identify the individual classifiers 

that have the greatest influence on the classification. In the case of the kinase datasets used 

in this study, the classifiers constructed by the NB(k) algorithms using trimers and 

quadmers, NB(3) and NB(4), were found to provide the most information regarding class 

labels.  This suggests that the biological "signals" detected by these classifiers are groups 

of 3-4 residues, not necessarily contiguous in the primary amino acid sequence, but often 

in close proximity or interacting within three-dimensional structures to form functional 

sites (e.g., catalytic sites, binding sites), an idea supported by the results of our previous 

work [13]. Notably, the NB(3) and NB(4) classifiers appear to contribute more to the 

ability to distinguish proteins with very closely related enzymatic activities than PSI-
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BLAST.  The PSI-BLAST results influenced the final classification, however, when the 

NB(3) and NB(4) classifiers disagreed on the classification.   

 
Discussion 

Examination of the Mouse Kinome Database [28] reveals that the majority of 

annotated mouse kinases have a human ortholog with sequence identity >90% [see 

Appendix F and G]. Results summarized in Figures 1 and 2, together with the 

assumption that the relative proportions of Ser/Thr, Tyr and dual specificity kinases should 

not be significant different in human and mouse, led us to conclude that UniProt derived 

annotations are more likely to be correct than those returned by AmiGO for this group of 

mouse protein kinases with the RCA evidence code.  We have shared our findings with the 

Mouse Genome Database [24], which is in the process of identifying and rectifying the 

source of potential problems with these annotations.  

Identifying potential annotation errors in a specific dataset such as the mouse 

kinase dataset solves only a part of a larger problem. Because annotation errors can 

propagate across multiple databases through the widespread - and often necessary - use of 

information derived from available annotations, it is important to track and correct errors in 

other databases that rely on the erroneous source. For example, using AmiGO, we retrieved 

136 rat protein kinases for which annotations had been transferred from mouse protein 

kinases based on homology (indicated by the evidence code "ISS," 'inferred from sequence 

or structural similarity') with one of the 201 erroneously annotated mouse protein kinases. 

Examination of the UniProt records for these 136 rat protein kinases revealed that 94 of 

those labeled as "Ser/Thr" kinases by UniProt had AmiGO annotations of "Tyr" or "dual 
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specificity" kinase, and 42 of those labeled as "Tyr" kinases by UniProt had AmiGO 

annotations of "Ser/Thr" or "dual specificity" kinase [see Appendix B and H]. 

A recent study found that the GO annotations with ISS (inferred from sequence or 

structural similarity) evidence code could have error rates as high as 49% [29]. This argues 

for the development and large-scale application of a suite of computational tools for 

identifying and flagging potentially erroneous annotations in functional genomics 

databases. Our results suggest the utility of including machine learning methods among 

such a suite of tools. Large-scale application of machine learning tools to protein 

annotation has to overcome several challenges. Because many proteins are multi-

functional, classifiers should be able to assign a sequence to multiple, not mutually 

exclusive, classes (the multi label classification problem), or more generally, to a subset of 

nodes in a directed-acyclic graph, e.g., the GO hierarchy, (the structured label 

classification problem). Fortunately, a number of research groups have developed machine 

learning algorithms for multi-label and structured label classification and demonstrated 

their application in large-scale protein function classification [30-33]. We can draw on 

recent advances in machine learning methods for hierarchical multi-label classification of 

large sequence datasets to adapt our method to work in such a setting. For example, a 

binary classifier can be trained to determine membership of a given sequence in the class 

represented by each node of the GO hierarchy, starting with the root node (to which 

trivially the entire dataset is assigned). Binary classifiers at each node in the hierarchy can 

then be trained recursively, focusing on the dataset passed to that node from its parent(s) in 

the GO hierarchy.  



55 

In this study, we have limited our attention to sequence-based machine learning 

methods for annotation of protein sequences. With the increasing availability of other types 

of data (protein structure, gene expression profiles, etc.), there is a growing interest in 

machine learning and other computational methods for genome-wide prediction of protein 

function using diverse types of information [34-39]. Such techniques can be applied in a 

manner similar to our use of sequence-based machine learning to identify potentially 

erroneous annotations in existing databases. 

 
Conclusion 

The increasing reliance on automated tools in genome-wide functional annotation 

of proteins has led to a corresponding increase in the risk of propagation of annotation 

errors across genome databases. Short of direct experimental validation of every 

annotation, it is impossible to ensure that the annotations are accurate. The results 

presented here and in recent related studies [6-11] underscore the need for checking the 

consistency of annotations against multiple sources of information and carefully exploring 

the sources of any detected inconsistencies. Addressing this problem requires the use of 

machine readable metadata that capture precise descriptions of all data sources, data 

provenance, background assumptions, and algorithms used to infer the derived 

information. There is also a need for computational tools that can detect annotation 

inconsistencies and alert data sources and their users regarding potential errors. Expertly 

curated databases such as the Mouse Genome Database are indispensable for research in 

functional genomics and systems biology, and it is important to emphasize that several 

measures for finding and correcting inconsistent annotations are already in place at MGD 

[24]. The present study suggests that additional measures, especially in the case of protein 
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annotations with RCA evidence code, can further increase the reliability of these valuable 

resources. 

 
Methods 

Classification Strategy 

We constructed an HDTree binary classifier, described below, for each of the three 

kinase families.  The first two kinase families correspond to the GO labels GO0004674 

(Ser/Thr kinases) or GO0004713 (Tyr kinases) but not both; the third family corresponds 

to dual-specificity kinases that belong to both GO0004674 and GO0004713. Classifier #1 

distinguishes between Ser/Thr kinases and the rest (Tyr and dual-specificity kinases). 

Similarly, classifier #2 distinguishes between Tyr kinases and the rest (Ser/Thr and dual 

specificity kinases).  Classifier #3 distinguishes dual-specificity kinases from the rest 

(those with only Ser/Thr or Tyr activity), based on the predictions generated by classifier 

#1 and classifier #2 as follows: If only classifier #1 generates a positive prediction, the 

corresponding sequence is classified as (exclusively) a Ser/Thr kinase. If only classifier #2 

generates a positive prediction, the corresponding sequence is classified as (exclusively) 

Tyr kinase. If both classifiers generate a positive prediction or if both classifiers generate a 

negative prediction, the corresponding sequence is classified as a dual-specificity kinase. 

We interpret the disagreement between the classifiers as indicative of signaling evidence 

that the protein is neither exclusively Ser/Thr nor Tyr, and hence, likely to have dual 

specificity. More sophisticated evidence combination methods could be used instead. 

However, this simple technique worked sufficiently well in the case of this dataset (see 

Table 4).   
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HDTree Method 

As noted above, an HDTree binary classifier [13] is constructed for each of the 

three kinase families. Each HDTree binary classifier is a decision tree classifier that 

assigns a class label to a target sequence based on the binary class labels output by the 

Naïve Bayes, NB k-gram, NB(k), and PSI-BLAST classifiers for the corresponding kinase 

families.  Because there are eight classifiers Naïve Bayes, NB 2-gram ,  NB 3-gram ,  NB 

4-gram ,  NB(2),  NB(3), NB(4), and PSI-BLAST, the input to a HDTree binary classifier 

for each kinase family consists of an 8-tuple of class labels assigned to the sequence by the 

corresponding 8 classifiers. The output of the HDTree classifier for kinase family c is a 

binary class label (1 if the predicted class is c; 0 otherwise). Thus, each HDTree classifier 

is a decision tree classifier that is trained to predict the binary class label of a query 

sequence based on the 8-tuple of class labels predicted by the eight individual classifiers. 

Because HDTree is a decision tree, it is easy to determine which individual classifier(s) 

provided the most information in regards to the predicted class label. In the resulting tree, 

nodes near the top of the tree provided the most information about the class label. Thus, 

HDTree can also facilitate identification of the determinative biological sequence signals. 

We used the Weka version 3.4.4 implementation [40] (J4.8) of the C4.5 decision tree 

learning algorithm [27].   

We describe below, a class of probabilistic models for sequence classification. 

Classification Using a Probabilistic Model 

We start by introducing the general procedure for building a classifier from a 

probabilistic generative model.  

Suppose we can specify a probabilistic model   for sequences defined over some 

alphabet   (which in our case is the 20-letter amino acid alphabet).  The model   



58 

specifies for any sequence nssS ,...,1 , the probability ),...,( 1 nssSP   of generating the 

sequence S .  Suppose we assume that sequences belonging to class  jc  are generated by 

the probabilistic generative model )( jc .   

Then, ),...,()|,...,( 1)(1 ncjn ssSPcssSP
j

   is the probability of S given that 

the class is jc . Therefore, given the probabilistic generative model for each of the classes 

in C (the set of possible mutually exclusive class labels) for sequences over the alphabet   

 , we can compute the most likely class label )(Sc for any given sequence  nssS ,...,1  

as follows: )()|,...,(maxarg)( 1 jjn
Cc

cPcssSPSc
j




 . Hence, the goal of a machine learning 

algorithm for sequence classification is to estimate the parameters that describe the 

corresponding probabilistic models from data. Different classifiers differ with regard to 

their ability to capture the dependencies among the elements of a sequence.  

In what follows, we use the following notations. 

Sn  = the length of the sequence S  

k = the size of the k-gram (k-mer) used in the model 

is = the thi element in the sequence S  

jc = the thj class in the class set C  

Naïve Bayes Classifier 

The Naïve Bayes classifier assumes that each element of the sequence is 

independent of the other elements given the class label.  Consequently,  
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Note that the Naive Bayes classifier for sequences treats each sequence as though it 

were simply a bag of letters. We now consider two Naive Bayes-like models based on k -

grams.   

Naïve Bayes k-grams Classifier 

The Naive Bayes k-grams (NB k-grams) [12,13,41] method uses a sliding a 

window of size k along each sequence to generate a bag of k-grams representation of the 

sequence. Much like in the case of the Naive Bayes classifier described above treats each 

k-gram in the bag to be independent of the others given the class label for the sequence. 

Given this probabilistic model, the standard method for classification using a probabilistic 

model can be applied.   The probability model associated with Naïve Bayes k-grams:  

)()|,...,(maxarg]),...,[(
1

1
1111 j

kn

i
jkikiii

Cc
nn cPcsSsSPPsSsSSP

j







   

A problem with the NB k-grams approach is that successive k-grams extracted from 

a sequence share k-1 elements in common.  This grossly and systematically violates the 

independence assumption of Naive Bayes.   

Naïve Bayes (k)  

We introduce the Naive Bayes (k) or the NB(k) model [12,13,41] to explicitly 

model the dependencies that arise as a consequence of the overlap between successive k-

grams in a sequence.  We represent the dependencies in a graphical form by drawing edges 

between the elements that are directly dependent on each other.  
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Using the Junction Tree Theorem for graphical models [42], it can be proved [41] 

that the correct probability model   that captures the dependencies among overlapping k-

grams is given by: 
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Now, given this probabilistic model, we can use the standard approach to 

classification given a probabilistic model. It is easily seen that when k = 1, Naive Bayes 1-

grams as well as Naive Bayes (1) reduce to the Naive Bayes model.   

The relevant probabilities required for specifying the above models can be 

estimated using standard techniques for estimation of probabilities using Laplace 

estimators [43].   

PSI-Blast 

We used PSI-BLAST (from the latest release of BLAST) [44] to construct a binary 

classifier for each class. We used the binary class label predicted by the PSI-BLAST based 

classifier as an additional input to our HD-Tree classifier. Given a query sequence to be 

classified, we use PSI-BLAST to compare the query sequence against a reference protein 

sequence database, i.e., the training set used in the cross-validation process. We run PSI-

BLAST with the query sequence against the reference database.  We assign to the query 

sequence the functional class of the top scoring hit (the sequence with the lowest e-value) 

from the PSI-BLAST results.  The resulting binary prediction of the PSI-BLAST classifier 

for class c is 1 if the class label for the top scoring hit is c. Otherwise, it is 0. An e-value 

cut-off of 0.0001 was used for PSI-BLAST, with all other parameters set to their default 

values.   
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Performance Evaluation 

The performance measures [45] used to evaluate each of the different classifiers 

trained using machine learning algorithms are summarized in Tables 5 and 6.   
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Figures 

 
 
Figure 1:  Distribution of Ser/Thr, Tyr, and dual specificity kinases among annotated 
protein kinases in human versus mouse genomes (See Appendix I for details).  Pie 
charts illustrate the functional family distribution of protein kinases in human (top) versus 
mouse (bottom), based on: a. AmiGO functional classifications: Ser/Thr (GO0004674) 
[Blue]; Tyr (GO0004713) [Red] or "dual specificity" (proteins with both GO 
classifications) [Yellow].  b. UniProt annotations:  classification based on UniProt 
records containing the key words Ser/Thr [Blue], Tyr [Red], or dual specificity [Yellow] 
(see Appendix D).  c. Predicted annotations by the HDTree classifier:  The classifier 
was built on human proteins with functional labels Ser/Thr (GO0004674)[Blue], Tyr 
(GO0004713) [Red] or "dual specificity" [Yellow] derived from AmiGO and verified by 
UniProt (Appendix A). 
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Figure 2: Comparison of UniProt annotations of mouse protein kinases sequences 
with annotations from AmiGO or predicted by HDTree.  The bar charts illustrate the 
number of proteins that were in agreement (blue)/disagreement (red) with the annotations 
found in UniProt.   Proteins that belong to each of the three functional classes found in the 
UniProt records are represented by two bars.  The blue bar represents the number of 
proteins in which UniProt and the given method share the same annotation (agreement) for 
that function.   The red bar represents the number of proteins in which UniProt and the 
given method have different annotations (disagreement) for that function.   a. AmiGO vs. 
UniProt annotations b. HDTree predictions vs. UniProt annotations. (Additional details are 
provided in Appendix A and E). 
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Tables 

Table 1.  Comparison of performance of classifiers to predict AmiGO annotations- 
The performance measures accuracy, kappa coefficient correlation coefficient, precision, 
and recall are reported for two of the HDTree classifiers.  The first classifier is trained on 
330 human proteins.  The performance is based on 10-fold cross-validation.  The second 
classifier is trained on the 330 human proteins and tested on 244 mouse proteins.  The 
annotations for the mouse and human proteins were obtained from AmiGO. 
 

 Accuracy Kappa 
Coefficient 

Correlation Coefficient Precision Recall 
Ser/Thr Tyr Dual Ser/Thr Tyr Dual Ser/Thr Tyr Dual 

Human 89.1 0.76 0.82 0.86 0.30 0.97 1.00 0.15 0.95 0.74 0.71 
Mouse 15.1 -0.40 -0.40 -0.43 -0.01 0.17 0.11 0.25 0.41 0.07 0.01 

 
 
Table 2 .  Comparison of AmiGO and UniProt annotations for 211 mouse protein 
kinases with RCA Evidence code - Each of the 211 mouse kinase proteins with an RCA 
evidence code used in this study has an AmiGO and a UniProt annotation.  This table 
shows the number of proteins that have the nine possible combinations of the AmiGO and 
UniProt annotations. Each row of the table represents one of the three possible UniProt 
labels and each column represents each of the three AmiGO annotations.  Each entry of the 
table shows the number of proteins with the corresponding annotation.   Please note, all 
entries along the diagonal (in bold) show the number of proteins where the AmiGO and 
UniProt annotations were in agreement.  All other entries show the number of proteins 
where AmiGO and UniProt were in disagreement. (Additional details provided in 
Appendix D and E). 
 

KINASE 
 FAMILY 

AmiGO  
Ser/Thr 

AmiGO  
Tyr 

AmiGO  
Dual specificity 

UniProt Ser/Thr  10 105 35 
UniProt Tyr 54 0  3 
UniProt Dual specificity  0 4  0 

 
 
Table 3.  Comparison of performance of classifiers based on AmiGO annotations and 
UniProt annotations- The performance measures accuracy, kappa coefficient correlation 
coefficient, precision, and recall are reported for two of the HDTree classifiers.  Both 
classifiers were trained on 330 human proteins and tested on 211 mouse proteins with 
RCA evidence codes in AmiGO.  The first classifier was trained and tested with 
annotations provided by UniProt and the second classifier used annotations obtained from 
AmiGO. 
 

 Accuracy Kappa 
Coefficient 

Correlation Coefficient Precision Recall 
Ser/Thr Tyr Dual Ser/Thr Tyr Dual Ser/Thr Tyr Dual 

UniProt 97.1 0.93 0.98 0.94 0.00 0.97 0.97 0.00 0.99 1.00 0.00 
AmiGO 4.2 -0.37 -0.64 -0.85 0.00 0.06 0.00 0.00 0.14 0.00 0.00 
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Table 4.  Classification Schema for Classier #3 (Method to predict Dual Specificity)- 
HDTree Classifier #3 uses the outputs form HDTree Classifier #1 and HDTree Classifier 
#2 to distinguish between dual-specificity kinases, Ser/Thr kinases, and Tyr kinases.  See 
Methods section for details on each classifier. 
 

Prediction of classifier #1 
(Ser/Thr) 

Prediction of classifier #2
(Tyr) 

New Prediction of classifier #3 
(Dual, Ser/Thr,Tyr) 

Yes Yes Dual 
Yes No exclusively Ser/Thr 
No Yes exclusively Tyr 
No No Dual 

 
Table 5.  Performance measures definitions for binary classification- The performance 
measures accuracy, precision, recall, correlation coefficient, and kappa coefficient are 
used to evaluate the performance of our machine learning approaches [45].  Accuracy is 
the fraction of overall predictions that are correct.  Precision is the ratio of predicted true 
positive examples to the total number of actual positive examples.  Recall is the ratio of 
predicted true positives to the total number of examples predicted as positive.  Correlation 
coefficient measures the correlation between predictions and actual class labels. Kappa 
coefficient is used as a measure of agreement between two random variables (predictions 
and actual class labels).  
 
The table summarizes the definitions of performance measures in the 2-class setting 
(binary classification), where M = the total number of classes and N = the total number of 
examples. TP, TN, FP, FN are the true positives, true negatives, false positives, and false 
negatives for the given confusion matrix. 

 
Performance Measure Binary Classification 
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Table 6.  Performance measure definitions for multi-class classification-  The 
performance measures accuracy, precision, recall, correlation coefficient, and kappa 
coefficient are used to evaluate the performance of our machine learning approaches [45].  
Accuracy is the fraction of overall predictions that are correct.  Precision is the ratio of 
predicted true positive examples to the total number of actual positive examples.  Recall is 
the ratio of predicted true positives to the total number of examples predicted as positive.  
Correlation coefficient measures the correlation between predictions and actual class 
labels. Kappa coefficient is used as a measure of agreement between two random variables 
(predictions and actual class labels). 
 
The table displays the general definition of each measure, where M = the total number of 
classes and N = the total number of examples, ikx  represents the number of examples in 

row i and column k of the given confusion matrix.  
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Supplementary Information found in the Appendices Section 

Appendix A: Supplementary Data  

Supplementary Data: Machine Learning approaches to predict Gene Ontology and/or 
UniProt Functional labels.   
Description:  The data provided represent the results and performance of all the machine 
learning approaches used in this study. 
 
Appendix B: – Supplementary Note 

Supplementary Note: Because there is only a non-curated reference to the work done on 
“Rat ISS GO annotations from MGI's mouse gene data,” we provide the abstract and a link 
to the original reference report.   
Description:  Because there is only a non-curated reference to the work done on “Rat ISS 
GO annotations from MGI's mouse gene data,” we provide the abstract and a link to the 
original reference report in this file.   
 
Appendix C: – Supplementary Table 1 

Supplementary Table 1: Evidence Codes for AmiGO annotations 
Description:  A table displaying the Evidence Codes for AmiGO annotations of the mouse 
protein kinases used in this study. 
 
Appendix D: – Supplementary Table 2 

Supplementary Table 2: AmiGO annotations versus UniProt annotations (with UniProt 
Evidence) 
Description:  A table comparing the annotations found in the AmiGO server with the 
annotations found in UniProt.  
 
Appendix E: – Supplementary Table 3  

Supplementary Table 3: AmiGO labels, UniProt labels, and Predicted Labels for each 
mouse kinase protein 
Description:  A table comparing the predicted annotations from our three machine 
learning classifiers with the annotations of AmiGO and UniProt.  
 
Appendix F: – Supplementary Table 4  

Supplementary Table 4: Mouse Kinases having a Human Ortholog  
Description:  A table displaying the human orthologs for the mouse kinases used in this 
study.  The table also displays the identity between these orthologs. 
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Appendix G: – Supplementary Table 5  

Supplementary Table 5: Number of Mouse kinases having a specified level of sequence 
identity with their human orthologs. (Summary statistics for Supplementary Table 4)  
Description:  A table displaying the summary statistics of Supplementary Table 4. 
Appendix H: – Supplementary Table 6  

Supplementary Table 6: The UniProt and AmiGO annotations for the Rat kinase proteins 
with Mouse orthologs 
Description:  This table displays the UniProt and AmiGO annotations for rat kinase 
proteins that were annotated based on a mouse ortholog. 
 
Appendix I: – Supplementary Table 7 

Supplementary Table 7: Distribution of protein classes for Human and Mouse proteins 
annotated by AmiGO, UniProt, and HDTree 
Description:  This table is a representation of the data used in Figure 1 which is a pie chart 
showing the distribution of human and mouse protein classes based on annotations found 
in AmiGO, UniProt, and predicted by HDTree. 
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CHAPTER 3. 
 

PREDICTING THE BINDING PATTERNS OF HUB PROTEINS: A STUDY USING 
YEAST PROTEIN INTERACTION NETWORKS 

 
 

Modified from a paper published in PLOS ONE 
8(2) (19 February 2013) 

 
Carson Andorf, Vasant Honavar, Taner Sen 

 

Abstract 

Background 

Protein-protein interactions are critical to elucidating the role played by individual 

proteins in important biological pathways.  Of particular interest are hub proteins that can 

interact with large numbers of partners and often play essential roles in cellular control.  

Depending on the number of binding sites, protein hubs can be classified at a structural 

level as singlish-interface hubs (SIH) with one or two binding sites, or multiple-interface 

hubs (MIH) with three or more binding sites.  In terms of kinetics, hub proteins can be 

classified as date hubs (i.e., interact with different partners at different times or locations) 

or party hubs (i.e., simultaneously interact with multiple partners). 

 
Methodology 

Our approach works in 3 phases:  Phase I classifies if a protein is likely to bind 

with another protein.  Phase II determines if a protein-binding (PB) protein is a hub.  Phase 

III classifies PB proteins as singlish-interface versus multiple-interface hubs and date 

versus party hubs. At each stage, we use sequence-based predictors trained using several 

standard machine learning techniques.  
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Conclusions   

Our method is able to predict whether a protein is a protein-binding protein with an 

accuracy of 94% and a correlation coefficient of 0.87; identify hubs from non-hubs with 

100% accuracy for 30% of the data; distinguish date hubs/party hubs with 69% accuracy 

and area under ROC curve of 0.68; and SIH/MIH with 89% accuracy and area under ROC 

curve of 0.84.  Because our method is based on sequence information alone, it can be used 

even in settings where reliable protein-protein interaction data or structures of protein-

protein complexes are unavailable to obtain useful insights into the functional and 

evolutionary characteristics of proteins and their interactions.   

Availability:  We provide a web server for our three-phase approach: 

http://hybsvm.gdcb.iastate.edu.   

 

  



75 

Introduction 

Proteins are the principal catalytic agents, structural elements, signal transmitters, 

transporters and molecular machines in cells.  Functional annotation of proteins remains 

one of the most challenging problems in functional genomics, however, our evolving 

understanding of a proteins' interaction partners helps in functional annotation of proteins 

[1]. Protein-protein interactions are therefore critical to elucidating the role played by 

individual proteins in important biological pathways.  Such networks are typically 

constructed using high throughput techniques (e.g., yeast two-hybrid (Y2H) experiments).  

Our current understanding of protein-protein interaction networks is quite limited 

for a variety of reasons.  The challenge of reliable and complete determination of the 

interactome is far from being fully addressed due to the high rate of false positives. These 

false positives are associated with high throughput experiments, the low coverage of 

solved co-crystal structures in the Protein Data Bank (PDB), and the difficulty of obtaining 

reliable negative evidence that a protein does not interact with one or more other proteins. 

For example, Y2H experiments focus on pair-wise interactions between proteins and 

provide, at best, rather indirect evidence for higher order interactions e.g., those that 

require three proteins to come together to form a complex.  Even in the case of pairwise 

interactions, Y2H experiments only provide evidence that a pair of proteins is likely to 

interact in vitro, without offering any insights into the physical basis of such interactions, 

or whether such interactions may actually occur in vivo [2-6].  It is well known that data 

from high-throughput Y2H experiments are notoriously noisy and suffer from a high false 

positive rate [7].  The high-quality datasets tend to have low-coverage e.g., it is estimated 

up to 95% of the human interactome is unmapped [8].  Furthermore, whether a particular 
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protein-protein interaction is experimentally observed depends on the specific 

experimental conditions. It is therefore critical to validate the putative interactions between 

proteins suggested by Y2H experiments using additional experimental or computational 

studies.  As a result, considerable amount of recent work has focused on creating high-

quality interaction datasets by systematically removing errors and low-quality interactions 

or by combining multiple sources of evidence [2,3,8,9].  Hence, there is considerable 

interest in reliable prediction of protein-protein interactions. 

Protein-protein interaction networks are usually represented and visualized as 

graphs in which the nodes correspond to the proteins and edges denote their possible 

pairwise interactions.  Such a representation is simply not rich enough to encode 

interactions that involve more than two proteins, nor do they distinguish between them.  

Furthermore, a single target protein can interact with a large number of partners: some of 

these interactions may be mutually exclusive because of competition between potential 

binding partners for the same interaction sites on the target protein.  Other interactions may 

be simultaneously possible, and in many instances, even mutually cooperative, i.e., binding 

of one partner to the target protein may prepare the target for binding to a second partner 

[10,11].  Distinguishing between these various types of interactions is essential for 

uncovering the physical basis of interactions of a protein with other proteins, engineering 

the protein surfaces to manipulate synthetic pathways, or for designing drugs that bind 

specific targets [12-14].  However, answering such questions is extremely difficult in the 

absence of direct experimental evidence, e.g., structures of complexes formed by a protein 

when it interacts with one or more other proteins or results of site-specific mutation 

experiments that identify the protein surface residues that play essential roles in such 
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interactions.  Unfortunately, experimental determination of protein-protein complexes or of 

binding sites is notoriously time-consuming and expensive.  Hence, there is a growing 

interest in computational tools that provide useful insights into various structural aspects of 

protein interactions from protein sequence alone.  

Of particular interest in this study are hub proteins, i.e., proteins that interact with 

large numbers of partners [15].  It is worth noting that "large numbers of partners" is a 

relative term and is arbitrarily defined.  In several studies, hub proteins are defined as those 

with 5 or more interaction partners [15-18]. The choice of five (as opposed to some other 

number) or more interacting partners as the defining characteristic of hub proteins is 

somewhat arbitrary. The quality of protein-protein interaction data (false positives, 

incomplete coverage) presents additional challenges in categorizing proteins into hubs and 

non-hubs. These difficulties notwithstanding, hub proteins have been reported to play 

essential roles in cellular control and tend to be highly conserved across species [19].  

Mutations in hub proteins can potentially disrupt its interactions with its many interaction 

partners, which can turn out to be lethal for the cell’s survival [20-22].  Hence, it is 

especially important to understand physical and structural basis of interactions of hub 

proteins with their partners.  Recent studies suggest that hubs are more diverse than 

previously thought and show striking differences in number of binding sites and kinetics of 

binding.  Kim et al. [16] combined three-dimensional structure information, known 

domain-domain interaction data, and protein-interaction data to define two types of hub 

protein structures.  The first type of hub proteins, called singlish interface hubs (SIH), 

interacts with multiple partners at one or two binding sites.  Because the interactions rely 

on binding events at one or two binding sites, interactions with the different partners tend 



78 

to be mutually exclusive.  The second type of hub proteins, called multiple-interface hubs 

(MIH), interacts with multiple interaction partners through more than two binding sites 

(See Figure 1).  Recent studies [16,22-30] have explored the roles of SIH and MIH in 

protein-protein interactions and hence protein function.  Kim et al. [16], who were among 

the first to analyze the properties of SIH and MIH proteins, found that MIH were twice as 

likely (compared to SIH) to be essential  for survival and perhaps as a consequence, more 

conserved across species with implications for determining the evolutionary rates for 

protein hubs.  They also found that MIH proteins are more likely to be members of large 

stable structural complexes.  SIH and MIH also differ in terms of network expansion 

during evolution:  SIH appear to follow the canonical preferential gene duplication model 

whereas MIH do not [16].  A recent study showed SIH tend to display higher degrees of 

disorder than MIH [28].  Table 1 summarizes the results of previous studies [16,28] that 

have compared the properties of SIH and MIH. 

Hub proteins can also be classified based on the kinetic mode of interaction.  Han 

et al. [31] recently described an expression-based classification model for hub proteins.  

This classification is based on a bimodal distribution of co-expression of hub proteins with 

their interaction partners [31].  Date hubs tend to display expression levels that have low 

correlation with those of their interaction partners (and tend to bind different partners at 

different time points or locations).  Conversely, party hubs tend to exhibit expression levels 

that have high degree of correlation with those of their interaction partners (and tend to 

interact simultaneously with the partners).  See Figure 1 for an illustration of date hubs 

versus party hubs. The analysis of party and date hubs provides additional insights into the 

structure of the underlying proteome and interactome.  For example, date hubs contribute 
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to global network stability and connectivity by acting as a inter-module linkers [10] that 

serve as regulators, mediators, or adapters.  In contrast, party hubs act as intra-module 

linkers that coordinate a specific process or assist the formation of a specific protein 

complex [31,32].  In these intermolecular interactions, the residues that contribute the most 

to binding (hot spots) for date hubs tend to be spatially near each other (forming hot 

regions) [25].  Date hubs are likely to evolve faster than party hubs [33].  Table 2 

summarizes the conclusions of previous studies that have compared the properties of date 

hubs and party hubs [25,31,33,34].  The differences between the two types of hub proteins 

strongly suggest that they might play different functional roles. SIH tend to be date hubs 

whereas MIH tend to be party hubs [16]; but there are exceptions.  It should be no surprise 

that SIH tend be date hubs: the number of binding sites that a hub protein has limits the 

number of partners with which it can interact at the same time.  However, the converse 

does not necessarily hold, i.e., not every date hub is a SIH.  A date hub may only have one 

or two concurrent interactions at any given time, but each of these interactions may involve 

different binding sites.  Hence a date hub can in general be a SIH or a MIH.  Similarly a 

party hub tends to be a MIH, since many concurrent interactions require many interaction 

sites, but a MIH can be a party hub or a date hub based on the interaction kinetics.  Recent 

studies have focused on the role of hubs in interaction networks and in particular, the 

differences in SIH versus MIH and date hubs versus party hubs [22-24,26,27,29-31,35,36]. 

Experimental characterization of hub proteins in terms of their structural and 

kinetic characteristics requires knowledge of the structures of complexes formed by such 

proteins in interaction with their binding partners [35,37].  Because of the prohibitive cost 

and effort needed to determine the structures of complexes formed by hub proteins with 



80 

their binding partners and the interfaces that mediate such interactions, there is an urgent 

need for reliable methods for predicting the structural and kinetic characteristics of hubs 

from sequence information alone.  In particular, there is a growing interest in purely 

sequence-based computational methods for discriminating between simultaneously 

possible versus mutually exclusive interactions[27,31,38,39] and predicting the number of 

binding sites available on the surface of a protein.   

There has been considerable work on machine learning approaches for 

distinguishing hub proteins from non-hub proteins [40-42].  Mirzarezaee et al. have 

recently proposed methods for distinguishing between date hubs (that interact with one 

partner at a time) and party hubs (that simultaneously interact with many partners) [15] 

using 17 features including 4 composition measurements, grouping of 48 physicochemical 

properties, six GO term features, domain occurrence, disordered regions, and position 

specific scoring matrices (PSSM).  They reported correlation coefficients of 0.74 for both 

date and party hubs.  In light of these results, a natural question to ask is whether similar or 

better performance can be achieved from information based solely on the sequence of the 

hub protein.  

Against this background, we introduce a three-phase machine learning approach 

(See Figure 2).  Phase I predicts if a protein physically binds with other proteins  (protein-

binding (PB) versus non-protein-binding (NPB)).  If a protein is predicted to be a PB 

protein, that protein goes through the second and third phase of predictions.  Phase II uses 

sequence similarity to determine the potential number of interaction sites for the input 

sequence based on a weighted-average of the number of interactors of the top scoring 

BLAST hits.  Phase III applies methods for predicting both structure (singlish vs. multiple) 
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and kinetics (date vs. party) classifications of protein-binding proteins using information 

derived from only the sequence of the protein (See Figure 3).  Our experiments show that 

our method is able to predict whether a protein is a protein-binding protein with an 

accuracy of 94%, 0.93 area under a ROC curve (AUC) and a correlation coefficient of 

0.87; identify hubs from non-hubs with 100% accuracy for 30% of the data (with the rest 

being flagged as putative hubs or putative  non-hubs depending on the sequence similarity 

to known hubs/non-hubs in our dataset); distinguish date hubs/party hubs with 69% 

accuracy and AUC of 0.68; and SIH/MIH with 89% accuracy, 0.85 AUC.  The method can 

be used even in settings where reliable protein-protein interaction data, or structures of 

protein-protein complexes are unavailable, to obtain useful insights into the functional and 

evolutionary characteristics of proteins and their interactions.  In addition, our method does 

not rely on computationally expensive multiple sequence alignments, the presence of 

functional or structural domains, or additional functional annotations (e.g. GO terms), 

allowing for fast and updateable predictions.   

