
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2013

Bringing ultra-large-scale software repository
mining to the masses with Boa
Robert Dyer
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Dyer, Robert, "Bringing ultra-large-scale software repository mining to the masses with Boa" (2013). Graduate Theses and Dissertations.
13553.
https://lib.dr.iastate.edu/etd/13553

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13553&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13553&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13553&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13553&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13553&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13553&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F13553&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/13553?utm_source=lib.dr.iastate.edu%2Fetd%2F13553&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Bringing ultra-large-scale software repository mining to the masses with Boa

by

Robert Dyer

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:

Hridesh Rajan, Major Professor

Samik Basu

Vasant Honovar

Robyn Lutz

Tien N. Nguyen

Iowa State University

Ames, Iowa

2013

Copyright c© Robert Dyer, 2013. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . viii

ACKNOWLEDGEMENTS . xi

ABSTRACT . xiii

CHAPTER 1. INTRODUCTION . 1

1.1 Boa: Enabling Data Intensive Open-source Research 2

CHAPTER 2. THE BOA LANGUAGE . 7

2.1 Domain-specific Types in Boa . 7

2.2 MapReduce Support in Boa . 9

2.3 Quantifiers in Boa . 9

2.4 User-Defined Functions in Boa . 10

2.5 Supporting Source Code Analysis with Visitors in Boa 10

2.5.1 Supporting Custom Traversals . 11

2.5.2 Mining Snapshots in Time . 13

2.5.3 Mining Revision Pairs . 14

2.5.4 Bringing It All Together: Motivating Example 15

CHAPTER 3. THE BOA INFRASTRUCTURE . 17

3.1 Compiler and Runtime . 17

3.1.1 Protocol Buffers . 18

3.1.2 Quantifiers . 19

3.1.3 User-Defined Functions . 20

iii

3.1.4 Visitors . 20

3.2 Data Infrastructure . 23

3.2.1 Storage Strategy . 23

3.3 Web-Based Interface . 25

3.4 Query Output Format . 26

CHAPTER 4. OPTIMIZATIONS . 29

4.1 Optimizing Visitor Traversals . 29

4.2 Task-level Combiners . 30

4.3 Task Fusion . 33

4.4 Visitor Fusion . 36

4.5 Limitations . 39

CHAPTER 5. EVALUATION . 42

5.1 Setup . 42

5.2 Applicability . 43

5.2.1 Detailed Examples . 46

5.2.2 Results Analysis . 47

5.3 Scalability . 50

5.4 Storage Strategy . 52

5.4.1 Evaluation . 52

5.5 Task-level Combiners Performance . 55

5.6 Task and Visitor Fusion Performance . 56

5.6.1 Performance Study I: Boa Examples . 57

5.6.2 Performance Study II: Java Feature Use . 58

5.6.3 Performance Study III: Treasure Study . 60

5.6.4 Performance Study IV: Mixed Workloads . 61

5.6.5 Summary . 62

5.7 Reproducibility . 62

5.8 Language Comprehension . 63

iv

5.8.1 Threats to Validity . 66

CHAPTER 6. CASE STUDIES . 67

6.1 Java Feature Usage . 67

6.1.1 Background: Java Language Specifications (JLS) 69

6.1.2 Questions Regarding Language Feature Use 71

6.1.3 Approach: Dataset . 72

6.1.4 Study: Analyzing Java Language Feature Adoption 74

6.1.5 Threats to Validity . 87

6.2 Treasure Study Reproduction . 87

6.2.1 Threats to Validity . 90

CHAPTER 7. RELATED WORK . 91

7.1 Mining Software Repository Frameworks . 91

7.2 Data-Parallel Frameworks . 92

7.3 Data-Parallel Languages . 93

7.4 MapReduce Optimizations . 95

7.5 Analyzing Source Code . 96

7.6 Language Feature Studies . 98

CHAPTER 8. FUTURE WORK . 100

8.1 Data Description, Transformation, and Storage . 100

8.2 Domain-specific Query Languages . 101

8.3 Future Work on Boa . 101

8.3.1 Language Extensions . 102

8.3.2 Infrastructure Extensions . 102

8.3.3 Improving Adoption and Usability of Boa . 103

CHAPTER 9. CONCLUSION . 105

APPENDIX A. GRAMMAR OF THE BOA LANGUAGE 106

APPENDIX B. DOMAIN-SPECIFIC TYPES IN BOA . 115

v

APPENDIX C. DOMAIN-SPECIFIC FUNCTIONS IN BOA 129

APPENDIX D. ADDITIONAL EXAMPLE BOA PROGRAMS 131

BIBLIOGRAPHY . 142

vi

LIST OF TABLES

2.1 Some of the domain-specific types provided in Boa. 7

5.1 Metrics for the SourceForge-based dataset in Boa. 42

5.2 Several example mining tasks, with lines of code and execution times (in sec-

onds) for both Java and Boa programs solving the tasks. 44

5.3 Time (in seconds) if Java tasks do not cache SVN repositories first. 45

5.4 Size of the dataset used for evaluation. 52

5.5 Time to execute task without combiners, with combiners, and with task-level

combiners. 55

5.6 Number of map outputs, number of local filesystem bytes read/written without

combiners, and number of inputs/outputs to the combiner, with combiners, and

with task-level combiners. 56

5.7 Execution times (in seconds) for example Boa tasks 57

5.8 Execution times (in seconds) for example Boa tasks [31] 58

5.9 Execution times (in seconds) for Java feature study tasks 59

5.10 Execution times (in seconds) for the Java feature use study [32] 59

5.11 Execution times (in seconds) for Treasure study tasks 60

5.12 Execution times (in seconds) for the Treasure study [44] reproduction [33] . . 61

5.13 Execution times (in seconds) for mixed workloads 62

5.14 Study results. All times given in minutes. 63

5.15 Controlled experiment on comprehensibility of source code mining tasks in Boa. 65

5.16 Controlled experiment on comprehensibility of source code mining tasks in

Java+Hadoop. 66

vii

6.1 Metrics for the SourceForge-based dataset in Boa. 73

6.2 Language features are used before their release. (Note: cutoff times were

midnight UTC on release date) . 74

6.3 Java language feature usage by total number of uses, by percent of all files,

and by percent of all projects. 76

6.4 Annotation uses. Percents are out of all annotation uses. 79

6.5 Variables declared with generic types. 79

6.6 Potential language feature uses, in old files (before feature release) and new

files (after feature release). 85

6.7 Detected refactorings to use new features. 86

6.8 Reproducing a portion of the Treasure study [44], at a much larger scale. . . . 88

viii

LIST OF FIGURES

1.1 Programs for answering “What are the churn rates for all Java projects that use

SVN?” in Java and in Boa. 3

1.2 Performance results for Java and Boa programs 5

1.3 An Overview of Boa’s Infrastructure. New components are marked with green

boxes and bold text. 6

2.1 Proposed syntax for easing source code mining. 11

2.2 Using a custom traversal strategy to find uses of generics in field declarations. 13

2.3 Finding in Boa fixing revisions that add null checks. 15

3.1 Example program to compute top-5 used programming languages. 17

3.2 Generated Hadoop program for example program in Figure 3.1. 18

3.3 Outline of the abstract default visitor. 20

3.4 Splitting an object tree into a forest. 24

3.5 Submitting a query via the web interface. 26

3.6 Job created after submitting a query. 26

3.7 Viewing output online (first 64k only). Users can also download the output as

a text file. 27

4.1 Overview of task fusion. Dashed boxes represent a single MapReduce job.

Solid boxes are individual mapper/reducer tasks. 34

4.2 Code generated when fusing tasks . 34

4.3 A custom partitioner for fused tasks . 36

5.1 Task A.3: Querying years when Java files were first added the most. 46

ix

5.2 Task B.6: Querying number of bug-fixing revisions in Java projects using SVN. 46

5.3 Task C.1: Querying the five most used licenses. 47

5.4 Task D.5: Querying pairs of how often each database is used in each program-

ming language. 47

5.5 Task A.1: Popularity of programming languages on SourceForge. 48

5.6 Task B.7: number of committers in each Java project using SVN. NOTE: y-

axis is in logarithmic scale. 48

5.7 Task B.8: number of Java projects each SVN committer works on. NOTE:

y-axis is in logarithmic scale. 49

5.8 Task B.11: number of words in SVN commit logs for Java projects. 49

5.9 Scalability of sample programs. Y-axis is total time taken. X-axis is the num-

ber of available map slots in the cluster. 50

5.10 Scalability of input. Y-axis is total time taken. X-axis is the size of the input

in number of projects. NOTE: y-axis is in logarithmic scale. 51

5.11 Performance comparison of MapFile and HBase stores. Results normalized to

Seq+MapFile. Smaller is better. 53

5.12 Network utilization. Note the minimal use by the MapFile store (left) com-

pared to the HBase store (right). 54

5.13 CPU usage across cluster. Left-most group used the MapFile store. Right-

most group used the HBase store. 55

6.1 Studied Java language features, with examples. 70

6.2 Use of the Annotation Use language feature. 77

6.3 Use of the Diamond language feature. 77

6.4 Number of committers per-project and per-file in SourceForge. 80

6.5 Committers use of Annotations over time. 81

6.6 Committers use of Diamond over time. 81

6.7 Use of language features by committers. 82

6.8 Proportion of feature uses in projects. 82

x

6.9 Tracking features used by committers. 84

D.1 A1. What are the ten most used programming languages? 131

D.2 A2. How many projects use more than one programming language? 131

D.3 How many projects use the Scheme programming language? 131

D.4 B1. How many projects are created each year? 132

D.5 B2. How many projects self-classify into each topic provided by SourceForge? 132

D.6 B3. How many Java projects using SVN were active in 2011? 132

D.7 B4. In which year was SVN added to Java projects the most? 133

D.8 B5. How many revisions are there in all Java projects using SVN? 133

D.9 B7. How many committers are there for each project? 133

D.10 B9. What are the churn rates for all projects? 133

D.11 B10. How did the number of commits for Java projects using SVN change

over years? . 133

D.12 C2. How many projects use more than one license? 134

D.13 D1. What are the five most supported operating systems? 135

D.14 D2. Which projects support multiple operating systems? 135

D.15 D3. What are the five most popular databases? 135

D.16 D4. What are the projects that support multiple databases? 136

D.17 E1. What are the five largest projects, in terms of AST nodes? 137

D.18 E2. How many valid Java files in latest snapshot? 137

D.19 E3. How many fixing revisions added null checks? 138

D.20 E4. How many generic fields are declared in each project? 139

D.21 E5. How is varargs used over time? . 139

D.22 E6. How is transient keyword used in Java? 140

D.23 F1. What are the number of attributes (NOA), per-project and per-type? . . . 141

D.24 F2. What are the number of public methods (NPM), per-project and per-type? 141

xi

ACKNOWLEDGEMENTS

Throughout my entire research career Hridesh Rajan was there supporting me, encouraging me, and

guiding me along the right path. When he gave advice, I listened closely. He knew exactly what I was

capable of and never accepted anything less than my best. He has shown incredible patience over these

many years and always made himself available to me. I aspire to one day be as excellent a mentor as

him.

I may have only met Tien Nguyen one and a half years ago, but in that short time he has become

like a second advisor. His enthusiasm for research is unparalleled and a constant inspiration for me. He

has also co-authored all of the work this dissertation builds on. His insights and suggestions directly

impacted the success of this project and I am truly grateful for the opportunity to work with him.

This dissertation would not have been possible without the hard work and dedication of my col-

league Hoan Nguyen. Hoan is one of the hardest working people I know. I could bounce an idea off

him in a meeting on a Wednesday, and have empirically validated results to look at by Friday - truly

impressive. His attention to detail and insights into this work are one of the key reasons it was so suc-

cessful. With his help building the infrastructure, we went from problem formation to paper submission

in only a single summer!

As an undergradate, I took several programming language courses from Gary Leavens (who is now

at UCF). His courses showed me just how little I actually knew about programming language theory

and inspired me to continue my education. Whether he realizes it or not, he was directly responsible for

me applying to grad school.

I’d also like to thank my colleagues in the Laboratory for Software design: Mehdi Bagherzadeh,

Youssef Hanna, Yuheng Long, Sean Mooney, Harish Narayanappa, Rakesh Setty, and Tyler Sondag.

Many have co-authored papers with me, but all have provided wonderful feedback and discussion on

my ideas over the years as well as a tremendous amount of moral support and comradery.

My family has been extremely supportive over these many years. I could never have made it this

xii

far without the love and support of my parents Bill and Lois. Words can’t begin to express my level of

gratitude.

My research over the past few years and specifically the research described in this dissertation was

supported in part by grants from the US National Science Foundation (NSF) under grants CCF-13-

49153, CCF-10-17334, and CNS-07-09217. These grants have ensured I have a warm home and plenty

of food for the past few years.

I am sure there are numerous other people and organizations who have helped me over the years,

and while your names may not be on this list I still extend my most heartfelt gratitude to you as well.

The majority of content of this dissertation can be found in prior publications. Chapters 1–3 and

Sections 5.2–5.3, 5.7, and 7.1–7.3 are based on our ICSE publication introducing Boa [31]. Sections 2.5,

3.1.4, 5.8, 6.2, and 7.5 are based on our GPCE publication describing the visitor syntax [33]. Sections

4.3 and 5.6 are vastly extended versions of my student research work on Task Fusion [30]. Sections 6.1

and 7.6 are based on our technical report of our Java feature study [32], which is also currently under

submission.

xiii

ABSTRACT

Mining software repositories provides developers and researchers a chance to learn from previous

development activities and apply that knowledge to the future. Ultra-large-scale open source repos-

itories (e.g., SourceForge with 350,000+ projects, GitHub with 250,000+ projects, and Google Code

with 250,000+ projects) provide an extremely large corpus to perform such mining tasks on. This large

corpus allows researchers the opportunity to test new mining techniques and empirically validate new

approaches on real-world data. However, the barrier to entry is often extremely high. Researchers inter-

ested in mining must know a large number of techniques, languages, tools, etc, each of which is often

complex. Additionally, performing mining at the scale proposed above adds additional complexity and

often is difficult to achieve.

The Boa language and infrastructure was developed to solve these problems. We provide users a

domain-specific language tailored for software repository mining and allow them to submit queries via

our web-based interface. These queries are then automatically parallelized and executed on a cluster,

analyzing a dataset containing almost 700,000 projects, history information from millions of revisions,

millions of Java source files, and billions of AST nodes. The language also provides an easy to compre-

hend visitor syntax to ease writing source code mining queries. The underlying infrastructure contains

several optimizations, including query optimizations to make single queries faster as well as a fusion

optimization to group queries from multiple users into a single query. The latter optimization is im-

portant as Boa is intended to be a shared, community resource. Finally, we show the potential benefit

of Boa to the community by reproducing a previously published case study and performing a new case

study on the adoption of Java language features.

1

CHAPTER 1. INTRODUCTION

Ultra-large-scale software repositories, e.g. SourceForge (350,000+ projects), GitHub (250,000+

projects), and Google Code (250,000+ projects) contain an enormous collection of software and in-

formation about software. Assuming only a meagre 1K lines of code (LOC) per project, these big-3

repositories amount to at least 8.61 billion LOC alone. Scientists and engineers alike are interested in

analyzing this wealth of information both for curiosity as well as for testing such important hypotheses

as: “how people perceive and consider the potential impacts of their own and others’ edits as they write

together? [29]”; “what is the most widely used open source license? [56]”; “how many projects continue

to use DES (considered insecure) encryption standards? [54]”; “how many open source projects have a

restricted export control policy? [38]”; “how many projects on average start with an existing code base

from another project instead of from scratch? [77]”; “how often do practitioners use dynamic features

of Javascript, e.g. eval? [78]; or “what is the average time to resolve a bug reported as critical? [92]”.

However, the current barrier to entry could be prohibitive. For example, to answer the questions

above, a research team would need to (a) develop expertise in programmatically accessing version con-

trol systems, (b) establish an infrastructure for downloading and storing the data from software repos-

itories since running experiments by directly accessing this data is often time prohibitive, (c) program

an infrastructure in a full-fledged programming language like C++, Java, C#, or Python to access this

local data and answer the hypothesis, and (d) improve the scalability of the analysis infrastructure to be

able to process ultra-large-scale data in a reasonable time.

These four requirements substantially increase the cost of scientific research. There are four ad-

ditional problems. First, experiments are often unreproducible because replicating an experimental

setup requires a mammoth effort. Second, reusability of experimental infrastructure is typically low

because analysis infrastructure is not designed in a reusable manner. After all, the focus of the original

researcher is on the result of the analysis and not on reusability of the analysis infrastructure. Thus,

2

researchers commonly have to replicate each other’s efforts. Third, data associated and produced by

such experiments is often lost and becomes inaccessible and obsolete, because there is no systematic

curation. Last but not least, building analysis infrastructure to process ultra-large-scale data efficiently

can be very hard [25, 28, 75].

To solve these problems, we designed a domain-specific programming language for analyzing ultra-

large-scale software repositories, which we call Boa. In a nutshell, Boa aims to be for open source-

related research what Mathematica is to numerical computing, R is for statistical computing, and Ver-

ilog/VHDL is for hardware description. We implemented Boa and provide a web-based interface to

Boa’s infrastructure [5].

To evaluate Boa’s design and effectiveness of its infrastructure we wrote programs to answer 21

different research questions in four different categories: questions related to the use of programming

languages, project management, legal, and those that relate to platform/environment. We also imple-

mented several case studies on the Java language, including a reproduction of a prior study [44], which

in total contain over 40 additional programs.

Our results show that Boa substantially decreases the efforts of scientists and engineers analyzing

human and technical aspects of open source software development allowing them to focus on their

essential tasks. We also see ease of use, substantial improvements in scalability, and lower complexity

and size of analysis programs (see Table 5.2). Last but not least, reproducing an experiment conducted

using Boa is just a matter of re-running, often small, Boa programs provided by previous researchers.

1.1 Boa: Enabling Data Intensive Open-source Research

Creating experimental infrastructure to analyze the wealth of information available in open source

repositories is difficult [1, 19, 35, 37, 81]. Creating an infrastructure that scales well is even harder [35,

81]. To illustrate, consider a question such as “what are the average numbers of changed files per

revision (churn rates) for all Java projects that use Subversion (SVN)?” Answering this question would

require knowledge of (at a minimum): reading project metadata and mining code repository locations,

how to access those code repositories, additional filtering code, controller logic, etc. Writing such a

program in Java for example, would take upwards of 70 lines of code and require knowledge of at least

3

2 complex libraries. A heavily elided example of such a program is shown at the top of Figure 1.1.

Java
1 ... // imports

8 public class GetChurnRates {
9 public static void main(String[] args) { new GetChurnRates().getRates(args[0]); }

10 public void getRates(String cachePath) {
11 for (File file : (File[])FileIO.readObjectFromFile(cachePath)) {
12 String url = getSVNUrl(file);
13 if (url != null && !url.isEmpty())
14 System.out.println(url + "," + getChurnRateForProject(url));
15 }
16 }
17 private double getChurnRateForProject(String url) {
18 double rate = 0;
19 SVNURL svnUrl;
20 ... // connect to SVN and compute churn rate

34 return rate;
35 }
36 private String getSVNUrl(File file) {
37 String jsonTxt = "";
38 ... // read the file contents into jsonTxt

47 JSONObject json = null, jsonProj = null;
48 ... // parse the text, get the project data

54 if (!jsonProj.has("programming-languages")) return "";
55 if (!jsonProj.has("SVNRepository")) return "";
56 boolean hasJava = false;
57 ... // is the project a Java project?

61 if (!hasJava) return "";
62 JSONObject svnRep = jsonProj.getJSONObject("SVNRepository");
63 if (!svnRep.has("location")) return "";
64 return svnRep.getString("location");
65 }
66 }

Boa
1 rates: output mean[string] of int;
2 p: Project = input;

3 exists (i: int; lowercase(p.programming_languages[i]) == "java")
4 foreach (j: int; p.code_repositories[j].kind == RepositoryKind.SVN

&& len(p.code_repositories[j].revisions) > 10)
5 foreach (k: int; len(p.code_repositories[j].revisions[k].files) < 100)
6 rates[p.id] << len(p.code_repositories[j].revisions[k].files);

Figure 1.1: Programs for answering “What are the churn rates for all Java projects that use SVN?” in
Java and in Boa.

This program assumes that the user has manually downloaded all project metadata, available as

JSON files, and SVN repositories from SourceForge. It then processes the data using a JSON library

and collects a list of Subversion URLs. A SVN library is then used to connect to each cached repository

in that list and calculate the churn rate for the project. Notice that this code required use of 2 complex,

external libraries in addition to standard Java classes and resulted in almost 70 lines of code. It is also

4

sequential, so it will not scale as the data size grows. One could write a concurrent version, but this

would add additional complexity.

We designed and implemented a domain-specific programming language that we call Boa [5,31] to

solve these problems. Boa aims to lower the barrier to entry and thus enable a larger, more ambitious

line of data-intensive scientific discovery in open source software development related research. The

main features of Boa are inspired from existing languages for data-intensive computing [28,49,68,75].

To these we add built-in types and functions that are specifically designed to ease analysis tasks common

in open source software mining research.

To illustrate the features of Boa, consider the same question “what are the churn rates for all Java

projects that use SVN?”. A Boa program to answer this question is shown at the bottom of Figure 1.1.

On line 1, this program declares an output called rates, which collects integer values and produces

a final result by aggregating the input values for each project (indexed by a string) using the function

mean. On line 2, it declares that the input to this program will be a project, e.g. Apache OpenOffice.

Boa’s infrastructure manages the details of downloading projects and their associated information. For

each project, the code on lines 4–6 runs. If a repository contains 700k projects, the code on lines 4–6

runs 700k times.

On line 3, this program says to run the code on lines 4–6, if and only if for the input project at least

one of the programming languages used is Java. On line 4, this program says to run the code on lines

5–6 for each of the input project’s code repositories that are Subversion and contain at least 10 revisions

(to filter out new or abandoned projects). Line 5 selects only revisions from such repositories that have

less than 100 files changed (to filter out extremely large commits, such as the first commit of a project).

Finally, on line 6, this program says to send the length of the array that contains the changed files in

the revision to the aggregator rates, indexed by the project’s unique identifier string. This aggregator

produces the final answer to our question.

These 6 lines of code not only answer the question of interest, but run on a distributed cluster

potentially saving hours of execution time. Note that writing this small program required no intimate

knowledge of how to find/access the project metadata, how to access the repository information, or any

mention of parallelization. All of these concepts are abstracted from the user, providing instead simple

primitives such as the Project type which contains attributes related to software projects such as the

5

name, programming languages used, repository locations, etc. These abstractions substantially ease

common analysis tasks.

Since this program runs on a cluster, it also scales extremely well compared to the (sequential)

version written in Java. The time taken to run this program on varying input sizes is shown in Figure 1.2.

Note that the y-axis is in logarithmic scale. The time to execute the Java program increases roughly

linearly with the size of the input while the Boa program sees minimal increase in execution time.

7,000 70,000 700,000
1

10

100

1,000

10,000

100,000

28

441

10,431

19 23 32

Java Boa

Input Size (number of projects)

T
im

e
 (

s
e

c
)

325x
speedup

Figure 1.2: Performance results for Java and Boa programs

We also built an infrastructure for the Boa programming language. An overview of this infrastruc-

ture is presented in Figure 1.3. Components are shown inside dotted boxes on the left, the flow of a Boa

program is shown in the middle, and the input data sources are shown on the right.

The three main components are: the Boa language, compiler and runtime, and supporting data

infrastructure. First, an analysis task is phrased as a Boa program, e.g. that in Figure 1.1 (see Chapter 2).

This program is fed to our compiler (see Section 3.1) via our web-based interface (see Section 3.3). The

Boa compiler produces a query plan. Our infrastructure then deploys this query plan onto a Hadoop [9]

cluster, where it executes. The cluster makes use of a locally cached copy of the source code repositories

(see Section 3.2) and based on the query plan creates tasks to produce the final query result. This is the

answer to the user’s analysis task.

In the next chapter we outline the Boa language. In Chapter 3 we detail the implementation strategy

and framework for the language. In Chapter 4 we describe several optimization strategies to ensure the

infrastructure can support many users. We evaluate the language and infrastructure in Chapter 5 and

6

Boa's Data Infrastructure

Local Cache

Replicator

Caching Translator

SF.net

Compile

Execute on
Hadoop Cluster

Deploy

Query Program

Query Plan

Query Result
1 Pike et al, Scientific Prog. Journal, Vol 13, No 4, 2005
2 Anthony Urso, http://github.com/anthonyu/Sizzle

Boa's Compiler

MapReduce2

Domain-specific
Types

Quantifiers

Cached Data input reader

Visitors

User Functions

Runtime

Boa Language

MapReduce1

Domain-specific
Types

Visitors

Figure 1.3: An Overview of Boa’s Infrastructure. New components are marked with green boxes and
bold text.

provide several case studies utilizing Boa in Chapter 6. Then in Chapter 7 we discuss works related to

Boa. In Chapter 8 we outline some ideas on future work. Finally we conclude in Chapter 9.

7

CHAPTER 2. THE BOA LANGUAGE

One of the first goals of Boa is to be easy to use. This means developing a language that is powerful,

yet simple to use. The Boa language abstracts away many of the details of mining software repositories

and also abstracts away details of how to parallelize such analyses.

The left side of Figure 1.3 shows the main kinds of features of the Boa language: domain-specific

types and functions to ease analysis of open source software repository mining, MapReduce [28] sup-

port for scalable analysis of ultra-large-scale repositories, quantifiers for easily expressing loops, the

ability to define functions, and an easy to comprehend visitor syntax to ease source code mining tasks.

The remainder of this chapter discusses these features in detail. For a full description of the Boa lan-

guage, including the EBNF grammar, please see Appendix A.

2.1 Domain-specific Types in Boa

To make mining software repositories as easy as possible, the Boa language provides several

domain-specific types. Table 2.1 gives an overview of these types (a full list can be found in Ap-

pendix B). Each type provides several attributes that can be thought of as read-only fields.

Type Attributes
Project id, name, created_date, code_repositories, . . .
CodeRepository url, kind, revisions
Revision id, log, committer, commit_date, files
ChangedFile name, kind, change
Person username, real_name, email

Table 2.1: Some of the domain-specific types provided in Boa.

The Project type provides high-level metadata about an open-source project in the repository,

including its name, url, description, who maintains and develops it, and any code repositories. This

type is used as input to programs in the Boa language.

8

The CodeRepository type provides an abstraction of source code versioning systems (such as

CVS, SVN, etc). This type contains all of the Revisions committed into the repository. A revision

represents a group of artifact changes and provides relevant information such as the revision id, commit

log and time, the Person who committed the revision, and the ChangedFiles committed.

The types provided for representing source code are: Namespace, Declaration, Method,

Variable, Type, Statement, Expression, and Modifier. The declaration, statement, and

expression types are discriminated types, meaning they actually represent the union of many different

record structures.

For example, consider the type Statement that has an attribute kind, which is an enumerated

value. Based on the kind of statement, different attributes in the record will be set. For example, if

the kind is TYPEDECL then the type_decl attribute is defined. However if the kind is CATCH then

the type_decl is undefined. Representing these types as discriminated types allows Boa to keep the

number of types as small as possible. This makes supporting future languages easier by only needing to

provide a mapping from the new language to the small set of types in Boa. Existing mining tasks would

immediately be able to mine source code from these new languages.

While Boa keeps these types as simple as possible, they are still flexible enough to support more

complex language features. For example, consider the enhanced-for loop in Java:

1 for (String s : iter)

2 body;

which says to iterate over the expression iter and for each string value s, run the body. Boa’s types

do not directly contain an ENHANCEDFOR kind for this language feature.

Despite this design decision, an enhanced-for statement can be easily represented in Boa’s schema

without having to extend it. First, Boa generates a Statement of kind FOR. Inside that statement,

Boa sets the expression attribute to iter. Boa also sets the variable_declaration attribute

for String s in the statement. Thus, if a statement of kind FOR has its variable_declaration

attribute set it is an enhanced-for statement. If that attribute is not defined it is a standard for-statement.

Currently, we have fully mapped the Java language to Boa’s schema, attempting to simplify the

schema as much as possible. This gives a simple, yet flexible, schema capable of supporting the en-

tire Java language (through Java 7). As additional support for other source languages is added, if the

9

schema is not capable of directly supporting a particular language feature the StatementKind or

ExpressionKind enumerations can be easily extended.

2.2 MapReduce Support in Boa

In MapReduce [28] frameworks, computations are specified via two user-defined functions: a map-

per that takes key-value pairs as input and produces key-value pairs as output, and a reducer that con-

sumes those key-value pairs and aggregates data based on individual keys. Syntactically, Boa is remi-

niscent of Sawzall [75], a language designed for analyzing log files. In Boa, like Sawzall, users write

the mapper functions directly and use built-in aggregators as the reduce function. Users declare output

tables, process the input, and then send values to the tables. Output declarations specify aggregation

functions and the language provides several built in aggregators, such as summing, min/max, mean, etc.

For example, we could write an output declaration for the table rates (as shown in Figure 1.1, line

1). For this table we want to index it by strings and give it values of type int. We would also like to

use the aggregation function mean, which produces the mean of each integer emitted to the aggregator.

Thus the final result of our output table is a list of string keys, each of which has the mean of all integers

indexed by that key.

The plan generated from this code creates one logical process for each project in the corpus. Each

process then analyzes a single project’s revisions, emitting to the project’s table the number of changed

files for each revision. The aggregator then reduces the values sent to it and computes the means.

2.3 Quantifiers in Boa

Boa defines the quantifiers exists, foreach, and ifall. Their semantics is similar to when

statements with quantifiers as in Sawzall. Quantifiers represent an extremely useful sugar that appears

frequently in mining tasks. The sugared form makes programs much easier to write and comprehend.

For example, the foreach quantifier on line 4 of Figure 1.1, is a syntactic sugar for a loop. The

statement says each time, when the boolean condition after the semicolon evaluates to true, execute the

code on lines 5–6. The exists quantifier on line 3 is similar, however the code on lines 4–6 should

execute exactly once if there exists some value of i where the boolean condition holds.