It should be noted that categorizing hub proteins into structural and kinetic classes 

presents many challenges.  SIH and date proteins are defined by the absence of concurrent 

interaction partners or interaction sites.  However, it is difficult to reliably determine the 

absence of interaction between a protein and one or more putative interaction partners 

because of the lack of experimental data under a broad range of conditions.  It is thus 

possible that some proteins labelled as SIH in our dataset are in fact MIH where not all 

interaction partners have been identified. Conversely, because of the high false positive 

rates associated with high-throughput experiments, some proteins labelled as MIH or party 

hubs are in fact SIH.  These sources for errors in the protein-protein interaction data need 
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to be kept in mind in interpreting the results of our study as well as other similar analyses 

of protein-interaction data.  

A web server for the three-phase approach for automated PB/NPB, SIH/MIH, and 

date/party prediction is available at http://hybsvm.gdcb.iastate.edu. 

 
Results and Discussion 

Our approach to classifying proteins based on binding patterns is a 3-phase 

approach:  Phase I predicts if a protein is likely to bind with another protein, i.e., protein-

binding (PB).  Phase II determines if a protein-binding protein is a hub.  Phase III classifies 

PB proteins as singlish-interface versus multiple-interface hubs and date versus party hubs, 

based on sequence information alone.  We present results of experiments for each of the 

three phases.   

In this study, we use a simple encoding of protein sequences using the probability 

distribution short (k-letter) subsequences (k-grams) of amino acids.  In our experiments, we 

used values of k ranging from k=1 (amino acid composition) through k=4 (dimers, trimers, 

and tetramers).  Larger values of k were not considered, because we run out of data to 

reliably estimate the model parameters.  We use a range of standard machine learning 

methods implemented in Weka version 3.6.0:  J4.8 version [43] of the C4.5 decision tree 

learning algorithm (Decision Tree) [44], SMO version [45] of the support vector machine 

(SVM) [46] with a polynomial kernel, Multilayer Perception neural network (ANN) [43], 

and Naïve Bayes algorithm [43].  In addition, in Phase I and III, we use a two-stage 

ensemble classifier, HybSVM, which uses an SVM to combine the outputs of a set of 

predictors.  We compare the results of predictors trained using machine learning methods 

with two baseline methods:  the first baseline method classifies proteins based on the 
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number of SCOP [47,48] and PFAM [49] domains (domain-based method) present in the 

sequence.  The second baseline method classifies each protein based on the class-label of 

its nearest PSI-BLAST hit.  To evaluate predictors constructed using machine learning we 

used 10-fold cross-validation.  Because any single measure e.g., accuracy, provides at best 

partial information about the performance of a predictor, we use a set of measures 

including accuracy, precision, recall, correlation coefficient, F-measure, and area under the 

Receiver Operating Characteristic (ROC) curve.  Additional details can be found in the 

Methods section of the paper.  

Predicting protein binding proteins (Phase I) 

To evaluate our method to discriminate proteins that bind to other proteins from 

those that bind to other substrates (e.g., small ligands), we assembled Dataset 1, which 

consists of 5,010 proteins including 3,418 proteins that bind to one or more proteins and 

1,592 that bind to small ligands, but are not known to bind to other proteins.  As mentioned 

in the introduction, creating a set of proteins that do not bind to any other protein is a 

difficult challenge due to low-coverage and high false-positive rates in available protein-

protein interaction data.  Here we use the information coming from ligand-binding 

experiments to obtain “negative data”, i.e., non-protein-binding proteins: considering the 

inaccuracies in the protein-protein interaction data, if a protein has no experimental 

evidence of binding with another protein, but with a ligand, then we assume that the 

protein is non-protein binding.  Our hypothesis here is that if a protein interacts with a 

ligand and no experimental data are available for its interaction with another protein, then 

the lack of evidence of protein-protein interaction is less likely due to the incompleteness 

in the data and more likely due to the lack of protein binding activity. Thus, we assembled 
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a set of ligand-binding proteins and filtered out those that had high sequence similarity to 

proteins known to bind with other proteins to obtain a set of non-protein binding proteins.  

The methodology (described in detail in the Methods section) is not without its drawbacks: 

it disregards ligand-interacting proteins that are also involved in protein-protein 

interactions in vivo but lacking the confirmation of in vitro experimental data. 

As shown in Tables S1 and S2, the ability to distinguish protein-binding proteins 

from non-protein-binding proteins varies as a function of the machine learning method 

used and the size of the k-gram used.  The accuracies ranged from 74.4% (Decision Tree, 

k=2) to 87.2% (SVM, k=2).  Simply predicting each protein as belonging to the majority 

class yields an accuracy of 68.2% (see Domain-based method).  Most of the methods were 

able to achieve accuracies well above 68.2%. The precision values ranged from 0% to 

81%, recall from 0% to 93%, and correlation coefficient from 0.00 to 0.69.  Figure 4 shows 

ROC curves for each of the methods. These curves show no single method outperforms all 

others over the entire range of tradeoffs between precision and recall.   This suggests the 

possibility of using an ensemble of classifiers that takes advantage of the complementary 

information provided by the individual classifiers.   

To examine this possibility, we built HybSVM for Phase I, which constructs a 

support vector machine (SVM) classifier that takes as input, for each protein sequence to 

be classified, the outputs of seven classifiers as well as the PSI-BLAST method and 

produces as output, a class label for the protein.  The 7 classifiers used are:  NB(1), NB(2), 

NB(3), NB(4), NB 2-gram, NB 3-gram, NB 4-gram.  PSI-BLAST performs well on 

sequences with high sequence similarity whereas the NB(k) and NB k-gram methods 

perform well on sequences with high k-gram composition similarity.  Logistic regression 
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models are applied to the HybSVM classifier to get a probability score for each prediction.  

These scores are then used to evaluate the quality of each prediction.    

Table 3 compares the performance of the HybSVM classifiers for Phase I against 

other standard machine learning approaches.  HybSVM had an accuracy of 94.2% (an 

improvement of 6% in absolute terms over NB 4-gram) and a correlation coefficient of 

0.87 (an improvement of 0.15 over NB 4-gram).  For each performance measure the 

HybSVM method had the highest value for Dataset 1.   HybSVM for Phase I also 

outperforms the other methods over the entire range of tradeoffs between precision and 

recall on a ROC curve (Figure 4).   

Predicting hub proteins (Phase II) 

Since our overall goal is to predict structural and kinetic classes for hub proteins 

and these classifiers need to be trained on hub-only proteins, we need a method to (1) 

identify hub proteins, (2) filter out non-hub proteins, and/or (3) flag proteins that have 

potential of being non-hubs.  To evaluate this type of method, we assembled Dataset 2, 

consisting of 4,036 proteins including 1,741 hub proteins and 2,295 non-hub proteins.  The 

dataset was derived from high confidence protein-protein interaction data from BioGrid 

[50] by labelling proteins with more than 5 interaction partners as hubs and proteins with 

fewer than 3 interaction partners as non-hubs.  Proteins with 3, 4, or 5 interaction partners 

were not used in the dataset because, given the incompleteness of experimentally 

determined interactions, their categorization into hubs versus non-hubs is likely to be less 

reliable than the rest of the proteins in the dataset. 

We used a simple homology-based method to classify proteins into hubs and non-

hubs. A protein is classified as a hub if each of the top 4 hits returned by PSI-BLAST [51] 
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search correspond to hub proteins (See Methods for details).  Similarly, a protein is 

classified as a non-hub if all of the top hits are non-hub proteins.  A protein is flagged as 

being likely a hub or non-hub based on the majority of the class-labels of the four top hits.  

If no hits are reported, the protein is flagged as having no known label.  In addition to our 

predictions, in our web server, we report the number of interaction partners belonging to 

the top hit, the range of interaction partners of the top four hits, and a predicted number of 

interaction partners (based on the number of interaction partners of the top four BLAST 

hits weighted by the BLAST score of each hit).  This simple sequence-based method 

correctly classified 536 hub proteins and 630 non-hub proteins (approximately 30% of the 

data).  No proteins were incorrectly classified as hubs or non-hubs.  

Predicting structural and kinetic classes for hub proteins (Phase III)  

Structural prediction: discriminating SIH from MIH hub proteins.  To evaluate 

structural predictions on hub proteins, we created Dataset 3.  The dataset consists of 155 

hub proteins including 35 SIH and 120 MIH.  The dataset is a subset of data originally 

compiled by Kim et al. [16], but has been filtered to remove highly homologous sequences 

(50% or more sequence identity within at least 80% of the length of the sequence).    

Tables S3 and S4 show the ability to distinguish SIH and MIH (Dataset 3) based on 

several standard machine learning approaches with varying sizes k-grams.  The accuracies 

ranged from 67.7% (Decision Tree, k=2) to 81.2% (Naive Bayes, k=3).  Several classifiers 

actually had accuracies below 77.4% (e.g., SVM, k=1).  The precision values ranged from 

0% to 86%, recall from 0% to 63%, and correlation coefficient from 0.00 to 0.41. Figure 4 

shows ROC curves for each of the methods.  Again, these curves show no single method 

outperforms all others.  On Dataset 3, each of the machine learning methods used here 
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outperformed the simple domain-based method (note that the simple domain-based method 

had both 0.00 precision and recall because it was unable to predict any SIH proteins 

correctly).  

To validate how well interaction sites of SIH and MIH can be predicted on Dataset 

3, we ran a subset of the data through the interaction site predictor ISIS [52] and the target 

specific interaction site predictor NPS-HomPPI [53] with default settings.  Both methods 

generally under-predicted the number of interaction sites and in many cases the methods 

predicted few or no interaction sites on the hub proteins.   

Table 4 shows that the individual methods perform well on assigning hubs to 

classes based on structural characteristics.  No single k-value is optimal for all methods; 

optimal values of k vary with the size and complexity of the dataset.  Variables such as 

number of proteins, size of proteins, and homology between proteins all play an important 

role in developing an appropriate model for our classifiers.  Therefore, it is difficult to 

design a single model or choose a single optimal value of k for any dataset without prior 

knowledge of the data.  We also observe that proteins within a class are assigned different 

labels by classifiers that correspond to different choices of k.  Our results show that a 

single classifier does not classify all the proteins correctly, yet a vast majority of the 

proteins (over 93%) have at least one classifier that correctly predicts its class.  Again, we 

used the HybSVM method, this time for Phase III classifications, to take advantage of the 

complementary information provided by the individual classifiers.   

From the results shown in Table 4, we can see that HybSVM outperforms all other 

individual methods on 5 of the 6 performance measures.  For Dataset 3, HybSVM 

improved accuracy by 5.2% (89.0%) and correlation coefficient by 0.22 (0.69) over the 
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previous best classifier, NB 4-gram.  This method also had the highest AUC with a value 

of 0.85 (an improvement of 0.14 over SVM, the next highest performing method).   NB(k) 

had the highest recall value at 0.84 (it was able to correctly label more SIH proteins), but it 

came at the cost of a low precision (0.31) and lower correlation coefficient (0.44).  The 

threshold can be adjusted for HybSVM to achieve a better recall based on HybSVM having 

very balanced precision and recall scores (values of 0.75 and 0.77) and the highest f-

measure (76.0).  Figure 4 shows ROC curves for each of the methods on Dataset 3.   

Although HybSVM did not always outperform the other methods over the entire range of 

tradeoffs between precision and recall, it did outperform the other methods for a specific 

range of false positive rates (from 0.0 to 0.4 for SIH and from 0.25 to 0.5 MIH).  No single 

method significantly outperformed HybSVM.  It is worth noting that HybSVM method is 

especially attractive if there is little tolerance for false positives.  In contrast, each of the 

other methods (with the exception of domain-based method) works relatively well, in 

settings where there is greater tolerance for higher false positive rates. 

A closer examination of the results for Dataset 3 shows that many of the 

misclassified hub proteins are close to the arbitrary boundary between SIH and MIH.  This 

raises the question as to whether the labels could be more reliably predicted if the arbitrary 

cut-off on the number of interfaces is altered (See Figure S1).  For example, hubs with 4 or 

fewer interaction sites were labelled with an accuracy of 72%.  However, the accuracy of 

classification of hubs with 3 or fewer interfaces, the cut-off value for distinguishing SIH 

and MIH, was considerably lower.  The sensitivity of predictions for MIH improves as the 

number of interfaces of the hub protein increases (See Figure S2).  The sensitivity of 

predicting a protein hub with four or more interfaces is 96% (119/124) and 97% (108/111) 
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for protein hubs with 5 or more interfaces.  The majority (11/18) of our misclassifications 

were caused by a strong homology between proteins with differing numbers of interaction 

partners that were 2 or fewer (e.g. a protein with two interaction partners had a strong 

homology with a protein that had four interaction partners).  Details of the 

misclassifications can be found in Table 5. 

Kinetic prediction: discriminating Date from Party hub proteins.  To assess kinetic 

predictions on hub proteins, we created Dataset 4.  Dataset 4 contains 199 hub proteins 

including 91 date hubs and 108 party hubs.  Dataset 4 was originally created by Han et al. 

[31]; this dataset had relatively low sequence homology so no sequences were removed.  

Tables S5 and S6 show the results of using standard machine learning approaches on this 

dataset.  The accuracies for Dataset 4 ranged from 51.0% to 66.2% and the correlation 

coefficients from 0.01 to 0.30; precision from 50% to 70% and recall from 42% to 62%.  

The results of HybSVM on Dataset 4 (see Table 6) provided an accuracy of 69.2% and a 

correlation coefficient of 0.37, which are comparatively better than the best individual 

method (NB 3-gram).  HybSVM had a marginally lower AUC value (0.68) as compared to 

the Naive Bayes (0.70).   HybSVM also had the best F-Score (62.6) and precision (0.71).   

Figure 4 shows ROC curves for each of the methods on Dataset 4.  The ROC curves were 

similar to the curves generated by building classifiers on the SIH/MIH dataset. The results 

show that HybSVM method can be used in settings where a low false positive rate is 

desirable.  

A study by Mirzarezaee et al. has recently proposed methods for distinguishing 

date hub proteins from party hub proteins [15] using a variety of features including 4 

composition measurements, 48 physicochemical properties, six GO term features, domain 
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occurrence presence, disordered regions, and position specific scoring matrices (PSSM).  

They reported accuracies of up to 77% with correlation coefficients of 0.74 for both date 

and party hubs.  Their dataset also used yeast proteins, but it was a different set of proteins 

and consisted of over 5,000 non-hub proteins.  Their methodology consisted of classifying 

proteins into the following four classes: non-hub, intermediately connected, date, and 

party.  The HybSVM approach we report here focused instead on the binary classification 

task of distinguishing date hubs from party hubs.  Our method does not need functional 

annotations (GO terms) of proteins, their domain composition, or their sequence 

alignments with their homologs.  Our method also provides probability scores for each 

prediction.  These scores allow an investigator to trade-off the reliability of predictions 

against the coverage of the predictions.  HybSVM runs quickly and is easy to implement 

and update, which are ideal characteristics to serve the method through a web server.  A 

web server implementation of HybSVM can be found here:  http://hybsvm.gdcb.iastate.edu.          

Validating the three-phase approach 

To validate our three-phase approach, we tested each phase on additional datasets.  

Since Dataset 1 (PB versus NPB) was created independently of Dataset 3 (SIH versus 

MIH) and Dataset 4 (Date versus Party), we used these two datasets along with the data 

used in the Mirzarezaee paper (Date versus Party) as a test set for the HybSVM  classifier 

for predicting protein-binding proteins (Phase I).  The union of these three datasets 

included 900 yeast hub proteins. The Phase I HybSVM classifier predicted 99.7% of the 

proteins as protein-binding proteins.  Only three multi-interface proteins were 

misclassified.   
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We also used the data from the Mirzarezaee study as an additional test set to predict 

hub proteins (Phase II) and for the HybSVM classifier to discriminate date hubs from party 

hubs (Phase III).  The Phase II classifier correctly predicted 147 proteins as hub proteins 

and 116 as likely hub-proteins.  The classifier misclassified 45 proteins as non-hub 

proteins and 23 as likely non-hubs proteins (12% error rate).  All other proteins were 

labeled as being of unknown category.  The Phase III classifier used to discriminate date 

and party hub proteins predicted 67.9% of the 546 proteins correctly with a correlation 

coefficient of 0.36.  One of the advantages of our approach over the Mirzarezaee study is 

that a probability score is assigned to the predictions.  In this example, a majority of the 

misclassifications had a probability score under 0.70. Predictions with higher scores are 

more reliable.  For example, in the case of predictions with score greater than 0.70 (337 

proteins), accuracy improves to 74.2% (0.46 correlation coefficient). The predictions with 

score greater than 0.90 (78 proteins) yield even more reliable results: 84.6% accuracy, and 

0.54 correlation coefficient. These results show that investigators can benefit from our 

method, which needs only sequence information, to control the quality of the predictions 

by sacrificing the coverage of the classifier.  SIH and MIH class labels were not readily 

available for the Mirzarezaee dataset, so the structural classifier of Phase III was not 

evaluated on this dataset.           

 
Conclusion 

We have demonstrated that it is possible to fairly reliably classify proteins in a 

three-phase approach:  the first phase distinguishes protein-binding (PB) versus non-

protein-binding (NPB) proteins; the second phase predicts if the protein is likely to be a 

hub; the third phase classifies protein-binding proteins into SIH versus MIH and date 
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versus party hubs.  Our approach uses only sequence information and therefore will be 

highly useful for the analysis of proteins lacking structural information.  These 

classifications provide insights into the structural and kinetic characteristics of the 

corresponding proteins in the absence of interaction networks, expression data, three-

dimensional structure, sequence alignment, functional annotations, domains, or motifs.  

We note that the performance of our classifier for predicting structural characteristics of 

hubs (i.e., classifying hubs into SIH versus MIH) is better than that of the classifier for 

predicting kinetic or expression related characteristics of hubs (i.e., classifying hubs into 

date versus party hubs). 

 
Materials and Methods 

Here we used four datasets for training and testing classifiers for different phases of 

prediction.  Because protein interaction datasets tend to have high false positive rates, 

when building these datasets, our main goal was to use high-quality data.  Our second goal 

was to remove sequence bias in the datasets.  The first dataset consists of proteins that are 

involved in binding with other proteins (PB) and proteins that are not involved in PB 

(NPB). This dataset was used in the first phase of our prediction. The second dataset 

consists of hub and non-hub proteins.  This set of proteins was used in the second phase of 

predictions. Datasets 3 and 4 were used by the third phase to distinguish singlish/multiple 

and date/party hub proteins (Figure 2).  

Dataset 1 – Protein-binding (PB) versus non-protein-binding (NPB) proteins  

The first dataset consists of two subsets of proteins.  The first subset is generated 

using high-quality sets of proteins that are known to interact with other proteins. These 

proteins form a protein-binding (PB) subset.  The second subset consists of proteins that 
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are unlikely to bind with other proteins (NPB).  To create the PB subset, 3,640 yeast 

proteins were downloaded from HINT [9] (High-quality protein interactomes) 

(http://hint.yulab.org/)--HINT is a database of high-quality protein-protein interactions for 

different organisms, which was obtained by integrating protein-protein interaction data 

from various sources and filtered to remove low-quality interactions.   

The NPB subset consists of proteins that bind with small molecules, but not with 

proteins.  Identifying such a subset is a challenging task, because the available protein-

protein interaction data are incomplete at best.   It has been estimated that the fraction of 

identified interactions of the full human interactome is between 5% and 13% [8,54,55] and 

up to 30% for the yeast interactome [54].  The efforts to increase the coverage will most 

likely increase the false positive rate as well [56]. Therefore, it is inevitable that any NPB 

dataset will be subject to these inherent limitations of incompleteness and incorrectness in 

experimental protein-protein interaction sets.  Considering these limitations, we used the 

following methodology to create the NPB subset: a set of 8,443 proteins were downloaded 

from BindingDB [57] (http://www.bindingdb.org/bind/index.jsp).  This includes the entire 

set of protein targets that bind to small-molecules.  In order to filter proteins that are 

interacting with other proteins, these 8,443 BindingDB proteins were BLASTed [58] 

against the PB set and any protein that had a positive hit was removed.  Additional filtering 

was performed with the remaining BindingDB proteins against the 5,000 yeast proteins 

that have an experimental protein-protein interaction evidence in BioGrid [50] 

(http://thebiogrid.org/).  The remaining set of non-interacting proteins was 4,567 proteins.  

To minimize sequence bias, we clustered the proteins in both subsets where at least 80% of 

the sequence shared 50% or more sequence identity.  A representative sequence was 
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randomly chosen for each cluster to obtain the final dataset.  The resulting dataset, Dataset 

1, consists of a total of 5,010 proteins including 3,418 proteins in the PB subset and 1,592 

proteins in the NPB subset. 

Dataset 2 – Hub proteins versus non-hub proteins  

Manna et al. [18] had previously created a dataset of hubs and non-hubs.  This 

dataset was originally assembled by downloading human protein-protein interaction data 

from BioGRID [50].  Any protein that had more than five interactions was labeled as a 

hub, proteins with fewer than three interactions were labeled as non-hub.  Proteins with 

three, four, or five interactions were not considered as they were near the arbitrary cut-off 

value for defining a hub and had high potential for being mislabeled.  Their resulting 

dataset included 2,221 hub proteins and 2,889 non-hub proteins.  The data ranged from 

proteins with a single interaction partner to 170 interaction partners.  To minimize 

sequence bias in this dataset, we applied the same methodology we used to obtain Dataset 

1: we clustered the protein where at least 80% of each sequence shared 50% or more 

sequence identity and randomly chose a representative sequence from each cluster.  The 

resulting dataset, Dataset 2, consists of 4,036 proteins including 1,741 hub proteins and 

2,295 non-hub proteins.   

Dataset 3 - Singlish interface hubs (SIH) versus multiple interface hubs (MIH)  

Previously Kim et al. [16] created SIH and MIH datasets by combining yeast 

interaction data from various sources [4,16,59-63] and associating these proteins with 

Pfam domains [49,64], which were then subsequently mapped onto known PDB structures 

using iPfam [65].  They filtered out interactions that were not consistent with protein 

complexes as defined by iPfam to obtain a yeast protein interaction network.  Kim et al. 
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used this set to analyze evolutionary patterns in hub proteins and it uses a robust structure-

based definition of hubs, which was useful in our study.  Here, we follow their definition 

of hubs such that a protein is defined as a hub protein if it has five or more interaction 

partners.  A hub protein with 1 or 2 mutually exclusive interactions is defined as singlish-

interface hub (SIH); a hub protein with 3 or more mutually exclusive interactions is 

defined as multi-interface hub (MIH).  The original dataset consists of 1,269 interactions 

involving 873 proteins with 167 hub proteins including 36 SIH and 131 MIH proteins. We 

downloaded the original dataset from http://sin.gersteinlab.org.  We filtered non-hub 

proteins out and applied the same sequence filtering that we used for Dataset 1 and Dataset 

2.  The resulting dataset, Dataset 3, consists of 155 hub proteins with 35 SIH and 120 MIH 

proteins.  

Dataset 4 - Date hubs versus Party hubs 

Han et al. [31] created a protein set of date and party hubs by merging the results of 

multiple methods  [4,31,32,59-62,66-71].  Similar to Kim et al. [16], they defined a protein 

as a hub protein if it has five or more interaction partners.  They based their definition of 

date and party hubs on co-expression patterns: hubs that have low degree of co-expression 

with their interaction partners (Pearson correlation coefficient of 0.5 or lower) are assumed 

to bind different partners at different time points or locations and are classified as date 

hubs.  In the same vein, hubs that exhibit high degree of co-expression with their 

interaction partners (Pearson correlation coefficient greater than 0.5) are assumed to 

interact simultaneously with their interaction partners.  Their resulting yeast interaction 

dataset consists of 1,379 proteins and 2,493 interactions, which contains both hub and non-

hub proteins.  We filtered non-hub proteins out and applied the same sequence filtering 
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that we used on the previous datasets.  The sequence bias was already removed in the 

original dataset; so no additional sequences were removed.  The resulting set, Dataset 4 

consists of 199 hub proteins including 91 date hubs and 108 party hubs.  

Overlap among Dataset 3 and Dataset 4 

It is worth noting that the SIH-MIH and Date-Party classes show some overlap.  

Figure 5 is a Venn diagram showing the distribution of the 41 proteins in their respective 

classes.  For example, 6 singlish-interface proteins are also date hub proteins.  Similarly, 

there are 2 singlish-party hubs, 6 multi-date hubs, and 27 multi-party hubs.  Figure 6 show 

examples of singlish-interface date hub and multi-party hub proteins respectively.  

Classification framework 

For each class within our dataset we built a binary classifier that predicts if that 

protein belonged to that class or not.  The reported accuracy estimates are based on 

stratified 10-fold cross validation. Each of the individual classifiers is described below: 

Machine learning methods 

Support Vector Machines. A support vector machine (SVM), given a training set, 

that is linearly separable in a kernel-induced feature space, implements a linear decision 

boundary that maximizes the margin of separation between the classes [46].  If the dataset 

is not perfectly separable, slack variables are used to minimize the number of misclassified 

training examples.  Logistic regression models were applied to the outputs of the SVM to 

get a probability score.  These scores can be used to evaluate the quality of a prediction.   

Even if the overall accuracy of the prediction model does not meet high standards, the 

quality of individual predictions may be suitable based on the probability score.  The score 

also allows an investigator to determine and set the trade-off between the sensitivity and 
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selectivity of the classified (as shown in the ROC-curves).  The scores range from 0.5 

(50% or equal probability of belonging to either class) to 1 (100% probability of belonging 

to the specified class).  We used the Weka version 3.6.0 SMO implementation [45] of the 

support vector machine algorithm [46] with a polynomial kernel. 

Naive Bayes Multinomial Classifier. The Naive Bayes multinomial classifier 

models each sequence by a bag of letters sampled from a fixed alphabet.  In our case, the 

bag of letters is the amino acid composition of a protein sequence.  Thus, each element 

(amino acid) of the sequence is assumed to be independent of the other elements in the 

sequence given the class label.  Based on this assumption, a multinomial Naive Bayes 

classifier can be built over all of the sequences for a given class.  This is similar to the bag 

of words approach previously used for text classification [72].      

Naive Bayes k-grams Classifier.  The Naive Bayes k-grams (NB k-grams) method 

[73] uses a sliding a window of size k along each sequence to generate a bag of k-grams 

representation of the sequence.  Much like in the case of the Naive Bayes classifier 

described above, the Naïve Bayes k-grams classifier treats each k-gram in the bag to be 

independent of the others given the class label for the sequence.  Given this probabilistic 

model, the previously outlined method for classification using a probabilistic model can be 

applied.  A problem with the NB k-grams approach is that successive k-grams extracted 

from a sequence share k-1 elements in common.  This grossly and systematically violates 

the independence assumption of Naive Bayes. 

NB (k).  NB(k) [73] constructs, for each class, a Markov model of order k -1.  It 

modifies the Naïve Bayes model to explicitly model the dependencies (of order k-1) 

between the letters of a sequence. It is easily seen that when k = 1, Naive Bayes k-grams as 
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well as Naive Bayes (1) reduce to the Naive Bayes model.  The relevant probabilities 

required for specifying the above models can be estimated using standard techniques for 

estimation of probabilities using Laplace estimators [74]. 

Naïve Bayes (NB) k-grams and NB(k) models were constructed and evaluated on 

the dataset with k ranging from 1 to 4.  Values of k larger than 4 were not considered 

because at higher values of k, the available data are insufficient to obtain reliable 

probability estimates. 

PSI-Blast.  The homology-based tool PSI-BLAST [51] version 2.2.9 was used to 

construct a binary classifier for each class.  We used the binary class label predicted by the 

PSI-BLAST-based classifier as an additional input to our HybSVM classifier.  Given a 

query sequence to be classified, we used PSI-BLAST to compare the query sequence 

against the training set.  In 10-fold cross-validation, we ran PSI-BLAST with the query 

sequences in a given fold against the reference database comprised of the remaining nine 

folds.  We repeated this process for each of the ten folds.  For HybSVM, a class was 

assigned to the query sequence based on the top-scoring hit (i.e., the sequence with the 

lowest e-value) from the PSI-BLAST results.  The resulting binary prediction of the PSI-

BLAST classifier for class c is 1 if the class label for the top scoring hit is c.  Otherwise, it 

is 0.  An e-value cut-off of 1x10-4 was used for PSI-BLAST, with all other parameters set 

to their default values.  For predicting hub proteins, the four top-scoring hit were used.  If 

there was a consensus among the top four hits then the class label of the four hits is 

assigned to the query sequence.  If three of the four top-scoring hits had the same class, the 

query sequence is labeled as 'likely' belonging to that class.  In addition to the prediction, 

we report the number of interaction partners belonging to the top hit, the range of 
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interaction partners of the top four hits, and a weighted average (based on the BLAST 

score) of number of interaction partners of the top four hits.      

Domain-based Method.  The domain-based method builds a classifier by using a 

class-conditional probability distribution based on the frequency of SCOP [47,48] and 

PFAM [49] domains in the following manner.  For each protein, the count for each type of 

domain was determined by the number of domains listed at the Saccharomyces Genome 

Database (SGD) [75].  This method was used to rule out a simple direct correlation 

between the number of domains and the number of interaction sites on a hub protein. 

Decision Tree.  A Decision Tree builds a predictive model by recursively 

partitioning the dataset based on choosing features that provide the most information gain.  

In our example, the feature set is the observed k-gram composition of amino acids given a 

class.  For binary classes (e.g., SIH versus MIH), the decision tree algorithm chooses a k-

gram feature that partitions the data to maximize the information gain between classes.  

The process is recursively repeated on the new partitions until no more information gain 

can be achieved.  Additional techniques are performed (e.g., pruning) to help prevent 

overtraining.  For these experiments we used the commonly used decision tree algorithm 

C4.5 [44] implemented as the J4.8 algorithm [43] in Weka version 3.6.0. 

Multi-layer perceptron.  A multi-layer perceptron, often referred to as a multilayer 

artificial neural network [76,77] (ANN) implements a non-linear decision function by 

using a weighted linear combination of non-linear (typically sigmoid) transformations of 

linear functions of input features.  The ANN is typically trained using error back-

propagation or generalized gradient descent algorithm that minimizes a function of the 
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error between the desired and actual outputs of the ANN.  We used the Multilayer 

Perceptron artificial neural network (ANN) implementation [43] in Weka version 3.6.0. 

HybSVM Method.  We introduce HybSVM classifier that is a support vector 

machine (SVM) classifier that assigns the class label to a target sequence based on the 

class labels output by the Naive Bayes (NB), NB k-gram, NB(k) classifiers, and an 

additional attribute, the output from the PSI-BLAST classifiers.  Since there are eight 

classifiers Naive Bayes, NB 2-gram, NB 3-gram, NB 4-gram, NB(2), NB(3), NB(4), and 

PSI-BLAST, the input to the HybSVM classifier consists of a 8-tuple vector of class labels 

assigned to the sequence by the 8 classifiers.  A SVM is trained to predict the class label 

for each sequence based on the 8-tuple of class labels predicted by the eight individual 

classifiers. 

Performance evaluation 

The performance measures accuracy, precision, recall, f-measure, and correlation 

coefficient are used to evaluate the performance of our machine learning approaches [78].  

Accuracy is the fraction of overall predictions that are correct.  Precision is the ratio of 

predicted true positive examples to the total number of actual positive examples.  Recall is 

the ratio of predicted true positives to the total number of examples predicted as positive.  

The F-measure (F1 score) is the harmonic mean of precision and recall.  The F-measure 

has a range between 0 (worst value) and 1 (best value).  Correlation coefficient measures 

the correlation between predictions and actual class labels.  The correlation coefficient has 

a range of -1 (worst value) and 1 (best value).   

Table S7 summarizes the definitions of performance measures in the two-class 

setting (binary classification), where M represents the total number of classes and N 
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represents the total number of examples. TP, TN, FP, and FN are the true positives, true 

negatives, false positives, and false negatives for each of our classification problems.  For 

example, when predicting SIH proteins:  TP refers to a SIH correctly predicted, FP to MIH 

predicted as SIH, FN as SIH predicted as a MIH, and TN to MIH correctly predicted.  

Where possible, we used the area under the receiver operating characteristic (AUC) 

curve.  The ROC curve plots the true positive rate versus false positive rate for a binary 

classifier system (a protein belongs to a given class or not) as its discrimination threshold 

is varied.  The area ranges from 0 (worst) to 1 (best); the value of 0.5 refers to the expected 

value of a random method.   
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Figures 

Figure 1.  Descriptions of the singlish-date, singlish-party, multi-date, and multi-
party classes -  Descriptions for each type of hub are described below.  The rows of the 
table represent the singlish and multi-interface hub proteins.  The columns represent the 
date and party hubs.  The intersection of the column and row displays a picture showing 
examples of the type and number of interfaces involved for that class. 
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Figure 2.  Three-phase method to predict protein-binding proteins, hub proteins, 
singlish interface/multiple interface (SIH/MIH), and Date/Party hubs -  Phase I 
predicts if a protein physically binds with other proteins  (protein-binding (PB) versus non-
protein-binding (NPB)).  If a protein is predicted to be a PB protein in Phase I, that protein 
is further classified in Phase II and Phase III.  Phase II uses sequence similarity to 
determine the potential number of interaction sites for the input sequence and if that 
protein is likely to be a hub protein. Phase III applies methods for predicting both 
structural (singlish vs. multiple) and kinetic (date vs. party) classifications of protein hub 
proteins.  All methods for each of the three phases make predictions from sequence alone.      
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Figure 3.  HybSVM method - HybSVM is a two-stage machine learning method.  The 
first step of the algorithm is to convert sequence data into a composition-based data 
representation (monomer, dimer, trimer, and tetramer).  These four new data 
representations are used as inputs to 7 machine learning algorithms based on the NB(k) 
and NB k-gram approaches (Stage 1).  An eighth method based on PSI-BLAST is applied 
to the original sequence data.  The outputs of each of the eight outputs are converted into a 
binary vector of length 8.  The resulting vector is used as input to a SVM to produce the 
final output (Stage 2).   
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Figure 4.  Receiver-operator characteristics (ROC) curve for Datasets 1, 3, and 4 - 
The curve describes the tradeoff between sensitivity and specificity at different thresholds 
for various predictors.  A simple domain-based method is included as a baseline for 
comparison.  The figure includes ROC curves for protein-binding (PB) versus non-protein-
binding (NPB), singlish-interface versus multi-interface hub proteins, and date versus party 
hub proteins. 
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Figure 5.  Venn-diagram for Dataset 3 and Dataset 4 -  Each of the 272 hub proteins 
belong to one or more of the following classes: singlish, multi, date, party.  Dataset 3 
consists of 35 singlish hub proteins and 120 multi hub proteins (Yellow circles).  Dataset 4 
consists of 91 date hub proteins and 108 party hub proteins (Blue circles).  Please see text 
for more details about the datasets.  
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Figure 6.  Example of a singlish-interface date and multi-party hub proteins -  Images 
A and B show the quaternary structure for the singlish-date protein Rab GDP dissociation 
inhibitor alpha (GDI1, YER136W)  binding with two different proteins.  Image C shows 
the quaternary structure for the yeast protein beta 6 subunit of the 20S proteasome (PRE7, 
YBL041W) binding with multiple proteins at the same time.  A: GDI1 (green) binding 
with GTP-binding protein YPT31/YPT8 (purple).  PDB ID of the complex: 3cpj  [79,80]. 
B: GDI1 (green) binding with GTP-binding proteinYPT1 (yellow).  PDB ID of the 
complex: 1ukv [80,81].  The protein binds at one location (singlish-interface) with one 
partner at a time (date). C: PRE7 (green) binds with PUP1 (orange), PUP3 (red), C5 
(pink), PRE4 (purple).  PDB ID of the complex: 3bdm [80,82].  The protein binds at 
multiple locations (multi-interface) with many partners at same time (party).   
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Tables 

Table 1.  Properties of singlish and multiple-interface yeast protein hubs.  
  
Properties Singlish-interface Multiple-interface 

Essential No Yes 
Conserved No Yes 
Co-expression  Limited  High 
3D Structure Smaller, less stable Larger, stable 
Canonical preferential gene 
duplication 

Yes No 

Disorder High Low 

 
The properties for each type of interface are listed based on observed tendencies seen in 
Dataset 3 [16,28].   
 
Table 2.  Properties of date and party yeast protein hubs.  
  
Properties Date Party 

Evolutionary rate Faster Slower 
Interactome connectivity Intermodule Intramodule 
Structural interaction  Few interaction sites Many interaction sites 
Hot spots More organized in hot 

regions 
Less organized in hot regions 

Hot regions Covers a larger fraction of 
the interface region, larger 
number of distinct hot 
regions 

Covers a smaller fraction of the 
interface region, smaller number
distinct hot regions 

 
The properties for each type of interface are listed based on observed tendencies seen in 
Dataset 4 [25,31,33].  
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Table 3. Dataset 1 (protein-binding vs. non-protein-binding, i.e. PB vs. NPB) prediction 
results from classifiers trained using machine learning methods. 
 
Approach Best k Accuracy F1 Score Precision Recall C.C. AUC 
NB k-gram 4 88.2 80.1 .75 .86 .72 .85 
NB(k) 3 86.4 78.5 .79 .78 .69 .83 
Decision Tree 1 81.6 69.9 .72 .68 .57 .78 
SVM 2 87.2 78.9 .82 .76 .70 .84 
ANN 2 86.9 77.6 .83 .73 .71 .84 
Naive Bayes 2 82.1 72.9 .70 .76 .60 .88 
Domain-based N/A 68.2 0.0 .00 .00 .00 .50 
Homology-based N/A 52.7 49.1 .37 .73 .15 N/A 
HybSVM N/A 94.2 90.5 .92 .89 .87 .93 
 
Accuracy, F-measure (F1 Score), precision, recall, correlation coefficient (C.C.), and area 
under the receiver operating characteristic curve (AUC) of classification for the multi-
interface versus singlish-interface dataset are presented.  Accuracy and F-measure are 
reported in percentage.  For each machine learning approach, values of k ranged from 1 to 
4.  Only the classifier with the best performing k-value (as defined by highest correlation 
coefficient) is shown. Our methods were estimated by cross-validation.  The highest 
performing value(s) for each performance measure is highlighted in bold. 
 
 
Table 4. Dataset 3 (SIH vs. MIH) prediction results from classifiers trained using machine 
learning methods. 
 
Approach Best k Accuracy F1 Score Precision Recall C.C. AUC 
NB k-gram 4 83.8 53.8 .42 .75 .47 .71 
NB(k) 3 83.2 45.3 .31 .84 .44 .69 
Decision Tree 3 71.0 40.3 .38 .43 .21 .57 
SVM 2 76.1 41.0 .46 .37 .27 .62 
ANN 2 79.0 14.1 .60 .08 .10 .55 
Naive Bayes 3 81.2 52.8 .62 .46 .41 .70 
Domain-based N/A 76.4 0.0 .00 .00 -.01 .42 
Homology-based N/A 66.4 46.6 .74 .34 .32 N/A 
HybSVM N/A 89.0 76.0 .75 .77 .69 .85 
 
Accuracy, F-measure (F1 Score), precision, recall, correlation coefficient (C.C.), and area 
under the receiver operating characteristic curve (AUC) of classification for the multi-
interface versus singlish-interface dataset are presented.  Accuracy and F-measure are 
reported in percentage.  For each machine learning approach, values of k ranged from 1 to 
4.  Only the classifier with the best performing k-value (as defined by highest correlation 
coefficient) is shown.  Our methods were estimated by cross-validation.  The highest 
performing value(s) for each performance measure is highlighted in bold. 
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Table 5. Details for misclassified proteins in Dataset 3 using HybSVM. 
 
 Misclassified 

proteins 
Protein with highest 

homology 
 

Class Gene Interfaces Gene Interfaces e-value Difference 
singlish RHO1 3 CDC42 2 1E-52 1 
singlish STE11 4 CLA4 2 2E-37 2 
singlish ARP2 3 ACT1 2 1E-102 1 
singlish MAK5 9 DRS1 2 6E-42 7 
singlish PRP28 8 DRS1 2 2E-49 6 
singlish PUB1 3 SGN1 1 1E-05 2 
singlish CMD1 4 MLC1 2 1E-15 2 
singlish SEC22 7 YKT6 2 9E-10 5 
singlish SNP1 3 SGN1 1 8E-05 2 
multi YKT6 2 SEC22 7 9E-05 -5 
multi CDC42 2 RHO1 3 1E-05 -1 
multi ACT1 2 ARP2 3 1E-05 -1 
multi SGN1 1 PUB1 3 1E-05 -2 
multi YTA7 1 RPT4 6 8E-05 -5 
multi MLC1 2 CMD1 4 1E-05 -2 
multi MTR3 1 (No hit) N/A N/A N/A 
multi BOI2 2 (No hit) N/A N/A N/A 
multi CLA4 2 STE11 4 2E-05 -2 
 
Details for the misclassified proteins in Dataset 3 based on using the HybSVM method 
including: actual class (multi, singlish), gene name, and number of interfaces as predicted 
by Kim et al. [16] are shown.  For each misclassified protein, information about the protein 
with the highest homology based on the nearest BLAST hit is also shown.  This 
information includes:  gene name, number of interfaces as predicted by Kim et al. [16], e-
value of the BLAST results between the two proteins, and the difference between the 
number of predicted interfaces for the misclassified protein and its nearest BLAST hit. 
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Table 6.  Dataset 4 (Date vs. Party hubs) predictions from classifiers trained using 
machine learning methods. 
 
Approach Best k Accuracy F1 Score Precision Recall C.C. AUC 
NB k-gram 3 67.1 59.8 .54 .67 .33 .71 
NB(k) 3 65.1 58.0 .53 .64 .29 .65 
Decision Tree 1 53.5 55.4 .50 .62 .08 .53 
SVM 3 62.1 59.0 .59 .59 .24 .66 
ANN 2 66.2 55.5 .70 .46 .30 .69 
Naive Bayes 1 65.2 57.5 .66 .51 .29 .70 
Domain-based N/A 59.1 30.2 .62 .20 .14 .57 
Homology-based N/A 29.8 22.0 .22 .22 -.43 N/A 
HybSVM N/A 69.2 62.6 .71 .56 .37 .68 
 
Accuracy, F-measure (F1 Score), precision, recall, correlation coefficient (C.C.), and area 
under the receiver operating characteristic curve (AUC) of classification for the multi-
interface versus singlish-interface dataset are presented.  Accuracy and F-measure are 
reported in percentage.    For each machine learning approach, values of k ranged from 1 to 
4.  Only the classifier with the best performing k-value (as defined by highest correlation 
coefficient) is shown. Our methods were estimated by cross-validation.  The highest 
performing value(s) for each performance measure is highlighted in bold. 
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Supporting Information 

Supporting Figures and Tables can be found in Appendices J -R. 
 
Appendix J: – Figure S1 

The accuracy curve of predicting singlish-interface and multiple-interface hub proteins as 
a function of the number of interaction sites.  The curve shows the prediction accuracy for 
proteins with number of interactions sites less than the given maximum threshold.  For 
example, the value of 5 on the x-axis refers to all hub proteins with 5 or fewer interfaces 
and the value on the curve (83%) at x=5, represents the accuracy of this set. 
 
Appendix K: – Figure S2 

The sensitivity curve of predicting singlish-interface and multiple-interface hub proteins as 
a function of the number of interaction sites.  The curve shows the prediction accuracy for 
proteins with number of interactions sites more than the given minimum threshold.  For 
example, the value of 5 on the x-axis refers to all hub proteins with 5 or more interfaces 
and the value on the curve (97%) at x=5, represents the sensitivity of this set. 
 
Appendix L: – Table S1 

Accuracy, precision, recall, and correlation coefficient (CC) of classification for the 
protein-binding versus non-protein-binding dataset are presented for internal machine 
learning methods.  For each machine learning approach, values of k ranged from 1 to 4.  
The performance of the results were estimated using cross-validation.  The highest 
performing value(s) for each performance measure is highlighted in bold. 
 
Appendix M: – Table S2 

Accuracy, precision, recall, and correlation coefficient (CC) of classification for the 
protein-binding versus non-protein-binding dataset are presented for standard machine 
learning methods.  For each machine learning approach, values of k ranged from 1 to 2.  
The performances of the results were estimated using cross-validation.  The highest 
performing value(s) for each performance measure is highlighted in bold. 
 
Appendix N: – Table S3 

Accuracy, precision, recall, and correlation coefficient (CC) of classification for the multi-
interface versus singlish-interface dataset are presented for internal machine learning 
methods.  For each machine learning approach, values of k ranged from 1 to 4.  The 
performances of the results were estimated using cross-validation.  The highest performing 
value(s) for each performance measure is highlighted in bold. 
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Appendix O: – Table S4 

Accuracy, precision, recall, and correlation coefficient (CC) of classification for the multi-
interface versus singlish-interface dataset are presented for standard machine learning 
methods.  For each machine learning approach, values of k ranged from 1 to 3.  The 
performances of the results were estimated using cross-validation.  The highest performing 
value(s) for each performance measure is highlighted in bold. 
 
Appendix P: – Table S5 

Accuracy, precision, recall, and correlation coefficient (CC) of classification for the date 
versus party dataset are presented for internal machine learning methods.  For each 
machine learning approach, values of k ranged from 1 to 4.  The performances of the 
results were estimated using cross-validation. The highest performing value(s) for each 
performance measure is highlighted in bold. 
 
Appendix Q: – Table S6 

Accuracy, precision, recall, and correlation coefficient (CC) of classification for the date 
versus party dataset are presented for standard machine learning methods.  For each 
machine learning approach, values of k ranged from 1 to 3.  The performances of the 
results were estimated using cross-validation. The highest performing value(s) for each 
performance measure is highlighted in bold. 
 
Appendix R: – Table S7 

The formula for binary classification for each of our five performance measures is 
provided. TP, TN, FP, FN are the true positives, true negatives, false positives, and false 
negative predictions.  
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CHAPTER 4. 

 
G-QUADRUPLEX SEQUENCES ARE FOUND IN GENES REGULATED BY 

HYPOXIA, LOW SUGAR, AND NUTRIENT DEPRIVATION IN MAIZE (ZEA MAYS 
SSP. MAYS L.) 

 
Modified from a paper to be submitted to G3: Genes|Genomes|Genetics in  

December 2013. 
 
 

Carson M. Andorf, Mykhailo Kopylov, Drena Dobbs, Karen E. Koch, M. Elizabeth 

Stroupe, Carolyn J. Lawrence, and Hank W. Bass 

 
 

Abstract 

The 4-stranded G-quadruplex (G4Q) elements are abundant, cis-acting elements in DNA 

and RNA that function in maintenance and expression of genes in prokaryotes and 

eukaryotes.  To investigate their roles in the plant kingdom, we computationally identified 

potential G4Qs in the maize (Zea mays L.) genome.  We found 149,988 non-telomeric 

G4Qs, with 43,174 remaining after repeat sequence masking.  Nearly one quarter of the 

filtered gene set transcripts contained one or more G4Q elements, with positional hot spots 

occurring in the antisense/template strands of the 5’ UTR and of the 5’ end of the first 

intron.  Representative genic G4Q oligonucleotide sequences showed quadruplex 

formation in vitro.  G4Q-containing genes were over-represented in genes with roles in 

metabolic pathways related to hypoxia, glycolysis, sugar degradation, inositol metabolism, 

and base-excision repair.  In addition, G4Qs were prevalent in genes for signaling 

pathways, including the hypoxia response, AMPK/SnRK, and DJ-1/GATase1.  From these 

results, we propose that maize G4Q elements comprise a large class of cis-acting elements 

ideally positioned to aid expression of genes involved in adaptive metabolism of low-

oxygen or low-sugar conditions.  The G4Qs are likely to have, therefore, widespread and 
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previously unrecognized significance in linking energy crisis perception to genomic 

response in plants. 

 
Introduction 

G-quadruplex (G4Q) elements are four-stranded nucleic acid structures that can form in 

DNA or RNA and switch back and forth between G4Q and non-G4Q conformations (1-7).  

G4Q intramolecular elements are made of 4-guanine planar stacks, similar to small stem 

loop structures, but forming a four-stranded helix with three loops.  These G4Q cis-acting 

elements are typical of the species-specific G-rich strands of most telomeric repeats (8-10).  

However, the vital roles of these G4Qs in transcription, translation, replication, and 

recombination were not uncovered until relatively recently (7,11).  The genomic 

distribution of G4Q elements in and around genes has prompted numerous investigations 

into their roles as cis-acting regulatory elements (2,7,12-15).  Finding G4Qs in the 

promoters of mammalian genes for cell-cycle control and cancer has further fueled a 

dramatic expansion and acceleration of G4Q research studies (3,6,16-22).  Aside from their 

role in cell-cycle control, G4Q elements are implicated in several other key biological 

processes that include hypoxia, signaling for DNA repair, and helicase-associated genome 

maintenance (23,24). 

 Genome-wide computational screens for G4Qs have established their widespread 

occurrence in prokaryotic and eukaryotic species including E. coli, budding yeast, and 

humans (12,25-30).  Such computational analyses provide valuable information and 

starting points for species-specific and comparative genomic analyses of G4Q biology 

(14,31-36). 
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 To date, the non-telomeric G4Qs in the human genome are among the most well 

characterized (12,14,36).  For instance, over 40% of human gene promoters contain G4Qs, 

with similar prevalence and conservation in other mammalian species (24,37).  Direct 

evidence for their role in transcription is available in a few specific cases, including the c-

MYC proto-oncogene, where the hypersensitive site NHEIII1 was shown to require G4Q 

formation for functional regulation both in vitro and in vivo (38).  Subsequent studies 

implicated G4Qs in transcriptional regulation of other cancer genes, such as KRAS (39), c-

myb (40), c-kit (41), VEGF (42), PDGFR- β (43), HIF-1α (23), bcl-2 (44), Rb (45), RET 

(46) and hTERT (47).  Ongoing pharmacological (48), mutational (49), and evolutionary 

research (50) into G4Q functions are providing new opportunities for development of 

G4Q-targeted drugs to treat certain human diseases (6,16,51) 

 Among the eukaryotes, the majority of G4Q research is limited to members of a 

single kingdom, the opisthokonts (animals and fungi).  Investigation of G4Qs elsewhere on 

the eukaryotic tree of life, such as the plant kingdom, will provide a more comprehensive 

understanding of both the conserved and diverged use of G4Qs as functional elements.  

Investigations in plant species offer wide eukaryotic comparisons as well as the potential 

for identifying regulatory roles of value to world food and biomass production.  Initial 

research into plant G4Qs showed these elements to be prevalent in Arabidopsis 

transcriptomes (52) and genomes of other plant species  (53).  A comparative survey of 

G4Qs in four plant species established that plant G4Qs are often located on the template 

strand near the transcription start site of genes, and that especially in rice, roles described 

by gene ontology were enriched for the terms, chloroplast, nucleus, and histone (52,53). 
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 Among the model plant species, maize has a rich history of genetic discoveries 

regarding transmission genetics, mobile DNA elements, epigenetics, and genetic diversity 

(reviewed in 54).  The maize genome is comprised of ten chromosomes, with a current 

genome sequence assembly of ~2.1 Gbp, similar in size and complexity to that of humans 

(55).  These attributes, together with the agronomic value of maize, make it a valuable 

species for experimental investigation of non-telomeric G4Q elements in plants.  Here we 

describe the identification of more than 43,000 potential G4Q elements in the non-

repetitive portion of the maize genome.  Their non-random distribution in genes and the 

functional classification of those genes is considered in light of possible biological roles 

for plant G4Qs. 

 
Material and Methods 

The Maize Genome, Gene Models, and Syntenic Grass Gene Lists. 

Maize Reference Genome:  The maize inbred line B73 genome sequence is 

available via GenBank Accessions: CM000777 - CM000786 and GK000031 - GK000034 

(56).  The current annotated assembly (B73 RefGen_v2: Release 5b.60) is accessible 

online via the MaizeGDB, http://www.maizegdb.org (57) and MaizeSequence, 

http://www.maizesequence.org.  This version of the reference assembly consists of 10 

pseudomolecule chromosomes (Chromosome1 - Chromosome10), 2 plasmid genomes 

(chloroplast and mitochondria), and a set of unmapped contigs (UNMAPPED).  The 10 

pseudomolecule chromosomes and unmapped contigs comprise approximately 2.07 billion 

base pairs (including 25.8 million unsequenced gap spaces, designated as “N”s, which 

constitute 1.2% of the genome sequence build. 
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Masked Genome:  The non-repetitive portion of the maize genome can be 

analyzed as a “masked” subset of the genomic data available from 

http://gramene.org/Zea_mays/Info/Index (55,58), and is masked for the Munich 

Information Centre for Protein Sequences Repeat Catalog (MIPS/REcat) repeats (58) 

(http://mips.helmholtz-muenchen.de/plant/) and the Transposable Elements (TE) 

Consortium repeats, including the long-terminal repeat (LTR) exemplars (59).  

Collectively, these repetitive regions account for approximately 83% of the maize genome.  

The remaining regions are referred to as the “masked genome”, and they comprise 358 

Mbp of primarily unique or low copy sequence. 

Gene Models:  The B73 RefGen_v2 maize reference genome includes two sets of 

predicted gene models. The working gene set (WGS) consists of 109,704 non-overlapping 

candidate gene elements, produced by the union of genes from two different gene finding 

approaches – evidence-based gene predictions using GeneBuilder (55,60), and ab initio 

gene prediction models using FGENESH (61,62).  The filtered gene set (FGS) is a strict 

subset of the WGS that excludes transposons, pseudogenes, contaminants, and other low-

confidence annotations.  The FGS consists of 39,570 gene models.  Gene models in both 

sets may have multiple transcripts per model.  In this study, only the transcript models 

designated as ’canonical’ were used because each gene locus has one canonical model, and 

it is the one with the greatest supporting evidence. 

Maize Syntenic Orthologs:  We analyzed syntenic orthologs (also called 

syntelogs) of maize genes from other species of the grass family, Poaceae.  A set of 

pangrass syntenic orthologs was compiled (56) for Sorghum bicolor (sorghum), Setaria 

italica (foxtail millet), Oryza sativa (rice), and Brachypodium distachyon (purple false 
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brome or brachy).  The transcript sequences for the gene models from these species were 

downloaded from Phytozome at http://www.phytozome.net;   Sorghum bicolor release 79: 

25,507 gene models; Setaria italica release 164: 23,216 gene models; Oryza sativa release 

193: 66,338 gene models;  Brachypodium distachyon release 192: 31,229 gene models 

(56). The number of syntenic orthologs between maize and individual grass species were:  

25,507 for sorghum, 23,216 for foxtail millet, 21,528 for rice, and 20,644 for brachy.  Here 

we define a “conserved gene” as a maize gene model that has at least one syntenic ortholog 

with any of these four other grasses, and a “highly-conserved gene” as a maize gene model 

with syntenic orthologs in all four other grasses. Using these criteria, we analyzed 27,009 

conserved and 15,949 highly conserved maize genes. 

Quadruplex Prediction:  

In this study, we define G4Q elements in maize as contiguous single-stranded 

sequences that match the following default quadruplex predicting formula, G3+L1-7G3+L1-

7G3+L1-7G3+ or it’s complementary sequence, according to the quadparser software (63).  

The resulting G4Q elements, named G4v2_1 through G4v2_149988 (Supplemental Table 

1), are each assigned a chromosome, start and stop coordinates, and strand (+ or -). 

Analysis of Maize G4Q Distribution Relative to Gene Structure 

We took two approaches to determining whether G4Qs occur in locations that 

correlate with the structure of genes. The first approach divided the gene region into six 

arbitrary bins based on their distance from the Transcription Start Site (TSS), and 

calculated the frequency of G4Q occurrence within each bin. The six bins were as follows:  

1,000 to 301 bp upstream, 300 to 101 bp upstream, 100 to 1 bp upstream, 1 to 100 bp 

downstream, 101 to 300 bp downstream, and 301 to 1000 bp downstream.  To calculate the 
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frequency with which a G4Q element belonged to a specific bin for all gene models in the 

FGS, the total number of G4Qs observed in that bin was divided by the total gene space 

occupied by the bin. We refer to this value as the “G4Q density” or number of G4Q 

elements per Mbp  (see Fig. 1B).  The second approach calculated the frequency with 

which G4Q elements overlap gene structural features (i.e., the TSS, coding start site 

(AUG), and the first exon/intron boundary (EX-IN) (see Fig. 2A). This approach focused 

on a 10 kb region centered on a given gene feature (e.g., TSS) for each gene model in the 

FGS. We refer to the observed number of G4Q elements that overlap (any base pair) of a 

gene feature as the “overlap count”. If the10 kb region extended into or beyond the BAC 

boundary of the assembly, the region was ignored because the absolute distance between 

coordinates in different BACs is not guaranteed due to the fact that the order and 

orientation between BACs is not fully resolved in the current maize assembly. To express 

the frequency of overlap between G4Q elements and gene structural features as a 

percentage, we divided the overlap count by the total count of G4Q elements within the 10 

kb region and multiplied by 100. 

Metabolic Pathway Analyses 

For visualizing metabolic pathway relationships among genes with similar types of 

G4Qs (e.g., the A5U list), we used the online interactive databases MaizeCyc and 

MapMan.   (64) (http://mapman.gabipd.org).  The online MaizeCyc web site and pathway 

tools software  are jointly hosted by MaizeGDB (http://maizecyc.maizegdb.org/) and 

Gramene (http://pathway.gramene.org/MAIZE/class-tree?object=Pathways) as described 

by Monaco et al. (64).   The MapMan site is available at http://mapman.gabipd.org (65).  

We used the cellular omics tool of version 2.0.2 of MaizeCyc (built on RefGen_v2) for 
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visualizing pathway data.  Supplementary figures were built using version 3.5.0 of the 

standalone MapMan program based on the Zm_GENOME_RELEASE_09 mapping 

dataset for B73 RefGen_v2.  Both tools were designed for visualizing microarray data.  In 

MaizeCyc, reaction lines representing enzymatic steps connecting substrates and products 

are color-coded based on the expression level of genes.  The line color schemes we applied 

are summarized in Figure 4 and Supplemental Table 3.  In these MaizeCyc output html 

files, we used “red” or “orange” for genes with G4Qs, “blue” for reactions associated with 

maize genes that lack G4Qs, or “grey” for reactions lacking any assigned maize gene 

model. 

Maize Gene Nomenclature 

In maize, the locus (gene) is represented by as a unique italicized lower case word 

or phrase.  Known dominant alleles are represented with an upper case first letter.  For 

example, the shrunken1 locus is represented as lower case for both the locus itself and for 

known recessive alleles, whereas a known dominant allele would be referred to as 

Shrunken1 (this is in keeping with standard maize gene nomenclature; see 

http://maizegdb.org/maize_nomenclature.php).  For the shrunken1 locus, it is known that 

the allele in B73 is dominant, so the B73 variant should be listed as Shrunken1.  However, 

because the dominant versus recessive character is not known for the B73 allele of most 

genes, we refer to the B73 sequence-based genes/gene models here using the lower case 

and italicized locus names without implying dominance values for any of the genes 

described (see Table 1).  New gene names that were assigned in this study were checked 

for appropriate convention (courtesy M. Schaeffer, MaizeGDB curator) primarily, or 
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secondarily using considerations of named homologs in other species or the presence of 

characteristic conserved domains (66). 

Oligonucleotide Folding Assays 

Oligonucleotides and G4Q folding conditions:  All oligonucleotides were received 

as salt-free purified and hydrated to 300 μM (Eurofins-MWG-Operon, Huntsville, 

Alabama, USA).  Oligonucleotide sequences for the G-rich strand of Q4Qs were either 

wild-type (wt) sequences or corresponding mutant (mut) control sequences (G4Q-

incompatible), with variant bases underlined.  The oligonucleotide sequences (5’ to 3’) 

correspond to:  human telomere repeats:  HsTelo4xG_wt, 

GGATACTTAGGGTTAGGGTTAGGGTTAGGGCGAGTC; HsTelo4xG_mut, 

GGATACTTAGAGTTAGCGTTAGCGTTAGCGCGAGTC; maize telomere repeats: 

ZmTelo4xG_wt, GGATACTTTAGGGTTTAGGGTTTAGGGTTTAGGGCGAGTC; 

ZmTelo4xG_mut, GGATACTTTAGCGTTTAGAGTTTAGCGTTTAGAGCGAGTC; 

shrunken1 A5U:  sh1_A5U_wt, GGGAGGGAGGGTTTCTCTGGGACGGGAGAGGG, 

sh1_A5U_mut, GGGAGTGAGGGTTTCTCTGTGACGGGAGAGTG; hexokinase4 A5U:  

hex4_A5U_wt, CGGGGGTGTTGAAGGGAGGAGGAGGGAGGGG; hex4_A5U_mut 

CGACGGTGTTGAAGCGAGGAGGAGCGAGCGG; hexokinase4 A5I1:  hex4_A5I1_wt, 

TGGGGTGGGGGGGGAGCGGG; hex4_A5I1_mut, TGGAGTCGGAGGAGAGCGCG; 

hex4_ATG_wt, CGGGGGGATGGGGCGGGTCGGG; hex4_ATG_mut, 

CGAGGCGATGAGGCGAGTCGAG.  Oligonucleotides were diluted to 10 μM in 10 mM 

tetrabutyl-ammonium phosphate buffer pH 7.5 (TBA) supplemented with or without 100 

mM KCl, heated in a 1.5 mL polypropylene microfuge tube to 95°C for 15 minutes on a 
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heat block, followed by slow cooling via ~8 hour drift down to room temperature and used 

for spectra or stored at 4°C. 

Thermal difference absorption spectroscopy:  Oligonucleotides were subjected to 

folding conditions as described above, diluted to 2.5 μM, and placed in screw-cap quartz 

cuvettes with 10 mm optical path length for spectroscopy using a Cary 300 Bio UV-Vis 

spectrophotometer equipped with Varian Cary Peltier cooler.  Each measurement was 

determined from the average of three scans (230 - 330 nm) at 30 nm/min and 1 nm data 

intervals. The first spectra were taken at 25°C; then samples were heated to 90°C for 20 

minutes and the second spectra were collected.  Thermal difference spectra (values at 90°C 

minus values at 25°C) were calculated and normalized by setting the value at 330 nm to 

zero and the value at the highest positive peak to one. 

Circular dichroism (CD) spectroscopy:  CD spectra (Supplemental Figure 1) were 

also collected on the 10 �M folded oligonucleotide samples without dilution at 25°C on an 

AVIV 202 CD spectrometer using a quartz cuvette with 1 mm optical path.  Data were 

collected at a 200-330 nm range using 3 scans at 15 nm/min, 0.33 s settling time and 1 nm 

bandwidth.  Buffer baseline was recorded using the same parameters and subtracted from 

the sample spectra. 

 
Results 

Genome-wide Survey of Predicted G4Qs in Maize 

We analyzed the entire maize genome using the default G4Q settings for the 

quadparser software.  From this we identified and named nearly 150,000 G4Q elements, 

averaging 27 bases in size, and summarized in Figure 1.  Each G4Q is given a unique name 

(G4v2-quad1 – G4v2-quad149988) and is defined by the chromosome number, plus the 
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beginning- and ending-coordinate, followed by the strand designation (Supplemental Table 

1: “+” for top strand read from short arm telomere to long arm telomere, and “–“ for 

bottom strand). The G4Qs showed a global relative density of 74 G4Q/Mbp, but nearly 

twice that amount in the masked, non-repetitive portion of the maize genome (Fig. 1A).  

The RefGen_v2 whole maize genome consists of 2.07 billion base pairs of which 1.2% is 

gap sequence (a fixed number of N's that defines the type of gap between sequence 

contigs) and 83% is repetitive elements.  A large number of G4Qs were detected in 

repeated regions, and many were found in a few repetitive elements, such as Xilon.  These 

and all other G4Qs not located in low-copy regions of the maize genome were largely 

excluded from this study, which focuses on the G4Qs in the masked genome. 

Over 43,000 G4Qs remained after repetitive sequences were masked, and  nearly 

12,000 G4Qs were associated with gene models.  Among the 39,626 canonical transcripts 

from the high quality filtered gene set (see methods), 9,572 have one or more G4Q 

elements.  We examined the location of the G4Qs in genes that we segmented into various 

structural components and boundary areas (Fig. 1B).  Using TSS-aligned, gene-average 

plots of G4Qs, normalized per bp of each segment, we found that the highest G4Q density 

mapped to the first 100 bp downstream of the TSS (segment A in Fig. 1B).  In this region, 

G4Q density peaked at about 500 G4Qs per Mbp, nearly 10 X more abundant than that of 

the whole genome, and 4 X more abundant than that of the masked genome.  The first 100 

bp just upstream of the TSS was also enriched for G4Qs, which reached densities over 350 

G4Qs per Mbp of sequence.  The segments were binned relative to TSS alone (Fig. 1B), 

leading to various numbers of introns, ORFs, and even downstream sequences in some of 

the plotted gene segments  (e.g, segment “C” in Fig. 1B).  The third highest segment for 



131 

G4Q density is the 100 bp just upstream of the TSS (segment “z”, Fig. 2B), in the 

promoter region.  The G4Q density in this region is ~4 X greater than that in the overall 

masked genome space, suggestive of a role for these elements in regulating some aspect of 

gene function. 

G4Q Element Hot Spots Map to Regulatory Regions for Gene Expression 

Having established an enrichment of G4Qs in maize genes relative to genomic 

DNA that is not accounted for simply by GC content, we next looked more closely at the 

location of these elements in relation gene structure.  Takahashi et al. (53) showed that the 

TSS region of the template strand was a hot spot for G4Q elements in four plant species, 

Arabidopsis, grape, rice, and poplar.  If that location is conserved in plants, then we would 

expect maize should also show a similar hot spot.  We examined this possibility along with 

several other gene structure boundaries as summarized in Figure 2.  The segments of an 

illustrative intron-containing gene were used to define the boundaries around which 

averaged trend plots are diagrammed (Fig. 2A).  Boundaries that emphasize important 

positional information include the TSS (Fig. 2A, using the canonical transcript, and 

orienting all genes in the same direction), the Exon-Intron boundary (“Ex-In”, Fig. 2A, 

limited in these graphs to the 1st intron), and the start of the open reading frame (“AUG”, 

Fig. 2A, defined by the start codon of the canonical transcript model). 