10

Not shown is the ifall quantifier. This quantifier states the boolean condition must hold for all

values. If this is the case, then the associated code executes exactly once.

2.4 User-Defined Functions in Boa

To ease certain common mining tasks, Boa provides domain-specific functions. Since we can’t

anticipate all needs of the users, or since our choice of a particular algorithm may not match what the

user needs, having the ability to add user-defined functions was important. The Boa language provides

the ability for users to write their own functions directly in the language.

The syntax requires declaring the parameters for the function and return type and assigning it to a

variable. Functions can be passed as a parameter to other functions or assigned to different variables (if

the function types are identical). Several example domain-specific functions are shown in Appendix C.

2.5 Supporting Source Code Analysis with Visitors in Boa

Users must also be able to easily express source code mining tasks. For users who are intimately

familiar with compilers and interpreters, the visitor pattern [36] is well understood. However, other

users may find two aspects of visitor-style traversals daunting. First, it generally requires writing a

significant amount of boiler-plate code whose length is proportional to the complexity of the program-

ming language being visited. Second, this strategy requires intimate familiarity with the structure of

that programming language.

To make source code mining more accessible to all users, we investigated the design of more declar-

ative features for mining source code. In this section, we describe our proposed syntax for writing source

code mining tasks. The syntax was inspired by previous language features, such as the before and after

visit methods in DJ [70] and case expressions in Haskell [51].

The new syntax is shown in Figure 2.1. The top-level syntax for a mining task is a visitor type.

Visitor types take zero or more visit clauses. A visit clause can be a before or an after clause. During

traversal of the tree, a before clause is executed when visiting a node of the specified type. If the default

depth-first traversal strategy is used, then the node’s children will be visited. After all the children are

visited, any matching after clause executes.

11

visitor ::= visitor { (visitClause)* }

visitClause ::= beforeClause | afterClause
beforeClause ::= before typeList -> beforeClauseStmt
afterClause ::= after typeList -> stmt
typeList ::= _ | identifier : type | type ((, type))*
beforeClauseStmt ::= stmt | stopStmt | visit (identifier) ;

stopStmt ::= stop ;

Figure 2.1: Proposed syntax for easing source code mining.

Before and after clauses take a type list. A type list can be a single type with an optional identifier,

a list of types, or an underscore wildcard. The underscore wildcard provides default behavior for a visit

clause. This default executes for a node of type T if no other clause specifies T in its type list. Thus, the

following code:

1 v := visitor {
2 before Project, CodeRepository, Revision, Person -> { }
3 before _ -> counter++;
4 };

will execute the clause’s body on line 2 when traversing nodes of type Project,

CodeRepository, Revision, or Person. When traversing a node of any other type, the de-

fault clause’s body on line 3 executes. The result of this code is thus a count of all nodes, excluding

those of the types listed. Thus we count only the source code AST nodes for a project.

Note that unlike pattern matching and case expressions in functional languages like Haskell, the

order of the before and after clauses do not matter. A type may appear in at most one before clause and

at most one after clause.

To begin a mining task, users write a visit statement:

visit(n, v);

that has two parts: the node to visit and a visitor. When this statement executes, a traversal starts at the

node represented by n using visitor v.

2.5.1 Supporting Custom Traversals

To allow users the ability to override the default traversal strategy, two additional statements are

provided inside before clauses. The first is the stop statement:

12

stop;

which when executed will stop the visitor from traversing the children of the current node. This is useful

in cases where the mining task never needs to visit specific types further down the tree, allowing to stop

at a certain depth. Note that stop acts similar to a return, so no statements after it are reachable.

If the default traversal is stopped, users may provide a custom traversal of the children with zero or

more visit statements:

visit(child);

which says to visit the node’s child tree once. This statement can be called on any subset of the

children and in any order. This also allows for visiting a child more than once, if needed. Note this form

of the visit statement only has one argument, as the current visitor is assumed.

Figure 2.2 illustrates a custom traversal strategy from one of our case studies in Section 6.1. This

program answers the question how many fields that use a generic type parameter are declared in each

project? To answer this question, the program declares a single visitor. This visitor looks for Type

nodes where the name contains a generic type parameter (line 5). This visit clause by itself is not

sufficient to answer the question, as generic type parameters might occur in other locations, such as

the declaration of a class/interface, method parameters, locals, etc. Instead, a custom traversal strategy

(lines 10–34) is needed to ensure only field declarations are included.

The traversal strategy first ensures all fields of Declaration are visited (lines 12–13). Since

declarations can be nested (e.g. in Java, inside other types and in method declarations) we also must

manually traverse to find nested declarations (lines 15–32). Finally, we don’t want to visit nodes of type

Expression or Modifier (line 34), as these node types can’t possibly contain a field declaration

but may contain a Type node.

Complex mining tasks can be simplified by using multiple visitors. For example, perhaps we only

want to look for certain expressions inside of an if statement’s condition. We can write a visitor to find

if statements, and then use a second sub-visitor to look for the specific expression by visiting the if

statement’s children. We could perform this mining task with one visitor, however then we need to have

flags set to track if we are in the tree underneath an if statement. Using multiple visitors keeps these

two mining tasks separate and avoids using flags to keep it simple.

13

1 p: Project = input;
2 GenFields: output sum[string] of int;

3 genVisitor := visitor {
4 before t: Type ->
5 if (strfind("<", t.name) > -1)
6 GenFields[p.id] << 1;

7 # traversal strategy ensures we only reach Type
8 # if the parent is a Variable, and
9 # we only include Variable paths that are fields

10 before d: Declaration -> {
11 ######## check each field declaration ########
12 foreach (i: int; d.fields[i])
13 visit(d.fields[i]);

14 ########### look for nested types ############
15 foreach (i: int; d.methods[i])
16 visit(d.methods[i]);
17 foreach (i: int; d.nested_declarations[i])
18 visit(d.nested_declarations[i]);
19 stop;
20 }
21 before m: Method -> {
22 foreach (i: int; m.statements[i])
23 visit(m.statements[i]);
24 stop;
25 }
26 before s: Statement -> {
27 foreach (i: int; s.statements[i])
28 visit(s.statements[i]);
29 if (def(s.type_declaration))
30 visit(s.type_declaration);
31 stop;
32 }

33 ####### stop at expressions/modifiers ########
34 before Expression, Modifier -> stop;
35 };
36 visit(p, genVisitor);

Figure 2.2: Using a custom traversal strategy to find uses of generics in field declarations.

2.5.2 Mining Snapshots in Time

While our infrastructure contains data for the full revision history of each file, some mining tasks

may wish to operate on a single snapshot. We provide several helper functions to ease this use case. For

example, the function:

getsnapshot(CodeRepository [, time] [, string...])

takes a CodeRepository as its first argument. It optionally takes a time argument, specifying the

time of the snapshot which defaults to the last time in the repository. The function also optionally takes

a list of strings. If provided, these strings are used to filter files while generating the snapshot. The file’s

kind is checked to see if it matches at least one of the patterns specified. For example:

14

getsnapshot(CodeRepository, "SOURCE_JAVA_JLS")

says to get the latest snapshot and filter any file that is not a valid Java source file.

A useful pattern is to write a visitor with a before clause for CodeRepository that gets a specific

snapshot, visits the nodes in the snapshot, and then stops the default traversal:

1 visitor {
2 before n: CodeRepository -> {
3 snapshot := getsnapshot(n);
4 foreach (i: int; def(snapshot[i]))
5 visit(snapshot[i]);
6 stop;
7 }
8 ...
9 }

This visitor will visit all code repositories for a project, obtain the last snapshot of the files in that

repository, and then visit the source code of those files. This pattern is useful for mining the current

version of a software repository.

2.5.3 Mining Revision Pairs

Often a mining task might want to locate certain revisions and compare files at that revision to their

previous state. For example, a task might wish to look for revisions that fixed bugs and then compare

the files at that revision to their previous snapshot. To accomplish this task, one can use the following

pattern:

1 files: map[string] of ChangedFile;

2 v := visitor {
3 before f: ChangedFile -> {
4 if (def(files[f.name])) {
5 ... # task comparing f and files[f.name]
6 }
7 if (f.change == ChangeKind.DELETED)
8 remove(files, f.name);
9 else

10 files[f.name] = f;
11 }
12 };

which declares a map of files, indexed by their path. The code on line 4 checks if a previous version of

the file was cached. If it was, the code on line 5 executes where f refers to the current version of the file

15

being visited and the expression files[f.name] refers to the previous version of the file. Finally,

the code on lines 7–10 updates the map, storing the current version of the file.

2.5.4 Bringing It All Together: Motivating Example

Consider testing a simple hypothesis: a large number of bug fixes add checks for null. Null-

pointer exceptions are a common source of bugs in object-oriented programs. A possible fix for some

of these bugs may be to simply guard access to the variable with a check to ensure it is non-null. In this

section, we describe a solution that answers the proposed hypothesis.

1 # STEP 1 - candidate projects as input
2 p: Project = input;
3 results: output collection[string] of string;

4 fixing := false;
5 count := 0;
6 files: map[string] of ChangedFile;

7 nullCheckVisitor := visitor {
8 before e: Expression ->
9 if (e.kind == ExpressionKind.EQ || e.kind == ExpressionKind.NEQ)

10 exists (i: int; isliteral(e.expressions[i], "null"))
11 count++;
12 };

13 visit(p, visitor {
14 before r: Revision ->
15 # STEP 2 - potential revisions that fix bugs
16 fixing = isfixingrevision(r.log);

17 before f: ChangedFile -> {
18 if (fixing && haskey(files, f.name)) {
19 count = 0;
20 # STEP 3a - check out source from revision
21 visit(getast(files[f.name]));
22 last := count;

23 count = 0;
24 # STEP 3b - source from previous revision
25 visit(getast(f));

26 # STEP 4 - determine if null checks increased
27 if (count > last)
28 results[p.id] << string(f);
29 }
30 files[f.name] = f;
31 stop;
32 }

33 before s: Statement ->
34 if (s.kind == StatementKind.IF)
35 visit(s.expression, nullCheckVisitor);
36 });

Figure 2.3: Finding in Boa fixing revisions that add null checks.

16

Consider the Boa program in Figure 2.3, which implements the entire mining task. This program

takes a single project as input. It then passes the program’s data tree to a visitor (line 13). This visitor

keeps track if the last Revision seen was a fixing revision (line 16). When it sees a ChangedFile

it looks at the current revision’s log message and if it is a fixing revision (step 2) it will get snapshots of

the current file and the previous version of the file (step 3) and visit their AST nodes (lines 21 and 25).

When visiting the AST nodes for these snapshots, if it encounters a Statement of kind IF (line

34), it then uses a sub-visitor to check if the statement’s expression contains a null check (lines 35

and 7–12) and increments a counter (line 11). Thus we will know the number of null checks in each

snapshot and can compare (line 27) to see if there are more null checks (step 4). Note that this analysis is

conservative and may not find all fixing revisions that add null checks, as the revision may also remove

a null check from another location and thus give the same count.

This task illustrates several features mentioned earlier in this section. First, the second visitor shows

use of a custom traversal strategy by utilizing a stop statement. Second, it makes use of a sub-visitor

(nullCheckVisitor). Third, it uses the revision pair pattern to check several versions of a file.

17

CHAPTER 3. THE BOA INFRASTRUCTURE

The bottom left portion of Figure 1.3 shows the various parts of the Boa compiler and runtime. In

this chapter we describe each in detail.

3.1 Compiler and Runtime

For our initial implementation, we started with code for the Sizzle [88] compiler and framework.

Sizzle is an open-source Java implementation of the Sawzall language. Unlike the original Sawzall

compiler, Sizzle provides support for generating programs that run on the Hadoop [9] open-source

MapReduce framework.

1 p: Project = input;
2 TopPL: output top(5) of string weight int;

3 foreach (i: int; def(p.programming_languages[i]))
4 TopPL << p.programming_languages[i] weight 1;

Figure 3.1: Example program to compute top-5 used programming languages.

Consider the code example in Figure 3.1, which answers the question of what the top-5 program-

ming languages used are. The generated Hadoop program for this 4 line Boa program is shown in

Figure 3.2. The generated Hadoop program, named TopFive, contains code for both the mapper

(TopFiveMapper) and the reducer (TopFiveReducer). It also contains code to start the Hadoop

process, by creating a Hadoop job, setting various configuration settings, and then submitting the job.

The majority of the body of the Boa program is in the mapper’s map() method. The only code

placed in the reducer are the output variables used, which are stored as a table mapping the output

variable’s name to a specific aggregator provided by Boa’s runtime.

Our main implementation efforts were in supporting the protocol buffer format as input, adding

support for quantifiers adding user-defined functions, and supporting the visitor syntax. These efforts

18

1 public class TopFive extends BoaRunner {
2 public static void main(String[] args) throws Exception {
3 System.exit(ToolRunner.run(new TopFive(), args));
4 }

5 public int run(String[] args) throws Exception {
6 .. // parse command line

7 org.apache.hadoop.mapreduce.Job jb = job(args);
8 .. // setup job options
9 jb.submit();

10 return 0;
11 }

12 static class TopFiveMapper extends BoaMapper {
13 // generate fields for each Boa variable
14 private Project $_p;

15 protected void map(Text key, BytesWritable value, Mapper<Text, BytesWritable, EmitKey,
EmitValue>.Context context) throws IOException {

16 // read and de-serialize input project
17 Project input = Project.parseFrom(com.google.protobuf.CodedInputStream.newInstance(

value.getBytes(), 0, value.getLength()));

18 // body of Boa program (without output variable declarations)
19 $_p = input;

20 for (int $_i = 0; $_i < $_p.getProgrammingLanguagesList().size(); $_i++)
21 if ($_p.getProgrammingLanguagesList().get($_i) != null)
22 context.write("TopPL", new boa.io.EmitValue($_p.getProgrammingLanguagesList().get

($_i), 1));
23 }
24 }

25 static class TopFiveReducer extends BoaReducer {
26 public TopFiveReducer() {
27 // output variable declarations
28 this.tables.put("TopPL", new TopAggregator(5l));
29 }
30 }
31 }

Figure 3.2: Generated Hadoop program for example program in Figure 3.1.

were in addition to adding support for our domain-specific types and custom runtime model.

3.1.1 Protocol Buffers

Protocol buffers are a data description format developed by Google that are stored as binary mes-

sages. This format was designed to be compact and relatively fast to parse, compared to other formats

such as XML. Messages are defined using a struct-like syntax and a compiler is provided which gen-

erates Java classes to read and write messages in that format. The Boa compiler was modified to use

these generated classes when generating code, by mapping them to the domain-specific types provided.

The Boa compiler generates Hadoop programs that use SequenceFiles as input, which is a

19

special file format similar to a map. It stores key/value pairs, where the key is the project and the value

is the binary representation of the protocol buffer message containing that project’s data. This format

was chosen due to its ease in splitting the input across map tasks. More details on the storage strategy

are given in Section 3.2.1.

The generated Hadoop program gives a single project as input, which is represented as the

serialized form of the protocol buffer. The code then deserializes the raw bytes, giving an

object-oriented view of the data. Attributes are read from these objects via method calls, e.g.

“_p.getProgrammingLanguagesList()” in Figure 3.2.

3.1.2 Quantifiers

We modified the compiler to desugar quantifiers into for loops. This process requires the com-

piler to analyze the boolean conditions to automatically infer valid ranges for the loop. The range is

determined based on the boolean condition’s use of the declared quantifier variable. For example, the

quantifier statement:

1 ifall (i: int; hasfiletype(rev.files[i], "java"))

2 counts << 1;

generates a for-loop such as:

1 {

2 length := len(rev.files);

3 stop := false;

4 for (i := 0; i < length; i++)

5 if (!hasfiletype(rev.files[i], "java")) {

6 stop = true;

7 break;

8 }

9 if (!stop) {

10 counts << 1;

11 }

12 }

which iterates over all the files in the revision. If it finds any file that does not hold the condition, it

marks it and breaks out of the loop. If the marker was not set, then the condition held for all values and

the original body can execute.

20

3.1.3 User-Defined Functions

The initial code generation strategy for user functions uses a pattern similar to the Java Runnable

interface. A unique interface is provided by the runtime for each set of argument and return types.

Each user-defined function then has an anonymous class generated which implements this interface and

provides the body of the function as the body of the interface’s invoke method. This strategy allows

easily modeling the semantics of user-defined functions, including being able to pass them as arguments

to other functions and assigning them to (similarly typed) variables.

3.1.4 Visitors

In this section we outline the code generation strategy for supporting visitor types. For ease of

illustration, we omit all code related to MapReduce to allow readers to focus on visitor types. The key

to our strategy involves a default visitor (Figure 3.3) that we added to the Boa runtime.

1public abstract class DeafultVisitor {
2 public final void visit(Project node) {
3 if (preVisit(node)) {
4 ... // call visit() on each of node’s children

8 postVisit(node);
9 }

10 }
11 ... // similar visit() for each node type

205 //
206 // methods for before clauses

207 protected boolean defaultPreVisit() {
208 return true;
209 }

210 protected boolean preVisit(Project node) {
211 return defaultPreVisit();
212 }
213 ... // similar preVisit() for each node type

250 //
251 // methods for after clauses

252 protected void defaultPostVisit() { }

253 protected void postVisit(Project node) {
254 defaultPostVisit();
255 }
256 ... // similar postVisit() for each node type

295}

Figure 3.3: Outline of the abstract default visitor.

21

The DefaultVisitor class contains a public visitmethod for each node type in the language.

These methods contain a single if-statement which calls a preVisit method in the condition. If that

method returns true, then the pre-visit method did not execute a stop statement and the children of the

current node are each visited followed by a postVisit method call.

A preVisit and postVisit method is also generated for each node type in the language. The

bodies of these methods simply call the defaultPreVisit/defaultPostVisit methods which

implements the functionality of the wildcard, which overrides those default methods. These methods

are virtual methods and are (possibly) overridden by the concrete visitor sub-classes.

3.1.4.1 Generating Visitors

All visitors in the language:

var := visit { .. };

inherit from the DefaultVisitor (Figure 3.3):

var = new DefaultVisitor() { .. };

This inheritance provides the visitor with a default depth-first traversal strategy that will visit all

nodes in the tree. The actions taken when visiting specific nodes are specified via the before and after

visit clauses.

3.1.4.2 Generating Visit Clauses

A before visit clause generates one or more method overrides for the preVisit methods. There

are three possibilities for a before visit clause’s type list. First, it may specify a specific type and an

identifier:

before id: T -> body;

which is translated into:

1 protected boolean preVisit(T id) {
2 body;
3 [return true;] // if necessary
4 }

22

Since the method must return a value, the body is analyzed to determine if a stop statement occurs

on all exit paths. If it does not, then a return statement is generated with a value of true.

The second form for a visit clause’s type list is a list of types:

before T1, T2, .. -> body;

which is translated similar to before, where each type has its own preVisit method generated and

the id is a fresh name.

The third form is an underscore wildcard:

before _ -> body;

which is translated into:

1 protected boolean defaultPreVisit() {
2 body;
3 [return true;] // if necessary
4 }

similar to the previous translation strategy.

Generation of after visit clauses is almost identical to before clauses, with two slight differences.

First, the name of the generated method is changed to postVisit/defaultPostVisit. Second,

since the method has a void return type no return statements are generated.

3.1.4.3 Generating Stop Statements

Before visit clauses return a boolean value to indicate if the DefaultVisitor should visit the

children of the node. Since stop statements can only appear in before visit clauses, they are trans-

formed into:

return false;

which makes the if condition (Figure 3.3, line 3) false and stops the default traversal of the node’s

children. It also stops the execution of the before visitor.

3.1.4.4 Generating Nested Visit Calls

There is no need to transform a nested visit call, as both the method name and arguments are

identical in the generated code.

23

3.2 Data Infrastructure

While the semantic model we provide with the Boa language and infrastructure states that queries

are performed against the source repository in its current state, actually performing such queries over the

internet on the live dataset would be prohibitive. Instead, we locally cache the repository information

on our cluster and provide snapshots of the data. The right portion of Figure 1.3 shows the components

and steps required for this caching.

The first step is to locally replicate the data. For SourceForge, there are 2 public APIs we make

use of. The first is a JSON API that provides information about projects, including various metadata

on the project and information about which repositories the project contains. We simply download and

cache the JSON objects for each project. The second API is the public Subversion (SVN) urls for code

repositories. We make use of a Java SVN library to locally clone these repositories.

Once the information is stored locally on our cluster, we run our caching translator to convert the

data into the format required by our framework. The input to the translator is the JSON files and SVN

repositories and the output is a Hadoop SequenceFile containing protocol buffer messages which

store all the relevant data.

3.2.1 Storage Strategy

All of the data for a single project is processed inside of one map task. This implies that the data

for a project must fit in the memory of one map task (which on our cluster, is 1GB). Some projects are

extremely large (over 6.5GB!) and can not fit their entire object tree in memory at one time. To solve

this problem, we split the object tree into a forest of disconnected trees.

Figure 3.4 shows a portion of an object tree on the left side. This is the sub-tree for one revision of

a project, which contains two changed files. To split this tree, we simply turn the ChangedFiles into

leaves. This produces the forest on the right side of the figure.

When users wish to access the AST nodes for the changed file f1 in the language, instead of

reading an attribute of the ChangedFile users make a call to getast(f1). This call then retrieves

and returns that changed file’s AST nodes. Once no references exist to any nodes in this sub-tree, they

are free to be garbage collected. For most tasks, this solves the problem of fitting a project’s data into a

24

ASTRoot

f1: ChangedFile

Revision

Namespace

ASTRoot

f2: ChangedFile

Namespace

ASTRoot

Revision

Namespace

ASTRoot

Namespace

f1: ChangedFile f2: ChangedFile

getast(f1) getast(f2)

Figure 3.4: Splitting an object tree into a forest.

map task’s process.

Since the AST trees are loaded on demand, we needed a storage strategy that allowed for random

access reads. Our first choice was a distributed database named HBase [12], which is an open-source

implementation of Google’s Bigtable [26]. We designed a table format for the AST objects:

Key File1 File2 .. Filen
URL1:R1 AST1 AST2

.
URLn:Rn ASTn

where each revision is a row in the table, indexed by a unique string containing the repository’s URL

and the revision number. Each file in that revision is then stored in a column, using the file’s path as the

column name. This was possible because the design of HBase allows creating columns on demand and

empty cells take no space in the filesystem.

This design also allows for easily and incrementally updating the data. As our local cache is updated

with new data from the remote repositories, we can simply insert rows for any new revisions.

HBase provides Bloom filters [20] for more efficient random lookups, which we enabled. Despite

this optimization, our initial performance tests indicated that reads were much slower than we expected.

Thus we designed a second storage strategy, this time using a flat-file datatype called MapFile, pro-

vided by Hadoop.

A MapFile is actually two separate files. The first file is a list of key-value pairs called a

SequenceFile. This file is sorted by the keys. In our new design, the previous HBase table is

25

essentially linearized into a sorted SequenceFile:

Key Value Key Value .. Key Value
URL1:R1:F1 AST1 URL1:R1:F2 AST2 .. URLn:Rn:Fn ASTn

giving each cell a unique key by taking the HBase row key and concatenating the HBase column name.

The MapFile data-structure also generates a second file, which is an index. For each file on the

filesystem, it will store the offset of the blocks and the first key in each block. A random read becomes

finding the block and scanning to find the key. As we show later, this new storage strategy performs

substantially better.

Despite the performance benefit, using a MapFile comes with a cost of the inability to perform

incremental updates to the data. This is a restriction of the underlying distributed filesystem used by

Hadoop, which states that files may only be appended. HBase circumvents this restriction by storing

updates in memory and occasionally rewriting the underlying stores and merging in the new updates.

With a MapFile we would have to read and rewrite the entire file for a single, incremental update.

Our final storage strategy thus attempts to take the best of both worlds. First, all data is populated

into HBase tables. This provides the easy incremental update of the data. From these tables we then

generate a MapFile. Generating these files for use as input to mining tasks only takes a few hours and

can be routinely scheduled.

3.3 Web-Based Interface

We provide a web-based interface for submitting Boa programs, compiling and running those pro-

grams on our cluster, and obtaining the output from those programs. The interface utilizes the Drupal

open source content managemen system (CMS) [6], which provides user registration and management,

theming, easy form generation/validation, etc.

Users submit programs to the interface using our syntax-highlighting text editor (see Figure 3.5).

Each submission creates a job in the system (see Figure 3.6), so the user can see the status of the

compilation and execution, request the results (if available), and resubmit or delete the job.

A daemon running on the webserver identifies jobs needing compiled and submits the code to the

26

Figure 3.5: Submitting a query via the web interface.

Figure 3.6: Job created after submitting a query.

compiler framework. If the source compiles successfully, then the resulting JAR file is deployed on our

Hadoop cluster and the program executes. If the program finishes without error, the resulting output is

made available to the user (see Figure 3.7) to view online or download (as a text file).

3.4 Query Output Format

The output from a Boa program is a text file. The format of that file is described in this section.

Consider the output variable declared in Figure 1.1:

rates : output mean[string] of int;

27

Figure 3.7: Viewing output online (first 64k only). Users can also download the output as a text file.

which declares an output variable named rates. This output variable collects int values and com-

putes their mean. The variable is indexed by a string, meaning that values are grouped by the index

strings and for each unique index, a mean is computed.

For this example, the index is a project identifier. We expect to see in the output pairs of all project

IDs and a single (mean) value. For example, the output from the program in Figure 1.1 is:

rates[100007] = 4.016949152542373
rates[100009] = 6.583333333333333
rates[100018] = 17.0
rates[100028] = 4.328990228013029
rates[100045] = 7.076923076923077
rates[100050] = 8.276806526806526
rates[100057] = 4.12
rates[100064] = 2.8446697996537225
rates[100081] = 1.0
rates[100083] = 5.2153846153846155
...

In this output, each line represents a single project’s churn rate. The project’s unique identifier is

the index (between the brackets) and the churn rate is on the right-hand side. Notice the variable’s name

(rates) appears in the output. This is so if there is more than one output variable, you can distinguish

them in the file.

Output lines are also sorted, lexicographically. Sorting is done from left to right by first sorting the

output variable name and then by each index.

28

Finally, if an output variable takes a weight (such as top/bottom and minimum/maximum) then the

weight value will show in the output. In this case, the output variable accepts values with weights,

groups the output by the value, and then summarizes all the weights for each value. The output shows

both the values and the (total) weights. For example, the output for the top-10 programming languages

(task A1, Section 5.2) is:

counts[] = java, 50692
counts[] = c++, 40934
counts[] = php, 32696
counts[] = c, 30580
counts[] = python, 15352
counts[] = c#, 15305
counts[] = javascript, 12748
counts[] = perl, 9783
counts[] = unix shell, 4379
counts[] = delphi/kylix, 3842

In this case, the values are the programming languages and the weights are the number of projects

using that language. The output only contains the top-10 highest weighted values.

29

CHAPTER 4. OPTIMIZATIONS

In this chapter we investigate how to optimize queries written in Boa. First we look at optimizing

visitors by ensuring they don’t visit unnecessary subtrees. Next we investigate a method for optimizing

single programs by rewriting the program to locally combine data prior to emitting it. Then we inves-

tigate how to optimize more than one program, possibly from more than one user, by automatically

fusing them together into single programs.

4.1 Optimizing Visitor Traversals

By default, the generated code for visitors traverses every node in the tree. For some visitors, this

may not be optimal. By analyzing the types in the visit clauses we can determine which subtrees will

never be visited and rewrite the visitor to explicitly stop the standard traversal at those points.

For every type in the language, we produce the set of types reachable via traversal starting at a

node of that type. For example, every Revision is contained inside a CodeRepository and thus

the first is reachable via the latter. Note that some types, such as Declaration, are reachable from

themselves (in Java for example, declarations can be nested).

Once we have the sets of reachable types, we then analyze each type in the given visitor’s clauses.

For each type t, if there is no visit clause for any of its reachable types, then we consider this to be a

lowest type. For each lowest type, we ensure the traversal stops at that point.

Stopping is accomplished by adding a stop statement to the end of the before clause for the type

t. There are three cases:

1. The type t has only a before clause in the visitor. A stop statement is added to the end of the

body of this clause.

30

2. The type t has only an after clause in the visitor. A before clause is generated with a body

containing only a stop statement.

3. The type t has both a before and an after clause in the visitor. For example, consider the code:

1 before id1: T -> {

2 statement1;

3 statement2;

4 ..

5 }

6 after id2: T -> {

7 statement3;

8 statement4;

9 ..

10 }

In this case, the body of the after clause is merged into the end of the before clause’s body:

1 before idFresh: T -> {

2 statement1;

3 statement2;

4 ..

5 statement3;

6 statement4;

7 ..

8 stop;

9 }

While doing this, the variables in the after clause are alpha-renamed to avoid name collisions.

The identifiers (id1 and id2) are also renamed to a fresh name, ensure that all statements have

access to the node. Then a stop statement is added to the end.

The result of this optimization ensures that the visitor will visit all required node types, but stop at

the lowest node type and thus avoid traversing the sub-trees below that type (which the visitor is not

interested in).

4.2 Task-level Combiners

The form of a query in Boa can significantly affect the runtime performance. The underlying

MapReduce architecture, and specifically the Hadoop implementation used by Boa, transfers data out-

31

put from maps to the reducers for aggregating. Depending on the reduce function, this data can be

optimized prior to transfer. For example, in Hadoop there is an optional class called Combiner which,

if present, will take spilled records from a map task and locally combine them together before send-

ing the records to the reducer. This minimizes the amount of data sent to the reducer, lowers network

congestion, and eases the task of the reducer itself. If the reduce function is both commutative and as-

sociative it can be directly re-used as the combiner. Otherwise a custom combiner function is required.

In Boa, the runtime code for output aggregators indicate if they can be used as combiners. Each

aggregator then defines a specific combine function or re-uses the reduce function (if it is associative and

commutative). For example, the sum aggregator simply sums the values locally. The mean aggregator

however, sums all the values and emits both the local sum and the local count of the number of values

seen.

To demonstrate how the combiner works, consider the following Boa program:

1 p: Project = input;
2 count: output sum of int;

3 visit(p, visitor {
4 before _ -> count << 1;
5 before Project, CodeRepository, Revision, ASTRoot, Person -> ;
6 });

that computes the total number of AST nodes in the system. Since the visitor starts at the

Project level, any non-AST tree node visited (such as Project, CodeRepository, Revision,

ASTRoot, and Person) do not contribute to the count. All other nodes contribute the value 1 to the

total. If each project in the input data has 1000 AST nodes, then each map call will output the value 1 a

total of 1000 times. If there were 1000 projects in the input data, then the reducer would see a total of

1 million values of 1, which it would then sum to produce the final result.

Boa however will use Hadoop’s combiner functionality. When Hadoop sees a sufficient number of

values output on a node, it will invoke the aggregator’s combine function. In this case, it would sum the

values locally and send the sum to the reducer. The result is substantially less data sent to the reducer

over the cluster’s network.

Although the combiner operates as expected and indeed improves the efficiency of the system, it

highlights one place for improving the performance of Hadoop: a large amount of output data slows

down the map tasks. This is because a lot of output data will cause more spilled records, thus invoking

32

the combiner code. While the combiner is running, the map task is paused and thus useful computation

slows down for that compute slot. Additionally, when using a combiner the output from maps is held in

memory until either the combiner can be called or the buffer fills (and data is spilled to disk). This adds

additional strain on the already congested heap.

While the program above is relatively simple, a minor change:

1 p: Project = input;
2 count: output sum of int;

3 count_local := 0;

4 visit(p, visitor {
5 before _ -> count_local++;
6 before Project, CodeRepository, Revision, ASTRoot, Person -> ;
7 });

8 if (count_local > 0) count << count_local;

to compute the total AST nodes for each project locally and then output the project’s total count to the

output variable len actually improves performance.

This simple change is mimicking the functionality of the Combiner, however the performance of

this version of the program is almost 300% improved (see Section 5.5). One of the reasons for this

better performance is that the combiner would need to first sort the data by key (even if there are no

indexes on the output variable, there is an implicit key in the MapReduce program).

The other reason for improved performance is the lack of spilled records. In Hadoop, map records

are collected in memory and when the buffer fills, it spills the records to disk. When several spill

files exist the framework calls the Combiner. By locally aggregating the data in Boa first, we avoid

generating a large number of output records and thus avoid spilling records and incurring the extra I/O.

Here we outline an algorithm to perform such query optimizations. We call this optimization task-

level combiners. The algorithm is shown in Algorithm 1. The idea is to take queries of the form shown

in the first program and automatically transform them to the second form, thereby performing task-local

aggregation on the data and minimizing how often the combiner is triggered.

The algorithm finds output variables using a sum aggregator and inserts a local combiner variable,

initialized to 0. It then rewrites all emit statements for the output variable to instead increment the local

counter. At the end of the program it then emits that local counter.

The current algorithm is specific to the sum aggregator and only works on output variables without

33

Algorithm 1 Task-level Combiner Optimization

1. For each output variable v using a sum aggregator

(a) Insert a local combiner variable (with a fresh name) at the start of the program
_local_v := 0;

(b) Re-write all emit statements (v << expr;) to use the local combiner variable
_local_v = _local_v + (expr);

(c) Output the local combiner variable at the end of the program
if (_local_v > 0) v << _local_v;

indices. It is relatively straight-forward to extend the algorithm to other aggregators. For example, a

top (or bottom) aggregator would require a local list of N top/bottom elements, emit statements would

simply update that list, and at the end of the program emit the list’s elements. Extending to support

indices would require the caching variable be a map.

4.3 Task Fusion

While the previous optimizations focused on single programs, Boa is a multi-user environment. We

can take the notion of multi-query optimization [13–15,80,83,84] and extend it to the MapReduce world

by providing several optimizations in this context. Our first optimization strategy for tasks executing

in a multi-user cluster is to perform task fusion. Task fusion takes its name from loop fusion, which is

a compiler optimization for joining the bodies of two or more loops together into a single loop. This

is done to increase data locality. We extend this notion to the MapReduce [28] world, specifically for

Hadoop [9] implementations.

Task fusion takes two or more Hadoop tasks and fuses them into a single task. This is done to

increase data re-use and avoid having to re-read the input data for each individual task. By fusing tasks

together, we only have to pay the cost of reading the input data once. For example, in Boa this input

data is the almost 700k software projects from SourceForge, which on disk (in compressed form) is

over 2GB of data. Reading input data represents a large overhead such systems.

At a high level, task fusion works by taking two or more MapReduce tasks and merging them

together. Each MapReduce task has one mapper and one reducer (left side of Figure 4.1). What is fused

together are the individual mappers, thus giving a program with a single mapper and multiple reducers

34

map_1

map_n

reduce_1

reduce_n

map_1
...

map_n

reduce_1

reduce_n

... ...

Figure 4.1: Overview of task fusion. Dashed boxes represent a single MapReduce job. Solid boxes are
individual mapper/reducer tasks.

(right side of Figure 4.1).

1 class FusedTasks extends Mapper {
2 class Task1 extends Mapper {
3 void map(Text key, BytesWritable val, Context ctx) {
4 .. // original code, with output vars renamed
5 }
6 }
7 ...
8 class TaskN extends Mapper {
9 void map(Text key, BytesWritable val, Context ctx) {

10 .. // original code, with output vars renamed
11 }
12 }
13 Task1 t1 = new Task1();
14 ...
15 TaskN tN = new TaskN();
16 void map(Text key, BytesWritable val, Context ctx) {
17 try { t1.map(key, val, ctx); } catch ...
18 ...
19 try { tN.map(key, val, ctx); } catch ...
20 }
21 }

Figure 4.2: Code generated when fusing tasks

To fuse the maps together, code similar to Figure 4.2 can be generated. In this figure, we generate

the class FusedMaps which is declared as a Hadoop Mapper. This class contains nested classes, one

for each of the tasks being fused. Instances of each class are created, and then the map method contains

calls to the map methods of each nested class. These calls are wrapped in try/catch blocks so runtime

errors from one task can not impede the execution of another task.

In order to generate code to perform task fusion, several assumptions must hold:

1. The same input data for all tasks

2. No shared state (shared classes, static fields, etc)

35

3. No side-effects (writing to files, output from mappers, etc)

4. No dependency conflicts (different versions of libraries)

Boa satisfies all of these assumptions by design. All Boa programs have the same input (of type

Project) so assumption 1 holds. Boa’s source language has no notion of class, so assumption 2

holds as long as the code generation is careful to avoid using shared classes and static fields (which it

does). The language has no capability of writing to files and the output to reducers can be controlled to

avoid conflict when fusing, thus assumption 3 holds. There is also no notion of library in Boa and all

generated programs have the exact same set of dependencies, thus assumption 4 holds.

The assumption on having mappers generate no output can be relaxed, but requires special handling

when automatically generating code for task fusion. Consider Boa, where the only output allowed is

to output variables. An output variable is a special variable designed to have values emitted to it. It

then aggregates those values together using the function specified in its variable declaration. Example

functions include sum, top, set, and collection. For example, consider the output variable declaration

counts: output sum of int;

which declares the output variable counts. This variable aggregates using the sum function and

accepts values of type int. Values can be emitted to the variable

counts << 1;

and the variable will sum all emitted values and generate their sum as output.

Boa’s compiler transforms these variables into Hadoop reducers. The emit statement shown before

generates Hadoop code that writes to the map’s context

context.write("counts", 1);

giving both the output key (“counts”) and the value (1).

With task fusion however, a rewrite is needed to avoid potential conflicts of two tasks using the

same output variable name. Thus the output variables are renamed with a prefix of the task number

context.write("1:counts", 1);

which ensures all values are grouped by the proper key. A custom partitioner class (see Figure 4.3) uses

the task prefix in the key to then send all output for a task to the same reducer. Each reducer in Hadoop

36

writes output to its own file, and thus this strategy ensures that each original task also has its output in

its own file which ensures the process is transparent to the users.

1 public class TaskFusionPartitioner extends Partitioner {
2 public int getPartition(Text key, BytesWritable value, int n) {
3 String str = key.toString();
4 int splitPos = str.indexOf(":");
5 return Integer.parseInt(str.substring(0, splitPos));
6 }
7 }

Figure 4.3: A custom partitioner for fused tasks

This special handling of output variables allows Boa to satisfy all assumptions previously mentioned

and Boa’s compiler can perform task fusion on multiple source programs from different users.

4.4 Visitor Fusion

In Boa, there are actually two forms of input: the Project metadata, which is given as input to the

map tasks, and optionally AST nodes from source files in the code repositories. Reading this AST data

is an additional opportunity for optimization. In this section, we outline visitor fusion which aims to

reduce the overhead of reading the AST nodes on disk multiple times, by merging more than one source

code analysis together.

Visitor fusion is complicated by the presence of the stop statements. A stop statement may appear

in before clauses and is similar to a return statement. Unlike return statements, stop statements also tell

the visitor to stop the traversal of the tree and to not visit any of the current node’s children.

The basic algorithm for visitor fusion is given in Algorithm 2. First, each visitor must be alpha-

renamed to ensure there are no duplicate variable names after fusing. Then each visitor that will be

fused needs transformed to remove stop statements (see Algorithm 3). Then type lists and wildcards

are desugared into single type visits. Finally for each node type in the language, if a visit before or after

clause matches that type in more than one visitor, those clauses are merged together.

Transforming the stop statements requires a bit more effort. First, a counter must be added. This

counter keeps track of the depth at which a stop statement occurred, so that we can continue traversing

down the tree and know when we come back to where the stop statement occurred. This allows fused

visitors to visit the children, which may be necessary in one visitor but not the other.

37

Algorithm 2 Visitor Fusion

1. For each visitor to be fused

(a) Alpha-rename all variables to fresh names

(b) Transform all stop statements (see Algorithm 3)

(c) Transform type lists and wildcards to single types

2. For each node type in the language

(a) fuse all matching before clauses in all visitors

(b) fuse all matching after clauses in all visitors

Algorithm 3 Stop Statement Transformer

1. add _stop: int = 0; to the start of the program

2. for all before clauses containing a stop statement

(a) lift the body into a new function in the containing scope

i. add _stop++; before each _stop; statement

ii. replace _stop; statement with return;

(b) replace the original body with

i. if (_stop > 0) _stop++;

ii. a call to the new function

3. for each node type T matched by a before clause in step 2, for each node type T ′ reachable via
type T

(a) wrap body in a guard: if (_stop == 0) { body }

4. for each node type T matched by a before clause in step 2

(a) if there is a matching after T -> body replace with:
1 after T -> {
2 if (_stop == 0) { body }
3 if (_stop > 0) stop--;
4 }

(b) otherwise, add a new after clause
1 after T -> if (_stop > 0) _stop--;

The next step is to identify the before clauses that contain stop statements. The bodies of these

clauses are lifted into a new function and replaced with a guarded increment of the counter and a call

38

to that function. The stop statements in the function are then transformed into incrementing the counter

and a return statement.

As an example consider the following code:

39

1 before node: ChangedFile ->
2 if (!iskind("SOURCE_JAVA_JLS", node.kind))
3 stop;

which has a single before clause with a stop statement. This code would be transformed into:

1 stop: int = 0;

2 stopfunc := function(node: ChangedFile) {
3 if (!iskind("SOURCE_JAVA_JLS", node.kind)) {
4 stop++;
5 return;
6 }
7 };

8 visit(p, visitor {
9 before node: ChangedFile -> {

10 if (stop > 0)
11 stop++;
12 stopFunc(node);
13 }
14 after node: ChangedFile ->
15 if (stop > 0)
16 stop--;
17 });

where a new counter has been added, the before clause’s body was lifted into a function where the stop

statement was transformed, and a new after clause was added to handle decreasing the counter.

If the original code also had another clause which is reachable via a previously transformed clause

(it is possibly in the subtree of the previous clause) it must be guarded. For example, a Method might

possibly be below a ChangedFile, so the clause:

1 before node: Method ->
2 if (len(node.arguments) > 0)
3 MethodsWithArgs << 1;

must now be guarded. The guard will check if the counter is 0. If it is not, then we know we are visiting

a node below a point where the traversal was stopped and thus the code should not execute.

Finally we have to modify any after clause with a type that matched a previously transformed before

clause. The body of the after clause must be guarded, in case we previously stopped traversal. The after

clause also updates the counter by decreasing to indicate we are moving up the tree.

4.5 Limitations

Currently, the project combiner optimization only works for sum aggregators. Additionally, the

output variable can not contain any indices. In the future we plan to extend the optimization to these

40

additional use cases.

Task fusion currently requires the following assumptions:

1. No shared state (shared classes, static fields, etc)

2. No side-effects (writing to files, output from mappers, etc)

3. No dependency conflicts (different versions of libraries)

We plan to relax some of these assumptions in the future, by investigating how frameworks like

OSGi use separate class spaces to allow modules to load conflicting dependencies and shared state. We

also plan to add rewrites for file outputs, similar to how we rewrite map outputs.

There are several limitations to visitor fusion:

Input tasks can not have compile errors This limitation comes from the need to map error

messages back to the original task generating that error. If fusion is applied to several tasks and they

contain errors, then we need to notify the original authors of each task of just their own errors.

Our implementation in Boa avoids this limitation by simply compiling each task individually once,

immediately after it is submitted, and only queuing tasks for fusion if they compiled without error. This

also gives immediate feedback on compile errors, so users do not need to wait in the queue before seeing

them.

Tasks can not cause runtime errors Unlike the previous limitation, this limitation can not be

statically checked by the compiler. Since visitor fusion actually merges the bodies of several tasks

together, if one of them causes a runtime exception then it will stop the execution of all tasks fused with

it. Our current implementation in Boa handles this limitation in a simple manner: if a fused execution

finishes with any runtime error, we simply re-run each task individually.

In the future, we plan to modify the code generation such that each task gets a boolean variable to

indicate if an error has occurred. Then each block from a task will be wrapped in a try/catch, setting the

variable to true on exception. These try blocks will be guarded, and only run if there was no previous

error. This would allow individual tasks to produce an error while allowing other tasks merged in with

them to continue.

41

All visits must start at the same point We need to ensure that each node is visited exactly the

same number of times as in the non-fused tasks. This means that if two visitors started visiting from

different points and they were fused, certain nodes would have the wrong number of visits. The simplest

solution is to ensure that all visitors being merged start at the same point - the root node Project.

In the future, this limitation could be relaxed by augmenting the visited code with a boolean guard.

This boolean would only be set to true once the fused visitor reaches the original starting point. Each

fused visitor would then have its own boolean and its visit clauses would all be guarded by it.

All fused visitors must be used exactly once This limitation is similar to the previous limitation.

To ensure nodes are visited the correct number of times, merged visitors must be used exactly once. For

example, if a visitor is inside a loop or a conditional block we don’t fuse it. Likewise, if more than one

visit is started using a visitor, we don’t fuse it.

In the future, more program analysis can be performed to perhaps generate both fused and unfused

visitors and choose at runtime which to use. For example, it may make sense to use a fused visitor

inside a loop on the first iteration, and then switch to unfused for the remainder.

42

CHAPTER 5. EVALUATION

This section presents our empirical evaluation of both the Boa language and infrastructure. First we

look at how applicable the language is for research by asking and answering several mining tasks across

multiple categories. We then evaluate if the infrastructure scales as the size of the data and number

of nodes increases. We evaluate our chosen storage strategy against alternatives. Next we evaluate

the optimizations shown in the previous chapter. Finally we evaluate both the reproducibility of the

framework and the readability of the language via small controlled experiments.

5.1 Setup

All programs were executed on a Hadoop [9] 1.2.1 install with 1 name node, 1 job tracker node,

and 6 compute nodes. The compute nodes are five Core2 Quad 2.66GHz machines with 8GB ram and

a single 24-core 1.9GHz machine with 64GB ram. All machines run Ubuntu 12.04LTS. The cluster has

been tuned for performance, including setting the maximum number of map tasks for each compute

node equal to the number of cores on that node, increasing the VM heap size to 1GB per task, and

enabling short-circuit local reads in the distributed filesystem.

Metric Count
Projects 699,331

Repositories 494,158
Revisions 15,063,073

Files 69,863,970
File Snapshots 147,074,540

AST Nodes 18,651,043,238

Table 5.1: Metrics for the SourceForge-based dataset in Boa.

The dataset used for evaluation contains all metadata about all SourceForge projects (700k+1) and
1This includes “user” projects, which aren’t listed on the main website.

43

repository metadata for only the Subversion and CVS repositories. The dataset also contains informa-

tion on Java source files (files with the extension “.java”) that parse without error. Note this may include

semantically-invalid source files (as long as they parse).

Table 5.1 shows the metrics for this dataset. The dataset contains almost 700k projects, almost 500k

code repositories with over 15 million revisions, information on almost 70 million unique files with

over 140 million snapshots of those files, and over 18 billion AST nodes!

5.2 Applicability

Our main claim is that Boa is applicable for researchers wishing to analyze ultra-large-scale soft-

ware repositories. In this section we investigate this claim.

Research Question 1: Does Boa help researchers analyze ultra-large-scale software repositories?

To answer this question, we examined a set of tasks (see Table 5.2) that cover a range of different

categories. For each task, we implemented a Boa program to solve the task. We also implemented small

Java programs to solve the same tasks. The Java programs were written by an expert in mining software

repositories and then reviewed by a second person who is an expert in programming languages. The

second person performed a code review and also simplified and condensed the programs to decrease

the total lines of code as much as reasonably possible without impacting performance. This process

substantially reduced (almost by half) the lines of code for the Java versions.

The Java programs were not written as Hadoop programs. Writing the programs in Hadoop would

have added substantial additional complexity and lines of code to these programs.

We were interested in investigating how Boa helps researchers along three directions: 1) are pro-

grams easier to write, 2) do those programs take (substantially) less time to collect the data, and 3) is

the language expressive enough to solve such tasks. For each task, we collected two metrics:

• Lines of code (LOC)2: the amount of code written

• Running time (RTime): the time to collect the data

All results are shown in Table 5.2. The lines of code give an indication of how much effort was

required to solve the tasks using each approach. For Java, the tasks required writing 32–107 lines of
2Ignores comments and blank lines. http://reasoning.com/downloads.html

http://reasoning.com/downloads.html

44

L
O

C
R

Ti
m

e
(s

ec
)

Ta
sk

Ja
va

B
oa

D
iff

Ja
va

B
oa

Sp
ee

du
p

A
.P

ro
gr

am
m

in
g

L
an

gu
ag

es
1.

W
ha

ta
re

th
e

te
n

m
os

tu
se

d
pr

og
ra

m
m

in
g

la
ng

ua
ge

s?
61

4
15

.2
5x

60
2

21
28

.6
7x

2.
H

ow
m

an
y

pr
oj

ec
ts

us
e

m
or

e
th

an
on

e
pr

og
ra

m
m

in
g

la
ng

ua
ge

?
32

4
8.

00
x

60
3

22
27

.4
1x

3.
In

w
hi

ch
ye

ar
w

as
Ja

va
ad

de
d

to
SV

N
pr

oj
ec

ts
th

e
m

os
t?

89
10

8.
90

x
6,

99
8

21
33

3.
24

x

B
.P

ro
je

ct
M

an
ag

em
en

t
1.

H
ow

m
an

y
pr

oj
ec

ts
ar

e
cr

ea
te

d
ea

ch
ye

ar
?

43
3

14
.3

3x
65

1
21

31
.0

0x
2.

H
ow

m
an

y
pr

oj
ec

ts
se

lf
-c

la
ss

if
y

in
to

ea
ch

to
pi

c
pr

ov
id

ed
by

So
ur

ce
Fo

rg
e?

45
4

11
.2

5x
55

6
23

24
.1

7x
3.

H
ow

m
an

y
Ja

va
pr

oj
ec

ts
us

in
g

SV
N

w
er

e
ac

tiv
e

in
20

11
?

66
6

11
.0

0x
5,

05
3

24
21

0.
54

x
4.

In
w

hi
ch

ye
ar

w
as

SV
N

ad
de

d
to

Ja
va

pr
oj

ec
ts

th
e

m
os

t?
10

7
6

17
.8

3x
4,

88
0

22
22

1.
82

x
5.

H
ow

m
an

y
re

vi
si

on
s

ar
e

th
er

e
in

al
lJ

av
a

pr
oj

ec
ts

us
in

g
SV

N
?

60
5

12
.0

0x
4,

63
6

22
21

0.
73

x
6.

H
ow

m
an

y
re

vi
si

on
s

fix
bu

gs
in

al
lJ

av
a

pr
oj

ec
ts

us
in

g
SV

N
?

76
6

12
.6

7x
10

,7
50

22
48

8.
64

x
7.

H
ow

m
an

y
co

m
m

itt
er

s
ar

e
th

er
e

fo
re

ac
h

Ja
va

pr
oj

ec
tu

si
ng

SV
N

?
69

6
11

.5
0x

10
,8

21
24

45
0.

88
x

8.
H

ow
m

an
y

Ja
va

pr
oj

ec
ts

us
in

g
SV

N
do

es
ea

ch
co

m
m

itt
er

w
or

k
on

?
72

9
8.

00
x

10
,4

35
22

47
4.

32
x

9.
W

ha
ta

re
th

e
ch

ur
n

ra
te

s
fo

ra
ll

Ja
va

pr
oj

ec
ts

th
at

us
e

SV
N

?
68

5
13

.6
0x

10
,4

31
22

47
4.

14
x

10
.H

ow
di

d
th

e
no

.o
fc

om
m

its
fo

rJ
av

a
pr

oj
ec

ts
us

in
g

SV
N

ch
an

ge
ov

er
ye

ar
s?

79
6

13
.1

7x
10

,4
89

27
38

8.
48

x
11

.F
or

al
lJ

av
a

pr
oj

ec
ts

us
in

g
SV

N
,w

ha
ti

s
th

e
di

st
ri

bu
tio

n
of

co
m

m
it

lo
g

le
ng

th
?

82
6

13
.6

7x
10

,5
18

28
37

5.
64

x

C
.L

eg
al

1.
W

ha
ta

re
th

e
fiv

e
m

os
tu

se
d

lic
en

se
s?

63
4

15
.7

5x
47

4
22

21
.5

5x
2.

H
ow

m
an

y
pr

oj
ec

ts
us

e
m

or
e

th
an

on
e

lic
en

se
?

32
4

8.
00

x
52

2
21

24
.8

6x

D
.P

la
tfo

rm
/E

nv
ir

on
m

en
t

1.
W

ha
ta

re
th

e
fiv

e
m

os
ts

up
po

rt
ed

op
er

at
in

g
sy

st
em

s?
61

4
15

.2
5x

46
9

23
20

.3
9x

2.
W

ha
ta

re
th

e
pr

oj
ec

ts
th

at
su

pp
or

tm
ul

tip
le

op
er

at
in

g
sy

st
em

s?
33

4
8.

25
x

59
7

22
27

.1
4x

3.
W

ha
ta

re
th

e
fiv

e
m

os
tp

op
ul

ar
da

ta
ba

se
s?

61
4

15
.2

5x
49

8
22

22
.6

4x
4.

W
ha

ta
re

th
e

pr
oj

ec
ts

th
at

su
pp

or
tm

ul
tip

le
da

ta
ba

se
s?

32
4

8.
00

x
55

8
22

25
.3

6x
5.

H
ow

of
te

n
is

ea
ch

da
ta

ba
se

us
ed

in
ea

ch
pr

og
ra

m
m

in
g

la
ng

ua
ge

?
71

5
14

.2
0x

59
8

21
28

.4
8x

Ta
bl

e
5.

2:
Se

ve
ra

le
xa

m
pl

e
m

in
in

g
ta

sk
s,

w
ith

lin
es

of
co

de
an

d
ex

ec
ut

io
n

tim
es

(i
n

se
co

nd
s)

fo
rb

ot
h

Ja
va

an
d

B
oa

pr
og

ra
m

s
so

lv
in

g
th

e
ta

sk
s.

45

code and on average required 62 lines of code. Performing the same tasks in Boa required at most 10

lines of code and on average less than 5 lines of code. Thus there were 8–18 times fewer lines of code

when using Boa.

Not shown in the table was the fact the Java programs also required using several libraries (for

accessing SVN, parsing JSON data, etc). The Boa programs abstracted away the details of how to mine

the data and thus the user was not required to use these additional, complex libraries.

The table also lists the time required to run each program and collect the desired data for the tasks.

Note the Java programs accessed all JSON and SVN data from a local cache and the times do not

include any network access. For the Java programs, there are three distinct groups of running times.

The smallest times (A.1, A.2, B.1, B.2, and all of C and D) are tasks that only require parsing the project

metadata and did not access any SVN data. The medium times (A.3, B.3, B.4, and B.5) accessed the

SVN repositories but only required mining one (or very few) revisions. The largest times (B.6–B.11)

all accessed the SVN repositories and mined most of the revisions to answer the task and thus required

substantially more time. Note that for the Boa programs, all tasks finish on average in 24 seconds,

regardless of the type of task. We see minimum speedups of 20 times but in the best case the Boa

program solves the task over 450 times faster!

Task Java (cached) Java (remote SVNs) Boa Speedup
A.3 6,998 45,793 21 2,180.62x
B.3 5,053 25,690 24 1,070.42x
B.4 4,880 18,700 22 850.00x
B.5 4,636 17,888 22 813.09x
B.6 10,750 95,404 22 4,336.55x
B.7 10,821 85,265 24 3,552.71x
B.8 10,435 95,755 22 4,352.50x
B.9 10,431 88,440 22 4,020.00x
B.10 10,489 100,883 27 3,736.41x
B.11 10,518 88,279 28 3,152.82x

Table 5.3: Time (in seconds) if Java tasks do not cache SVN repositories first.

While the times in Table 5.2 utilize local caches for all data, including SVN repositories, researchers

implementing such tasks might not first cache the SVN data. As such, we again present the times for

all tasks that access SVN in Table 5.3 with the difference being the Java programs now access the SVN

repositories remotely. Compared to this strategy, Boa programs run up to 4,000 times faster! The results

46

clearly show the caching saved significant time, resulting in 10x speedups compared to accessing the

remote SVNs.

5.2.1 Detailed Examples

Figures 5.1–5.4 show four interesting Boa programs used to solve some of the tasks. These pro-

grams highlight several useful features of the language. Code for the remaining programs are shown in

Appendix D.

1 counts: output sum[int] of int;
2 p: Project = input;

3 HasJavaFile := function(rev: Revision): bool {
4 exists (i: int; match(‘.java$‘, rev.files[i].name))
5 return true;
6 return false;
7 }

8 foreach (i: int; def(p.code_repositories[i]))
9 exists (j: int; HasJavaFile(p.code_repositories[i].revisions[j]))

10 counts[yearof(p.code_repositories[i].revisions[j].commit_date)] << 1;

Figure 5.1: Task A.3: Querying years when Java files were first added the most.

Figure 5.1 answers task A.3 and demonstrates the use of a user-defined functions. The function

HasJavaFile (line 3) takes a single Revision as argument and determines if it contains any files

with the extension “.java”. If the revision contains at least one such file it returns true. This function

is used in the exists statement (line 9) as the boolean condition.

1 counts: output sum of int;
2 p: Project = input;

3 exists (i: int; match(‘^java$‘, lowercase(p.programming_languages[i])))
4 foreach (j: int; p.code_repositories[j].url.kind == RepositoryKind.SVN)
5 foreach (k: int;isfixingrevision(p.code_repositories[j].revisions[k].log))
6 counts << 1;

Figure 5.2: Task B.6: Querying number of bug-fixing revisions in Java projects using SVN.

Figure 5.2 answers task B.6 and makes use of the built-in function isfixingrevision (line 5).

The function uses a list of regular expressions to match against the revision’s log. If there is a match,

then the function returns true indicating the log most likely was for a revision fixing a bug.

Figure 5.3 answers task C.1 and makes use of a top aggregator (line 1). The emit statement (line 4)

now takes additional arguments giving a weight for the value being emitted. The top aggregator then

47

1 counts: output top(5) of string weight int;
2 p: Project = input;

3 foreach (i: int; def(p.licenses[i]))
4 counts << p.licenses[i] weight 1;

Figure 5.3: Task C.1: Querying the five most used licenses.

selects the top N results that have the highest total weight and gives those as output.

1 counts: output sum[string][string] of int;
2 p: Project = input;

3 foreach (i: int; def(p.programming_languages[i]))
4 foreach (j: int; def(p.databases[j]))
5 counts[p.programming_languages[i]][p.databases[j]] << 1;

Figure 5.4: Task D.5: Querying pairs of how often each database is used in each programming language.

Figure 5.4 answers task D.5 and makes use of a multi-dimensional aggregator (line 1) to output pairs

of results. Again, the emit statement (line 5) is modified. This time, the statement requires providing

multiple indexes for the table.

5.2.2 Results Analysis

We also show some interesting and potentially useful results from four of the tasks. For example,

Figure 5.5 shows the results of Task A.1 and charts the ten most used programming languages on

SourceForge. 9 of the 10 languages appear in the top-12 of the TIOBE Index [22]. Languages such

as Visual Basic did not appear in our results despite being #6 on the TIOBE index. This demonstrates

that while the language is popular in general, it is not popular in open source. Similarly Objective-C

did not appear in our results, as most programs written in Objective-C are for iOS and are (most likely)

commercial, closed-source programs, or not typically hosted on SourceForge.

The results of Task B.7 are shown in Figure 5.6. Note that the y-axis is in logarithmic scale. These

results show that a large number of open-source projects have only a single committer. Generally, open-

source projects are small and have very few committers and thus problems affecting large development

teams may not show when analyzing open-source software.