Based on analyses of gene boundary trend plots, we detect several instances of non-

random peaks of G4Q locations.  At low resolution (viewing a 10-kb window) we 

observed a clear association between G4Qs and the TSS (Fig. 2B), with the peak region 

falling just downstream of the TSS.  Looking closer at this region and separating the 

signals by strand, we found that nearly all of the TSS-associated G4Qs (blue lines, Figure 
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2) are located on the antisense or template strand (orange lines, Figure 2).  For these plots, 

each base pair is incremented if it overlaps with any portion of a contiguous predicted 

G4Q.  Similarly, we found another dramatic intronic peak limited to the antisense/template 

strand at a precise position, within the first 50 bp of the 5’ end of intron 1 (Figure 2D).  

These antisense, Intron-1 G4Qs occur at variable locations relative to the TSS, and 

contribute to some of the signal downstream of the TSS (Fig. 2B and 2C).  These two types 

of G4Q hot spots are respectively denoted “A5U” for antisense, 5’ UTR, and “A5I1” for 

antisense, 5’ end of intron-1.  Together, they account for the vast majority of genic G4Qs, 

and at least one of these two types of antisense G4Qs appears in over 4,000 maize genes 

(10% of the maize genome) having at least one these two antisense G4Q elements. 

A smaller peak in positions of G4Qs occurred on the sense/coding strand near the 

start codon (AUG boundary plots, Fig. 2E, 2F).  Considering only the sense/coding strand 

(Fig. 2F), positional peaks of G4Qs are just upstream or downstream of the start codon, 

with many ORFs (about 0.5% of those in the genome) having a start codon within a G4Q 

element (green line at intersection with 0 distance from the boundary, Fig. 2F).  These 

elements were denoted ”AUG” for proximity to the start codon and presence in the mRNA.  

We observed 481 maize genes with AUG G4Q elements by this criteria, and while smaller 

in number, these elements are interesting because they could function at the transcriptional 

and/or translational level. 

Genes with G4Qs in similar positions could theoretically also share some aspects of 

regulation or functions.  If the presence of these elements is non-functional or coincidental, 

then no evolutionary conservation would be expected.  To test for the most parsimonious 

explanation, i.e., that they are conserved for functional reasons, we examined conserved 
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orthologs of maize G4Q-containing genes and plotted the results as shown in Figure 3.  

The positional frequency of antisense G4Qs for maize genes were classified according to 

the quality of gene model evidence within maize and according to the degree of 

conservation between these genes and their syntenic counterparts in four relatives of 

maize.  These species are, in order of increasing evolutionary divergence, sorghum, foxtail 

millet, brachy, and rice.  This analysis shows that the “lowest quality” genes (i.e., those in 

the within the working gene set (WGS), but rejected from the higher quality filtered gene 

set (FGS); Fig. 3B, orange segment) show negligible likelihood of carrying 

antisense/template G4Qs.  These rejected genes include pseudogenes, gene fragments, or 

gene-like sequences for which mRNAs evidence is lacking or minimal.  Within the FGS, 

we observe an increasing prevalence of antisense/template G4Q elements as we go from 

genes found only in maize (Fig. 3B, blue segment), to those found in maize and any two of 

the four pan-grass relatives (Fig. 3B, gold segment).  The most G4Qs occurred in the most 

highly-conserved genes; those with known syntenic orthologs (syntelogs) in all four of the 

other pan-grass species (Figure 3B, blue segment).  Taken together, this analysis supports 

the idea that the maize genic G4Qs represent a large group of broadly-conserved, 

functional, cis-acting elements, frequently retained in highly-conserved grass genes. 

Metabolic-Pathway Analysis Associates Maize G4Qs with Genes for Responses to 
Hypoxia 
 

We next examined another prediction of the computational screen for maize G4Q-

contianing genes: that potential for co-regulated roles could be revealed by analysis of 

genes in which G4Qs reside.  If so, then functional classification of genes would reveal not 

only this trend, but also point to a possible function for G4Qs.  We explored the biological 

function of maize G4Q-containing genes using metabolic pathway databases, MaizeCyc 
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(67) and MapMan (64,65), looking specifically for non-random distribution of these genes 

among the many pathways depicted. 

We used the MaizeCyc gene expression omics tool to color-code the presence or 

absence of at G4Q-containing genes as shown in Figure 4.  According to the positional 

hotspot peaks of G4Q locations, we developed three sets of gene lists, A5U, A5I1, and 

AUG (defined in Figure 2, Lists 1-5).  We show one of these groups, A5U, using orange 

and red lines indicate enzymatic steps to which one of our listed genes has been mapped 

(Fig. 4A).  Several pathways were identified by this method and are enlarged for each of 

the three categories A5U, A5I1, and AUG (Fig. 4B).  These include aerobic respiration, 

Glycolysis I, parts of the TCA cycle, and two inositol phosphate-related pathways (Fig. 

4B, pathways 5 and 6).  Omics overview pathway html files, like that shown for the A5U 

(A5U-List1, A5U-List2, Fig. 4A), were produced for these and the other two gene lists 

(A5I1-List3, AUG-List4, and AUG-List5) available as web-browser files for mouse-over 

identification of the pathways with G4Q-containing genes (Supplemental Table 3 and links 

therein). 

Among the notable G4Q-containing genes observed using the MaizeCyc omics 

viewer were those reported to modulate responses to hypoxia in diverse plant species (68).  

Select examples from specific biological processes or pathways are listed in Table 1, along 

with the gene model ID, chromosome location, and class of G4Q contained therein.  For 

instance, in maize, the sucrose synthase gene encoded by shrunken1 contains an A5U G4Q 

element and this gene is also induced by hypoxia (69) and expressed in the low-oxygen 

region of the endosperm of developing maize seed (70). 
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An unexpected and recurring set of genes observed in our G4Q screen, but not 

previously highlighted in plant responses to hypoxia are those involving myo-inositol and 

phytic acid biosynthesis (Fig. 4B, pathways 5 and 6, and Table 1).  Detection of these 

pathways raises questions of possible relationships between inositol metabolism and plant 

hypoxia.  We also note that G4Q elements need not all be associated with a shared 

function.  In fact, given the myriad processes templated by nucleic acids, it is possible that 

we have detected some pathways that merely coincidentally linked by shared G4Qs. 

To further explore the possible link between hypoxia-responsiveness and G4Q-

containing genes, we cross-referenced our gene lists with those from transcriptomic 

analysis of hypoxic responses (68) and those from a recent study showing that hypoxia 

triggers acquisition of male germ-cell fate, and found that genes associated with hypoxia 

were more likely to have G4Qs than other genes (1.5 X enrichment for genes in “A5U List 

1”).  In addition to hypoxia-associated genes (71), we found an intriguing abundance of 

G4Qs (especially the A5U type) in signaling genes associated with energy homeostasis.  

Due to the overlapping nature of low-oxygen and low-sugar signaling, as well as their 

response pathways, we included many of them in Table 1.  For instance, many genes 

associated with the TOR, AMP kinase (AMPK)/Snf-related kinase (SnRK), and oxidative 

stress signaling (DJ-1/PARK7) pathways have one or more G4Q elements (Table 1), 

possibly signifying a global, coordinate role for G4Qs that corresponds to the regulatory, 

signaling, and metabolic responses modulating adjustments to energy stress (72-74).  In 

addition to these, we included examples of the base-excision, repair-pathway genes (Table 

1), because of their role in redox-associated transcriptional regulation at G4Q sites in 

specific human genes (24,75). 
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Maize G4Q elements can form quadruplex structures in vitro. 

We demonstrated that selected G4Q sequences from this study can indeed form 

G4Q structures in vitro using G4Q folding assays as summarized in Figure 5.  Single-

stranded synthetic oligonucleotides were incubated under G4Q-forming conditions and 

thermal difference spectra showed a diagnostic G4Q-specific increase in absorption at 295 

nm.  This A295 signature (arrow, Figure 5F, H.s. Telomere panel) was observed in a 

positive control sample of human telomere repeat DNA, (TTAGGG)n, and also in a plant 

telomere oligonucleotide sample (TTTAGGG)n, under the same conditions (Fig. 5F).  The 

locations of several genic G4Qs are diagramed (Fig. 5B-E) and their capacity to adopt 

G4Q structures is shown for four different G4Q elements in the shrunken1 and hexokinas4 

genes.  Using oligonucleotides with mutations altered the G-tracts (“mut” in Fig 5.), or in 

the absence of potassium, we observed a failure form quadruplex structures in these assays.  

These results were corroborated using circular dichroism spectroscopy (Supplemental 

Figure 1), confirming that computationally predicted G4Q elements can adopt G4Q 

structures in vitro. 

 
Discussion 

Computational prediction and analysis of G4Q elements from the genome sequence 

of a major crop species reveals that these elements in maize are wide-spread, preferentially 

located in genes, and present in those with shared functions in hypoxic responses, energy 

metabolism, and inositol phosphate metabolism.  Using the quadparser algorithm to define 

G4Q elements, we identified nearly 150,000 G4Qs, collectively covering over 2.22 Mbp of 

the maize genome.  The ~43,000 G4Qs found in the masked region of the maize genome is 

similar in numerical scale to that, ~40,000, found in rice (53).  To the extent that these are 
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functional DNA elements, G4Qs may represent one of the largest groups of cis-acting 

genetic elements known, not only for plants, but for eukaryotic species in general.  Other 

major genic cis-acting elements include general transcriptional initiation motifs (TATA 

boxes) and RNA processing signals (splicing elements, poly-A addition signals).  This 

study, together with that of Takahashi et al. (53), establishes G4Q elements as a major, and 

largely uncharacterized entry in the encyclopedia of DNA elements in plants.  The relative 

paucity of G4Q elements in Arabidopsis (53) is an intriguing observation, possibly 

reflecting a reduced capacity for Arabidopsis to resolve non-telomeric G4Qs in comparison 

to maize. 

Systematic examination of the location of the maize G4Q elements revealed two 

major hot-spots in maize genes, A5U and A5I1, two locations that together account for 

more than 90% of all the gene-associated G4Qs.  While these positions suggest roles in 

transcription initiation or elongation, the G4Q elements may also function as nucleation or 

recruitment sites for DNA replication proteins, strand-unwinding activities, DNA-repair 

proteins, or chromatin-remodeling functions.  

Given the locations of the A5U and A5I1 elements, we speculate a role for these 

maize G4Q elements in transcription, with a more specific prediction that they impact the 

processivity of RNA polymerase II.  In non-plant species, the functionality of G4Qs has 

been documented for a growing list of genes, even though many of them contain G4Q 

elements upstream of the TSS, in non-transcribed promoter areas (76).  One of the most 

well characterized examples of G4Q in gene regulation is the nuclease hypersensitive 

element, NHE III, located upstream of the human c-Myc gene.  This element was first 

identified as a DNAse hypersensitive site, and later shown by mutational, chemical foot-
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printing, and reporter gene assays to require G4Q formation for functionality (38).  

Currently, c-Myc gene regulation is being targeted using compounds that bind G4Q 

elements in vivo as potential cancer therapeutic (51). 

A primary expectation at the outset of this study was that identification of maize 

G4Q elements could reveal genes with shared regulation and function.  Prompted by the 

detection of a G4Q element in the promoter of a maize sucrose synthase gene, shrunken1, 

we extended analyses to the entire genome.  Metabolic pathway analysis, summarized in 

Figure 4, showed a striking pattern of G4Qs common to key enzymes in energy 

metabolism.  Plant cells under hypoxic conditions must adjust to a life-threatening energy 

crisis in which carbohydrate metabolism and redox reactions must be modified.  Hallmarks 

of metabolic adjustments for hypoxic-survival , summarized in recent studies and reviews, 

include substrate-level ATP production, increased glycolytic flux, tight regulation of 

mobile reductants such as malate, oxoglutarate, and oxaloacetate, and sensitive integration 

of sugar signaling pathways (68,72,73,77-80).    Remarkably, many of these same 

pathways were highlighted when metabolic impacts of G4Q-containing genes were 

visualized using the omics viewer tools of the MaizeCyc database (Fig. 4, Table 1).  

Associations persisted when we examined a more specific subset of genes including 

transcription factors involved in signaling of hypoxic and low sugar status (Table 1). 

In considering the two bodies of information discussed here - the G4Q genic 

location hot spots, and the functional classification of genes that contain them, we propose 

a generalized model in Figure 6 to integrate our findings and suggest mechanistic 

hypotheses.  We have shown that G4Q elements represent a common feature of genes 

responsive to energy crises.  The hypothesis that the G4Q elements in maize represent a 
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common link in genetic responses to multiple overlapping energy crisis signals (Fig. 6A) is 

supported by the prevalence of G4Q elements in genes encoding members of the 

AMPK/SnRK, NrF2-realated, and hypoxia-responsive transcription factors (Table 1).  

Target genes also included a large number of metabolic enzymes that produce ATP under 

low-oxygen or low-sugar conditions.  A simple mechanistic model for the possible 

function of G4Qs in gene expression is summarized (Fig. 6B) for both transcription and 

translation.  In this model, the G4Q acts as a physical impediment, or “kink” in the 

template to reduce or block RNA or protein polymerization.  Resolution of the “kink” 

occurs through the activity of trans-acting factors in response to energy crisis input signals.  

Transcriptional blockage by quadruplex structures and their stabilization by G4Q-binding 

molecules, or their resolution by helicases or other proteins, has been described for several, 

animal-gene systems, including c-Myc, KRAS, and VEGF (39,81,82).  These and related 

G4Q polymerase stop-assays for quadruplex function were taken into consideration in 

developing this model (83).  There is little doubt that the mode of action may be more 

complex and multifactorial than a simple, G4Q-kink-based block that is resolved for an 

increase gene expression.  For instance, mechanistic models from research on animal gene 

promoter G4Q elements invoke interactions of multiple trans-acting factors in and around 

the quadruplex (reviewed in 4).  For these reasons, we include the concept of “licensing” 

G4Q-containing genes under stress conditions (Fig. 6B), with direct resolution being but 

one of several molecular mechanisms in play.  It is recognized that not all genes are 

activated by hypoxia, and not all hypoxia-induced maize genes (e.g., alcohol 

dehydrogenase1) contain G4Q elements.  It will be important, therefore, to select a subset 

of these genes for detailed analysis in order to more clearly determine the functional role or 
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roles for G4Q elements in plant species.  Clearly, the abundance of G4Qs provides a way 

for them to aid in concerted regulation of genes responding to disparate energy stress 

signals. 

One unexpected finding was the occurrence of A5U G4Q elements in maize 

homologs of hypoxia-responsive transcription factors belonging to the HRE and RAP2 

group VII ethylene response factors (84).  These plant-specific, oxygen-sensing 

transcription factors were recently found to be stabilized under low oxygen conditions via 

a Cys-dependent, N-end turnover pathway (71,85).  Once stabilized, they are proposed to 

enter the nucleus and mediate global transcriptional responses.  Our findings point to a 

possible cis-acting element with which the HRE and HRAP2 transcription factors may 

interact to modulate expression of specific sets of target genes.  This situation is analogous 

to the regulation of HIF-1α, an animal hypoxia-response transcription factor, which is also 

is stabilized under low oxygen conditions, but by a prolyl-hydroxylase instead of the N-

end degradation pathway.  Interestingly, the human HIF-1α gene also has an A5U G4Q 

element, possibly indicative of conserved use of G4Qs in response to hypoxia. 

Finally, we consider the implications of a major and unexpected enrichment of 

G4Q elements in genes for biosynthesis of myo-inositol and phytic acid metabolism and in 

genes for SnRK signaling pathways (Fig. 4, pathways number 5 and 6).  We propose that 

conservation and positioning of these G4Qs are not coincidental, but rather represent 

functional links connecting these pathways.  Two important ways in which G4Qs in these 

genes might aid survival are discussed.  The first is direct metabolic effects, and the second 

is on signaling systems that ensure low-energy metabolic programs are operative. 
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First, recent evidence indicates an increasingly close relationship between myo-

inositol metabolism and stresses involving cellular energy status(68,77).   Levels of this 

sugar-alcohol rise during hypoxia, nutrient deprivation, and perturbations of related 

sensing systems (72,73,86).  The same stresses also increase levels of the myo-inositol 

metabolites, galactinol, raffinose, and phytate (73,87,88), and likely also involve the 

phosphatidyl inositols (73,86,87).  Suggested stress roles of raffinose, galactinol, and 

phytate include a possible parallel to their well-known, storage functions in seeds (86).  

However, other roles may be more important to survival of starvation or hypoxia.  

Raffinose and galactinol, for example, can also arise during remobilization of starch or 

cell-wall polysaccharides (86), and further, can scavenge reactive oxygen species in vitro 

and in vivo (86).  In addition, sugar-alcohol forming reactions can serve as sinks for excess 

reductant (89,90) and biosynthesis of myo-inositol can compete with starch formation in a 

potentially advantageous way under stress (91-93).  The non-storage, direct metabolic roles 

of phytate also affect the centrally-important balance of Pi, PPi, and adenylates (73,87), 

which would be especially important during low-oxygen and starvation conditions (68,86).  

Examples include the switch from ATP- to PPi-driven glycolysis (PDK to PPDK) under 

conditions of starvation (77,85,94-96), hypoxia (95,96) and the importance of PPi in 

hypoxic sieve tube elements of phloem (77,85,94).  Recent work has also indicated that 

functions of the PPi-dependent tonoplast extend well beyond contributions to vacuolar pH, 

and are sugar-responsive (96). 

Second, new research is revealing an even greater importance of the rapid, indirect 

action of myo-inositol metabolism in signaling systems.  Previous work demonstrated 

diverse roles for myo-inositol-derived signaling molecules that include inositol tri-
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phosphate (Ins(1,4,5)P3) and phosphatidyl-inositol cascades (97).  In addition, raffinose 

synthase can facilitate sucrose metabolism and myo-inositol cycling without production of 

hexoses (86), an advantageous pathway under stress, because hexose-based signals of 

carbohydrate abundance could otherwise counter adjustments to their limited supply (73).  

Recently, myo-inositol metabolism has moved into a potentially central position as a hub 

of interaction between two major sensing systems for nutrient and energy status of cells 

(96,98-101).  The TOR and SnRK complexes, respectively, sense nutrient abundance and 

deprivation (72,73), thus mediating feast and famine responses from cellular to whole 

organism levels (72,73,102,103). The responsiveness of both systems is vital to the 

adjustment of metabolism for survival of cellular energy crises (96,98-101,104). Both are 

also integrally involved in responses to hypoxia and nutrient deprivation (73).  In this 

regard, sugar-modifying enzymes are not viewed as merely metabolic substrates, but also 

as key signaling molecules, possibly requiring stringent control. 

Taken together, these functions for inositol and sugar signaling may inspire the 

development of more elaborate models of energy crisis adaptation in plants.  The current 

study has identified exciting new directions for investigating plant genetic responses to 

cellular energy and redox predicaments.  Future experiments will be needed to test the 

ideas proposed in our model for the mechanism of G4Q action in maize.   Further 

interrogation of these abundant cis-acting elements holds great potential for understanding 

and ultimately manipulating plant growth and development, adaptation, and overall food or 

biomass productivity. 
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Figures 

Figure 1. G4Q density within specific genomic regions-   G4Q density within specific 
genomic regions.   (A) Histogram represents average number of G4Q per Mb for the B73 
RefGen_v2 (Whole Genome; gray), the B73 RefGen_v2 assembly masked to remove 
repetitive elements (Masked Genome; black) for entire maize genome, including both gene 
space, and non-gene space.  (B) Schematic of gene-associated segments analyzed.  
Segments X - Z represent binned regions upstream of the transcription start site (TSS) and 
segments A-C represents regions downstream from the TSS.  For example, segment X 
represents sequences in the region between 1,000 and 300 bp upstream of the TSS, and 
segment A represents sequences in the region between 1 and 100 bp downstream of the 
TSS. (C) Histogram illustrating the G4Q density in each gene segment defined in Fig. 1B. 
Values for each segment represent the average density computed over all genes in the 
Masked Genome (aligned relative to the TSS). 
 

 
 

 



153 

Figure 2. Positional enrichment of G4Qs around specific gene structure boundaries-  
(A) Schematic of gene structure boundary definitions for the TSS, AUG (start codon), and 
EX-IN (5’ end of Exon1 – 3’ end of Intron 1) boundary. The arrow extending from the 
TSS in Fig. 2A denotes the orientation of the canonical transcript for each gene model.  
The abundance of G4Qs at specific positions relative to each feature is expressed as the 
ratio of observed G4Qs over expected, where expected is defined as the number of G4Qs 
in the masked genome divided by the masked genome size, and is are plotted for the 
following features: (B) TSS, (C) TSS (zoomed), (D) EX-IN, (E) AUG, and (F) AUG 
(zoomed).  For each panel, the boundary of interest is labeled at the top of the panel and is 
designated graphically as a vertical dashed line. The panels show the computed fold 
increase in G4Q elements (over the expected number) that overlap a given position (X 
axis) relative to the boundary. Values for elements found in either strand of the duplex 
DNA sequence (blue); in the sense/coding stand only (green), in the antisense/template 
strand only (orange). Peaks selected to make gene lists [L1-L5] are shown in brackets in 
panels (C) [L1, L2], (D) [L3], and (F) [L4, L5].  The number of genes in each list is 
indicated parenthetically; corresponding designations and complete gene lists are provided 
in Supplemental Table 1. 
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Figure 3. Conservation of TSS-associated antisense (template strand) G4Qs in maize 
and maize relatives-  (A) Four horizontal, segmented bars represent the number of genes 
(X axis) in each of four nested subsets of maize annotated gene models.  From the top, the 
maize WGS is made  up of 109,461 genes.  The second bar from the top, FGS, is defined 
as a high-confidence subset of the WGS.  The third and fourth bars represent subsets of the 
FGS that have syntenic orthologs (syntelogs) in other grass species.  These latter “syntenic 
subsets” comprise the conserved (i.e., one or more species containing syntelogs to the 
maize gene; third horizontal bar) and highly conserved (i.e., 5 grass species contain 
syntelogs to the maize gene; fourth horizontal bar) gene sets. Each of the top three bars is 
segmented into two colors where the gray segment contains only genes that meet criteria to 
be included in the subsequent subset. The orange segment of WGS represents genes that 
were filtered out to designate a high-quality FGS.  The green segment contains FGS-
specific genes that have no syntelogs. Within the syntenic subsets, the gold segment 
contains FGS-specific maize genes that are represented by a syntelog in one to four of the 
five grass species interrogated.  The blue segment, which encompasses the fourth bar, 
represents maize genes with syntelogs in all five grass species compared.  (B) Following 
the color coding convention defined in A, template/antisense G4Q ratios (Y axis) for the 
four annotated gene subsets are plotted against distance from TSS (X axis).  Note that gene 
sets with the most supporting evidence (blue), including expression evidence and degree of 
evolutionary conservation, contain the highest signal for G4Q occurrence near the TSS. 
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Figure 4.   Metabolic Pathways highlighted with G4Q gene lists-  (A) A diagram 
providing a schematic view of all pathways of Zea mays ssp. mays metabolism (as found in 
version 2.02 of MaizeCyc).  Nodes represent metabolites and lines represent reactions, 
highlighted as follows:  Red:  At least one metabolite has been assigned to a gene model in 
G4Q List 1 (see Fig. 2C and Supplemental Table 2);  Orange: At least one metabolite has 
been assigned to a gene model in G4Q List 2;  Blue: A gene model(s) has been assigned to 
a metabolite, but none of the gene models are in List 1 or 2;  Gray:  No gene model has 
been assigned to the metabolite.  (See Supplemental Table 3 for an interactive version of 
this image).  (B) Table showing the quadruplex types associated with the five gene lists 
[L1 - L5], along with highlighted diagrams for six selected pathways (see panel C) and 
color coded as described above. (C) Names of the 6 selected pathways used in Panel B, as 
defined in MaizeCyc. 
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Figure 5.  Schematics showing G4Qs on selected maize gene models-  Each schematic 
shows 750 bases after the TSS and the last 250 bases of the canonical transcript for each 
given gene model.  The arrow on top strand denotes the TSS, arrow on bottom strand 
denotes AUG, location of G4Qs are depicted as a three sheet stack on the appropriate 
strand, coding regions are wide black boxes, UTR regions are narrow black boxes, and 
introns are arrowed lines. (A) Maize telomere (TTTAGGG repeat) (B) shruken1, sucrose 
synthase with an A5U overlapping the TSS (C) maize hexokinase3, a hexokinase domain 
protein with three quadruplexes: A5U near the TSS, AUG overlapping the start codon, and 
a A5I1 in the first intron (D) maize AP2-EREBP-transcription factor20, RAP2 
homologous protein with a A5U and a G4Q on the template strand immediately after an 
alternative transcript coding stop site (E) maize AP2-EREBP-transcription factor16, RAP2 
homologous protein with three tandem A5Us (quadruplex patch) between the TSS and 
start codon.  (F) Normalized UV absorbance thermal difference spectra for selected 
synthetic oligonucleotides in human telomeric repeat, maize telomeric repeat, and 
shruken1 A5U. Human telomeric repeat was used in this experiment as a positive control. 
G4Q-characteristic TDS profile and prominent negative peak at A295 were obtained only 
for WT sequences annealed in the presence of 100 mM potassium (filled triangles) but not 
for those annealed in TBA phosphate buffer alone (open triangles). Mutant sequences did 
not show G4Q-characteristic signature independently of presence of potassium (filled and 
open circles respectively). (G)  Normalized UV absorbance thermal difference spectra for 
three types of G4Q in maize hexokinase4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



157 

- Figure 5 continued - 
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Figure 6.  Model for role of G4Qs in expression of energy crisis-responsive genes.  In 
this model, the G4Q elements classified in this study as A5U, A5I, or AUG type 
quadruplexes are proposed to represent negative regulatory elements in genes capable of 
induction by various energy stress signals, including low oxygen (hypoxia), low sugars 
(starvation/famine), or other signals (redox and nutrient balance).  (A) The generalized 
model with several different causes of energy crisis (dashed boxes) and their signaling 
pathway components (parentheses) imply a broad, regulatory role for G4Qs as cis-acting 
elements available for coordinate genetic responses to these related metabolic and 
signaling pathways.  “Resolution” denotes an unknown factor or process that functions to 
resolve, or “unkink” the quadruplex elements into a more favorable structure to permit 
expression or positive regulation of the G4Q-containing genes.  (B) The effects of a 
specific G4Q element on transcriptional or translational regulation occur in separate 
cellular compartments, but are proposed function in both cases as a physical impediment to 
nuclear RNA polymerase or cytoplasmic ribosomal protein synthesis.  For the regulation 
depicted in these panels (transcription versus translation), the “resolution” factors or 
processes are presumed to be different. 
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Tables 

Table 1.  Maize G4Q-containing Nuclear Genes with Key Roles in Energy Metabolism, 
Hypoxia, and Nutrient Signaling Pathways. 
 

Functional 
Class 

Maize Locus 
Namea 

Protein Productb 

G4Qc Gene Model IDd 
Genetic 
Bine (PFAM Domain) 

sugar 
metabolism 

sh1, sucrose synthase A5U GRMZM2G089713 9.01

shrunken1 (PF00862, 
PF00534) 

  amyb1, beta-amylase S3U GRMZM2G450125 1.01

beta amylase1 (PF01373) 

  *amyb2, beta-amylase 2-S3U# GRMZM2G025833 5.03

beta amylase2 (PF01373) 

sugar 
transport 

sut1, sucrose transporter A5U GRMZM2G034302 1.04

sucrose 
transporter1 

(cd06174f) 

inositol 
modification 

ipp2k, Inositol-
pentakisphosphate 
2-kinase 

A5U GRMZM2G067299 10.07

inositol 
polyphospate 2-
kinase 

(PF06090) 

  *lpa3, inositol kinase, 
ribokinase 

2-A5U, 
AUG 

GRMZM2G361593 1.1

low phytic acid3 (PF00294) 

energy, 
glycolysis 

*hex4, hexokinase A5U, 
A5I1, 
AUG 

GRMZM2G068913 3.05

hexokinase4 (PF00349, 
PF03727) 

  eno1, enolase A5U, 
A5I1, 
AUG 

GRMZM2G064302 9.02

enolase1 (PF03952, 
PF00113, 
PF07476) 

  pdlk1, mitochondrial 
pyruvate 
dehydrogenase 
kinase 

A5U GRMZM2G107196 1.04

pyruvate 
dehydrogenase 
(lipoamide) 
kinase1 

(PF10436, 
PF02518 ) 

  *pyk3, cytosolic pyruvate 
kinase 

A5U GRMZM2G150098 2.01

pyruvate kinase3 (PF00224, 
PF02887) 
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- Table 1 continued - 
 
  pdh2, pyruvate 

dehydrogenase 
A5U, AI GRMZM2G043198 1.06

pyruvate 
dehydrogensase2 

(PF02779, 
PF02780) 

energy, 
NADPH 
production 

pdg2, NADPH producing 
dehydrogenase of 
the oxidative PPP 

A5U, 
A5I1, SI1

GRMZM2G145715 3.05

  

  

6-
phosphogluconate 
dehydrogenase2 

(PF03446, 
PF00393) 

energy, omt1, plastidic 2-
oxoglutarate/malate 
transporter 

2-AORF GRMZM2G383088 10.03

oxo-glutarate 
metabolism 

oxoglutarate 
malate 
transporter1 

(PF00939) 

  gln1, glutamine 
synthetase; 
glutamate-
ammonia ligase, 
chloroplast 

A5U GRMZM2G098290 10.07

glutamine 
synthetase1 

(PF03951, 
PF00120) 

energy, 
respiration 

*sudh1, mitochondrial 
succinate 
dehydrogenase 

2-A5U GRMZM2G064799 7

succinate 
dehydrogenase1 

(PF00890, 
PF02910) 

  *nad3, NADH-ubiquinone 
oxidoreductase 
10.5 kDa subunit 

AORF-
Exon2 

GRMZM2G008464 
(T02, P02) 

8.03

NADH-
ubiquinone 
oxidorectase3 

(PF05047) 

  *ccr2, ubiquinol-
cytochrome c 
reductase complex 
8.0 kDa subunit 

A5I1 GRMZM2G064896 2.05

ubiquinol-
cytochrome c 
reductase2 

(PF05365) 

  *cox6b, cytochrome 
oxidase c subunit 
VIb 

A5U GRMZM5G815839 
(T02, P02) 

9.04

cytochrome-c 
oxidase subunit 
VIb 

(PF02297) 
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energy 
signaling, 
TOR 
pathway 

*raptor1, RAPTOR, TOR 
complex subunit 

2-A5U GRMZM2G048067 10

RAPTOR protein 
homolog1 

(PF02985, 
PF00400) 

energy 
signaling, 

*snrk1a1, Snf1-related 
AMPK, SnRK 
subunit 

A5U, SI1 GRMZM2G077278 6.06

AMPK/SnRK 

pathway 
snf1-related 
kinase 1-like1 

(PF00069, 
PF07714, 
PF00627, 
PF02149) 

  *snrk1a2, Snf1-related 
AMPK, SnRK 
subunit 

SI10 GRMZM2G180704 2.06

snf1-related 
kinase 1-like2 

(PF00069, 
PF07714, 
PF02149) 

  *snrk1a3, Snf1-related 
AMPK, SnRK 
subunit 

A5U GRMZM2G138814 1.03

snf1-related 
kinase 1-like3 

(PF04739) 

  *snrk1bc1, AMPK, SnRK1 
subunits, with 
CMB48 and two 
CBS domains 

2-A5U, 
A5I3 

GRMZM2G047774 1.12

snf1-related 
kinase -like1 

(PF00571) 

  *snrk1bc2, AMPK, SnRK1 
subunits, with 
CMB48 and two 
CBS domains 

4-A5U GRMZM2G014170 5

snf1-related 
kinase -like2 

(PF00571) 

  *snrkc2, SNF4-related 
AMPK, SnRK 
subunit 2 with two 
CBS domains 
(PF00571) 

A5U GRMZM2G051764 
(T03, P03) 

3.09

snf4-related 
kinase 2 
  

energy 
signaling, 
sucrose-
regulated TF, 
bZIP11 
family 

*bzip11a, basic 
leucine zipper 
transcription 
factor 11a 
(ZmbZIP84) 

bZIP11 family TF 
with sucrose-
regulated group 1g 
uORF transcript 

AUG GRMZM2G361611 4.1

(PF07716, 
PF00170) 

  *bzip11b, basic 
leucine zipper 
transcription 
factor 11b 
(ZmbZIP60) 

bZIP11 family TF 
with sucrose-
regulated group 1 
uORF transcript 

2-A5U GRMZM2G444748 5.03

(PF07716, 
PF00170) 
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  *bzip11c, basic 

leucine zipper 
transcription 
factor 11c 
(ZmbZIP12, 
lip15) 

bZIP11 family TF 
with sucrose-
regulated group 1 
uORF transcript 

A5U, 
A5I 

GRMZM2G448607 6.01

(PF07716, 
PF00170) 

oxidative 
stress 
response 

cat1, catalase A5U GRMZM2G088212 5.03

catalase1 (PF00199, 
PF06628) 

oxidative 
stress 
signaling 

*dj1a1, DJ-1a/PARK7-like 
GATase1-like 

A5U GRMZM2G102927 3.01

DJ-1A GATase1-
domains1 

(PF01965) 