Task B.8 looks at this data from the other angle. Figure 5.7 shows the number of projects each

unique committer works on. Again, the vast majority of open-source developers only work on a single

48

java c++ php c python c# java-
script

perl unix
shell

delphi/
kylix

0

10,000

20,000

30,000

40,000

50,000

60,000

50,692

40,934

32,696
30,580

15,352 15,305
12,748

9,783

4,379 3,842

N
u

m
b

er
 o

f
P

ro
je

ct
s

Figure 5.5: Task A.1: Popularity of programming languages on SourceForge.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+

1

10

100

1,000

10,000
9,189

2,190

1,020
625

333
244

153 141
90

66
42 47 38 33

21
31 28

15
20

213

Number of Committers

N
u

m
b

er
 o

f
P

ro
je

ct
s

Figure 5.6: Task B.7: number of committers in each Java project using SVN. NOTE: y-axis is in
logarithmic scale.

project. Only about 1% of committers work on more than three projects!

Another interesting result came from Task B.11 and is shown in Figure 5.8. This task examines how

many words appear in log messages. First, around 15% of all log messages were completely empty. We

do not investigate the reason for this phenomenon but simply point out how prevalent it is. Second, over

49

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1

10

100

1,000

10,000

100,000

25,690

2,625

587

194

78
37

20

3
5

3 3

1

Number of Projects

N
u

m
b

er
 o

f
C

o
m

m
it

te
rs

Figure 5.7: Task B.8: number of Java projects each SVN committer works on. NOTE: y-axis is in
logarithmic scale.

two thirds of the messages contained 1–15 words, which is less than the average length of a sentence in

English. A normal length sentence in English is 15–20 words (according to various results in Google)

and thus we see that very few logs (12%) contained descriptive messages.

15%

73%

7%
4% 1%

0

1-15

16-25

26-50

51 or more

Figure 5.8: Task B.11: number of words in SVN commit logs for Java projects.

50

5.3 Scalability

One of our claims is that our approach is scalable. We investigate this claim in terms of scaling the

size of the cluster and scaling the size of the input.

Research Question 2: Does our approach scale to the size of the cluster?

To answer this question, we run each of the sample programs listed in Figures 5.1–5.4 using our

SourceForge.net dataset. We fix the size of the input to 700k projects and vary the number of available

map slots in the system from 1–32. Figure 5.9 shows the results of this analysis where each group

represents one of the sample programs, the y-axis is the total time taken in seconds to run the program,

and the x-axis is the number of available map slots in the cluster. Each value is the average of 10

executions.

Task A.3 Task B.6 Task C.1 Task D.5
0

20

40

60

80

100

120

92

102

90 90

57

66

57 57

36
40

36 35

25 27 26 26
21 22 24 2222 23 22 21

1 map 2 maps 4 maps 8 maps 16 maps 32 maps

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

Figure 5.9: Scalability of sample programs. Y-axis is total time taken. X-axis is the number of available
map slots in the cluster.

As one might expect, the Hadoop framework works well with this large dataset. As the maximum

number of map slots increases, we see substantial decreases in execution time as more parallel map

slots are being utilized.

Note that with our current input size of 700k projects, the maximum number of map slots needed is

14. Thus we don’t generally see any benefit when increasing the maximum map slots past that. As we

51

A.1 A.2 A.3 B.1 B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.10 B.11 C.1 C.2 D.1 D.2 D.3 D.4 D.5
1

10

100

1,000

10,000

100,000

Java

Boa Number of Projects (7k, 70k, 700k)

T
o

ta
l

ti
m

e
(s

ec
o

n
d

s)

Figure 5.10: Scalability of input. Y-axis is total time taken. X-axis is the size of the input in number of
projects. NOTE: y-axis is in logarithmic scale.

increase the size of our input dataset however, we would expect to see differences in these data points

indicating scaling past 14 map slots.

Research Question 3: Does our approach scale with the size of the input?

To answer this question, we fix the number of compute nodes to 6 (with a total of 44 map slots

available) and then vary the size of the input (7k, 70k, and 700k projects). The results for all tasks in

Figure 5.2 are shown in Figure 5.10. We compare against the programs written in Java to answer the

same questions. All programs access only locally cached data. Note that the y-axis is in logarithmic

scale.

For the smallest input size (7k) on certain tasks, the Java program runs in around 10 seconds while

the Boa program runs in 15 seconds. At this size Boa only uses one map task and thus the overhead of

Hadoop dominates the execution time. For the larger input sizes, Boa always runs in (substantially) less

time than the Java version.

The results also show that the hand written Java programs do not scale based on input size. As

the input size increases, the running time for the Java programs also increases (roughly linearly). The

Boa programs however demonstrate scalability. For the two smallest input sizes, the Boa programs take

roughly the same amount of time. For the largest input size the Boa programs, despite having to process

an input 100 times larger than the smallest input size, only take around twice as long. This shows that

52

the Boa infrastructure scales well as the input size increases.

5.4 Storage Strategy

As we mentioned earlier, storing the vast amount of data analyzed by Boa is a non-trivial task. In this

section we evaluate the possible storage strategies. For these experiments, the cluster was configured

with HBase 0.94.5. Each compute node in the cluster is an HBase region server and the name node

master also doubles as the HBase master.

Metric Total Mean Max Min
Projects 31,432 - - -
Revisions 4,298,309 136.75 47,384 1
Java snapshots 28,747,948 6.69 16,062 1
AST nodes 18,323,905,323 637.40 1,072,343 1

Table 5.4: Size of the dataset used for evaluation.

Table 5.4 shows the size of the dataset used in our evaluation. This dataset contains project metadata

and source code repositories cloned from SourceForge [3]. While the dataset itself contains metadata

over 700k projects, for the purposes of this section we only look at projects that have at least one valid

Java source file. This leaves over 31k projects with over 4 million revisions, 28 million snapshots of

Java source files, and over 18 billion AST nodes.

5.4.1 Evaluation

In this section, we evaluate the performance of four different storage strategies. As previously

mentioned, due to memory constraints in the map tasks, we needed to split each project’s metadata into

a forest of trees. This splitting resulted in two different read patterns in our system: sequential reading

of the project metadata for use as input to the map tasks and random access reads to mine the ASTs of

individual files.

For each read pattern we have a choice of where to store the data, either storing them in a flat file

or creating a table in HBase. For input to map tasks we either use a flat SequenceFile or an HBase

table where rows are projects and columns are their metadata. For reading ASTs, we either use a flat

53

MapFile or an HBase table where rows are a single revision and columns are ASTs, one per file in the

revision, as was described earlier.

We ran a sample of four mining tasks, including the NullCheck source code example, two tasks

written for our other study [32] (AnnotUse and SafeVarargs), and a task to reproduce another group’s

study [44] (Treasure). For each task, we ran on four different storage strategies:

1. HBase+MapFile represents using HBase for map task input and a MapFile for ASTs.

2. HBase+HBase represents using HBase for both map task input and ASTs.

3. Seq+MapFile represents using a SequenceFile as map input and MapFile for ASTs.

4. Seq+HBase uses a SequenceFile for map input and HBase for ASTs.

The results are shown in Figure 5.11 and are normalized to the first strategy, HBase+MapFile.

Each bar represents a geometric mean of five runs. The results clearly show that the first strategy

(Seq+MapFile) performs the best. The results also show that using HBase for random access to read the

ASTs is substantially slower than using a MapFile. For insights into why this is the case, we present

two figures that were taken from the cluster’s monitoring framework.

Seq+MapFi le Seq+HBase HBase+MapFi le HBase+HBase

NullCheck AnnotUse SafeVarargs Treasure
0 . 0 0

0 . 2 5

0 . 5 0

0 . 7 5

1 . 0 0

1 . 2 5

1 . 5 0

1 . 7 5

2 . 0 0

2 . 2 5

2 . 5 0

N
o

rm
a

li
z

e
d

 T
im

e

Figure 5.11: Performance comparison of MapFile and HBase stores. Results normalized to
Seq+MapFile. Smaller is better.

Figure 5.12 shows the network utilization on the cluster while running two programs. The first

program used a MapFile for ASTs and the second program used HBase. Both programs used a

54

SequenceFile for their map input. As can be clearly seen in the graph, the MapFile version has very

little network utilization. This is because the data is replicated to each compute node and entirely local

for each map task. In contrast, the HBase version clearly shows a lot of network utilization due to

the fact that data must be read from HBase’s daemons, which are not guaranteed to be local to the map

tasks. In fact, even if the data that HBase reads is actually replicated on the local machine, if the daemon

controlling that data is on a remote machine then the data must be read remotely. This is part of HBase’s

architecture and can not be avoided.

Figure 5.12: Network utilization. Note the minimal use by the MapFile store (left) compared to the
HBase store (right).

Figure 5.13 shows the CPU usage across the cluster for the same time-frame. Notice how much

higher the CPU use is for the MapFile based version. The CPU use for the HBase version is much

lower, as the CPU must wait for data to arrive from other nodes. This results in an overall longer running

time, as was shown in Figure 5.11.

55

Figure 5.13: CPU usage across cluster. Left-most group used the MapFile store. Right-most group used
the HBase store.

In summary, our performance evaluation clearly demonstrates the need to use a MapFile for the

random access to ASTs. It also demonstrates that using a SequenceFile for sequential reads of

project metadata is superior. Based on this information, Boa now uses HBase tables when processing

and storing the data and from those tables generates the flat-files for use when querying.

5.5 Task-level Combiners Performance

In Section 4.2 we outlined an optimization strategy called task-level combiners. In this section we

evaluate the performance benefit of this optimization. Recall the example program to count AST nodes:

1 p: Project = input;
2 count: output sum of int;

3 visit(p, visitor {
4 before _ -> count << 1;
5 before Project, CodeRepository, Revision, ASTRoot, Person -> ;
6 });

which we will use in this section to evaluate the performance. We run this program three times: once

with Hadoop’s combiners disabled, once with combiners enabled, and once with task-level combiners

enabled (which implies Hadoop combiners are enabled). The results are shown in Table 5.5.

Optimization Time
No Combiner 43h 48m 58s
Combiner 1h 8m 13s
Task-level Combiner 15m 25s

Table 5.5: Time to execute task without combiners, with combiners, and with task-level combiners.

56

The results clearly show the benefit of Hadoop’s combiners. With no combiners enabled, the task

takes almost 44 hours! Once Hadoop’s combiners are enabled, the task time drops to a little over 1 hour,

a 44x improvement. Task-level combiners improved even further, taking only 15 minutes (or 4.5x faster

than combiners only)! To investigate further why these approaches are faster, we look at what the I/O

in the system is doing.

Table 5.6 shows some of the I/O characteristics on the cluster. The first row shows the number of

outputs coming from all map tasks. The second row shows the number of bytes read and written on

the local filesystems of each compute node. The third row shows the number of records sent to the

combiner and output from the combiner.

No Combiner Combiner Task-level Combiner
Map Outputs 18.6B 18.6B 65K

Bytes Read / Written 92G / 109G 3.5M / 16.6M 2K / 13M
Combiner Input / Output - / - 18.6B / 71K 65K / 214

Table 5.6: Number of map outputs, number of local filesystem bytes read/written without combiners,
and number of inputs/outputs to the combiner, with combiners, and with task-level combiners.

The table clearly shows why the combiner is 44x faster: the amount of bytes read/written is substan-

tially lower. Without combiners there is almost 100GB read/written, while with combiners that drops

to a few MB. Notice however the number of outputs from the maps is the same (18.6 billion) without

combiners as with combiners. Task-level combiners however have only 65K map outputs. This is simi-

lar to the number of outputs leaving the combiner (71K) in the previous optimization. Notice that with

task-level combiners, the total number of outputs from the combiner is 214 meaning the final reducer

only has 214 inputs! This means very little data is transmitted and the reducer takes less time.

5.6 Task and Visitor Fusion Performance

In this section we evaluate how our two optimization strategies, task fusion and visitor fusion,

perform by comparing three large studies. Each study has around 20 different tasks and we show the

execution times for each task in Tables 5.7, 5.9, and 5.11. Each row in the result tables represents 10

runs. We provide basic statistical analysis on the data, including max/min, mean, median, variance, etc.

In total there are over 60 tasks which vary in execution time from around 50 seconds up to almost

57

30 minutes. For each study we note how long it takes to execute all tasks in that study sequentially. We

then manually merge all tasks into a single, monolithic task which we attempt to hand optimize. The

performance of this manually merged task is then compared to our two optimization strategies, which

are both fully automatic.

5.6.1 Performance Study I: Boa Examples

For our first study, we investigate the example Boa tasks from the original paper [31]. These tasks

only analyze the project and repository metadata and do not analyze any source code from the reposito-

ries 3. The results for this study are shown in Table 5.8. Note that all tasks individually take under one

minute to execute (see Table 5.7).

Example Boa tasks [31]
Task Mean Median Max Min StdDev Variance

A1. Top-10 Programming Languages 52.10 52 56 48 2.92 8.54
A2. Projects Using Multiple Languages 51.10 50 56 47 2.73 7.43
A3. Year Java Added to Projects the Most 50.50 50 55 45 2.72 7.39
B1. Projects Created Each Year 53.60 54 57 49 2.80 7.82
B2. Topics of Each Project 52.30 53 54 50 1.64 2.68
B3. Active Java Projects in 2011 52.40 52 56 50 2.12 4.49
B4. Most Popular Year Adding SVN 50.80 51 53 49 1.40 1.96
B5. Revisions in SVN Java Projects 50.00 50 59 44 4.62 21.33
B6. Number of Fixing Revisions 54.40 55 57 51 2.17 4.71
B7. Number of Committers 55.20 56 58 49 2.82 7.96
B8. Number of Projects for Each Committer 52.60 53 56 47 2.22 4.93
B9. Average Churn Rate 55.50 55.5 62 50 4.14 17.17
B10. Change in Number of Committers 56.40 57.5 62 50 3.95 15.60
B11. Commit Log Lengths 54.40 54.5 58 50 2.72 7.38
C1. Top-5 Licenses 50.90 50.5 53 50 1.20 1.43
C2. Projects Using Mulitple Licenses 50.10 50 53 47 1.79 3.21
D1. Top-5 OSes 52.20 51 56 50 2.25 5.07
D2. Projects Supporting Multiple OSes 52.60 52 57 48 2.88 8.27
D3. Top-5 Databases 49.90 50 53 47 2.23 4.99
D4. Projects Supporting Multiple DBs 50.00 49 54 47 2.75 7.56
D5. DB use in each PL 52.00 53 55 47 2.21 4.89

Table 5.7: Execution times (in seconds) for example Boa tasks

For this study, the time to run all tasks sequentially (shown in the first row) is over 18 minutes. This
3At that time, Boa did not yet have source code analysis capabilities.

58

Task Mean Median Max Min StdDev Variance
Sequential 1108.33 1109 1179 1042 44.52 1982.00
Manually Merged 50.80 52 53 47 2.39 5.73
Task Fusion 69.20 69 75 64 3.58 12.84
Task Fusion + Visitor Fusion 71.80 72.5 77 66 3.46 11.96

Table 5.8: Execution times (in seconds) for example Boa tasks [31]

time represents how long the system would take to execute all of the tasks without any of the optimiza-

tions described in this paper. As long as our approaches are less than this time we have improved the

overall system performance.

Next we list the manually merged time. This is a special program, hand-written to merge all of the

tasks together. While writing this task, we made sure to optimize as much as possible. For example,

several tasks iterate over the same data so we manually joined those loops. This task thus represents a

best-case scenario, and provides a lower goal for our optimizations. For this study, the manually merged

task took 50 seconds.

Finally, we show the execution time of the tasks when compiled using automated task fusion. Note

that this required no manual merging, but rather simply passing each individual source file to the com-

piler. This version executes in 69 seconds, which is 16 times faster than the sequential version!

Adding visitor fusion to this work load does not help as these particular tasks contain no visitors.

The visitor fusion algorithm thus simply merges each tasks individual map functions together into one

monolithic function and the running time is comparable to only using task fusion.

5.6.2 Performance Study II: Java Feature Use

For our second study, we investigate tasks to measure Java language feature use [32]. These tasks

analyze the Java source code to identify how various language features are used over time. The results

for this study are shown in Table 5.10. Note that the individual tasks for this study take 15–30 minutes

each (see Table 5.9), which is substantially longer than the previous study’s tasks.

Running this study’s 18 tasks sequentially requires over 4.5 hours to complete. The manually

merged version is 7 times faster than the sequential, taking just under 40 minutes. Note that when

making the manual version for this study, we were not able to fully optimize the visitors by hand. One

of the visitors (from J6) was extremely complex and contained multiple stop statements and custom

59

Java feature use study [32]
Task Mean Median Max Min StdDev Variance

J1. Assert 857.00 865 896 806 32.59 1062.00
J2. Annotation Declaration 827.10 828 863 742 36.20 1310.32
J3. Annotation Use 1474.80 1491.5 1513 1408 38.23 1461.29
J4. Enhanced For Loop 1770.20 1693.5 2153 1624 189.89 36056.40
J5. Enums 835.40 844.5 867 735 38.27 1464.93
J6. Generic Variable 954.10 962 1004 857 46.15 2129.88
J7. Generic Method 817.30 829.5 865 740 40.12 1610.01
J8. Generic Type 837.50 840 873 783 30.16 909.83
J9. Extends Wildcard 876.60 884 917 818 33.22 1103.38
J10. Super Wildcard 863.40 866.5 904 824 25.71 661.16
J11. Other Wildcard 901.50 910 931 812 34.06 1160.28
J12. Varargs 842.10 844 908 757 47.59 2264.77
J13. Binary Literals 857.50 865.5 880 827 20.26 410.50
J14. Diamond 848.60 860 885 801 31.07 965.16
J15. MultiCatch 805.90 814.5 857 722 55.19 3045.43
J16. Safe Varargs 837.30 844 871 788 25.96 673.79
J17. Try with Resources 834.40 833.5 861 807 20.99 440.49
J18. Underscore Literals 1367.10 1340 1454 1301 60.79 3695.43

Table 5.9: Execution times (in seconds) for Java feature study tasks

Task Mean Median Max Min StdDev Variance
Sequential 17547.33 17487 18502 16628 617.22 380959.50
Manually Merged 2389.20 2361.5 2543 2291 84.43 7128.84
Task Fusion 14260.70 14209 14758 13657 354.01 125319.57
Task Fusion + Visitor Fusion 1891.80 1918.5 2100 1618 156.73 24563.51

Table 5.10: Execution times (in seconds) for the Java feature use study [32]

visit calls. For this visitor, we simply left it un-merged and called it from inside the first visitor. Thus

the running time is close to that of J6 plus the longest running time, J4.

The automated task fusion version shows improvement over the sequential, with a time that is 18%

lower. However when compared to the manual version, there is still room for improvement. Since every

task in this study uses visitors, we also run the visitor fusion. The results of using both task and visitor

fusion on this study actually beat the manual version! The visitor fusion time is 9 times faster than the

sequential and 20% lower than the manual version.

To understand why the automated version is fastest in this case, it is important to realize how much

data is generated as output. These 18 tasks generate over 17GB of output data. With the automated

60

task and visitor fusion algorithms, each individual task has its own reducer generated. Thus for the

automated runs, there were 18 reducers available to process and generate this data. For the manual

version however, it is considered by the compiler as a single task and only gets a single reducer. This

single reducer obviously takes longer than 18 parallel reducers, and thus the manual version is slower.

5.6.3 Performance Study III: Treasure Study

Our next study is on 22 tasks that analyze Java source code [33]. These tasks are a reproduction of a

previous study [44] on the Java language. The results for this study are shown in Table 5.12. Individual

tasks in this study take 6–7 minutes each (see Table 5.11).

Treasure study [44] reproduction [33]
Task Mean Median Max Min StdDev Variance

T1. Classes 373.80 377.5 412 337 22.95 526.84
T2. Static Classes 399.90 411.5 438 339 35.77 1279.43
T3. Anonymous Classes 386.60 372 435 344 31.73 1006.71
T4. Nested Classes 375.10 380.5 407 337 26.22 687.43
T5. Assert Statements 438.20 427 494 406 32.18 1035.73
T6. Methods 391.40 388 428 358 26.93 725.38
T7. Static Methods 389.20 384 444 354 30.88 953.51
T8. Methods (interfaces) 393.20 392 429 345 29.12 847.73
T9. Method Arities 404.20 399.5 431 393 12.28 150.84
T10. void return Methods 386.70 382 428 361 22.12 489.12
T11. Methods Returning Arrays 386.30 386.5 424 359 23.48 551.34
T12. non-void return Methods 386.30 389 428 341 30.46 927.57
T13. Fields 440.90 429 490 416 27.17 738.10
T14. this Expressions 403.20 405 431 353 23.98 575.07
T15. Static Fields 390.70 384.5 442 371 21.53 463.57
T16. Volatile Fields 404.10 407 442 357 28.98 839.66
T17. Conditional Statements 384.20 371.5 436 349 28.54 814.40
T18. String Fields 430.40 429.5 478 404 20.26 410.27
T19. try Statements 432.60 427.5 449 419 11.46 131.38
T20. Exceptions Thrown From catch 447.60 440.5 495 414 31.94 1020.27
T21. Exceptions 385.10 379.5 426 347 29.34 860.99
T22. Local Variables 434.60 427.5 491 413 22.62 511.82

Table 5.11: Execution times (in seconds) for Treasure study tasks

The sequential run of these tasks takes almost 2.5 hours to complete. The manually merged version

takes around 11 minutes to complete, which is 12 times faster.

61

Task Mean Median Max Min StdDev Variance
Sequential 8947.33 8860 9778 8257 508.58 258656.50
Manually Merged 719.60 727 780 631 49.21 2421.60
Task Fusion 5916.80 5890.5 6100 5818 98.07 9617.51
Task Fusion + Visitor Fusion 6387.40 6432 6813 5632 382.54 146336.49

Table 5.12: Execution times (in seconds) for the Treasure study [44] reproduction [33]

Running these tasks with automated task fusion takes a bit over 1.5 hours to complete. It is important

to note that even though task fusion is slower than the manually merged version, its running time is still

about 33% lower than the sequential running time.

Unfortunately, for these tasks adding visitor fusion not only doesn’t help, but makes it take longer

than using task fusion alone. Note however that it is still faster than the sequential version, and thus it

is still an improvement.

The reason visitor fusion fails here is due to the particular tasks. These tasks all get a snapshot (the

last version of each file in a repository) and then manually visit the files from that snapshot. When N of

these are merged, the merged visitor winds up getting N copies of the same snapshot, and then visiting

the snapshot N times. The visitor fusion algorithm is not able to optimize here.

We can however detect when a visitor is manually visiting nodes in such a manner and avoid at-

tempting visitor fusion on them. In this way, we can avoid the slight overhead incurred when merging

such visitors.

5.6.4 Performance Study IV: Mixed Workloads

Since each of the previous studies contained relatively homogenous tasks, in this study we investi-

gate a mixed workload. We create three different workloads (M1, M2, M3) with different mixtures of

tasks from the previous studies. The first workload is mostly fast tasks from the first study. The second

workload is three tasks from each study. The third workload is mostly slow tasks from the second study.

The results are shown in Table 5.13.

There are several interesting results here. First, note the running time for M1. Despite having mostly

fast tasks, the longer tasks dominate the running time. This implies that if it can be avoided, fast and

slow tasks should not be fused together.

Second, notice that in all three workloads our optimizations manage to bring the running time down

62

M1. Mostly Fast (A3 / B4 / B5 / C1 / C2 / D3 / D4 / T20 / J4)
Task Mean Median Max Min StdDev Variance

Sequential 2592.56 2495 3028 2404 234.15 54824.78
Manually Merged 1757.80 1713.5 2111 1628 154.95 24010.84
Task Fusion 1908.90 1974.5 2100 1595 159.45 25424.99
Task Fusion + Visitor Fusion 1884.30 1965.5 2073 1569 179.86 32350.01

M2. Even Distribution (A1 / B9 / D3 / T1 / T16 / T20 / J4 / J15 / J18)
Task Mean Median Max Min StdDev Variance

Sequential 5373.56 5262 5984 4982 356.94 127406.78
Manually Merged 2100.70 2072 2404 1919 146.87 21571.34
Task Fusion 3753.00 3728.5 4005 3338 220.46 48601.11
Task Fusion + Visitor Fusion 2182.30 2193 2320 1981 97.25 9457.34

M3. Mostly Slow (D3 / T1 / T16 / T20 / J4 / J6 / J11 / J15 / J18)
Task Mean Median Max Min StdDev Variance

Sequential 7141.22 7032 7801 6681 391.68 153410.69
Manually Merged 1924.00 1923.5 1984 1811 46.13 2127.56
Task Fusion 5224.40 5211 5621 4794 269.36 72554.27
Task Fusion + Visitor Fusion 2359.20 2362.5 2466 2225 80.73 6517.51

Table 5.13: Execution times (in seconds) for mixed workloads

very close to that of the manually merged version. In one case (M1), task fusion alone is enough. For

the other two workloads however, visitor fusion was needed. For example with M3, task+visitor fusion

is 2.2 times faster than task fusion alone.

5.6.5 Summary

To summarize, task fusion shows substantial improvements over running tasks individually in se-

quence, taking 33% to 93% less time. Additionally, visitor fusion can give further improvements of up

to 7 times faster than using task fusion alone. On a shared, multi-user cluster these optimizations could

allow executing at least three times more tasks without providing additional hardware.

5.7 Reproducibility

One important claim we make is that if researchers publish results obtained from our infrastructure

other researchers can easily reproduce the same results.

63

Research Question 4: Using our infrastructure, can researchers easily reproduce previously pub-

lished results?

To answer this question, we performed a small controlled experiment. We selected a group of 8

researchers: 1 graduate student and 1 post-doc who are experts in software mining and 5 graduate and

1 undergraduate students who are not experts. Each student was given a short tutorial on how to use

our infrastructure as well as the location of Boa source code for 18 tasks.4 This source code represents

what a researcher would publish in their paper, along with the dataset they used.

For each of the 18 tasks, results files were provided. This represents the data the previous researchers

produced. Each student chose 3 tasks they were interested in reproducing and were given a maximum of

1 hour per task. We measured the length of time required to reproduce each task as well as the number

of tries (in case they failed to reproduce the results).

Intro Task 1 Task 2 Task 3
Expert Education Time Task Time Task Time Task Time

Yes Post-doc 6 B.1 1 B.6 4 B.9 3
Yes PhD 5 A.1 3 B.6 2 B.7 6
No PhD 4 B.6 1 B.10 4 B.9 4
No PhD 4 A.2 2 B.6 2 D.5 4
No MS 4 A.1 4 B.6 1 D.3 2
No MS 3 B.6 2 C.1 2 D.4 10
No MS 6 A.1 2 B.7 3 B.10 3
No BS 2 A.2 2 D.1 2 D.3 2

Table 5.14: Study results. All times given in minutes.

The results are given in Figure 5.14 and clearly show that all students were able to reproduce the

previously published results in (substantially) less than one hour. Note that all students were also able

to reproduce the results on their first try. Thus we assert that using only previously published source

code and which dataset was used, other researchers are able to easily reproduce the results.

5.8 Language Comprehension

In this section, we outline a small controlled experiment to determine if our proposed framework

and language extensions make it easier to understand source code mining tasks. Each participant was
4At the start of the study we only had 18 tasks (A.3, B.8, and B.11 missing). For consistency, all participants used the

same set of tasks.

64

given a short survey to indicate their education level, years of professional software development (if

any), and their self-rated experience with the several topics.

• Object-oriented languages, Java, etc

• MapReduce, Hadoop, Boa, etc

• Writing compilers, source code analysis

• Design patterns, visitor pattern, etc

Each participant was then shown, one at a time, a set of 5 source code mining tasks written in Boa.

For each task, they were asked to describe in their own words what the task does. They were given up

to five minutes to study each task and forced to move on if no answer was given after five minutes. The

five tasks were:

Q1 Count AST nodes

Q2 Assert use over time

Q3 Annotation use, by name

Q4 Type name collector, by project and file

Q5 Finding null checks

These answers were graded on a fixed set of criteria. For each question, we determined a list of

criteria that must all be mentioned in order for the answer to be marked correct. For example, for Q1

they had to mention counting only AST nodes (not all nodes) and grouping the count by project.

Then they were shown the same set of 5 tasks again in a random order, only this time instead of

a free-form entry they were given a choice of four descriptions and asked to choose the one that best

fit. Only one of the four descriptions was accurate while the other four varied slightly (to make them

inaccurate). For example, for Q1 only half the responses mention grouping by project. Also only two

responses mention counting only AST nodes.

The results are shown in Table 5.15. A ’Y’ indicates the participant answered correctly, both in

the free-form and the multiple choice. Similarly a ’N’ indicates they answered incorrectly in both.

65

An entry marked ’-Y’ indicates their free-form answer was incorrect while their multiple choice was

correct. Conversely, a ’+N’ indicates their free-form answer was correct and multiple choice answer

incorrect. For the multiple choice, they were also given a choice of ’I am not sure what this task does’

which is indicated in the table as ’?’. We count this as an incorrect answer.

Q1 Q2 Q3 Q4 Q5 Total (multiple-choice) Total (free-form) Time
N Y Y Y Y 80% 80% 12m32s
-Y Y Y Y Y 100% 80% 11m22s
? Y Y Y Y 80% 80% 19m22s

-Y Y Y Y Y 100% 80% 18m21s
? +N Y Y N 40% 60% 11m40s
N Y Y Y -Y 80% 60% 23m01s
N -Y Y Y Y 80% 60% 16m10s
N +N -Y -Y Y 60% 40% 14m50s

Mean 77.5% 67.5% 15m55s

Table 5.15: Controlled experiment on comprehensibility of source code mining tasks in Boa.

On average it took 16 minutes to study these five tasks, or around 3 minutes to comprehend a mining

task in Boa. There are two ways to grade these responses: by considering the multiple choice answers or

by considering the free-form answers. First we grade using the multiple choice responses. The accuracy

of the comprehension was at 77.5% on average. Note however that one of the tasks in particular (Q1)

seemed to give difficulty. Feedback suggested they failed to understand the semantics of the wildcard.

Excluding that task, the accuracy jumps to over 90%.

When grading using free-form answers, five participants scored lower and one scored higher. The

overall average dropped to 67.5%, which is still better than two-thirds. Again, excluding the first task

the accuracy is very high: 80%.