  *dj1a2, DJ-1a/PARK7-like 
GATase1-like 

A5U GRMZM2G024959 4.05

DJ-1A GATase1-
domains2 

(PF01965) 

  *dj1a3, DJ-1a/PARK7-like 
GATase1-like 

A5U GRMZM2G127812 4.05

DJ-1A GATase1-
domains3 

(PF01965) 

  *dj1c, DJ-1c/PARK7-like 
GATase1-like 

A5U GRMZM2G117189 
(T02, P02) 

1.07

DJ-1C GATase1-
domains 

(PF01965) 

hypoxia 
transcription 
factor, group 
VIIh ERFs 

*hre1, hypoxia responsive 
ERF with AP2, 
CRIB domain, N-
terminal 
MVLSAEI 

A5U GRMZM2G114820 9.04

hypoxia 
responsive ERF 
homologous1 
(ZmEREB67) 

(PF00786, 
PF00847) 

  *hre2, hypoxia responsive 
ERF with AP2 
domain, N-terminal 
MCGGAIL 
(PF00847) 

A5U GRMZM2G052667 7.02

hypoxia 
responsive ERF 
homologous2 
(ZmEREB102) 

  *hre3, hypoxia responsive 
ERF with AP2 
domain, N-terminal 
MCGGAIL 

A5U GRMZM2G148333 2.06

hypoxia 
responsive ERF 
homologous3 
(ZmEREB202) 

(PF00847) 
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  *hrap1, hypoxia responsive 

ERF with AP2 
domain and N-
terminal 
MCGGAIL 

A5U/TSS GRMZM2G018398 4.07

hypoxia 
responsive RAP2 
homologous1 
(ereb14) 

(PF00847) 

  *hrap2, hypoxia responsive 
ERF2 with AP2 
domain protein and 
N-terminal 
MCGGAIL 

3-A5U GRMZM2G171179 9.01

hypoxia 
responsive RAP2 
homologous2 
(ZmEREB160) 

(PF00847) 

transcription 
factor 

arf25, auxin Response 
Factor 

2-A5U GRMZM2G116557 
(T02, P02) 

8.06

ARF-
transcription 
factor 25 
(ZmARF25) 

(PF02362, 
PF06507, 
PF02309) 

  ca2p7, CCAAT box 
binding factor,   

3-A5U GRMZM2G126957 
(T02, P02) 

10.06

CCAAT-HAP2-
transcription 
factor 27 
(ZmCA2P7) 

(PF02045, 
PF01406 ) 

Chromatin htr105, histone H3.2 A5U GRMZM2G130079 9.02

histone H3 105 (PF00125) 

  htr103, histone H3.3 A5U GRMZM2G078314 3.06

histone H3 103 (PF00125) 

Chromatin chr112a, SNF2 superfamily, 
with HIRAN, 
DEAD box 
helicase, RING and 
RAD5 domains 

2-A5U GRMZM2G030768 4.05

chromatin 
remodeling 112a 

(PF08797, 
PF00176, 
PF00097, 
PF00271) 

DNA repair, 
base excision 
repair (BER) 
pathwayj 

*ogg1, 8-
oxoguanine DNA 
glycolyase 

N-
glycosylase/DNA 
lyase, OGG1-like 

A5U GRMZM2G139031 5.04

(PF07934, 
PF00730) 
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  *endo3, 

endonuclease III  
endonuclease III SORF-

exon7 
GRMZM2G113228 10.02

(PF00730, 
PF00633) 

  *dmag2a, DNA-
2-methyladenine 
glycosylase II A 

DNA-3-
methyladenine 
glycosylase II  

A5U/TSS GRMZM2G117574 6.07

(PF00730) 

  *dmag2b, DNA-
2-methyladenine 
glycosylase II B 

DNA-3-
methyladenine 
glycosylase II 

A5ORF GRMZM2G114592 6.07

(PF00730) 

  *dmag1, 
methyladenine 
glycolsylase I 

DNA-3-
methyladenine 
glycosylase I 

A5U GRMZM2G171317 6.02

(PF03352) 

  *udg, uracil-DNA 
glycosylase 

uracil-DNA 
glycosylase 

A5U, 
A5ORF 

GRMZM2G040627 2.01

(PF03167) 

  hmg1, high 
mobility group 
protein1 

high mobility 
group protein B1 

A5U GRMZM5G834758 
(T03, P03) 

5.03

(PF00505) 

  pcna1, 
proliferating cell 
nuclear antigen1 

proliferating cell 
nuclear antigen 

A5U, 
AP-140 

GRMZM2G030523 5.08

(PF00705, 
PF02747) 

  dpole2, DNA 
polymerase 
epsilon subunit 2 

DNA polymerase 
epsilon subunit 2 

A5U/TSS GRMZM2G154267 1.06

(PF12213, 
PF04042)   

  *dpold3a, DNA 
polymerase delta 
subunit 3 locus a 

DNA polymerase 
delta subunit 3 

AORF-
exon6 

GRMZM2G435338 3.02

(PF00281, 
PF00673, 
PF09507) 

  *dpold3b, DNA 
polymerase delta 
subunit 3 locus b 

DNA polymerase 
delta subunit 3 

A5U GRMZM2G005536 8.03

(PF09507) 

  *dpold3c, DNA 
polymerase delta 
subunit 3 locus c 

DNA polymerase 
delta subunit 3 

A5U GRMZM2G148626 
(T02, P02) 

7.01

(PF09507) 

 

Footnotes: 

a Maize Locus Name; current gene name from MaizeGDB (MaizeGDB.org) annotation, 
listed as the short name followed by the full name.  Genes named anew in this study 
are indicated with an asterisk preceding the short name.  Synonyms are given for some 
loci/gene names in parentheses following the full name.  Some genes are designated 
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using suggested nomenclature from specialized databases, including those curated by 
“ChromDB” (the chromatin database, chromdb.org) for chromatin remodeling gene 
(prefix “chr”) and histone H3 (prefix “htr”) and those for plant transcription factors, 
curated by “Grassius” (grassius.org, Gray et al., 2009) for ethylene response element 
binding protein (prefix “ZmEREB”), basic region leucine zipper (prefix “ZmbZIP”), 
auxin response factor (prefix “ZmARF” or “arf”) and CCAAT-HAP2 family (prefix 
“ZmCA2P” or “ca2p”).  The bzip11c locus is also known to encode the gene known as 
lip15, low temperature induced transcription factor15. 

b The column named “Protein Product” refers to the name of the encoded gene product 
or enzyme known or predicted, along with the PFAM domain identifier in parenthesis, 
as reported from MaizeGDB.  Predicted proteins are all from the only or 1st transcript 
model (T01, P01), unless otherwise designated.    Abbreviations used in this column in 
order of appearance: PF/PFAM , protein family database (http://pfam.sanger.ac.uk/, 
Punta et al., 2011, ); NADPH, the reduced form of nicotinamide adenine dinucleotide 
phosphate; PPP, pentose phosphate pathway; NADH, the reduced form of nicotinamide 
adenine dinucleotide; RAPTOR, regulatory-associated protein of mTOR (mammalian 
target of rapamycin); TOR, target of rapamycin; AMPK, 5' adenosine monophosphate-
activated protein kinase; SnRK, SNF-(sucrose non-fermenting)-related 
serine/threonine-protein kinase; CBM48, carbohydrate binding module 48, a domain 
that is a member of the N-terminal Early set domain, a glycogen binding domain 
associated with the catalytic domain of AMP-activated protein kinase beta subunit; 
CBS, cystathionine beta synthase domain (also known as Bateman domain) that 
regulates the activity of associated enzymatic and transporter domains in response to 
binding molecules with adenosyl groups, AMP and ATP, or s-adenosylmethionine; 
bZIP11, basic leucine zipper transcription factor of the bZIP11 family of the group S 
bZIP TFs (Jakoby et al., 2002); DJ-1/PARK7, oncogene DJ1/Parkinson Disease 7; 
GATase1; type 1 glutamine amidotransferase; ERF; ethylene response factor; AP2, 
APETALA2; CRIB, Cdc42/Rac interactive binding; SNF2, sucrose non-fermenting 2; 
HIRAN, HIP116, Rad5p N-terminal; RING, really interesting new gene; RAD5, 
radiation sensitive 5; OGG1, 8-oxoguanine DNA glycolyase 1. 

c G4Q elements are listed as defined in this study (Fig. 2).   Multiple elements in the 
same class are by leading number and dash.  For example 2-A5U indicates two G4Q 
elements within the Antisense 5’ UTR.  Classifier abbreviations: A5U, antisense strand 
5’ UTR; A5U/TSS, A5U/overlapping with the transcription start site; A5I1, antisense 
5’ end of Intron 1; AUG , sense strand near the “AUG” start codon; S3U, sense strand 
3’ UTR; AI, antisense strand non-first Intron followed by the intron number; AORF, 
antisense ORF followed by the exon number for intron-containing genes; SI, sense 
strand intron followed by intron number; AP, antisense promoter followed by a dash 
and the number of bases upstream of the TSS. 

d Gene Model ID:  From maizesequence.org, from the filtered gene set of B73 line of 
maize.  For genes with multiple transcript models, Predicted proteins are all from the 
only or 1st transcript model (T01, P01), unless otherwise designated.   
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e Genetic BIN refers to the chromosome number followed by the genetic linkage bin as 
defined by Davis et al., (1999) for the map UMC 98.  Current markers delineating the 
genetic bins of maize are at MaizeGDB (). 

f The protein encoded by the sut1 locus lacks a PFAM domain but does contain the 
conserved domain cd06174; MFS, The Major Facilitator Superfamily (from Conserved 
Domain Database, CDD, at NCBI, 
http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml, Marchler-Bauer et al., 2013) 

g Group 1 refers to the uORF-containing “homology group 1” bZIP genes (Hayden and 
Jorgensen, 2007). 

h The group VII ERFs (from Nakano et al., 2006) include hypoxia responsive ERF TFs 
(loci/gene name “hre”) and hypoxia responsive related to AP2 (RAP2.2/RAP2.12) TFs 
(loci/gene name “hrap”) The HRE and HRAP genes listed here fall in the AP2-EREBP 
(APETALA2 – ethylene response element binding protein) group as described by Gray 
et al., (2009) and curated by the grass TF database, grassius.org.  The recommended 
grassius gene names are listed here as synonyms in parentheses. 

i The locus/gene bzip11c is also known as lip15, low temperature induced protein15. 

j The base excision repair pathway from the KEGG pathway zma03410 (KEGG, 
http://www.genome.jp/dbget-bin/www_bget?zma03410) are included here because of 
its role G4Q-mediated hypoxia-induced transcription (Clark et al., 2012).  
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Supporting Information 

Supporting Figures and Tables can be found in Appendices S -V. 
 
Appendix S: – Supplementary Figure 1 

CD spectra of the same oligonucleotide samples as in shown in Figure 6F.  Here, the 
diagnostic G-quadruplex spectra are shown using CD.  Oligonucleotides were annealed in 
either 10mM TBA-phosphate buffer (gray) or in 10mM TBA-phosphate buffer 
supplemented with 100mM KCl (black). G4Q-specific spectra were obtained for every 
oligonucleotide tested only in presence of potassium. (A) Human telomere repeat. 
Negative peak around 240 and two positive peaks at 265 and 287 are characteristic for 
human telomere repeat and suggest a formation of mixed type parallel/antiparallel 
quadruplex (B) Maize telomere repeat. Strong positive peak at 287 taken together with the 
absence of negative peak at 260 and presence of a valley between 235 and 245 also 
suggests mixed parallel/anitparallel quadruplex. (C,D,E,F) Oligonucleotides with genomic 
sequences showing characteristic CD-signatures of parallel quadruplex structures with 
negative peak at 240 and strong positive peak at 260 nm. 
 
Appendix T: – Supplemental Table 1.   
 
List of all maize G4Q elements. 
 
Appendix U: – Supplemental Table 2.   
 
Lists of gene-associated maize G4Q elements. 
 
Appendix V: – Supplemental Table 3.   
 
MaizeCyc Links.  Links to HTML files of MaizeCyc omics viewer output for G4Q genes 
from the A5U, A5I1, and AUG gene lists. 
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CHAPTER 5.  

CONCLUSIONS 

 
Summary and discussion 

Recent completion of many genome projects has generated large amounts of 

protein sequence data.  An urgent and challenging task is to identify, label, and classify 

these proteins into related groups.  These groups include functional classes, structural 

classes, interaction partners, binding patterns, regulation, and expression.  However, 

identifying these classifications using traditional biological experiments lags far behind the 

increasing speed of sequencing technologies.  Computational methods that can identify and 

classify related proteins in large scale are in urgent need.  In this dissertation, three studies 

are presented.  First, we developed a two-stage classifier, HDTree, to predict potential 

misannotations within the AmiGO web server database.  Second, we developed a three-

phase method to predict the binding patterns of proteins. Finally, we carried out a genome-

wide analysis of the maize genome for G4Q motif occurrence in regulatory elements of 

genes involved in specific types of metabolism that suggest a regulatory role in 

coordinating global genomic response to hypoxia and related energy crisis states.    

The experimental results presented in this dissertation have shown that: 

 Our machine-learning method HDTree was able to identify 201 mouse protein 

kinases returned from AmiGO that were functionally misannotated.  Our classifier 

was able to predict annotations that were consistent with the human counterparts 

with 97% accuracy. 

 Our three-phase machine-learning based approach was able to predict whether a 

protein is a protein-binding protein with an accuracy of 94% (0.87 correlation 
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coefficient); distinguish hubs from non-hubs with 100% accuracy for 30% of the 

data; distinguish between date hubs/party hubs with 69% accuracy and AUC of 

0.68; and distinguish  SIH/MIH with 89% accuracy and AUC of 0.84.    

 A genome-wide scan of the maize genome for the G4Q motif identified 149,988 

G4Qs in maize, with 43,174 occurring in the non-repetitive genomic fraction.  

These elements showed a pronounced tendency to occupy non-random locations 

within genes.  On the template strand of the genomic DNA, G4Qs were markedly 

enriched in 5’ UTR region just downstream of the transcription start site, and at the 

5’ end of the first intron.  These two G4Q hot spots were limited to the 

antisense/template strand, suggesting a broad and previously unrecognized role in 

transcription for up to thousands of maize genes.  We highlighted several metabolic 

pathways that show an overabundance of genes with G4Qs in hot spot regions and 

postulate a potential role G4Qs have in hypoxia response.    

 
The first two studies (Chapter 2 and Chapter 3) show examples (HDTree and 

HybSVM) of a general framework for learning classifiers by combining sequence-based 

and homology-based representations of proteins using a two-layer classifier.  Although we 

focused our work on learning classifiers to predict misannotations of Gene Ontology labels 

and binding patterns of hub proteins, this framework can be easily extended to a variety of 

other biologically significant problems.   

A third study (Chapter 4) focuses on a genome-wide analysis of the maize genome 

of how non-Watson-Crick structural conformations known as G4-quadruplexes have 

potential in gene regulation.  This type of analysis can be extended to any sequenced 

genome.  
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Beyond the work in this dissertation, other published or presented results can be 

found in the publication section in Appendix W (Biographical Sketch).  

 
Contributions to the field  

 
The main contributions of this dissertation include the following:  

 
Fully updatable sequence-based methods that need one pass through the data.   

Many modern techniques cannot make this claim.  The methods NB(k) and NB k-

gram are based on a Naïve Bayes and k-order Markov models, respectively.  To build these 

models we need to estimate the probability of each element in the model and store it in a 

probability table.  The probability table is constructed by taking the counts of each 

individual k-gram seen in training data and dividing by the overall counts of all k-grams 

seen in the training data.  These counts can easily be obtained by passing through each 

sequence and updating each count as they occur.  Actually, multiple k-values can actually 

be counted in parallel.  In our examples with protein sequences, we compute the counts of 

1-grams, 2-grams, 3-grams, and 4-grams at the same time as we pass through the data.  So 

with a single pass of the data we are able to build four separate probability tables.  In the 

case of NB(k), we also need the estimates of the (k-1)-grams.  These can be easily obtained 

my marginalizing over k-grams.  This can be done in linear time in order of the number of 

possible (k-1)-grams which is less (and usually much less) than the total number of k-

grams that we counted in the training data.  Therefore, the models for the NB(k) and NB k-

gram algorithms can be constructed in linear time in order of the size of the training set.  

As new data become available, the classifier can be updated by taking the k-gram counts 

from the new data and adding to the counts of the previous data.  The new probabilities 

will be based on the updated counts.  This also can be done in linear time.  
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Many modern techniques are not linear algorithms and are not fully updatable.  An 

example of such a technique involves SVMs.  SVMs are one of the most popular 

techniques for predicting protein function.   SVMs can also be used on sequence data and 

on k-gram representation of sequences.  Where our NB methods are based on generative 

models (since they are built on the underlying distributions of the data), SVMs are 

discriminative classifiers that focus on simultaneously minimizing the empirical 

classification error and maximizing the geometric margin between the classes.  Since 

SVMs use regression and not strict counts of the data, multiple passes through the data are 

needed to minimize the classification error and maximize the margin.  Therefore, SVMs 

are much slower than our NB methods for large data and/or k-values and some 

implementations for SVM are impractical for relatively large values of k.  This problem is 

amplified when using data that are consistently being updated.  Many biological databases 

fall into this category.  An example is the GenBank database [1].   The GenBank release 

194, (February 2013), had over 150 billion nucleotide bases from approxiametly 162 

million sequences.    Another example is the Protein Data Bank (PDB) [2, 3].  PDB has 

been growing at an exponential rate 

(http://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=total&seqid=100).  In 

May 2013, there are over 83,000 protein and 2,500 nucleic acid structures  in PDB.  To 

maintain an updated classifier for PDB you would have to retrain you classifier as new 

data becomes present.  In our models this is just updating dozens of sequences worth of k-

gram counts a day.  These updates would take seconds to do on a standard machine.  In the 

case of an SVM classifier this would be updating the counts plus retraining the model with 

tens of thousands of protein sequences.  A lot of time and energy (possibly days of 
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computational time and most likely expensive hardware would be needed) would be 

focused on building and maintaining the classifier rather than focused on using the 

classifier to get meaningful results.  It is very feasible that more data would become 

present before the new classifier could be built.  Our method partially addresses this 

problem by extending a new possibility on how to learn from a growing data source.      

A high-performance classifier that predicts protein function based on sequence alone.   

Many current techniques use a “kitchen sink” approach to classifying proteins into 

functional classes.  They use as much information as possible in regards to a protein.  This 

information could include secondary or tertiary structure, interactions with other proteins, 

DNA, RNA, or other small molecules, gene expression data, microarray data, sequence 

similarity among other proteins, textual information in the proteins annotation, literature 

mining on this protein (e.g., PubMed abstracts), along with the proteins sequence and 

composition.   This list is far from comprehensive, but it shows the vast amount of 

information available for different proteins.  Among all this information the easiest and 

most common information for a protein is its sequence.  Once a protein is isolated it only 

takes days to hours to sequence the protein.  Also, it is very easy to infer a protein 

sequence from the DNA of a given gene.  Usually additional information is not present for 

a protein of interest and to obtain this information could take weeks, months, or even years 

in extreme cases.  Other times it makes little sense to use a machine- learning approach 

when additional data exists (e.g., the function is already in the PubMed abstract, or a 

homolog with high sequence similarity exists in a common public database).  Potentially 

the most interesting problem arises when no related sequences are available or low 

sequence identity exists within a class.  We have shown our method performs quite well 
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with sequences that share the same function, but have low sequence identity (below 30 

percent).  In fact, we have shown our method still performs well when the sequence 

identity is below 10 percent and the sequence similarity is so low that a self-comparison 

using PSI-BLAST would return no significant hits.  For these reasons, our method has 

improved the way protein function can be predicted from sequence. 

Sequence-based method can determine “functional motifs.”   
 

Another major advantage of our approach is that our prediction results are easy to 

interrupt.  This is unlike other “black box” approaches that only give you a prediction and 

little information behind the predication.  Our method is based on using k-gram 

compositions of amino acids.  To build a Naïve Bayes classifier, a probability table 

estimating the probabilities of the given model is needed.  In our case, we estimate the 

probability of a given k-gram occurring given its class.  Once a classifier is built, this 

probability table can be used to give insight into the protein’s predicted class.  In the case 

of predicting a protein kinase gene ontology label, we used the log-likihood ratio of the k-

gram probabilities for the given classes and a simple independence test to provide valuable 

insight into the protein’s sequence-structure-function relationship.  We were able to 

determine four tetramers with potential functional/structural significance within the kinase 

class.  With further analysis, we found one of these locations was the active site of the 

protein, two locations were involved in interactions with other proteins, and the forth site 

was not found in literature, but was in contact with the three previous sites in the tertiary 

structure.  We hypothesized that this tetramer region may be important in maintaining the 

structure of the protein.  This method can contribute to the field by being extended beyond 
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kinases to predict other potentially significant regions important in the sequence-structure-

function relationship of other type of proteins. 

A machine-learning approaches based on protein sequence to predict potential 
misannotations. 
 

Our method can build classifiers that predict GO labels based on a protein’s 

sequence.  These classifiers are trained on proteins with pre-existing GO labels.  

Unfortunately, not all the annotations are correct.  These proteins are annotated in a wide 

variety of ways, each with a level of reliability assigned to it.  For example, a protein can 

be assigned a GO label based on having a high sequence similarity with another protein 

that already has an assigned GO label.  This method is called ISS, inferred from sequence 

similarity.  The problem with this method is that there is no guarantee that the highly 

similar sequence shares the same function with the sequence in question and worse it is 

possible that this original sequence does not have the correct annotation.  Many scenarios 

exist where current methods (many being computational) could potentially incorrectly 

annotate a sequence.  Yet, these public data are being used pervasively.   

In our work, we addressed whether a machine-learning algorithm could be used to 

help predict and identify potentially misannotated proteins with a frequently accessed 

database.  Our HDTree method was able to identify and offer potential correct annotations 

to hundreds of protein kinases from the AmiGO web server.  These corrections help 

improve the field of machine-learning to build better classifiers, and allow the biological 

fields to do better science.  This is the first machine-learning approach in recent literature 

focused on detecting misannotations in a biological context.    
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A machine-learning approach to predict binding patterns of proteins. 
 

Proteins can bind with molecules including DNA, RNA, other proteins, ligands, or 

other small molecules.  These interactions are usually essential for most biological 

processes.  In many cases, proteins need to interact with other proteins to be functional.  

Most proteins interact with a few proteins, but some proteins interact with a large number 

of other proteins.  In protein-protein interaction networks, proteins that interact with many 

other proteins are called hub proteins.  Hubs proteins can be further distinguished as 

having mutually exclusive interactions (date) or  multiple simultaneous interactions 

(party).  Hubs can also have many interactions sites (multi-interface) or a small number of 

interaction sites (singlish-interface).  Distinguishing these types of binding patterns in 

proteins can give further insight into other characteristics including: essentiality, 

disorderness, evolutionary rate, co-expression, 3D structure, and structural interactions.   

We developed a three phase method to classify proteins at multiple levels of binding 

patterns: binding/non-binding, hub/non-hub, date/party, singlish/multiple-interface.  Other 

methods have been developed to predict hub proteins and date/party hubs, but our work is 

the first to explore using machine-learning approaches to predicting binding-proteins and 

to combine different levels of prediction in a multi-phase process.     

An accessible binding pattern prediction server and a graphical user interface driven 
standalone version of HDSVM method. 
 

We made our binding pattern prediction method accessible by building an online 

server.  The server can be used to predict the following binding patterns: (1) classifies 

whether a protein is likely to bind with another protein; (2) predicts the number of 

interaction partners and if a protein-binding (PB) protein is a hub; and (3) classifies PB 

proteins as singlish-interface versus multiple-interface hubs and date versus party hubs. In 
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addition, this server includes the original data sets, instructions, and a web-based form to 

use our three-phase approach on novel data provided by the user.   

Also, we have developed an easy to use stand alone graphical user interface driven 

version of NB(k), NB k-gram, and HybSVM.  The software package was implemented in 

Java and freely available by request.  We want other groups to be able to easily reproduce 

the results presented in this dissertation and test and evaluate the software on other 

biological problems.   

The online server of our program can be located at: 

http://hybsvm.gdcb.iastate.edu/HybSVM/ 

Genome-wide study of the G4-quadruplex on the maize genome 
 

Research on the structure, location, and functional role of the non-Watson-Crick, 

four-stranded G4-quadruplex structure has received a lot of recent attention.  Much of this 

attention focussed on the overabundance of the G4Q in the promoter of human genes and 

in particular, in the promoters of oncogenes.  Genome-wide surveys have been performed 

on human and other eukaryotic genome, but little attention has been paid to plant species.  

Currently, only two publications have explored the presence of G4Q in plants and both 

were comparative analyses of the G4Q distributions in Arabidopsis and a few other plant 

genomes.  We carried out an in-depth analysis of the presence of G4Qs in maize and 

related grass genomes finding enrichment of G4Qs in genes in metabolic pathways 

associated with electron transport, sugar degradation, and response to hypoxia.  We 

conclude that G4Qs may have a widespread and previously unrecognized capacity for 

coordinating global genomic responses to hypoxia and related stresses.    
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Future work on protein classification 

Identification and classification of proteins into meaningful categories is a driver 

for biological research. Development of computational methods to predict such categories 

in a quick and reliable fashion is still in its initial stage. This problem provides challenging 

targets for machine-learning research to learn models for classification.  The performance 

of the sequence-based classifiers from this study and methods from other studies can still 

be improved and better understood. The following are some potential directions for future 

studies: 

1. Extending our previous methods in the context of specific biological problems. 

Specific example include identifying and/or predicting CIS and TRANS regulatory 

states, structural domains, DNA binding patterns, RNA binding patterns, and 

structural classes.   

2. Extending our previous methods to predict motifs in proteins without using 

multiple sequence alignment. This can be performed by using the estimated 

probabilities of small conserved regions among a related set of proteins. By 

focusing on high probabilities, with large log likelihood ratios, and small variance, 

it is possible to have a narrow enough search space to experimentally search for 

overlapping regions. The overlapping regions become specified motifs. This 

method will be used to predict signal sites, localization sites, interaction sites, target 

sites, catalytic sites, and any other possible active sights in proteins. 

3. Extending our previous methods to predict the involvement of individual residues 

with various biological processes by focusing on a window of amino acids around a 

residue instead on the whole sequence.  Previous methods [4-8] have focused on 
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predicting interactions sites (e.g., protein-protein interactions, protein-DNA 

interactions, and protein-RNA interactions).  These methods could be extended by 

using our proposed methods and focusing on other functional relevant processes 

such as active sites and localization sites.  

4. Extending our previous methods by using reduced alphabets. It would be 

potentially insightful to perform a systematic study of the relationship among 

alphabet size, sequence similarity, the size of the dataset, and the prediction 

performance in protein classification problems. As the alphabet size increases the 

classifier gains sensitivity at the cost of lost selectivity. This cost is amplified as the 

sequence similarity becomes smaller. When the amount of data available is less 

there is less desire to have a highly sensitive classifier. The goal is to find the ideal 

trade-off between sensitivity and selectivity given the available data. Information 

theory could be used to determine the minimal information necessary to build a 

reliable classifier for a given dataset.  Reduced alphabets that would be of interest 

to explore include:  alphabets based on physicochemical properties of amino acids, 

substitution matrices, structural matrices (e.g. Miyazawa–Jernigan (MJ) matrix [9-

14]), and random alphabets. 

5. Extending our previous computational methods to predict protein classifications 

based on taxonomies, directed acyclic graphs (DAG), or other structural 

hierarchies. Currently there are growing amounts of classification schemas based 

on these approaches. Examples include the Gene Ontology project (DAG), the 

Structural Classification of Proteins (SCOP) [15-17] (taxonomy), and EC 

classification [18] (taxonomy). Current methods that perform predictions on these 
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classifications must take a subset of the data that corresponds to a specific level in 

the hierarchy. Our methods would provide a quick and flexible way to carry out 

predictions at any given level of the hierarchy or prediction of any path in the 

hierarchy.  

6. Developing additional web servers for prediction on various classification tasks.  

These tasks will include Gene Ontology functional labels, protein secondary 

structure, and subcellular localization data sets.  Each of these web servers would 

provide an easy to use web interface for prediction, a stand-alone version of the 

software, the data used to train the classifier, and user information for the effective 

use of a web server. 

7. Extending our binding pattern method to predict binding locations.  Instead of 

classifying proteins as a whole, subsequences (centered around each amino acid) 

could be used as input to a machine-learning approach. For a given protein, the 

method would classify each amino acid based on whether it is a binding location.  

Based on all the predictions, local clusters on the primary sequence or on the 3D-

structure (if available) can be identified as potential binding sites or patches.    

8. Extending our binding pattern prediction server to identify potential binding 

partners in yeast or other species.  Given a protein sequence, PFAM domains can 

be found on that sequence.  These domain(s) may be known to interact with other 

PFAM domains (data found in iPFAM).  Any known protein that contains these 

second sets of domains are now potential interaction partners to the original 

sequence.  The set of known interacting PFAM domains in iPFAM can be further 

filtered to create a more stringent set.  These filters could include:  only domains 
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that also interact in known orthologs (or syntelogs) and domains that interact in 

proteins with the same subcellular localization.       

 
Future work toward understanding the biology of G4-quadruplexes 

Identification and analysis of G4Q in the maize genome gave new insights into the 

roles of such structural elements in gene regulation and pathway coordination.  Research in 

G4Q elements is an emerging field and has only just begun on plants.  The following are 

some potential directions for future studies: 

 
1. Exploring the differences in G4Q tendencies in plants and animals.  G4Q elements 

are enriched in the promoters regions of human and plant genes.  In humans the 

enrichment shows a bimodal distribution on the coding strand with a large peak just 

upstream of the TSS and a smaller peak slightly downstream of the TSS.   In most 

plants there is a single peak on the template strand just downstream of the TSS.  An 

exception is in Arabidopsis where G4Q elements are actually underrepresented in 

gene regions. [19]   Future work could focus on the difference between the 

enrichments on different strands for plants versus animals.         

2. Exploring whether G4Qs in the 3' UTR in plant genes have a role in alternative 

polyadenylation and mRNA shortening.  This analysis has been conducted on 

humans [20], but has yet to be carried out on plants. 

3. Exploring recent discoveries of RNA aptamers binding to ligand that allows for 

G4Q formation (also R-loops) [21, 22].   Our work focused on a genome-wide scan 

of the G4Q motif.  Recent work has shown that other structural features near the 

G4Q region may interact, allow, or disallow the formation of the G4Q structure.  
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An additional scan for other known structural element motifs and their proximity to 

G4Q locations could easily be performed.         

4. Explore co-occurrence of other genome features (e.g., Robertson’s Mutator 

transposable elements [23]) beyond genes and gene features.  Through preliminary 

work we found there may be a high co-occurrence of Mu elements near G4Q 

locations.  Other studies in humans [24] have looked at SNP data in regards to G4Q 

locations, especially SNPs that could potentially disrupt the structural formation of 

a G4Q.    

5. Explore different types of G4Qs including non-canonical G4Q motifs, smaller G-

repeats, and larger loop sizes.  Several databases [25-29] currently exist that contain 

known and/or potential G4Q forming sequences including non-canonical G4Qs.  

Recent research [30, 31] has also showed the effect of loop size and G4Q stability.   

Our current work uses the standard canonical definition for G4Q motif, but a more 

systematic approach can be taken varying the size of G-repeats and loops.         