We repeated this experiment with the same participants six months later. In the repeated experiment,

the same five mining tasks were used as in the previous experiment, but this time the source code

implementing the tasks was Java+Hadoop code. The results are shown in Table 5.16. Note that all

results were anonymized so rows do not correlate to rows in Figure 5.15.

Again, participants spent 16 minutes on average to study these tasks. This time however, the accu-

racy of comprehension when grading by multiple-choice was lower at 62.5%, almost 15% lower than

the Boa survey! Note that the participant who scored 100% also marked they had prior experience using

Hadoop.

66

Q1 Q2 Q3 Q4 Q5 Total (multiple-choice) Total (free-form) Time
-Y -Y N -Y -Y 80% 0% 23m44s
? -Y -Y -Y N 60% 0% 10m50s

-Y Y +N Y -Y 80% 60% 23m48s
N Y N -Y N 40% 20% 12m07s
N -Y N N N 20% 0% 12m08s
-Y Y Y Y Y 100% 80% 15m52s
N N Y -Y -Y 60% 20% 18m14s
-Y +N Y N Y 60% 60% 11m17s

Mean 62.5% 30% 16m

Table 5.16: Controlled experiment on comprehensibility of source code mining tasks in Java+Hadoop.

Another interesting result was the number of ’-Y’ responses. There were 15 such responses in the

second survey compared to only 6 in the Boa survey. This may indicate more guessing or possibly a

memory effect where they recalled the answer from taking the Boa survey six months earlier. Due to

this, when grading by free-form responses the participants only scored an average of 30% accuracy.

That is 37.5% lower than the Boa survey!

The results from these studies are extremely promising for two reasons. First, it gives insight that

in only a few minutes most people can comprehend a source code mining task using our approach.

Second, this comprehension comes with no training at all in the new language features! Based on the

feedback, we believe that even a short training session on Boa’s language features would have helped

the participants understand Q1 better.

5.8.1 Threats to Validity

Our comprehension study suffers from selection bias as all participants were graduate students.

We try to offset this bias by selecting participants from several sub-fields of SE/PL. The study also

suffers from testing effects, since each task is given to the participants twice. We offset this effect by

randomizing the presentation order the second time tasks were shown. There is also possible construct

bias as we chose which tasks to present and might inadvertently select only simple tasks. To counter

this, we chose what we considered to be a range from easy to difficult tasks. Finally, there are additional

testing effects since the Java+Hadoop portion of the survey was performed after the Boa portion. This

could actually bias the results in favor of the Java+Hadoop approach.

67

CHAPTER 6. CASE STUDIES

In this section we present two large case studies to demonstrate the usability of Boa. The first

study investigates how Java language features have been adopted over time. The second study is a

reproduction of a Java feature study, but at a much larger scale.

6.1 Java Feature Usage

The Java Language Specification (JLS) [40–43] is the official specification for Java. New editions of

the specification (JLS2–JLS4) are released as the language evolves to add new features. The official Java

platforms (Java Runtime Environment (JRE) and Java Development Kit (JDK); Standard (SE), Mobile

(ME), and Enterprise Editions (EE)) all implement the language based on this official specification.

Changes to the specification are driven by needs from the community. This need often comes in

the form of an official request (a Java Specification Request (JSR)) using the Java Community Process

(JCP). The JSR formally defines what the need is, why the current specification is lacking, and proposes

a solution. Each new language feature has an accompanying JSR and each new edition of the language

has an umbrella JSR to identify the new features.

Currently however, there is little quantitative evidence demonstrating how most of these new lan-

guage features are used in practice. Previous studies have investigated the use of certain Java language

features, e.g. [44] investigated the use of several object-oriented features in Java, such as class, inter-

face, and method usage and [74] investigated the use of generics in Java. Similarly, [58], [23], and [27]

investigated the use of non-language features such as reflection (which in Java, is supported by the run-

time and not the language). However, these studies looked at a relatively small number of Java projects

(around 20), investigated a very small subset of features, or did not investigate their adoption over time.

In this section, we utilize the Boa language and infrastructure [5,31,33] to study Java feature adop-

68

tion over time for 18 language features and on a large corpus of projects. The dataset we query is over

31k projects from SourceForge [3], representing over 9 million unique Java source files, with over 28

million snapshots of those files, which when parsed contain over 18 billion AST nodes.

From this dataset we investigate if features were indeed anticipated by the community, by looking

for their uses before their release dates. Our results show this is true: every feature is used prior to

release. We then investigate how those features are adopted over time along three dimensions: projects,

source code files, and committers using the features. Our results show that while some features are

widely used, many see only limited use.

We then investigate if these features aren’t being used due to lack of opportunity, by defining a set

of mining tasks to locate source code that could potentially use these new features. We find millions

of such cases, both in files existing before the feature’s release date and in new files created after the

feature’s release. This suggests there is room for better tool support to recommend the use of these new

language features or to refactor code to use these features. It also suggests there may be a need for

better training and advertisement of new features. Some of our interesting results include:

• All language features were used prior to their official release, indicating anticipation of such

features.

• All studied features are used, however a few features are clearly the most popular, including: an-

notation use, enhanced-for loops, and variables with generic types. Several features saw minimal

use.

• Developers do refactor existing code to utilize new language features after their release. Thus,

tool support for such refactoring operations and recommendation of code locations to refactor is

important for the community.

• We found many instances where features could have been used, but were not, indicating a need

for better training or IDE support. In fact, some missed opportunities could actually lead to

erroneous behavior.

• Committers tend to adopt new features on an individual basis rather than in a team. This result is

consistent with a previous study [74], but with 100 times more committers.

69

• Most committers use only a small number of new features. A small number of committers account

for the majority of new language feature uses.

Next, we give background on each edition of the JLS and the new language features. Then in

Section 6.1.2 we pose the research questions our study aims to answer. We describe the approach used

in our study in Section 6.1.3 and give the study itself in Section 6.1.4.

6.1.1 Background: Java Language Specifications (JLS)

Since the original edition of the Java Language Specification (JLS) [40], there have been three

updates. In this section we outline some of the changes to the language for each edition. The full list

of features is shown in Table 6.1. Note that new language features are purely additive - each edition is

fully backwards compatible with previous editions.

6.1.1.1 JLS2 New Language Features

The Java Language Specification, edition 2 (JLS2) [41] was a relatively minor update in terms of

new language features. This edition added one new language feature: assert statements.

6.1.1.2 JLS3 New Language Features

The Java Language Specification, edition 3 (JLS3) [42] added several significant language features,

including: annotation types, enhanced-for loops, type-safe enumerations (enums), generic types, and

variable-argument methods (varargs).

6.1.1.3 JLS4 New Language Features

The Java Language Specification, Java SE 7 edition (JLS4) [43] made several changes, including:

binary literals, a diamond operator for generic type inference, allowing catching multiple exception

types, suppression of varargs warnings, automatic resource management, and underscores in literals.

As these features are not as widely known, we detail some of them in this section.

70

JLS2
Assert assert i > 0;

JLS3
Annotation Declaration @interface Test { }

Annotation Use @Test void m() { .. }

Enhanced-For Loop for (T val : items) ..

Enums enum E { N1, ..; }

Generic Variable List<T> l;

Generic Method <T> void m(T a) { .. }

Generic Type interface List<T> { .. }

Extends Wildcard Class<? extends E> c;

Super Wildcard Class<? super S> c;

Other Wildcard Class<?> c;

Varargs void m(T... arg) { .. }

JLS4
Binary Literals int FIVE = 0b101;

Diamond Map<K, V> m = new HashMap<>();

MultiCatch catch (E1 | E2 e) { .. }

Safe Varargs @SafeVarargs

Try with Resources try (File f = new ..) { .. }

Underscore Literals int MILLION = 1_000_000;

Figure 6.1: Studied Java language features, with examples.

Type Inference for Generic Instance Creation (Diamond) As previously mentioned, the lan-

guage allows generic types. When declaring a variable of a generic type however, the generic type

arguments must be repeated. For example:

Map<K, V> m = new HashMap<K,V>();

declares a HashMap with keys of type K and values of type V. Note that the generic type arguments were

repeated both in the variable declaration (left) and the object instantiation (right). This edition allows

omitting the repeated generic type arguments in the instantiation (the so called diamond operator), thus

changing the previous example to:

Map<K, V> m = new HashMap<>();

This new diamond operator can be used anywhere the compiler is able to infer the generic type

arguments.

71

Catching Multiple Exception Types (MultiCatch) This edition allows specifying more than one

exception type inside a catch clause. The catch clause’s body is then executed when either exception

type is caught. For example, the statement:

try { .. } catch (E1 | E2 e) { .. }

executes the catch statement’s body if the try statement throws an exception of type E1 or type E2. This

helps avoid code duplication.

Safe Varargs Warning Suppression The variable number of arguments in methods feature added

in JLS2 can lead to a large number of compile-time warnings when combined with generics. Often

however the programmer knows that these warnings can safely be ignored, so the ability to disable

those warnings was added:

@SafeVarargs
@SuppressWarnings({"unchecked", "varargs"})
static <T> List<T> asList(T... elems) { .. }

The use of either of these annotations will suppress compiler warnings at this location.

Try with Resources Certain resources, such as files, require manually releasing them when fin-

ished. This by itself is easy to forget, however even when programmers remember to close the resource,

errors can still creep in [91]. To ease the management of these resources, a new statement was intro-

duced:

try (File f = new ..) { .. }

This try statement declares a resource f which is available within the try statement’s body. Upon ex-

iting the try statement (either through normal or exceptional program flow) the resource is automatically

released.

6.1.2 Questions Regarding Language Feature Use

The focus of our study is the usage of Java language features by open-source developers. In this

section, we outline the specific research questions (RQ) we wish to answer.

72

RQ1: Do projects use new language features before the features are released? Often, especially with

Java, an implementation of a requested feature is available before its release. This can take the form of

an official beta/pre-release or an unofficial compiler.

We are interested in how often new language features are used prior to their official release. Such

data can give an indication if a particular feature was anticipated and if providing implementations prior

to release may be useful to the community.

RQ2: How frequently is each language feature used? The next question deals with feature usage. The

addition of language features is driven by needs from the community, yet to date there has been no study

to see how most of Java’s language features are being adopted by developers.

This question examines language features introduced in JLS2–JLS4. For each language feature, its

use across our entire dataset is tracked. This data gives insight into how each feature was, and is, being

used.

RQ3: How did committers adopt and use language features? Once a new set of language features is

available, it takes time for developers to learn how and where to use them. Some developers may be

excited and try using them as often as possible. Other developers may be content with solving problems

with the old set of features, as that is what they are accustomed to. We wish to investigate to see how

language feature adoption occurs for individual developers.

RQ4: Were there missed opportunities to use language features? Although a new language feature may

be available, developers might chose to not use it. We are interested in knowing how often such missed

opportunities exist.

RQ5: Was old code refactored to use new language features? We also wish to investigate to see if code

using older language features is ever updated to use the newer language features.

6.1.3 Approach: Dataset

In this section, we describe our approach for answering the previously identified research questions.

Our approach relies on Boa [5, 31, 33] and its dataset from SourceForge [3].

73

6.1.3.1 Dataset Used in Our Study

The dataset used for our study is the September 2013 dataset from Boa. This dataset includes

all Java projects on SourceForge with at least one CVS or Subversion repository. The dataset does not

include Java projects with only Mercurial, Git, or Bazaar repositories. The total number of Java projects

is over 35k (see Table 6.1).

Metric Count
All Projects 699,331
Java Projects 35,341

Studied Projects 31,432
Repositories 32,555

Revisions 9,557,448
Files 41,733,495

File Snapshots 86,411,272

Java Files 9,093,216
Java File Snapshots 28,747,948

AST Nodes 18,323,905,323

Table 6.1: Metrics for the SourceForge-based dataset in Boa.

However, not all of these projects are useful. We identified almost 4k projects that did not have

at least one Java source file that parsed without error. We filtered those projects out, leaving over 31k

projects in the dataset for use in our study.

The dataset contains widely-used Java projects, including: Azureus/Vuze, Weka, Hibernate, JHot-

Draw, JabRef, JUnit, iText, FindBugs, JML, TightVNC, etc. This dataset represents over 9 million

revisions by more than 50k developers. It contains over 9 million unique Java files and over 28 million

snapshots of those files. This represents (to the best of our knowledge) the largest empirical dataset to

date for Java projects that contains both full history information of the source repositories with over a

decade of history and the full AST information from the Java source files.

For our research questions, the size of the Java projects (whether 1 or 1k files) is irrelevant, as

we are interested in investigating Java language features used by developers without constraining the

study to any specific kind of developer. Thus we include small projects (perhaps written by novice

developers) as well as large projects (perhaps written by experts). However for RQ3, smaller projects

could affect our results and thus as we mention later, for this research question, we filtered projects with

74

few developers.

6.1.4 Study: Analyzing Java Language Feature Adoption

In this section we investigate Java language feature usage.

RQ1: Do projects use new language features before the features are released? If a feature is

requested by the community, then most likely people will be excited to use it prior to its release. To see

if this is true, first we needed to know the release dates of official implementations for each language

specification. We show these release dates, based on each specification’s JSR, in Table 6.2.

JLS2 (JSR 59) - Released 09 May 2002
Feature Earliest Use Projects Files
Assert 09 Feb 1998 114 1,068

JLS3 (JSR 176) - Released 30 Sep 2004
Feature Earliest Use Projects Files

Annotation Declaration 11 Nov 2003 7 130
Annotation Use 05 Jan 2002 12 1,165
Enhanced For 20 Jan 2002 44 634

Enums 05 Jan 2002 20 173
Generic Variable 11 Jul 1998 59 2,311
Generic Method 04 May 1999 22 919

Generic Type 01 Jul 1998 31 2,047
Extends Wildcard 02 Jan 2002 18 587
Super Wildcard 24 Jul 2003 3 426
Other Wildcard 10 Feb 2002 23 649

Varargs 23 Jul 2003 10 76

JLS4 (JSR 366) - Released 20 Jul 2011
Feature Earliest Use Projects Files

Binary Literals 04 Nov 2010 2 4
Diamond 01 Aug 2010 12 399

MultiCatch 01 Aug 2010 9 95
SafeVarargs 30 Apr 2011 3 17

Try with Resources 04 Nov 2010 8 109
Underscore Literal 04 Nov 2010 2 2

Table 6.2: Language features are used before their release. (Note: cutoff times were midnight UTC on
release date)

Using the release dates in this table, we then analyzed each valid Java file to see if it used a particular

feature. We filtered out any Java file containing a parse error. Then we collected the timestamps of each

75

file using each language feature and then filtered based on the particular language feature’s release date.

The results are shown in Table 6.2 and include the list of features, the date of the first mined use of the

feature, the number of projects that used the feature prior to its release, and the total number of files that

used the feature prior to its release.

For the earliest uses, we manually investigated to verify the identified files actually used the par-

ticular feature and that the commit date matched our results. Based on this analysis we identified one

project with clearly erroneous commit dates1 and we removed that project from this analysis. Interest-

ingly, for one project that made heavy use of generics in 1998, the commit log referenced “switch[ing]

to GJ”, which is the language extension proposed by Bracha et al. [21] that eventually became the basis

of Java’s generics.

The results in the table clearly show that every language feature was used prior to its official release

date. Next we investigate how each language feature was adopted over time.

RQ2: How frequently is each language feature used? The addition of language features is

driven by needs from the community. In this section, we quantitatively investigate how developers use

these new features by looking at each unique Java source-file path in the system and taking the last

existing snapshot of each. We then analyze that set of snapshots and count feature usage. For each file,

we generate a mapping between features and the total uses in the file.

We show the results in Table 6.3, first by total number of uses across the entire dataset, then by

percent of Java files using the feature, and finally by percent of projects using the feature. The table

clearly shows every feature is being used at least once. One trend that becomes readily apparent is that

JLS4 features are not used very often, compared to JLS3 features. This is despite the fact there were

over a million revisions and 3k Java projects active since the release of JLS4.

Also observe the trends for the ratios of uses to files. For example, the Annotation Declaration

feature has a ratio close to one2; there is roughly one annotation declaration per file. This is similar

for Enums and Generic Type. These features represent types in Java and thus one generally expects to

see one type per file. The ratios for the other features are higher (2–6) since they are expressions and
1http://goo.gl/Hqn6qZ
2This feature appears in 0.28% of files, or around 25k files, and is used around 29k times total.

http://goo.gl/Hqn6qZ

76

JLS2 Asse
rt

Uses 408,802
File 1.04%

Project 12.72%

JLS3 Annotation

Decl
aration

Annotation

Use
Uses 29,415 11,692,911
File 0.28% 21.98%

Project 6.35% 57.07%

JLS3 Enhanced

For Loop
Enums

Generi
c

Varia
ble Generi

c

Meth
od

Uses 2,666,411 162,445 2,473,581 257,921
File 8.4% 1.47% 9.24% 0.9%

Project 48.61% 29.42% 57.15% 13.52%

JLS3 Generi
c

Type Exten
ds

Wildcard
Super

Wildcard
Other

Wildcard
Varargs

Uses 214,012 411,940 84,602 936,546 221,322
File 1.89% 1.37% 0.15% 2.45% 0.95%

Project 19.87% 15.67% 2.71% 22.52% 15.43%

JLS4 Binary

Liter
als

Diamond

MultiC
atch

Safe

Varargs
Try

with

Reso
urce

s
Unders

core

Liter
als

Uses 90 22,473 1,920 192 1,597 889
File 0% 0.08% 0.01% 0% 0.01% 0%

Project 0.02% 0.4% 0.27% 0.06% 0.21% 0.02%

Table 6.3: Java language feature usage by total number of uses, by percent of all files, and by percent
of all projects.

statements. For example, the ratio of enhanced-for loops is three3 meaning files using the feature use it

around three times.

To see how the features were adopted over time, we plotted histograms of each feature’s use, both by

number of files and by number of projects. The histograms contain bins with 30-day time ranges. The

first time a feature appears, it is added to the respective bin. See Figures 6.2a–6.2b and Figures 6.3a–

6.3b. The plots also contain marker lines to indicate the release date of each JLS.

We also plotted densities of each feature’s use, both by number of files and by number of projects.

Points in these charts represent the number of files/projects using a feature at that time, divided by the
3This feature appears in 8.4% of files, or around 763k files, and is used around 2.6m times total.

77

(a) First uses, by File (b) First uses, by Project

(c) Use Density, by File (d) Use Density, by Project

Figure 6.2: Use of the Annotation Use language feature.

(a) First uses, by File (b) First uses, by Project

(c) Use Density, by File (d) Use Density, by Project

Figure 6.3: Use of the Diamond language feature.

78

total number of Java files/projects at that time, to account for growing repositories. See Figures 6.2c–

6.2d and Figures 6.3c–6.3d.

After examining these plots for each feature, we noticed similar trends among the features. They fell

into two categories: JLS4 features and non-JLS4 features. Since the trends are similar across features,

we picked representatives from each category.

For example, Figure 6.2 shows a non-JLS4 feature, Annotation Use. The histograms all show

increasing adoption of the features after release with peaks around 2011. Then the number of files/pro-

jects adopting the feature for the first time starts decreasing. To better understand this decrease, we

investigate the density plots.

As can be expected, the files and projects in the system were increasing over time. The density

plots remove this variable from our analysis, by computing the percent of feature use at each time.

For example, when we look at Figures 6.2c–6.2d we can see that even as the total number of files and

projects in the system increases, the relative percent is increasing too. Thus we can see that over time,

the use of the feature is increasing. This trend is apparent for all features studied.

Notice that Figure 6.3, a JLS4 feature, doesn’t show as strong of trends as the previous two features

discussed. In this chart, the histograms have less of an obvious trend to them, due to the relatively low

number of total uses for this new feature. While the density graphs still show the same general trend of

increasing use, both by files and by projects, there is less of a defined curve in these graphs.

Investigating Frequently Used Features As seen in Table 6.3, most language features are used

in a very small number of files (2% or less). The exceptions are Annotation Use, Enhanced For, and

Generic Variable declarations. We further investigate some of these popular language features.

First let’s look into the use of annotations, by collecting the annotation types named at each use.

Table 6.4 shows the top-ten frequently used annotation types and the number of uses for each. As can

be seen, almost half of the annotation uses were the @Override annotation. Such widespread use of

this annotation makes sense as IDEs such as Eclipse typically automatically add this annotation. The

second most used annotation, @Test, is used by unit testing frameworks. In fact, other than @Test

and @SubL, the annotations listed are all JDK or J2EE provided annotations. We anticipated high use

of JDK annotations, as the Annotation Declaration language feature has less than 0.3% use across all

79

Java files, but the clear domination of those annotations was surprising.

Annotation Name Uses Percent
@Override 5,534,089 47.33%

@Test 981,737 8.40%
@SuppressWarnings 634,697 5.43%

@Column 246,467 2.11%
@XmlElement 140,754 1.20%

@SubL 134,990 1.15%
@Generated 131,759 1.13%

@XmlAttribute 101,156 0.87%
@XmlAccessorType 81,140 0.69%

@Deprecated 80,217 0.69%

Table 6.4: Annotation uses. Percents are out of all annotation uses.

Generic Type Uses Percent
List 3,628,998 32.31%

ArrayList 2,145,612 19.10%
Map 1,156,480 10.30%

HashMap 842,934 7.50%
Set 811,990 7.23%

Collection 643,047 5.73%
Vector 570,016 5.07%
Class 547,628 4.88%

Iterator 500,887 4.46%
HashSet 384,408 3.42%

Generic Type Uses Percent
List<String> 514,339 22.68%

ArrayList<String> 416,306 18.35%
Class<?> 295,554 13.03%

Map<String, String> 208,195 9.18%
Map<String, Object> 177,048 7.81%

Set<String> 170,727 7.53%
HashMap<String, String> 148,861 6.56%

Vector<String> 137,706 6.07%
HashSet<String> 110,424 4.87%

HashMap<String, Object> 89,088 3.93%

Table 6.5: Variables declared with generic types.

Next let’s look into the generic variable declarations, by collecting the counts of each declared

generic variable’s type. Table 6.5 shows the top-ten frequent generic types used (top) and the top-ten

parameterized types (bottom). The results clearly show that the majority of generics are from collection

types, the most common being List<String>. These results are consistent with the previously

published study on generics use by Parnin et al. [74], although our study was on a thousand times more

projects.

RQ3: How did committers adopt and use language features? While in RQ1 we showed that

all features are adopted before their release, and in RQ2 we showed how features are adopted over time,

so far we have only evaluated feature adoption in terms of files and projects. In this section, we wish

80

to evaluate if similar adoption trends also apply in terms of committers. Specifically, we also wish to

study the adoption behavior of individual committers.

(a) Number of committers in a project (b) Number of committers editing a file

Figure 6.4: Number of committers per-project and per-file in SourceForge.

To do that, for each changed or added file that was recognized as containing a feature, we collected

its commit time and author. For each commit that has changed files containing the use of a feature for

the first time, the corresponding author is counted as one committer using that feature. The number of

committed files containing the new features are also recorded and counted toward the number of uses

for the corresponding committer. The threat to this method of counting is that if a committer uses a

feature in a file which has already contained that feature (introduced by some other committer), they

would not be counted. However, in this dataset a file is usually owned and edited by one or a few

committers (as shown in Figure 6.4b), thus our results are not affected much.

RQ3.1: How many committers adopted and used new features over time? Figures 6.5 and 6.6

show the result for the number of committers using two different features over time. Each bar shows

the number of users in the corresponding month. Even though the features appeared at different times,

both show the same trend of adoption: a few committers used the feature before its release, then the

number of users increases to a peak, and finally decreases. This is consistent with the adoption trend

for projects and files seen in RQ2.

Among the committers using a feature, we counted the ones who used that feature for the first time

(the lower area, in red) and the ones who had used that feature before (the upper area, in blue). As seen

in the figures, after the release date more committers adopted the new features. Once a feature is used

for the first time, many committers kept using it in later commits (in blue). After a while, the number

81

Figure 6.5: Committers use of Annotations over time.

Figure 6.6: Committers use of Diamond over time.

of first-time users (in red) decreases. This trend is the same for all the features in our study.

Comparing the charts, the number of committers using Annotations is much higher than that for

Diamond. This result is expected and is consistent with RQ2.

RQ3.2: How much did committers use each feature? To answer this question, we count the

number of uses of each feature for each committer. Since different features are used at different levels of

granularity in the source code, e.g. generic fields can only be declared at the type level while enhanced-

for loops can be used multiple times in the body of the method, we used the granularity of files to

compute the number of uses. That is, the number of uses for a committer is the number of files to which

82

(a) Annotation Use (b) Diamond

Figure 6.7: Use of language features by committers.

that committer was the first one introducing that feature.

Figure 6.7 shows the result for two features: Annotation Use (6.7a) and Diamond (6.7b). In each

chart, the x-axis represents the committers ranked by their number of uses and the y-axis (in logarithmic

scale) is the number of uses. Each bar represents the number of uses for a single committer. The

charts consistently show a power-law trend and the number of uses is highly skewed. A small number

of committers accounts for a large number of feature uses. About half of the number of committers

introduced a feature to less than 10 files, while a few committers used the feature in tens, hundreds, to

thousands files. This trend holds for all features.

Comparing the charts, we can see that the number of committers are quite different: about 18,000

for Annotation Use (6.7a) and about 85 for Diamond (6.7b). In addition, the number of committers with

the same number of uses varies among features. For example, at 10 uses, there are about 9,000 and 34

committers, respectively. This suggests that there are some popular feature(s) which are widely-used

(e.g. Annotation).

(a) Top-1 Annotation Use committer (b) Top-2 Annotation Use committers (c) Top-3 Annotation Use committers

Figure 6.8: Proportion of feature uses in projects.

83

6.1.4.1 RQ3.3: Did committers adopt features on an individual basis or as a team?

To answer this question, we investigated how many team members adopted features in each project.

We first collected the set of committers for each project, identified how many times each committer

used a feature, and ranked the committers per-project based on their number of uses. Then, for the

top-k committers (k=1,2,3), we computed the proportion of their uses over the total number of uses in

the whole project.

In Figure 6.4a, we can see that the distribution of the number of committers in a project is right-

skewed. That is, many projects have only a few committers. In those projects, only one or two commit-

ters contribute almost 100% of the uses. To avoid that bias and to study the team culture, we filtered out

all projects having less than six committers.

The result is shown in Figure 6.8. Each chart shows the histogram of the proportion of feature usage

in projects adopting that feature. The bins are the ranges 1-10%, 11-20%, ..., and 91-100%. Figure 6.8a

shows the result for the top-1 user. One committer contributes 100% uses in almost 250 projects and

80% uses in about 100 projects. In Figure 6.8c, when considering the top-3 users, the number of 100%

uses increases to almost 800 projects and are almost all the projects using that feature. The other features

(not shown) follow similar trends.

This result indicates that a feature is not widely adopted by all members of the team, but instead are

mainly championed by a small number of members. This is also consistent with the finding by Parnin et

al. [74] even though they studied only 20 projects while we studied almost 1,800 projects (with at least

6 committers each).

RQ3.4: Did committers use all new features? For this question, we track the feature uses of a

group of “active” committers, who routinely committed code over a long enough period. Since JLS3

had the most new features, we used the set of committers at the release time of JLS3. We kept all

committers that had routinely committed code at least every 6 months in the time between releases

of JLS3 and JLS4. Filtering for committers that used at least one language feature in our study, the

remaining set contained 61 committers. The scatter graph in Figure 6.9 shows their uses over time.

For better visualization, we group related features from the same edition, i.e. Annotation Declara-

tion/Use into Annotation, all generics features into Generics, Binary/Underscore Literals into Literal,

84

Figure 6.9: Tracking features used by committers.

and Try with Resources and MultiCatch into TryCatch. Each horizontal line shows the use over time

for a single committer.

As seen from the graph, among the 61 committers only committer #24 adopted features from all

three editions. Most committers used features from JLS2 and JLS3. JLS4 was only used by committers

42 and 24. Most of the committers used Assert, the only new feature in JLS2, however, they started late

after its release. Meanwhile, the committers adopted JLS3 quite early and most of them used several

different features. In terms of individual feature uses, up to now, no committer has used all studied

features. Committers have used at most 7 out of 10 different grouped features.

RQ4: Were there missed opportunities to use language features? In this section we investigate

missed opportunities to use new language features, by mining the latest snapshot of source code to find

locations where new language features could potentially be used. For example, we mined to find integer

literals with 7 or more characters that did not use underscores. We also mined methods that have as their

first statement an if condition that if true throws an IllegalArgumentException (which could

potentially be turned into an assert statement), methods that take an array as last argument instead of

a varargs argument, expressions where the literal ’1’ was shifted left (which could use binary literals),

85

generic instantiations that don’t use the diamond pattern, try statements with more than one catch block

having the same body, and try statements with a call to a close() method in the finally block.

The results are shown in Table 6.6. In the first row, we list the number of mined potential uses in

files that existed prior to the feature’s release. These represent places where maintainers could refactor

code to use new language features. We found tens of thousands (to millions) of potential uses.

Asse
rt

Var
ar

gs
Bina

ry
Lite

ra
ls

Diam
on

d
M

ult
iC

atc
h

Try
with

Reso
ur

ce
s

Und
er

sco
re

Lite
ra

ls

Old 89K 612K 56K 3.3M 341K 489K 22.2M
New 291K 1.6M 5K 414K 24K 33K 2.3M

All 380K 2.2M 61K 3.7M 365K 522K 24.5M
Files 1.39% 12.74% 0.11% 12.25% 2.28% 1.85% 20.17%

Projects 18.18% 88.78% 5.9% 59.08% 49.75% 37.27% 88.86%

Table 6.6: Potential language feature uses, in old files (before feature release) and new files (after feature
release).

The second line of the table shows potential uses in files that were added after the release of the

feature. These are locations that developers had the option to use a language feature, but did not. Again,

we found thousands of potential uses for each feature and even millions for two features.

While some of this unused potential has small impact, such as underscore and binary literals making

code more readable, other missed opportunities could actually lead to erroneous behavior. Specifically,

we investigate regarding the try with resources language feature which aims to properly close resources.

As Weimer and Necula [91] point out, this is a common source of bugs in programs. For example, the

code:

BufferedReader br = ...;
String s = br.readLine();
br.close();

wouldn’t call close if the call to readLine throws an exception.

While we found over 500k potential uses for this language feature, we were interested in how many

of those might lead to buggy behavior. We narrowed the results of the algorithm to only include methods

that throw IOException, do not catch that exception anywhere in the body, and contain a call to a

close() method. We found 193,768 instances of potential resource handling bugs!

86

RQ5: Was old code refactored to use new language features? As we showed in the last section,

when new language features are released there is potentially a lot of existing code that could have used

the new feature. In this section we investigate if developers refactor old code to update it to the new

language features.

Unlike the last section where we used only the latest snapshot, in this analysis we mine each version

of a file and compute the number of potential and actual uses of a language feature. We then compute

those values on the previous version of the file. If the number of potential uses decreases by exactly

the amount the actual uses increased, we consider it a potential refactoring. This analysis is extremely

conservative and may miss a lot of refactorings, but it should give a low number of false positives and

make verification easier, and allows us to confirm the existence of refactoring activities to use new

features. We show the results in Table 6.7.

Asse
rt

Var
ar

gs
Diam

on
d

M
ult

iC
atc

h
Try

with
Reso

ur
ce

s
Und

er
sco

re

Lite
ra

ls

Count 180 2.1K 8.5K 162 154 2
Files 105 1.6K 3.8K 125 99 1

Projects 37 488 72 23 17 1

Table 6.7: Detected refactorings to use new features.

We verified the results by manually checking 30 detected files from each feature, grouping the

results by project and systematically sampling from a random starting point in the list. When verifying

a file, if other files from the same revision were in the dataset we also verified those. In total we verified

2,598 out of 5,694 files as direct refactorings, 13 as not refactorings, and 4 as more complex refactorings

that also added the new feature.

During this process we found several commit logs mentioning upgrades to JDK7 or specifically

refactoring for one feature (such as Diamond, MultiCatch, or Assert). One even stated “Reviewing

locations where ’throw’ appears and substituting by ’assert’ when convenient.”4

As we showed, developers do refactor existing code to utilize new language features after their

release. Thus, tool support for refactoring operations to use new language features and recommendation

of code locations to refactor is important for developers.
4http://goo.gl/5pyR0T

http://goo.gl/5pyR0T

87

6.1.5 Threats to Validity

We identified a threat regarding who commits code versus who actually wrote that code. Someone

may commit a file they did not write, perhaps adding a file from another library so it is local in their own

repository. Our analysis would attribute the source of that file to the person who committed it which is

why we focused on committers, not developers.

A similar threat relates to the timestamps of committed code. If someone commits a file they did

not write, the timestamp of the commit may be wrong. It is possible that features were actually used

earlier than identified in RQ1.

We identified an external threat to our study regarding the generalizability of our results. Since

we only studied open-source software, the results may not necessarily represent Java language feature

usage by non-open source developers, such as those in industry. We also do not know the experience

level of committers, which may vary greatly and limits our ability to generalize. We avoid generalizing

our results and instead focus on if the trends we observed are similar to the trends the previous study

by [74] observed.

6.2 Treasure Study Reproduction

Grechanik et al. performed a large-scale empirical study on Java source code from 2,080 open-

source projects [44]. The dataset used in their study were randomly selected projects from SourceForge.

For their study they built an SQL database containing tables and attributes for storing (non)terminals

from Java’s grammar. They posed 32 different research questions and queried their database to answer

them. To show the usefulness of our approach, we reproduced a portion of this study using Boa.

As the actual queries used are not available, we had to make a few assumptions about their study.

First, we assumed that none of the projects in their study were empty and all contained at least one valid

Java source file. This assumption was made on the basis that their minimum value for number of classes

per application is 1. Thus, we filter our dataset to exclude any projects without at least one valid Java

source file. This left 23,510 projects in our study.

Second, although their paper only mentions parsing the source code, we assume that since they

were only working with releases of each project that they also had type resolution and bindings. This

88

To
ta

l
M

ea
n

M
ed

ia
n

M
ax

M
in

Q
ue

st
io

n
B

oa
Tr

ea
su

re
B

oa
Tr

ea
su

re
B

oa
Tr

ea
su

re
B

oa
Tr

ea
su

re
B

oa
Tr

ea
su

re
C

la
ss

es
11

,8
22

,3
21

27
0,

97
3

50
3.

68
96

.8
89

33
13

9,
66

8
2,

07
1

1
1

St
at

ic
C

la
ss

es
56

9,
50

1
7,

36
8

24
.2

5
6.

7
0

0
23

,7
44

1,
03

5
0

0
A

no
ny

m
ou

s
C

la
ss

es
3,

77
2,

13
0

29
,2

37
0.

05
0.

04
0

0
72

4
13

6
0

0
N

es
te

d
C

la
ss

es
1,

21
8,

21
3

14
,2

70
51

.8
6

0.
06

3
0

30
,5

76
61

0
0

a
s
s
e
r
t

St
at

em
en

ts
61

2,
16

6
2,

04
7

0.
01

0
0

0
37

4
9

0
0

M
et

ho
ds

68
,0

62
,9

62
93

8,
77

9
5.

89
3.

5
2

4
32

,7
74

1,
17

5
1

1
St

at
ic

M
et

ho
ds

5,
69

6,
06

5
23

1,
64

7
0.

48
0.

36
0

0
4,

85
3

28
9

0
0

M
et

ho
ds

(i
nt

er
fa

ce
s)

4,
71

2,
11

6
84

,1
30

6.
13

3.
4

3
3

10
,0

00
55

8
1

1
M

et
ho

d
A

ri
tie

s
66

,7
78

,7
47

54
4,

32
4

1.
59

1.
5

1
1

26
2

30
1

1
v
o
i
d

re
tu

rn
M

et
ho

ds
35

,9
88

,9
71

41
4,

95
3

3.
54

5.
1

2
3

32
,7

72
1,

17
2

1
1

M
et

ho
ds

R
et

ur
ni

ng
A

rr
ay

s
1,

33
4,

25
9

24
,7

44
1.

87
2

1
1

38
3

13
7

1
1

no
n-
v
o
i
d

re
tu

rn
M

et
ho

ds
32

,0
73

,9
91

52
3,

82
6

4.
93

5.
8

2
3

4,
85

4
88

8
1

1
Fi

el
ds

31
,6

82
,7

21
44

8,
89

8
2.

68
1.

9
0

0
10

,0
00

1,
45

7
0

0
t
h
i
s

E
xp

re
ss

io
ns

51
,9

33
,2

14
84

0,
93

7
0.

72
2.

2
0

1
6,

29
4

78
5

0
0

St
at

ic
Fi

el
ds

10
,9

49
,1

91
15

4,
06

7
0.

93
0.

7
0

0
10

,0
00

1,
45

7
0

0
Vo

la
til

e
Fi

el
ds

48
,4

71
49

2
0

0
0

0
97

9
0

0
C

on
di

tio
na

lS
ta

te
m

en
ts

11
8,

55
7,

12
8

62
0,

41
9

1.
63

0.
76

0
0

5,
29

4
75

0
0

0
S
t
r
i
n
g

Fi
el

ds
6,

42
5,

16
1

23
1,

64
7

0.
54

0.
3

0
0

3,
47

3
43

2
0

0
t
r
y

St
at

em
en

ts
14

,0
80

,4
20

93
,7

14
0.

19
0.

11
0

0
1,

72
2

90
0

0
E

xc
ep

tio
ns

T
hr

ow
n

Fr
om

c
a
t
c
h

4,
55

9,
27

4
11

0,
74

0
0.

3
0.

26
0

0
34

5
0

0
E

xc
ep

tio
ns

12
,6

31
,9

96
81

8,
35

8
0.

17
0.

9
0

0
1,

08
6

40
0

0
L

oc
al

V
ar

ia
bl

es
79

,0
57

,4
04

81
8,

35
8

1.
09

0.
87

0
0

7,
00

5
1,

05
5

0
0

Ta
bl

e
6.

8:
R

ep
ro

du
ci

ng
a

po
rt

io
n

of
th

e
Tr

ea
su

re
st

ud
y

[4
4]

,a
ta

m
uc

h
la

rg
er

sc
al

e.

89

information is not yet available in Boa, so we do not reproduce the six tasks that rely on that information

for accuracy.

Finally, we assume that the versions of each project used in their study were the latest versions.

As Boa contains all revisions for projects but does not currently know what revision(s) map to specific

releases, for our version of the study we simply take the latest snapshot of each project. We also filter

out any obvious branches (in SVN, branches typically are rooted in the ’branches’ folder). This gave a

total of 8,360,673 changed files in this snapshot, or about one third of the total dataset.

The results of our study, as well as the values from the previous study, are shown in Table 6.8. The

statistical values (mean, median, max, and min) are computed using the most logical container for each

question. For example, the container for classes are projects, the container for methods are classes, etc.

As can be seen, most values differ between the studies. This is to be expected, as there are over 11 times

more projects in our study. However, note that the general trends are similar and in particular the order

of magnitude between rows is maintained.

For our version of the study, some of the values in the max column seemed like they might be too

high. We manually verified5 these values to be correct. Some interesting results:

• Despite the Java VM having a limit of 255 arguments for a method, we located a class constructor

with 262 arguments!

• We located a test class with over 32k (hopefully generated) void methods in it to exhaustively

test a method’s 16-bit integer argument.

• A compiler-generated X10 file with over 7k local variables.

• A class with 10k static fields as constant strings.

The one task where we differ substantially is for nested classes. Note the mean value is almost 1k

times higher. We believe this is because their study averages nested classes by number of methods.

However we disagree with this, as the most common container for a nested class is another class. Thus

we opted to compute this value slightly different.
5http://goo.gl/bwGGC http://goo.gl/jf0Fy http://goo.gl/zuYoh http://goo.gl/ZgamQ

http://goo.gl/bwGGC
http://goo.gl/jf0Fy
http://goo.gl/zuYoh
http://goo.gl/ZgamQ

90

6.2.1 Threats to Validity

The results of our reproduction of the Treasure study in may not generalize to Java development

practices in industry, as all of the code in our study comes from open-source. This same threat applies

to the original study [44]. We avoid generalizing our results and instead focus on if the trends we

observe are similar to the trends the previous study observed.

91

CHAPTER 7. RELATED WORK

In this section we discuss works related to Boa. First we discuss other mining software repository

frameworks. Then we discuss works that provide data-parallel frameworks. Then we discuss languages

intended to ease data-parallel computing. We compare our optimizations to existing MapReduce opti-

mizations. We also discuss related approaches utilizing the visitor pattern and finally discuss language

studies related to our case studies.

7.1 Mining Software Repository Frameworks

Sourcerer [4,16,57,71] provides an SQL database of metadata and source code on over 18k projects.

Queries are performed using standard SQL statements. Thus their approach easily supports joins on

the data, where ours does not. However, being built on MapReduce allows easier scalability for our

approach. Their approach also does not contain full history information (revisions).

Bevan et al. proposed a centralized approach in which they define database schemas for metadata

and source code in software repositories and such data is downloaded into a centralized database, called

Kenyon [19]. The data can be accessed from Kenyon via SQL commands with their predefined data

schemas. Unlike our infrastructure, which is aimed to support ultra large data in software repositories,

Kenyon was not designed for ultra large data with hundred thousands of projects and billions lines of

code. Additionally, our language and infrastructure can easily support new metadata from repositories

as a newly defined type in the language. In Kenyon, with its database solution, data schema evolution

is not easily supported.

In 2007, Boetticher, Menzies and Ostrand introduced the PROMISE Repository [1], an online data

repository for empirical software engineering data, mainly for defect prediction research. They make

the repository publicly available and encourage the authors of research papers on defect prediction to

92

upload data. The data in PROMISE are the post-processed data, i.e. the data that were already processed

to be suited with each individual research problem in each research paper. For example, the authors of

a new bug prediction model using Weka as their machine learning tool would upload the data files in

Weka format. This hinders the applicability and usability of the data if other researchers would like to

use the original data for a different tool set, a different approach, or even a different problem. PROMISE

data is also limited to defect prediction. Additionally, since the data is uploaded for individual research

PROMISE potentially contains duplicate data and inconsistencies.

Supporting for the reproducibility of research papers published in the MSR area, Gregorio Rob-

les [37] and his team advocated for the construction of open-access data repositories for MSR research.

Their goal was to build “a web page with the additional information, most desirably a Sourceforge-like

site that acts as a repository for this type of data and tools, and that frees researchers from maintaining

infrastructure and links”. Their vision is similar to PROMISE but with more general types of data. We

focus more on the raw data of open-source projects that can be utilized in any MSR research.

Aiming to improve the scalability and speed of MSR tasks, Hassan et al. [81] and Gabel et al. [35]

use parallel algorithms and infrastructures. They have shown that using map-reduce and other parallel

computing infrastructure could achieve that goal. In comparison, they focus only on specific mining

tasks (e.g. finding uniqueness and cloned code), while our infrastructure supports a wide range of

mining tasks. Additionally, the details of using map-reduce are not exposed to the programmers when

using Boa.

Hindle and German describe SCQL [46], a query language for source control repositories. The

query language is a temporal logic-based language that queries their general model of source control

repositories. As such, temporal based queries (e.g., all files before/after some condition) should be

simpler to express than in Boa, which lacks direct support for such temporal queries. Their example

implementation only contains data for five projects and may not scale as easily as Boa’s.

7.2 Data-Parallel Frameworks

Dean and Ghemawat proposed a computing paradigm called MapReduce [28] in which users eas-

ily process large amounts of data in a highly parallel fashion by providing functions for filtering and

93

grouping data, called mappers, and additional functions for aggregating the output, called reducers.

Programs that are heavily data-parallel and written in MapReduce can be executed in parallel on large

clusters, without the user worrying about explicitly writing parallel code. Over the years, a large num-

ber of languages, frameworks, and implementations that directly or indirectly support MapReduce or

MapReduce-like paradigms were proposed [9, 25, 49, 68, 75, 94, 95]. Boa currently uses MapReduce,

via Apache Hadoop [9], as it’s execution model. Apache Hadoop is an open-source implementation of

MapReduce.

Map-Reduce-Merge [94] adds a new phase to MapReduce called merge, which runs after the reduce

phase. The merge phase takes the already sorted data from the reducers and performs a merge on it.

This new computation model provides the ability to easily express several relational algebra operators

as well as perform joins.

Dryad [49] is a framework to allow parallel processing of large-scale data. Dryad programs are

expressed as directed, acyclic graphs and thus are more general than standard MapReduce. The frame-

work then handles the details of assigning each computation node to servers, handling transfer of data,

etc. The framework also directly supports MapReduce programs.

Similar to Dryad, newer versions of Apache Hadoop (MapReduce v2) provide a general computing

framework called YARN (Yet Another Resource Negotiator). This framework allows custom applica-

tion masters that handles scheduling and coordination of the compute tasks. The framework directly

supports MapReduce, allows any form of directed, acyclic graph of MapReduces, and is general enough

to allow any custom graph of tasks (that don’t necessarily have to be directed acyclic graphs). In the

future, we plan to migrate Boa to the YARN framework. Immediately this should give some perfor-

mance improvements and in the long term the new framework opens opportunities to investigate further

computational models in Boa, such as the ability to chain multiple Boa programs together.

7.3 Data-Parallel Languages

Sawzall [75] is a language developed at Google to ease processing of large datasets, particularly

logfiles. The language is intended to run on top of Google’s distributed filesystem and map-reduce

framework, allowing users to write queries against or process large amounts of log data. Our framework,

94

while syntactically similar to Sawzall, provides several key benefits. First, we provide domain-specific

types to ease the writing of software mining tasks. These types represent a large amount of specially

cached data and provide convenient ways to access this data, without having to know specifics about

how to access code repositories or parse the data contained in them. Second, our framework runs on

Hadoop clusters whereas Sawzall only runs on a single machine or on Google’s proprietary MapReduce

framework.

Apache Pig Latin [68] aims to provide both a procedural style MapReduce framework as well as

a more higher-level, declarative style language somewhat similar to standard SQL. Unlike pure map-

reduce frameworks or implementations such as Sawzall, Pig Latin provides the ability to easily perform

joins on large datasets. The language was also designed to ease the framework’s ability to optimize

queries. Since our approach is based on Sawzall, we do not directly provide support for joins. Unlike

Boa however, Pig Latin does not directly provide support for software mining tasks.

SCOPE [24, 97] is a data-parallel processing language from Microsoft. The language is SQL-

like and abstracts away any notion of parallelizing the queries. The compiler generates a query plan

consisting of a directed, acyclic graph of computations and the execution engine handles automatically

scheduling and coordinating tasks on a cluster. Although SCOPE provides support for user defined

data, it does not contain any types or direct support for mining software repositories.

A high-level procedural language, DryadLINQ [95], is provided that compiles down to Dryad. This

language is based on .Net’s language integrated query (LINQ) and provides a syntax somewhat similar

to a procedural version of SQL and thus is relatively similar to Pig Latin. Also similar to Pig Latin,

Dryad does not directly aim to support easing software mining tasks. Microsoft no longer supports

Dryad/DryadLINQ.

Hive [87] is a query engine built on top of Hadoop. Hive provides an SQL-like query language

called HiveQL. These queries are transformed by a rule-based query optimizer into a MapReduce jobs

which then execute on Hadoop. Hive also provides the ability to define custom datatypes, import and

export data, and several standard relational operators such as select, filter, and joins. Hive does not

provide data types or support for mining software repositories.

FlumeJava [25] is a Java library that provides several abstractions for performing data-parallel com-

putations. These abstractions include a PCollection, similar to Java Collections, and sets of

95

functions for grouping, filtering, and aggregating data. These abstractions are at a higher level than

the MapReduce programs executed by FlumeJava’s framework. FlumeJava’s execution engine handles

generation of a query plan to run the query in a distributed fashion and provides several optimizations

for the queries. FlumeJava also does not aim to ease software mining tasks like Boa.

As none of these languages were designed for mining software repositories, they lack the domain-

specific types and functions provided by Boa.

7.4 MapReduce Optimizations

There are a lot of existing compiler optimizations. Loop fusion is an optimization that takes two or

more loops, and fuses them into a single loop. This is done to increase data locality. This technique

however is applied only to single programs, and is not typically used to merge loops from unrelated

programs together. Note however that any existing program optimization applicable to Java programs

can still be applied to individual Boa programs.

Chain folding and job merging [63] are two design patterns for optimizing MapReduce pipelines.

Chain folding takes a single task, represented by a chain of maps and reduces and folds them together,

such that the end result is a single map and reduce. The Hadoop API provides ChainMapper [8] and

ChainReducer [7] classes for a specific kind of chains of the form: one or more maps, followed by

exactly one reduce, followed by zero or more maps. Job merging is similar to our task fusion, in that

it takes two separate MapReduce jobs and merges them together, by manually combining the map and

reduce tasks. The general advice however is to do this merging by hand [82], whereas our approach is

fully automatic. Also note that job merging is intended for single users to merge their own jobs together,

whereas our approach works for jobs from multiple users in a transparent fashion.

FlumeJava [25] is a Java library that provides several abstractions for performing data-parallel com-

putations. FlumeJava also provides a set of optimizations, including what they call sibling fusion and

MSCR fusion. These two forms of fusion are very similar to our task fusion, in that they attempt to

automatically merge nodes in the execution plan together and generate a simpler graph. This merging

results in executing fewer MapReduce processes.

Pig latin [68] abstracts the details of MapReduce by providing a data-flow language somewhat

96

similar to standard SQL. The underlying framework was designed to ease optimizations and makes

extensive use of relational database optimizations such as re-ordering joins and pushing selections and

projections before joins.

While all of these languages aim to abstract away some or all of the details of distributed program-

ming with MapReduce and many provide optimizations for programs written using them, the optimiza-

tions provided are for single programs. Our approach in this paper takes it a step further and provides

optimizations for sets of unrelated programs. Note that the optimizations of previous approaches are

still applicable in our setting, as they would improve the individual tasks prior to fusing them together.

7.5 Analyzing Source Code

Source code analysis is often performed using a visitor-style pattern [36]. The visitor pattern is

intended to allow easily adding additional functionality to a hierarchy of types, without having to modify

each type. This is typically accomplished via a double-dispatch where each type to be traversed contains

an acceptmethod and the new analysis contains visitmethods. By default visitors perform a depth-

first traversal of the tree. There are other forms of the pattern, such as hierarchical visitors [2] which

allow controlling the traversal and visitor combinators [90] to compose more complex visitors. There

are also reusable visitor pattern libraries [67]. Other approaches make use of visitors, such as Ovlinger

and Wand who define a language for recursive traversals [72].

Our language is similar to many of these approaches, however while these approaches are typically

for object-oriented languages our host language has no notion of object (only simple record types).

Visitors make use of dynamic dispatch in the underlying language, which is not available in procedural

languages like Boa. Also, since there is no notion of inheritance, the number of types in the language

are fixed, making the analysis in our compiler implementation much simpler and allowed for the opti-

mization mentioned in Section 4.1.

Orleans and Lieberherr provide the language DJ [70], a purely Java-based library implementation

of Demeter/Java [69]. In DJ, users provide a traversal strategy and declare visitors with before and after

visit methods, similar to our approach. DJ’s implementation uses reflection to implement traversals,

while our implementation uses a DefaultVisitor and has no reflection in the generated code.

97

Both the work on DJ [70] and recursive traversals [72] provide syntax for specifying traversals

separate from the visitor code. Our approach provides a default depth-first traversal and if users need a

custom traversal strategy they must specify it intermixed with the visitor code by using stop statements

and visit calls. In the future we may investigate syntax for separating custom traversal strategies from

the visitor syntax.

Martin et al. describe a program query language (PQL) [61] for easily analyzing source code. They

provide a fixed set of events in the language, such as method call or field access and allow queries on

those events with static and dynamic matching algorithms. The query language lacks a visitor syntax.

There are also interactive tools for querying source code using natural language queries [53] and

custom languages such as JQuery [50]. Since these tools are interactive, they are designed for searching

a single codebase and not for mining source code across a large number of projects.

The Sourcerer project [57] provides project metadata source code for over 18k Java projects. Their

data is stored in a SQL database, allowing for standard SQL queries on that data. They provide data

on single snapshots of projects, including source code information which is represented in the database

as entities and relationships. Entities include declarations, type references, and local variables. Rela-

tionships include full type resolution and binding of the entities, which our approach does not currently

support. The Treasure study [44] built a database containing source code for over 2k projects. They

take source code from releases of each project, and map it into their database schema. This schema is

capable of representing the entire source code, down to the expression level. Bevan et al. proposed a

centralized database and data schema called Kenyon [19] for storing mined software repository infor-

mation. They provide an SQL interface for querying this dataset. All three of these approaches use

SQL for mining source code, which gives the benefit of easily performing joins. However source code

queries often require recursion (over the graph structure of the data), which is cumbersome to express

in SQL [45].

Hajiyev et al. describe CodeQuest [45], which uses safe Datalog to query source code information.

They map the Datalog queries to standard SQL and query a relational database containing source code

information. Unlike SQL, Datalog allows easily specifying recursive-style queries but lacks the visitor

pattern familiar to researchers who have worked on or studied compilers and source code analysis

previously.

98

7.6 Language Feature Studies

Grechanik et al. [44] performed a large-scale study on Java features on 2k projects from Source-

Forge. They provided a relational database and studied features such as: classes (abstract, nested, etc),

methods (arities, return types, etc), fields, conditional statements, etc. The majority of the features

studied are object-oriented language features available since JLS1. They did not study newer language

features in JLS3/JLS4. Their study also focused on releases of projects and not the full revision history.

Parnin et al. [74] mined the history of 20 open-source Java projects to evaluate how Java generics

were integrated and adopted into open source software. As we already showed, our finding on the most

popular generic types is consistent with their empirical result. It is also true for the finding that generics

are usually adopted by individuals championing for the features, rather than all committers in the team.

Hoppe and Hanenberg [48] performed a small empirical study to determine if generic types in Java

provide benefit to developers. Basit et al. [18] performed an empirical study on two projects regarding

how Java generics and C++ templates can help in code refactoring.

Livshits et al. [58] focused on the reflection feature in Java. They introduced a static-analysis based

reflection resolution algorithm that uses points-to analysis to approximate the targets of reflective calls

as part of the call graph. Callaú et al. [23] studied the reflection feature in Smalltalk. They reported

that such a feature is mostly used in specific kinds of projects: core system libraries, development tools,

and tests, rather than in regular applications. Some uses of dynamic features are statically tractable

and unproblematic for static analysis and other tools. Christensen et al. [27] analyze Java reflection

to improve the analysis of string expressions. Dynamic features in Python have been reported to be

used more in the initialization than in the computation process [47]. Pankratius et al. [73] reported on

transactional memory actually helping programmers write concurrent code.

Richards et al. [78] performed a large-scale study on the use of eval in JavaScript applications.

eval is used to transform text into executable code, allowing programmers the ability to dynamically

extend applications. They studied large-scale execution traces with 550k calls to the eval function

exercised in over 10k websites. They found that it is often misused and many uses were unnecessary

and could be replaced with equivalent and safer code. Earlier, Richards et al. [79] analyzed a smaller set

of JavaScript programs and concluded the popular usage of eval and reported the degree of dynamism

99

in those programs. Ratanaworabhan et al. [76] reported on an existing benchmark for JavaScript and

focused on two aspects of JavaScript runtime behavior 1) functions and code and 2) events and handlers.

Yue and Wang [96] performed an empirical study on almost 7k websites regarding insecure practices of

JavaScript inclusion and dynamic generation. They reported that over 40% of the websites dangerously

use eval.

Gorschek et al. [39] performed a large-scale study on how developers use object-oriented concepts.

Tempero [85] studied how fields are used in Java and reported that it is common for developers to

declare non-private fields, but then not take advantage of that access. Tempero et al. [86] found higher

use of inheritance than expected and variation in the use of inheritance between interfaces and classes.

Malayeri and Aldrich [59] performed a study on 29 Java programs and reported that nominally typed

programs could benefit from structural subtyping. Muschevici et al. [64] studied multiple dispatch in

several languages and compared its uses.

Meyerovich and Rabkin [62] studied how programming languages are adopted by users, via several

large surveys. Their study was focused on which languages were adopted and did not go into detail of

specific language features.

The Sourcerer project [57] provides a relational database of mined software artifacts. Their dataset

contains over 18k Java projects from SourceForge and Apache. The data is modeled as entities, such

as classes, methods, or fields, and relationships among those entities. The dataset contains the source

code from the latest snapshot of each project. Baldi et al. use the Sourcerer project and topic modeling

to empirically validate the theory that aspects are latent topics with a high scattering entropy [17].

While these previous studies have looked at various language features, most are limited to studying

a few features, looked at a relatively small number of projects, or did not look at the full history of

the software studied. Our study looks at most of Java’s new language features, studies over 31k Java

projects, and uses each file’s full history.

100

CHAPTER 8. FUTURE WORK

The techniques developed for Boa were in the domain of software repository mining, but we believe

the idea can be generalized to other domains. Many other domains have large datasets shared by multi-

ple researchers. For example, MERRA [65] is a dataset and framework for processing climate data and

models. Similarly, there are shared datasets for genomics, astronomy, geography, etc. In this chapter

we outline future directions we plan to investigate to generalize the approach, bringing the benefits of

Boa to many other domains.

The main research question here is: can we provide a way for domain-experts to describe their

domain and from that automatically generate a Boa-like framework? Answering this question is a

very difficult task, so we break it up into two parts. First, we investigate more generalized methods

for handling large amounts of data from any domain. Second, we investigate ways to provide domain

experts the ability to specify the form of queries in their domain. Finally, we investigate additional

future work in the context of Boa.

8.1 Data Description, Transformation, and Storage

In this thesis, we presented the dataset (software repositories), our translation of that data into a

custom format using Protocol Buffers, and a storage strategy that ensured the data did not overwhelm the

runtime system while still maintaining the ability to incrementally update. The first step to generalizing

our approach is figuring out how to handle any arbitrary domain’s data.

There has been a lot of work already done on data description languages (DDL). Simply describing

the form of the domain’s data may not be a difficult task. However, translating that data into a form

ammenable to large-scale processing is a non-trivial task. As we showed in Chapter 3, the naive method

of representing our data did not work, as the input data for a single project could easily out-grow the

101

memory available to process it. Thus, an important research question is: can we automatically ensure

the data representation strategy will work in the generated infrastructure, and if not can we automatically

transform the data representation into a form that will?

8.2 Domain-specific Query Languages

The language we presented in this thesis was specifically designed for the domain of software

repository mining. For example, the visitor syntax is a very common approach to performing static

analysis, writing compilers, etc which most software engineering researchers are familiar with. Thus it

was a good fit for this particular domain. For other domains, forming queries using this language may

not be a good fit. For example, if the domain is social networks (which are graphs) it may make sense

to provide a query syntax based on the bulk synchronous parallel (BSP) model [89]. Many existing

graph-processing frameworks use this model, such as Apache’s Hama [11] and Giraph [10] projects

and Google’s Pregel [60]. An important research question is: how do we allow domain experts to

describe the form of queries in their domain?

As a first step, we plan to investigate providing a parameterized compiler-generation framework,

where domain experts write their own compiler and we provide hooks to allow for common tasks,

such as reading the input data, writing output, the web-based interface (similar to that in Chapter 3),

etc. Such a framework would be similar to the Spoofax language workbench [52], where users define

their language’s grammar and the framework automatically generates various services such as syntax

highlighting, code folding, etc. One important research question would be: given the user’s grammar

definition, how do we automatically infer the proper runtime model, e.g. MapReduce or BSP? As a first

step, the domain-expert can indicate the model to use however in the future the proper model could be

inferred by analyzing the query language’s grammar.

8.3 Future Work on Boa

In this section we investigate future directions specific to the Boa language and framework.

102

8.3.1 Language Extensions

Forges such as SourceForge contain a vast wealth of information. Currently Boa only contains

a subset of that information, such as the project metadata, repository metadata (revisions, logs, etc),

and source code. Software mining researchers however are often interested in the other artifacts on

such forges, such as bug or issue reports, forum posts, email lists, and additional file formats in the

repositories such as design and artifact documentation, logs, etc. While it may be fairly straight-forward

to clone this data and provide it in Boa as domain-specific types, doing so may not properly abstract the

details of mining this data.