6. Cluster G4Qs based on sequence similarity and find any relationships in the 

clusters.  Our current work treats each G4Q the same regardless of length, loop-

size, G-repeats, or sequence similarity.   Our work could be extended by taking the 

G4Qs in maize, clustering them based on sequence similarity, and exploring each 

cluster to see if there is correlation to strand, gene localization, types of gene 

regulation, or genome location. 
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APPENDICES 
 

APPENDIX A 
 

Supplementary Data:  Machine-Learning Results 
 
Machine-Learning approaches to predict Gene Ontology and/or UniProt Functional 
labels:   
 
Experiments #1 - #7 show the results of several machine-learning approaches used in this 
study.  After the summary of each experiment, five sections summarize the performance 
obtained in each experiment.  The first section displays the number of correctly and 
incorrectly classified instances along with the percent accuracy and percent error for each 
of the three classifiers (See Methods for details on each of the classifiers).  The section 
summarizes the correlation coefficients and kappa coefficients for each of the methods.   
The third, fourth, and fifth sections show the individual performance of each of the three 
classifiers.  Each row represents the functional class provided by the data label source 
(either AmiGO or UniProt).  Each column represents the functional class predicted by the 
given classifier.  The far right column shows the Recall for each of the classes and the last 
row shows the Precision for each of the classes (in Methods).  The accuracy of the 
classifier can be found where the Recall column and Precision row intersect.   
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_______________________________________________________________________ 
Experiment #1:  Human cross-validation Summary 
 
Training Method:     10-fold cross-validation  
Species:    Human  
Evidence Code:   All  
Data Label Source:   AmiGO 
Total Number of Instances:  330 
_______________________________________________________________________ 
 

 Classifier #1 Classifier #2 Classifier #3  
 Instances Percent Instances Percent Instances Percent 

Correctly 
Classified  302 91.5% 316 95.8% 294 89.1% 
Incorrectly 
Classified 28 8.5% 14 4.2% 36 10.9% 
 

 
Correlation Coefficient  Kappa  

Coefficient Ser/Thr Tyr Dual 
Classifier #1  0.79 -- -- 0.79 
Classifier #2 -- 0.89 -- 0.89 
Classifier #3 0.82 0.86 0.30 0.76 

 
=== Classifier #1 Overall Performance Evaluation === 

classified as  
GO0004674 

(Ser/Thr) 
GO0004713 (Tyr)  

and Dual Recall   
GO0004674(Ser/Thr) 227 6 0.97 
GO0004713(Tyr) and Dual 22 75 0.77 

Precision   0.91 0.93 Accuracy = 0.92  
 
=== Classifier #2 Overall Performance Evaluation === 

classified as  
GO0004713 

(Tyr)  
GO0004674 (Ser/Thr) 

and Dual Recall   
GO0004713(Tyr) 81 9 0.90 
GO0004674(Ser/Thr) and 
Dual 5 235 0.98 

Precision   0.94 0.96 Accuracy = 0.96 
 
=== Classifier #3 Overall Performance Evaluation === 

classified as  
GO0004713 

(Tyr) 
GO0004674 

(Ser/Thr)   
Dual 

 Recall   
GO0004713 (Tyr) 67 6 17 0.74 
GO0004674 (Ser/Thr) 0 222 11 0.95 
Dual 0 2 5 0.71 

Precision   1.00 0.97 0.15 Accuracy = 0.89 
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_______________________________________________________________________ 
Experiment #2:  Human Training Set / Mouse Test Set Summary 
 
Training Method:     Trained on Human / Tested on Mouse 
Species:    Human (Training) / Mouse (Testing) 
Evidence Code:   All  
Data Label Source:   AmiGO 
Total Number of Instances:  330 (Training) / 244 (Testing) 
_______________________________________________________________________ 
 

 Classifier #1 Classifier #2 Classifier #3  
 Instances Percent Instances Percent Instances Percent 

Correctly Classified  57 23.4% 86 35.2% 37 15.1% 
Incorrectly Classified 187 76.6% 158 64.8% 207 84.9% 

 

 
Correlation Coefficient  Kappa  

Coefficient Ser/Thr Tyr Dual 
Classifier #1  -0.43 -- -- -0.30 
Classifier #2 -- -0.40 -- -0.38 
Classifier #3 -0.40 -0.43 -0.01 -0.40 
 
=== Classifier #1 Overall Performance Evaluation === 

classified as  
GO0004674 

(Ser/Thr) 
GO0004713 (Tyr)  

and Dual Recall   
GO0004674(Ser/Thr) 29 42 0.41 
GO0004713(Tyr) and Dual 145 28 0.16 

Precision   0.17 0.40 Accuracy = 0.23 
 
=== Classifier #2 Overall Performance Evaluation === 

classified as  
GO0004713 

(Tyr)  
GO0004674 (Ser/Thr) 

and Dual Recall   
GO0004713(Tyr) 7 99 0.07 
GO0004674(Ser/Thr) and 
Dual 59 79 0.57 

Precision   0.11 0.44 Accuracy = 0.35 
 
=== Classifier #3 Overall Performance Evaluation === 

classified as  
GO0004713 

(Tyr) 
GO0004674 

(Ser/Thr)   
Dual 

 Recall   
GO0004713 (Tyr) 7 96 3 0.07 
GO0004674 (Ser/Thr) 42 29 0 0.41 
Dual 17 49 1 0.01 

Precision   0.11 0.17 0.25 Accuracy = 0.15 
 
 
 
 
_______________________________________________________________________ 
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Experiment #3:  Human Training Set/ Mouse Test Set (RCA only) Summary 
 
Training Method:     Trained on Human / Tested on Mouse 
Species:    Human (Training) / Mouse (Testing) 
Evidence Code: RCA (inferred from Reviewed Computational 

Analysis) 
Data Label Source:   AmiGO 
Total Number of Instances:  330 (Training) / 211 (Testing) 
_______________________________________________________________________ 
 

 Classifier #1 Classifier #2 Classifier #3  
 Instances Percent Instances Percent Instances Percent 

Correctly Classified  13 6.2% 43 20.4% 9 4.2% 
Incorrectly Classified 198 93.8% 168 79.6% 202 95.8% 

 

 
Correlation Coefficient  Kappa  

Coefficient Ser/Thr Tyr Dual 
Classifier #1  -0.85 -- -- -0.60 
Classifier #2 -- -0.64 -- -0.57 
Classifier #3 -0.64 -0.85 0.00 0.50 
 
=== Classifier #1 Overall Performance Evaluation === 

classified as  
GO0004674 

(Ser/Thr) 
GO0004713 (Tyr)  

and Dual Recall   
GO0004674(Ser/Thr) 9 55 0.14 
GO0004713(Tyr) and Dual 143 4 0.03 

Precision   0.06 0.07 Accuracy = 0.06 
 
=== Classifier #2 Overall Performance Evaluation === 

classified as  
GO0004713 

(Tyr)  
GO0004674 (Ser/Thr) 

and Dual Recall   
GO0004713(Tyr) 0 109 0.00 
GO0004674(Ser/Thr) and 
Dual 59 43 0.42 

Precision   0.00 0.28 Accuracy = 0.20 
 
 
=== Classifier #3 Overall Performance Evaluation === 

classified as  
GO0004713 

(Tyr) 
GO0004674 

(Ser/Thr)   
Dual 

 Recall   
GO0004713 (Tyr) 0 109 0 0.00 
GO0004674 (Ser/Thr) 55 9 0 0.14 
Dual 4 34 0 0.00 

Precision   0.00 0.06 0.00 Accuracy = 0.04 
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_______________________________________________________________________ 
Experiment #4:  Human Training Set / Mouse Test Set (at least one RCA 
code) Summary 
 
Training Method:     Trained on Human / Tested on Mouse 
Species:    Human (Training) / Mouse (Testing) 
Evidence Code: at least one RCA evidence code (but also including 

other evidence codes in the annotation) 
Data Label Source:   AmiGO 
Total Number of Instances:  330 (Training) / 211 (Testing) 
_______________________________________________________________________ 
 

 Classifier #1 Classifier #2 Classifier #3  
 Instances Percent Instances Percent Instances Percent 

Correctly Classified  26 12.3% 58 27.5% 9 4.2% 
Incorrectly Classified 185 87.7% 153 72.5% 202 95.8% 

 

 
Correlation Coefficient  Kappa  

Coefficient Ser/Thr Tyr Dual 
Classifier #1  -0.68 -- -- -0.42 
Classifier #2 -- -0.56 -- -0.52 
Classifier #3 -0.56 -0.68 0.00 -0.37 
 
=== Classifier #1 Overall Performance Evaluation === 

classified as  
GO0004674 

(Ser/Thr) 
GO0004713 (Tyr)  

and Dual Recall   
GO0004674(Ser/Thr) 9 42 0.18 
GO0004713(Tyr) and Dual 143 17 0.11 

Precision   0.06 0.29 Accuracy = 0.12 
 
=== Classifier #2 Overall Performance Evaluation === 

classified as  
GO0004713 

(Tyr)  
GO0004674 (Ser/Thr) 

and Dual Recall   
GO0004713(Tyr) 0 94 0.00 
GO0004674(Ser/Thr) and 
Dual 59 58 0.50 

Precision   0.00 0.38 Accuracy = 0.27 
 
=== Classifier #3 Overall Performance Evaluation === 

classified as  
GO0004713 

(Tyr) 
GO0004674 

(Ser/Thr)   
Dual 

 Recall   
GO0004713 (Tyr) 0 94 0 0.00 
GO0004674 (Ser/Thr) 42 9 0 0.18 
Dual 17 49 0 0.00 

Precision   0.00 0.06 0.00 Accuracy = 0.04 
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_______________________________________________________________________ 
Experiment #5:  Human Training Set / Mouse Test Set (UniProt label) 
Summary 
 
Training Method:     Trained on Human / Tested on Mouse 
Species:    Human (Training) / Mouse (Testing) 
Evidence Code: All 
Data Label Source:   UniProt 
Total Number of Instances:  330 (Training) / 244 (Testing) 
_______________________________________________________________________ 
 

 Classifier #1 Classifier #2 Classifier #3  
 Instances Percent Instances Percent Instances Percent 

Correctly Classified  234 95.9% 241 98.8% 233 95.4% 
Incorrectly Classified 10 4.1% 3 1.2% 11 4.6% 

 

 
Correlation Coefficient  Kappa  

Coefficient Ser/Thr Tyr Dual 
Classifier #1  0.90 -- -- 0.90 
Classifier #2 -- 0.97 -- 0.97 
Classifier #3 0.96 0.90 0.43 0.90 
 
=== Classifier #1 Overall Performance Evaluation === 

classified as  
GO0004674 

(Ser/Thr) 
GO0004713 (Tyr)  

and Dual Recall   
GO0004674(Ser/Thr) 166 2 0.99 
GO0004713(Tyr) and Dual 8 68 0.89 

Precision   0.95 0.97 Accuracy = 0.96 
 
=== Classifier #2 Overall Performance Evaluation === 

classified as  
GO0004713 

(Tyr)  
GO0004674 (Ser/Thr) 

and Dual Recall   
GO0004713(Tyr) 64 1 0.98 
GO0004674(Ser/Thr) and 
Dual 2 177 0.99 

Precision   0.97 0.99 Accuracy = 0.99 
 
=== Classifier #3 Overall Performance Evaluation === 

classified as  
GO0004713 

(Tyr) 
GO0004674 

(Ser/Thr)   
Dual 

 Recall   
GO0004713 (Tyr) 64 0 1 0.98 
GO0004674 (Ser/Thr) 2 166 0 0.99 
Dual 0 8 3 0.27 

Precision   0.97 0.95 0.75 Accuracy = 0.95 
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_______________________________________________________________________ 
Experiment #6:  Human Training Set / Mouse Test Set (RCA only/UniProt 
label) Summary 
Training Method:     Trained on Human / Tested on Mouse 
Species:    Human (Training) / Mouse (Testing) 
Evidence Code: All 
Data Label Source:   UniProt 
Total Number of Instances:  330 (Training) / 211 (Testing) 
_______________________________________________________________________ 
 

 Classifier #1 Classifier #2 Classifier #3  
 Instances Percent Instances Percent Instances Percent 

Correctly Classified  205 97.1% 209 99.1% 205 97.1% 
Incorrectly Classified 6 2.9% 2 0.9% 6 2.9% 

 

 
Correlation Coefficient  Kappa  

Coefficient Ser/Thr Tyr Dual 
Classifier #1  0.93 -- -- 0.93 
Classifier #2 -- 0.98 -- 0.98 
Classifier #3 0.98 0.94 0.00 0.93 
 
=== Classifier #1 Overall Performance Evaluation === 

classified as  
GO0004674 

(Ser/Thr) 
GO0004713 (Tyr)  

and Dual Recall   
GO0004674(Ser/Thr) 148 2 0.99 
GO0004713(Tyr) and Dual 4 57 0.93 

Precision   0.97 0.97 Accuracy = 0.97 
 
=== Classifier #2 Overall Performance Evaluation === 

classified as  
GO0004713 

(Tyr)  
GO0004674 (Ser/Thr) 

and Dual Recall   
GO0004713(Tyr) 57 0 1.00 
GO0004674(Ser/Thr) and 
Dual 2 152 0.99 

Precision   0.97 1.00 Accuracy = 0.99 
 
=== Classifier #3 Overall Performance Evaluation === 

classified as  
GO0004713 

(Tyr) 
GO0004674 

(Ser/Thr)   
Dual 

 Recall   
GO0004713 (Tyr) 57 0 0 1.00 
GO0004674 (Ser/Thr) 2 148 0 0.99 
Dual 0 4 0 0.00 

Precision   0.97 0.97 0.00 Accuracy = 0.97 
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_______________________________________________________________________ 
Experiment #7:  Human Training Set / Mouse Test Set (at least one RCA 
code/UniProt label)*:  
_______________________________________________________________________ 
 
* Please note that these results were identical to Experiment #6 results since the evaluation 
is based on UniProt labels and not the labels given by AmiGO. 
 
Comparing AmiGO and UniProt Labels:   
 
Experiments #8 - #10 show tables corresponding to the number of proteins with the given 
functional labels given by AmiGO and by UniProt.  These data were taken directly from 
each database; no machine learning approaches were used.  Columns represent the number 
of proteins retrieved by AmiGO that had the corresponding Column header as a functional 
label given by AmiGO.  Rows represent the number of proteins retrieved by AmiGO that 
had the corresponding Row header as functional evidence within UniProt.   
 
_______________________________________________________________________ 
Experiment #8:  Mouse Data (All):  UniProt versus AmiGO 
_______________________________________________________________________ 
 

UniProt Labels 
GO0004713 

(Tyr) 
GO0004674  

(Ser/Thr) 
Dual 

 
 UniProt Total 

 
GO0004713 (Tyr) 8 41 16 65 
GO0004674 (Ser/Thr) 91 28 49 168 
Dual 7 2 2 11 

AmiGO Total   106 71 67 Total # proteins =244 
Instances in Agreement: 38 15.6% 
Instances in Disagreement: 206 84.4% 
_______________________________________________________________________ 
Experiment #9:  Mouse Data (RCA evidence code only):  UniProt versus 
AmiGO 
_______________________________________________________________________ 
 

UniProt Labels 
GO0004713 

(Tyr) 
GO0004674  

(Ser/Thr) 
Dual 

 
 UniProt Total 

 
GO0004713 (Tyr) 0 54 3 57 
GO0004674 (Ser/Thr) 105 10 35 150 
Dual 4 0 0 4 

AmiGO Total   109 64 38 Total # proteins =211 
Instances in Agreement: 10 4.7% 
Instances in Disagreement: 201 95.3% 
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_______________________________________________________________________ 
Experiment #10:  Mouse Data (at least one RCA evidence code):  UniProt 
versus AmiGO  
_______________________________________________________________________ 
 

UniProt Labels 
GO0004713 

(Tyr) 
GO0004674  

(Ser/Thr) 
Dual 

 
 UniProt Total 

 
GO0004713 (Tyr) 0 41 16 57 
GO0004674 (Ser/Thr) 91 10 49 150 
Dual 3 0 1 4 

AmiGO Total   94 51 66 Total # proteins =211 
Instances in Agreement: 11 5.2% 
Instances in Disagreement: 200 94.8% 
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APPENDIX B 
 
 
Supplementary Note:  
 
Because there is only a non-curated reference to the work done on “Rat ISS GO 
annotations from MGI's mouse gene data”, we provide the abstract and a link to the 
original reference report.  The Rat Genome Database ID for this report is 1578720.  The 
original report was created on April, 6, 2006.  

Abstract  

All the annotations assigned to mouse genes by the Mouse Genome Database 
(http://www.informatics.jax.org/) were uploaded from the Gene Ontology Consortium 
website (http://www.geneontology.org/GO.current.annotations.shtml). Annotations with 
"IEA" or "ND" Evidence Codes were removed and the remainder loaded onto the 
corresponding orthologous rat genes with an evidence code for the annotation to the rat 
gene of ISS. The decision to use ISS for the evidence code was made following a personal 
communication between Dr. Susan Bromberg (RGD) and Dr. Judith Blake (MGI/GO 
Consortium).  

Original link: 

http://rgd.mcw.edu/tools/references/references_view.cgi?id=1578720 
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APPENDIX C. 
 
 
 
Supplementary Table 1:  
 
Evidence Codes for AmiGO annotations of mouse protein kinases (See Table legend below). 

Gene ID AmiGO label 4674 Evidence Code 4713 Evidence Code 
2610018G03Rik 4713  RCA 
Acvr1b 4713  RCA 
Acvr2a 4713  RCA 
Acvr2b 4713  RCA 
Acvrl1 4713  RCA 
Adrbk1 4713  RCA 
Akt1 4713  RCA 
Alk 4674 RCA  
Araf 4713  RCA 
Atm 4674 TAS  
Aurka 4713  RCA 
Aurkb 4713  RCA 
Axl 4674 RCA  
Blk 4674 RCA  
Bmpr1a 4713  RCA 
Bmpr1b 4713  RCA 
Bmpr2 4713  RCA 
Bmx 4674 RCA  
Btk 4674 / 4713 RCA IDA 
Camk1 4713  RCA 
Camk1d 4674 ISS  
Camk1g 4674 RCA  
Camk2a 4674 IMP  
Camk2b 4674 / 4713 IMP RCA 
Camk2g 4674 / 4713 IMP/RCA RCA 
Camk4 4674 TAS  
Camkk1 4674 / 4713 ISS RCA 
Ccrk 4674 / 4713 RCA RCA 
Cdc2a 4713  RCA 
Cdc2l5 4674 / 4713 RCA RCA 
Cdk5 4674 IDA  
Cdk7 4674 / 4713 ISS RCA 
Cdk9 4713  RCA 
Cdkl1 4674 / 4713 RCA RCA 
Cdkl3 4674 / 4713 RCA RCA 
Cdkl4 4674 / 4713 RCA RCA 
Chek1 4713  RCA 
Chek2 4713  RCA 
Chuk 4713  RCA 
Cit 4674 IDA  
Clk1 4674 / 4713 IDA IDA 
Clk2 4713  IDA 
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-  Supplementary Table 1 continued - 
 

Clk3 4713  IDA 
Clk4 4713  IDA 
Cpne3 4674 RCA  
Csf1r 4674 RCA IEA 
Csk 4674 RCA  
Csnk1d 4713  RCA 
Csnk1e 4713  RCA 
Csnk1g2 4713  RCA 
Csnk2a2 4674 / 4713 RCA RCA 
Dapk2 4713  RCA 
Dapk3 4713  RCA 
Dcamkl2 4674 / 4713 RCA RCA 
Ddr1 4674 RCA  
Dmpk 4713  RCA 
Dyrk1a 4713  ISS 
Egfr 4713  IDA 
Eif2ak1 4713  RCA 
Eif2ak3 4713  RCA 
Eif2ak4 4674 / 4713 IDA RCA 
Epha1 4674 / 4713 RCA RCA 
Epha2 4674 RCA  
Epha3 4674 / 4713 RCA IDA 
Epha4 4674 RCA  
Epha5 4674 RCA  
Epha6 4674 RCA  
Epha7 4674 RCA  
Epha8 4674 RCA  
Ephb2 4674 / 4713 RCA IDA 
Ephb3 4674 / 4713 RCA TAS 
Ephb4 4674 RCA  
Ephb6 4674 RCA  
Erbb2 4674 / 4713 RCA RCA 
Ern2 4713  RCA 
Fgfr1 4674 / 4713 RCA TAS 
Fgfr2 4674 RCA  
Fgfr3 4713  IDA 
Fgfr4 4674 RCA  
Fgr 4674 RCA  
Flt1 4674 RCA  
Flt3 4674 RCA  
Flt4 4674 RCA  
Fyn 4713  IDA 
Gprk2l 4674 / 4713 RCA RCA 
Gprk5 4674 / 4713 RCA RCA 
Gprk6 4713  RCA 
Grk1 4713  RCA 
Gsg2 4674 IDA  
Gsk3b 4674 IDA  
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-  Supplementary Table 1 continued - 
 

Hck 4674 RCA  
Hipk2 4674 ISS  
Hipk3 4713  RCA 
Hunk 4713  RCA 
Ick 4674 IDA  
Igf1r 4674 RCA  
Ikbkb 4713  RCA 
Ikbke 4674 / 4713 IDA RCA 
Ilk 4674 ISS  
Insrr 4674 RCA  
Irak3 4674 / 4713 RCA RCA 
Itk 4674 RCA  
Jak1 4713  IDA 
Jak2 4674 / 4713 RCA IDA 
Jak3 4713  IDA 
Kdr 4674 RCA  
Kit 4674 / 4713 RCA IDA 
Ksr1 4713  RCA 
Lats1 4713  RCA 
Lck 4674 RCA  
Limk1 4713  RCA 
Lrrk1 4674 / 4713 RCA RCA 
Ltk 4674 RCA  
Lyn 4713  IDA 
Map2k3 4713  RCA 
Map2k5 4713  RCA 
Map3k12 4713  RCA 
Map3k14 4713  RCA 
Map3k3 4713  RCA 
Map3k4 4713  RCA 
Map3k7 4713  RCA 
Map3k8 4713  RCA 
Map4k1 4674 / 4713 RCA RCA 
Map4k2 4713  RCA 
Mapk1 4674 / 4713 ISS RCA 
Mapk10 4713  RCA 
Mapk11 4713  RCA 
Mapk12 4713  RCA 
Mapk13 4713  RCA 
Mapk14 4713  RCA 
Mapk3 4713  RCA 
Mapk7 4713  RCA 
Mapk8 4713  RCA 
Mapk9 4713  RCA 
Mapkapk2 4713  RCA 
Mapkapk5 4713  RCA 
Mark1 4674 / 4713 RCA RCA 
Mark2 4713  RCA 
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-  Supplementary Table 1 continued - 
 

Mast1 4713  RCA 
Mast2 4674 / 4713 IDA RCA 
Mastl 4674 RCA  
Matk 4674 RCA  
Melk 4674 / 4713 ISS RCA 
Mertk 4674 RCA  
Met 4674 / 4713 RCA IDA 
Mknk1 4713  RCA 
Mos 4713  RCA 
Musk 4713  TAS 
Mylk2 4674 RCA  
Nek11 4674 / 4713 RCA RCA 
Nek2 4713  RCA 
Nek4 4713  RCA 
Nek6 4674 / 4713 RCA RCA 
Nek7 4674 RCA  
Nlk 4674 / 4713 RCA RCA 
Npr1 4674 / 4713 RCA RCA 
Oxsr1 4674 / 4713 RCA RCA 
Pak1 4674 / 4713 ISS RCA 
Pak2 4674 ISS  
Pak3 4713  RCA 
Pak4 4674 / 4713 RCA RCA 
Pak7 4674 / 4713 IDA / RCA RCA 
Pask 4674 / 4713 RCA RCA 
Pbk 4674 / 4713 ISS / RCA RCA 
Pctk1 4713  RCA 
Pctk3 4713  RCA 
Pdgfra 4674 RCA  
Pdgfrb 4674 RCA  
Pdpk1 4674 IDA  
Pftk1 4674 / 4713 ISS RCA 
Phkg1 4713  RCA 
Pim1 4713  RCA 
Pim2 4674 / 4713 IDA RCA 
Pink1 4713  RCA 
Pkmyt1 4713  RCA 
Pkn2 4674 / 4713 RCA RCA 
Plk1 4713  RCA 
Plk2 4713  RCA 
Plk4 4713  RCA 
Pnck 4713  RCA 
Prkaca 4674 / 4713 IDA RCA 
Prkca 4674 / 4713 IDA RCA 
Prkcb1 4674 / 4713 RCA RCA 
Prkcc 4674 / 4713 RCA RCA 
Prkch 4713  RCA 
Prkci 4713  RCA 
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-  Supplementary Table 1 continued - 
 

Prkcm 4713  RCA 
Prkcz 4713  RCA 
Prkg2 4713  RCA 
Prkx 4674 / 4713 ISS RCA 
Prpf4b 4713  RCA 
Ret 4674 / 4713 RCA TAS 
Ripk1 4713  RCA 
Ripk5 4674 / 4713 RCA RCA 
Rock1 4713  RCA 
Ror1 4674 / 4713 RCA TAS 
Ror2 4674 / 4713 RCA TAS 
Rps6ka1 4713  RCA 
Rps6ka3 4674 IDA  
Rps6ka5 4674 / 4713 RCA RCA 
Rps6kb2 4713  RCA 
Rps6kl1 4674 RCA  
Sbk1 4674 / 4713 RCA / ISS RCA 
Sgk2 4713  RCA 
Sgk3 4674 IDA  
Slk 4713  RCA 
Snrk 4674 / 4713 RCA RCA 
Src 4674 / 4713 RCA IMP 
Srpk1 4713  RCA 
Srpk2 4713  RCA 
Stk10 4674 / 4713 TAS RCA 
Stk16 4713  RCA 
Stk17b 4674 / 4713 RCA RCA 
Stk23 4674 IDA  
Stk32b 4713  RCA 
Stk36 4674 / 4713 RCA RCA 
Stk38l 4674 ISS / RCA  
Syk 4674 / 4713 RCA IDA 
Tbk1 4674 / 4713 RCA RCA 
Tec 4674 RCA  
Tek 4674 RCA  
Tgfbr1 4713  RCA 
Tgfbr2 4713  RCA 
Tie1 4674 RCA  
Tlk1 4674 / 4713 RCA RCA 
Tlk2 4713  RCA 
Tnk1 4674 RCA  
Tnk2 4674 / 4713 RCA RCA 
Tssk1 4713  RCA 
Tssk2 4713  RCA 
Tssk6 4674 / 4713 RCA RCA 
Vrk3 4674 RCA  
Yes1 4674 RCA  
Zap70 4713  IDA 
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Legend for Supplementary Table 1:   
 
Evidence Codes for AmiGO annotations 
The evidence codes for all 244 mouse protein kinases used in this study are displayed in 
this table.  All Mouse Gene ID numbers were obtained from the AmiGO protein record.  
The Mouse AmiGO Label field is “4713” (Tyr) if a query in AmiGO for the GO label 
GO0004713 returns the corresponding protein for mouse proteins, “4674” (Ser/Thr) if a 
query in AmiGO for the GO label GO0004674 returns the corresponding protein for mouse 
proteins, or “4674 / 4713” if a query in AmiGO for both GO labels GO0004674 and 
GO0004713 returns the corresponding protein.  The 4674 Evidence Code and 4713 
Evidence Code fields contain the evidence code(s)* provided by AmiGO for a given 
protein belonging to either the Gene Ontology family GO0004674 or GO0004713.  If this 
field is empty, then the given protein was not included in the list of proteins returned by 
AmiGO for that Gene Ontology family. 
 
*Examples of evidence codes provided by AmiGO:  
• IC: Inferred by Curator  
• IDA: Inferred from Direct Assay  
• IEA: Inferred from Electronic Annotation  
• IEP: Inferred from Expression Pattern  
• IGI: Inferred from Genetic Interaction  
• IMP: Inferred from Mutant Phenotype  
• IPI: Inferred from Physical Interaction  
• ISS: Inferred from Sequence or Structural Similarity  
• NAS: Non-traceable Author Statement  
• ND: No biological Data available  
• RCA: inferred from Reviewed Computational Analysis  
• TAS: Traceable Author Statement  
• NR: Not Recorded 
More details on evidence code:  http://www.geneontology.org/GO.evidence.shtml 
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APPENDIX D 
 
 

Supplementary Table 2:  
 
AmiGO annotations versus UniProt annotations [with UniProt Evidence] (See Table legend below) 

Gene ID 
AmiGO 

label 
UniProt 

label UniProt Evidence 
2610018G03Rik 4713 4674 Serine/threonine-protein kinase MST4 

Acvr1b 4713 4674 Serine/threonine-protein kinase 

Acvr2a 4713 4674 Serine/threonine-protein kinase 

Acvr2b 4713 4674 Serine/threonine-protein kinase 

Acvrl1 4713 4674 Serine/threonine-protein kinase 

Adrbk1 4713 4674 Serine/threonine-protein kinase 

Akt1 4713 4674 RAC-alpha serine/threonine-protein kinase 

Alk 4674 4713 ALK tyrosine kinase receptor precursor 

Araf 4713 4674 A-Raf proto-oncogene serine/threonine-protein kinase 

Atm 4674 4674 Serine/threonine-protein kinase 

Aurka 4713 4674 Serine/threonine-protein kinase 6 

Aurkb 4713 4674 Serine/threonine-protein kinase 

Axl 4674 4713 Proto-oncogene tyrosine-protein kinase MER precursor 

Blk 4674 4713 Tyrosine-protein kinase BLK 

Bmpr1a 4713 4674 Serine/threonine-protein kinase 

Bmpr1b 4713 4674 Serine/threonine-protein kinase 

Bmpr2 4713 4674 Belongs to the Ser/Thr protein kinase family 

Bmx 4674 4713 Cytoplasmic tyrosine-protein kinase BMX 

Btk 4674 / 4713 4713 Tyrosine-protein kinase BTK 

Camk1 4713 4674 Serine/threonine-protein kinase 

Camk1d 4674 4674 Belongs to the Ser/Thr protein kinase family 

Camk1g 4674 4674 Serine/threonine-protein kinase 

Camk2a 4674 4674 Serine/threonine-protein kinase 

Camk2b 4674 / 4713 4674 Serine/threonine-protein kinase 

Camk2g 4674 / 4713 4674 Serine/threonine-protein kinase 

Camk4 4674 4674 Belongs to the Ser/Thr protein kinase family 

Camkk1 4674 / 4713 4674 Serine/threonine-protein kinase 

Ccrk 4674 / 4713 4674 Serine/threonine-protein kinase 

Cdc2a 4713 4674 Serine/threonine-protein kinase 

Cdc2l5 4674 / 4713 4674 Serine/threonine-protein kinase 

Cdk5 4674 4674 Belongs to the Ser/Thr protein kinase family 

Cdk7 4674 / 4713 4674 / 4713 Protein-tyrosine kinase; Belongs to the Ser/Thr protein kinase 

Cdk9 4713 4674 / 4713 Protein-tyrosine kinase; Belongs to the Ser/Thr protein kinase 

Cdkl1 4674 / 4713 4674 Serine/threonine-protein kinase 

Cdkl3 4674 / 4713 4674 Serine/threonine-protein kinase 

Cdkl4 4674 / 4713 4674 Serine/threonine-protein kinase 

Chek1 4713 4674 Serine/threonine-protein kinase 

Chek2 4713 4674 Serine/threonine-protein kinase 

Chuk 4713 4674 Serine/threonine-protein kinase 

Cit 4674 4674 / 4713 Dual specificity protein kinase activity 

Clk1 4674 / 4713 4674 / 4713 Phosphorylates serines, threonines and tyrosines 

Clk2 4713 4674 / 4713 Tyrosine-protein kinase, Serine/threonine-protein kinase 
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-  Supplementary Table 2 continued - 
 

Clk3 4713 4674 / 4713 Tyrosine-protein kinase, Serine/threonine-protein kinase 

Clk4 4713 4674 / 4713 Tyrosine-protein kinase, Serine/threonine-protein kinase 

Cpne3 4674 4674 Serine/threonine-protein phosphatase 

Csf1r 4674 4713 protein tyrosine-kinase transmembrane receptor 

Csk 4674 4713 Tyrosine-protein kinase CSK 

Csnk1d 4713 4674 Serine/threonine-protein kinase 

Csnk1e 4713 4674 Serine/threonine-protein kinase 

Csnk1g2 4713 4674 Serine/threonine-protein kinase 

Csnk2a2 4674 / 4713 4674 Serine/threonine-protein kinase 

Dapk2 4713 4674 Belongs to the Ser/Thr protein kinase family 

Dapk3 4713 4674 Belongs to the Ser/Thr protein kinase family 

Dcamkl2 4674 / 4713 4674 Serine/threonine-protein kinase 

Ddr1 4674 4713 Tyrosine kinase DDR 

Dmpk 4713 4674 Belongs to the Ser/Thr protein kinase family 

Dyrk1a 4713 4674 / 4713 Serine/threonine-protein kinase; Tyrosine-protein kinase 

Egfr 4713 4713 Tyrosine-protein kinase 

Eif2ak1 4713 4674 Serine/threonine-protein kinase 

Eif2ak3 4713 4674 Serine/threonine-protein kinase 

Eif2ak4 4674 / 4713 4674 Serine/threonine-protein kinase 

Epha1 4674 / 4713 4713 Tyrosine-protein kinase receptor 

Epha2 4674 4713 Tyrosine-protein kinase receptor 

Epha3 4674 / 4713 4713 Tyrosine-protein kinase receptor 

Epha4 4674 4713 Tyrosine-protein kinase receptor 

Epha5 4674 4713 Tyrosine-protein kinase receptor 

Epha6 4674 4713 Tyrosine-protein kinase receptor 

Epha7 4674 4713 Tyrosine-protein kinase receptor 

Epha8 4674 4713 Tyrosine-protein kinase receptor 

Ephb2 4674 / 4713 4713 Tyrosine-protein kinase receptor 

Ephb3 4674 / 4713 4713 Tyrosine-protein kinase receptor 

Ephb4 4674 4713 Tyrosine-protein kinase receptor 

Ephb6 4674 4713 Tyrosine-protein kinase receptor 

Erbb2 4674 / 4713 4713 Receptor tyrosine-protein kinase erbB-2 precursor 

Ern2 4713 4674 Serine/threonine-protein 

Fgfr1 4674 / 4713 4713 Belongs to the Tyr protein kinase family 

Fgfr2 4674 4713 Belongs to the Tyr protein kinase family 

Fgfr3 4713 4713 Belongs to the Tyr protein kinase family 

Fgfr4 4674 4713 Belongs to the Tyr protein kinase family 

Fgr 4674 4713 Proto-oncogene tyrosine-protein kinase FGR 

Flt1 4674 4713 Belongs to the Tyr protein kinase family 

Flt3 4674 4713 Belongs to the Tyr protein kinase family 

Flt4 4674 4713 Belongs to the Tyr protein kinase family 

Fyn 4713 4713 Proto-oncogene tyrosine-protein kinase Fyn 

Gprk2l 4674 / 4713 4674 Serine/threonine-protein kinase 

Gprk5 4674 / 4713 4674 Serine/threonine-protein kinase 

Gprk6 4713 4674 Serine/threonine-protein kinase 

Grk1 4713 4674 Serine/threonine-protein kinase 

Gsg2 4674 4674 Serine/threonine-protein kinase 

Gsk3b 4674 4674 Belongs to the Ser/Thr protein kinase family 

Hck 4674 4713 Tyrosine-protein kinase HCK 
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-  Supplementary Table 2 continued - 
 