One avenue of future work is to examine these additional artifacts and data types and see if the

Boa language requires additional domain-specific features for mining them. This is similar to how we

provide domain-specific visitor features in our language for performing source-code analysis, which is

a syntax familiar to people already doing such analyses. For example, we may need to provide domain-

specific features for mining bug reports.

Another possible future direction for the language is to modify the existing domain-specific features

for source code mining. While the visitor pattern is very familiar to existing developers and flexible

enough to perform any traversal, many queries may be interested in matching specific language syntax

in the source code being mined. As such, a question that arises is: can we provide a simple way of

matching complex patterns of source code, without requiring a visitor pattern and maintaining some

state while visiting the source code? A possible related work in this direction are existing tools such as

Coccinelle [55], Coverity [34], and Flawfinder [93], which provide pattern matching frameworks where

users write queries that look like the source code they wish to match.

8.3.2 Infrastructure Extensions

At the moment, the data analyzed by Boa queries is all from SourceForge. There are many additional

forges (GitHub, CodePlex, Google Code, etc), some of which (such as GitHub) are even more popular

than SourceForge. Supporting these additional forges requires additional support on the back-end for

cloning and updating their data and also requires some changes to the datatypes. Each forge has a

different set of metadata. For example, SourceForge provides a lot of information, such as topics,

103

environment, etc which is not available on other forges like GitHub. We would like to provide as

uniform an interface as possible to the metadata provided by these forges. As such, one interesting

research question in this area is: would it be possible to use data mining and automatically infer some

of the missing information? For example, perhaps we can use topic modeling to automatically infer the

topics of GitHub projects.

Supporting GitHub would also require that we support the Git repository format, whereas currently

we only support Subversion and CVS (by converting to SVN format). We need to update our domain-

specific types to support the Git format, which is a distributed version control system (VCS). One

research problem that remains is determining a proper data representation that can unify the represen-

tation for such distributed VCSs as well as the non-distributed form, such as SVN and CVS which we

already handle. Once a flexible model is developed we can utilize existing tools to handle mirroring

repositories in the various formats format, as some already exist and are open-sourced [66].

Additional effort is needed to support more source code languages (other than Java). We designed

our custom AST to be general enough to support most object-oriented features and easily extensible.

As such, adding additional OO languages (such as C# or C++) should be relatively straight-forward. At

this time we have not attempted to support non-OO languages (such as Scheme/Lisp). Support for other

programming paradigms may require modifications to our types. This work will focus on answering

the question: is there a (relatively small?) set of language features that are capable of forming the basis

of all (or the majority of) programming languages, even from different paradigms?

8.3.3 Improving Adoption and Usability of Boa

One important question that still remains is how easy is the Boa language to learn and use? We

have only recently opened the infrastructure to other users and early feedback seems to indicate a broad

range of answers from very simple to “incredibly difficult.” Our comprehension study showed the code

is easier to comprehend when compared to Hadoop programs solving the same tasks, but in the future

we would like a proper usability study to see how writing queries in the language compares to other

approaches, such as Hadoop or SQL queries.

One possible avenue to help ease the adoption of Boa is to provide an API interface to the infras-

tructure. Such an API would allow queries to be embedded into other languages. This API can operate

104

similar to how SQL queries are used in languages such as Java, although asynchronously due to the time

required to execute queries and the (potential) size of the resulting data. Developing this API may pose

several interesting research questions, such as when and how do we cache data, what sort of consistency

guarantees do we provide, etc.

105

CHAPTER 9. CONCLUSION

Ultra-large-scale software repositories contain an enormous corpus of software and information

about that software. Scientists and engineers alike are interested in analyzing this wealth of informa-

tion, however systematic extraction of relevant data from these repositories and analysis of such data

for testing hypotheses is difficult. In this work, we present Boa, a domain-specific language and infras-

tructure to ease testing MSR-related hypotheses. We have implemented Boa and provide a web-based

interface to Boa’s infrastructure.

Our evaluation demonstrated that Boa substantially reduces programming efforts, thus lowering the

barrier to entry. Boa also shows drastic improvements in scalability without requiring programmers to

explicitly write parallelizing code. Boa is already expressive enough to allow us to reproduce a previous

study on the Java language [44] as well as conduct our own large-scale case study on the adoption of

Java language features.

Analysis tasks written in Boa are easy to comprehend, when compared to similar tasks written in

Hadoop. We also demonstrated that experiments conducted using Boa are easily reproduced simply by

re-running Boa programs provided by the previous researchers.

106

APPENDIX A. GRAMMAR OF THE BOA LANGUAGE

This section contains the full grammar for the Boa language. The grammar uses the following

BNF-style conventions:

• Symbol is a non-terminal symbol

• “symbol” is a terminal symbol

• [x] denotes zero or one occurrences of x

• (x)* denotes zero or more occurrences of x

• (x)+ denotes one or more occurrences of x

• x | y means one of either x or y

A Boa Program is a sequence of one or more Declarations and Statements.

Program ::= (Declaration | Statement)+

Declarations

Declarations introduce names and include variable declarations (VarDeclaration), static

variable declarations (StaticVarDeclaration), and TypeDeclarations.

Declaration ::= VarDeclaration | StaticVarDeclaration | TypeDeclaration

VarDeclaration ::= identifier “:” [Type] [“=” Expression] “;”

StaticVarDeclaration ::= “static” VarDeclaration

TypeDeclaration ::= “type” identifier “=” Type “;”

107

A variable declaration declares a new variable with a name given by an identifier. By default, the

variable will have an undefined value. If the variable declaration contains an initializer expression then

the variable will be assigned the expression, possibly with an automatic cast (assuming the type is also

specified). If there is no type specified, it is inferred from the type of the initializer expression. In this

case, the colon and equals are often placed together without a space (:=).

Variables can also be declared as static. Static variables are evaluated once per program (not once

per input value). All output variables are implicitly static (and the static keyword may be omitted).

A TypeDeclaration binds a name given by an identifier to a Type.

Types

Boa is a statically-typed language. Types can be an identifier referring to a named type previously

declared in scope.

Type ::= identifier | ArrayType | MapType | StackType | VisitorType | OutputType | FunctionType

Types can also be an ArrayType, MapType, or StackType. Array types expect the type of

values stored in the array. Values are stored into a array using Assignment statements where the

left-hand side is a Factor with an Index.

Map types expect the type of keys and values stored in the map. Values are stored into a map

using Assignment statements where the left-hand side is a Factor with an Index. A function call

haskey(m, k) is provided to test if a map m contains a key k. Maps can be cleared using the clear(m)

function call.

Stack types expect the type of values stored on the stack. A value v may be pushed onto the stack s

by calling push(s, v) and a value may be popped off the stack by calling pop(s). Stacks can be cleared

using the clear(s) function call.

ArrayType ::= “array” “of” Type

MapType ::= “map” “[” Type “]” “of” Type

StackType ::= “stack” “of” Type

Types may also be a VisitorType. All visitors have this type.

108

VisitorType ::= “visitor”

Output is generated using variables with OutputType. Output types have an identifier naming

an aggregator function. Depending on the aggregator function, it may also take an expression list or

parameters. Output types have a sequence of zero or more index types. They also specify the type of

the expected values emitted to the output variable. Depending on the aggregator, the output type also

takes an optional weight type and an optional format expression list.

ExprList ::= Expression (“,” Expression)*

OutputType ::= “output” identifier [“(” ExprList “)”] (“[” Type “]”)* “of” Type

[“weight” Type] [“format” “(” ExprList “)”]

FunctionTypes specify a signature for a function, which includes the ordered list of any

parameters and an optional return type.

parameter ::= identifier “:” Type

FunctionType ::= “function” “(” [parameter (“,” parameter)*] “)” [“:” Type]

Statements

The language provides several different Statements, including an EmptyStatement (which

is just a semi-colon and does nothing).

Statement ::= Assignment | Block | BreakStatement | ContinueStatement | DoStatement

| EmitStatement | EmptyStatement | ExprStatement | ForStatement | IfStatement

| QuantifierStatement | ResultStatement | ReturnStatement | SwitchStatement

| WhileStatement

EmptyStatement ::= “;”

An Assignment statement takes a Factor on the left-hand side representing the location to store

an Expression (on the right-hand side).

Assignment ::= Factor “=” Expression “;”

109

An expression statement takes an Expression and either increments or decrements its value.

ExprStatement ::= Expression [“++” | “- -”] “;”

The language also provides Blocks containing a sequence of zero or more Declarations and

Statements. Blocks allow scoping declarations.

Block ::= “{” (Declaration | Statement)* “}”

An IfStatement is provided that takes an Expression and if the value of that expression is

true runs a statement, otherwise runs an optional else statement. The SwitchStatement is similar

to other languages, with the exception that several cases may be provided at once and a default case is

always required.

IfStatement ::= “if” “(” Expression “)” Statement [“else” Statement]

SwitchStatement ::= “switch” “(” Expression “)” “{”

(“case” Expression (“,” Expression)* “:” Statement (Statement)*)*

“default” “:” Statement (Statement)* “}”

Break and continue statements are provided for exiting loops and control structures. These behave

similarly to other languages, such as Java. The ReturnStatement allows returning expressions

from inside functions.

BreakStatement ::= “break” “;”

ContinueStatement ::= “continue” “;”

ReturnStatement ::= “return” [Expression] “;”

The language provides several common looping statements, such as do, for, and while. Note that

the for-loops require local rules for ExprStatement and VarDecl so that they can be omitted (by

providing only a semi-colon).

DoStatement ::= “do” Statement “while” “(” Expression “)” “;”

110

ForExprStatement ::= Expression [“++” | “- -”]

ForVarDecl ::= identifier “:” [Type] [“=” Expression | Block]

ForStatement ::= “for” “(” [ForVarDecl | ForExprStatement] “;” [Expression] “;”

[ForVarDecl | ForExprStatement] “)” Statement

WhileStatement ::= “while” “(” Expression “)” Statement

The language provides a new looping construct called a QuantifierStatement. There are

three forms of quantifiers: foreach, ifall, and exists. All expect a parameter, which is a variable decla-

ration without an initializer. The variable is declared in the scope of the statement.

QuantifierStatement ::= (“foreach” | “ifall” | “exists”) “(” parameter “;” Expression “)” Statement

An EmitStatement allows emitting an Expression to an identifier naming an output variable.

If the output variable has indices, the statement provides expressions for them. Similarly, if the output

variable’s aggregator requires a weight, the emit statement provides it.

EmitStatement ::= identifier (“[” Expression “]”)* “<<” Expression [“weight” Expression] “;”

Expressions

Expressions apply operations on Factors to compute values. Factors are Operands followed

by a sequence of zero or more Selectors, Indexes, or Calls.

Operators Associativity

(unary) + - ~ ! not right to left

* / % << >> & left to right

+ - | ^ left to right

== != < <= > >= left to right

&& and left to right

|| or left to right

Expression ::= Conjunction ((“||” | “or”) Conjunction)*

Conjunction ::= Comparison ((“&&” | “and”) Comparison)*

111

Comparison ::= SimpleExpr [(“==” | “!=” | “<” | “<=” | “>” | “>=”) SimpleExpr]

SimpleExpr ::= Term ((“+” | “-” | “|” | “^”) Term)*

Term ::= Factor ((“*” | “/” | “%” | “<<” | “>>” | “&”) Factor)*

Factor ::= Operand (Selector | Index | Call)*

Selector ::= “.” identifier

Index ::= “[” Expression [“:” Expression] “]”

Call ::= “(” [ExprList] “)”

Operand ::= identifier | StringLiteral | IntegerLiteral | FloatingPointLiteral | CharacterLiteral

| TimeLiteral | Composite | VisitorExpr | Function | (“+” | “-” | “~” | “!” | “not”) Factor

| “(” Expression “)”

Pair ::= Expression “:” Expression

PairList ::= Pair (“,” Pair)*

Composite ::= “{” [PairList | ExprList | “:”] “}”

Function ::= FunctionType Block

Visitors

Visitor bodies are declared as VisitorExpr, which contains a visitor type and a body with a

sequence of zero or more VisitClauses.

VisitorExpr ::= VisitorType “{” (VisitClause)* “}”

A VisitClause is either a before visit or an after visit. Before visits run when a type matched

by the IdentifierList is visited, before its children are visited. After visits run for matching types

after visiting its children. Since before visits have the ability to control traversal, statements in before

visits include two additional statements.

VisitClause ::= “before” IdentifierList “->” BeforeClauseStatement

| “after” IdentifierList “->” Statement

112

Before visit bodies can be a normal statement, a stop statement which stops the standard traversal

strategy at that point in the tree, or a visit statement to manually visit a child node.

BeforeClauseStatement ::= Statement

| “stop” “;”

| “visit” “(” identifier “)” “;”

An IdentifierList can be a wildcard, in which case it provides default behavior for the visitor

and runs if no other clause matches the type being visited. It can also be a specific type with a named

identifier or a list of types.

IdentifierList ::= “_”

| identifier “:” identifier

| identifier (“,” identifier)*

Literals

Literals are composed of digits and letters.

digit ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”

letter ::= “a” | “b” | “c” | “d” | “e” | “f” | “g” | “h” | “i” | “j” | “k” | “l” | “m” | “n” | “o” | “p”

| “q” | “r” | “s” | “t” | “u” | “v” | “w” | “x” | “y” | “z”

| “A” | “B” | “C” | “D” | “E” | “F” | “G” | “H” | “I” | “J” | “K” | “L” | “M” | “N” | “O” | “P”

| “Q” | “R” | “S” | “T” | “U” | “V” | “W” | “X” | “Y” | “Z”

An identifier must start with a letter and may be followed by a sequence of zero or more

letters, digits, and underscores.

identifier ::= letter (letter | digit | “_”)*

IntegerLiterals can be specified with either binary, decimal, hex, or octal syntax any may be

negative. BinaryLiterals start with a digit 0 and a lowercase or uppercase letter B and are followed

by a sequence of one or more digits 0 or 1. DecimalLiterals start with any digit other than 0 and

113

are followed by zero or more digits. HexLiterals start with a digit 0 and an uppercase or lowercase

letter X and are followed by one or more digits or letters A to F. OctalLiterals start with the digit

0 and are followed by zero or more digits 0 to 7.

IntegerLiteral ::= [“-”] (BinaryLiteral | DecimalLiteral | HexLiteral) | OctalLiteral

BinaryLiteral ::= “0” (“b” | “B”) (“0” | “1”)+

DecimalLiteral ::= (“1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”) (digit)*

HexLiteral ::= “0” (“x” | “X”) (digit | “a” | “b” | “c” | “d” | “e” | “f” | “A” | “B” | “C” | “D” | “E” | “F”)+

OctalLiteral ::= “0” (“0” | “1” | “2” | “3” | “4” | “5” | “6” | “7”)*

A FloatingPointLiteral can be negative. It has decimals, a period, more decimals, and an

optional scale. Either the first or second group of digits can be missing (but not both). Additionally,

either the period or the scale may be missing (but not both).

scale ::= (“e” | “E”) [“+” | “-”] (digit)+

FloatingPointLiteral ::= [“-”] “.” (digit)+ [scale]

| [“-”] (digit)+ scale

| [“-”] (digit)+ “.” (digit)* [scale]

A CharacterLiteral is a single quote followed by one character followed by a single

quote.

character ::= ~(“\n” | “\r” | “\f” | “\t” | “\b” | “\” | “’”)

| “\” (“n” | “r” | “f” | “t” | “b” | “\” | “’”)

CharacterLiteral ::= “’” character “’”

A StringLiteral is a double quote followed by a sequence of zero or more characters

followed by a double quote. A second form of string literals uses the backtick instead of double quotes.

This form is designed to make writing regular expressions easier, by not having the notion of an escape

character (meaning the backslash does not need to be doubled).

StringLiteral ::= “"” (character)* “"”

| “‘” ~(“\n” | “\r” | “‘”) “‘”

114

A TimeLiteral defines a notion of date and time. It can be an integer, followed by a lowercase

or uppercase letter T. In this case the literal is interpreted to be the number of microseconds since Dec

31 16:00:00 PST 1969. A time literal may also be an uppercase letter T followed a string literal, where

the string gives the date and time.

TimeLiteral ::= IntegerLiteral (“t” | “T”)

| “T” StringLiteral

115

APPENDIX B. DOMAIN-SPECIFIC TYPES IN BOA

In this chapter we list all of the domain-specific types provided by Boa. We also list all attributes

contained in the types.

Person

A unique person’s information

Attribute : Type Description

email : string The person’s email address, if known

real_name : string The person’s real name, if known, otherwise the same as username

username : string The person’s username

116

Project Metadata Types

Project

Top-level type, represents a single project on the forge

Attribute : Type Description

audiences : array of string A list of the target audiences for the project

code_repositories : array of CodeRepository A list of all code repositories associated with this

project

created_date : time The time the project was created

databases : array of string A list of all databases used by the project

description : string A description of the project

developers : Person A list of all software developers currently on the

project

donations : bool If true, this project explicitly states it accepts dona-

tions

homepage_url : string A URL to the project’s homepage

id : string Unique identifier for the project

interfaces : array of string A list of all interfaces supported by the project

licenses : array of string A list of all licenses used by the project

maintainers : Person A list of all people currently maintaining the project

name : string The name of the project

operating_systems : array of string A list of all OSes supported by the project

programming_languages : array of string A list of all programming languages used by the

project

project_url : string A URL to the project’s page on the forge

topics : array of string A list of self-categorized topics the project belongs

to

117

Source Control Metadata Types

CodeRepository

A source code repository (SVN, CVS, Git, etc)

Attribute : Type Description

kind : RepositoryKind The kind of code repository (SVN, GIT, etc)

revisions : array of Revision All of the revisions contained in the code repository

url : string The URL to access the code repository

enum RepositoryKind

Describes the kind of code repository

Attribute Description

BZR For Bazaar code repositories

CVS For CVS code repositories

GIT For Git code repositories

HG For Mercurial code repositories

SVN For Subversion code repositories

UNKNOWN The code repository’s kind was not known

Revision

A single revision inside a CodeRepository

Attribute : Type Description

author : Person The person who authored the revision, if known, otherwise the same

as committer

commit_date : time The time the revision was committed

committer : Person The person who committed the revision

files : array of ChangedFile A list of all files committed in the revision

id : int A unique identifier for the revision

log : string The log message attached to the revision

118

ChangedFile

A file committed in a Revision

Attribute : Type Description

change : ChangeKind The kind of change for this file

kind : FileKind The kind of file

name : string The full name and path of the file

enum ChangeKind

Describes the kind of change for the file

Attribute Description

ADDED The file did not already exist and was added

DELETED The file was deleted

MODIFIED The file already existed and was modified

enum FileKind

Describes the kind of the file

Attribute Description

BINARY The file represents a binary file

SOURCE_JAVA_ERROR The file represents a Java source file that had a parse error

SOURCE_JAVA_JLS2 The file represents a Java source file that parsed without error as JLS2

SOURCE_JAVA_JLS3 The file represents a Java source file that parsed without error as JLS3

SOURCE_JAVA_JLS4 The file represents a Java source file that parsed without error as JLS4

TEXT The file represents a text file

UNKNOWN The file’s type was unknown

XML The file represents an XML file

119

Source Code AST Types

ASTRoot

Container class that holds a file’s parsed AST

Attribute : Type Description

imports : array of string The imported namespaces and types

namespaces : array of Namespace The top-level namespaces in the file

Namespace

A namespace (aka, package) in a source file

Attribute : Type Description

declarations : array of Declaration Declarations contained in this namespace

modifiers : array of Modifier Any modifiers/annotations on the namespace

name : string The name of the namespace

Declaration

A type declaration, such as a class or interface

Attribute : Type Description

fields : array of Variable The fields in the declaration

generic_parameters : array of Type Any generic parameters to this declaration

kind : TypeKind The kind of this declaration

methods : array of Method The methods in the declaration

modifiers : array of Modifier The modifiers/annotations on this declaration

name : string The name of this declaration

nested_declarations : array of Declaration Any nested declarations

parents : array of Type The explicitly named parent type(s) of this declaration

120

Type

A type in an AST

Attribute : Type Description

kind : TypeKind The kind of the type

name : string The name of the type

enum TypeKind

The kinds of types in an AST

Attribute Description

ANNOTATION An annotation type

ANONYMOUS An anonymous type

CLASS A class type

DELEGATE A delegate type

ENUM An enumerated type

GENERIC A generic type

INTERFACE An interface type

OTHER Any other kind of Type

STRUCT A struct

121

Method

A method declaration

Attribute : Type Description

arguments : array of Variable The arguments the method takes

exception_types : array of Type The list of exceptions thrown by this method

generic_parameters : array of Type The list of generic parameters for this method

modifiers : array of Modifier A list of all modifiers on the variable

name : string The name of the method

return_type : Type The type returned from the method; if the method returns noth-

ing, this type will be void

statements : array of Statement The statements in the method body

Variable

A variable declaration - can be a field, local, parameter, etc

Attribute : Type Description

initializer : Expression? If the variable has an initial assignment, the expression is stored here

modifiers : array of Modifier A list of all modifiers on the variable

name : string The name of the variable

variable_type : Type The type of the variable

122

Statement

A single statement

Attribute : Type Description

expression : Expression? A sub-expression

initializations : array of Expression Used in for loops

kind : StatementKind The kind of statement

statements : array of Statement A list of sub-statements

type_declaration : Declaration? A type declaration

updates : array of Expression Used in for loops

variable_declaration : Variable? A variable declaration

123

enum StatementKind

The kind of statement

Attribute Defined Sub-Attributes

ASSERT expression

BLOCK statements

BREAK expression (if to a label)

CASE expression

CATCH variable_declaration, statements

CONTINUE expression (if to a label)

DO expression, statements

EMPTY

EXPRESSION expression

FOR initializations, updates, expression, statements, variable_declaration (for

enhanced-for loops)

IF expression, statements

LABEL expression, statements

OTHER

RETURN expression

SWITCH expression, statements

SYNCHRONIZED expression, statements

THROW expression

TRY statements, initializations (for try with resources)

TYPEDECL type_declaration

WHILE expression, statements

124

Expression

A single expression

Attribute : Type Description

annotation : Modifier? An annotation

anon_declaration : Declaration? An anonymous declaration

expressions : array of Expression A list of sub-expressions

generic_parameters : array of Type A list of generic type parameters

is_postfix : bool? If an operator is postfix

kind : ExpressionKind The kind of expression

literal : string? A literal value

method : string? A method name

method_args : array of Expression A list of method arguments

new_type : Type? A type

variable : string? A variable name

variable_decls : array of Variable A list of variable declarations

125

enum ExpressionKind

The kind of expression

Attribute Defined Sub-Attributes

ANNOTATION annotation

ARRAYINDEX expressions

ARRAYINIT expressions

ASSIGN expressions

ASSIGN_ADD expressions

ASSIGN_BITAND expressions

ASSIGN_BITOR expressions

ASSIGN_BITXOR expressions

ASSIGN_DIV expressions

ASSIGN_LSHIFT expressions

ASSIGN_MOD expressions

ASSIGN_MULT expressions

ASSIGN_RSHIFT expressions

ASSIGN_SUB expressions

ASSIGN_UNSIGNEDRSHIFT expressions

BIT_AND expressions

BIT_LSHIFT expressions

BIT_NOT expressions

BIT_OR expressions

BIT_RSHIFT expressions

BIT_UNSIGNEDRSHIFT expressions

BIT_XOR expressions

CAST expressions, new_type

CONDITIONAL expressions

EQ expressions

126

enum ExpressionKind

The kind of expression

Attribute Defined Sub-Attributes

GT expressions

GTEQ expressions

LITERAL literal

LOGICAL_AND expressions

LOGICAL_NOT expressions

LOGICAL_OR expressions

LT expressions

LTEQ expressions

METHODCALL method, expressions, generic_parameters

NEQ expressions

NEW expressions, new_type, generic_parameters, anon_declaration

NEWARRAY expressions, new_type

NULLCOALESCE expressions

OP_ADD expressions

OP_DEC expressions, is_postfix

OP_DIV expressions

OP_INC expressions, is_postfix

OP_MOD expressions

OP_MULT expressions

OP_SUB expressions

OTHER

TYPECOMPARE expressions, new_type

VARACCESS expressions, variable

VARDECL variable_decl

127

Modifier

A single modifier

Attribute : Type Description

annotation_members : array of string If the kind is ANNOTATION, then a list of all members

explicitly assigned values

annotation_name : string? If the kind is ANNOTATION, then the name of the anno-

tation

annotation_values : array of Expression If the kind is ANNOTATION, then a list of all values that

were assigned to members

kind : ModifierKind The kind of modifier

other : string? If the modifier kind is OTHER, the modifier string from

the source code

visibility : Visibility A kind of visibility modifier

enum ModifierKind

The kind of modifier

Attribute Description

ABSTRACT An abstract modifier

ANNOTATION An annotation modifier

FINAL A final modifier

OTHER Any other modifier - the value is in the Modifier’s other attribute

STATIC A static modifier

SYNCHRONIZED A synchronized modifier

VISIBILITY A Visibility modifier - the value is in the Modifier’s visibility attribute

128

enum Visibility

A visibility modifier

Attribute Description

NAMESPACE A namespace (aka, default, aka package) visibility modifier

PRIVATE A private modifier

PROTECTED A protected modifier

PUBLIC A public modifier

129

APPENDIX C. DOMAIN-SPECIFIC FUNCTIONS IN BOA

In this chapter, we describe some of the domain-specific functions provided by the Boa runtime.

Where possible, we also show the Boa code implementing the function.

1 getast := function(name: ChangedFile) : ASTRoot;

Returns the ASTRoot of the specified file, if it exists. Otherwise returns undef.

1 getsnapshot := function(cr: CodeRepository, t: time, filters: array of string) : array of
ChangedFile {

2 snapshot: map[string] of ChangedFile;

3 visit(cr, visitor {
4 before node: Revision ->
5 if (node.commit_date > t)
6 stop;
7 before node: ChangedFile -> {
8 filter := len(filters) > 0;

9 exists (i: int; iskind(filters[i], node.kind))
10 filter = false;

11 if (!filter) {
12 if (node.change == ChangeKind.DELETED)
13 remove(snapshot, node.name);
14 else
15 snapshot[node.name] = node;
16 }
17 }
18 });

19 return values(snapshot);
20 };

Returns a snapshot of ChangedFiles. A snapshot is the last version of a file before a given time

t (if no time is given, NOW is used). If any filters are given, they are used to filter out files. The file

kind is checked against each string and must one or more filters. Matches are performed by comparing

the filter against the start of the file kind.

1 isliteral := function(e: Expression, s: string) : bool {
2 return e.kind == ExpressionKind.LITERAL && def(e.literal) && e.literal == s;
3 };

130

Returns true if the expression e is of kind LITERAL and the literal matches the string s.

1 hasfiletype := function(data: Revision, ext: string) : bool {
2 exists (i: int; match(format(‘\.%s$‘, lowercase(ext)), lowercase(data.files[i].name)))
3 return true;
4 return false;
5 };

Does the data contain a file of the specified type? This compares based on the given

file extension. The comparison is case insensitive. Valid dsl_types are: Project,

CodeRepository, and Revision.

1 isfixingrevision := function(log: string) : bool {
2 if (match(‘\bfix(s|es|ing|ed)?\b‘, log)) return true;
3 if (match(‘\b(error|bug|issue)(s)\b‘, log)) return true;
4 return false;
5 };

Is the given log message indicating it is a fixing revision? A message is considered indicating a

bug fix if it matches a set of regular expressions.

1 iskind := function(s: string, k: dsl_type) : bool {
2 return match(format("^%s", s), string(k));
3 };

Returns true if the kind k starts with the string s. Valid dsl_types are: FileKind.

131

APPENDIX D. ADDITIONAL EXAMPLE BOA PROGRAMS

In this chapter, we show example Boa queries from several different categories.

Programming Languages

1 counts: output top(10) of string weight int;
2 p: Project = input;
3 foreach (i: int; def(p.programming_languages[i]))
4 counts << p.programming_languages[i] weight 1;

Figure D.1: A1. What are the ten most used programming languages?

1 counts: output sum of int;
2 p: Project = input;
3 if (len(p.programming_languages) > 1)
4 counts << 1;

Figure D.2: A2. How many projects use more than one programming language?

1 counts: output sum of int;
2 p: Project = input;
3 foreach (i: int; match(‘^scheme$‘, lowercase(p.programming_languages[i])))
4 counts << 1;

Figure D.3: How many projects use the Scheme programming language?

132

Project Management

1 counts: output sum[int] of int;
2 p: Project = input;
3 counts[yearof(p.created_date)] << 1;

Figure D.4: B1. How many projects are created each year?

1 values: output sum[string] of int;
2 p: Project = input;
3 foreach (i: int; def(p.topics[i]))
4 values[lowercase(p.topics[i])] << 1;

Figure D.5: B2. How many projects self-classify into each topic provided by SourceForge?

1 counts: output sum of int;
2 p: Project = input;
3 exists (i: int; match(‘^java$‘, lowercase(p.programming_languages[i])))
4 foreach (j: int; p.code_repositories[j].kind == RepositoryKind.SVN)
5 exists (k: int; yearof(p.code_repositories[j].revisions[k].commit_date) == 2011)
6 counts << 1;

Figure D.6: B3. How many Java projects using SVN were active in 2011?

133

1 counts: output top(1) of int weight int;
2 p: Project = input;
3 exists (j: int; match(‘^java$‘, lowercase(p.programming_languages[j])))
4 foreach (i: int; p.code_repositories[i].kind == RepositoryKind.SVN)
5 if (len(p.code_repositories[i].revisions) > 0)
6 counts << yearof(p.code_repositories[i].revisions[0].commit_date) weight 1;

Figure D.7: B4. In which year was SVN added to Java projects the most?