Hipk2 4674 4674 serine/threonine-protein kinase 

Hipk3 4713 4674 Belongs to the Ser/Thr protein kinase family 

Hunk 4713 4674 Serine/threonine-protein kinase MAK-V 

Ick 4674 4674 Serine/threonine-protein kinase ICK 

Igf1r 4674 4713 Belongs to the Tyr protein kinase family 

Ikbkb 4713 4674 Serine/threonine-protein kinase 

Ikbke 4674 / 4713 4674 Serine/threonine-protein kinase 

Ilk 4674 4674 Serine/threonine-protein kinase 

Insrr 4674 4713 Tyrosine-protein kinase 

Irak3 4674 / 4713 4674 Serine/threonine-protein kinase 

Itk 4674 4713 Tyrosine-protein kinase ITK/TSK 

Jak1 4713 4713 Tyrosine-protein kinase  

Jak2 4674 / 4713 4713 Tyrosine-protein kinase JAK2 

Jak3 4713 4713 Tyrosine-protein kinase  

Kdr 4674 4713 Has a tyrosine-protein kinase activity 

Kit 4674 / 4713 4713 Tyrosine-protein kinase 

Ksr1 4713 4674 / 4713 Ser_thr_pkin;Tyr_pkinase 

Lats1 4713 4674 Serine/threonine-protein kinase LATS1 

Lck 4674 4713 Proto-oncogene tyrosine-protein kinase LCK 

Limk1 4713 4674 Serine/threonine-protein kinase 

Lrrk1 4674 / 4713 4674 Leucine-rich repeat serine/threonine-protein kinase 1 

Ltk 4674 4713 Leukocyte tyrosine kinase receptor precursor 

Lyn 4713 4713 Tyrosine-protein kinase Lyn 

Map2k3 4713 4674 serine/threonine-protein kinase 

Map2k5 4713 4674 serine/threonine-protein kinase 

Map3k12 4713 4674 serine/threonine-protein kinase 

Map3k14 4713 4674 serine/threonine-protein kinase 

Map3k3 4713 4674 serine/threonine-protein kinase 

Map3k4 4713 4674 serine/threonine-protein kinase 

Map3k7 4713 4674 serine/threonine-protein kinase 

Map3k8 4713 4674 serine/threonine-protein kinase 

Map4k1 4674 / 4713 4674 serine/threonine-protein kinase 

Map4k2 4713 4674 serine/threonine-protein kinase 

Mapk1 4674 / 4713 4674 serine/threonine-protein kinase 

Mapk10 4713 4674 serine/threonine-protein kinase 

Mapk11 4713 4674 serine/threonine-protein kinase 

Mapk12 4713 4674 serine/threonine-protein kinase 

Mapk13 4713 4674 serine/threonine-protein kinase 

Mapk14 4713 4674 serine/threonine-protein kinase 

Mapk3 4713 4674 serine/threonine-protein kinase 

Mapk7 4713 4674 serine/threonine-protein kinase 

Mapk8 4713 4674 serine/threonine-protein kinase 

Mapk9 4713 4674 Serine/threonine-protein kinase 

Mapkapk2 4713 4674 Belongs to the Ser/Thr protein kinase family 

Mapkapk5 4713 4674 Belongs to the Ser/Thr protein kinase family 

Mark1 4674 / 4713 4674 Serine/threonine-protein kinase 

Mark2 4713 4674 Serine/threonine-protein kinase MARK2  

Mast1 4713 4674 Microtubule-associated serine/threonine-protein kinase 1  

Mast2 4674 / 4713 4674 serine/threonine-protein kinase 
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-  Supplementary Table 2 continued - 
 

Mastl 4674 4674 serine/threonine-protein kinase 

Matk 4674 4713 Megakaryocyte-associated tyrosine-protein kinase 

Melk 4674 / 4713 4674 Serine/threonine-protein kinase 

Mertk 4674 4713 Proto-oncogene tyrosine-protein kinase MER precursor 

Met 4674 / 4713 4713 Tyrosine-protein kinase 

Mknk1 4713 4674 MAP kinase-interacting serine/threonine-protein kinase 2  

Mos 4713 4674 Proto-oncogene serine/threonine-protein kinase mos  

Musk 4713 4713 Muscle, skeletal receptor tyrosine protein kinase precursor 

Mylk2 4674 4674 Serine/threonine-protein kinase 

Nek11 4674 / 4713 4674 Serine/threonine-protein kinase 

Nek2 4713 4674 Serine/threonine-protein kinase Nek2  

Nek4 4713 4674 Serine/threonine-protein kinase Nek3 

Nek6 4674 / 4713 4674 Serine/threonine-protein kinase 

Nek7 4674 4674 Serine/threonine-protein kinase 

Nlk 4674 / 4713 4674 Serine/threonine kinase NLK  

Npr1 4674 / 4713 4674 Serine/threonine-protein kinase 

Oxsr1 4674 / 4713 4674 Serine/threonine-protein kinase 

Pak1 4674 / 4713 4674 Serine/threonine-protein kinase 

Pak2 4674 4674 Serine/threonine-protein kinase 

Pak3 4713 4674 Serine/threonine-protein kinase PAK 3  

Pak4 4674 / 4713 4674 Serine/threonine-protein kinase 

Pak7 4674 / 4713 4674 Serine/threonine-protein kinase 

Pask 4674 / 4713 4674 serine/threonine-protein kinase 

Pbk 4674 / 4713 4674 Serine/threonine-protein kinase 

Pctk1 4713 4674 Serine/threonine-protein kinase PCTAIRE-1  

Pctk3 4713 4674 Serine/threonine-protein kinase PCTAIRE-3 

Pdgfra 4674 4713 Tyrosine-protein kinase 

Pdgfrb 4674 4713 Tyrosine-protein kinase 

Pdpk1 4674 4674 / 4713 Phosphorylated on tyrosine and serine/threonine 

Pftk1 4674 / 4713 4674 Serine/threonine-protein kinase 

Phkg1 4713 4674 Serine/threonine-protein kinase 

Pim1 4713 4674 Proto-oncogene serine/threonine-protein kinase Pim-1  

Pim2 4674 / 4713 4674 Serine/threonine-protein kinase Pim-2 

Pink1 4713 4674 
Serine/threonine-protein kinase PINK1, mitochondrial 
precursor  

Pkmyt1 4713 4674 / 4713 
Membrane-associated tyrosine- and threonine-specific cdc2-
inhibitory kinase 

Pkn2 4674 / 4713 4674 Serine/threonine-protein kinase N2 

Plk1 4713 4674 Serine/threonine-protein kinase PLK1  

Plk2 4713 4674 Serine/threonine-protein kinase PLK2 

Plk4 4713 4674 Serine/threonine-protein kinase PLK4 

Pnck 4713 4674 Belongs to the Ser/Thr protein kinase family 

Prkaca 4674 / 4713 4674 Belongs to the Ser/Thr protein kinase family 

Prkca 4674 / 4713 4674 Serine/threonine-protein kinase 

Prkcb1 4674 / 4713 4674 Serine/threonine-protein kinase 

Prkcc 4674 / 4713 4674 Serine/threonine-protein kinase 

Prkch 4713 4674 Serine/threonine-protein kinase 

Prkci 4713 4674 Belongs to the Ser/Thr protein kinase family 

Prkcm 4713 4674 Serine/threonine-protein kinase D1  

Prkcz 4713 4674 Serine/threonine-protein kinase 
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Prkg2 4713 4674 Belongs to the Ser/Thr protein kinase family 

Prkx 4674 / 4713 4674 Serine/threonine-protein kinase 

Prpf4b 4713 4674 Serine/threonine-protein kinase  

Ptk2 4674 4674 Serine/threonine-protein kinase PTK2/STK2 

Ptk6 4674 4713 Tyrosine-protein kinase 6 

Pxk 4674 4674 Ser_thr_pkinase 

Ret 4674 / 4713 4713 Proto-oncogene tyrosine-protein kinase 

Ripk1 4713 4674 Receptor-interacting serine/threonine-protein kinase 3  

Ripk5 4674 / 4713 4674 Receptor-interacting serine/threonine-protein kinase 5  

Rock1 4713 4674 Serine/threonine-protein kinase 

Ror1 4674 / 4713 4713 Tyrosine-protein kinase transmembrane receptor 

Ror2 4674 / 4713 4713 Tyrosine-protein kinase transmembrane receptor 

Rps6ka1 4713 4674 Serine/threonine-protein kinase 

Rps6ka3 4674 4674 Serine/threonine kinase 

Rps6ka5 4674 / 4713 4674 Serine/threonine kinase 

Rps6kb2 4713 4674 Serine/threonine-protein kinase 

Rps6kl1 4674 4674 Belongs to the Ser/Thr protein kinase family 

Sbk1 4674 / 4713 4674 Serine/threonine-protein kinase SBK1  

Sgk2 4713 4674 Serine/threonine-protein kinase Sgk2 

Sgk3 4674 4674 Serine/threonine-protein kinase Sgk3 

Slk 4713 4674 STE20-like serine/threonine-protein kinase  

Snf1lk2 4674 4674 Serine/threonine-protein kinase SNF1-like kinase 2 

Snrk 4674 / 4713 4674 SNF-related serine/threonine-protein kinase 

Src 4674 / 4713 4713 tyrosine-protein kinase 

Srpk1 4713 4674 Serine/threonine-protein kinase 

Srpk2 4713 4674 Serine/threonine-protein kinase 

Stk10 4674 / 4713 4674 Serine/threonine-protein 

Stk16 4713 4674 Serine/threonine-protein kinase 16 

Stk17b 4674 / 4713 4674 Serine/threonine-protein 

Stk23 4674 4674 Serine/threonine-protein 

Stk32b 4713 4674 Serine/threonine-protein kinase 32B  

Stk36 4674 / 4713 4674 Serine/threonine-protein kinase 36  

Stk38l 4674 4674 Serine/threonine-protein 

Syk 4674 / 4713 4713 Tyrosine-protein kinase SYK 

Tbk1 4674 / 4713 4674 Serine/threonine-protein kinase TBK1 

Tec 4674 4713 Tyrosine-protein kinase Tec 

Tek 4674 4713 TEK receptor tyrosine kinase genes 

Tgfbr1 4713 4674 Serine/threonine-protein kinase 

Tgfbr2 4713 4674 Serine/threonine-protein kinase 

Tie1 4674 4713 Tyrosine-protein kinase receptor Tie-1 precursor 

Tlk1 4674 / 4713 4674 Serine/threonine-protein kinase tousled-like 1 

Tlk2 4713 4674 Serine/threonine-protein kinase tousled-like 2 

Tnk1 4674 4713 Non-receptor tyrosine-protein kinase TNK1 

Tnk2 4674 / 4713 4713 Tyrosine kinase non-receptor protein 2 

Tssk1 4713 4674 Testis-specific serine/threonine-protein kinase 

Tssk2 4713 4674 Testis-specific serine/threonine-protein kinase 

Tssk6 4674 / 4713 4674 Testis-specific serine/threonine-protein kinase 6  
Ttbk2 4674 4674 Serine/threonine kinase 

Txk 4674 4713 Tyrosine-protein kinase TXK 



206 

-  Supplementary Table 2 continued - 
 

Tyk2 4674 4713 Non-receptor tyrosine-protein kinase TYK2 

Tyro3 4674 4713 Tyrosine-protein kinase receptor TYRO3 precursor 

Vrk1 4674 4674 Serine/threonine-protein kinase 

Vrk2 4674 4674 Serine/threonine-protein kinase 

Vrk3 4674 4674 Serine/threonine-protein kinase 

Yes1 4674 4713 Proto-oncogene tyrosine-protein kinase Yes 

Zap70 4713 4713 Tyrosine-protein kinase ZAP-70 

 
 
Legend for Supplementary Table 2:   
 
AmiGO annotations versus UniProt annotations (with UniProt Evidence) 
 
This table displays the AmiGO annotation and UniProt annotations for each of the 244 
mouse protein kinases used in this study.  The Mouse Gene ID numbers were obtained 
from each of the AmiGO protein records. The AmiGO Label field is “4713” (Tyr) if a 
query in AmiGO for the GO label GO0004713 returns the corresponding protein for mouse 
proteins, “4674” (Ser/Thr) if a query in AmiGO for the GO label GO0004674 returns the 
corresponding protein for mouse proteins, or “4674 / 4713” if a query in AmiGO for both 
GO labels GO0004674 and GO0004713 returns the corresponding protein.  The UniProt 
Label field is “ 4713” if a search in UniProt with the AmiGO Gene ID returns a mouse 
protein that contains a reference to the functional class protein-tyrosine kinase activity, 
”4674” if a search in UniProt with the AmiGO Gene ID returns a mouse protein that 
contains a reference to the functional class serine/threonine kinase activity,  or “4674 / 
4713” if a search in UniProt returns a mouse protein that contains a reference to the 
functional class serine/threonine kinase activity and protein-tyrosine kinase activity or any 
evidence that would suggest dual specificity.  The UniProt Evidence field contains at least 
one example of the evidence found in the UniProt record (within protein name, synonyms, 
references, similarity, keywords, or function) to support the label found in the UniProt 
Label field.   
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Supplementary Table 3:  
 
 Comparison of AmiGO labels, UniProt labels, and Predicted Labels for each mouse kinase protein (See 
Table legend below) 

Gene ID 
AmiGO 

label 
UniProt 

label 
Prediction of 
Classifier #1 

Prediction of 
Classifier #2 

Prediction of 
Classifier #3 

2610018G03Rik 4713 4674 4674 4674 4674 

Acvr1b 4713 4674 4674 4674 4674 

Acvr2a 4713 4674 4674 4674 4674 

Acvr2b 4713 4674 4674 4674 4674 

Acvrl1 4713 4674 4674 4674 4674 

Adrbk1 4713 4674 4674 4674 4674 

Akt1 4713 4674 4674 4674 4674 

Alk 4674 4713 4713 4713 4713 

Araf 4713 4674 4674 4674 4674 

Atm 4674 4674 4674 4674 4674 

Aurka 4713 4674 4674 4674 4674 

Aurkb 4713 4674 4674 4674 4674 

Axl 4674 4713 4713 4713 4713 

Blk 4674 4713 4713 4713 4713 

Bmpr1a 4713 4674 4674 4674 4674 

Bmpr1b 4713 4674 4674 4674 4674 

Bmpr2 4713 4674 4674 4674 4674 

Bmx 4674 4713 4713 4713 4713 

Btk 4674 / 4713 4713 4713 4713 4713 

Camk1 4713 4674 4674 4674 4674 

Camk1d 4674 4674 4674 4674 4674 

Camk1g 4674 4674 4674 4674 4674 

Camk2a 4674 4674 4674 4674 4674 

Camk2b 4674 / 4713 4674 4674 4674 4674 

Camk2g 4674 / 4713 4674 4674 4674 4674 

Camk4 4674 4674 4674 4674 4674 

Camkk1 4674 / 4713 4674 4674 4674 4674 

Ccrk 4674 / 4713 4674 4674 4674 4674 

Cdc2a 4713 4674 4674 4674 4674 

Cdc2l5 4674 / 4713 4674 4674 4674 4674 

Cdk5 4674 4674 4674 4674 4674 

Cdk7 4674 / 4713 4674 / 4713 4674 4674 4674 

Cdk9 4713 4674 / 4713 4674 4674 4674 

Cdkl1 4674 / 4713 4674 4674 4674 4674 

Cdkl3 4674 / 4713 4674 4674 4674 4674 

Cdkl4 4674 / 4713 4674 4674 4674 4674 

Chek1 4713 4674 4674 4674 4674 

Chek2 4713 4674 4674 4674 4674 

Chuk 4713 4674 4674 4674 4674 

Cit 4674 4674 / 4713 4674 4674 4674 

Clk1 4674 / 4713 4674 / 4713 4674 4713  4674/4713 
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Clk2 4713 4674 / 4713 4674 4674 4674 

Clk3 4713 4674 / 4713 4674 4674 4674 

Clk4 4713 4674 / 4713 4674 4713  4674/4713 

Cpne3 4674 4674 4674 4674 4674 

Csf1r 4674 4713 4713 4713 4713 

Csk 4674 4713 4713 4713 4713 

Csnk1d 4713 4674 4674 4674 4674 

Csnk1e 4713 4674 4674 4674 4674 

Csnk1g2 4713 4674 4674 4674 4674 

Csnk2a2 4674 / 4713 4674 4674 4674 4674 

Dapk2 4713 4674 4674 4674 4674 

Dapk3 4713 4674 4674 4674 4674 

Dcamkl2 4674 / 4713 4674 4674 4674 4674 

Ddr1 4674 4713 4713 4713 4713 

Dmpk 4713 4674 4674 4674 4674 

Dyrk1a 4713 4674 / 4713 4674 4713  4674/4713 

Egfr 4713 4713 4674 4713  4674/4713 

Eif2ak1 4713 4674 4674 4674 4674 

Eif2ak3 4713 4674 4674 4674 4674 

Eif2ak4 4674 / 4713 4674 4674 4674 4674 

Epha1 4674 / 4713 4713 4713 4713 4713 

Epha2 4674 4713 4713 4713 4713 

Epha3 4674 / 4713 4713 4713 4713 4713 

Epha4 4674 4713 4713 4713 4713 

Epha5 4674 4713 4713 4713 4713 

Epha6 4674 4713 4713 4713 4713 

Epha7 4674 4713 4713 4713 4713 

Epha8 4674 4713 4713 4713 4713 

Ephb2 4674 / 4713 4713 4713 4713 4713 

Ephb3 4674 / 4713 4713 4713 4713 4713 

Ephb4 4674 4713 4713 4713 4713 

Ephb6 4674 4713 4713 4713 4713 

Erbb2 4674 / 4713 4713 4713 4713 4713 

Ern2 4713 4674 4674 4674 4674 

Fgfr1 4674 / 4713 4713 4713 4713 4713 

Fgfr2 4674 4713 4713 4713 4713 

Fgfr3 4713 4713 4713 4713 4713 

Fgfr4 4674 4713 4713 4713 4713 

Fgr 4674 4713 4713 4713 4713 

Flt1 4674 4713 4713 4713 4713 

Flt3 4674 4713 4713 4713 4713 

Flt4 4674 4713 4713 4713 4713 

Fyn 4713 4713 4713 4713 4713 

Gprk2l 4674 / 4713 4674 4674 4674 4674 

Gprk5 4674 / 4713 4674 4674 4674 4674 

Gprk6 4713 4674 4674 4674 4674 

Grk1 4713 4674 4674 4674 4674 

Gsg2 4674 4674 4674 4674 4674 
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Gsk3b 4674 4674 4674 4674 4674 

Hck 4674 4713 4713 4713 4713 

Hipk2 4674 4674 4674 4674 4674 

Hipk3 4713 4674 4674 4674 4674 

Hunk 4713 4674 4674 4674 4674 

Ick 4674 4674 4674 4674 4674 

Igf1r 4674 4713 4713 4713 4713 

Ikbkb 4713 4674 4674 4674 4674 

Ikbke 4674 / 4713 4674 4674 4674 4674 

Ilk 4674 4674 4674 4674 4674 

Insrr 4674 4713 4713 4713 4713 

Irak3 4674 / 4713 4674 4674 4674 4674 

Itk 4674 4713 4713 4713 4713 

Jak1 4713 4713 4713 4713 4713 

Jak2 4674 / 4713 4713 4713 4713 4713 

Jak3 4713 4713 4713 4713 4713 

Kdr 4674 4713 4713 4713 4713 

Kit 4674 / 4713 4713 4713 4713 4713 

Ksr1 4713 4674 / 4713 4674 4674 4674 

Lats1 4713 4674 4674 4674 4674 

Lck 4674 4713 4713 4713 4713 

Limk1 4713 4674 4674 4674 4674 

Lrrk1 4674 / 4713 4674 4674 4674 4674 

Ltk 4674 4713 4713 4713 4713 

Lyn 4713 4713 4713 4713 4713 

Map2k3 4713 4674 4674 4674 4674 

Map2k5 4713 4674 4674 4674 4674 

Map3k12 4713 4674 4674 4674 4674 

Map3k14 4713 4674 4674 4674 4674 

Map3k3 4713 4674 4674 4674 4674 

Map3k4 4713 4674 4674 4674 4674 

Map3k7 4713 4674 4674 4674 4674 

Map3k8 4713 4674 4674 4674 4674 

Map4k1 4674 / 4713 4674 4674 4674 4674 

Map4k2 4713 4674 4674 4674 4674 

Mapk1 4674 / 4713 4674 4674 4674 4674 

Mapk10 4713 4674 4674 4674 4674 

Mapk11 4713 4674 4674 4674 4674 

Mapk12 4713 4674 4674 4674 4674 

Mapk13 4713 4674 4674 4674 4674 

Mapk14 4713 4674 4674 4674 4674 

Mapk3 4713 4674 4674 4674 4674 

Mapk7 4713 4674 4674 4674 4674 

Mapk8 4713 4674 4674 4674 4674 

Mapk9 4713 4674 4674 4674 4674 

Mapkapk2 4713 4674 4674 4674 4674 

Mapkapk5 4713 4674 4674 4674 4674 

Mark1 4674 / 4713 4674 4674 4674 4674 
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Mark2 4713 4674 4674 4674 4674 

Mast1 4713 4674 4674 4674 4674 

Mast2 4674 / 4713 4674 4674 4674 4674 

Mastl 4674 4674 4674 4674 4674 

Matk 4674 4713 4713 4713 4713 

Melk 4674 / 4713 4674 4674 4674 4674 

Mertk 4674 4713 4713 4713 4713 

Met 4674 / 4713 4713 4713 4713 4713 

Mknk1 4713 4674 4674 4674 4674 

Mos 4713 4674 4674 4674 4674 

Musk 4713 4713 4713 4713 4713 

Mylk2 4674 4674 4674 4674 4674 

Nek11 4674 / 4713 4674 4674 4674 4674 

Nek2 4713 4674 4674 4674 4674 

Nek4 4713 4674 4674 4674 4674 

Nek6 4674 / 4713 4674 4674 4674 4674 

Nek7 4674 4674 4674 4674 4674 

Nlk 4674 / 4713 4674 4674 4674 4674 

Npr1 4674 / 4713 4674 4713 4713 4713 

Oxsr1 4674 / 4713 4674 4674 4674 4674 

Pak1 4674 / 4713 4674 4674 4674 4674 

Pak2 4674 4674 4674 4674 4674 

Pak3 4713 4674 4674 4674 4674 

Pak4 4674 / 4713 4674 4674 4674 4674 

Pak7 4674 / 4713 4674 4674 4674 4674 

Pask 4674 / 4713 4674 4674 4674 4674 

Pbk 4674 / 4713 4674 4674 4674 4674 

Pctk1 4713 4674 4674 4674 4674 

Pctk3 4713 4674 4674 4674 4674 

Pdgfra 4674 4713 4713 4713 4713 

Pdgfrb 4674 4713 4713 4713 4713 

Pdpk1 4674 4674 / 4713 4674 4674 4674 

Pftk1 4674 / 4713 4674 4674 4674 4674 

Phkg1 4713 4674 4674 4674 4674 

Pim1 4713 4674 4674 4674 4674 

Pim2 4674 / 4713 4674 4674 4674 4674 

Pink1 4713 4674 4674 4674 4674 

Pkmyt1 4713 4674 / 4713 4674 4674 4674 

Pkn2 4674 / 4713 4674 4674 4674 4674 

Plk1 4713 4674 4674 4674 4674 

Plk2 4713 4674 4674 4674 4674 

Plk4 4713 4674 4674 4674 4674 

Pnck 4713 4674 4674 4674 4674 

Prkaca 4674 / 4713 4674 4674 4674 4674 

Prkca 4674 / 4713 4674 4674 4674 4674 

Prkcb1 4674 / 4713 4674 4674 4674 4674 

Prkcc 4674 / 4713 4674 4674 4674 4674 

Prkch 4713 4674 4674 4674 4674 
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Prkci 4713 4674 4674 4674 4674 

Prkcm 4713 4674 4674 4674 4674 

Prkcz 4713 4674 4674 4674 4674 

Prkg2 4713 4674 4674 4674 4674 

Prkx 4674 / 4713 4674 4674 4674 4674 

Prpf4b 4713 4674 4674 4674 4674 

Ptk2 4674 4674 4713 4713 4713 

Ptk6 4674 4713 4713 4713 4713 

Pxk 4674 4674 4674 4674 4674 

Ret 4674 / 4713 4713 4713 4713 4713 

Ripk1 4713 4674 4674 4674 4674 

Ripk5 4674 / 4713 4674 4674 4674 4674 

Rock1 4713 4674 4674 4674 4674 

Ror1 4674 / 4713 4713 4713 4713 4713 

Ror2 4674 / 4713 4713 4713 4713 4713 

Rps6ka1 4713 4674 4674 4674 4674 

Rps6ka3 4674 4674 4674 4674 4674 

Rps6ka5 4674 / 4713 4674 4674 4674 4674 

Rps6kb2 4713 4674 4674 4674 4674 

Rps6kl1 4674 4674 4674 4674 4674 

Sbk1 4674 / 4713 4674 4674 4674 4674 

Sgk2 4713 4674 4674 4674 4674 

Sgk3 4674 4674 4674 4674 4674 

Slk 4713 4674 4674 4674 4674 

Snf1lk2 4674 4674 4674 4674 4674 

Snrk 4674 / 4713 4674 4674 4674 4674 

Src 4674 / 4713 4713 4713 4713 4713 

Srpk1 4713 4674 4674 4674 4674 

Srpk2 4713 4674 4674 4674 4674 

Stk10 4674 / 4713 4674 4674 4674 4674 

Stk16 4713 4674 4674 4674 4674 

Stk17b 4674 / 4713 4674 4674 4674 4674 

Stk23 4674 4674 4674 4674 4674 

Stk32b 4713 4674 4674 4674 4674 

Stk36 4674 / 4713 4674 4674 4674 4674 

Stk38l 4674 4674 4674 4674 4674 

Syk 4674 / 4713 4713 4713 4713 4713 

Tbk1 4674 / 4713 4674 4674 4674 4674 

Tec 4674 4713 4713 4713 4713 

Tek 4674 4713 4713 4713 4713 

Tgfbr1 4713 4674 4674 4674 4674 

Tgfbr2 4713 4674 4674 4674 4674 

Tie1 4674 4713 4713 4713 4713 

Tlk1 4674 / 4713 4674 4674 4674 4674 

Tlk2 4713 4674 4674 4674 4674 

Tnk1 4674 4713 4713 4713 4713 

Tnk2 4674 / 4713 4713 4713 4713 4713 

Tssk1 4713 4674 4674 4674 4674 
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Tssk2 4713 4674 4674 4674 4674 

Tssk6 4674 / 4713 4674 4674 4674 4674 

Ttbk2 4674 4674 4674 4674 4674 

Txk 4674 4713 4713 4713 4713 

Tyk2 4674 4713 4713 4713 4713 

Tyro3 4674 4713 4713 4713 4713 

Vrk1 4674 4674 4674 4674 4674 

Vrk2 4674 4674 4674 4674 4674 

Vrk3 4674 4674 4674 4674 4674 

Yes1 4674 4713 4713 4713 4713 

Zap70 4713 4713 4713 4713 4713 

 
Legend for Supplementary Table 3:   
 
AmiGO labels, UniProt labels, and Predicted Labels for each mouse kinase protein 
 
For the 244 mouse protein kinase used in this study, each row in the table contains the 
AmiGO annotation, UniProt annotation and predictions made by each of the three 
machine-learning classifiers tested.  These predictions are based on using a classifier built 
on 330 human proteins with protein gene ontology functional labels from AmiGO and 
verified by UniProt. Because the training data are fixed, note that the predictions will be 
the same regardless of what labels we use on the test set for evaluation purposes. 
 
The Mouse Gene ID was obtained from each of the AmiGO protein records. The AmiGO 
Label field is “4713” (Tyr) if a query in AmiGO for the GO label GO0004713 returns the 
corresponding protein for mouse proteins, “4674” (Ser/Thr) if a query in AmiGO for the 
GO label GO0004674 returns the corresponding protein for mouse proteins, or “4674 / 
4713” if a query in AmiGO for both GO labels GO0004674 and GO0004713 returns the 
corresponding protein.  The UniProt Label field is “ 4713” if a search in UniProt with the 
AmiGO Gene ID returns a mouse protein that contains a reference to the functional class 
protein-tyrosine kinase activity, ”4674” if a search in UniProt with the AmiGO Gene ID 
returns a mouse protein that contains a reference to the functional class serine/threonine 
kinase activity,  or “4674 / 4713” if a search in UniProt returns a mouse protein that 
contains a reference to the functional class serine/threonine kinase activity and protein-
tyrosine kinase activity or any evidence that would suggest dual specificity.  The 
Prediction of classifier #1 field contains the prediction of the first HDTree classifier that 
distinguishes between GO0004674 and not GO0004674 (GO0004713 and Dual).  This 
classifier was built on human proteins. The Prediction of classifier #2 field contains the 
prediction of the second HDTree classifier that distinguishes between GO0004713 and not 
GO0004713 (GO0004674 and Dual).  This classifier was built on human proteins.  The 
Prediction of classifier #3 field contains the prediction of the third classifier that 
distinguishes between GO0004674, GO0004713 and Dual. The third classifier combines 
the outputs of the first two classifiers to distinguish between GO0004674 and GO0004713 
and Dual. (See Supplementary Data for details) 
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Supplementary Table 4: 
 
 
Mouse Kinases having a Human Ortholog (See Table legend below) 

Gene ID (AmiGO) 
Jackson Lab Symbol 

(Mouse Kinome) 
Gene ID   

(Mouse Kinome) 
Human Ortholog 
(Human Kinome) 

Identity between 
orthologs 

2610018G03Rik     

Acvr1b Acvr1b ALK4 ALK4 99.31% 
Acvr2a     

Acvr2b Acvr2b ACTR2B ACTR2B 100.00% 
Acvrl1     

Adrbk1 Adrbk1 BARK1 BARK1 99.62% 

Akt1 Akt1 AKT1 AKT1 99.61% 

Alk Alk ALK ALK 98.15% 

Araf Araf ARAF ARAF 98.45% 

Atm Atm ATM ATM N/A 
Aurka     
Aurkb     

Axl Axl AXL AXL 97.40% 

Blk Blk BLK BLK 93.63% 

Bmpr1a Bmpr1a BMPR1A BMPR1A 99.65% 

Bmpr1b Bmpr1b BMPR1B BMPR1B 98.96% 

Bmpr2 Bmpr2 BMPR2 BMPR2 98.70% 

Bmx Bmx BMX BMX 94.44% 

Btk Btk BTK BTK 98.81% 
Camk1     

Camk1d E030025C11Rik CAMK1d CAMK1d 100.00% 

Camk1g Camk1g CAMK1g CAMK1g 98.43% 

Camk2a Camk2a CaMK2a CaMK2a 100.00% 

Camk2b Camk2b CaMK2b CaMK2b  100.00% 

Camk2g Camk2g CaMK2g CaMK2g 100.00% 

Camk4 Camk4 CaMK4 CaMK4 99.61% 

Camkk1 Camkk1 CAMKK1 CAMKK1 93.45% 

Ccrk 4932702G04Rik CCRK CCRK 94.04% 

Cdc2a Cdc2a CDC2 CDC2 97.18% 
Cdc2l5     

Cdk5 Cdk5 CDK5 CDK5 99.65% 

Cdk7 Cdk7 CDK7 CDK7 97.18% 

Cdk9 Cdk9 CDK9 CDK9 98.32% 

Cdkl1 Cdkl1 CDKL1 CDKL1 95.42% 

Cdkl3 Cdkl3 CDKL3 CDKL3 93.29% 
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Cdkl4 AU067824 CDKL4 CDKL4 91.87% 

Chek1 Chek1 CHK1 CHK1 96.89% 

Chek2 Chek2 CHK2 CHK2 92.13% 

Chuk Chuk IKKa IKKa 97.08% 
Cit     

Clk1 Clk CLK1 CLK1 94.32% 

Clk2 Clk2 CLK2 CLK2 98.42% 

Clk3  CLK3 CLK3 100.00% 

Clk4 Clk4 CLK4 CLK4 98.73% 
Cpne3     
Csf1r     

Csk Csk CSK CSK 99.19% 

Csnk1d Csnk1d CK1d CK1d 100.00% 

Csnk1e Csnk1e CK1e CK1e 100.00% 
Csnk1g2     

Csnk2a2 Csnk2a2 CK2a2 CK2a2 99.30% 

Dapk2 Dapk2 DAPK2 DAPK2 98.86% 

Dapk3 Dapk3 DAPK3 DAPK3 95.44% 

Dcamkl2 6330415M09Rik DCAMKL2 DCAMKL2 97.29% 

Ddr1 Ddr1 DDR1 DDR1 92.91% 

Dmpk Dm15 DMPK1 DMPK1 93.31% 

Dyrk1a Dyrk1a DYRK1A DYRK1A 99.69% 

Egfr Egfr EGFR EGFR 98.84% 
Eif2ak1     
Eif2ak3     
Eif2ak4     

Epha1 Epha1 EphA1 EphA1 93.85% 

Epha2 Epha2 EphA2 EphA2 96.12% 

Epha3 Mark3 EphA3 EphA3 100.00% 

Epha4 Epha4 EphA4 EphA4 100.00% 

Epha5 Epha5 EphA5 EphA5 98.83% 

Epha6 Epha6 EPHA6 EPHA6 98.67% 

Epha7 Epha7 EphA7 EphA7 99.61% 

Epha8 Epha8 EphA8 EphA8 93.41% 

Ephb2 Ephb2 EphB2 EphB2 100.00% 

Ephb3 Ephb3 EphB3 EphB3 99.62% 

Ephb4 Ephb4 EphB4 EphB4 99.65% 

Ephb6 Ephb6 EphB6 EphB6 93.90% 

Erbb2 Erbb2 ErbB2 ErbB2 98.45% 
Ern2     

Fgfr1 Fgfr1 FGFR1 FGFR1 100.00% 

Fgfr2 Fgfr2 FGFR2 FGFR2 99.64% 
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Fgfr3 Fgfr4 FGFR4 FGFR4 97.47% 

Fgfr4 Fgfr4 FGFR4 FGFR4 97.47% 

Fgr Fgr FGR FGR 92.00% 

Flt1 Flt1 FLT1 FLT1 91.46% 

Flt3 Flt3 FLT3 FLT3 93.11% 

Flt4 Flt4 FLT4 FLT4 91.69% 

Fyn Fyn FYN FYN 99.20% 

Gprk2l Gprk2l GPRK4 GPRK4 85.55% 

Gprk5 Gprk5 GPRK5 GPRK5 98.86% 

Gprk6 Gprk6 GPRK6 GPRK6 97.34% 
Grk1     
Gsg2     

Gsk3b Gsk3b GSK3B GSK3B 100.00% 

Hck Hck HCK HCK 94.42% 

Hipk2 Hipk2 HIPK2 HIPK2 99.39% 

Hipk3 Hipk3 HIPK3 HIPK3 97.87% 

Hunk Hunk HUNK HUNK 98.08% 

Ick Ick ICK ICK 97.15% 

Igf1r Igf1r IGF1R IGF1R 97.41% 

Ikbkb Ikbkb IKKb IKKb 96.73% 

Ikbke Ikbke IKKe IKKe 91.51% 

Ilk Taf10 ILK ILK 99.22% 

Insrr Insrr IRR IRR 93.70% 

Irak3 Irak3 IRAK3 IRAK3 83.15% 

Itk Itk ITK ITK 96.80% 

Jak1 Jak1 JAK1 JAK1 97.83% 

Jak2 Jak2 JAK2 JAK2 97.12% 

Jak3 Jak3 JAK3 JAK3 82.72% 

Kdr Kdr KDR KDR 96.33% 

Kit Kit KIT KIT 94.94% 

Ksr1 Ksr KSR1 KSR1 95.83% 

Lats1 Lats1 LATS1 LATS1 98.69% 

Lck Lck LCK LCK 97.21% 

Limk1 Limk1 LIMK1 LIMK1 97.37% 

Lrrk1 D130026O16Rik LRRK1 LRRK1 94.37% 

Ltk Ltk LTK LTK 88.89% 

Lyn Lyn LYN LYN 97.62% 

Map2k3 Map2k3 MAP2K3 MAP2K3 98.09% 

Map2k5 Map2k5 MAP2K5 MAP2K5 98.36% 
Map3k12     
Map3k14     

Map3k3 Map3k3 MAP3K3 MAP3K3 99.23% 
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Map3k4 Map3k4 MAP3K4 MAP3K4 98.07% 

Map3k7  MAP3K7 MAP3K7 96.47% 

Map3k8  MAP3K8 MAP3K8 94.70% 
Map4k1     
Map4k2     
Mapk1     
Mapk10     
Mapk11     
Mapk12     
Mapk13     
Mapk14     
Mapk3     
Mapk7     
Mapk8     
Mapk9     

Mapkapk2 Mapkapk2 MAPKAPK2 MAPKAPK2 98.47% 

Mapkapk5 Mapkapk5 MAPKAPK5 MAPKAPK5 98.59% 

Mark1 B930025N23Rik MARK1 MARK1 99.21% 

Mark2 Mark2 MARK2 MARK2 100.00% 

Mast1 Mast1 MAST1 MAST1 99.64% 

Mast2 Mtssk MAST2 MAST2 98.91% 

Mastl 2700091H24Rik MASTL MASTL 87.32% 
Matk     

Melk Melk MELK MELK 95.26% 

Mertk Mertk MER MER 93.61% 

Met Met MET MET 97.71% 
Mknk1     

Mos  MOS MOS 75.09% 

Musk Musk MUSK MUSK 97.15% 
Mylk2     
Nek11     

Nek2 Nek2 NEK2 NEK2 93.56% 

Nek4 Nek4 NEK4 NEK4 96.48% 

Nek6 Nek6 NEK6 NEK6 98.41% 

Nek7 Nek7 NEK7 NEK7 98.41% 

Nlk Nlk NLK NLK 100.00% 
Npr1     
Oxsr1     

Pak1 Pak1 PAK1 PAK1 99.60% 

Pak2 Pak2 PAK2 PAK2 99.60% 

Pak3 Pak3 PAK3 PAK3 98.81% 

Pak4 Pak4 PAK4 PAK4 98.41% 
Pak7     

Pask Pask PASK PASK 88.93% 
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Pbk Topk-pending PBK PBK 89.55% 
Pctk1     
Pctk3     

Pdgfra Pdgfra PDGFRa PDGFRa 98.32% 

Pdgfrb Pdgfrb PDGFRb PDGFRb 94.71% 
Pdpk1     
Pftk1     

Phkg1 Phkg PHKg1 PHKg1 93.31% 

Pim1 Pim1 PIM1 PIM1 95.26% 

Pim2 Pim2 PIM2 PIM2 92.16% 

Pink1 1190006F07Rik PINK1 PINK1 81.25% 
Pkmyt1     
Pkn2     

Plk1 Plk PLK1 PLK1 96.84% 

Plk2 Snk PLK2 PLK2 99.60% 

Plk4 Stk18 PLK4 PLK4 95.67% 
Pnck     
Prkaca     

Prkca Prkca PKCa PKCa 100.00% 
Prkcb1     
Prkcc     
Prkch     
Prkci     
Prkcm     
Prkcz     
Prkg2     
Prkx     
Prpf4b     
Ptk2     
Ptk6     
Pxk     

Ret Ret RET RET 95.42% 

Ripk1 Ripk1 RIPK1 RIPK1 76.58% 
Ripk5     

Rock1 Rock1 ROCK1 ROCK1 100.00% 

Ror1 Ror1 ROR1 ROR1 98.70% 

Ror2 Ror2 ROR2 ROR2 96.09% 
Rps6ka1     
Rps6ka3     
Rps6ka5     
Rps6kb2     
Rps6kl1     
Sbk1     

Sgk2 Sgk2 SGK2 SGK2 94.57% 

Sgk3 Sgk3 SGK3 SGK3 98.45% 
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Slk Stk2 SLK SLK 98.46% 
Snf1lk2     

Snrk Snrk SNRK SNRK 95.67% 

Src Src SRC SRC 99.20% 

Srpk1 Srpk1 SRPK1 SRPK1 90.59% 

Srpk2 Srpk2 SRPK2 SRPK2 93.73% 
Stk10     
Stk16     
Stk17b     
Stk23     
Stk32b     
Stk36     
Stk38l     

Syk Syk SYK SYK 99.20% 

Tbk1 Tbk1 TBK1 TBK1 97.97% 

Tec Tec TEC TEC 96.00% 

Tek Tek TIE2 TIE2 99.63% 

Tgfbr1 Tgfbr1 TGFBR1 TGFBR1 100.00% 

Tgfbr2 Tgfbr2 TGFBR2 TGFBR2 98.31% 

Tie1 Tie1 TIE1 TIE1 99.63% 

Tlk1 Tlk1 TLK1 TLK1 100.00% 

Tlk2 Tlk2 TLK2 TLK2 99.64% 

Tnk1 Tnk1 TNK1 TNK1 93.51% 
Tnk2     

Tssk1 Stk22a TSSK1 TSSK1 92.34% 

Tssk2 Stk22b TSSK2 TSSK2 94.64% 
Tssk6     

Ttbk2 B930008N24Rik TTBK2 TTBK2 98.44% 

Txk Txk TXK TXK 87.70% 

Tyk2 Tyk2 TYK2 TYK2 91.73% 

Tyro3 Tyro3 TYRO3 TYRO3 98.85% 

Vrk1 Vrk1 VRK1 VRK1 93.63% 

Vrk2 Vrk2 VRK2 VRK2 84.85% 

Vrk3 AI428238 VRK3 VRK3 81.25% 
Yes1     

Zap70 Zap70 ZAP70 ZAP70 95.60% 
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Legend for Supplementary Table 4: 
 
Mouse Kinases having a Human Ortholog  
 
All 244 mouse protein kinases used in this study were compared to the mouse proteins 
found in the Mouse Kinome.  If a match in the Kinome database [1-3] was found the 
corresponding human ortholog and its sequence identity to the mouse protein are displayed 
in the table (167 proteins in total).  If a match was not found, the row in the table is left 
blank (77 proteins in total).  To match up the AmiGO proteins with the proteins found in 
Mouse Kinome [1] we used the Mouse Gene ID obtained from the AmiGO record and the 
Jackson Lab Symbol found in the second table of the Mouse Kinome [1-3].  The Mouse 
Kinome database directly provided the Human Ortholog ID and the percent sequence 
identity between the Mouse and Human orthologs (Percent Identity between Orthologs 
field above).  We did not compute this identity directly for this study.  A brief summary of 
this table can be found in Supplementary Table 5. 
 
 

References for Supplementary Table 4: 
 

1. Caenepeel, S., Charydczak, G., Sudarsanam, S., Hunter, T. & Manning, G. 
PNAS 101, 11707-11712. (2004).  http://kinase.com/mouse/    

2. Manning, G., Whyte, D.B., Martinez, R., Hunter, T., & Sudarsanam, S.  
Science 298, 1912-1934 (2002).  http://kinase.com/human/kinome/  

3. http://kinase.com/mouse/tables/Table2.xls 
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APPENDIX G. 

 
 

Supplementary Table 5: 
 

Sequence Identity cutoff 
with Human Ortholog 

Number 
of mouse 
proteins

Percent of 167 mouse 
kinases with Human 

Ortholog Percent of all 244 mouse kinases
100% 19 11.4% 7.8% 

99% 46 27.5% 18.9% 
95% 118 70.7% 48.4% 

90% 154 92.2% 63.1% 
85% 160 95.8% 65.6% 
80% 165 98.8% 67.6% 
75% 167 100% 68.4% 

 
Legend for Supplementary Table 5:  
 
Number of Mouse kinases having a specified level of sequence identity with their 
human orthologs. (Summary statistics for Supplementary Table 4).  
 
We compared the sequence identities between each of the 244 mouse protein kinases used 
in this study with their human orthologs found in the Mouse Kinome (See Supplementary 
Table 4).  This table summarizes the number of proteins that had sequence identities 
greater than a fixed cutoff value. 
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APPENDIX H 

 
 
Supplementary Table 6:  
 
The UniProt and AmiGO annotations for the Rat kinase proteins with Mouse orthologs (See Table legend 
below) 

Mouse / Rat Gene ID 
Mouse AmiGO 

label 
Rat AmiGO label by ISS 

Annotation 
UniProt label for 

Mouse 
Acvr2a 4713 4713 4674
Acvr2b 4713 4713 4674
Acvrl1 4713 4713 4674
Adrbk1 4713 4713 4674
Akt1 4713 4713 4674
Alk 4674 4674 4713
Araf 4713 4713 4674
Aurkb 4713 4713 4674
Axl 4674 4674 4713
Blk 4674 4674 / 4713 4713
Bmpr1a 4713 4713 4674
Bmpr2 4713 4713 4674
Btk 4674 / 4713 4674 / 4713 4713
Camk1 4713 4713 4674
Camk1g 4674 4674 4674
Camk2a 4674 4674 4674
Camk2b 4674 / 4713 4674 / 4713 4674
Camk2g 4674 / 4713 4674 / 4713 4674
Camkk1 4674 / 4713 4713 4674
Ccrk 4674 / 4713 4674 / 4713 4674
Cdc2a 4713 4713 4674
Cdc2l5 4674 / 4713 4713 4674
Cdk5 4674 4674 4674
Cdk7 4674 / 4713 4713 4674 / 4713
Cdk9 4713 4713 4674 / 4713
Cdkl1 4674 / 4713 4674 / 4713 4674
Cdkl3 4674 / 4713 4674 / 4713 4674
Chek1 4713 4713 4674
Chek2 4713 4713 4674
Chuk 4713 4713 4674
Clk1 4674 / 4713 4713 4674 / 4713
Clk3 4713 4713 4674 / 4713
Clk4 4713 4713 4674 / 4713
Csf1r 4674 4674 4713
Csk 4674 4674 4713
Csnk1d 4713 4713 4674
Csnk1e 4713 4713 4674
Csnk1g2 4713 4713 4674
Csnk2a2 4674 / 4713 4713 4674
Dapk2 4713 4713 4674
Dapk3 4713 4713 4674
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-  Supplementary Table 6 continued - 

Ddr1 4674 4713 4713
Dmpk 4713 4713 4674
Dyrk1a 4713 4713 4674 / 4713
Eif2ak1 4713 4713 4674
Eif2ak3 4713 4713 4674
Eif2ak4 4674 / 4713 4674 / 4713 4674
Epha1 4674 / 4713 4674 4713
Epha2 4674 4674 4713
Epha3 4674 / 4713 4674 4713
Epha5 4674 4674 4713
Epha6 4674 4674 4713
Epha7 4674 4674 4713
Epha8 4674 4674 4713
Ephb3 4674 / 4713 4674 4713
Ephb6 4674 4674 4713
Erbb2 4674 / 4713 4674 4713
Ern2 4713 4713 4674
Fgfr1 4674 / 4713 4674 4713
Fgfr2 4674 4674 4713
Fgfr4 4674 4674 4713
Fgr 4674 4674 4713
Flt1 4674 4674 4713
Flt3 4674 4674 4713
Flt4 4674 4674 4713
Fyn 4713 4713 4713
Gprk2l 4674 / 4713 4713 4674
Gprk5 4674 / 4713 4674 / 4713 4674
Gprk6 4713 4713 4674
Grk1 4713 4713 4674
Hck 4674 4674 4713
Hipk2 4674 4674 4674
Hipk3 4713 4713 4674
Ick 4674 4674 4674
Igf1r 4674 4674 4713
Ikbkb 4713 4713 4674
Ikbke 4674 / 4713 4713 4674
Ilk 4674 4674 4674
Irak3 4674 / 4713 4674 / 4713 4674
Itk 4674 4674 / 4713 4713
Jak1 4713 4713 4713
Jak2 4674 / 4713 4674 / 4713 4713
Jak3 4713 4713 4713
Kit 4674 / 4713 4674 4713
Ksr1 4713 4713 4674 / 4713
Lck 4674 4674 4713
Limk1 4713 4713 4674
Lyn 4713 4713 4713
Map2k3 4713 4713 4674
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Map2k5 4713 4713 4674
Map3k12 4713 4713 4674
Map3k14 4713 4713 4674
Map3k3 4713 4713 4674
Map3k4 4713 4713 4674
Map3k7 4713 4713 4674
Map3k8 4713 4713 4674
Map4k1 4674 / 4713 BOTH 4674
Map4k2 4713 4713 4674
Mapk1 4674 / 4713 BOTH 4674
Mapk10 4713 4713 4674
Mapk11 4713 4713 4674
Mapk12 4713 4713 4674
Mapk13 4713 4713 4674
Mapk14 4713 4713 4674
Mapk3 4713 4713 4674
Mapk7 4713 4713 4674
Mapk8 4713 4713 4674
Mark1 4674 / 4713 4674 / 4713 4674
Mast2 4674 / 4713 4674 / 4713 4674
Mastl 4674 4674 4674
Matk 4674 4674 4713
Melk 4674 / 4713 4674 / 4713 4674
Met 4674 / 4713 4674 4713
Mylk2 4674 4674 4674
Nek11 4674 / 4713 4674 / 4713 4674
Nek6 4674 / 4713 4674 / 4713 4674
Nek7 4674 4674 4674
Npr1 4674 / 4713 4674 4674
Oxsr1 4674 / 4713 4674 / 4713 4674
Pak1 4674 / 4713 4674 / 4713 4674
Pak2 4674 4674 4674
Pak4 4674 / 4713 4674 / 4713 4674
Pak7 4674 / 4713 4713 4674
Pask 4674 / 4713 4674 / 4713 4674
Pbk 4674 / 4713 4674 / 4713 4674
Pdgfra 4674 4674 4713
Pdgfrb 4674 4674 4713
Pftk1 4674 / 4713 4674 / 4713 4674
Pkn2 4674 / 4713 4674 / 4713 4674
Prkca 4674 / 4713 4674 / 4713 4674
Prkcb1 4674 / 4713 4674 / 4713 4674
Prkcc 4674 / 4713 4674 / 4713 4674
Ptk2 4674 4674 / 4713 4674
Ptk6 4674 4674 4713
Pxk 4674 4674 4674
Rock1 4713 4713 4674
Ror2 4674 / 4713 4674 4713
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Rps6ka1 4713 4713 4674
Rps6ka5 4674 / 4713 4674 / 4713 4674
Rps6kb2 4713 4713 4674
Sgk2 4713 4713 4674
Snrk 4674 / 4713 4713 4674
Src 4674 / 4713 4713 4713
Srpk1 4713 4713 4674
Srpk2 4713 4713 4674
Stk10 4674 / 4713 4674 / 4713 4674
Stk16 4713 4713 4674
Stk17b 4674 / 4713 4713 4674
Syk 4674 / 4713 4674 / 4713 4713
Tbk1 4674 / 4713 4674 / 4713 4674
Tec 4674 4674 4713
Tek 4674 4674 4713
Tgfbr1 4713 4713 4674
Tgfbr2 4713 4713 4674
Tie1 4674 4674 4713
Tlk1 4674 / 4713 4713 4674
Tlk2 4713 4713 4674
Tnk1 4674 4674 4713
Tnk2 4674 / 4713 4674 / 4713 4713
Tssk1 4713 4713 4674
Tssk2 4713 4713 4674
Yes1 4674 4713 4713
Zap70 4713 4713 4713

 
 
Legend for Supplementary Table 6: 
 
The UniProt and AmiGO annotations for the Rat kinase proteins with Mouse 
orthologs 
 
In this study 136 rat proteins had a mouse ortholog with a “potentially incorrect” AmiGO 
annotation.  This table displays the Gene ID for the mouse and rat (they are the same 
because they are orthologs), the mouse GO label provided by AmiGO, the rat GO label by 
ISS (inferred from sequence similarity) with the mouse protein, and the corresponding 
UniProt annotation.   
 
The Mouse/Rat Gene ID was obtained from each of the AmiGO protein records. The 
Mouse AmiGO Label field is “4713” (Tyr) if a query in AmiGO for the GO label 
GO0004713 returns the corresponding protein for mouse proteins, “4674” (Ser/Thr) if a 
query in AmiGO for the GO label GO0004674 returns the corresponding protein for mouse 
proteins, or “4674 / 4713” if a query in AmiGO for both GO labels GO0004674 and 
GO0004713 returns the corresponding protein.  The Rat GO label by ISS Annotation field 
is “4713” if a query in AmiGO for the GO label GO0004713 returns the corresponding 
protein for rat proteins with an evidence code of ISS by association, “4674” if a query in 
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AmiGO for the GO label GO0004674 returns the corresponding protein for rat proteins 
with an evidence code of ISS by association with a mouse protein or “4674 / 4713” if a 
query in AmiGO for the GO label GO0004674 and GO0004713 returns the corresponding 
protein for rat proteins with an evidence code of ISS by association with a mouse protein.  
The UniProt Label for Mouse  field is “ 4713” if a search in UniProt with the AmiGO 
Gene ID returns a mouse protein that contains a reference to the functional class “protein-
tyrosine kinase activity”, ”4674” if a search in UniProt with the AmiGO Gene ID returns a 
mouse protein that contains a reference to the functional class “serine/threonine kinase 
activity”,  or “4674 / 4713” if a search in UniProt returns a mouse protein that contains a 
reference to the functional class “serine/threonine kinase activity” and “protein-tyrosine 
kinase activity” or any evidence that would suggest dual specificity.   
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APPENDIX I 
 

Supplementary Table 7:   

 

 
 
Legend for Supplementary Table 7:   
 
Distribution of protein classes for Human and Mouse proteins annotated by AmiGO, 
UniProt, and HDTree. 
 
The table shows the distributions of each class of kinases (GO0004674, GO0004713, and 
Dual Specificity) for proteins retrieved from AmiGO, verified by UniProt, and predicted 
by the HDTree method.  Each entry contains the number of proteins that belongs to the 
given class and its percentage compared to all the kinases for the given source.  The 
Human dataset contains 330 proteins and the Mouse dataset contains 244 proteins.  A pie 
chart of these distributions is shown in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Species (Data Source) 
0004674 

Ser/Thr Kinase 
0004713 

Tyr Kinase 
0004674 and 0004713 

Dual Specific 

Human (AmiGO) 233 (70.6%) 90 (27.3%) 7 (2.1%) 

Human (UniProt) 233 (70.6%) 90 (27.3%) 7 (2.1%) 

Human (HDTree) 230 (69.7%) 67 (20.3%) 33 (10.0%) 

    

Mouse (AmiGO) 71 (29.1%) 106 (43.4%) 67 (27.5%) 

Mouse  (UniProt) 168 (68.9%) 65 (26.6%) 11 (4.5%) 

Mouse  (HDTree) 174 (71.3%) 66 (27.0%) 4 (1.6%) 
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APPENDIX J 
 

Figure S1. The accuracy curve of predicting singlish-interface and multiple-interface 
hub proteins as a function of the number of interaction sites.  The curve shows the 
prediction accuracy for proteins with number of interactions sites less than the given 
maximum threshold.  For example, the value of 5 on the x-axis refers to all hub proteins 
with 5 or fewer interfaces and the value on the curve (83%) at x=5, represents the accuracy 
of this set. 
 

 
The accuracy curve of predicting singlish-interface and multiple-interface hub proteins as 
a function of the number of interaction sites.  The curve shows the prediction accuracy for 
proteins with number of interactions sites less than the given maximum threshold.  For 
example, the value of 5 on the x-axis refers to all hub proteins with 5 or fewer interfaces 
and the value on the curve (83%) at x=5, represents the accuracy of this set. 
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APPENDIX K 
 
 
Figure S2. The sensitivity curve of predicting singlish-interface and multiple-interface 
hub proteins as a function of the number of interaction sites.  The curve shows the 
prediction accuracy for proteins with number of interactions sites more than the given 
minimum threshold.  For example, the value of 5 on the x-axis refers to all hub proteins 
with 5 or more interfaces and the value on the curve (97%) at x=5, represents the 
sensitivity of this set. 
 

 
 
The sensitivity curve of predicting singlish-interface and multiple-interface hub proteins as 
a function of the number of interaction sites.  The curve shows the prediction accuracy for 
proteins with number of interactions sites more than the given minimum threshold.  For 
example, the value of 5 on the x-axis refers to all hub proteins with 5 or more interfaces 
and the value on the curve (97%) at x=5, represents the sensitivity of this set. 
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APPENDIX L 

Table S1.  Dataset 1 results on our internal machine-learning methods 

Approach k Accuracy Precision Recall C.C 
NB k-gram 1 81.4 .78 .68 .59 
 2 82.5 .80 .69 .61 
 3 84.5 .81 .72 .65 
 4 88.2 .75 .86 .72 
NB(k) 2 83.9 .80 .72 .64 
 3 86.4 .79 .78 .69 
 4 85.8 .59 .93 .66 
Domain-based N/A 68.2 .00 .00 .00 
Homology-based N/A 52.7 .37 .73 .15 
HybSVM N/A 94.2 .92 .89 .87 
 
 

Accuracy, precision, recall, and correlation coefficient (CC) of classification for the 
protein-binding versus non-protein-binding dataset are presented for internal machine-
learning methods.  For each machine-learning approach, values of k ranged from 1 to 4.  
The performance of the results were estimated using cross-validation.  The highest 
performing value(s) for each performance measure is highlighted in bold. 
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APPENDIX M 

Table S2.  Dataset 1 results on standard machine-learning methods 

Approach k Accuracy Precision Recall C.C 
Decision Tree 1 81.6 .72 .68 .57 
 2 74.4 .60 .60 .41 
SVM 1 85.2 .83 .67 .64 
 2 87.2 .82 .76 .70 
ANN 1 85.4 .81 .70 .65 
 2 86.9 .83 .73 .71 
Naive Bayes 1 81.8 .72 .70 .58 
 2 82.1 .70 .76 .60 
HybSVM N/A 94.2 .92 .89 .87 
 

Accuracy, precision, recall, and correlation coefficient (CC) of classification for the 
protein-binding versus non-protein-binding dataset are presented for standard machine-
learning methods.  For each machine-learning approach, values of k ranged from 1 to 2.  
The performances of the results were estimated using cross-validation.  The highest 
performing value(s) for each performance measure is highlighted in bold. 
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Table S3.  Dataset 3 results on our internal machine-learning methods 

Approach k Accuracy Precision Recall C.C 
NB k-gram 1 72.9 .37 .39 .20 
 2 78.7 .48 .53 .36 
 3 82.5 .25 .90 .42 
 4 83.8 .42 .75 .47 
NB(k) 2 81.9 .51 .62 .44 
 3 83.2 .31 .84 .44 
 4 69.6 .74 .40 .35 
Domain-based N/A 76.4 .00 .00 -.01 
Homology-based N/A 66.4 .74 .34 .32 
HybSVM N/A 89.0 .75 .77 .69 
 
Accuracy, precision, recall, and correlation coefficient (CC) of classification for the multi-
interface versus singlish-interface dataset are presented for internal machine-learning 
methods.  For each machine-learning approach, values of k ranged from 1 to 4.  The 
performances of the results were estimated using cross-validation.  The highest performing 
value(s) for each performance measure is highlighted in bold. 
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Table S4.  Dataset 3 results on standard machine-learning methods 

Approach k Accuracy Precision Recall C.C 
Decision Tree 1 71.6 .30 .24 .07 
 2 67.7 .32 .37 .13 
 3 71.0 .38 .43 .21 
SVM 1 77.4 .00 .00 .00 
 2 76.1 .46 .37 .27 
 3 80.6 .86 .17 .23 
ANN 1 76.7 .00 .00 .00 
 2 78.0 .56 .09 .08 
 3 76.7 .38 .05 .03 
Naive Bayes 1 70.3 .40 .63 .29 
 2 73.5 .43 .49 .28 
 3 81.2 .62 .46 .41 
HybSVM N/A 89.0 .75 .77 .69 
 
Accuracy, precision, recall, and correlation coefficient (CC) of classification for the multi-
interface versus singlish-interface dataset are presented for standard machine-learning 
methods.  For each machine-learning approach, values of k ranged from 1 to 3.  The 
performances of the results were estimated using cross-validation.  The highest performing 
value(s) for each performance measure is highlighted in bold. 
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APPENDIX P 

 
Table S5.  Dataset 4 results on our internal machine-learning methods 
 
Approach k Accuracy Precision Recall C.C 
NB k-gram 1 64.1 .48 .64 .27 
 2 66.1 .49 .68 .31 
 3 67.1 .54 .67 .33 
 4 60.6 .53 .57 .20 
NB(k) 2 64.6 .45 .67 .28 
 3 65.1 .53 .64 .29 
 4 57.5 .58 .53 .15 
Domain-based N/A 59.1 .62 .30 .14 
Homology-based N/A 29.8 .22 .22 -.43 
HybSVM N/A 69.2 .71 .56 .37 
 
Accuracy, precision, recall, and correlation coefficient (CC) of classification for the date 
versus party dataset are presented for internal machine-learning methods.  For each 
machine-learning approach, values of k ranged from 1 to 4.  The performances of the 
results were estimated using cross-validation. The highest performing value(s) for each 
performance measure is highlighted in bold. 
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APPENDIX Q 

 
Table S6.  Dataset 4 results on standard machine-learning methods 
 
Approach k Accuracy Precision Recall C.C 
Decision Tree 1 53.5 .50 .62 .08 
 2 51.0 .46 .43 .01 
 3 52.0 .48 .48 .03 
SVM 1 62.1 .61 .50 .23 
 2 58.1 .55 .52 .15 
 3 62.1 .59 .59 .24 
ANN 1 64.6 .69 .42 .27 
 2 66.2 .70 .46 .30 
 3 65.2 .67 .47 .28 
Naive Bayes 1 65.2 .66 .51 .29 
 2 64.1 .65 .48 .26 
 3 62.6 .61 .52 .24 
HybSVM N/A 69.2 .71 .56 .37 

 
Accuracy, precision, recall, and correlation coefficient (CC) of classification for the date 
versus party dataset are presented for standard machine-learning methods.  For each 
machine-learning approach, values of k ranged from 1 to 3.  The performances of the 
results were estimated using cross-validation. The highest performing value(s) for each 
performance measure is highlighted in bold. 
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APPENDIX R 
 
Table  S7. Performance measures. 
 

Performance Measure Formula for Binary Classification 

Accuracy FNTNFPTP

TNTP


  

Precision FPTP

TP


 

Recall FNTP

TP


 

Correlation Coefficient 

TPTN   FPFN 
(TPFN )(TPFP)(TN FP)(TN FN )

 

 
F-measure 

 
2

precision recall

precision recall









 

 
The formula for binary classification for each of our five performance measures is 
provided. TP, TN, FP, FN are the true positives, true negatives, false positives, and false 
negative predictions.  
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APPENDIX S 
 

Supplementary Figure 1: CD spectra for maize G4Q oligonucleotides in vitro. 
CD spectra of the same oligonucleotide samples as in shown in Figure 6F.  Here, the 
diagnostic G-quadruplex spectra are shown using CD.  Oligonucleotides were annealed in 
either 10mM TBA-phosphate buffer (gray) or in 10mM TBA-phosphate buffer 
supplemented with 100mM KCl (black). G4Q-specific spectra were obtained for every 
oligonucleotide tested only in presence of potassium. (A) Human telomere repeat. 
Negative peak around 240 and two positive peaks at 265 and 287 are characteristic for 
human telomere repeat and suggest a formation of mixed type parallel/antiparallel 
quadruplex (B) Maize telomere repeat. Strong positive peak at 287 taken together with the 
absence of negative peak at 260 and presence of a valley between 235 and 245 also 
suggests mixed parallel/anitparallel quadruplex. (C,D,E,F) Oligonucleotides with genomic 
sequences showing characteristic CD-signatures of parallel quadruplex structures with 
negative peak at 240 and strong positive peak at 260 nm. 
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APPENDIX T 
 
 

Supplemental Table 1.  List of all maize G4Q elements. 
 
Supplemental Table 1 is is too large to be included.  It is avaiable by request from the 
author or will be avaialable at the journal website. 
 
 

APPENDIX U 
 
 

Supplemental Table 2.  Lists of gene-associated maize G4Q elements. 
 
Supplemental Table 2 is too large to be included.  It is avaiable by request from the author 
or will be avaialable at the journal website. 
 
 

APPENDIX V 
 

Supplemental Table 3.  MaizeCyc Links.  Links to HTML files of MaizeCyc omics 
viewer output for G4Q genes from the A5U, A5I1, and AUG gene lists. 
 

Link to html file displaying MaizeCyc Hits, 
September, 2013.  Quadruplex Type 

List from 
Figure 2 

Distance 
range 

# 
Genes  Color 

http://ftp.maizegdb.org/g4/pathways/ZmG
4Qs_A5U_List1_List2_MaizeCYC/ 

Antisense 5' UTR 
(A5U)  List 1  (39 to 62)  745  Red 

      List 2  (‐81 to 273)  3769  Orange 

http://ftp.maizegdb.org/g4/pathways/ZmG
4Qs_A5I1_List3_MaizeCYC/ 

Antisense 5' end of 
Intron 1 (A5I1)  List 3  (9 to 43)  596  Red 

http://ftp.maizegdb.org/g4/pathways/ZmG
4Qs_AUG_List4_List5_MaizeCYC/ 

AUG translational 
start (AUG)  List 4  (‐20 to 20)  222  Red 

      List 5  (20 to 80)  259  Orange 
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of proteins for prediction of novel proteins.  These prediction problems include function, 
structure, subcellular localization, and protein-protein interactions. 
Role: Graduate Stipend (2004 – 2006) 
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Pioneer Hi-Bred Research and Training Grant 
The goal of my project was to rewrite the Protein Family Database (PFam) by rebuilding 
the hidden Markov models using alternative representations of the protein sequences.  This 
work, in terms of the database’s predictability of previously unknown proteins, was able to 
increase selectivity without sacrificing sensitivity.   
Role: Graduate Stipend (2002 – 2004) 
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