1 counts: output sum of int;
2 p: Project = input;
3 exists (i: int; match(‘^java$‘, lowercase(p.programming_languages[i])))
4 foreach (j: int; p.code_repositories[j].kind == RepositoryKind.SVN)
5 counts << len(p.code_repositories[j].revisions);

Figure D.8: B5. How many revisions are there in all Java projects using SVN?

1 counts: output sum[string] of int;
2 p: Project = input;
3 committers: map[string] of bool;
4 foreach (i: int; def(p.code_repositories[i]))
5 foreach (j: int; def(p.code_repositories[i].revisions[j]))
6 committers[p.code_repositories[i].revisions[j].committer.username] = true;
7 if (len(committers) > 0)
8 counts[p.id] << len(committers);

Figure D.9: B7. How many committers are there for each project?

1 p: Project = input;
2 counts: output mean[string] of int;
3 foreach (i: int; def(p.code_repositories[i]))
4 foreach (j: int; def(p.code_repositories[i].revisions[j]))
5 counts[p.id] << len(p.code_repositories[i].revisions[j].files);

Figure D.10: B9. What are the churn rates for all projects?

1 counts: output sum[int] of int;
2 p: Project = input;
3 exists (i: int; match(‘^java$‘, lowercase(p.programming_languages[i])))
4 foreach (j: int; p.code_repositories[j].kind == RepositoryKind.SVN)
5 foreach (k: int; def(p.code_repositories[j].revisions[k]))
6 counts[yearof(p.code_repositories[j].revisions[k].commit_date)] << 1;

Figure D.11: B10. How did the number of commits for Java projects using SVN change over years?

134

Legal

1 counts: output sum of int;
2 p: Project = input;
3 if (len(p.licenses) > 1)
4 counts << 1;

Figure D.12: C2. How many projects use more than one license?

135

Platform/Environment

1 counts: output top(5) of string weight int;
2 p: Project = input;
3 foreach (i: int; def(p.operating_systems[i]))
4 counts << p.operating_systems[i] weight 1;

Figure D.13: D1. What are the five most supported operating systems?

1 counts: output collection[string] of string;
2 p: Project = input;
3 if (len(p.operating_systems) > 1)
4 counts[p.id] << p.project_url;

Figure D.14: D2. Which projects support multiple operating systems?

1 counts: output top(5) of string weight int;
2 p: Project = input;
3 foreach (i: int; def(p.databases[i]))
4 counts << p.databases[i] weight 1;

Figure D.15: D3. What are the five most popular databases?

136

1 counts: output collection[string] of string;
2 p: Project = input;
3 if (len(p.databases) > 1)
4 counts[p.id] << p.name;

Figure D.16: D4. What are the projects that support multiple databases?

137

Source Code

1 p: Project = input;
2 top5: output top(5) of string weight int;
3 astCount := 0;
4 visit(p, visitor {
5 # only look at the latest snapshot
6 before n: CodeRepository -> {
7 snapshot := getsnapshot(n);
8 foreach (i: int; def(snapshot[i]))
9 visit(snapshot[i]);

10 stop;
11 }
12 # by default, count all visited nodes
13 before _ -> astCount++;
14 # these nodes are not part of the AST, so do nothing when visiting
15 before Project, ChangedFile -> ;
16 });
17 # Output is in Millions of AST nodes.
18 top5 << p.project_url weight astCount / 1000000;

Figure D.17: E1. What are the five largest projects, in terms of AST nodes?

1 counts: output sum of int;
2 p: Project = input;
3 visit(p, visitor {
4 before node: CodeRepository ->
5 counts << len(getsnapshot(node, "SOURCE_JAVA_JLS"));
6 });

Figure D.18: E2. How many valid Java files in latest snapshot?

138

1 AddedNullCheck: output sum of int;
2 p: Project = input;
3 isfixing := false;
4 count := 0;
5 # map of file names to the last revision of that file
6 files: map[string] of ChangedFile;
7 visit(p, visitor {
8 before node: Revision -> isfixing = isfixingrevision(node.log);
9 before node: ChangedFile -> {

10 # if this is a fixing revision and
11 # there was a previous version of the file
12 if (isfixing && haskey(files, node.name)) {
13 # count how many null checks were previously in the file
14 count = 0;
15 visit(getast(files[node.name]));
16 last := count;
17 # count how many null checks are currently in the file
18 count = 0;
19 visit(getast(node));
20 # if there are more null checks, output
21 if (count > last)
22 AddedNullCheck << 1;
23 }
24 if (node.change == ChangeKind.DELETED)
25 remove(files, node.name);
26 else
27 files[node.name] = node;
28 stop;
29 }
30 before node: Statement ->
31 # increase the counter if there is an IF statement
32 # where the boolean condition is of the form:
33 # null == expr OR expr == null OR null != expr OR expr != null
34 if (node.kind == StatementKind.IF)
35 visit(node.expression, visitor {
36 before node: Expression ->
37 if (node.kind == ExpressionKind.EQ || node.kind == ExpressionKind.NEQ)
38 exists (i: int; isliteral(node.expressions[i], "null"))
39 count++;
40 });
41 });

Figure D.19: E3. How many fixing revisions added null checks?

139

1 p: Project = input;
2 GenericFields: output sum[string] of int;
3 visit(p, visitor {
4 before node: Type ->
5 if (strfind("<", node.name) > -1)
6 GenericFields[p.project_url] << 1;
7 before node: Declaration -> {
8 # check all fields
9 foreach (i: int; node.fields[i])

10 visit(node.fields[i]);
11 # also look at nested declarations
12 foreach (i: int; node.methods[i])
13 visit(node.methods[i]);
14 foreach (i: int; node.nested_declarations[i])
15 visit(node.nested_declarations[i]);
16 stop;
17 }
18 before node: Method -> {
19 foreach (i: int; node.statements[i])
20 visit(node.statements[i]);
21 stop;
22 }
23 before node: Statement -> {
24 foreach (i: int; node.statements[i])
25 visit(node.statements[i]);
26 if (def(node.type_declaration))
27 visit(node.type_declaration);
28 stop;
29 }
30 # fields cant be below expressions or modifiers
31 before Expression, Modifier -> stop;
32 });

Figure D.20: E4. How many generic fields are declared in each project?

1 p: Project = input;
2 Varargs: output collection[string][string][time] of int;
3 file_name: string;
4 commit_date: time;
5 visit(p, visitor {
6 before node: ChangedFile -> file_name = node.name;
7 before node: Revision -> commit_date = node.commit_date;
8 before node: Method ->
9 if (len(node.arguments) > 0

10 && strfind("...", node.arguments[len(node.arguments) - 1].variable_type.
name) > -1)

11 Varargs[p.project_url][file_name][commit_date] << 1;
12 });

Figure D.21: E5. How is varargs used over time?

140

1 p: Project = input;
2 TransientTotal: output sum of int;
3 TransientMax: output maximum(1) of string weight int;
4 TransientMin: output minimum(1) of string weight int;
5 TransientMean: output mean of int;
6 count := 0;
7 s: stack of int;
8 visit(p, visitor {
9 before node: CodeRepository -> {

10 # only look at the latest snapshot
11 # and only include Java files
12 snapshot := getsnapshot(node, "SOURCE_JAVA_JLS");
13 foreach (i: int; def(snapshot[i]))
14 visit(snapshot[i]);
15 stop;
16 }
17 before node: Declaration -> {
18 # only interested in fields, which only occur inside (anonymous) classes
19 if (node.kind == TypeKind.CLASS || node.kind == TypeKind.ANONYMOUS) {
20 # store old value
21 push(s, count);
22 count = 0;
23 # find uses and increment counter
24 foreach (i: int; def(node.fields[i]))
25 foreach (j: int; node.fields[i].modifiers[j].kind == ModifierKind.OTHER
26 && node.fields[i].modifiers[j].other == "transient")
27 count++;
28 } else
29 stop;
30 }
31 after node: Declaration -> {
32 # output result
33 TransientTotal << count;
34 TransientMax << p.id weight count;
35 TransientMin << p.id weight count;
36 TransientMean << count;
37 # restore previous value
38 count = pop(s);
39 }
40 });

Figure D.22: E6. How is transient keyword used in Java?

141

Software Engineering Metrics

1 # Computes Number of Attributes (NOA) for each project, per-type
2 # Output is: NOA[ProjectID][TypeName] = NOA value
3 p: Project = input;
4 NOA: output sum[string][string] of int;

5 visit(p, visitor {
6 # only look at the latest snapshot
7 before n: CodeRepository -> {
8 snapshot := getsnapshot(n);
9 foreach (i: int; def(snapshot[i]))

10 visit(snapshot[i]);
11 stop;
12 }
13 before node: Declaration ->
14 if (node.kind == TypeKind.CLASS)
15 NOA[p.id][node.name] << len(node.fields);
16 });

Figure D.23: F1. What are the number of attributes (NOA), per-project and per-type?

1 # Computes Number of Public Methods (NPM) for each project, per-type
2 # Output is: NPM[ProjectID][TypeName] = NPM value
3 p: Project = input;
4 NPM: output sum[string][string] of int;

5 visit(p, visitor {
6 # only look at the latest snapshot
7 before n: CodeRepository -> {
8 snapshot := getsnapshot(n);
9 foreach (i: int; def(snapshot[i]))

10 visit(snapshot[i]);
11 stop;
12 }
13 before node: Declaration ->
14 if (node.kind == TypeKind.CLASS)
15 foreach (i: int; has_modifier_public(node.methods[i]))
16 NPM[p.id][node.name] << 1;
17 });

Figure D.24: F2. What are the number of public methods (NPM), per-project and per-type?

142

BIBLIOGRAPHY

[1] Promise 2009 dataset. http://promisedata.org/2009/datasets.html.

[2] Hierarchical visitor pattern, c2 pattern repository. http://c2.com/cgi/wiki?

HierarchicalVisitorPattern, 2012.

[3] Sourceforge website. http://sourceforge.net/, 2012.

[4] Sourcerer website. http://sourcerer.ics.uci.edu/, 2012.

[5] Boa website. http://boa.cs.iastate.edu/, 2013.

[6] Drupal website. http://www.drupal.org/, 2013.

[7] Apache Hadoop. http://hadoop.apache.org/docs/current/api/org/apache/

hadoop/mapred/lib/ChainReducer.html, 2013.

[8] Apache Hadoop. http://hadoop.apache.org/docs/current/api/org/apache/

hadoop/mapred/lib/ChainMapper.html, 2013.

[9] Apache Software Foundation. Hadoop: Open source implementation of MapReduce. http:

//hadoop.apache.org/, 2012.

[10] Apache Software Foundation. Giraph: iterative graph processing. http://giraph.apache.

org/, 2013.

[11] Apache Software Foundation. Hama project. http://hama.apache.org/, 2013.

[12] Apache Software Foundation. Hbase: Open source implementation of Bigtable. http:

//hbase.apache.org/, 2013.

http://c2.com/cgi/wiki?HierarchicalVisitorPattern
http://c2.com/cgi/wiki?HierarchicalVisitorPattern
http://sourceforge.net/
http://sourcerer.ics.uci.edu/
http://boa.cs.iastate.edu/
http://www.drupal.org/
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/lib/ChainReducer.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/lib/ChainReducer.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/lib/ChainMapper.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/lib/ChainMapper.html
http://hadoop.apache.org/
http://hadoop.apache.org/
http://giraph.apache.org/
http://giraph.apache.org/
http://hama.apache.org/
http://hbase.apache.org/
http://hbase.apache.org/

143

[13] A. M. Ayad and J. F. Naughton. Static optimization of conjunctive queries with sliding windows

over infinite streams. In Proceedings of the 2004 ACM SIGMOD international conference on

Management of data, SIGMOD ’04, pages 419–430, New York, NY, USA, 2004. ACM.

[14] B. Babcock, S. Babu, M. Datar, R. Motwani, and D. Thomas. Operator scheduling in data stream

systems. The VLDB Journal, 13(4):333–353, Dec. 2004.

[15] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream

systems. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Prin-

ciples of database systems, PODS ’02, pages 1–16, New York, NY, USA, 2002. ACM.

[16] S. Bajracharya, J. Ossher, and C. Lopes. Sourcerer: An infrastructure for large-scale collection and

analysis of open-source code. In WASDeTT-3: 3rd International Workshop on Academic Software

Development Tools and Techniques, pages 1–35, 2010.

[17] P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Bajracharya. A theory of aspects as latent topics.

In Proceedings of the 23rd ACM SIGPLAN conference on Object-Oriented Programming Systems

Languages and Applications, OOPSLA, pages 543–562, 2008.

[18] H. A. Basit, D. C. Rajapakse, and S. Jarzabek. An empirical study on limits of clone unification

using generics. In Proceedings of the 17th International Conference on Software Engineering and

Knowledge Engineering, SEKE, pages 109–114, 2005.

[19] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey. Facilitating software evolution research

with Kenyon. In ESEC/FSE’05: 10th European Software Engineering Conference held jointly

with 13th ACM SIGSOFT International Symposium on Foundations of Software Engineering,

pages 177–186, 2005.

[20] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM,

13(7):422–426, July 1970.

[21] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for the past: adding

genericity to the Java programming language. SIGPLAN Not., 33(10), Oct. 1998.

144

[22] T. S. BV. TIOBE Programming Community Index for July 2012. Technical report, TIOBE Soft-

ware BV, 2012.

[23] O. Callaú, R. Robbes, E. Tanter, and D. Röthlisberger. How developers use the dynamic features

of programming languages: the case of Smalltalk. In Proceedings of the 8th Working Conference

on Mining Software Repositories, MSR, pages 23–32, 2011.

[24] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. SCOPE:

easy and efficient parallel processing of massive data sets. VLDB’08: Proceedings of the VLDB

Endowment, 1(2):1265–1276, Aug. 2008.

[25] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Bradshaw, and N. Weizenbaum.

FlumeJava: easy, efficient data-parallel pipelines. In PLDI’10: 31st ACM SIGPLAN Conference

on Programming Language Design and Implementation, pages 363–375, 2010.

[26] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,

and R. E. Gruber. Bigtable: A distributed storage system for structured data. ACM Transactions

on Computer Systems, 26(2):4:1–4:26, June 2008.

[27] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analysis of string expressions. In

Proceedings of the 10th international conference on Static Analysis, SAS, pages 1–18, 2003.

[28] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. In OSDI’04:

6th Symposium on Operating System Design and Implementation, pages 137–150, 2004.

[29] P. Dourish and V. Bellotti. Awareness and coordination in shared workspaces. In CSCW, pages

107–114, 1992.

[30] R. Dyer. Task fusion: improving utilization of multi-user clusters. In Student research competition

at the 4th ACM SIGPLAN conference on Systems, Programming, Languages and Applications:

Software for Humanity, SPLASH, 2013.

[31] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: A language and infrastructure for

analyzing ultra-large-scale software repositories. In ICSE’13: 35th International Conference on

Software Engineering, pages 422–431, 2013.

145

[32] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen. A large-scale empirical study of Java

language feature usage. Technical Report 13-02, Iowa State University, 2013.

[33] R. Dyer, H. Rajan, and T. N. Nguyen. Declarative visitors to ease fine-grained source code min-

ing with full history on billions of AST nodes. In GPCE’13: 12th International Conference on

Generative Programming: Concepts & Experiences, page (to appear), 2013.

[34] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-specific,

programmer-written compiler extensions. In Proceedings of the 4th conference on Symposium on

Operating System Design & Implementation - Volume 4, OSDI’00, pages 1–1, 2000.

[35] M. Gabel and Z. Su. A study of the uniqueness of source code. In FSE’10: 18th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, pages 147–156, 2010.

[36] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley Professional, 1994.

[37] J. M. González-Barahona and G. Robles. On the reproducibility of empirical software engineering

studies based on data retrieved from development repositories. Empirical Software Engineering,

17(1-2):75–89, 2012.

[38] S. Goodman, P. Wolcott, and G. Burkhart. Building on the Basics: An Examination of High-

Performance Computing Export Control Policy in the 1990s. Center for International Security &

Cooperation, 1995.

[39] T. Gorschek, E. Tempero, and L. Angelis. A large-scale empirical study of practitioners’ use of

object-oriented concepts. In Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering, ICSE, pages 115–124, 2010.

[40] J. Gosling, B. Joy, and G. Steele. Java(TM) Language Specification. Addison-Wesley Longman

Publishing Co., Inc., 1st edition, 1996.

[41] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specification. Addison-Wesley

Longman Publishing Co., Inc., 2nd edition, 2000.

146

[42] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specification. Addison-Wesley

Professional, 3rd edition, 2005.

[43] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. Java(TM) Language Specification.

Prentice Hall, Java SE 7 edition, 2013.

[44] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi, S. Crespi, D. Poshyvanyk, C. Fu, Q. Xie,

and C. Ghezzi. An empirical investigation into a large-scale Java open source code repository.

In International Symposium on Empirical Software Engineering and Measurement, ESEM, pages

11:1–11:10, 2010.

[45] E. Hajiyev, M. Verbaere, and O. de Moor. CodeQuest: scalable source code queries with datalog.

In ECOOP’06: 20th European conference on Object-Oriented Programming, pages 2–27, 2006.

[46] A. Hindle and D. M. German. SCQL: a formal model and a query language for source control

repositories. In Proceedings of the 2005 international workshop on Mining Software Repositories,

MSR, pages 1–5, 2005.

[47] A. Holkner and J. Harland. Evaluating the dynamic behaviour of Python applications. In Pro-

ceedings of the Thirty-Second Australasian Conference on Computer Science - Volume 91, ACSC,

pages 19–28, 2009.

[48] M. Hoppe and S. Hanenberg. Do developers benefit from generic types? An empirical comparison

of generic and raw types in Java. In 4th ACM SIGPLAN conference on Systems, Programming,

Languages and Applications: Software for Humanity, SPLASH, 2013.

[49] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel programs

from sequential building blocks. In Eurosys’07: 2nd ACM SIGOPS/EuroSys European Conference

on Computer Systems, pages 59–72, 2007.

[50] D. Janzen and K. De Volder. Navigating and querying code without getting lost. In AOSD’03:

2nd international conference on Aspect-oriented software development, pages 178–187, 2003.

[51] S. P. Jones. Haskell 98 Language and Libraries: The Revised Report. Cambridge University

Press, 2003.

147

[52] L. C. L. Kats and E. Visser. The Spoofax language workbench. Rules for declarative specifi-

cation of languages and IDEs. In 25th Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA, pages 444–463, 2010.

[53] M. Kimmig, M. Monperrus, and M. Mezini. Querying source code with natural language. In

ASE’11: 26th IEEE/ACM International Conference on Automated Software Engineering, pages

376–379, 2011.

[54] S. Landau. Standing the test of time: The data encryption standard. Notices of the American

Mathematical Society, 47(3):341, March 2000.

[55] J. Lawall, J. Brunel, N. Palix, R. Hansen, H. Stuart, and G. Muller. WYSIWIB: A declarative

approach to finding API protocols and bugs in linux code. In IEEE/IFIP International Conference

on Dependable Systems Networks, DSN, pages 43–52, 2009.

[56] J. Lerner and J. Tirole. Some simple economics of open source. The Journal of Industrial Eco-

nomics, 50:197–234, 2002.

[57] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi. Sourcerer: mining and

searching internet-scale software repositories. Data Mining and Knowledge Discovery, 18:300–

336, April 2009.

[58] B. Livshits, J. Whaley, and M. S. Lam. Reflection analysis for Java. In Proceedings of the Third

Asian conference on Programming Languages and Systems, APLAS, pages 139–160, 2005.

[59] D. Malayeri and J. Aldrich. Is structural subtyping useful? an empirical study. In Proceedings

of the 18th European Symposium on Programming Languages and Systems: Held as Part of the

Joint European Conferences on Theory and Practice of Software, ESOP, pages 95–111, 2009.

[60] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski.

Pregel: A system for large-scale graph processing. In 2010 ACM SIGMOD International Confer-

ence on Management of Data, SIGMOD, pages 135–146, 2010.

148

[61] M. Martin, B. Livshits, and M. S. Lam. Finding application errors and security flaws using PQL:

a program query language. In OOPSLA’05: 20th annual ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and applications, pages 365–383, 2005.

[62] L. Meyerovich and A. Rabkin. Empirical analysis of programming language adoption. In 4th

ACM SIGPLAN conference on Systems, Programming, Languages and Applications: Software for

Humanity, SPLASH, 2013.

[63] D. Miner and A. Shook. MapReduce Design Patterns: Building Effective Algorithms and Analytics

for Hadoop and Other Systems. O’Reilly Media, 2012.

[64] R. Muschevici, A. Potanin, E. Tempero, and J. Noble. Multiple dispatch in practice. In Proceed-

ings of the 23rd ACM SIGPLAN conference on Object-oriented programming systems languages

and applications, OOPSLA, pages 563–582, 2008.

[65] NASA. MERRA analytic services: orchestrating big data with climate analytics-as-a-service.

http://www.nas.nasa.gov/SC13/demos/demo24.html, 2013.

[66] Ohloh. Ohloh source control management library. https://github.com/blackducksw/

ohloh_scm, 2012.

[67] B. C. d. S. Oliveira, M. Wang, and J. Gibbons. The visitor pattern as a reusable, generic, type-

safe component. In OOPSLA’08: 23rd Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pages 439–456, 2008.

[68] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign language

for data processing. In SIGMOD/PODS’08: 35th ACM SIGMOD International Conference on

Management of Data, pages 1099–1110, 2008.

[69] D. Orleans and K. J. Lieberherr. DemeterJ. Technical report, Northeastern University, 2001.

[70] D. Orleans and K. J. Lieberherr. DJ: Dynamic adaptive programming in Java. In REFLEC-

TION’01: 3rd International Conference on Metalevel Architectures and Separation of Crosscut-

ting Concerns, pages 73–80, 2001.

http://www.nas.nasa.gov/SC13/demos/demo24.html
https://github.com/blackducksw/ohloh_scm
https://github.com/blackducksw/ohloh_scm

149

[71] J. Ossher, S. Bajracharya, E. Linstead, P. Baldi, and C. Lopes. SourcererDB: an aggregated repos-

itory of statically analyzed and cross-linked open source Java projects. In MSR’09: 6th IEEE

International Working Conference on Mining Software Repositories, pages 183–186, 2009.

[72] J. Ovlinger and M. Wand. A language for specifying recursive traversals of object structures.

In OOPSLA’99: 14th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, pages 70–81, 1999.

[73] V. Pankratius and A.-R. Adl-Tabatabai. A study of transactional memory vs. locks in practice. In

Proceedings of the 23rd ACM symposium on Parallelism in algorithms and architectures, SPAA,

pages 43–52, 2011.

[74] C. Parnin, C. Bird, and E. R. Murphy-Hill. Java generics adoption: how new features are in-

troduced, championed, or ignored. In 8th IEEE International Working Conference on Mining

Software Repositories, MSR, 2011.

[75] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data: Parallel analysis with

Sawzall. Sci. Program., 13(4):277–298, October 2005.

[76] P. Ratanaworabhan, B. Livshits, and B. G. Zorn. Jsmeter: comparing the behavior of JavaScript

benchmarks with real web applications. In Proceedings of the 2010 USENIX conference on Web

application development, WebApps, 2010.

[77] E. Raymond. The cathedral and the bazaar. Knowledge, Technology & Policy, 12:23–49, 1999.

[78] G. Richards, C. Hammer, B. Burg, and J. Vitek. The eval that men do: A large-scale study of

the use of eval in JavaScript applications. In Proceedings of the 25th European conference on

Object-oriented programming, ECOOP, pages 52–78, 2011.

[79] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the dynamic behavior of JavaScript

programs. In Proceedings of the 2010 ACM SIGPLAN conference on Programming language

design and implementation, PLDI, 2010.

[80] T. K. Sellis. Multiple-query optimization. ACM Trans. Database Syst., 13(1):23–52, Mar. 1988.

150

[81] W. Shang, B. Adams, and A. E. Hassan. An experience report on scaling tools for mining soft-

ware repositories using MapReduce. In ASE’10: 25th IEEE/ACM International Conference on

Automated Software Engineering, pages 275–284, 2010.

[82] Stack Overflow. http://stackoverflow.com/questions/3143484/, 2010.

[83] Y. Tao, M. L. Yiu, D. Papadias, M. Hadjieleftheriou, and N. Mamoulis. Rpj: producing fast join

results on streams through rate-based optimization. In Proceedings of the 2005 ACM SIGMOD

international conference on Management of data, SIGMOD ’05, pages 371–382, New York, NY,

USA, 2005. ACM.

[84] N. Tatbul and S. Zdonik. Window-aware load shedding for aggregation queries over data streams.

In Proceedings of the 32nd international conference on Very large data bases, VLDB ’06, pages

799–810. VLDB Endowment, 2006.

[85] E. Tempero. How fields are used in Java: An empirical study. In Proceedings of the 20th Australian

Software Engineering Conference, ASWEC, pages 91–100, 2009.

[86] E. Tempero, J. Noble, and H. Melton. How do Java programs use inheritance? An empirical

study of inheritance in Java software. In Proceedings of the 22nd European conference on Object-

Oriented Programming, ECOOP, pages 667–691, 2008.

[87] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and

R. Murthy. Hive - a warehousing solution over a map-reduce framework. VLDB’09: Proceedings

of the VLDB Endowment, 2(2):1626–1629, Aug. 2009.

[88] A. Urso. Sizzle: A compiler and runtime for Sawzall, optimized for Hadoop. https:

//github.com/anthonyu/Sizzle, 2012.

[89] L. G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–111, 1990.

[90] J. Visser. Visitor combination and traversal control. In OOPSLA’01: 16th ACM SIGPLAN confer-

ence on Object-Oriented Programming, Systems, Languages, and Applications, pages 270–282,

2001.

http://stackoverflow.com/questions/3143484/
https://github.com/anthonyu/Sizzle
https://github.com/anthonyu/Sizzle

151

[91] W. Weimer and G. C. Necula. Finding and preventing run-time error handling mistakes. In

Proceedings of the 19th ACM SIGPLAN conference on Object-oriented programming systems

languages and applications, OOPSLA, pages 419–431, 2004.

[92] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How long will it take to fix this bug? In

MSR, 2007.

[93] D. Wheeler. Flawfinder. http://www.dwheeler.com/flawfinder/.

[94] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-reduce-merge: simplified relational

data processing on large clusters. In SIGMOD/PODS’07: 34th ACM SIGMOD International

Conference on Management of Data, pages 1029–1040, 2007.

[95] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and J. Currey. DryadLINQ:

A system for general-purpose distributed data-parallel computing using a high-level language. In

OSDI’08: 10th Symposium on Operating System Design and Implementation, pages 1–14, 2008.

[96] C. Yue and H. Wang. Characterizing insecure JavaScript practices on the web. In Proceedings of

the 18th international conference on World Wide Web, WWW, pages 961–970, 2009.

[97] J. Zhou, N. Bruno, M.-C. Wu, P.-A. Larson, R. Chaiken, and D. Shakib. SCOPE: parallel databases

meet MapReduce. The VLDB Journal, 21(5):611–636, Oct. 2012.

http://www.dwheeler.com/flawfinder/

	2013
	Bringing ultra-large-scale software repository mining to the masses with Boa
	Robert Dyer
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Boa: Enabling Data Intensive Open-source Research

	2. THE BOA LANGUAGE
	2.1 Domain-specific Types in Boa
	2.2 MapReduce Support in Boa
	2.3 Quantifiers in Boa
	2.4 User-Defined Functions in Boa
	2.5 Supporting Source Code Analysis with Visitors in Boa
	2.5.1 Supporting Custom Traversals
	2.5.2 Mining Snapshots in Time
	2.5.3 Mining Revision Pairs
	2.5.4 Bringing It All Together: Motivating Example

	3. THE BOA INFRASTRUCTURE
	3.1 Compiler and Runtime
	3.1.1 Protocol Buffers
	3.1.2 Quantifiers
	3.1.3 User-Defined Functions
	3.1.4 Visitors

	3.2 Data Infrastructure
	3.2.1 Storage Strategy

	3.3 Web-Based Interface
	3.4 Query Output Format

	4. OPTIMIZATIONS
	4.1 Optimizing Visitor Traversals
	4.2 Task-level Combiners
	4.3 Task Fusion
	4.4 Visitor Fusion
	4.5 Limitations

	5. EVALUATION
	5.1 Setup
	5.2 Applicability
	5.2.1 Detailed Examples
	5.2.2 Results Analysis

	5.3 Scalability
	5.4 Storage Strategy
	5.4.1 Evaluation

	5.5 Task-level Combiners Performance
	5.6 Task and Visitor Fusion Performance
	5.6.1 Performance Study I: Boa Examples
	5.6.2 Performance Study II: Java Feature Use
	5.6.3 Performance Study III: Treasure Study
	5.6.4 Performance Study IV: Mixed Workloads
	5.6.5 Summary

	5.7 Reproducibility
	5.8 Language Comprehension
	5.8.1 Threats to Validity

	6. CASE STUDIES
	6.1 Java Feature Usage
	6.1.1 Background: Java Language Specifications (JLS)
	6.1.2 Questions Regarding Language Feature Use
	6.1.3 Approach: Dataset
	6.1.4 Study: Analyzing Java Language Feature Adoption
	6.1.5 Threats to Validity

	6.2 Treasure Study Reproduction
	6.2.1 Threats to Validity

	7. RELATED WORK
	7.1 Mining Software Repository Frameworks
	7.2 Data-Parallel Frameworks
	7.3 Data-Parallel Languages
	7.4 MapReduce Optimizations
	7.5 Analyzing Source Code
	7.6 Language Feature Studies

	8. FUTURE WORK
	8.1 Data Description, Transformation, and Storage
	8.2 Domain-specific Query Languages
	8.3 Future Work on Boa
	8.3.1 Language Extensions
	8.3.2 Infrastructure Extensions
	8.3.3 Improving Adoption and Usability of Boa

	9. CONCLUSION
	A. GRAMMAR OF THE BOA LANGUAGE
	B. DOMAIN-SPECIFIC TYPES IN BOA
	C. DOMAIN-SPECIFIC FUNCTIONS IN BOA
	D. ADDITIONAL EXAMPLE BOA PROGRAMS
	BIBLIOGRAPHY

